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P. Wesseling, E. Oñate and J. Périaux (Eds)
c© TU Delft, The Netherlands, 2006

COMPUTATION OF MODAL RADIATION THROUGH AN
ENGINE EXHAUST ON ADAPTIVELY REFINED MESHES

Xun Huang, Zhaokai Ma and Xin Zhang

Aeronautics and Astronautics
University of Southampton

Southampton, SO 17 1BJ, UK
e-mail: {xunger,mazhk,x.zhang1}@soton.ac.uk

Key words: Duct acoustics, Aeroengine, Adaptive mesh refinement, Computational
aeroacoustics, Linearised Euler equations, Acoustic perturbation equations

Abstract. This paper outlines a computational method for spinning modal acoustic prop-
agation and radiation through an aeroengine exhaust duct and core nozzle, using adaptive
refined mesh (AMR) with the aim of improving the computational efficiency. To allow the
computation with solid boundaries of a general aircraft engine, the method is extended to
support body-fitted multi-blocks AMR. Propagation inside the duct, diffraction at the lip of
the duct and propagation into the near field is modelled by the linearised Euler equations,
which admit hydrodynamic instabilities in the exhaust mean flow. In order to suppress
this type of instabilities, the acoustic perturbation equations are also used, which have been
extended to the cylindrical coordinates. The suitability of the governing equations and the
quality of the proposed AMR method are validated through a case study of single spinning
mode radiation from a generic engine bypass duct.

1 Introduction

The development of high bypass ratio turbofan engines has led to more prominent tonal
noise, which is generated by the fan assembly. An accurate model of the propagation of
tonal noise within and away from the engine would prove a valuable tool in determining
ways to alleviate the fan tone noise problem. In the case of radiation from either a bypass
duct or a core exhaust nozzle, as shown in Fig. 1, there are issues associated with the pres-
ence of a mean flow with a shear layer between the exhaust flow and the external stream.
Refractive effects due to the presence of the shear flow change noise radiation pattern.
The physical process of noise generation and radiation is governed by the Navier-Stokes
equations. At present, a full numerical solution of noise generation, propagation and radi-
ation process using the Navier-Stokes equations is not feasible. However, certain aspects
of the noise propagation and radiation process can be modelled by linearised equations.
For example, in the duct downstream of the rotor-stator region of an aeroengine, where
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nonlinear and viscous noise generation effects are minimal, the propagation of the rotor-
stator noise can be studied using the inviscid linearised equations about the mean flow.
Computational aeroacoustics (CAA) methods based upon the Euler or linearsied Euler
equations (LEE) are general in terms of governing physics,1 whereas its realistic engi-
neering applications are generally expensive and call for continuous research into efficient
computational schemes/methods.

Adaptive mesh refinement (AMR) is efficient and effective in treating problems with
multiple spatial and temporal scales.2 It represents the computational domain as hi-
erarchal refinement levels and increases the grids resolution only in areas of interest.
Consequently the computational efficiency is improved by reducing the number of com-
putational cells. The operation of refinement could be operated either on the fine-grained
cells level,2 i.e. cell-based structured AMR, or on the coarse-grained blocks level,3,4 which
is termed as block-based structured AMR. It is well accepted that block-based AMR
requires less programming efforts and is computationally more effective than cell-based
AMR in terms of communication costs and memory requirements. In our earlier work5 a
block-structured AMR code was constructed and tested against benchmark problems on
rectangular meshes. The subsequent efforts extended the code to work on a distributed-
memory parallel machine6 using message passing interface (MPI) library, and supported
body-fitted meshes to solve aeroacoustic problems of practical significance, e.g. acoustic
radiation from a general aeroengine intake.7 The elements of the employed AMR algo-
rithms, its flexibility and efficiency have been discussed.5–7

Block-structured AMR has been applied to study the radiation of spinning modes
from a unflanged duct and aeroengine intake problems to establish far-field directivity.5,7

Results were verified by comparing to analytical solutions and others’ FEM and LEE
solutions. In this work the block-structured AMR is applied to the general case of noise
radiation from realistic high bypass engine exhaust geometry with mean flow. A com-
putational model used to determine the propagation and radiation of acoustic waves is
outlined. The computational scheme described here allows acoustic waves, propagating
inside the bypass duct of a generic aircraft engine, to be admitted into a computational
domain that comprises the aft duct section, the exit plane of the duct, and the jet flow
immediately downstream. The wave admission is realised through an absorbing non-
reflecting boundary treatment which admits incoming waves and damps spurious waves
generated by the numerical solutions. The exhaust geometry is assumed axisymmetric
and the mean flow axisymmetric with no swirl component. The acoustic disturbances are
represented by a Fourier series in the circumferential direction. For a particular circum-
ferential mode, a simplified system of equations were formulated, termed the 2.5D form
of the LEE.8 Subsequently, The wave propagation and diffraction were calculated with
LEE, using a range of high-order schemes.9

The hydrodynamic shear layer instabilities induce unstable solutions in the LEE com-
putation, corrupting the desired acoustic solutions. To stabilize the LEE solutions, it is
a common practice to remove some mean shear terms in the governing equations. The
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approach was validated against Munt’s analytical solution of semi-infinite duct radiation
problem10 in the previous work.8,9 However, further tests against other comparable meth-
ods are necessary on realistic geometry and flow conditions. The acoustic perturbation
equations (APE),11 which have been extended to the cylindrical coordinates for the aero-
engine case, are also used in this work to suppress instabilities. The APE solutions are
compared to the previous LEE solutions9 through a case study of the radiation of single
spinning mode from a generic engine bypass duct. The far-field directivity is estimated
via an integral surface solution of the Ffowcs Williams and Hawkings (FW-H) equation.12

2 The Block-structured AMR Algorithm

The existing AMR applications3,13 generally employ a block-structured AMR algo-
rithm. It involves a) representing the two-dimensional (2D)/ three-dimensional (3D)
hierarchical computational domain in blocks, b) connecting the generated blocks in a
quadtree/octree data structure, c) estimating local truncation errors at all grid points
and identifying blocks with excessive errors, d) regridding the identified blocks by su-
perimposing or removing blocks to accommodate changes in flow physics, and e) redis-
tributing computational load between processors to maintain dynamic load balancing.
This procedure is operated recursively until either a given refinement/coarsening level
is reached or a predefined local truncation error level has been met. After regridding,
the initial conditions of the newly generated blocks are inherited from their base blocks.
This operation is referred to as the AMR prolongation operation. Conversely, after each
computing step, the solutions on the finer blocks should be used to update the solutions
of the corresponding base blocks to maintain the desired accuracy. This is known as the
AMR restriction operation. To provide partial differences of variables in cells located near
a block boundary, an extra area surrounding each block is required. This operation is
referred to as the ghost construction. More detailed descriptions of the AMR framework
were given in the previous work.5,7 They are not repeated here for the sake of brevity.

3 Numerical Methods

3.1 Governing Equations

The 2.5D form of LEE is firstly given to make the paper complete. Assuming small
perturbations about a steady mean flow, acoustic wave propagation can be described
by the linearized Euler equations in a cylindrical coordinate system. If the acoustic
disturbances are restricted to the multiples of the blade passing frequency and propagate
on an axisymmetric mean flow field without swirl, it is possible to write the disturbances
in terms of a Fourier series, e.g. for the pressure disturbance p′ at a single frequency k
the series is

p′ =
∞∑

m=0

p′m(x, r)e[i(kt−mθ)], (1)
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where x is the axial coordinate, r the radial coordinate, t is time, m is the circumferential
mode and θ the circumferential angle. Consequently, there are two important relations for
the circumferential velocity disturbance w′ and the pressure disturbance p′ correspond-
ingly. They are

∂w′

∂θ
= −m

k

∂w′

∂t
,

∂2p′

∂t∂θ
= mkp′. (2)

By using Eqs. (2) the general LEE in the cylindrical coordinates could be simplified to a
set of equations that are generally called 2.5D LEE equations.5 The complete governing
equations in the cylindrical coordinates for a single blade passing frequency k are:

∂ρ′
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+
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where superscript (′) and subscript (0) denote perturbation and mean properties re-
spectively; u′ and v′ are velocity perturbations in the x and r directions respectively;
w′

t = ∂w′/∂t. The fluid is modelled as a perfect gas. p′ = C2
0ρ
′, where C0 is sound speed.

The boundary treatment for w′
t is the same as that for w′.

For the cases with a shear layer, LEE also admits hydrodynamic instabilities, which
can lead to overwhelm the desired acoustic solutions. In order to suppress this type of
unbounded growth of instabilities, a set of APE have been proposed to the computation
of the acoustic wave convection and refraction in Cartesian coordinates. An in-depth
discussion of the relevant theoretical background can be found in Ewert & Schr’s work.11

In this work they are extended to the cylindrical coordinates, according to the APE-2
system,11 take the form as follows:
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where the first and last equations of Eqs. (3) are kept, and the definitions of variables are
the same as in Eqs. (3).
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3.2 Numerical Schemes

A number of numerical issues associated with AMR on CAA applications are addressed
in the foregoing work as well. The numerical part consists of 4th-order spatial14,15 and tem-
poral schemes,16 2nd- to 6th-order interpolations, 4th-order artificial selective damping14

and 10th-order explicit filter.17 The working of a high-order spatial scheme on an adap-
tively refined mesh was indicated and spectral analysis proved the steady stability of the
employed spatial schemes,5 while pseudospectra analysis18 provided transient properties
under an AMR environment. In the ghost construction operation, several interpolation
methods (a 2nd- and a 4th-order linear interpolation and a 6th-order polynomial interpola-
tion) have been tested in the previous work.7 It was found that combined with 4th-order
spatial schemes and 6th-order interpolations, the convergence rate was around 3.7.

3.3 Curvilinear Coordinate System

In an earlier work6 it was shown that a Cartesian mesh with low-order immersed
boundary method19 performed much poorly than a body-fitted mesh to solve acoustic
propagation problems with curved geometries. There are also some other attempts of
using AMR for body-fitted multi-blocks meshes,13,20 where curved geometries were allowed
to be transformed into and simulated using a uniform computational domain. This can
be achieved by using the coordinate transformation given by Eqs. (5-7), which represent
a transformation from the physical to the computational coordinates. For simplicity the
time variance of both coordinate systems is not considered.

ξ = ξ(x, r), η = η(x, r). (5)

The first order spatial derivatives of the governing equations are evaluated using the chain
rule:

∂
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with the transformation metrics defined as
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J is the transformation Jacobian relating the geometric properties of the physical space
to the uniform computational space and is given by

J =

[
∂x

∂ξ

∂r

∂η
− ∂x

∂η

∂r

∂ξ

]−1

. (8)
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4 Noise Radiation from an Aeroengine Exhaust Duct

In this case the aforementioned 4th-order explicit schemes,15 the 4th-order 4-6 LD-
DRK16 temporal scheme, the 4th-order linear interpolation and the 10th-order filter17 are
employed. The setup and discussions of the case problem are given below.

4.1 Setup

The basic problem is illustrated in Figs. 2-3 that show the computational domain on
which the near-field CAA propagation calculation is performed. The specific configuration
resembles the previous effort.9 The illustrated background mean flow is in terms of Mach
number, which is set to 0.338 at the inflow boundary inside the duct. The exhaust stream
is issued into a stationary environment. Inside the duct, a buffer zone21 is used to absorb
the reflective spurious waves as well as to accommodate incoming modal waves, which are
defined as follows:

ρ′(x, r, θ, t) = a[Jm(krr) + c1Ym(krr)]cos(kt− kax−mθ),

u′(x, r, θ, t) =
ka

k − kaMj

p′,

v′(x, r, θ, t) = − a

k − kaMj

d[Jm(krr) + c1Ym(krr)]

dr
sin(kt− kax−mθ),

wt
′(x, r, θ, t) = −amk[Jm(krr) + c1Ym(krr)]

r(k − kaMj)
sin(kt− kax−mθ), (9)

w′(x, r, θ, t) =
am

r(k − kaMj)
[Jm(krr) + c1Ym(krr)]cos(kt− kax−mθ),

p′(x, r, θ, t) = a[Jm(krr) + c1Ym(krr)]cos(kt− kax−mθ),

where Mj is nondimensional velocity inside the duct; a is fixed at 10−4 to ensure small
relative changes in density (as required for LEE and APE solutions); Jm and Ym are the
mth order Bessel functions of the first and second kind respectively; ka is the axial wave
number and kr is the radial wave number. kr is the nth solution of the following equation
determined by the hard-wall boundary conditions of the duct

d[Jm(youterkr)]

dr

d[Ym(yinnerkr)]

dr
− d[Jm(yinnerkr)]

dr

d[Ym(youterkr)]

dr
= 0, (10)

where youter and yinner are the height of the bypass duct inner wall and the inner hub
radius. ka is calculated from

ka =
k

1−M2
j


−Mj ±

√
1− k2

r(1−M2
j )

k2


 , (11)

the selection of plus or minus (±) signs in the parenthesis is determined by the propagation
direction of the spinning wave, e.g. plus (+) is for the positive propagation direction in
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the axial coordinate, and vice versa. The constant c1 satisfies the following relations

c1 =

d
dr

[Jm(youterkr)]

d
dr

[Ym(youterkr)]
(12)

and

c1 =

d
dr

[Jm(yinnerkr)]

d
dr

[Ym(yinnerkr)]
. (13)

In the case four radial modes are solved in the incoming waves. They are summarised
in Table 1. A buffer zone is also placed around the outer boundaries of the domain and

n f(Hz) k kr ka

1 1562.7 28.3179 10.60 19.11
2 1562.7 28.3179 14.01 17.49
3 1562.7 28.3179 16.50 15.93
4 1562.7 28.3179 19.71 13.35

Table 1: Summary of the Incoming Waves, m = 13, k = 28.3179.

inside the core exhaust nozzle. The target solutions of this buffer zone is set to zero to
absorb spurious numerical reflections.

The far-field directivity is estimated through an integral solution of FW-H equations.12

For simplicity the FW-H integral surface shown in Fig. 3 is located at the borders of
blocks surrounding the engine exhaust. The far-field observers are located at 100m from
the conical rear of the exhaust geometry.

4.2 Discussions of AMR Operations

AMR could provide higher computational efficiency and more flexibility than a uniform
mesh. Fig. 4 illustrates the procedure of the adaptively refined mesh as acoustic waves
propagate and radiate out of the engine exhaust. The outer buffer zone is not displayed.
The total number of grid points increases from 36, 000 to 180, 000. The computation

Grids t = 1 t = 2 t = 5 t = 8
AMR 1478s 3401s 13460s 26670s

Uniform mesh 3971s 8002s 20120s 31920s

Table 2: The computation time of the prediction at t.

is executed and tested on a computer with a Pentium IV 3.0GHz CPU and 2GBytes
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memory. Table 2 shows that the computation time of AMR is increased along with the
increase of grid points. In the initial stage (i.e. t < 5) the computation time of AMR
is around 100% faster than the computation time on the uniform mesh. After that, the
computational efficiency of AMR gradually decreases. Finally it reaches the same level
of the computational efficiency on the uniform mesh, due to the extended span of the
acoustic wave in the whole computational domain (see Fig. 4(d)), where the adaptively
regridding operation is no use anymore.

4.3 Near-Field Propagation

Fig. 5 compares the near-field waves propagation computed by both LEE and APE,
respectively. The computation is performed on a mesh adaptively refined as the acoustic
propagation. Two refinement levels are used. The coarse level mesh consistes of 36, 000
grid points, while the fine level mesh is adaptively updated and the number of grid points
varies accordingly. In this case, after t = 12, hydrodynamic instabilities developed in the
shear layer are evident with the LEE method (see Fig. 5(a)). These instability waves
that can not be suppressed neither by filtering nor by multigrid prolongation develop
to overwhelm the desired acoustic solutions completely. Since APE are claimed to be
stable for arbitrary mean flow fields,11 Eqs. (4) are applied to the case. Fig. 5(b) shows
perturbation pressure contours computed by the APE method. It indicates that the
numerical instabilities are avoided, whereas the near-field propagation pattern retains the
same key features as the LEE solutions: wave diffraction off the lip of the bypass duct
and reflections off the surface of the afterbody of the engine exhaust. It should be noted
that, for the present test case computation, the mean flow conditions in the core nozzle
are the same as those in the bypass duct. Upstream traveling waves now appear inside
the core nozzle and are visible in Fig. 5(b).

Fig. 6 shows the near-field sound pressure level, SPL = 20log10(p
′
rms/(2×10−5)), where

the selected time to compute p′rms satisfies t < 12, in which the hydrodynamic instabilities
appeared in the LEE computation still do not overwhelm the acoustic solutions. It shows
that propagation patterns predicted by the both methods agree well in most parts, whereas
the sound pressure level of APE is a bit higher at high and low angles than the LEE
prediction. By using the APE method, several other spinning mode waves, i.e. n = 2− 4,
are solved as well. Fig. 7 displays the results of the perturbation pressure and sound
pressure level contours.

4.4 Far-Field Directivity

Through an integral surface solution of the FW-H equation, the far-field directivities
of the four spinning mode radiation are predicted based on the near-field APE solutions.
The outcomes are compared with the LEE prediction9 in Fig. 8, respectively. To avoid the
potential effect of the hydrodynamic instabilities in the computation with LEE method,
the time series satisfying t < 12 was used in the LEE computation. The limit is avoided
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in the APE computation. Results in Fig. 8 show that the two patterns predicted by the
APE solutions and the LEE solutions are similar. The main peak angel and the peak
level of the APE prediction match the LEE solutions well. The differences in the peak
radiation level between APE results and LEE results are less than 0.5dB, whereas the
peak radiation angles differ form each other by less than 1.4 deg. In other parts of the
directivity, the patterns are also similar. Nevertheless, the shape of the APE results is
generally smoother than the curve of the LEE results. It implies that in this case the
APE may introduce some kind of dissipations, which operate to suppress hydrodynamic
instabilities. Another finding is that the amplitude of APE results is generally higher than
that of LEE results. In Fig. 6 the same finding is displayed. Here the maximal difference
appears in the case of n = 4, where the difference at the high angles (φ > 60 deg) is up
to 5.0dB.

5 Summary

In this work the body-fitted multi-block AMR method is applied to the prediction of
spinning mode radiation from a generic engine exhaust with mean flow field. To model
curved geometries, the AMR code is extended to support body-fitted grids. The mean
flow field is assumed to be axisymmetric. Inside the duct, a spinning mode of m = 13 with
several different radial modes (n = 1−4) is admitted into the propagation region as input
on the boundary of the computation domain. To suppress hydrodynamic instabilities
developed in the exhaust mean flow, APE are employed and are extended to the cylindrical
coordinates. The results of APE agree well with the previous LEE results by comparing
the near-field propagation patterns and far-field directivity. The computation efficiency
varies along with the propagation of the acoustic waves. In the initial stage, the adaptively
refined mesh represents a saving of up to 160% compared with a uniform mesh. After
the acoustic waves spanning the whole computation domain the efficiency of AMR is the
same as that on a uniformly fine mesh.
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1 2

Core duct

Inlet duct
Bypass duct

Acoustic
radiation Shear layer

Figure 1: Tonal noise radiation off an aeroengine bypass duct, where: 1 is rotor, 2 is stator, other sectors
are omitted.

Figure 2: Mean Mach number distribution of an aeroengine exhaust.
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Symmetrical Axis

FW-H Integral Surface

Far-field Observers Surface

Buffer Zone

100m

Incoming
Wave

Figure 3: The problem setup of an aeroengine exhaust geometry that is displayed with thick lines.
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(a) t = 1. (b) t = 2.

(c) t = 4. (d) t = 6.

Figure 4: The evolution of adaptively refined mesh with the propagation of acoustic waves from the
engine exhaust. Gray lines represent the block boundaries of the adaptively refined mesh.
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(a) LEE with AMR, t = 12. (b) APE with AMR, t = 20.

Figure 5: Perturbation pressure contours computed by LEE and APE. m = 13, n = 1, k = 28.3179.

(a) LEE (b) APE

Figure 6: SPL contours computed by LEE and APE. m = 13, n = 1, k = 28.3179, (a) 9.5 < t < 10, (b)
15 < t < 15.5.
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(a) Perturbation pressure, n=2. (b) SPL, n=2.

(c) Perturbation pressure, n=3. (d) SPL, n=3.

(e) Perturbation pressure, n=4. (f) SPL, n=4.

Figure 7: APE prediction of perturbation pressure and SPL contours of several single spinning mode
waves. m = 13, n = 2− 4, k = 28.3179, 12.4 < t < 12.9.
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(a) n = 1.
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(b) n = 2.
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(c) n = 3.
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(d) n = 4.

Figure 8: Far-field directivity of the engine exhaust duct radiation. m = 13, k = 28.3179.
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