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It is clear that this approach basicly differs from cur-
rent isolated production and supervisory control.

The subsequent sections of this paper describe the
different types of methods and the switching mecha-
nisms, give a survey of conceived monitoring and con-
trol methods, address typicalities that relate to im-
plementation, and show experimental and simulation
results.

2 Sustainable control

Figure 2 gives a more detailed view on the functional
layout, in which a symbiosis of fault diagnosis, pro-
duction control and shutdown control is pursued.

Assume that currently no severe failure has occurred
and that no extreme condition applies that requires
immediate shut-down (hyper extreme condition). The
wind turbine will then run in production operation.
The main arbiter, that is to say the operation gover-
nor, will retransmit the control signals from the pro-
duction platform to the actuators. Further, the shut-
down platform receives the current control signal val-
ues in order to tune its internal condition for smooth
‘take-over’ when required.

All the time, the shutdown platform’s unit for detec-
tion of hyper extreme conditions will be active. Their
detection is signaled to the operation governer. It
wil react by retransmitting the control signals from
the shutdown platform instead of the production plat-
form.

The subequent subsections describe the internal work-
ing mechanism of the platforms for fault diagnosis and
control. This includes the functionality of the meth-
ods that are part of the platforms. The working of
the methods itself is explained in the next section.

2.1 Fault diagnosis platform

Sensor and actuator faults are identified with model-
based fault detection and isolation (FDI) methods.
The detection is based on the residues from Kalman
filters. These filters are arranged such that the be-
haviour of the residues in regular conditions can be
distinghuised from that in faulty conditions. The sen-
sor/actuator governor translates a fault into the sta-
tus of the sensor/actuator topology. This status is
read out by the operation governer and the control
platforms through the S/A-status flag. In case of a
non-severe failure, the operation governer will take no
action. However, the production assembly governer
may reconfigure the active extreme detection method
and or control methods as well as the retransmission
of measurement signals.

A non-severe failure can be the drop-out of a redun-
dant blade root moment sensor, or even the drop-out
of a non-redundant blade root moment sensor. In the
first case, only the retransmission of measurement sig-
nals is adapted; in the second case, the detection of

extreme production conditions will no more be based
on all blade root moments, and individual pitch con-
trol will be excluded from production control or based
on other measurement signals.

Severe failures concern strongly deteriorated function-
ing of pitch and yaw actuators, grid drop-out and
combinations of sensor faults. In that case, the op-
eration governer will signal to the shutdown platform
to take over the control. The shutdown assembly
manager in turn will reconfigure the shutdown con-
trol methods for appropriate use of control signals.

2.2 Production control platform

The production assembly governor combines methods
for detection of extreme events and production control
as allowed by the current status of the sensor/actuator
topology. Extreme events are detected from the out-
puts of Kalman filters that are arranged for this pur-
pose.

Optimal production control includes collective pitch
angle adjustment and generator torque setting. The
control actions result from a trade-off between objec-
tives for rotor speed regulation, optimal energy yield
and damping of drive-train torsion and tower bend-
ing. Further, optimal production is pursued through
cyclo-stochastic individual pitch control (IPC). This
IPC is centered around one and two times the rota-
tional frequency (1p, 2p). It reduces the loads on the
blades around these frequencies as well as the loads on
the nacelle and tower around 3p and in very low fre-
quencies. In addition, very low-frequent IPC is added
for the sake of aerodynamic rotor balancing. A priori-
tisation algorithm divides available actuator capacity
over collective and individual pitch control.

As long as the optimal production control unit ap-
plies, its internal condition is messaged to the unit for
extreme production. The latter unit becomes active
after the detection of an extreme event that still al-
lows continuation of production operation. As from
now, a completely different trade-off between control
objectives will apply: extreme production control will
focus on rotor speed limitation and reduction of ex-
treme loads; energy yield and fatigue related damp-
ing are of minor importance. Further, the unit for
extreme production control now messages its internal
condition to the unit for optimal production control.
This enables a smooth switch-back after the extreme
conditions have ceased.

2.3 Shutdown control platform

The shutdown assembly governor combines methods
for detection of hyper extreme events and shut down
control as allowed by the current status of the sen-
sor/actuator topology. Events that require shut down
control are detected from gross values of direct mea-
surement signals, the current status of sensors and ac-
tuators, and the residues of Kalman filters arranged
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Abstract

Extreme environmental conditions as well as system
failure are real-life phenomena. Especially offshore,
extreme environmental conditions and system faults
are to be dealt with in an effective way. The project
Sustainable Control, a new approach to operate wind
turbines (Agentschap NL, grant EOSLT02013) pro-
vides the concepts for an integrated control platform.
This platform accomplishes fault tolerant control in
regular and extreme conditions during production op-
eration and shutdown.

The platform is built up from methods for the de-
tection of extreme conditions and faults and from
methods for operation and shut-down. The detec-
tion methods are largely model-based, which implies
that event detection is derived from anomalous be-
haviour of outcomes from an observer, which can be
an Kalman fiter. Various types of control approaches
are included in the control methods. Often, more
scalar feedback loops work together, the validity of
which is motivated through frequency separation or
orhogonality.

The detection and handling of extreme conditions and
sensor failures elongates the operation. The applica-
tion of optimizing techniques during production op-
eration and during shut down can reduce the loads
on the turbine significantly. A proof of principle on a
multi MW wind turbine for optimzied production op-
eration showed a typical reduction of fatigue damage
equivalent loads between 10% and 30%.

Keywords: fault detection, gust detection, individ-
ual pitch control, fault tolerance, NMPC, optimal
shutdown control.

1 Introduction

Nowadays, control has been well established as a
driver for cost reduction of wind energy conversion.
Usually, the associated control algorithms relate to
production operation in stationary turbulent con-
ditions without any deteriorated wind turbine be-
haviour (regular conditions). Unfortunately, extreme
environmental conditions as well as system failure are
real-life phenomena. Especially offshore, the need
arises to deal in an effective way with [short-tem] ex-
treme environmental conditions and with minor or

more severe types of system failure. With this in
mind, the project Sustainable Control, a new ap-
proach to operate wind turbine is being performed
under grant EOSLT02013 of Agentschap NL (2006-
2011). This project includes the development and in-
tegration of cornerstones that relate to control in four
types of conditions:

• Optimised Feedback Control, for load reduction
by advanced control methods when operation is
in regular conditions;

• Fault Tolerant Control, for avoidance of stand-
still by controller reconfiguration in case of minor
system failure;

• Extreme Event Control, for avoidance of high
loads and shut-down under extreme conditions;

• Optimal Shut-down Control, for avoidance of un-
necessary high loads and serial damage after se-
rious system failure.

Figure 1 shows a functional layout of Sustainable Con-
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Figure 1: Functional layout Sustainable Control

trol. It includes platforms for production control,
shutdown control and fault diagnosis. The dashed
lines represent signals that govern the operation. The
production and shutdown control platforms include
monitoring and control methods; the fault diagnosis
platform only monitoring methods. Sustainable Con-
trol is achieved by synchronized alternate operation
of the methods: a combination of active methods on
the platform relates to one of the listed cornerstones.
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Figure 2: Functional layout Sustainable Control (details)

for the detection of extreme (external) conditions.

Assume for instance that one actuator stucks while
no other failure or extreme external conditions oc-
curs. This is a severe failure that requires immediate
turbine shut-down. Because of the remaining ‘mild’
conditions, the shutdown can be optimized despite of
asymmetric rotor loading. The latter follows from the
unbalanced aeroydanamic pitch setting. The two valid
pitch actuators and generator torque can be used such
that smooth rotor deceleration is achieved while the
effect on the tower by the asymmetric rotor loading
is minimised. Even if also generator drop-out applies,
this is still possible. For instance, non-linear model
predictive control facilitates this.

Another severe failure could be ‘free yawing’ caused
by free running yaw motor rotors. Under remaining
mild conditions, this can also be processed through
optimized turbine shut-down. Cyclic pitch angle ad-

jusment allows for the generation of an aerodynamic
yawing moment. An aerodynamic yaw servo system
can be established on that principle. This allows for
good yaw alignment in the first phase of turbine shut-
down and steadily yawing out of the wind in the sec-
ond phase.

During optimized tubine shutdown, the unit for sur-
vival shut-down will receive the belonging internal sta-
tus. If for instance an extreme wind gust coincides
with one stucking pitch actuator, it will be usually
desired to shut-down the wind turbine as fast as pos-
sible. As from now, survival shut-down control will
take-over optimal shut-down control. Again, the ceas-
ing of the extreme condition could allow for optimized
turbine shutdown. For this reason, the survival shut-
down unit messages its condition to the optimal shut-
down unit. Be aware that a ‘moderate gust’ from say
10 to 15 m/s may induce survival shutdown in case of

large asymmetric rotor loading by actuator stuck.

3 Fault diagnosis

Sensor and actuator faults are identified with model
based fault detection and isolation (FDI) methods as
developed in SUSCON at TU Delft. Specifically, TU
Delft developed algorithms for Generalized Maximum
Likelihood Ratio Tests (GLRT) and mixed H∞/H
index observers for FDI in blade moment sensors and
pitch and yaw actuators [1], [2].

The point of departure is that both sensor faults and
actuator faults can be detected from so called ‘pre-
diction errors’ in the measurement signals, which are
called the residues (r). The residues are obtained as
the difference between measurent values y(n) on a
certain time instance n and the according prediction
ŷ(n). The predicted, or estimated measurements ŷ(n)
are based on measurement and control signal values
up to time instance n − 1 through a so called ‘ob-
server’. This observer estimates the state vector x̂(n)
of the wind turbine model. The general format of the
observer scheme is as follows:

x̂(n+ 1) = Ax(n) +B u(n) + L (y(n)− ŷ(n))

ŷ(n) = C x̂(n) +Du(n)

(1)
with u the control signal [vector]. The residue is then
simply obtained as

r(n) = y(n)− ŷ(n) (2)

Be aware that it is assumed that the true dynamic
state x(n) of the wind turbine and the measurement
signals y

valid
in failue-free conditions evolve as per the

following state space model:

x(n+ 1) = Ax(n) +B u(n) +Bd d(n)

y
valid

(n) = C x(n) +Du(n) +Dd d(n)
(3)

with d the disturbance signal [vector], which is dom-
inated by wind speed variatons We thus assume that
the fault-relevant dynamic behaviour of the wind tur-
bine is represented by this linear dynamic model. Of
course, the model parameters will vary in time be-
cause of changing working conditions. However, an
invariant linear model is supposed to be a fairly good
approximation of reality on time scales of seconds to
tens of seconds.

The measurements y will deviate from the failure-free
measurements y

valid
by the direct effect of sensor fail-

ure but also by the indirect effect of actuator failure.
This will cause a deviating behaviour of the estima-
tions ŷ and so also of the residues r.

Likelihood ratio test for residues

When we focus on detection of failures of blade root
flap moment sensors, the measurement vector y in the
above mentioned model and related observer needs
only to contain blade root flap moment sensors. Then,

the wind speed variations that dominate the distur-
bance signal d can be modeled as blade (root) effective
wind speed signals; one or two per blade. If only ax-
ial wind sped variations are taken into account, then
only one wind speed signal per blade applies. A power
spectrum matrix formulation for these blade effective
wind speed signals is given in [5]. The existence of
such a power spectrum matrix allows for the deriava-
tion of a linear state space model (wind model) that
generates the wind speeds in d from completely un-
correlated Gaussian distributed noise e (white noise):

x
w
(n+ 1) = Aw x

w
(n) +Bw e(n)

d(n) = Cw x
w
(n) + e(n)

(4)

It is clear that we can add this wind model to the
above wind turbine model formulation by Eq 3. This
yields a so called augmented model. From this model,
we can derive an observer as per Eq 1 which now di-
rectly relates to (three) Gaussian white noise sources
e. This is typed as a Kalman filter in innovation form
(innovation filter).

In failure-free conditions, the innovation filter yields
residues r(n) that are equal to the Gaussian white
noise values e(n). In case of sensor failure, the residues
will definitely deviate from e(n). If the sensor value
suddenly drops to zero, the evolution of the residue
in addition to its ‘failure-free value’ e can be approx-
imated by the output of a state space model that is
driven by a fault with a given amplitude A. This the
so called failure signature model.

Because e is Gaussian white noise, it is possible to de-
rive probality density functions of the residue in case
of a sensor fault and the failure-free case. In particu-
lar, the both joined probability density functions can
be derived in a straighforward way over a window that
preceeds the current time instance n. Further, their
ratio can be maximized over the fault amplitude A.

The resulting Generalized Maximum Likelihood Ra-
tio (GLR) will grow very rapidly after a sensor fault.
A threshold test is made for detection (GLRT). It
appears that very fast detection is enabled; specifi-
cally, ca 1 second for blade root sensor failure. It
is clear that GLRTS for assumed potential failure of
all relevant sensors are to be performed. A detailed
treatment is given in [2]. The on-line determination
of GLRTs over a moving time window may become
quite a computational burden.

Effectively, an involved GLRT agrees with a thresh-
old test for the ratio between the auto-correlation of
the residues and its cross-correlations with assumed
normalized sensor failure. These correlations are de-
termined over a relatively short moving time window.

Threshold values for residues

As an alternative to the likelihood ratio approach,
H∞/H index observers have been developed for fast
sensor and actuator fault detection of yaw motor fail-
ure [1], [3]. The advantage of this approach is that
only on-line evaluation of the observer scheme by Eq.
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Figure 4: Wind speed and direction at 15m/s gust and
48o direction change (red/grey: estimations

• is smoothly pulled down to zero with constant
rate of change ν.

Proper choices of threshold h, moving average win-
dow size k0 and recovering speed ν allow for a good
speed/accuracy trade-off: no false alarms; gust detec-
tion before any significant rotor speed increase.

Likelihood ratio tests for residues

Likelihood ratio tests can be performed for the
residues r. These tests allow for the identification of
anomalous behaviour r that relates to gusts.

Say, an extreme wind speed or wind direction change
occurs. The evolution of the residue r in addition to
its ‘gust-free value’ e can then be approximated by
the outputs of the turbine state space model by Eq
3 that is driven by an assumed related gust evolution
with amplitude A. Of course, we measure the overall
values of the residues.

The white, Gaussian character of e now allows to de-
rive expressions for the joint probality density func-
tions of the residue in case of the occurence of the
assumed gust and in the gust-free case; the attribute
‘joint’ pertains to the simultaneous consideration of
the time points in a fixed-length window of which
the end point moves with the current time instance

n. The ratio of these joint probability expressions
can be analytically maximized over the fault ampli-
tude A. The resulting Geralized Maximum Likelihood
Ratio (GLR) will grow very rapidly during the occur-
rence of a gust of which the normalized evolution is
fed through in the probabality density function ratio.

It is known that rotor uniform wind speed changes
affect the thrust force and driving rotor torque while
uniform wind direction changes affect the tilting rotor
torque and horizontal force. So it is clear that residue
analysis for different measurement signals is needed
for different rotor coherent wind condition changes
(gust classes). Six wind classes are distinghuised in
[7]. Next to the uniform gust and change of wind
direction, these include the fast change of a backing
and veering wind, of a jet stream, of a partial wake
condition, and of a sloping wind.

The total involved measurement signals are the thrust
force and driving torque, the yawing rotor torque and
vertical force, and the tilting torque and horizontal
force. Alternatively, load measurements can be done
in a rotating frame, as long as a non-singular relation-
ship exists with the six rotor loads. Of course, it can
be decided to detect gust from less classes. In that
case the according rotor loads can be left out the de-
tection algorithm. Note that the wind (disturbance)
generating model as per Eq 4 is to match to the con-
sidered load signals.

For a certain gust class, it is of course allowed to per-
form a GLRT for more than one assumed evolution of
the related normalized gust (gust class evolution pro-
totype [GCP]). GCPs for a uniform gust can be a ‘1
minus cosine’ evolution and a ‘mexican hat’; details
are in [7].

Figure 5 gives an example of GLRT based detection
of a uniform gust that starts at time instance 120 s.
The left hand boxes show the enveloping time frame

Figure 5: Gust detection by likelihood ratio test

whereas the right hand boxes show details around the
start of the gust. The solid horizontal line in the lower

1 is required. This observer approach was applied for
yaw motor failure detection in [4].

In the H∞/H index approach, it is pursued to com-
pute the observer ‘feedback matrix’ L in such a way
that the disturbances d (mainly wind) and yaw mo-
tor fault f effectively influence the residue r through
a pair of complementary filters such that:

• the one filter will respond up to a certain max-
imum on any normalized disturbance in failure-
free conditions (‘valid-maximum’ γ);

• the other filter will respond not lower than a cer-
tain minimum in case of the normalized failure
condition (‘failure-minimum’β).

The measurable residue r can thus be considered as
the sum of the outputs of both filters.

It is clear that we can detect a failure in a straightfor-
ward way if we succeed to design this filter pair such
that the

product of the maximum occurring excitation
size and the valid-maximum γ (H∞-index)

is lower than the

product of the minimum occuring fault size and
the failure-minimum β (H index).

Of course, the chance that such a filter pair exists is
lower when the ‘natural motion’ in the measurement
signals is strong. Unfortunately, this is the case for
wind turbines because of the variations in the wind
speed. Further, the computation of these filters is
very cumbersome although it can be performed offline.
The numerical procedure involves three linear matrix
inequalities that are to be simulatenously satisfied, of
which two relate to β and γ while the third guar-
antees the stability of the filters. As a consequence,
acceptable computational effort is only achieved when
the number of first order differential equations of the
wind turbine model amounts to ca. 8 or lower.

As an alternative, it can be tried whether the use of
only the first filter, which responds below or up to the
H∞ index at normalized excitation, would suffice for
failure detection. This was done for the detection of
yaw motor error and appeared very successful. The
sensitivity of the residues to ‘missing yawing actions’,
which should be performed due to yaw moment exci-
tation from turbulence, appeared very high. This al-
lowed for the definition of a clear threshold: residues
from turbulence in failure-free conditions are amply
below the threshold while they almost instantaneously
grow very strong in case of yaw motor failure.

Figure 3 shows the ’residue-outcome’ of the H∞ al-
gorithm in a simulation for yaw motor failure from
80 s, with an IEC extreme wind direction change
(45degr) between 50s and 55s. The residue responds
significantly stronger on yaw failure than on direction
change.

Figure 3: Yaw motor failure detection by a H∞ ob-
server

4 Production control

4.1 Extreme condition detection

Extreme conditions are detected from wind speed esti-
mates or residues of a Kalman filter. The Kalman fil-
ter is derived from an augmented turbine model model
with ‘wind dynamics’, similar to that for fault detec-
tion in the previous section. ECN developed detec-
tion algorithms that are based on the cumulated sum
of the wind speed estimates or on generalized maxi-
mum likelihood ratio tests (GLRTs) for the residues.
Detailed descriptions are in [6]and [7].

CUSUM tests for wind speed estimates

Let a uniform rotor coherent wind condition varia-
tion be typed as ‘regular gust’. A regular gust is pri-
marily observable as a fast, simultaneous change of
the blade effective wind speeds. The gust detection
method in [6]directly relates to this fast simultaneous
change through a cumulated sum (CUSUM).

The used extended Kalman filter has parameters that
depend on the rotor azimut position. It estimates in-
stantaneous values of the blade wind speeds and the
wind direction angle from measurements of the flap-
wise and leadwise blade root moments. For this pur-
pose, the disturbance model includes three state vari-
ables for the blade wind speed and one for the wind
direction (general form by Eq 4).

Figure 4 shows the simulated ‘input’ blade effective
wind speeds and wind direction (blue/black) and the
related estimations (red/grey) for a combined extreme
gust and wind direction change.

The CUSUM based detection of gust occurrence exists
in the exceedence of a threshold h by the CUSUM
measure ǫ, which

• is mainly the time-integral of û−u, the difference
between the instantaneous and moving average
values of the wind speed estimates;
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plots identifies the detection threshold; the solid ver-
tical line the time instance of detection. The upper
right plot tells that detection occurs after a ‘fast mov-
ing average’ wind speed increase of ca. 1.5 to 2 m/s.
The nearly exceedance of the detection threshold at
118 s proves the probability of ‘over detection’. An
other choice for the length of the moving window may
release this ambiguity at the cost of a slightly later
gust detection.

Effectively, an involved GLRT agrees with a thresh-
old test for the ratio between the auto-correlation of
the residues and its cross-correlations with assumed
normalized extreme event evolution. These correla-
tions are determined over a relatively short moving
time window.

4.2 Optimal production operation

Optimal production operation is pursued through a
combination of [extended] basic control and cyclo-
stochastic individual pitch control; see e.g. [8], [9],
[10]and [11], [12], [13]. This way of operation is sup-
ported by (i) fast adapting distribution of availabe
actuator capacity over the different control functions,
and (ii) slowly settling individual pitch angle addi-
tions for compensation of rotor unbalance; see e.g.
[14], [16], [15]. Proof of principle experiments have
been performed on an protoptype mulit-MW indus-
trial wind turbine.

Basic control with extensions for damping

The conventional controller is typical and contains
two loops: pitch control for generator speed regula-
tion (active above-rated only) and generator torque
control for power regulation (according to optimal-
λ QN-curve below-rated, and constant power above-
rated). Both loops act on the rotor speed, which is
usually filtered with a (subset of a) series of a low-pass
filter at the 3P frequency, a band-stop filter around
the first tower sideward frequency fsd and a band-
stop filter at the first collective lead-lag frequency fll.
The pitch controller is a PI compensator in respect of
the pitch angle, designed to achieve a gain margin of
0.5 or more and a phase margin of 45 degrees. Ad-
ditions for dynamic inflow compensation and filtered
wind speed estimation & feedfworard can apply.

The active damping can include the first torsional
mode of the drive-train (if a gearbox is present), the
foreaft tower bending mode and the sideward tower
bending mode. The first and third damping options
are accomplished through generator torque variations;
the second one through collective pitch variation.

Within the SUSCON project experimental model ver-
ification has been performed through comparison of
transfer function from adopted model descriptions
and from identification experiments; the latter were
obtained with well chosen test signals on the pitch
angles and the generator torque. The experimen-
tally obtained and the model-based results on a multi
MW prototype wind turbine showed astonishing good

agreement in relevant frequency ranges [17].

Multi-rotational mode IPC

Individual pitch control in integer multiples np of the
rotational frequency (multi-rotational mode IPC) for
3 bladed wind turbines can be simply based on [P]I-
feedback in transformed coordinates. These trans-
formed coordinates are weighted sums of correspond-
ing variables on the 3 blades, in which the weighting
factor for the variable on a specific blade is a har-
monic function in n times the azimut angle of the
blade [12]. The multi-blade coordinates after an np-
transformation directly relate to the nth rotational
mode of the wind. This implies that low-frequency
regulation of an np-multi-blade coordinates agrees
with reduction of blade loads around the np-frequency
[18], [5]. Very recent developments prove that stacked
linear time invariant model models can be applied for
subsequent stability analysis when designing multi-
rotational mode IPC.

Note that the 1p multi-blade harmonic load ampli-
tude relates to the steady state and low-frequent yaw
and tilt moments caused by shear, tower shadow and
turbulence; the 2p amplitude relates to 3p-variations
in the yaw and tilt moment. Besides, the very low fre-
quent ‘0p’ amplitude, which is caused by rotor unbal-
ance, relates to low-frequent shaft bending moments
and 1p yaw and tilt moment variations. A balancing
concept that is insensitive to measurement offsets has
been developed [15], [14].

A prioritisation algorithm divides available actuator
capacity over collective and individual pitch control
[14], [16]. Limits for IPC apply that arise from
the spare actuation part left by prioritized collective
pitching. The key property of the prioritisation al-
gorihm exists in the limitation of the multi-blade co-
ordinates of planned cyclo-stochastic individual pitch
control actions. These multi-blade coordinate use to
vary not too fast and correspond with the amplitude
of the pitch actions around an np frequency. Fur-
ther they give a very good impression of the desired
division of IPC effort in tiltwise and in yawwise orien-
tation. So the concept of limitation of the multi-blade
pitch coordinates allows for

• well regarded division of spare pitch capacity
with respect to reduction of yaw and tilt oriented
loads;

• smooth limitation of IPC harmonics because only
the allowed size of the amlitude will slowly vary
and not the instantenous pitch value.

Similar reasoning with respect to desired pairs of
multi-blade pitch coordinates that relate to different
rotational modes and with respect to desired posi-
tion range, speed and acceleration of the IPC actions,
proves that the same concept of multi-blade pitch co-
ordinate limitation can be applied repeatedly.

Figure 6 shows for six time spans normalized perpen-
dicular shaft bending moments, derived from blade
moment measurements on a multi-MW prototype
wind turbine. The (blue) first, third and fifth ’bar’

Figure 6: Normalized equivalent shaft bending mo-
ment measurements on a multi-MW wind turbine

represent measurements without IPC while IPC in 0p,
1p and 2p is included in the (red) ’bars’ 2, 4 and 6.
The ’bars’ represent relatively fast signal variations;
the (0p)-IPC zeroes the average values (rotor balanc-
ing) while the (1p,2p) -IPC significantly reduces the
variations. Typically, reduction of the fatigue damage
equivalent loads between 10% and 30% appeared from
the measurements.

IPC reconfiguration at sensor failure

A common fear when IPC is applied pertains to the
effect of a failing blade root moment sensor. Fast
GLRT-based detection as discussed in Ch 3 guaran-
tees that severe asymmetric blade loading will get no
time to settle: IPC can be switched off only one or two
seconds after the failure occurred; thereafter, pitch
synchronisation is easy to establish.

However, detailed examinations of 1p IPC show that
drop-out of one sensor has two direct effects, the con-
sequences of which are well manageable:

• the low-frequent size of the multi-blade coordi-
nates will be reduced by 33%;

• a large 1p component will enter in the multi-
blade coordinates.

The reduced low-frequent size will only make the 1p
load reduction 33% less effective. This can be com-
pensated for by a higher feedback gain.

The large 1p component will be fed through as (steady
state) offsets in two of the three pitch angle, which
causes rotor unbalance. If rotor balancing is applied
that can accomdate large offsets in the blade root mo-
ment sensor, then the mentioned unbalance will be
compensated for. The method described in [15]can
handle this.

The large 1p component will not be fed through as
2p-additions to the pitch angle variations because of
the polar symmetry.

4.3 Extreme production operation

The Kalman filter for gust detection through CUSUM
tests by [6]provides estimations of the instantaneous
wind speeds and wind direction (§4.1). These esti-
mations are linked to a dedicated algorithm for gust
suppression and wind direction tracking. Once an ex-
treme event is detected, the EEC algorithm (i) limits
the rotor speed by fast collective pitching and maxi-
mal generator torque setting; and (ii) reduces 1p blade
loads through IPC as soon as the rotor speed is suffi-
ciently bounded.

Figure 7 shows the rotor speed and flapwsie blade root
moments during the extreme conditions as per figure

Figure 7: Rotor speed and blade root moments without
(left) and with (right) IPC-supported extreme event
handling

4. In the upper graph, the smooth line represents the
filtered rotor speed. The dramatic effect of dedicated
event handling becomes clear (right vs left plot). The
belonging pitch effort is shown in Figure ??

Figure 8: Pitching effort during extreme conditions
without (left) and with (right) IPC-supported extreme
event handling
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the loads on the turbine significantly. A proof of prin-
ciple on a multi MW wind turbine for optimzied pro-
duction operation showed a typical reduction of fa-
tigue damage equivalent loads between 10% and 30%.

Implementation of the methods in a so called Sus-
tainable Control platform then provides four types of
control: Optimized Feedback Control, Fault Tolerant
Control, Extreme Event Control and Optimal Shut-
down Control.
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5 Shutdown control

5.1 Hyper extreme condition detection

The described detection methods in §4.1 can be ap-
plied in similar way for the detection of hyper ex-
treme conditions. Further, logic reasoning applies as
concerns the actions to be undertaken in case of com-
binations of exreme conditions and or failures.

5.2 Optimal shutdown control

Model predictive control for smooth shut down

Dotx Control Solutions achieved a promising optimal
shutdown result with non-linear model predictive con-
trol (NMPC). The developed approach includes a pre-
diction of the wind turbine behaviour over a finite, but
considerable time window relative to the actual time
time instance. For a given cost function and given
constraints, the optimal control input series over that
window will be computed; only the first one will ef-
fectuated. On the next time-step this procedure is
restarted. A very advantageous property of NMPC is
that hard constraints can be satisfied exactly without
additional limitation procedures.

Since turbine shut-down is significantly a determin-
istic control problem, such repeately performed pre-
dictions are certainly valuable: a good set of control
signals will result for the current time instance.

Figure 9 shows the foreaft tower moment after pitch
actuator stuck. Two ’chaotic-like’ pitch actions
largely damp the tower resonance (left plots) that
would arise when only steady pitching speed applies
in the valid actuators (right plots).

Figure 9: Wind turbine shut down at pitch actuator
stuck

A disadvantage is the computational burden: the op-
timization process in the determination of the predic-
tion over the time windos is highly iterative. Fur-
ther, non-linear MPC requires relinearization of the
model at each micro-time step in the prediction win-
dow. This implies the need for as simple as possible

models that yet represent enough structural dynamics
behaviour

Controller reconfiguration at yaw actuator fail-

ure

Now consider yaw motor failure and reconfiguration
of yaw control through individual pitch control (IPC).
This can typically happen and be required during
shut-down. TU Delft dealt with this problem [4].
Figure 10 shows sufficient tracking capability of IPC

Figure 10: IPC based yawing after IEC extreme wind
direction change

based yawing for an extreme wind direction change
of 48o; the required pitch speeds and acceleration lay
well within firm, but realistic limits (< 10o/s, < 20
o/s2).

Thus, fault tolerant yaw control appears a realizable
option. The simulations further include realistic tur-
bulence, shear and tower shadow.

5.3 Survival shutdown control

When no optimal shut-down strategy can be applied
then nothing is left but using all means in a common-
sense sensitive way. Wind turbine manufactures use
to implement this case on the base of ample experi-
ence.

6 Conclusions

A plurality of methods for the detection of faults and
extreme conditions and for the control in regular, ex-
treme and shut-down conditions has been presented.
It can be concluded that well tuned, alternate oper-
ation of such methods can optimize the operation of
the turbine in terms of yield and loads.

The detection and handling of extreme conditions and
sensor failures elongates the operation, and thus en-
hances the yield.

The application of optimizing techniques during pro-
duction operation and during shut down can reduce




