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Summary
As AI technologies gain widespread acceptance across society, human-AI collaboration
has emerged as a promising avenue to enhance the accountability and reliability of task
outcomeswhere AI is used in task completion. AlthoughAI systems are advancing rapidly,
most people in society – particularly laypeople – still lack sufficient understanding and
experience in collaborating with them. This gap becomes a barrier when interacting with
deep learning-based AI systems, where users often struggle to assess the trustworthiness
of AI advice. Consequently, individuals may develop uncalibrated trust or misperceptions
about AI capabilities, hindering appropriate reliance and degrading overall team perfor-
mance. Empirical studies have shown that human-AI teams often underperform compared
to AI systems operating alone, highlighting that current human-AI collaboration remains
suboptimal. These observations underscore a substantial need to advance our understand-
ing of fostering effective human-AI collaboration.

This dissertation contributes to the growing literature on human-AI collaboration by
analyzing potential approaches to promoting appropriate reliance. Specifically, to ensure
effective human-AI collaboration, we aim to achieve both reliable task outcomes and a
positive, engaging user experience. Through a series of empirical studies, we explored pro-
moting appropriate reliance by calibrating user perception of competence (Part I), improv-
ing user understanding of AI systems with human-centered explainable AI (Part II), and
enhancing user control with collaborative workflows (Part III). Our findings confirm that
an uncalibrated perception of AI competence and self-competence can be a cause to trig-
ger over-reliance and under-reliance, respectively. Additionally, we observed that both
XAI methods (e.g., analogy-based explanation) and interactive XAI interfaces (e.g., con-
versational XAI interfaces) may induce an illusion of explanatory depth, which can trig-
ger over-reliance. Finally, our analysis of fine-grained reliance patterns within multi-step
decision workflows, as well as user involvement in plan-then-execute LLM agents, offer
valuable insights for designing effective collaborations with agentic AI systems.

Taken together, the findings and implications in this dissertation advance our under-
standing of how to foster appropriate reliance on AI systems. By examining human and
contextual factors that shape user reliance and perception, and by proposing novel meth-
ods for explanation and interaction, this work contributes both theoretical insights and
quantitative evidence to the design of human-centered AI systems. We hope the key find-
ings and implications reported in this dissertation will inspire further research on promot-
ing appropriate reliance and facilitating effective human-AI collaboration.
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Samenvatting
Naarmate AI-technologieën steeds breder worden geaccepteerd in de samenleving, is sa-
menwerking tussen mens en AI naar voren gekomen als een veelbelovende manier om de
verantwoordelijkheid en betrouwbaarheid te verbeteren van uitkomsten van taken waar-
bij AI gebruikt wordt. Hoewel AI-systemen zich in rap tempo ontwikkelen, ontbreekt het
veel mensen – met name leken – nog steeds aan voldoende begrip en ervaring om effec-
tief met deze systemen samen te werken. Deze kloof vormt een belemmering, vooral bij
interactie met op deep learning gebaseerde AI-systemen, waarbij gebruikers vaak moeite
hebben omde betrouwbaarheid vanAI-adviezen in te schatten. Als gevolg hiervan kunnen
mensen een verkeerd gekalibreerd vertrouwen of onjuiste opvattingen over de capacitei-
ten van AI ontwikkelen, wat leidt tot een ongepaste afhankelijkheid en een verminderd
prestatieniveau van het team als geheel. Empirisch onderzoek toont aan dat mens-AI-
teams vaak slechter presteren dan AI-systemen die zelfstandig opereren, wat benadrukt
dat de huidige samenwerking tussen mens en AI nog verre van optimaal is. Deze obser-
vaties onderstrepen de noodzaak om onze kennis over effectieve mens-AI-samenwerking
verder te verdiepen.

Dit proefschrift levert een bijdrage aan de groeiende literatuur over mens-AI-
samenwerking door mogelijke benaderingen te analyseren die gepaste afhankelijkheid
bevorderen. Concreet streven we naar zowel betrouwbare taakuitkomsten als een posi-
tieve, betrokken gebruikerservaring om effectieve samenwerking met AI te waarborgen.
In een reeks empirische studies onderzochten we drie benaderingen om gepaste afhanke-
lijkheid te stimuleren: het kalibreren van de gebruikersperceptie van competentie (Deel
I), het verbeteren van het begrip van AI-systemen via mensgerichte uitlegbare AI (Deel
II), en het vergroten van gebruikerscontrole door middel van collaboratieve werkstromen
(Deel III). Onze bevindingen bevestigen dat een verkeerd gekalibreerde perceptie van zo-
wel AI-competentie als eigen competentie kan leiden tot respectievelijk overmatige en on-
voldoende afhankelijkheid. Daarnaast zagen we dat zowel XAI-methoden (zoals analogie-
gebaseerde uitleg) als interactieve XAI-interfaces (zoals conversatiegerichte XAI) een illu-
sie van diepgang in de uitleg kunnen oproepen, wat op zijn beurt overmatige afhankelijk-
heid kan uitlokken. Tot slot bieden onze analyses van fijnmazige afhankelijkheidspatro-
nen binnen meerstapsbesluitvorming en gebruikersbetrokkenheid bij plan-then-execute
LLM-agenten waardevolle inzichten voor het ontwerpen van effectieve samenwerking
met steeds autonomere AI-systemen.

Samenvattend dragen de bevindingen en implicaties in dit proefschrift bij aan ons be-
grip van hoe gepaste afhankelijkheid van AI-systemen kan worden bevorderd. Door men-
selijke en contextuele factoren die gebruikersperceptie en afhankelijkheid beïnvloeden te
analyseren, en door nieuwe methoden voor uitleg en interactie te introduceren, levert dit
werk zowel theoretische inzichten als kwantitatief bewijs voor het ontwerp van mens-
gerichte AI-systemen. We hopen dat de belangrijkste bevindingen en implicaties in dit
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proefschrift verdere onderzoeksinspanningen zullen inspireren rond het bevorderen van
gepaste afhankelijkheid en het faciliteren van effectieve mens-AI-samenwerking.
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1
Introduction

The use and fabrication of instruments of labour,
although existing in germ amongst certain species of animals,

is specifically characteristic of the human labour-process,
and Franklin therefore defines man as a ’tool-making animal’.

– Karl Marx

Humans show distinguished intelligence from other animals by inventing and using
tools [1, 2]. Incorporating tools into daily life and work, human capabilities and work
efficiency get amplified significantly [3]. For instance, humans are the only species that
have learned to control fire, which makes their food more digestible and enhances nutri-
ent absorption. Similarly, by replacing machines powered by humans or other animals
(e.g., horses) with machines supplied with fuels and electricity, humans obtained much
higher efficiency in factories, transportation, and healthcare [4]. As the saying goes, “ne-
cessity is the mother of invention” — tools emerge to meet human needs [5]. However, to
fully harness their potential, humans must learn to control the tools they create [6–8]. In
other words, tool users should knowwhen the tools can effectively address their empirical
needs and how to apply tools in practice.

Artificial Intelligence (AI) systems [9], which have demonstrated promising effective-
ness across various tasks [10] (e.g., machine translation [11] and face recognition [12]),
represent the latest advancement in human-made tools. Formally, an AI system is a com-
putational entity that perceives its environment, processes data, and generates outputs —
such as predictions, classifications, or decisions — based on learned models or predefined
rules [9]. Unlike traditional tools designed primarily to extend human physical capabil-
ities, AI is a cognitive technology that processes information, identifies correlation pat-
terns in datasets, and makes predictions by mimicking aspects of human intelligence. Its
impact spans nearly every domain of modern society, from healthcare and finance to trans-
portation and education [9]. Moreover, AI continuously evolves through human feedback,
achieving significant performance improvements over the past decade [13].
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The promising potential of AI systems has led to widespread adoption in intelligent
services like customer service [14], image generation [15], etc. However, their prolifera-
tion also raises significant ethical and safety concerns. One major issue is the potential for
AI-generated content to spread misinformation [16], reinforce stereotypes [17], or even
propagate hate speech [18]. For instance, AI chatbots can generate misleading narratives
that quickly circulate on social media [16], influencing public opinion and exacerbating
societal divisions [19]. Similarly, biased AI models used in hiring or law enforcement can
perpetuate discrimination, leading to unfair outcomes [20]. Given these risks, it would
be dangerous to apply AI systems without human oversight [21]. Existing studies have
shown that incorporating human oversight can helpmitigate AI failures [22], reduce harm-
ful consequences [23], and ensure AI technologies are aligned with ethical and societal
values [24].

Although AI systems have shown promising performance across various tasks, they
are typically imperfect. They often struggle with out-of-distribution data [25] and may
rely on spurious correlations rather than genuine reasoning [26]. The reasons behind this
are multi-fold. First, many AI systems function as black boxes [27], making them diffi-
cult to interpret and understand. Nowadays, the most popular AI systems are based on
deep neural networks trained with large volumes of task-specific data. Due to intrinsic
opacity of deep neural networks, it would be challenging to trace their decision-making
process or diagnose errors when they produce flawed outputs [10, 27]. Second, most AI
systems are trained to simulate the collected data from the real world and are inherently
probabilistic. This means there can be significant uncertainty about their outcomes, par-
ticularly when addressing out-of-distribution data [25]. Thus, due to accountability and
reliability concerns, it may be undesirable to automate AI systems in high-stakes tasks
(e.g., medical diagnosis) [22]. Under these circumstances, there is a substantial need for
effective human-AI collaboration, where humans can decide to adopt or override AI
advice when necessary to ensure the quality of task outcomes and user experiences.

The above concerns have been substantial barriers to AI development and AI applica-
tions. To take advantage of AI systems and address potential risks, we need to further our
understanding of human-AI collaboration. Specifically, this dissertation focuses on the
appropriate reliance within human-AI decision making. With the wish of comple-
mentary team performance, one goal of effective human-AI collaboration is appropriate
reliance: human decision makers rely on an AI system when it is accurate (or perhaps
more precisely, when it is more accurate than humans) and do not rely on it when the
system is inaccurate (or, ideally, whenever it is wrong). Understanding and fostering ap-
propriate reliance is crucial for ensuring AI serves as a reliable and effective partner rather
than a source of unchecked automation risks.

1.1 Overview: Effective Human-AI Collaboration
To ensure effective human-AI collaboration, this dissertation focuses on two key aspects:
(1) performance-related outcomes, aiming for optimal teamwork and reliable task results;
and (2) experience-related outcomes, emphasizing the quality of the human experience
when interacting with AI systems. Figure 1.1 illustrates key elements in this section.

Performance-related Outcomes. In the last decade, we have witnessed AI systems
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Figure 1.1: Overview of Human-AI Collaboration.

evolve at a fast pace. Their promising performance across various domains envisions a
future AI-supported world. However, many current AI systems are found vulnerable with-
out human oversights [21]. They can generate harmful content (e.g., hate speech and fake
news [16]) and make wrong predictions (e.g., detect the moon as a yellow traffic light¹).
These shortcomings degrade user experience and erode people’s trust in all AI systems [28].
This dissertation aims to leverage human oversights to ensure the trustworthiness of task
outcomes from imperfect AI systems.

To achieve the goal of complementary team performance, humans should recog-
nize when the AI systems are problematic and override flawed outcomes from the AI
systems [29]. At the same time, humans are also supposed to realize when the AI sys-
tems are correct (or more capable than themselves) and adopt AI assistance [30]. These
behavior patterns reflect appropriate reliance on AI systems. However, many empirical
user studies [22] on human-AI collaboration have indicated that humans typically rely on
AI systems either too much (i.e., over-reliance) or too little (i.e., under-reliance). As a result,
human-AI teams often underperform compared to AI systems operating alone [30, 31]. Ac-
cordingly, a growing body of research [22, 29, 32] aims to promote appropriate reliance
on AI systems.

When interacting with AI systems that may outperform human experts, people exhibit
two contradictory attitudes: Algorithm Aversion [33] and Algorithm Appreciation [34]. Al-
gorithm aversion refers to a biased assessment of an algorithm, resulting in negative be-
haviors and attitudes toward it compared to a human agent [33, 35]. In contrast, algorithm
appreciation describes people’s preference for algorithmic advice over human advice [34].
These altitudes reflect that humans can easily develop uncalibrated trust in AI systems,

¹https://www.autoweek.com/news/green-cars/a37114603/tesla-fsd-mistakes-moon-for-traffic-light/

https://www.autoweek.com/news/green-cars/a37114603/tesla-fsd-mistakes-moon-for-traffic-light/
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which may lead to misuse or disuse [22, 36]. Meanwhile, prior work has pointed out that
subjective trust may substantially affect user reliance behaviors [37]. Thus, besides the
appropriate reliance behaviors, we also highlight the need to facilitate calibrated trust
in the AI systems.
Experience-related Outcomes. Effective human-AI partnerships should not only en-
hance task performance but also provide tangible advantages to human participants [21].
Prior research [7, 38] on user interaction with tools has shown that users who engage
more positively and actively with tools tend to demonstrate more effective and efficient
tool use. Therefore, we highlight the importance of positive user experiences for effective
human-AI collaboration.

One fundamental experience-related goal we seek isuser satisfaction. If users have a
negative experience when collaborating with AI systems, they may be reluctant to adopt
AI assistance, even if it leads to improved task outcomes [37]. Thus, to foster effective
human-AI collaboration, we should avoid flawed designs that may decrease user satisfac-
tion (e.g., increased user cognitive load or time pressure). Specifically, AI systems should
be designed to amplify human capabilities, like providing expert-level advice support and
improving efficiency in repetitive jobs. Furthermore, AI systems should improve user ex-
perience by offering proactive suggestions, personalized support, and streamlined work-
flows that align with human preferences and needs. By reducing cognitive and physical
work load, humans can enjoy working with AI assistance and focus on tasks where they
show distinct advantages (e.g., tasks require human intuition or tasks need to align with
human values).

Besides user satisfaction, user agency also plays a crucial role in facilitating effective
human-AI collaboration. Prior work on tool use [7, 39] emphasizes the importance of user
agency in promoting effective and empowering interactions with technology. In the con-
text of human-AI collaboration, preserving user agency is not only critical for appropriate
reliance and trust [40], but also for ensuring that AI augments rather than replaces human
roles. While society is excited about the promising future AI systems bring, there are also
concerns about unemployment and job displacement due to increased automation and ef-
ficiency [41]. These concerns are compounded when AI systems are deployed without
preserving user agency, which can reduce worker autonomy and control over their roles.
In a nutshell, human-AI collaboration should be mutually beneficial, where AI systems
empower users to achieve their goals more effectively and efficiently while preserving
user agency and satisfaction.

1.2 Our Focus: Appropriate Reliance
Trust and Reliance. With the growing interest in human-AI collaboration, researchers
have increasingly focused on user trust and reliance on AI systems. Building on prior
work in AI-assisted decision-making, this dissertation defines user trust as a subjective
attitude and user reliance as objective behavior (e.g., adoption of AI advice). Prior studies
suggest that subjective trust can influence reliance behaviors; for instance, users who trust
an AI system may blindly rely on it, while those who distrust it may choose to avoid
using it altogether. However, user trust and reliance are not always closely coupled, and
observations of one are not sufficient to infer the other. For example, even when users
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rely on an AI system, it does not necessarily indicate trust. They may instead perceive the
AI system as more capable than themselves in a particular context or prefer to avoid the
responsibility of making decisions (e.g., when facing a potential moral dilemma [42]).

Compared to subjective trust, objective reliance behaviors have a more direct connec-
tion with task outcomes. To help understand the association between reliance and task
outcomes, we will explain with common setup in human-AI decision making — two-stage
decision making [22, 30]. In the first stage, users make decisions independently (without
checking AI advice). Then, users will check the AI advice (and relevant evidence or ex-
planations) and make the final decisions. The two-stage decision making setup is widely
adopted by prior work in human-AI decision making [22, 30]. Thus, we also adopt it in
the dissertation for all one-step decision making tasks.

Initial human AI Relationship between initial human Human decision after Reliance
decision advice decision and AI advice receiving AI advice
Correct Correct Confirmation Correct n/a
Correct Correct Confirmation Incorrect n/a
Incorrect Incorrect Confirmation Correct n/a
Incorrect Incorrect Confirmation Incorrect n/a
Incorrect Correct Positive advice (PA) Correct Positive AI reliance
Incorrect Correct Positive advice (PA) Incorrect Negative self-reliance
Correct Incorrect Negative advice (NA) Correct Positive self-reliance
Correct Incorrect Negative advice (NA) Incorrect Negative AI reliance

Table 1.1: Effect of AI advice on reliance. The form is taken from prior work [29].

Following prior work on appropriate reliance measurement [29], we considered user
behavior when their initial decision differ from AI advice as a signal for user reliance. We
enumerate all potential cases in two-stage decision making with Table 1.1. As we can see,
when AI systems provide correct AI advice and the initial human decision is wrong, users
are supposed to adopt AI advice. Similarly, when AI systems provide incorrect advice and
humans hold a correct initial decision, humans are supposed to insist on their initial deci-
sion and disregard AI advice. Then, based on the four reliance patterns, we can calculate
relative positive AI reliance (RAIR) and relative positive self-reliance (RSR) with:

RAIR = Positive AI reliance
Positive AI reliance + Negative self-reliance

,

RSR = Positive self-reliance
Positive self-reliance + Negative AI reliance

.

The two measures can reflect appropriate reliance on two dimensions: low RAIR indi-
cates under-reliance on AI systems, while low RSR indicates over-reliance on AI systems.
The two measures can help us develop insights into user reliance patterns and are fre-
quently used in this dissertation (Chapter 2-6).

1.3 Research Questions and Original Contributions
This dissertation is divided into three parts, each advancing the journey to promote appro-
priate reliance on AI systems by focusing on a distinct aspect: calibrating user perception
of Competence (Part I), facilitating user understanding with human-centered XAI (Part
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Figure 1.2: Hierarchy of the dissertation content.

II), and enhancing user control with collaborative workflows (Part III). We visualize their
connections and hierarchical structure of content chapters with Figure 1.2.

Based on prior observations of miscalibrated trust in AI systems, we first look into
the impact of the perception of task competence. We analyzed scenarios that contained
performance feedback (e.g., stated accuracy, Chapter 2) and those without performance
feedback (Chapter 3 and Chapter 4). We also proposed user interventions to calibrate user
perception of task competence (self-assessment and AI assessment). Based on empirical
studies’ findings, we realize that calibrating task competence solely may not be enough to
make informed decisions. User understanding may be a bottleneck to making informed
decisions and estimating the trustworthiness of AI advice. Thus, we developed and ana-
lyzed the impact of analogy-based explanations (Chapter 5) and conversational XAI de-
cision support (Chapter 6). Furthermore, we noticed that the users may need effective
workflows and have more flexible interaction with AI systems when handling complex
tasks. Thus, we analyzed the impact of fine-grained transparency (Chapter 7) and user
involvement with plan-then-execute LLM agents (Chapter 8). While the three parts focus
on different aspects, they are also interconnected. For example, human-centered XAI and
user involvement in the multi-step workflow can help calibrate user perception. Mean-
while, user perception and user understanding of the AI system may also affect how often
they are involved in fixing AI systems in a multi-step workflow.

In the remainder of this section, we describe the motivation, research questions, and
original contributions of each part.

Part I: Calibrating User Perception of Competence
In the last several years, decision making has been a popular scenario for analyzing user
reliance on AI systems. When users’ initial decision conflicts with AI advice, users need
to either insist on their own decision or switch to AI advice in the final decision, which is a
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clear signal of user reliance on the AI system. Prior research has shown that accuracy and
other performance metrics significantly influence user trust and reliance on AI systems.
Such an impact may stem from the perceived performance of different actors (i.e., human,
AI system, human-AI team). While prior work has extensively analyzed the effects of
accuracy levels and confidence/uncertainty variations, less attention has been given to
how perceived performance and associated cognitive biases (e.g., the Dunning-Kruger ef-
fect). In Part I of this dissertation, we seek to bridge this gap by investigating how the
perceived performance of different actors influences user reliance on AI. This leads us to
the following research questions:

RQ1-a: How does the perceived performance of humans and AI systems shape user
reliance on AI systems?
RQ1-b: How to mitigate the impact of cognitive bias associated with misperception
on user reliance on AI systems?

To understand the impact of the perceived competence of different actors (i.e., human,
AI system, human-AI team). We conducted a series of controlled empirical studies. To be-
ginwith (Chapter 2), we explore how the degree towhich humans understand system accu-
racy influences their reliance on the AI system by investigating numeracy levels and using
analogies to explain system accuracy. Based on the experimental results, we reason that
the meta-cognitive bias Dunning-Kruger effect can be a potential cause for under-reliance.
To confirm the impact of the Dunning-Kruger effect on user reliance, we conducted an
empirical study on logical question answering (Chapter 3), which has been observed to
trigger the Dunning-Kruger effect. At the same time, we also propose a tutorial inter-
vention to help calibrate self-assessment and mitigate the impact of the Dunning-Kruger
effect. Similar to the reasoning for under-reliance, we take the perceived performance of
AI systems as one potential cause for over-reliance on AI systems. Inspired by existing
literature on critical thinking and a critical mindset, we propose debugging an AI system
as an intervention to foster appropriate reliance (Chapter 4). To make sure that laypeople
(e.g., crowd workers) can be able to debug AI systems, we adopted a deceptive hotel review
detection task along with guidelines about deceptive patterns.
Contributions of Part I:

• We present findings of three empirical studies to advance our understanding of the
impact of stated accuracy (Chapter 2), self-assessment (Chapter 3), and AI assess-
ment (Chapter 4) in human-AI decision making.

• We reason that under-reliance on the AI systemmay be a result of users’ overestima-
tion of their own ability to solve the given task (Chapter 2). With further analysis,
we confirm that users with the Dunning-Kruger effect will rely less on AI systems,
and such under-reliance hinders them from achieving optimal team performance
(Chapter 3).

• We propose tutorial intervention to mitigate the impact of Dunning-Kruger effect
(Chapter 3). Based on themixed results on participantswith different self-assessment,
we synthesize guidelines for better tutorial designs.
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• We propose debugging intervention to develop critical mindset and foster appropri-
ate reliance on AI systems (Chapter 4). Our results suggest that we should be careful
in presenting the weakness of the AI system to users, to avoid any anchoring effect
which may result in under-reliance.

Part II: Facilitating User Understanding with Human-centered XAI
As pointed out by GDPR, the users of AI systems should have the right to access meaning-
ful explanations of model predictions. In response, a growing body of research has focused
on developing human-centered explainable AI (XAI) solutions to enhance human-AI col-
laboration. To foster appropriate reliance, researchers have extensively explored XAI as
a means of providing supporting evidence to help users make informed decisions. How-
ever, prior work has consistently shown that users can develop an illusion of explanatory
depth — overestimating AI competence after viewing explanations generated with XAI
methods. Inspired by research on analogy-based learning in education, we propose that
analogy-based explanations can improve user comprehension of AI decision criteria and
promote appropriate reliance. Specifically, we introduce concept-level analogy-based ex-
planations to help users understand the causal relationships between key concepts and
model predictions. This leads to the following research questions:

RQ2-a: How do analogies for concept-level explanations shape the understanding of
an AI system among non-expert users?
RQ2-b: How do analogy-based explanations affect user reliance on AI systems?

As there are no off-the-shelf solutions for generating high-quality analogies as expla-
nations, we proposed a crowd computing method for generating analogies with templates
(Chapter 5). To help advance our understanding of the analogy quality on their usefulness
in decision making, we conducted two empirical studies for evaluation. First, we synthe-
sized a set of structured dimensions to assess analogy quality (see Chapter 5) and recruited
five experts to evaluate the analogies generated with our crowd computing method. Our
findings reveal that the proposed dimensions show a positive contribution to the perceived
helpfulness of explanations. To further our understanding of the impact of analogy-based
explanation on user reliance, we conducted an empirical study on cancer diagnosis (Chap-
ter 5). While the analogy-based explanations do not work as expected to significantly
boost user understanding of AI systems or facilitate appropriate reliance, we figure out
key challenges in generating high-quality analogies and the potential for personalization.

Beyond the explanationmethods, the user interfaces used to present XAImethodsmay
also impact user understanding and reliance on AI systems. The recent advancement of
large language models (LLMs) has enabled conversational interactions with AI systems,
which envisions a promising future of conversational XAI support. Conversational user
interfaces can provide a human-like interaction and simplify complex tasks with filtered
information, which can bring better user experience and higher user engagement. To
confirm the impact of conversational XAI interface on user reliance, we conducted a sys-
tematic comparison with XAI Dashboard, a widely adopted user interface in practical XAI
applications. This leads to the following research questions:
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RQ3-a: How does a conversational XAI interface shape user understanding of an AI
system, in comparison with an XAI Dashboard?
RQ3-b: How does a conversational XAI interface influence user reliance on an AI
system, in comparison with an XAI Dashboard?

To answer RQ3-a and RQ3-b, we conducted an empirical study by comparing the
conversational XAI interface with the XAI dashboard (Chapter 6). We considered both
rule-based agents and LLM-based agents to support the conversation. Meanwhile, we also
adopted an evaluative AI perspective to adjust the conversation and nudge users to check
and compare their own decision criteria with those of AI systems. Our results indicate
that we should be careful in presenting XAI methods with an interactive XAI interface,
which may cause over-reliance on the AI system.
Contributions of Part II:

• We present findings of two empirical studies to advance our understanding of the
impact of concept-level analogy-based explanations (Chapter 5) and conversational
XAI interfaces (Chapter 6) in human-AI decision making.

• We propose analogical inference as a bridge to help end-users leverage their com-
monsense knowledge to better understand the concept-level explanations (Chap-
ter 5).

• We design an effective analogy-based explanation generation method and collect
600 analogy-based explanations from 100 crowd workers (Chapter 5).

• We propose a set of structured dimensions for the qualitative assessment of analogy-
based explanations and conduct an empirical evaluation of the generated analogies
with experts (Chapter 5).

• We find that, compared to concept-level explanations, the additional analogies do
not cause a significant delay in decision making or pose a significantly higher cog-
nitive load. Based on the qualitative analysis of participants’ feedback and user
reliance patterns, we summarized guidelines for future work about generating ef-
fective analogy-based explanations and on the appropriate usage of analogy-based
ex-planations (Chapter 5).

• We find that, compared to XAI dashboard, the conversational XAI interface showed
a slightly better understanding, and demonstrated a slightly higher trust in the AI
system (Chapter 6).

• We provide empirical evidence that the XAI interfaces were persuasive and have
the potential to bring about an illusion of the AI systems’ capability, which in turn
increased over-reliance on the AI system (Chapter 6).

• We find that boosting the conversation quality and flexibility (i.e., with LLM-based
conversational agent) may further reinforce over-reliance and hurt user understand-
ing as well as user trust (Chapter 6). Our insights and observations can inform the
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future design of conversational XAI interfaces to promote complementary human-
AI collaboration.

Part III: enhancing user control with collaborative workflows
In real-world applications, AI systems are increasingly taskedwith handling complex prob-
lems that require multi-step decision-making and reasoning. In such workflows, errors in
earlier steps may propagate, making flawed AI outcomes harder to diagnose. To address
such concerns, we followed prior work to provide transparency along with AI assistance.
Specifically, we investigate how fine-grained transparency methods can be structured to
improve the reliability of mutli-step decision workflows, leading to the following research
questions:

RQ4-a: How does a multi-step decision workflow shape user reliance on an AI sys-
tem?
RQ4-b: How do global transparency and local transparency shape user reliance in a
multi-step decision workflow?

To investigate the impact of fine-grained transparency on user reliance within a multi-
step decision workflow, we conducted an empirical study on composite fact-checking
tasks (Chapter 7). The AI system is implemented by prompting LLMs to conduct task
decomposition and leverage retrieval-augmented generation as the solution for each sub-
task. By completing the task in a multi-step workflow, we analyzed appropriate reliance
with fine-grained levels. Users make a final decision based on intermediate decisions in
the multi-step decision workflow. Meanwhile, each intermediate decision is supported by
retrieved documents, which users rely on to conduct fact-checking. Thus, we look into
appropriate reliance on the intermediate steps and appropriate reliance on the retrieved
documents. Our insights help deepen the understanding of the role of decision workflows
in facilitating appropriate reliance. Furthermore, we synthesize important implications
for designing effective means to facilitate appropriate reliance on AI systems in compos-
ite tasks, positioning opportunities for human-centered AI and broader HCI communities.

Along with the growing popularity of large language models (LLMs), LLM agents have
shown promising capabilities in handling complex tasks like playing games and research
assistance. The workflow of LLM agents can be abstracted into two stages: planning and
execution. With the planning stage, LLM agents decompose the complex task into a se-
quence of sub-tasks. Then, the LLM agents can leverage external toolkits to solve the
sub-tasks step-by-step. While such framing is attractive, the uncertainty associated with
LLMs can lead to unintended or unexpected errors. To address such gap, we analyzed how
human involvement in the LLM agent can provide more reliable task outcomes, leading
to the following research questions:

RQ5-a: How does human involvement in the high-level planning and real-time exe-
cution shape their trust in an AI system powered by LLM agents?
RQ5-b: How does human involvement in the high-level planning and real-time ex-
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ecution of tasks with an AI system powered by LLM agents affect the overall task
performance?

To addressRQ5-a andRQ5-b, we conducted an empirical studywith plan-then-execute
LLM agents on six daily scenarios (Chapter 8). To provide necessary user involvement
within the LLM agent workflow, we allow users to check the outcomes from LLM agents
in both the planning and execution stages. We analyzed how user involvement at each
stage affects their trust and collaborative team performance. Our work has important im-
plications for the future design of daily assistants and human-AI collaboration with LLM
agents.
Contributions of Part III:

• We present findings of two empirical studies to advance our understanding of the
impact of fine-grained transparency in multi-step decision workflow (Chapter 7)
and user involvement in plan-then-execute LLM agents (Chapter 8).

• We demonstrate that fine-grained transparencywithinmulti-step decisionworkflow
can facilitate human-AI collaboration in specific contexts (Chapter 7).

• We synthesize twometrics to evaluate appropriate reliance at intermediate steps and
appropriate reliance on evidence (i.e., input to AI systems). Further analysis demon-
strates that the fine-grained appropriate reliance promotes appropriate reliance on
the global level (Chapter 7).

• We propose LLM agents as a daily assistant to help end-users solve daily tasks. By
abstracting the workflow of LLM agents, we adopted a plan-then-execute workflow
(Chapter 8).

• We examine the impact of user involvement at high-level planning and real-time
execution stage (Chapter 8). Our findings demonstrate that LLM agents can be a
double-edged sword — (1) they can work well when a high-quality plan and neces-
sary user involvement in execution are available, and (2) users can easily mistrust
the LLM agents with plans that seem plausible.

• We find that user involvement in both high-level planning and real-time execution
fails to calibrate user trust in LLM agents (Chapter 8). At the same time, user in-
volvement in planning may hurt plan quality. By comparison, user involvement in
execution provides more stable positive contributions to task outcomes.

• We synthesize key insights for using LLM agents as daily assistants to calibrate user
trust and achieve better overall task outcomes (Chapter 8).

1.4 Research Methodology
To analyze user reliance on AI systems, we conducted a series of controlled empirical stud-
ies. Figure 1.3 provides an overview of our research methodology. In the beginning, we
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first formulate the research questions about facilitating appropriate reliance on AI sys-
tems. In this step, we conduct a systematic literature review and extensively gather ideas
with open discussion. After we settle down the research questions to analyze, we conduct
the study design. In this step, we decide the key factors to analyze and design a con-
trolled study regarding key factors. Meanwhile, we synthesize hypotheses based on prior
findings and logical reasoning. Before implementing the experiment, we pre-register our
experiments. Then, we strictly follow the study design to implement user interfaces and
provide online demos. All data collected in this dissertation are collected based on the
crowdsourcing platform Prolific². After the data collection, we conduct quantitative and
qualitative analyses to verify our hypotheses and advance our understanding of the topic.

RQ Formulation

Study Design

ü Experimental
conditions

ü Covariates (e.g., user
perception, expertise)

ü Hypothesis
ü Pre-registration

Implementation

ü AI system
ü Task selection / data

pre-processing
ü Frontend and user

interaction design

Data Collection
(Crowdsourcing)

Data Analysis

ü Pilot study
ü Quality control (e.g.,

attention check)
ü Follow-up study

ü Statistical test
ü Hypothesis

Verification
ü Exploratory analysis
ü Case Study

Figure 1.3: High-level overview of the empirical studies in this dissertation.

In this dissertation, we included 2,304 valid participants in data analysis. In total,
we spent around 15k GBP (including bonus) on crowdsourcing, which compensates for
around 1.5k human hours. We analyzed human-AI collaboration with varying task scenar-
ios, such as question answering, cancer diagnosis, loan approval, fact-checking, planning,
and knowledge collection. With these controlled empirical studies, we obtained valuable
insights for human-AI collaboration.

1.5 Content Organization
The remainder of this dissertation consists of the chapters listed below. Each chapter
(except the conclusions) is based on projects I led and collaborated on with co-authors. To
help track the origin of chapters, we also provide associated publications along with each
chapter.
Chapter 2: The Impact of User Understanding of Stated Accuracy. It is based on a peer-
reviewed paper at CSCW’23:

• Gaole He*, Stefan Buijsman*, Ujwal Gadiraju. How Stated Accuracy of an AI Sys-
tem and Analogies to Explain Accuracy Affect Human Reliance on the System. Pro-
ceedings of the ACM on Human-Computer Interaction 7, no. CSCW2 (2023): 1-29.
https://doi.org/10.1145/3610067

²https://www.prolific.com/

https://doi.org/10.1145/3610067
https://www.prolific.com/


1.5 Content Organization

1

13

Chapter 3: The impact of the Dunning-Kruger effect. It is based on a peer-reviewed paper
at CHI’23:

• GaoleHe, Lucie Kuiper, and Ujwal Gadiraju. Knowing about knowing: An illusion of
human competence can hinder appropriate reliance on AI systems. In Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1-18. 2023.
https://doi.org/10.1145/3544548.3581025

Chapter 4: Developing critical mindset with debugging AI systems. It is based on a peer-
reviewed paper at HT’24:

• Gaole He, Abri Bharos, and Ujwal Gadiraju. To Err Is AI! Debugging as an Inter-
vention to Facilitate Appropriate Reliance on AI Systems. In Proceedings of the 35th
ACM Conference on Hypertext and Social Media, pp. 98-105. 2024. https://doi.org/
10.1145/3648188.3675130

Chapter 5: Analogy-based concept-level explanations. It is based on two peer-reviewed
papers at HCOMP’22 and JAIR’24:

• Gaole He, Agathe Balayn, Stefan Buijsman, Jie Yang, and Ujwal Gadiraju. It Is
Like Finding a Polar Bear in the Savannah! Concept-Level AI Explanations with Ana-
logical Inference from Commonsense Knowledge. In Proceedings of the AAAI Con-
ference on Human Computation and Crowdsourcing, vol. 10, pp. 89-101. 2022.
https://doi.org/10.1609/hcomp.v10i1.21990; Best Paper Award

• Gaole He, Agathe Balayn, Stefan Buijsman, Jie Yang, and Ujwal Gadiraju. Opening
the Analogical Portal to Explainability: Can Analogies Help Laypeople in AI-assisted
Decision Making? Journal of Artificial Intelligence Research 81 (2024): 117-162.
https://doi.org/10.1613/jair.1.15118

Chapter 6: Conversational XAI decision support. It is based on a peer-reviewed paper at
IUI’25:

• Gaole He, Nilay Aishwarya, Ujwal Gadiraju. Is Conversational XAI All You Need?
Human-AI Decision Making With a Conversational XAI Assistant. 30th International
Conference on Intelligent User Interfaces (IUI ’25), March 24–27, 2025, Cagliari, Italy.
https://doi.org/10.1145/3708359.3712133

Chapter 7: Fine-grained appropriate reliance in multi-step decision workflow. It is based
on a work-in-progress paper:

• GaoleHe, Patrick Hemmer, Michael Vössing, Max Schemmer, Ujwal Gadiraju. Fine-
Grained Appropriate Reliance: Human-AI Collaboration with a Multi-Step Transpar-
ent Decision Workflow for Complex Task Decomposition. Revised after reviews from
CSCW’25 and CHI’25, now under review.

Chapter 8: User involvement in plan-then-execute LLM agent. It is based on a peer-
reviewed paper at CHI’25:

https://doi.org/10.1145/3544548.3581025
https://doi.org/10.1145/3648188.3675130
https://doi.org/10.1145/3648188.3675130
https://doi.org/10.1609/hcomp.v10i1.21990
https://doi.org/10.1613/jair.1.15118
https://doi.org/10.1145/3708359.3712133
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• Gaole He, , Gianluca Demartini, Ujwal Gadiraju. Plan-Then-Execute: An Empirical
Study of User Trust and Team Performance When Using LLM Agents As A Daily As-
sistant. CHI Conference on Human Factors in Computing Systems (CHI ’25), April
26-May 1, 2025, Yokohama, Japan. https://doi.org/10.1145/3706598.3713218.

Chapter 9: Discussions and conclusions in this dissertation.

https://doi.org/10.1145/3706598.3713218
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2
Using Analogies to Explain

Accuracy of AI systems
AI systems are increasingly being used to support human decisionmaking. It is important that
AI advice is followed appropriately. However, according to existing literature, users typically
under-rely or over-rely on AI systems, and this leads to sub-optimal team performance. In this
context, we investigate the role of stated system accuracy by contrasting the lack of system
information with the presence of system accuracy in a loan prediction task. We explore how
the degree to which humans understand system accuracy influences their reliance on the AI
system, by investigating numeracy levels and with the aid of analogies to explain system
accuracy in a first of its kind between-subjects study (𝑁 = 281). We found that explaining
the stated accuracy of a system using analogies failed to help users rely on the AI system
appropriately (i.e., the tendency of users to rely on the system when the system is correct, or
on themselves otherwise). To eliminate the impact of subjective attitudes towards analogy
domains, we conducted a within-subjects study (𝑁 = 248) where each participant worked on
tasks with analogy-based explanations from different domains. Results from this second study
confirmed that explaining stated accuracy of the system with analogies was not sufficient
to facilitate appropriate reliance on the AI system in the context of loan prediction tasks,
irrespective of individual user differences. Based on our findings from the two studies, we
reason that the under-reliance on the AI system may be a result of users’ overestimation of
their own ability to solve the given task. Thus, although familiar analogies can be effective in
improving the intelligibility of stated accuracy of the system, an improved understanding of
system accuracy does not necessarily lead to improved system reliance and team performance.

2.1 Introduction
It is becoming more and more common for humans to make decisions supported by ma-
chine learning algorithms. Whether it is in financial risk assessment [43, 44], medical di-
agnosis [45, 46] or in public employment services [47], such collaborative, socio-technical
This chapter is based on a peer-reviewed paper:  Gaole He*, Stefan Buijsman*, Ujwal Gadiraju. How Stated
Accuracy of an AI System and Analogies to Explain Accuracy Affect Human Reliance on the System. Proceedings
of the ACM on Human-Computer Interaction 7, no. CSCW2 (2023): 1-29. https://doi.org/10.1145/3610067

https://doi.org/10.1145/3610067
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systems (i.e., a decision procedure where humans and AI are jointly involved in mak-
ing the decision) are ubiquitous. And while initial hopes were that such a combination
would lead to better decisions [48], it has proved tough to mitigate unexpected reliance
(i.e., under-reliance and over-reliance) on the AI system. Appropriate reliance is defined as
the tendency for users to rely on the system in situations where it is accurate (or more
precisely, where it is more accurate than humans) and not to rely on it when the system
is inaccurate (or, ideally, whenever it is wrong). This follows the conceptualization of
appropriate system reliance established in the Human-AI interaction, collaboration, and
teaming fields over the last few years [29, 40, 49–51]. Users in the real world, however,
find it difficult to determine their own accuracy in difficult tasks as well as the system’s
accuracy (in individual cases). That in turn means they have a hard time deciding when
an AI system is more accurate than they are. This tension has been shown to result in
both under-reliance [34, 52] and over-reliance [50] of users on AI systems, often leading
to detrimental outcomes.

There are several complementary approaches to facilitating appropriate system re-
liance, such as research in explainable AI attempting to elucidate the reasons for model
output [53, 54]. Such tools can help, especially if users are actively made to reflect on ex-
planations using cognitive forcing interventions [55]. Another approach, and one which
is explored further in this chapter, is to give users information on the confidence and over-
all accuracy of the system. Papenmeier et al. [56], Yin et al. [57] found that users adjust
their reliance on AI systems based on the reported system accuracy. However, even after
seeing the high stated accuracy, users do not rely on the system as often as the accuracy
warrants (e.g., adopting system advice 80% of the time while system accuracy is 95%, re-
sulting in an inferior overall performance than the theoretical potential). We explore if
this under-reliance among users is a result of their potentially limited understanding of
the system accuracy measure. We do not hold the position that reliance on AI systems
is universally good. On the contrary, preventing over-reliance on AI systems is just as
important. However, a fundamental pre-requisite to designing and facilitating human-AI
interactions that can effectively support humans in a given task, is to advance our current
understanding of how users rely on AI systems. An unanswered question in this context
pertains to why users tend to under-rely on AI systems despite their relatively high stated
accuracy. Perhaps users do not properly calibrate their reliance on the AI system because
they have trouble identifying the right accuracy level when presented only with an overall
accuracy value.

We use analogies to counter such lack of understanding of global accuracy measures,
which is to our knowledge the first attempt of its kind to elucidate system measures. An
analogy can be interpreted as a structural mapping of a target domain which is to be
clarified (in this case, overall system accuracy) onto a source domain which the recipient
of the analogy is more familiar with [58, 59]. As a simple example, one might elucidate
how hard a task is by saying ‘it is as hard as finding a needle in a haystack’. As the
recipient is likely to know that finding a needle will be difficult in this case, the inference
on the target domain can be made that the relevant task will also be difficult. While such
simple examples may not make a convincing case for the use of analogies, there is strong
empirical evidence that more specific analogies can help people to individuate and identify
risk levels, as discussed further in Section 2.2.
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To address the aforementioned research gap in this chapter, we aim to find answers
for the two research questions:

RQ1: How does the understanding of stated system accuracy affect reliance of users
on the AI system?
RQ2: How does explaining stated system accuracy using analogies affect the reliance
of users on the AI system?

To answer these questions, we proposed four hypotheses considering the effect of
the stated accuracy level on user reliance, the effect of using analogies to explain accuracy
measures on reliance, and two important user factors (numeracy level and familiarity with
the analogy domain). We tested these hypotheses in an empirical study of human-AI col-
laborative decision making in a loan approval task.¹ In this chapter, we present a between-
subjects exploration (𝑁 = 281) as the main study to verify the proposed hypotheses. To
ensure that our results do not suffer from the impact of domain-specific user characteris-
tics (trust in and familiarity with the analogy domain) caused by individual user experi-
ences, we conducted a further within-subjects study (𝑁 = 248) to investigate the effects of
seeing different analogies. We found that well-understood stated accuracy is insufficient
for users to calibrate their reliance on an AI system, for a 75% accuracy level. Explaining
stated system accuracy, even for users with low numeracy skills, had no significant effect
on our (behavioral) reliance measure. We did find a limited effect of the successful use of
analogies on subjective measures of trust in the system. However, this improvement in
subjective measures did not translate to an improvement in reliance or performance. This
suggests that the issue is not with users’ trust in the system, but with an overestimation
of their own skill at the task.

Our results highlight that a limited understanding of the system accuracy measure is
not the reason why users rely on AI systems lesser than warranted by the relatively higher
system accuracy. Instead, it is likely that users’ overestimation of their own ability to solve
the given task drives their under-reliance on the system. This interpretation is supported
by various findings in prior work [30, 60–62]. We outline this as a direction for further
study. Empirical studies that explore why and how humans tend to rely on AI systems
play a vital role in furthering our understanding of how we can build better human-AI
interactions in a variety of tasks, scenarios, and domains. It is in this context that our
work makes important contributions by (a) advancing our understanding of user under-
reliance on AI systems, (b) exploring the effectiveness of analogies as an instrument to
explain measures like stated system accuracy, and (c) investigating whether an improved
understanding of global AI system measures can lead to more appropriate reliance.

In addition, although we considered several potentially important user factors (such
as numeracy level and familiarity with and trust in the analogy domain), most of them
did not significantly impact user reliance behaviors. Only users’ general propensity to
trust automated systems emerged as an important user factor which contributes to both
subjective trust and objective reliance. Based on the results from our empirical study, we
synthesized and discussed favorable conditions for the use of analogies and pointed out

¹All data and code can be found at: https://osf.io/9jqma/?view_only=c0c0dd12fa804b028cd29fbf9fd2ef4f

https://osf.io/9jqma/?view_only=c0c0dd12fa804b028cd29fbf9fd2ef4f
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promising future directions for further research exploring user reliance on AI systems.
Our findings contribute to the growing body of literature on human-AI decision making
and further our understanding of under-reliance on AI systems.

2.2 Related Work
This chapter contributes to the growing literature on user reliance on AI systems by focus-
ing on how users might be helped to calibrate their reliance by analogies that clarify stated
accuracy measures. Our goal is to explore whether a limited understanding of stated accu-
racy is to blame for under-reliance on an AI system (within the scope of RQ1) andwhether
improving this understanding can lead to more appropriate reliance (within the scope of
RQ2). As such, the research combines three strands of literature: the general literature
on user reliance of AI systems (2.2.1). The more specific literature on how that reliance is
affected by stated accuracy measures (2.2.2) and finally the literature on analogies, which
have been shown to benefit risk perception (2.2.3).

On the one hand, the research focuses on the use of accuracy scores to engender (ap-
propriate) reliance on AI systems. As merely stating the accuracy has been found to be
insufficient for reaching appropriate reliance, the contribution of this chapter is to explore
whether that is due to a limited grasp of the implications of the accuracy scores. Another
area of research that is therefore relevant for this chapter is the literature on analogies
in risk perception, where the use of analogies to elucidate percentages in a similar set-
ting has been investigated. That gives us a basis to postulate that analogies improve this
understanding.

2.2.1 Reliance on AI Systems
There is a wide range of factors that affects how users rely on AI systems. For example,
Dietvorst et al. [33] and Dzindolet et al. [63] found that users stop relying on a system
after seeing it make a mistake. Meanwhile, Yeomans et al. [64] found that people did not
rely on system advice in a highly subjective domain – namely a task to predict which
jokes others will find funny – even if the system performed better than they did. At the
same time, Dietvorst et al. [35] saw that participants are more willing to rely on systems if
they are able to alter the final decision somewhat, rather than having to follow the exact
prediction. Such prior research has generally found that it is hard to get users to rely on a
system appropriately. Inspired by the design of these studies, in our study we used a two-
stage decision making process that allows users to alter their final decision after seeing
the AI advice (see Section 2.3.1).

Different solutions for this challenge have been examined. We investigate the option
of presenting users with accuracy measures (2.2), but the other major option is to provide
users with explanations of the system output (XAI). In a risk assessment task (for a loan
approval and a pretrial domain), Green et al. [65] looked at whether explanations or feed-
back per decision help users calibrate their reliance, but found mostly null effects. They
show that people are unable to evaluate their own accuracy at risk assessments, do not
calibrate their reliance based on observed accuracy and only had a positive effect from
explanations on the loan approval task. And whereas Green et al. [65] found some pos-
itive effects of explanations, Zhang et al. [66] failed to find similar appropriate reliance
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when users were given (feature importance) explanations. However, they did observe an
improvement in reliance when presenting confidence scores for the system, with users
switching more often to (i.e., relying on) AI predictions with high confidence scores than
to those with lower confidence scores or none at all. This is in line with the proposal of
Bhatt et al. [67] to use uncertainty measures to help users rely appropriately on AI sys-
tems. Yet the addition of confidence scores in the study by Green et al. did not improve
the accuracy of participants using the AI system.

One complicating factor here is the interplay between subjective trust and objective re-
liance. In this chapter, we consider that subjective trust influences objective reliance. And
indeed Lu et al. [49] found similar patterns for both objective reliance and subjective trust
when feedback on model performance is limited. Both trust and reliance are significantly
affected by the level of agreement between people and a model on decision making tasks
that people have high confidence in. However, other conflicting results have also been
found. Through an extensive user study, Buçinca et al. [68] pointed out that “when using
actual decision making tasks, subjective results do not predict objective performance re-
sults,” which reveals a gap between the subjective trust attitude of users and their objective
reliance behavior. Similarly, a gap between stated trust and actual reliance was reported
by Schmitt et al. [69], and Bansal et al. [70] observed that explanations can promote blind
trust rather than lead to appropriate reliance on AI systems. We thus hold that subjective
trust can promote objective reliance, but keep in mind that subjective trust measures can
give an overly optimistic image of reliance and therefore focus on objective reliance.

2.2.2 Reliance and System Accuracy
Though research specifically on stated accuracy is sparse, prior experiments do show that
the stated accuracy of a system has an effect on the degree to which people rely on the
system. Yin et al. [71] first reported a significant effect of stated accuracy on reliance and
further expanded on this in [57]. Here, in a task where users had to predict if someone
wanted to see his or her date a second time, they compared reliance on the system across
conditionswith different stated accuracies (and included a control with no stated accuracy).
They observed significant differences in the fraction of cases in which users agreed with
the system and in the fraction of cases in which users changed their initial decision so that
their final decision agreed with the system advice. However, they found that participants
struggle to calibrate their reliance. When there was no stated accuracy, users agreed in
about 75% of the final decisionswith the system. For decisionswith an initial disagreement
between users and the system, users switched to agree with the system in 30% of cases.
This did not change for a stated accuracy of 60% or 70% and only increased for a stated
accuracy of 90 and 95%. However, the effect of the stated accuracy is not as high as it
should be: for 90% and 95%, users only agreed with the system in 80% of cases. Finally,
the effect of stated accuracy was canceled out by the effects of observed accuracy when
these were presented to users midway through the study.

This relevance of observed accuracy has further been underscored by Papenmeier et
al. [56], who found that the effect of varying observed accuracy on reliance was stronger
than the effect of explanations of system outputs (either no, low-fidelity, or high-fidelity
explanation). So, system accuracy has been shown to be relevant for calibrating reliance,
and therefore the extent to which users understand what this system accuracy means.
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Recent work by Nourani et al. has shown that users do not rely on what they do not
understand [72]. It is this lack of understanding that we hope to alleviate through the use
of analogies.

2.2.3 Analogies in Risk Perception
There is a long-standing use of analogies to explain statistical concepts [73, 74] and medi-
cal risk levels [75, 76]. What emerges from this is that it can be difficult to get analogies to
deliver benefits, as the meta-study by Sopory et al. [77] on the effect of metaphor’s persua-
sive effects underlines. Analogies, as they intricately depend on how they are perceived
by the recipient, can be hard to calibrate to the audience. If successful, however, they can
have clear cognitive benefits. Sopory et al. [77] found that when they are novel, have a
familiar source domain (i.e., the ‘needle in a haystack’ part in ‘x is as difficult as finding
a needle in a haystack’) and are used early in the message then they are used optimally
and have a clear effect on persuasiveness. A later meta-study by Van et al. [78] confirms
this, finding that metaphorical messages are, when using a familiar source domain, more
effective than literal messages.

Such effects can be found in the existing literature on risk perception too. Barilli et
al. [79] tested the use of analogies to improve the risk perception between a 1 in 100 chance
and a 1 in 900 chance. While adding analogies does not make these risks more discrim-
inable, they do lower the overall risk perception on a 7-point scale (from 3.5 to 2.5 for 1 in
100, from 3.1 to 2.1 for 1 in 900). The lack of effects here has, however, been hypothesized
to be due to the choice of analogies: stated analogies were about the odds of drawing a
red ball out of a jar, something which we do not encounter or deal with on a regular basis.
More familiar analogies studied by Galesic et al. [76], such as ‘as a flu vaccine is to flu’ or
‘as a car alarm is to theft’, did show a clear effect of analogies. Performance on difficult
medical problems was improved for people with high numeracy skills and performance
on easy problems was improved for people with low numeracy skills. Numeracy here
means the ease and skill with which participants work with numbers. Their interpreta-
tion of the finding, therefore, was that analogies help when problems are not too difficult
and performance is not at ceiling. Interestingly for the current study, Galesic et al. [76]
also looked at what makes analogies helpful and again ranked familiarity with the source
domain highly.

The effect of numeracy level on findings has, moreover, been collaborated in other
studies. Pighin et al. [80] found that high-numeracy participants do improve on discrim-
ination of risk levels after seeing analogies. Participants with low numeracy showed no
improvement in the discrimination between a 1 in 5390, 1 in 770 and 1 in 110 risk on a
7-point Likert scale. Similarly, with a more visual analogy in the form of a risk ladder,
Keller et al. [81] found the visualisation to suffice for high-numeracy participants in dis-
criminating between different risk levels. Low-numeracy participants only managed to
do so after also seeing analogies with the number of cigarettes one would smoke a day.
So, here too, familiarity with the source domain is likely to have been high, to support
understanding of the risk levels.

To sum up, analogies have been found to be effective tools to improve risk percep-
tion and performance on related medical problems, though a number of relevant factors
have emerged that interact with the effectiveness. These have informed our hypotheses
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3 and 4. Numeracy level is important, as also underlined by a recent overview study [82],
and especially low numeracy individuals can use help in understanding the meaning of
percentages. This finding supports our motivation to look into the possibility that partici-
pants fail to calibrate reliance to accuracy scores because they might not fully understand
the presented information. Aside from numeracy, familiarity with the source domain used
to explain the percentages is an important factor for the success of analogies. Hence, we
have used a range of analogies in our study that vary with respect to familiarity and in-
cluded a question in the post-task questionnaire to measure user’s (subjective) familiarity
with the source domain.

2.3 Task and Hypothesis
In this section, we describe the loan prediction task and present our hypotheses, which
have all been preregistered before any data collection.

2.3.1 Loan Prediction Task
The basis for our experimental setup is a task where participants have to decide whether
to accept or reject a loan application using the publicly available loan prediction dataset.²
This task was chosen as a realistic scenario for human-AI collaboration, where there is
a clear risk and a benefit to the adoption of AI advice. As such, it fits in with the risk
perception research where analogies were pioneered. It has also been adopted by existing
research in behavioral economics [83] and human-AI collaboration [65].

Figure 2.1: Illustration of the interface that participants used to complete the loan prediction task.

²https://www.kaggle.com/altruistdelhite04/loan-prediction-problem-dataset

https://www.kaggle.com/altruistdelhite04/loan-prediction-problem-dataset
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Participants thus made decisions on whether to grant a loan or not based on twelve
features such as income, the absence or presence of a credit history and the loan amount.
This simulates a realistic scenario where participants interact with an AI system and may
rely on it due to the complexity in simultaneously considering multiple features for suc-
cessful decision making, but also due to a relatively high stated accuracy of the AI system.
Furthermore, we consider this to be a suitable task to test the influence of user numeracy
level, as almost all the presented information is in numerical format. The task interface is
shown in Figure 2.1.

Task Selection. Participants were presented with twelve such cases, of which two were
example cases and ten trial cases. These cases were selected by first training a linear re-
gression model on the full dataset. The two example cases were the top-1 most confident
correct cases for approval and rejection (with respect to the linear regression model). The
ten trial cases used in the actual experimental task were: two high confidence correct pre-
dictions, two medium confidence correct predictions, two borderline correct predictions,
two borderline wrong predictions and the two least confident wrong predictions (again,
with respect to the linear regression model). Cases were evenly split between those where
the loan should be approved and those where the loan should be rejected and the order of
the trial cases was randomized to prevent order effects [84].

Two-stage Decision Making. In trial cases, participants of all conditions were first pre-
sented with the applicant information corresponding to the case and then asked to make
a decision whether to accept or reject the loan application (see screenshot in Figure 2.1).
This first time, they were not presented with the systems’ prediction, or with any addi-
tional information. After making an initial choice they saw the same case again, but now
additionally saw the systems’ prediction and (depending on the experimental condition)
also the system accuracy and analogy. Participants were then asked to make a final de-
cision. This setup of an initial unaided decision and the presentation of system advice in
order to make a second and final choice is similar to the update condition in [65], and in
line with findings that people first make a decision on their own and only then decide
whether to incorporate system advice [85]. It also fits with the research of Dietvorst et al.
[35] on trust in two-stage decision making.

2.3.2 Hypotheses
Our study was designed to answer questions about the effectiveness of well-understood
stated accuracy on reliance, and the use of analogies to improve user understanding of the
accuracy level. As stated accuracy has been found to be effective in improving (appropri-
ate) reliance [57], we expect to observe the same effect here:

(H1) The stated accuracy of a system has a significant effect on user reliance on the
system.

Analogies, as we have discussed above, have the potential to make stated accuracy
more intuitive to users and thus increase their sensitivity to it. Therefore, we hypothesize:
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(H2) The stated accuracy of a system presented using an analogy has a significantly
larger effect on user reliance on the system than the stated accuracy presented with-
out an analogy.

In particular, we expect that this effect will depend on how familiar users are with the
target (the stated accuracy) and source (e.g., train punctuality) domain of the analogy, as
discussed in Section 2.2. Thus, we further hypothesize that the numeracy level of users,
i.e., how familiar they are with quantitative measures, shapes the usefulness of analogies.
Participants with a high numeracy level might understand the task and stated accuracy
well enough already for analogies to offer little improvement, whereas participants with
low numeracy might have a lack of understanding of these numbers that is alleviated by
the analogy. As the role of analogies is to make this target domain (accuracy of the system)
easier to understand by creating a structural mapping onto a source domain that the user
is potentially more familiar with, we also formulate a hypothesis around the familiarity
with the source domain:

(H3)The numeracy level of users has a significant effect on the extent to which analo-
gies affect user reliance on the system.
(H4) Familiarity with the source domain of the analogy has a significant effect on the
extent to which the analogy affects user reliance on the system.

In addition to these last two hypotheses we will investigate the effects on reliance for
all four hypotheses in light of a measure of subjective trust. Earlier research has shown
that subjective trust can have an important influence on reliance and so we consider this
to better understand the observed effects on reliance. The design of the study used to test
these hypotheses is laid out in the next section.

2.4 Study Design
This section describes our experimental conditions, variables, procedure, and participants
related to our main study. This study was approved by the human research ethics com-
mittee of our institution.³

2.4.1 Experimental Conditions
The main aspects of our hypotheses concern the effect of stated (overall) system accuracy,
fixed in this experiment to 75%, and the addition of analogies to explain this stated accu-
racy. As a consequence, there are three conditions in the experiment: {SysPred, PredAcc,
AccAnalogy}. Participants in all these conditions saw the systems’ advice, but the three
conditions differed in the inclusion of additional information:

• SysPred: does not include any further information. Example: The system chooses to
accept/reject this application.

³https://osf.io/9jqma/?view_only=c0c0dd12fa804b028cd29fbf9fd2ef4f

https://osf.io/9jqma/?view_only=c0c0dd12fa804b028cd29fbf9fd2ef4f
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• PredAcc: includes system accuracy in percent. Example: The accuracy of the system
is 75%, and it chose to accept/reject this application.

• AccAnalogy: includes system accuracy and an analogy-based explanation for system
accuracy. Example: The system is 75% accurate, which is about as accurate as the five
day weather forecast, and it chose to accept/reject this application (with the weather
report analogy used as an example here).

Participants in the AccAnalogy conditions were presented with one of three possible
analogies along with the stated accuracy, with the prompts shown (ordered by how famil-
iar we expected participants to be with these at the time of the experiment):

1. Vaccine efficacy: ‘the system is 75% accurate, which is about as reliable as the As-
traZeneca vaccine is for protecting against covid’ (which is about 70% effective
against the then-current Delta variant and somewhat more effective against earlier
variants [86]). ⁴

2. Accuracy of weather predictions: ‘the system is 75% accurate, which is about as
reliable as the five-day weather prediction’ (which is also typically around 75% ac-
curate). ⁵

3. Train punctuality: ‘the system is 75% accurate, which is about as reliable as the
French trains are on punctuality’ (which is 75% as listed in the 7th Rail Market Mon-
itoring Report of the European Commission).

2.4.2 Measures And Variables
As mentioned, we use analogies to investigate whether a lack of appropriate reliance is
due to a lack of understanding of global accuracy measures. It is important for this investi-
gation to note the difference between (objective) reliance, which is the focus of our study,
and (subjective) trust. We follow Lee et al. [40] in postulating that “trust in automation
guides reliance when the complexity of the automation makes a complete understanding
impractical and when the situation demands adaptive behavior that procedures cannot
guide.” Thus, we operationalize trust as a subjective user attitude, and reliance as objec-
tive user behavior that can be influenced by trust. As such, subjective trust can help us
illuminate the effects we see on objective reliance [87].

To answer H1 and H2 we measure the reliance of participants on the system via two
metrics: the agreement fraction and the switch fraction. These look at the degree to which
participants are in agreement with system advice, and how often they adopt system advice
in cases of initial disagreement. They are commonly used in the literature, for example
in [57, 66]. In addition, we consider the overall accuracy and the accuracy under initial
disagreement (i.e., accuracy-wid) tomeasure participants’ performance and appropriate re-
liance respectively. Since cases without initial disagreement do not clearly signal reliance
on the system we restrict the scope of the appropriate reliance measure to accurately un-
derstand how participants handle divergent system advice. Following Schemer et al. [29],

⁴https://www.nature.com/articles/d41586-021-02261-8
⁵https://spectrumlocalnews.com/tx/austin/weather/2020/10/08/wisconsin-weather-blog-meteorologist
-wrong-rudd

https://www.nature.com/articles/d41586-021-02261-8
https://spectrumlocalnews.com/tx/austin/weather/2020/10/08/wisconsin-weather-blog-meteorologist-wrong-rudd
https://spectrumlocalnews.com/tx/austin/weather/2020/10/08/wisconsin-weather-blog-meteorologist-wrong-rudd
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we adopted the relative positive AI reliance (RAIR) and relative positive self-reliance (RSR)
metrics to measure appropriate reliance. When the AI system provides correct advice and
the user makes a wrong initial decision, there are two possible reliance patterns: positive
AI reliance (users switch to AI advice), negative self-reliance (users do not follow correct
AI advice). When the AI system provides wrong advice and the user makes a correct initial
decision, there are two other possible reliance patterns: positive self-reliance (users insist
on their own initial decision) and negative AI reliance (users switch to another option).
These measures are computed as follows:

Agreement Fraction = Number of decisions same as the system
Total number of decisions

,

Switch Fraction = Number of decisons where the user switched to agree with the system
Total number of decisions with initial disagreement

,

Participant Accuracy = Number of correct final decisions
Total number of decisions with initial disagreement

,

Accuracy-wid = Number of correct final decisions with initial disagreement
Total number of decisions with initial disagreement

,

RAIR = Number of positive AI reliance
Total number of positive AI reliance and negative self-reliance

,

RSR = Number of positive self-reliance
Total number of positive self-reliance and negative AI reliance

.
To answer H3, we measured the numeracy level of the participants in our study. To

do so we used the Subjective Numeracy Scale [88, 89], which has been widely validated as
a measure for numeracy level in risk perception literature. We chose this subjective scale
as opposed to an objective measure (asking participants to answer a number of quantita-
tive questions) since prior work by Zikmund-Fisher et al. revealed that participants find
objective tests stressful and unenjoyable [88]. Furthermore, the subjective scale has also
been shown to correlate with the helpfulness of analogies in increasing risk perception
[81], motivating our hypotheses.

To answer H4, perceived familiarity and helpfulness of the analogies is measured us-
ing 5-point Likert scale questions in the post-task questionnaire for those participants
who were in the AccAnalogy condition. In addition to perceived familiarity and helpful-
ness, we gathered feedback from participants on their perception of the analogy-based
explanations. To this end, we used the questions: “Why did you find the analogy to be
helpful or not helpful?” and “Please share any comments, remarks or suggestions regarding
the use of analogies to explain the accuracy of the system.”

For a deeper analysis of our results, a number of additional measures were taken:
• The Trust in Automation (TiA) (post-task) questionnaire [90], a validated instru-
ment to measure (subjective) trust [87] consisting of 6 subscales: Reliability /Com-
petence (TiA-R/C), Understanding/Predictability (TiA-U/P), Propensity to Trust (TiA-
PtT), Familiarity (TiA-Familiarity), Intention of Developers (TiA-IoD), and Trust in
Automation (TiA-Trust). Thus, we consider possible effects of trust on reliance, in
accordance with Lee et al. [40].
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• The Affinity for Technology Interaction Scale (ATI) [91], administered in the pre-
task questionnaire. Thus, we account for the effect of participants’ affinity with
technology on their reliance on systems [87].

Table 2.1 presents an overview of all the variables considered in our study.

Table 2.1: The different variables considered in our experimental study. “DV” represents a dependent variable.

Variable Type Variable Name Value Type Value Scale

Reliance (DV)

Agreement Fraction Continuous, Interval [0.0, 1.0]
Switch Fraction Continuous [0.0, 1.0]
Accuracy-wid Continuous [0.0, 1.0]

RAIR Continuous [0.0, 1.0]
RSR Continuous [0.0, 1.0]

Performance (DV) Participant Accuracy Continuous, Interval [0.0, 1.0]

Trust (DV)
TiA-Reliability/Competence Likert 5-point, 1: poor, 5: very good

TiA-Understanding/Predictability Likert 5-point, 1: poor, 5: very good
TiA-Intention of Developers Likert 5-point, 1: poor, 5: very good
TiA-Trust in Automation Likert 5-point, 1:strong distrust, 5: strong trust

Perception (DV) Usefulness of Explanation Likert 5-point, 1: useless, 5: very useful

Covariate

Analogy Domain Categorical {train, weather, vaccine}
Numeracy Level Likert 6-point, 1: low, 6: high

Familiarity with Analogy Domain Likert 5-point, 1: unfamiliar, 5: very familiar
ATI Likert 5-point, 1: low, 5: high

TiA-Familiarity Likert 1: unfamiliar, 5: very familiar
TiA-Propensity to Trust Likert 5-point, 1: tend to distrust, 5: tend to trust

2.4.3 Participants
Sample Size Estimation. Before recruiting participants, we computed the required sam-
ple size in a power analysis for a Between-Subjects ANOVA using G*Power [92]. To cor-
rect for testing multiple hypotheses, we applied a Bonferroni correction so that the signif-
icance threshold decreased to 0.05

4 = 0.0125. We specified the default effect size 𝑓 = 0.25
(i.e., indicating a moderate effect), a significance threshold 𝛼 = 0.0125 (i.e., due to testing
multiple hypotheses), a statistical power of (1 − 𝛽) = 0.9, and that we will investigate 3
different experimental conditions/groups. This resulted in a required sample size of 273
participants. We thereby recruited 316 participants from the crowdsourcing platform Pro-
lific⁶, in order to accommodate potential exclusion.
Compensation. All participants were rewarded with £1.5, amounting to an hourly wage
of £7.5 deemed to be “good” payment by the platform (estimated completion time was 12
minutes). We rewarded participants with extra bonuses of £0.1 for every correct decision
in the 10 trial cases. By incentivizing participants to reach a correct decision, we oper-
ationalize the concomitant “vulnerability” discussed by Lee and See[40] as a contextual
requirement to encourage appropriate system reliance.
Filter Criteria. All participants were proficient English-speakers above the age of 18 and
they had an approval rate of at least 90% on the Prolific platform. We excluded participants
from our analysis if they failed at least one attention check (2 participants), or represented
an outlier in terms of the amount of time they spent on our study. Outliers were partici-
pants (33 in total) who spent less than 7 minutes on the entire study. The resulting sample

⁶https://www.prolific.co

https://www.prolific.co
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of 281 participants had an average age of 27 (𝑆𝐷 = 8.64) and a gender distribution (70.1%
female, 28.5% male, 1.4% other).

2.4.4 Procedure
The full procedure that participants followed in our study is illustrated in Figure 2.2. All
participants first read the same basic instructions on the loan prediction task. Next, partic-
ipants were asked to complete a pre-task questionnaire to measure their numeracy level
and affinity for technology interaction.

Pre-task
Questionnaire

Example
Case

Trial Case
Stage 1

Post-task
Questionnaire

2× 10×

Trial Case
Stage 2

System
Advice

Instructions
Start Done

Task
Permutation

Condition
Assignment

SysPred

AccAnalogy

PredAcc

Figure 2.2: Illustration of the procedure that participants followed within our study.

Participants were then randomly assigned to one of three different experimental con-
ditions, that differed in whether or not the system’s prediction was supplemented with its
accuracy and an analogy to explain the accuracy. After assignment, the participants were
trained with two example cases before 10 trial cases. Selection of these cases is described
in section 2.3.1. Finally, a post-task questionnaire was administered, using the 6 subscales
of the TiA questionnaire discussed in section 2.4.2. Participants in the AccAnalogy condi-
tionwere additionally asked for their familiarity with the source domain and the perceived
helpfulness of the analogy they were presented with. To further ensure reliability of re-
sponses gathered in the questionnaires and the loan decisions, we added five attention
check questions spread out at random through the different stages of the procedure [93].

2.4.5 Pilot Study
To determine the accuracy of the system (which was set to 75%) and verify the experimen-
tal procedure, a pilot study was conducted with 20 participants. They followed the same
procedure as for the main experiment, except that no system advice was presented and
so the ten trial tasks were only displayed once. In addition to the basic reward of £0.88
(equivalent to an hourly wage of £7.5), we set up a bonus of £0.1 for every correct decision
to incentivize and encourage participants to concentrate on their individual decisions. On
average, the pilot study was completed in 8.5 minutes, with an average accuracy of 0.43
(𝑆𝐷 = 0.13). Moreover, participants performed better (𝑀 = 0.68, 𝑆𝐷 = 0.47) on the tasks
that were estimated to be easy (based on linear regression) and relatively poorly on the
tasks that we estimated to be difficult (𝑀 = 0.20, 𝑆𝐷 = 0.41).

This validated our task selection strategy, and suggested that the task is relatively dif-
ficult for humans to complete accurately, and decision support from an AI system would
be realistic and meaningful. A 75% accuracy of the system is, then, a level which is helpful
if the system is relied on, but still involves some risks and so calls for appropriate reliance,
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as opposed to blindly following the system advice. Note that this design choice is moti-
vated by Lee and See’s work which emphasizes the role of uncertainty in dictating the
need to facilitate appropriate reliance [40]. Had we set the accuracy at 90 or 95%, the
situation would have been less clearly one of uncertainty for participants following the
system advice.

2.5 Results
In this section, we present the results of our study. We discuss descriptive statistics, the
outcomes of the hypothesis tests we conducted, and our exploratory findings pertaining
to user perception of the analogy-based explanations.

2.5.1 Descriptive Statistics
Participants were distributed over the three experimental conditions: 87 (SysPred), 92
(PredAcc), 102 (AccAnalogy). The number of participants in the AccAnalogy condition was
balanced between three analogy domains: there were 36, 35, and 31 participants in the
train punctuality, vaccine efficacy, and weather prediction domains respectively.

Numeracy Level ATI Familiarity with
 Analogy Domain

TiA-PtT TiA-Familiarity

1

2

3

4

5

6

Figure 2.3: Box plot illustrating the distribution of the different covariates considered in our study. Among these
covariates, numeracy level and ATI were measured on a 6-point scale, while others were measured on a 5-point
scale.

Distribution of Covariates and Reliance Behavior. The covariates’ distribution is as
follows: numeracy level (𝑀 = 4.48, 𝑆𝐷 = 0.78, 6-point Likert scale, 1: low, 6: high), ATI
(𝑀 = 3.82, 𝑆𝐷 = 0.78, 6-point Likert scale, 1: low, 6: high), familiarity with analogy domain
(𝑀 = 3.36, 𝑆𝐷 = 1.52, 5-point Likert scale, 1: unfamiliar, 5: very familiar), TiA-Propensity
to Trust (𝑀 = 2.79, 𝑆𝐷 = 0.60, 5-point Likert scale, 1: tend to distrust, 5: tend to trust), and
TiA-Familiarity (𝑀 = 2.38, 𝑆𝐷 = 0.98, 5-point Likert scale, 1: unfamiliar, 5: very familiar).
This is illustrated in the boxplots in Figure 2.3.

Overall, all participants had at least one initial disagreement with system advice and
83.6% participants switched at least one decision after viewing the system’s advice. On
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average, the initial decision was the same as the final decision in 77.6% of all decisions.
A small portion of participants (0.5% across all conditions) changed their mind despite an
initial agreement with the system, to reach a final decision different from both their initial
decision and the system advice.
Performance Overview. Recall that, informed by the pilot study, system accuracy was
fixed to 75%. This meant that the system was in fact correct in 7 out of the 10 cases (which,
though 70% accurate, is consistent with the reported 75% accuracy). The accuracy of the
281 participants in our main study was found to be 0.52 on average (𝑆𝐷 = 0.14), rather
worse than the overall system accuracy.

Table 2.2 shows the accuracy and error analysis for each of the 10 loan prediction tasks.
In all tasks, we observe that the average accuracy of task and participants’ error cause is
highly correlated to its difficulty level (determined as described in Section 2.4.4). On
relatively easy tasks, participants achieved high accuracy, and the errors in such cases are
mainly caused by adopting incorrect system advice. In contrast, participants achieved a
low accuracy on hard tasks, and demonstrated a reluctance to rely on the AI system which
achieved superior performance. On average, however, we see that the mistakes made by
participants are evenly split between cases where they should have relied on the system
(49.3%) and cases where they should have disagreed with the system (50.7%).

Table 2.2: Participant performance on loan prediction tasks. Observed errors are split into two cases: ‘Error-
reliance’ refers to the fraction of errors that were a result of participants agreeing with the system when it was
wrong. ‘Error-non-reliance’ refers to the fraction of errors that were a result of participants disagreeing with
the system when it was in fact correct. The difficulty levels are from 1 (very easy) to 5 (very hard), obtained by
leveraging the predictions from a linear regression model. ‘Accuracy’, ‘Error-reliance’ and ‘Error-non-reliance’
are reported in percent (%).

Task-ID Difficulty Level Correct Answer Accuracy Error-reliance Error-non-reliance
LP001030 1 accept 82.9 79.2 20.8
LP001849 1 reject 68.7 55.7 44.3
LP001806 2 accept 61.2 67.0 33.0
LP002142 2 reject 68.3 48.3 51.7
LP002534 3 accept 59.8 46.0 54.0
LP001451 3 reject 35.2 44.5 55.5
LP001882 4 accept 50.9 52.2 47.8
LP002181 4 reject 37.7 48.0 52.0
LP002068 5 accept 40.2 54.2 45.8
LP002840 5 reject 16.4 34.0 66.0

2.5.2 Hypothesis Tests
H1 and H2: the effect of accuracy and analogies on reliance and trust

Effect on Objective Reliance. To analyze the main effect of system accuracy (H1) and
analogies (H2) on reliance, we conducted a Kruskal-Wallis H-test by considering the ex-
perimental condition as independent variable. The results showed no significant effects of
experimental condition on reliance measures. The only effect that was significant was one
of experimental condition on participant accuracy; 𝐻(2) = 11.42, 𝑝 = 0.003. Participants in
the AccAnalogy condition perform worse on participant accuracy (𝑀 = 0.48, 𝑆𝐷 = 0.14)
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than those in the SysPred condition (𝑀 = 0.54, 𝑆𝐷 = 0.15) and the PredAcc condition
(𝑀 = 0.55, 𝑆𝐷 = 0.14). Post-hoc Mann-Whitney tests using a Bonferroni-adjusted alpha
level of 0.0125 ( 0.054 ) were used to compare all pairs of conditions. The difference in par-
ticipant accuracy between SysPred condition and PredAcc condition was not significant;
𝑈(𝑁SysPred = 87,𝑁PredAcc = 92) = 3682,𝑝 = 0.345.

Thus, H1 is not supported, as there is no change in reliance when system accuracy is
given. H2 is not supported either, as also providing analogies did not improve reliance
on the system. Instead, we observed reduced participant accuracy, although this was not
reflected in significantly lower agreement or switch fraction. To look for an explanation
of these findings, we turn first to subjective trust, to see if this can explain the lack of effect
of system accuracy information, as well as the counter-productiveness of analogies (more
reliance would, after all, have been beneficial, given the accuracy scores reported earlier).
Effect on Subjective Trust. The impact of subjective trust was analyzed using an Anal-
ysis of Covariance (ANCOVA) with the experimental condition as between-subjects factor
and numeracy level, ATI, TiA-Familiarity and TiA-Propensity to Trust as covariates. This
allows us to explore the main effects of system accuracy (H1) and analogy-based explana-
tion (H2) on subjective trust as measured by the relevant four subscales of the TiA. We
decided to conduct AN(C)OVAs despite the anticipation that our data may not be nor-
mally distributed because these analyses have been shown to be robust to Likert-type or-
dinal data [94]. Table 2.3 shows the ANCOVA results pertaining to the four trust-related
dependent variables.

Table 2.3: ANCOVA test results for H1 and H2 on trust-related dependent variables. “†” indicates the effect of
the variable is significant at the level of 0.0125.

Dependent Variables TiA-R/C TiA-U/P TiA-IoD TiA-Trust
Variables 𝐹 𝑝 𝜂2 𝐹 𝑝 𝜂2 𝐹 𝑝 𝜂2 𝐹 𝑝 𝜂2

Experimental Condition 0.00 0.997 0.00 1.18 0.309 0.01 0.78 0.459 0.00 0.02 0.979 0.00
Numeracy Level 0.608 0.436 0.00 1.47 0.227 0.00 4.97 0.027 0.01 0.89 0.346 0.00

ATI 5.17 0.024 0.01 6.66 0.010† 0.02 6.71 0.010† 0.02 2.40 0.123 0.01
TiA-Familiarity 1.55 0.214 0.00 2.51 0.114 0.01 11.57 0.000† 0.03 3.14 0.077 0.01

TiA-Propensity to Trust 158.92 0.000† 0.361 15.72 0.000† 0.05 62.92 0.000† 0.17 169.1 0.000† 0.38

As can be seen, there is no effect on any of the four subjective trust subscales by
experimental condition. This suggests that the reduced accuracy in the analogy group
(considered broadly) is not due to a lack of subjective trust in the system. Subjective
trust in the particular system participants was presented with did correlate significantly
with their familiarity with similar systems (TiA-Familiarity) and their general propensity
to trust automated systems (TiA-PtT ), as one would expect. Likewise, general affinity to
technology (ATI ) had a significant effect on subjective feeling of understanding the sys-
tem (TiA-U/P) and trusting the intentions of the designers (TiA-IoD). This strengthens our
confidence that we did succeed in measuring subjective trust in the system, as it depends
on other subjective measures in the way one would expect. In a further Spearman rank-
order test we observed that TiA-PtT significantly affects reliance and accuracy. Namely,
there is a significant positive correlation between TiA-PtT and the reliance-based mea-
sures: agreement fraction, 𝑟(279) = 0.277, 𝑝 = 0.000; switch fraction, 𝑟(279) = 0.271, 𝑝 = 0.000;
accuracy-wid, 𝑟(279) = 0.191, 𝑝 = 0.001; participant accuracy, 𝑟(279) = 0.203, 𝑝 = 0.001; RAIR,
𝑟(279) = 0.266,𝑝 = 0.000; RSR, 𝑟(279) = −0.177,𝑝 = 0.003. This confirms our postulated link
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between subjective trust and objective reliance and so our null findings on objective re-
liance w.r.t. the experimental conditions can be partially explained by the observed lack
of improvement in subjective trust. However, this fails to explain why the accuracy de-
creased in the analogy condition. We discuss this further while assessing the results for
H4, where we examine the different analogy domains in detail.

H3: Numeracy level

To verify H3, we calculated Spearman rank-order correlation coefficients for numeracy
level and dependent variables on the different experimental conditions and the sub-groups
of the AccAnalogy condition. As can be seen in Table 2.4, we found that numeracy level
does not significantly correlate with reliance measures when considering all participants
in the AccAnalogy condition. Nor does it significantly correlate with reliance measures
when focusing on participants in any of the three subgroups. We thus find no evidence in
support of H3.

Table 2.4: Spearman rank-order correlation coefficient for numeracy level on reliance.

Dependent Variables Agreement Fraction Switch Fraction Accuracy-wid Participant Accuracy RAIR RSR
Group 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝

AccAnalogy -0.019 0.852 0.066 0.510 -0.011 0.912 -0.083 0.408 0.025 0.804 -0.080 0.425
AccAnalogy-train 0.028 0.870 0.181 0.291 0.083 0.631 0.004 0.980 0.120 0.484 -0.180 0.292

AccAnalogy-weather 0.082 0.661 -0.009 0.963 -0.100 0.592 -0.010 0.957 -0.069 0.714 0.051 0.787
AccAnalogy-vaccine -0.122 0.484 0.031 0.861 -0.073 0.676 -0.219 0.206 -0.006 0.971 -0.146 0.402

We carried out an exploratory analysis to examine the overall effect of numeracy level
on reliance. To do so, we split the participants in all conditions into three groups: those
with high (top 25%), medium (25-75%) and low (bottom 25%) numeracy. We conducted
Kruskal-Wallis H-test with numeracy group and all dependent variables. The results in-
dicate that there is no statistically significant difference between the three groups with
different numeracy levels in terms of either reliance or subjective trust measures (see Ta-
ble 2.5).

Table 2.5: Mean of dependent variables on different numeracy groups. “𝑝” refers to the 𝑝-value for Kruskal-
Wallis H-test results between three groups.

Dependent Variables High Numeracy Medium Numeracy Low Numeracy 𝑝
Agreement Fraction 0.69 0.69 0.71 0.578

Switch Fraction 0.39 0.44 0.41 0.509
Accuracy-wid 0.37 0.45 0.42 0.101

Participant Accuracy 0.50 0.52 0.55 0.248
RAIR 0.35 0.41 0.39 0.329
RSR 0.35 0.43 0.44 0.392

TiA-R/C 3.02 2.96 2.93 0.894
TiA-U/P 3.14 3.15 3.17 0.988
TiA-IoD 3.31 3.12 2.94 0.016
TiA-Trust 3.25 2.93 2.84 0.022

However, as shown in Table 2.5, participants in the low numeracy group did exhibit a
higher agreement fraction and as a result had a higher accuracy in the task. Meanwhile, in
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cases with an initial disagreement between user decision and system advice, participants
in the medium numeracy group achieved higher appropriate reliance and switch fraction
than other two groups. Oddly enough, low numeracy participants report virtually the
same subjective understanding of the system as high numeracy participants, but lower
subjective trust on the other measures. Though these results were not statistically signifi-
cant, they potentially suggest that participants with lower numeracy might have felt the
need to rely more on the system as they were less comfortable with the numerical task.

H4: Familiarity with analogy domains
Impact of Familiarity on Trust and Reliance. Finally, we investigated the role of
analogy domains in detail. In line withH4we analyzed the main effect of familiarity with
analogy domain on reliance. The results are: agreement fraction, 𝐻(4) = 2.691, 𝑝 = 0.611;
switch fraction, 𝐻(4) = 8.165, 𝑝 = 0.086; accuracy-wid, 𝐻(4) = 6.169, 𝑝 = 0.187; participant
accuracy, 𝐻(4) = 5.598, 𝑝 = 0.231; RAIR, 𝐻(4) = 5.262,𝑝 = 0.261; RSR, 𝐻(4) = 5.233,𝑝 = 0.520.
There was no significant effect of familiarity on these objective measures. We, therefore,
did not find support for H4, presumably because analogies generally speaking failed to
improve user reliance.

To better understand the lack of effectiveness of analogies in shaping the reliance of
users, we conducted a number of analyses. First, we considered the effect of familiarity
with the analogy domain (which is a proxy for its effectiveness in clarifying a given mea-
sure, such as the stated system accuracy) on the subjective measures of trust. We found
a significant effect of familiarity on the (subjective) TiA Understanding/Predictability mea-
sure with a Kruskal-Wallis H-test; 𝐻(4) = 15.05, 𝑝 = 0.005. Participants who reported fa-
miliarity levels of ‘4’ (𝑀 = 3.30, 𝑆𝐷 = 0.52) and ‘5’ (𝑀 = 3.39, 𝑆𝐷 = 0.47) perform better
than those who reported levels of ‘1’ (𝑀 = 2.88, 𝑆𝐷 = 0.51) and ‘2’ (𝑀 = 3.01, 𝑆𝐷 = 0.51).
Post-hocMann-Whitney tests using a Bonferroni-adjusted alpha level of 0.0125 ( 0.054 ) were
used to compare all pairs of conditions. The results suggest that participants with a higher
familiarity with analogy domain tend to achieve higher TiA-Understanding/Predictability.
Familiarity andUsefulness (domain-agnostic). In the AccAnalogy condition, 56 partic-
ipants reported a familiarity score greater than 3, and we considered them as the familiar
group, while the remaining 46 participants were considered as being unfamiliar with the
presented analogy domain. We conducted a Kruskal-Wallis H-test with familiarity with
analogy domain and the self-reported usefulness of analogy. This analysis only considered
participants in the AccAnalogy condition who were exposed to analogy-based explana-
tions. The results showed that familiarity with analogy domain significantly affected the
perceived usefulness of analogy; 𝐻(4) = 41.46, 𝑝 = 0.000. Participants who reported fa-
miliarity scores of ‘4’ (𝑀 = 3.52, 𝑆𝐷 = 1.03) and ‘5’ (𝑀 = 4.00, 𝑆𝐷 = 1.00) also performed
better than those who reported ‘1’ (𝑀 = 2.06, 𝑆𝐷 = 1.00), ‘2’ (𝑀 = 2.45, 𝑆𝐷 = 0.74) and ‘3’
(𝑀 = 2.38, 𝑆𝐷 = 1.19). Post-hoc Mann-Whitney tests using a Bonferroni-adjusted alpha
level of 0.0125 ( 0.054 ) were used to compare performance across all pairs of conditions. The
difference in performance between both the familiar group and unfamiliar group was
not significant.
Familiarity and Usefulness (domain-specific). To further confirm the effect of famil-
iarity with analogy domain, we conducted a Kruskal-Wallis H-test with analogy domain
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and usefulness of analogy. This effect was significant; 𝐻(2) = 20.74, 𝑝 = 0.000. Participants
in the AccAnalogy-train condition (𝑀 = 2.42, 𝑆𝐷 = 1.08) indicated a lower subjective useful-
ness of the analogy than those in the AccAnalogy-weather condition (𝑀 = 3.74, 𝑆𝐷 = 1.09)
and the AccAnalogy-vaccine condition (𝑀 = 3.34, 𝑆𝐷 = 1.16). The results are in line with
our expectations about how familiar participants were with the chosen analogy domains,
given the global pandemic situation at the time of the experiment. This shows that choos-
ing the right analogy makes a difference for these subjective measures, and that a well-
chosen analogy can improve subjective measures of usefulness and understanding. As we
did not have objective measures of understanding we cannot say whether this translates to
objective understanding. However, we can draw further insights into the role of analogies
by analyzing the participant perception of analogy-based explanations.

2.5.3 Participant Perception of Analogy-based Explanations
Finally, we analyzed the written responses of participants to the prompts “Why did you
find the analogy to be helpful or not helpful?”, and “Please share any comments, remarks or
suggestions regarding the use of analogies to explain the accuracy of the system.” Authors
of this chapter manually coded all participants’ responses about the analogy-based expla-
nations into the mutually exclusive categories of — positive (𝑁 = 32), negative (𝑁 = 57),
neutral (𝑁 = 4), or not reported (𝑁 = 9). Using a random sample of the responses from
participants, authors agreed on the categories for coding. We do not report inter-rater re-
liability, as disagreement between the authors was resolved through detailed discussions
and critical reflection [95]. Example excerpts of the feedback received from participants
are presented in Table 2.6. Using the thematic analysis software, ATLAS.ti,⁷ we conducted
a thematic analysis and selected the top-3 topics mentioned by users across three analogy
domains (shown in Table 2.7).

Table 2.6: Excerpts from participants’ responses to open questions regarding the analogy-based explanations.

Participant Feedback Sentiment Reason
I found the analogy to be helpful, because the weather fore-
cast is something I am familiar with, and it gaveme a pretty
good idea of the accuracy of the system. I think the anal-
ogy was a perfect way to explain the accuracy of the sys-
tem because it is something most people are very familiar
with.

Positive helpful with familiar refer-
ence

The weather can be unpredictable, and so even the experts
cannot be 100% sure at all times. The analogy helped to
determine whether I should take the system’s advice 100%
or not.

Positive helpful with risk percep-
tion

I’ve never experienced the punctuality of a French train to
know how reliable it is. I like the idea of using an analogy
to explain the accuracy of the system.

Negative unfamiliar with analogy
domain

I usually don’t trust the weather forecast 7 days out so I
thought the same of the system. I find the weather forecast
to be wrong most of the time so I thought it was ironic that
it was compared to be 75% accurate.

Negative distrusts or dislikes anal-
ogy domain

⁷https://atlasti.com
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Table 2.7: Resulting main themes from the thematic analysis of participants’ responses to the open questions
pertaining to analogy-based explanations across domains.

Topic Participant Feedback
Train Weather Vaccine

Familiarity (1) Not helpful because it re-
quires an understanding of the
French train system, I would
use an analogy that is easier
for more people to relate to.
(2) I don’t know the punctual-
ity of French trains. Analo-
gies only work if they are com-
monly known. (3) I’ve never ex-
perienced the punctuality of a
French train to know how reli-
able it is. I like the idea of using
an analogy to explain the accu-
racy of the system.

I found the analogy to
be helpful, because the
weather forecast is some-
thing I am familiar with,
and it gave me a pretty
good idea of the accuracy
of the system. I think the
analogy was a perfect way
to explain the accuracy of
the system because it is
something most people are
very familiar with.

(1) It is a useful comparison
that everyone is familiar with
in today’s world. I would get
a vaccine with 75% efficacy.
This was a strong explanation.
(2) I am familiar with the vac-
cine analogy and it is some-
thing that is very relevant to-
day.

Risk Per-
ception

— no responses — The weather can be un-
predictable, and so even
the experts cannot be 100%
sure at all times. The anal-
ogy helped to determine
whether I should take the
system’s advice 100% or
not.

Just like a vaccine will not
work effectively 100% of the
time due to variations in hu-
man biology, a system to deter-
mine creditworthiness cannot
take into consideration cer-
tain aspects of human behav-
ior and therefore will not al-
ways be 100% correct.

Personal
Experi-
ence

From experience I perceive the
French train system to be highly
efficient, therefore I did not trust
the analogy and it did not col-
late with my experience. As we
areworking in facts and figures I
prefer to not use an analogy that
corresponds to something that is
open to such a variation of cir-
cumstances that could arise as a
train being delayed or on time.

I usually don’t trust the
weather forecast 7 days
out so I thought the same
of the system. I find
the weather forecast to be
wrong most of the time so
I thought it was ironic that
it was compared to be 75%
accurate.

(1) I just found it kind of funny
to be honest, I figure people
will take it differently based on
how they perceive the vaccine.
For me it was just something
funny and interesting. (2) I
guess it let me know it only
had about a 25% failure rate,
but it also wasn’t helpful be-
cause computer systems and
vaccines are very different.
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By analyzing the responses of participants who were satisfied with the analogy-based
explanations for system accuracy (𝑁 = 32), we found the following main causes:

• 12 participants (37.5%) found it helpful to provide a reference frame that they are
familiar with.

• 10 participants (31.3%) thought the analogy-based explanation made it easier to un-
derstand the system’s accuracy.

• 3 participants (9.4%) felt the analogy-based explanation improved their risk percep-
tion.

By analyzing the responses of participants who were not satisfied with the analogy-
based explanations for system accuracy (𝑁 = 57), we found the following main causes:

• 14 participants (24.6%) believed that the stated system accuracy itself, expressed in
a percentage was sufficient for them to understand and inform their decisions.

• 14 participants (24.6%) reported that they were unfamiliar with the analogy domain
and were therefore unable to use it in their decision making.

• 9 participants (15.8%) found that the explanations were not specific enough to be
helpful in informing their decisions in the task.

• 8 participants (14.0%) reported that they did not trust the corresponding analogy
domain and therefore found the analogies to be less helpful.

• 5 participants (8.8%) found that the analogy was irrelevant to the task at hand and
therefore less helpful.

31.4% of the participants expressed positive opinions about the analogy-based explana-
tion in our experiment, and 10 participants who expressed negative opinions (17.5%) also
thought that a better analogy may be helpful. Overall, we observe that analogies can be
(perceived as) useful if the target domain is not well-understood and the analogy is famil-
iar. A third of the participants in the analogy domain found the analogies helpful, another
25% considered the accuracy measure as already well-understood. Even so, familiarity
and the subjective helpfulness and understanding with which it correlates, did not lead to
improvements in appropriate reliance or accuracy. On the contrary, participant accuracy
was significantly lower in the AccAnalogy condition than in the other conditions.

We believe that this is due to the explanation that well-understood accuracy high-
lighted the fact that the system can be wrong, thereby making users more aware of the
risk (for example, the second comment in Table 2.6), and leading to a slight change in
decision making that led to lower accuracy. As discussed in Section 2.5.2, we found that
accuracy decreased in the AccAnalogy condition, but subjective trust did not. If analogies
indeed improved risk perception, as prior work [33, 63] have shown in other contexts,
then participants may have viewed relying on the system as riskier than making their
own decisions. We discuss this further in the next section, in light of the earlier findings
on reliance when users are presented with information on system accuracy.

2.6 Follow-up Study: The Influence ofDifferingUserTrust
in Analogy Domains

To further understand the impact of users’ trust in the analogy domains on their appropri-
ate reliance, we conducted a within-subjects study in which each participant worked with
AI systems where their stated accuracy was explained using analogies from three different
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analogy domains. This study was approved by the human research ethics committee of
our institution.⁸

2.6.1 Experimental Setup
Task Selection. To assess the impact of user factors on each analogy domain, we balanced
the difficulty of the tasks for each analogy. We selected 4 tasks for each analogy domain in
the same way as in the main study, using a regression model. Tasks were all predictions
where the model had borderline confidence (i.e., difficult tasks for the model) and were
evenly split between two tasks where the model predicts approval and two tasks where
the model predicts rejection.

We thus obtained three groups of 4 tasks each, where each group was explained by a
different analogy domain. To maintain an accuracy level of 75%, we manually provide one
incorrect prediction among the four tasks in each group. To prevent any bias caused by
ordering, we kept the relative order of 3 groups, but shuffled the order of analogy domains
provided to each participant and the task order within each group.
Procedure. We followed a similar procedure as in the main study (see Section 2.4.4).
The main difference is that we did not separate participants into different experimental
conditions. Instead, we separately assessed the user factors in each analogy domain before
participants worked on one group of tasks explained with a single analogy domain.
Measures. We consider all covariates and reliance-based measures in the main study (see
Section 2.4.2). However, we calculated the reliance-basedmeasures according to each anal-
ogy domain. In addition, we assessed familiarity, trust, and confidence with the relevant
analogy domain before each block of 4 tasks using that analogy domain. This was done
using the following questions on a 6-point Likert scale:

• How familiar are you with [analogy domain] (punctuality of French trains / five-
day weather forecasts / AstraZeneca vaccine for COVID-19)?

• To what extent do you trust the [analogy domain] (French train punctuality / five-
day weather forecast / effectiveness of AstraZeneca vaccine for COVID-19) ?

• How confident are you with estimating the [analogy domain] (punctuality of
French trains / accuracy of five-day weather forecasts / effectiveness of AstraZeneca
vaccine for COVID-19) numerically?

As 4 tasks may be inadequate to assess the trust related measures for AI systems on each
analogy domain, we did not consider the trust-related measures (i.e., TiA-R/C, TiA-U/P,
TiA-IoD, and TiA-Trust) in this follow-up study.
Participants. Before recruiting participants, we computed the required sample size in
a power analysis for a Within-Subjects ANOVA using G*Power [92]. We specified the
default effect size 𝑓 = 0.25 (i.e., indicating a moderate effect), a significance threshold 𝛼 =
0.025 (i.e., due to testing multiple hypotheses, H3 and H4), a statistical power of (1−𝛽) =
0.95. This resulted in a required sample size of 245 participants.

⁸https://osf.io/9jqma/?view_only=c0c0dd12fa804b028cd29fbf9fd2ef4f

https://osf.io/9jqma/?view_only=c0c0dd12fa804b028cd29fbf9fd2ef4f
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We therefore recruited 261 participants from the crowdsourcing platform Prolific, in
order to accommodate potential exclusion. All participants were rewarded with £1.5,
amounting to an hourly wage of £9 deemed to be “good” payment by the platform (es-
timated completion time was 10 minutes). Similar to the main study, we rewarded partic-
ipants with extra bonuses of £0.1 for every correct decision in the 12 trial cases. All par-
ticipants were proficient English speakers above the age of 18 and they had an approval
rate of at least 90% on the Prolific platform. Meanwhile, we pre-screened all participants
in the main study from this study to prevent any learning effect. After data collection,
we excluded participants from our analysis if they failed at least one attention check (2
participants), or represented an outlier in terms of the amount of time they spent on our
study. Outliers were participants (11 in total) who spent less than 6 minutes on the entire
study. The resulting sample of 248 participants had an average age of 38 (𝑆𝐷 = 12.98) and
a gender distribution (50% female, 50% male).

2.6.2 Results and Analysis
Domain-specific User Factor Distribution. The distribution of analogy-specific user
factors is visualized in Figure 2.4. Most participants reported a low Familiarity with the
punctuality of French trains (𝑀 = 1.70, 𝑆𝐷 = 1.14). In comparison, most participants were
familiar with the five-day weather forecast (𝑀 = 5.08, 𝑆𝐷 = 0.94) and AstraZeneca vaccine
(𝑀 = 4.65, 𝑆𝐷 = 1.25). Trust was similar for all analogy domains, with the punctuality
of French trains scoring lowest (𝑀 = 3.57, 𝑆𝐷 = 0.99), the weather report scoring slightly
higher (𝑀 = 3.85, 𝑆𝐷 = 1.04) and the AstraZeneca vaccine getting the highest trust scores
(𝑀 = 4.36, 𝑆𝐷 = 1.33). As for Confidence, this too was lowest for the French train punctual-
ity (𝑀 = 2.77, 𝑆𝐷 = 1.48). Both the weather report (𝑀 = 3.79, 𝑆𝐷 = 1.03) and AstraZeneca
vaccine (𝑀 = 4.00, 𝑆𝐷 = 1.26) scored higher on Confidence. As can be seen, standard devi-
ations indicate that there were individual differences in how participants perceived these
different analogies, while the aggregate results also show that the choice of analogy has
an overall impact. Mann-Whitney tests using a Bonferroni-adjusted alpha level of 0.025
( 0.052 ) were used to compare all pairs of analogy domains. Our results indicate that: (1)
participants showed a significantly higher Familiarity, Trust, and Confidence in the five-
day weather report accuracy and the AstraZeneca vaccine effectiveness than the French
train punctuality; (2) comparing the weather report and the AstraZeneca vaccine domains,
we found that although participants reported a significantly higher Familiarity with the
five-day weather report accuracy, they showed a significantly higher Trust and Confidence
in the AstraZeneca vaccine effectiveness.

Main Effect of Domain-specific User Factors. To analyze whether these differences
had an effect on performance, we conducted Friedman tests for reliance-based measures
across the different analogy domains. The results show that no significant difference ex-
ists between the reliance-based measures across the three analogy domains: Agreement
Fraction, 𝜒2 = 0.19, 𝑝 = 0.91; Switch Fraction, 𝜒2 = 0.41, 𝑝 = 0.81; Accuracy-wid, 𝜒2 = 1.28,
𝑝 = 0.53; Participant Accuracy, 𝜒2 = 1.37, 𝑝 = 0.50; RAIR, 𝜒2 = 0.62, 𝑝 = 0.73; RSR, 𝜒2 = 2.89,
𝑝 = 0.24. While participants show relatively lower Familiarity, Trust, and Confidence on
French train punctuality, no significant difference exists in the reliance-based measures.
This indicates that, although participants perceive the three analogy domains differently,
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Figure 2.4: Bar plot illustrating the distribution of the different user factors considered in our study. All user
factors were measured on a 6-point scale.

their reliance on the system is not affected by these differences in perception. Thus, we are
reassured that our findings in the first study were not biased due to individual differences.

Table 2.8: Spearman rank-order correlation coefficient for user characteristics on reliance. “†” indicates the effect
of variable is significant at the level of 0.025.

Dependent Variables Agreement Fraction Switch Fraction Accuracy-wid Participant Accuracy RAIR RSR
User Factor 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝

Trust 0.039 0.286 0.077 0.036 0.053 0.151 -0.009 0.811 0.068 0.065 -0.041 0.266
Familiarity -0.012 0.751 0.020 0.578 0.050 0.174 0.017 0.638 0.043 0.245 0.035 0.342
Confidence -0.025 0.504 0.034 0.359 0.027 0.469 -0.054 0.139 0.087 0.017† -0.018 0.619

Numeracy Level -0.044 0.228 -0.048 0.189 -0.016 0.661 -0.041 0.262 -0.008 0.833 0.019 0.598
ATI -0.061 0.097 -0.106 0.004 -0.035 0.334 -0.020 0.578 -0.082 0.026 0.050 0.173

TiA-Familiarity -0.012 0.753 0.002 0.957 0.016 0.667 0.024 0.522 0.016 0.659 0.041 0.266
TiA-Propensity to Trust 0.151 0.000† 0.102 0.005† 0.075 0.040 0.096 0.009† 0.067 0.068 -0.060 0.103

Correlation Analysis for User Factors on Reliance. For further insights about all user
factors on user reliance behaviors, we calculated Spearman rank-order correlation coeffi-
cients for reliance-based dependent variables across all groups of tasks. As can be seen in
Table 2.8, we found that participants’ trust, familiarity, and confidence with the analogies
do not significantly affect reliance on the system. This further confirms our finding that
differences in the perception of analogies do not affect reliance. Only participants’ gen-
eral Propensity to Trust shows a significant positive correlation with Agreement Fraction,
Swith Fraction, and Participant Accuracy. This also aligns with our findings in main study
(see Table 2.3) where the subjective trust in the AI system correlated significantly with
their general Propensity to Trust. We also observed a positive correlation between users’
Confidence and the RAIR they demonstrated, which indicates that users who have more
confidence in the AI system, tend to more appropriately rely on the AI system.
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2.7 Discussion
2.7.1 Key Findings
Our analysis of the responses to the analogies suggests that the problem is not one of a
lack of understanding of what the stated accuracy measure means. Nor was the decline in
reliance observed in the analogy case the result of a reduction in subjective trust. As dis-
cussed, there were no significant effects on the various TiA subscales, even though these
subscales correlated as expected with other subjective measures. In fact, the cases where
participants were familiar with the analogies led to a significantly higher subjective un-
derstanding of the system, though here too there was no translation into higher reliance.
We thus see a significant decline in accuracy that does not seem to be explainable in terms
of a decline in subjective trust. According to the results discussed in Section 2.5.2, par-
ticipants who reported a higher numeracy level tended to rely less on the AI system and
achieved worse appropriate reliance and team performance (i.e., accuracy). Therefore, we
argue it is likely that participants overestimated their skills to deal with numeracy and
loan prediction task, and did so more in the AccAnalogy condition. Combined with exist-
ing findings that analogies help improve risk perception in dealing with numeracy, the
reduced reliance on AI system may be caused by the risk perception brought by analogies.
The only unexpected effect is that it improved risk perception to their detriment: mak-
ing users think that relying on the relatively accurate AI system was riskier than trusting
their own answer. User comments such as the second and fourth in Table 2.6 match this
interpretation of the results. For example, “The weather can be unpredictable, and so even
the experts cannot be 100% sure at all times. The analogy helped to determine whether I
should take the system’s advice 100% or not”.

Positioning in Existing Work. Our findings may seem at first to contrast with the
findings of Yin et al. [57], where the authors found a significant effect of stated accuracy
on reliance. We did not find this to be the case in our study using the loan prediction task.
When aiming to better explain the stated accuracy measure through the aid of analogies,
we even saw a reduction in reliance. How do these contrasting findings fit together? We
consider the crucial difference to their study [57] to be that the observed effect of stated
accuracy on reliance was only found for very high stated accuracy levels (90 and 95%) and
even then users only agreed with the system in 80% of cases (up from 75% with no/lower
stated accuracy). Our study intentionally did not consider these high accuracy levels, to
avoid inducing system reliance simply due to the near certain promise of making the right
decision when relying on the system (and thus acquiring the monetary reward). At 75%
accuracy, though significantly better than human performance, users (especially those
with high self-reported numeracy level) were reluctant to rely on the AI system. And
indeed, for stated accuracies around 75% Yin et al. also did not find an improvement in
reliance. In fact, even for a stated accuracy of 50% the observed agreement fraction was
around 80% – they did not find effective calibration of reliance, especially for lower levels
of stated accuracy.

This explanation of the findings is also in line with the findings of Yin et al., where
participants started to rely more on the system after they were given an overview of their
own performance and that of the system midway through the task (where generally the
system performed better) [57]. This also aligns with the observed effect of Propensity to
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Trust and Numeracy Level in our study where the AI system shows superior performance
than human performance. Participants who reported higher numeracy levels tended to
rely less on the AI system — potentially due to thinking they can do better than the AI
system with a 75% accuracy. Their reduced reliance and accuracy can be caused by the
illusion of their own competence with numeracy and this task [30]. In contrast, partic-
ipants who showed a higher propensity to trust tended to treat the AI system advice as
more trustworthy, and relied more on the AI system.
Potential Cause — Dunning-Kruger Effect. Prior work in human behavior and psy-
chology that have studied poor task performance have observed participants’ overestima-
tion of their own performance as an important reason. These studies attribute the overesti-
mation to a cognitive bias called the Dunning-Kruger effect [60, 61]. The Dunning–Kruger
effect describes a tendency for incompetent individuals to overestimate their ability, and
has been replicated across several tasks in different domains including crowd work [96].
While we cannot entirely attribute the under-reliance of participants on the AI system
in our study to the overestimation of their skills on the loan prediction task, there is a
substantial amount of support for this plausible explanation in existing literature [30, 97].
Numeracy Levels Did Not Play a Role. Following on from overestimation of one’s
skills as the potential cause for under-reliance on the AI system, our results suggest that
this occurs regardless of the numeracy level of participants. Having said that, we did
observe that participants with low numeracy levels exhibited a higher reliance, i.e., agree
with and switch towards system advice more often (see Table 2.5), though this effect is
not significant. Furthermore, participants with lower numeracy levels tend to have lower
Trust in Automation scores, which is significant for the Intention of Developers measure
(cf. Tables 2.5). As these findings are statistically insignificant, we refrain from drawing
conclusions from them. At most, we think that should it turn out that findings regarding
numeracy are significant in later studies then they make intuitive sense. Low-numeracy
participants might rely more on a system not because of higher subjective trust, but rather
due to a struggle with the range of numerical information they have to deal with. Hence,
they report lower subjective trust but display higher objective reliance.

2.7.2 Caveats and Limitations
Observations on Single Accuracy Level. While it is informative to observe a lack of
calibration to the stated accuracy level of 75%, our study is limited due to the restriction
to a single accuracy level. As discussed above, the research of [57] only found an effect
for higher accuracy levels when participants were not given feedback on their own perfor-
mance, so perhaps the lack of findings regarding analogies is partly a result of our chosen
accuracy level. That being said, participants would have been significantly better off rely-
ing more on the AI system, so even with a single accuracy level the question of how to get
users to rely appropriately on such a system remains a valuable and important one. Thus,
the findings of our study are important even though a single accuracy level was used.
Limitations of Analogy Domains. Furthermore, while the analogies we chose dif-
fered on the main feature of familiarity (with participants generally being unfamiliar with
French trains and familiar with weather reports and covid vaccines), and all had a relevant
structural mapping from accuracy in the AI domain and reliability in the various analogy
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domains, none were very close to the AI domain. Thus, it may be that participants’ knowl-
edge of the analogy domains was hard to apply in the AI domain. Alternatively, theymight
have preferred analogies closer to the task domain (loan predictions), to clarify the mean-
ing of accuracy in that context. That being said, participants who were familiar with the
presented analogy domains did rate their understanding of the system higher and found
the analogies to be helpful. According to the results in the follow-up study, we also found
that the differences in perception of analogies (on Familiarity, Trust, and Confidence) did
not show a significant impact on reliance-based measures. We, therefore, do not consider
the choice of analogies to be the reason behind the significant decrease in user reliance on
the AI system in the AccAnalogy condition.

Framing of Analogies. The presentation of the analogies might also have been a limiting
factor in our experimental study. In our study design participants saw the same analogy-
based explanation in each task where they made a choice that was possibly informed by
the system. While it seems realistic that the overall system accuracy would remain the
same for the duration of the study, participants may have come to ignore the information
after the first few tasks. That being said, we did observe a significant effect when analogies
were added, suggesting that they were not completely ignored despite a static application
to the system accuracy measure.

Analogies can benefit users in understanding something that is not easy to digest [51,
98]. So in tasks with input data which is easy to comprehend (e.g., visual input), our find-
ings may not apply. Furthermore, as reported by Nourani et al. [99], the domain knowl-
edge (expertise) plays an important role in facilitating reliance. In the presence of such
potentially dominant factors, which appear to have a significant impact on trust formation
and reliance behavior of users, our findings may not hold. In short, if users do not lack in
their understanding (e.g., of measures like the AI system accuracy) analogies may be of
little help, and explanations may not be needed in the first place.

Consideration of Task Type. The loan prediction task has been widely used to study
human-AI decision making where there is a clear risk associated with the decision and
a potential benefit in adopting AI advice [62, 65, 100, 101]. This task also follows the
scenario-based exploration of end-user interpretability of AI systems championed by prior
work [102]. However, the external validity beyond this scenario and domain (i.e., in other
human-AI decision making tasks) and type of data (i.e., other than numerical data) cannot
be ascertained. Futurework could explore the effectiveness of analogy-based explanations,
and consider alternative XAI methods altogether, in different scenarios [103].

2.7.3 Implications and Future Work
Based on our findings, we reason that an overestimation of users’ skills in the task may
explain their under-reliance on the AI system. Future work should further explore the
effects of providing feedback to users on their performance. For whereas Green et al. [65]
found that feedback on single decisions was of little use, Yin et al. [57] found feedback
of average user accuracy to be a good motivator for increased reliance on system advice
(though note, again, that reliance in their study was not optimal either). The question is
whether and how this increased reliance can be calibrated properly to the system accu-
racy. Note that it is not the aim of our work to treat reliance on AI systems as universally
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desirable. However, to design and facilitate optimal team performance in human-AI deci-
sion making, it is pivotal to understand why users fail to achieve the theoretically possible
higher accuracy — particularly when aided by a relatively more accurate AI system — and
why users tend to demonstrate under-reliance. This is the spirit in which we explored the
RQs in our work.

Regarding the use of analogy-based explanations, a complementary direction would
be to consider the use of analogies to elucidate other general features of algorithms (e.g.,
their decreased reliability when applied on outlier data, as such explanations have helped
for appropriate reliance [50]), or to use analogies to explain more technical measures such
as confidence scores and Shapley values. These instance-level measures may be harder to
interpret than the global accuracy measure explored in our work, and allow for a more
dynamic presentation of analogies. If users lack enough expertise to comprehend these
instance-level measures, then we believe that analogies can be helpful. Analogies may
fit how humans actually reason, as Wang et al. note in their discussion of analogical
reasoning [104] and we have observed some subjective effects from the use of analogies
for stated accuracy. For that reason, they might be useful in explaining other parts of AI
systems. An interesting finding from our work in this context, is that an improved risk
perception can lead to under-reliance on AI systems and perhaps result in sub-optimal
final decisions. Thus, more work is required to understand how to balance these two —
promote criticality with which users rely on AI systems to prevent over-reliance on the
one hand, and encourage reliance on AI systems when the advice is accurate to decrease
under-reliance on the other hand. The ultimate aim should be to support users in their
decision making, while fostering a better understanding of the AI system and promoting
appropriate reliance of users on the system.

In the pursuit of this goal, analogy-based explanations can be an option if the measures
in question are not clearly understood by users. However, there are several questions that
need to be explored. First, not all users may need the help of analogies. Second, the fa-
miliarity of the analogy is crucial to it being helpful. Third, analogies in some domains
(such as vaccines, or indeed the five-day weather report which many consider less reliable
than it actually is) may carry with them undesirable connotations that impact their use-
fulness or even increase distrust. At the same time, these findings also provide guidelines
to generate and apply high-quality analogies for explainability. For example, when users
explicitly indicate that they find it difficult to interpret an explanation, we can provide an
analogy as an alternative. This gives laypeople a better chance to understand challeng-
ing explanations. Here, user’s beliefs and experiences may play an important role in the
adoption of analogy-based experience and so we need to understand these users previous
knowledge better in order to ensure the effectiveness of provided analogy-based explana-
tions. In line with that, future work should consider exploring the potential of adaptive
and personalized analogy-based explanations.

2.8 Conclusions
The two main research questions for this chapter were: ‘How does the understanding of
stated system accuracy affect reliance of users on the AI system?’ and ‘How does explain-
ing stated system accuracy using analogies affect the reliance of users on the AI system?’.
As we have discussed, the conclusion to draw from our experiment is that users are no
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better at calibrating their reliance on the system when they better understand system ac-
curacy. In fact, analogies made users less accurate, presumably because they became more
aware of the risk that the system makes mistakes. A lack of understanding of the accu-
racy level is not the reason users fail to rely on the system appropriately. Thus, the limited
understanding of stated accuracy is not to blame for under-reliance. This tallies with our
finding that numeracy level, a factor one would expect to be relevant for a task filled with
numerical information, had no significant effects on system reliance or accuracy.

Although our findings do not directly inform how we can facilitate appropriate re-
liance, we have identified important research directions that can further our understand-
ing of system reliance in the complex and timely area of Human-AI interaction. Based on
what is understood in the HCI community, we consider it likely that users’ overestimation
of their own skills is the main reason that explains why participants failed to rely on the
AI system’s advice as much as would be appropriate given the system accuracy, and their
own lower performance. It seems that they considered 75% accuracy to be on the low side,
and estimated their own performance to be better than that. This would fit in with the
significant results observed for higher accuracies and the effect of Propensity to Trust on
reliance. Further research is needed here, but it is striking that the level of understanding
of the presented numerical information has little bearing on user reliance.

We also found that explaining the stated accuracy of the AI system with analogies was
not the helpful tool we hypothesized it to be. However, our findings revealed that analogy-
based explanations can be experienced as helpful by users when adjusted to their needs.
In particular, we observed a set of guidelines for the use of analogies in line with that of
earlier research on analogies in risk perception, which will help in the implementation of
analogies in cases where a problematic lack of understanding is observed. If analogies are
chosen to alleviate such a problem, one should pay attention to: (1) users’ familiarity with
the source domain, (2) their sentiments and expectations about the source domain, and (3)
users’ risk perception. We hope our findings and implications may help researchers have
more insights about facilitating appropriate reliance and leveraging analogies to explain
numerical attributes.





3

47

3
The impact of Dunning-Kruger

Effect
The dazzling promises of AI systems to augment humans in various tasks hinge on whether
humans can appropriately rely on them. Recent research has shown that appropriate reliance
is the key to achieving complementary team performance in AI-assisted decisionmaking. This
chapter addresses an under-explored problem of whether the Dunning-Kruger Effect (DKE)
among people can hinder their appropriate reliance on AI systems. DKE is a metacognitive
bias due to which less-competent individuals overestimate their own skill and performance.
Through an empirical study (𝑁 = 249), we explored the impact of DKE on human reliance on
an AI system, and whether such effects can be mitigated using a tutorial intervention that
reveals the fallibility of AI advice, and exploiting logic units-based explanations to improve
user understanding of AI advice. We found that participants who overestimate their perfor-
mance tend to exhibit under-reliance on AI systems, which hinders optimal team performance.
Logic units-based explanations did not help users in either improving the calibration of their
competence or facilitating appropriate reliance. While the tutorial intervention was highly
effective in helping users calibrate their self-assessment and facilitating appropriate reliance
among participants with overestimated self-assessment, we found that it can potentially hurt
the appropriate reliance of participants with underestimated self-assessment. Our work has
broad implications on the design of methods to tackle user cognitive biases while facilitating
appropriate reliance on AI systems. Our findings advance the current understanding of the
role of self-assessment in shaping trust and reliance in human-AI decision making. This lays
out promising future directions for relevant HCI research in this community.

3.1 Introduction
In the last decade, powerful AI systems (especially deep learning systems) have shown bet-
ter performance than human experts on many tasks, sometimes outperforming humans

This chapter is based on a peer-reviewed paper:  Gaole He, Lucie Kuiper, and Ujwal Gadiraju. Knowing
about knowing: An illusion of human competence can hinder appropriate reliance on AI systems. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1-18. 2023. https://doi.org/10.11
45/3544548.3581025.

https://doi.org/10.1145/3544548.3581025
https://doi.org/10.1145/3544548.3581025
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by a large margin [66, 105]. Attracted by the predictive capability of such AI systems, re-
searchers and practitioners have started to adopt such systems to support human decision
makers in critical domains (e.g., financial [65], medical domains [106]). With the wish of
complementary team performance, one goal of such human-AI collaboration is appropri-
ate reliance: human decision makers rely on an AI system when it is accurate (or perhaps
more precisely, when it is more accurate than humans) and do not rely on it when the
system is inaccurate (or, ideally, whenever it is wrong). In such a collaborative decision
process, human factors (e.g., knowledge, mindset, cognitive bias) and the explanations for
AI advice are important for trust in the AI system and for human reliance on the system.
Several prior works have carried out empirical studies within this context of human-AI
decision making, to explore the effectiveness of different kinds of explanations and the
role of human factors in shaping such collaboration [25, 52, 65, 66, 70, 107–109].

In recent literature exploring human-AI interaction, researchers have shown a great
interest in understanding what shapes user trust and reliance on AI systems. They found
that factors like first impression [87], AI literacy [108], risk perception [65, 110], and perfor-
mance feedback [49, 111] among others, play important roles in shaping human trust and
reliance on AI systems. Explanations (e.g., feature attribution of input) have been found to
be useful in promoting human understanding and adoption of AI advice [25, 66, 70, 107]
and He et al. [98] recently proposed analogies as an instrument to increase the intelligi-
bility of explanations. However, prior studies observed improvements in performance in
the presence of explanations only when the AI system outperformed both the human and
the best team [70]. One reason for such phenomenon is under-reliance, which indicates
humans do not rely on accurate AI predictions as often as it is ideal to [107, 112, 113]. In
this chapter, we explore whether Dunning-Kruger effect (DKE) [60] – a metacognitive bias
due to which individuals overestimate their competence and performance – affects user
reliance on AI systems. This a particularly important metacognitive bias to understand
in the context of human-AI decision making, since one can intuitively understand how
inflated self-assessments and illusory superiority over an AI system can result in overly
relying on oneself or exhibiting under-reliance on AI advice. This can cloud human behav-
ior in their interaction with AI systems. However, to the best of our knowledge no prior
work has addressed this. In addition, DKE is closely related to user confidence in deci-
sion making, which has been identified as an important user factor and has been recently
explored in the context of human-AI decision making [65, 114]. To achieve the goal of
appropriate reliance, users are expected to adequately calibrate their self-confidence and
their confidence in the AI system. Our work can lead to fundamental HCI insights that
can help facilitate appropriate reliance of humans on AI systems.

To explore the impact of DKE on user reliance, we need to first identify participants
who demonstrate the DKE (i.e., participants who perform relatively poorly but overesti-
mate their performance). According to existing research on the DKE [115, 116], the par-
ticipants representing the bottom performance quartile tend to overestimate their skill
and depict an illusory superiority, while those in the top performance quartile do not
exhibit such a trend. Researchers have also operationalized self-assessments to serve as
indicators of competence in different online tasks [96]. Informed by such prior work, we
consider overestimated self-assessments in the context of human-AI decision making as
an indicator of the DKE and explore it further. Through an explicit analysis of partici-



3.1 Introduction

3

49

pants’ performance in the bottom quartile, we verified that the overestimation in their
performance is highly indicative of DKE in our study. In this scope, we explore whether
we can design interventions to help users improve their own calibration of their skills in
the task at hand.

Inspired by existing work in mitigating cognitive biases such as the DKE [60] and
promoting appropriate reliance [107, 108, 117], we propose to leverage tutorials to calibrate
their self-assessment through revealing the actual performance level of participants with
performance feedback. In such a tutorial, after the initial decision making, participants are
provided with correct answers and explanations to contrast with their final choice (if they
make a wrong choice). As pointed out by existing research [118], one cause of DKE can be
that people place too much confidence in the insightfulness of their judgments. When the
correct answer differs from their own choice, they may refrain from trusting such ground
truth in the absence of additional rationale. To ensure the effectiveness of revealing users’
shortcomings, we provide them with contrastive explanations which point out not only
the reason for correct answers, but also why their choice was incorrect. Based on prior
work, we expect such a training session to help users realize their errors and calibrate
their self-assessment. Furthermore, they become more skillful at the task, which is also
highlighted by Kruger et al. [60] in mitigating DKE.

WhenAI advice disagrees with human decisions, the lack of rationales may be a reason
not to adopt AI advice. To help participants interpret the AI advice, we leverage logic units-
based explanations which reveal the AI system’s internal states. When users recognize
that an explanation provides reasonable evidence for supporting AI advice, it is much
easier for them to resolve disagreement in their decision making. As a result, participants
have a better opportunity to know and understand when they “should” in fact rely on
AI systems. From this standpoint, effective explanations alongside the tutorial may help
mitigate the impact of the Dunning-Kruger Effect on user reliance. To analyze the impact
of DKE on user reliance on AI systems in this chapter, we aim to find answers for the
following two research questions:

RQ1: How does the Dunning-Kruger Effect shape reliance on AI systems?
RQ2: How can the Dunning-Kruger Effect bemitigated in human-AI decisionmaking
tasks?

To answer these questions, and based on existing literature, we proposed four hypothe-
ses considering the effect of the overestimation of performance on (appropriate) reliance,
the effect of the tutorial intervention on self-assessment calibration and reliance for par-
ticipants with miscalibrated self-assessment, the effect of logic units-based explanations
and tutorial intervention on reliance and team performance. We tested these hypotheses
in an empirical study (𝑁 = 249) of human-AI collaborative decision making in a logical rea-
soning task (i.e., multi-choice logical question answering based on a context paragraph).
We found a negative impact of the DKE on human reliance behavior, where participants
with DKE relied significantly less on the AI system than their counterparts without DKE.
To mitigate such effects, we designed a tutorial intervention for making users aware of
their miscalibrated self-assessment and provided logic units-based explanations to help
explain AI advice. Although we found that the intervention tutorial was highly effective
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in improving participants’ self-assessments, their improvement in appropriate reliance
and performance is limited (statistically non-significant). Moreover, no obvious benefits
were found with introducing logic units-based explanations in the logical reasoning task.

Our results highlight that the overestimation of performance will result in under-
reliance, and such miscalibrated self-assessment can be improved with our proposed tuto-
rial intervention. We also found that participants who overestimated their performance
demonstrated an increased appropriate reliance, which the calibration of self-assessment
can partially explain. However, this was in contrast to participants who initially under-
estimated their performance – while they calibrated their self-assessment, they achieved
significantly worse appropriate reliance and performance. One potential cause is that such
tutorials help them recognize their actual performance but also cause the illusion of su-
periority to AI systems. Such finding is also in line with algorithm aversion [33], where
users are less tolerant of the mistakes made by AI systems. In addition, we found that
the users’ propensity to trust goes a long way in shaping trust in AI systems, despite our
tutorial not having an effect in reshaping subjective trust. Based on the results from our
empirical study, we provide guidelines for designing more comprehensive user tutorials
and point out promising future directions for further research around self-assessments
in the context of human-AI decision making. Although we found that miscalibrated self-
assessments may hinder appropriate reliance (i.e., participants with DKE relied less on AI
systems), the participants with accurate self-assessment did not necessarily show optimal
appropriate reliance (e.g., we found that participants with underestimation showed bet-
ter appropriate reliance and performance). This interplay between self-assessment and
reliance on AI systems is potentially more complex than what can be explained by a linear
relationship and, therefore, deserves further research.

In summary, we explored the effectiveness of a tutorial intervention to mitigate the
DKE and, in turn, facilitate appropriate reliance. We found evidence suggesting its effec-
tiveness through an empirical study in a logical reasoning task. Our work has important
implications for HCI research in the realm of human-AI interaction. Our findings indicate
that incorrect self-assessments and a prevalent meta-cognitive bias can affect user objec-
tive reliance on the AI system. Thus, while designing for optimal human-AI interaction,
it is important to consider the extent to which users are aware of their own abilities and
that of the AI system. Our work is an important first step towards furthering our under-
standing of how cognitive biases shape human reliance on AI systems, an understudied
aspect in this quickly evolving realm of research. Considering the unique and evolving
landscape of AI systems, the associated metaphors, and end-user expectations that are me-
diated through abstractions and their own experiences, we believe that studying the role
of the DKE in the human-AI decision making context is a timely and unique contribution.
We hope that our work can inform future research on designing human-AI interactions
that can facilitate appropriate reliance on AI systems.

3.2 Background and Related Work
This chapter contributes to the growing literature on human-AI interaction, collaboration,
and teaming, by exploring how the Dunning-Kruger Effect shapes user reliance on
AI systems and whether such effect can be mitigated with a user tutorial that
highlights the fallibility of AI advice and logic units-based explanation. Thus, we
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position our work in different strands of related literature: the general literature on AI-
assisted decision making and what roles explanations play in such collaboration (3.2.1),
more specific literature on promoting appropriate reliance (3.2.2), the contradicting liter-
ature on algorithm aversion and algorithm appreciation (3.2.3), and finally the literature
on self-assessments, which has been explored in psychology and other HCI studies (3.2.4).

3.2.1 Human-AI Collaborative Decision Making
In recent years, AI-assisted decision making has received more and more attention. In
such collaboration, user factors and interactionwithAI systems are observed to be ofmuch
impact on final user behaviors. Among these work, most researchers are interested in how
users shape their trust in AI systems and how user behaviors will be affected by AI systems.
Topics like performance feedback [49, 119], risk perception [110, 120], uncertainty [121]
and confidence [66, 107, 114] of machine learning models, impact of explanations [70,
122] have been extensively studied in human-AI decision making. Meanwhile, fairness,
accountability, and transparency of incorporating AI systems for collaborative decision
making received more and more attention from a wide range of stakeholders [123, 124].
For a more comprehensive survey of existing work onHuman-AI decisionmaking, readers
can refer to [22].

According to GDPR, the users of AI systems should have the right to access mean-
ingful explanations of model predictions [125]. Under this perspective, more and more
researchers have started to provide human-centered explainable AI (XAI) solutions to
promote human-AI collaboration [27, 104, 124, 126, 127]. Up to now, the benefits of in-
corporating XAI methods in human-AI collaboration are still limited [22, 70]. As reported
by most existing work, though XAI methods can aid understanding of AI advice, such
effect does not necessarily lead to clear performance improvement [25, 70]. For instance,
Liu et al. [25] observed that interactive explanations may “reinforce human biases and
lead to limited performance improvement”. Based on a comprehensive literature review,
Wang et al. [107] proposed three desiderata of AI explanations to promote appropriate
reliance: (1) critical for people to understand the AI, (2) recognize the uncertainty under-
lying the AI, and (3) calibrate their trust in the AI in AI-assisted decision making. With
such ideal properties, effective explanations may also potentially help participant realize
their weakness and mistake when they disagree with AI advice. Under this perspective,
we also explored whether logic units-based explanations can help participants calibrate
their self-assessment and promote appropriate reliance.

3.2.2 Empirical Studies on Appropriate Reliance
AI systems and human decision makers are supposed to achieve complementary team per-
formance through taking advantage of both powerful predictive capability of AI systems
and flexibility of human users to handle complex decision tasks. However, existing liter-
ature still struggles to find such complementary team performance — in most empirical
studies, AI alone performs much better than human-AI team [22, 25]. With further anal-
ysis, researchers point out two main causes: (1) under-reliance, users fail to fully take
advantage of powerful AI systems, and (2) over-reliance, users fail to rely on themselves
when they actually outperform AI systems.

To promote appropriate reliance, existing research mainly focused on mitigating



3

52 3 The impact of Dunning-Kruger Effect

under-reliance and over-reliance. Different interventions like cognitive forcing func-
tions [55], user tutorial [50, 108] and explanations [107] are proved to be highly effective in
mitigating such unexpected reliance patterns. Buçinca et al. [55] introduced three types of
cognitive functions to mitigate over-reliance: show AI advice on demand, update decision
with AI advice after the initial decision, and keep participants waiting for a while before
providing advice. Their experimental results indicate that such cognitive forcing func-
tions are even more effective than simple XAI methods in mitigating over-reliance. With
a comparative study of four types of different explanations, Wang et al. [107] reported
that feature importance and feature contribution explanations can promote appropriate
reliance with mitigating under-reliance.

“User tutorials, when presented in appropriate forms, can help some people rely onML
models more appropriately” [108]. Another important branch is educating users with user
tutorials, which stands out in recent years. On one hand, such user tutorials make users
aware of the weakness of AI systems, which further calibrate user trust and reliance on AI
systems. For example, Chiang et al. [50] found that a brief education session (to increase
people’s awareness of the machine learning model’s possible performance disparity on dif-
ferent data) can effectively reduce over-reliance on out-of-distribution data. On the other
hand, such a system can educate participants with domain-specific knowledge extracted
from an AI system, which further improves users’ capability. As a typical example, Lai et
al. [117] proposed model-driven tutorials to help humans understand patterns learned by
models in a training phase. Inspired by this series of research, we also explored whether
DKE can be mitigated with user tutorial. For the purpose of calibrating self-assessment,
we include performance feedback and explanations to contrast wrong user choice with
correct answers.

3.2.3 Algorithm Aversion and Algorithm Appreciation
In the face of intelligent predictive agents, which may outperform human experts, people
show two contradicting altitudes: Algorithm Aversion and Algorithm Appreciation. Com-
pared to human forecasters, peoplemore quickly lose confidence in AI systems after seeing
them make the same mistakes [33]. Thus, some users are reluctant to use superior but im-
perfect algorithms [128]. Such a phenomenon is called “Algorithm Aversion,” which has
been observed across multiple domains, like moral decision making [129], economic bar-
gains [113], medical diagnosis [130], and autonomous driving [131]. Burton et al. [128]
summarized the cause and solution of algorithm aversion with five aspects: expectations
and expertise, decision autonomy, incentivization, cognitive compatibility, and divergent
rationalities. Meanwhile, Dietvorst et al. [35] found that such algorithm aversion can be
overcome with the chance to modify algorithm advice. Readers can refer to two recent
survey papers [128, 132] for a comprehensive literature review. In contrast, Logg et al. [34]
found that users were influenced more by the algorithmic decision instead of human de-
cision, and they first coined the notion of “Algorithm Appreciation” to describe such a
phenomenon. Others revealed similar findings in contexts where tasks are perceived as
being more objective [133], machines share rationale with humans [134] or with prior
exposure to similar systems [135].

Besides contradicting attitudes towards the use of AI systems, prior work has shown
how different human factors such as algorithmic literacy [136], expertise [34], and cogni-
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tive load [137] can affect users’ final adoption of algorithmic advice. For example, users’
algorithmic literacy [136] about fairness, accountability, transparency, and explainability
is found to greatly affect their trust and privacy concern in adopting the advice from AI
systems. Logg et al. [34] found that experts may even show more tendency to discount al-
gorithmic advice when compared to laypeople. Furthermore, these factors can also affect
the extent towhich users show algorithm aversion or algorithm appreciation. For instance,
You et al. [137] argue that algorithm appreciation declines when the transparency of the
advice source’s prediction performance further increases. In their study, they used a series
of numbers instead of aggregated average performance, which increases the transparency
of prediction performance. But they observed a decrease in algorithm appreciation, which
was explained by the greater cognitive load imposed by the elaborated format. A recent
work [138] found that the choice of framings of human agents and algorithmic agents
may affect user perception of agent competence (i.e., expert power), which further affects
user behavior and cause inconsistent observations of algorithm aversion and algorithm
appreciation. In this chapter, since we explore means to facilitate appropriate reliance of
humans on AI systems, we position our findings in the context of the research breaching
algorithm aversion and appreciation. Future work can further explore the role of algo-
rithmic aversion and appreciation in the context of interventions to facilitate appropriate
reliance on AI systems.

3.2.4 Self-assessment in HCI Studies
Evaluating one’s own performance on a task, typically known as “self-assessment”, is per-
ceived as a fundamental skill, but people appear to calibrate their abilities [139] poorly. In
general, most people tend to overestimate their own abilities. The cause of such an effect
is multi-fold, like people tend to think they are above average and people place too much
confidence in the insightfulness of their judgments [118]. With self-assessment, existing
HCI research has explored using it as a measure for different purposes: Gadiraju et al. [96]
used self-assessment for competence-based pre-selection, Green et al. [65] measured users’
risk assessment by comparing self-reported confidence with their actual performance, and
Chromik et al. [62] compared perceived understanding of XAI methods with their actual
understanding to reveal users’ illusion of explanatory depth.

Dunning-Kruger effect (DKE) [60] described the dual burden the unskilled suffer from,
besides the low performance, the unskilled will also lack the skill to estimate their own
ability. Kruger et al. also found that a training session to increase the skills of participants
is highly successful in mitigating such effect [60]. It had some positive effects and showed
that by increasing knowledge, the overestimation could also be reduced. Further work
also proved the effectiveness of such training in different domains like medicine [140] and
economics [141].

Besides the popularity in psychology research, Dunning-Kruger effect was also stud-
ied in human-computer interaction field. In a recent study, Schaffer et al. [97] conducted
a user study based on Diner’s Dilemma game. They found that participants who consid-
ered themselves very familiar with the task domain showed more trust in an intelligent
assistant but relied less on it. Presenting explanations was not as effective as expected,
and sometimes even resulted in automation bias. Using logical reasoning tasks with vary-
ing difficulty levels, Gadiraju et al. [96] showed that online crowd workers also fall prey
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to the DKE. The authors proposed the use of self-assessments in a pre-selection strategy
to improve quality-related outcomes. Informed by prior literature, we selected logical
reasoning tasks as the exploratory lens to address our research questions since the tasks
themselves are straightforward to understand for laypeople, but with increasing difficulty,
they also create room for inviting AI advice. This serves suitably to study the DKE in the
context of human-AI decision making.

3.3 Method and Hypothesis
In this section, we describe the logical reasoning task (i.e., multi-choice logical question
answering based on a context paragraph) and present our hypotheses.

Figure 3.1: An example of a logical reasoning task used to obtain an initial human decision in the two-stage
decision making process.

3.3.1 Logical Reasoning Task
Prior work in the human-AI decision making context has explored how one can reliably
study human behavior in proxy tasks. These work has established the importance of de-
signing tasks, where users can find that there is a need to rely on AI (e.g., owing to the task
difficulty or a perceivable benefit) and where there is a risk associated with such reliance
(e.g., dealing with an imperfect AI system) [55, 87]. This follows from the work of lee et
al. [40] who defined trust in the Human-AI interaction context as “the attitude that an
agent will help achieve an individual’s goals in a situation characterized by uncertainty and
vulnerability.” The basis for our experimental setup is a task where participants are asked
to choose an option in a multi-choice setting based on a paragraph of context presented to
them (an example of the interface page is shown in Figure 3.1). We use the publicly avail-
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able Reclor¹ [142] dataset to this end. The dataset corresponds to characteristically high
difficulty of logical reasoning tasks and has been used in prior work exploring Human-
AI team performance [70]. This task was chosen as a realistic scenario for human-AI
collaboration, where humans incentivized to complete the task accurately, may have the
capability to reason accurately and find the right answer, but may also evidently perceive
a benefit in adopting AI advice. In addition, the Dunning-Kruger Effect which has been
widely replicated in a variety of contexts has been shown to be prevalent in the domain
of logical reasoning as well [60, 116].

In the basic setting of the task, participants are presented with three snippets of in-
formation: (1) a context paragraph, (2) a question related to this context, and (3) four
different options corresponding to the question. Among the four options, a single option
is deemed to be the best match to the question (i.e., ground truth). Participants are asked
to first go through the context paragraph, and then make a choice based on the question.
This simulates a realistic scenario where participants make decisions in a reading com-
prehension setting. While humans are capable of handling such tasks, AI systems may
outperform them by extracting useful information and dealing with complex reasoning
structures which require a larger working memory capacity. The task interface is shown
in Figure 3.2a.

(a) Logical question answering page with AI advice. (b) Tutorial page with manual explanation.

Figure 3.2: Screenshots of the task interface. In panel (a), logic unit-based explanations are highlighted. In panel
(b), the rationale of correct answers is shown.

Two-stage Decision Making. To analyze human reliance on AI systems, all participants
in our study worked on tasks with a two-stage decision making process. In the first stage,
only task information was provided, and participants were asked to make decisions them-
selves (example shown in Figure 3.1). After that, we showed the same task with AI advice

¹https://whyu.me/reclor/

https://whyu.me/reclor/
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(and explanations depending on the experimental condition) and provided an opportunity
for the participants to alter their initial choice. An example of second stage is shown in
Figure 3.2a, where “Your choice” shows the initial decision participants made in the first
stage. This setup of an initial unaided decision and the presentation of advice from an
AI system in order to make a second and final choice is similar to the update condition
in [65], and in line with findings that people first make a decision on their own and only
then decide whether to incorporate system advice [85]. It also fits with the research of
Dietvorst et al. [35] on trust in two-stage decision making.

Quality Control. To ensure participant reliability and that participants worked on the
logical reasoning tasks genuinely (i.e., read the context paragraph and question carefully),
we employed three attention check questions during the study process [143]. For this
purpose, we embedded explicit instructions asking participants to select a specific option
either in the context paragraph (once) or the question (twice). For example, we embed-
ded the instruction, “Confirm that you have read the context by selecting answer B.” into a
context paragraph on the task interface (which looks nearly identical to other tasks). A
conservative estimate through trial runs reflected that participants would take at least 1
minute to complete each task. As a further quality control measure, we deactivated the
submit button corresponding to each task page (including tasks in tutorial phase) for 30
seconds. Since attention check pages do not require deliberation, we reduced that time to
5 seconds.

3.3.2 Logic Units-based Explanations
In natural language processing tasks, feature attribution methods (e.g., text highlights on
input) are the most popular in existing literature. However, multiple pieces of research
work point out that such token-level highlights are still hard to interpret [144–146]. Mean-
while, since logical reasoning tasks highlight the potential for logical reasoning congruent
to human understanding, explanations based on logic units (i.e., text spans) may be a bet-
ter choice to reveal how AI systems reach their final decision. With this perspective, we
drew inspiration from LogiFormer, proposed by Xu et al. [147], who conducted logical
reasoning with logic units based on pre-trained language models to generate such expla-
nations. LogiFormer adopted a graph transformer network for logical reasoning of logic
units, where the logic units are text spans connected with causal relations. Following this
interpretability design, we also relied on the self-attentionmatrixA ∈ ℝ𝑛×𝑛 (n indicates the
number of logic units) from the last layer of the graph transformer network and identified
the important logic units with the following formula:

𝐸 = 𝐴𝑟𝑔𝑚𝑎𝑥𝑘(
𝑗=𝑛
∑
𝑗=1

A𝑖𝑗), (3.1)

where 𝐸 is the top-𝑘 logic units which receive most attention from other logic units
(i.e., we calculated it with the sum along each column of the self-attention matrix). One
example of such explanation is shown in figure 3.2a.

Our implementation and extracted logic units-based explanations can be found in
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Github repo.² To generate the explanations described above, we first trained the Logi-
Former model on the Reclor dataset. With the trained model, we generated logic units-
based explanations according to Equation 3.1. In this study, we specify 𝑘 = 5 to highlight
the most important logic units for each task. Notice that, such explanations are generated
for each option, and the spans are only extracted from the context paragraph and each
option. For more details about the LogiFormer model, we refer readers to the original
paper [147] and the corresponding implementation.³

3.3.3 Proposing aTutorial Intervention toHelpUsersCalibrateTheir
Skills

To answer RQ2, we need to verify whether our proposed intervention can help mitigate
the DKE among the same participants who demonstrated it in the absence of the inter-
vention. This requires two batches of tasks that can facilitate comparative performance
assessment and onwhich participants can be asked to self-assess their performance. Based
on the effectiveness of tutorials as interventions in previous HCI literature [50, 108, 117],
we designed a tutorial as a means to shed light on the fallibility of AI advice. In our
paper, we, therefore, considered the tutorial as an intervention and analyzed its effective-
ness by comparing participants’ reliance and self-assessment before and after the tutorial
was delivered. Inspired by existing work to mitigate different kinds of cognitive biases
through revealing such biases to users [148, 149], we decided to adopt a tutorial to help
users calibrate their skills through self-assessment on logical reasoning tasks. To this end,
we designed a tutorial with the aim of revealing to users that they may not be as capable in
such tasks as they may believe. Furthermore, to ensure the effectiveness of revealing their
mistakes, we designed persuasive explanations for users. To achieve that goal, we chose to
provide contrastive explanations which point out not only the reason for correct answers
but also the reason to reject users’ wrong choices. As none of the existing off-the-shelf
toolkits can be used to obtain such strongly persuasive explanations, we manually created
explanations for each option in the four tasks considered in the tutorial phase. These ex-
planations corresponding to each task have also been made available on the Open Science
Framework companion page. An example of such performance feedback and contrastive
explanation can be found in Figure 3.2b. On this page, we showed the correct answer in a
box with light blue background color. The final decision of the participant after receiving
AI advice, and the AI advice itself are shown in boxes with a dark blue background color.
The contrastive explanation is shown at the bottom of this page. Through such a perfor-
mance feedback intervention, we hope that users with inflated self-assessments can realize
their true capability with respect to the tasks and recalibrate their self-assessment. Such
an intervention can potentially help users improve their reliance on AI systems [150].

3.3.4 Pilot Study for Task Selection
To answer our research questions, we need to analyze the impact of the Dunning-Kruger
effect on reliance measures and the effectiveness of the proposed intervention to mitigate
such an effect. Note that the Dunning-Kruger effect corresponds to one’s skills in a given
task [116]. To operationalize this, we need two batches of tasks with similar difficulty
²https://github.com/RichardHGL/CHI2023_DKE
³https://github.com/xufangzhi/Logiformer

https://github.com/RichardHGL/CHI2023_DKE
https://github.com/xufangzhi/Logiformer
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levels, through which we can verify the effectiveness of the intervention by comparing
performance before and after the intervention. Meanwhile, for the tutorial tasks, we need
tasks that may trigger the Dunning-Kruger effect. In other words, tasks that participants
may make mistakes on with high confidence. For these purposes, we conducted a pilot
study with 10 participants from the Prolific crowdsourcing platform.⁴ In the pilot study,
each participant worked on 30 questions randomly sampled from the validation set of the
Reclor dataset. We collected their choice and confidence level for each task. With six
participants who passed all the attention checks, we assessed the difficulty of each task
based on the number of participants who answered the task correctly. Considering that
most participants spend around 1 minute to fully understand a task and make a decision,
we considered the batch size to be six. We collected two batches of tasks which are of
similar difficulty (informed by the average accuracy on the tasks in the pilot study). To
make the tutorial effective but not cumbersome, we selected four tasks for the tutorial. The
tasks for the tutorial were selected in a similar fashion as the other batches, as the tutorial
only has four questions instead of six, the tasks with the lowest and highest accuracy were
removed. Such selection strategy creates a batch similar in difficulty to the other batches.
Among the four tasks, we configured the AI advice to be correct on two of them and
misleading on the other two. All participants were rewarded with hourly wage of £7.5
(estimated completion time was 33 minutes), and extra bonus of £0.05 for each correct
decision.

3.3.5 Hypotheses
Our experiment was designed to answer questions surrounding the impact of Dunning-
Kruger effect on user reliance on AI systems, and how to mitigate such potentially un-
desirable impact. People who are less competent in a task struggle more with estimating
their own performance in the task, compared to themore competent counterparts [60]. Im-
pacted by DKE, users with the option to rely on AI advice may overestimate their own per-
formance in a task and tend to rely on themselves when they are actually less capable than
the AI systems. Apart from them, some users can exhibit accurate self-assessment. Such
accurate self-assessments can be indicative of a good understanding of the task difficulty
and personal skills, which may help these users rely on AI systems more appropriately.
Meanwhile, effective explanations may amplify such an effect. Thus, we hypothesize that:

(H1) Users overestimating their own performance will demonstrate relatively less
reliance on AI systems than users demonstrating accurate self-assessment.

According to previous work [151, 152], interventions that provide users with feedback
on their performance may help improve their self-assessment. By providing users with
an opportunity to reflect on their skills and recalibrate their skills on the given task, we
argue that the impact of the DKE can be mitigated. As a result of an improved calibration
of oneself, such users are better suited to rely on AI systems appropriately when making
decisions. Therefore, we hypothesize that:

⁴https://www.prolific.co/

https://www.prolific.co/
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(H2) Making users aware of their miscalibrated self-assessment, will help them im-
prove their self-assessment.
(H3) Making users aware of their miscalibrated self-assessment will result in rela-
tively more appropriate reliance on AI systems.

Performance feedback can potentially help participants improve their self-assessment,
which may facilitate appropriate reliance. At the same time, explanations have been
shown to improve the human understanding and interpretation of AI advice [25, 70, 107],
which can also potentially contribute to appropriate reliance. Thus, we hypothesize to
observe the following in a human-AI decision making context:

(H4) Providing performance feedback and meaningful explanations can facilitate ap-
propriate reliance on the AI system.

3.4 Study Design
This section describes our experimental conditions, variables, statistical analysis, proce-
dure, and participants in our main study.

3.4.1 Experimental Conditions
In our study, all participants worked on logical reasoning tasks with two-stage decision
making process (described in Sec. 3.3.1). The only difference is whether tutorial is pre-
sented and whether explanations are provided along with AI advice. To comprehensively
study the effect of each factor and their interaction effect, we considered a 2 × 2 facto-
rial design with four experimental conditions: (1) no tutorial, no XAI (represented as ×
Tutorial,× XAI), (2) with tutorial, no XAI (represented as 3 Tutorial,× XAI), (3) no
tutorial, with XAI (represented as × Tutorial,3 XAI), (4) with tutorial, with XAI (rep-
resented as 3 Tutorial,3 XAI). In conditions with tutorial, participants were presented
with four selected tasks with performance feedback and contrastive explanation for cor-
rect answers against wrong choice (when participants missed the wrong answer). While
in conditions without tutorial, the four tasks selected are presented as normal tasks with-
out any performance feedback or explanation for correct answers, to prevent any learning
effect. In conditions with XAI, the top-5 most important logic units are highlighted as an
explanation for AI advice.

For each batch of six tasks, the AI system was configured to provide correct advice on
four of them and misleading advice on two tasks. So the accuracy of AI systems is around
66.7%. To avoid any ordering effect, we randomly assign one batch of tasks as first batch
of tasks for each participant and further shuffled the order of tasks within each batch.

3.4.2 Measures and Variables
Wemeasure the reliance of participants on the AI system via twometrics: theAgreement
Fraction and the Switch Fraction. These look at the degree to which participants are in
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Table 3.1: The different appropriate reliance patterns considered in [29]. 𝑑𝑖 is initial human decision, while 𝑑𝑓 is
the final decision after AI advice.

𝑑𝑖 AI advice 𝑑𝑓 Reliance
Incorrect Correct Correct Positive AI reliance
Incorrect Correct Incorrect Negative self-reliance
Correct Incorrect Correct Positive self-reliance
Correct Incorrect Incorrect Negative AI reliance

agreement with AI advice, and how often they adopt AI advice in cases of initial disagree-
ment. They are commonly used in the literature, for example in [57, 66]. In addition, we
consider the accuracy in batches to measure participants’ performance with AI assistance.
Since cases without initial disagreement do not clearly signal reliance on the system we
restrict the scope of the appropriate reliance measure to accurately understand how par-
ticipants handle divergent system advice. Schemer et al. [29] presented four conditions
of appropriate reliance patterns (see Table 3.1) when the disagreement exists and correct
answer exists in human initial decision or AI advice. We followed them to adopt Relative
positive AI reliance (RAIR) and Relative positive self-reliance (RSR) as appropriate reliance
measures. The two measures assessed users’ appropriate reliance from two dimensions,
which can help analyze the dynamics of reliance. To provide an overview of participants’
appropriate reliance under initial disagreement, we considered Accuracy-wid (i.e., accu-
racy with initial disagreement). These measures are computed as follows:

Table 3.2: The different variables considered in our experimental study. “DV” refers to the dependent variable.
RAIR, RSR, and Accuracy-wid are indicators of appropriate reliance.

Variable Type Variable Name Value Type Value Scale

Performance (DV) Accuracy Continuous, Interval [0.0, 1.0]
Accuracy-wid Continuous [0.0, 1.0]

Reliance (DV)

Agreement Fraction Continuous, Interval [0.0, 1.0]
Switch Fraction Continuous [0.0, 1.0]

RAIR Continuous [0.0, 1.0]
RSR Continuous [0.0, 1.0]

Assessment (DV) Degree of Miscalibration Continuous, Interval [0,6]
Self-assessment Continuous, Interval [-6,6]

Trust (DV) TiA-Trust Likert 5-point, 1:strong distrust, 5: strong trust

Covariates ATI Likert 6-point, 1: low, 6: high
TiA-PtT Likert 5-point, 1: tend to distrust, 5: tend to trust

Other Helpfulness of Explanation Likert 5-point, 1: not helpful, 5: very helpful

Agreement Fraction = Number of decisions same as the system
Total number of decisions

,

Switch Fraction = Number of decisions user switched to agree with the system
Total number of decisions with initial disagreement

,

Accuracy = Number of correct final decisions
Total number of decisions

,

Accuracy-wid = Number of correct final decisions with initial disagreement
Total number of decisions with initial disagreement

,
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RAIR = Positive AI reliance
Positive AI reliance + Negative self-reliance

,

RSR = Positive self-reliance
Positive self-reliance + Negative AI reliance

.
To measure the self-assessment of users, we gathered responses on the following ques-

tion after each batch of tasks – “From the previous 6 questions, how many questions do
you estimate to have been answered correctly? (after receiving AI advice)”. Comparing
that estimation with the actual correct number, we can calculate the degree of miscali-
bration and self-assessment as: Degree of Miscalibration = |Estimated correct number
- Actual correct number|, Self-assessment = Estimated correct number - Actual correct
number. Meanwhile, for conditions with explanations, we also assessed the helpfulness of
explanations with the question, “To what extent was the explanation (i.e., the highlighted
words/phrases) helpful in making your final decision?” Responses were gathered on a 5-
point Likert scale from 1 to 5 corresponding to the labels not helpful, very slightly helpful,
slightly helpful, helpful, very helpful.

For a deeper analysis of our results, a number of additional measures were considered
based on observations from existing literature [87, 153, 154]:

• Trust in Automation (TiA) questionnaire [90], a validated instrument to measure
(subjective) trust [87]. In this studywe adopted two subscales: Propensity to Trust (TiA-
PtT), Trust in Automation (TiA-Trust). Thus, we consider possible effects of trust on
reliance, in accordance with Lee et al. [40].

• Affinity for Technology Interaction Scale (ATI) [91], administered in the pre-task
questionnaire. Thus, we account for the effect of participants’ affinity with technol-
ogy on their reliance on systems [87].

Table 3.2 presents an overview of all the variables considered in our study.

3.4.3 Participants
Sample Size Estimation. Before recruiting participants, we computed the required sam-
ple size in a power analysis for the 2×2 factorial design using G*Power [92]. To correct for
error-inflation as a result of testing multiple hypotheses, we applied a Bonferroni correc-
tion so that the significance threshold decreased to 0.05

4 = 0.0125. We specified the default
effect size 𝑓 = 0.25 (i.e., indicating a moderate effect), a significance threshold 𝛼 = 0.0125
(i.e., due to testing multiple hypotheses), a statistical power of (1−𝛽) = 0.8, and the consid-
eration of 4 different experimental conditions. This resulted in a required sample size of
244 participants. We thereby recruited 314 participants from the crowdsourcing platform
Prolific⁵, in order to accommodate potential exclusion.
Compensation. All participants were rewarded with £2.5, amounting to an hourly wage
of £7.5 (estimated completion time was 20 minutes). We rewarded participants with extra
bonuses of £0.1 for every correct decision in the 16 trial cases. By incentivizing participants
to reach a correct decision, we operationalize the concomitant ”vulnerability” discussed
by Lee and See [40] as a contextual requirement to encourage appropriate system reliance.

⁵https://www.prolific.co

https://www.prolific.co
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Filter Criteria. All participants were proficient English speakers above the age of 18 and
they had an approval rate of at least 90% on the Prolific platform. We excluded participants
from our analysis if they failed at least one attention check (65 participants). The resulting
sample of 249 participants had an average age of 38 (𝑆𝐷 = 12.8) and a gender distribution
(48.6% female, 51.4% male).

3.4.4 Procedure
The full procedure that participants followed in our study is illustrated in Figure 3.3. All
participants first read the same basic instructions on the logical reasoning task. Next,
participants were asked to complete a pre-task questionnaire to measure their propensity
to trust and affinity for technology interaction.

Instructions Pre-task
Questionnaire Task Batch 1

Tutorial BatchTask Batch 2Post-task
Questionnaire

ATI, TiA-PtT

Post-task
Questionnaire

Done

Start

Self-assessment,
TiA-trust

Self-assessment, TiA-
trust, helpfulness of
explanations

6 trial cases 4 trial cases,
Performance feedback

6 trial cases

Figure 3.3: Illustration of the procedure participants followed within our study. This flow chart describes the ex-
perimental condition 3 Tutorial,3 XAI. Blue boxes represent the questionnaire phase, orange boxes represent
the task phase.

Participantswere then assigned to one experimental condition, which differed inwhether
or not tutorial feedback is provided and the system’s prediction is supplemented with ex-
planation. In × Tutorial,× XAI and × Tutorial,3 XAI conditions, participants worked
on the four trial cases without any difference with the task batch, no extra information
was provided. After that, participants will work on 16 tasks (two task phases with six
tasks, and one tutorial phase with four tasks). Selection of these cases is described in sec-
tion 3.3.4. After each task phase, post-task questionnaires were adopted to assess their
self-assessment and trust in AI systems (TiA-trust). Participants in the × Tutorial,3
XAI and 3 Tutorial,3 XAI conditions were additionally asked for their perceived help-
fulness of the explanations they were presented with. To further ensure the reliability
of responses gathered in the questionnaire and the task phases, we added four attention
check questions spread out at random through the different stages of the procedure [93].

3.5 Results
In this section, we present the results of our study. We discuss descriptive statistics, the
outcomes of the hypothesis tests we conducted, and our exploratory findings. Our code
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and data can be found on Github.⁶

3.5.1 Descriptive Statistics
In our analysis, we only kept participants who passed all attention checks, which deemed
to be more reliable. Participants were distributed in a balanced fashion over the four
experimental conditions as follows: 63 (× Tutorial,× XAI), 62 (3 Tutorial,× XAI), 62
(× Tutorial,3 XAI), 62 (3 Tutorial,3 XAI). On average, participants spend around 32
minutes (𝑆𝐷 = 11 minutes) in our study. We found no significant difference in the time
spent across the four experimental conditions.

Figure 3.4: Distribution of participants with underestimated, accurate, and overestimated self-assessment across
all experimental conditions in the first batch of tasks.

Distribution of Covariates. The covariates’ distribution is as follows: ATI (𝑀 = 3.73,
𝑆𝐷 = 0.99, 6-point Likert scale, and 1: low, 6: high), TiA-Propensity to Trust (𝑀 = 2.95,
𝑆𝐷 = 0.60, 5-point Likert scale, 1: tend to distrust, 5: tend to trust).

Distribution of Participants. Among 249 participants, we identified the participants
who underestimated their performance (i.e., Self-assessment < 0), those with an accurate
self-assessment (i.e., Self-assessment = 0), and those with overestimation of their perfor-
mance (i.e., Self-assessment > 0) according to their performance in the first batch of tasks
(shown in Figure 3.4). In general, participants showed relatively balanced distribution into
the three types of self-assessment across conditions: (1) the number of participants with
underestimated self-assessment lies in the range of 15 ∼ 20, (2) the number of participants
with accurate self-assessment lies in the range of 15 ∼ 25, (3) the number of participants
with overestimated self-assessment was in the range of 20 ∼ 30. We also compared the
time spent by participants with different self-assessment and participants with different
experimental conditions, and found no statistically significant difference with Kruskal-
Wallis H-tests.

⁶https://github.com/RichardHGL/CHI2023_DKE

https://github.com/RichardHGL/CHI2023_DKE


3

64 3 The impact of Dunning-Kruger Effect

Figure 3.5: Distribution of participants with perceived helpfulness of logic units-based explanations.

For participants in conditions with explanation (i.e., [× Tutorial,3 XAI] and [3 Tu-
torial,3 XAI]), we assessed the helpfulness of logic units-based explanations. The ratios
of perceived helpfulness are illustrated with Figure 3.5. As we can see, most people (57.2%)
think it slightly or very slightly helpful, while only 28.3% participants show positive feed-
back to the logic units-based explanations.

PerformanceOverview. On average across all conditions, participants achieved an accu-
racy of 56.9% (𝑆𝐷 = 0.16) over the two batches of tasks, still lower than the aforementioned
AI accuracy of 66.7%. The agreement fraction is 0.665 (𝑆𝐷 = 0.17) while the switching frac-
tion is 0.453 (𝑆𝐷 = 0.27). With thesemeasures, we confirm thatwhen disagreement appears
participants in our study did not always switch to AI advice or blindly rely on the AI sys-
tem. As all dependent variables are not normally distributed, we used non-parametric
statistical tests to verify our hypotheses.

3.5.2 Hypothesis Tests
H1: effect of inflated self-assessments on AI system reliance

To analyze the main effect of participants’ inflated self-assessment (i.e., overestimation of
performance) on their reliance on the AI system, we conducted Kruskal-Wallis H-tests
by considering how participants varied in their self-assessment. We categorize all partic-
ipants into three groups according to the self-assessment: (1) participants who underesti-
mated their performance (i.e., Self-assessment < 0), (2) participants with accurate perfor-
mance self-assessment (i.e., Self-assessment = 0), and (3) participants who overestimated
their performance (i.e., Self-assessment > 0). For this analysis, we considered all partici-
pants across the four experimental conditions, and the performance metrics are calculated
based on the first batch of tasks. The results are shown in Table 3.3.

Effect of Overestimated Self-Assessments on Objective Reliance. For all reliance-
based measures, we found a statistically significant difference between the performance
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Table 3.3: Kruskal-Wallis H-test results for inflated self-assessments (H1) on reliance-based dependent variables.
“††” indicates the effect of variable is significant at the level of 0.0125. “Under”, “Accurate”, abd “Over” refers to
participants who underestimated , accurately estimated, and overestimated their performance on the first batch
of tasks, respectively.

Dependent Variables 𝐻 𝑝 𝑀 ±𝑆𝐷(Under) 𝑀 ±𝑆𝐷(Accurate) 𝑀 ±𝑆𝐷(Over) Post-hoc results
Accuracy 74.06 <.001†† 0.72±0.16 0.61±0.15 0.45±0.19 Under > Accurate > Over

Agreement Fraction 10.87 .004†† 0.70±0.18 0.69±0.21 0.59±0.24 Under, Accurate > Over
Switch Fraction 23.31 <.001†† 0.50±0.28 0.53±0.31 0.32±0.32 Under, Accurate > Over
Accuracy-wid 87.94 <.001†† 0.65±0.21 0.53±0.27 0.28±0.22 Under > Accurate > Over

RAIR 46.91 <.001†† 0.65±0.36 0.58±0.37 0.27±0.33 Under, Accurate > Over
RSR 30.23 <.001†† 0.67±0.44 0.41±0.47 0.27±0.43 Under > Accurate, Over

of the participants who overestimated their performance and those with accurate self-
assessment. Post-hoc Mann-Whitney tests using a Bonferroni-adjusted alpha level of
0.0125 ( 0.054 ) were used to make pairwise comparisons of performance, revealing that par-
ticipants who did not overestimate their performance in fact performed significantly better
than those who did (The only exception is on metric RSR). Overall, participants with ac-
curate self-assessment and underestimation of their own performance performed much
better than participants who overestimated their own performance. The main reason is
that they showed more reliance on the AI system and achieved better appropriate reliance
when their initial decision disagreed with AI advice. The results indicate that participants
who overestimate their own performance rely significantly less onAI systems compared to
those who do not, which indicates more severe under-reliance. As a result, they achieved
a significantly lower accuracy on average. Thus, we find support for hypothesis H1.

We also found that participants who underestimated their performance achieved sig-
nificantly higher Accuracy, Accuracy-wid, and RSR than participants demonstrating
accurate self-assessment. Since they showed similar degrees of reliance (Agreement
Fraction and Switch Fraction) on the AI system, the improvement of overall accuracy
is mainly due to appropriate reliance. In general, they showed significantly better RSR,
which indicates that they have a better chance to rely on themselves to make correct de-
cisions when they initially disagree with misleading AI advice.

In the first batch of tasks, we found no difference (with Kruskal-Wallis H-tests) in
reliance and accuracy metrics when comparing participants in XAI conditions (i.e., × Tu-
torial,3 XAI and 3 Tutorial,3 XAI) with participants in non-XAI (i.e., × Tutorial,×
XAI and 3 Tutorial,× XAI). To verify how the provided logic units-based explanations
affect participants with different self-assessments, we compared the performance and re-
liance measures of participants with XAI and without XAI in underestimation, accurate
self-assessment, and overestimation. No significant effects were found from the logic
units-based explanation on performance and reliance for participants with overestimated
self-assessment.

H2: effect of the tutorial on self-assessment

To verify H2, we used Wilcoxon signed rank tests to compare the performance of partici-
pants before and after the tutorial. We considered participants who are provided with the
tutorial for self-assessment calibration (i.e., 3 Tutorial,× XAI and 3 Tutorial,3 XAI).
Meanwhile, we exclude participants who have accurate assessment on the first batch of
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tasks from this analysis. Finally, we have 87 participants reserved for analysis of H2. On
average, the participants’ self-assessment get improved after receiving the tutorial (i.e., de-
creased Degree of Miscalibration, 𝑀 ±𝑆𝐷(first) = 1.67 ± 0.91, 𝑀 ±𝑆𝐷(second) = 1.14 ±
1.04; a smaller value indicates more accurate self-assessment). A Wilcoxon signed rank
test indicated that the difference was statistically significant, 𝑇=1175.0, 𝑝<0.001, which
supports H2. To further check how the tutorial intervention has an impact on partici-
pants with different types of miscalibration, we separately conducted Wilcoxon signed
rank tests on participants underestimating their own performance and overestimating
their own performance separately. The results indicate that: (1) participants underesti-
mating their own performance calibrated their self-assessment, the difference is signifi-
cant (𝑇=229.0, 𝑝=0.002); (2) participants overestimating their own performance calibrated
their self-assessment, the difference is significant (𝑇 = 381.5, 𝑝 = 0.012). The detailed anal-
ysis of participants with different types of miscalibration also supports H2.

To further explore the effect of logic units-based explanation on calibrating self-
assessment, we conducted a Kruskal-Wallis H-test (among these participants) by consider-
ing whether the explanation is provided. We found no significant results, which indicates
that logic units-based explanations cannot amplify the effect of the tutorial intervention
(i.e., calibrating self-assessment).

Table 3.4: Wilcoxon signed ranks test results forH3 on reliance-based dependent variables. For participants with
initial underestimation, we report results with one-sided hypothesis that the performance / reliance decrease
after tutorial. For participants with initial overestimation, we report results with one-sided hypothesis that the
performance / reliance increase after tutorial. “†” and “††” indicates the effect of variable is significant at the
level of 0.05 and 0.0125, respectively.

Participants Underestimation Overestimation
Dependent Variables 𝑝 𝑀 ±𝑆𝐷(first) 𝑀 ±𝑆𝐷(second) Trend 𝑝 𝑀 ±𝑆𝐷(first) 𝑀 ±𝑆𝐷(second) Trend

Accuracy .000†† 0.73±0.17 0.55±0.21 ↓ .075 0.46±0.18 0.51±0.22 -
Agreement Fraction .543 0.68±0.20 0.70±0.23 - .605 0.60±0.23 0.57±0.23 -
Switch Fraction .592 0.47±0.29 0.48±0.36 - .147 0.31±0.33 0.36±0.31 -
Accuracy-wid .000†† 0.68±0.22 0.44±0.29 ↓ .013† 0.27±0.20 0.41±0.28 ↑

RAIR .006†† 0.68±0.37 0.45±0.38 ↓ .038† 0.24±0.32 0.36±0.36 ↑
RSR .000†† 0.72±0.43 0.30±0.44 ↓ .020† 0.29±0.45 0.52±0.48 ↑

H3: effect of the tutorial on appropriate reliance

Similar to the analysis for H2, we only considered the participants who showed miscal-
ibration in the first batch of tasks. Overall, there is no significant difference in reliance
and performance measures when we compare the participants’ performance before and
after receiving the tutorial. To further check how our tutorial intervention will affect par-
ticipants with different miscalibration of self-assessment, we conducted analysis for par-
ticipants with underestimation and overestimation separately. The results of Wilcoxon
signed rank tests corresponding to each of the reliance measures are shown in Table 3.4.
Both participants with underestimation and overestimation did not show any significant
difference in reliance measures (i.e.,Agreement Fraction and Switch Fraction). For par-
ticipants who underestimated their performance in the first batch of tasks, they showed
significantly worse performance and appropriate reliance after receiving the tutorial. In
contrast, we found some improvement of Accuracy and appropriate reliance measures
(i.e., Accuracy-wid, RAIR, RSR) for participants who overestimated their performance
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in the first batch of tasks. However, the improvement is non-significant at the level of
0.0125. Thus, on the whole, we find partial support for H3.

Meanwhile, to check how the tutorial intervention affects the participants with initial
accurate self-assessment, we also conducted Wilcoxon signed rank tests for their perfor-
mance before and after the tutorial intervention. No significant difference is found. Com-
bined with the findings from participants with initial miscalibration, we found that: (1) the
designed tutorial intervention does not show much impact on participants with accurate
self-assessment, (2) the designed tutorial intervention has positive impact on appropriate
reliance for participants who initially overestimate themselves, while negative impact on
participants with initial underestimation of their performance.
Relation Between Self-assessment Calibration and the Change in Reliance. To
further explore the relationship between the change in self-assessment and change with
(appropriate) reliance, we conducted the Spearman rank-order test separately for partici-
pants with overestimation and underestimation in the first batch of tasks. As the impact
of tutorial intervention on Agreement Fraction and Switch Fraction is insignificant,
we ignore the two metrics in calculating the correlation. The results are shown in Ta-
ble 3.5. We found a strong negative monotonic relationship between the two variables in
participants with overestimation. Thus, in logical reasoning tasks, the calibration effect
in self-assessment accounted for 59.3% of the improved Accuracy (𝜌2 = 0.593,𝑝 < 0.001),
55.5% of the improved Accuracy-wid (𝜌2 = 0.555,𝑝 < 0.001), 32.0% of the improved RAIR
(𝜌2 = 0.320,𝑝 < 0.001), and 12.9% of the improved RSR (𝜌2 = 0.129,𝑝 = 0.005). Similarly,
the calibration of self-assessment also accounted for 26.2% of the decreased Accuracy
(𝜌2 = 0.262,𝑝 = 0.001), 14.8% of the decreased Accuracy-wid (𝜌2 = 0.148,𝑝 = 0.009) for par-
ticipants with underestimation.

Table 3.5: Correlation of self-assessment change and reliance change. “††” indicates the effect of variable is
significant at the level of 0.0125. “†” indicates the effect of variable is significant at the level of 0.05.

Participants Underestimation Overestimation
Dependent Variables 𝜌 𝑝 𝜌 𝑝

Accuracy -0.512 .001†† -0.770 .000††
Accuracy-wid -0.385 .009†† -0.745 .000††

RAIR -0.293 .039† -0.566 .000††
RSR -0.349 .068 -0.359 .005††

In general, for all participants with miscalibrated self-assessment, the difference in
self-assessment shows strong negative correlation with the difference in performance and
appropriate reliance. In other words, the increase in self-assessment (trend to overesti-
mation) will lead to decrease in performance and appropriate reliance, which is consis-
tent with our findings in H1. While the significant negative correlation exists for perfor-
mance measures in all participants with miscalibrated self-assessment, only participants
with overestimation showed significant correlation (in the level of 0.0125) with RAIR and
RSR. The difference indicates that the change of self-assessment can hardly explain why
participants with underestimation showed worse appropriate reliance.

To further explore the impact of logic units-based explanations on performance im-
provement (the difference between performance metrics from the second batch of tasks
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Table 3.6: Kruskal-Wallis H-test results for logic units-based explanations on performance improvement of
reliance-based dependent variables.

Participants Underestimation Overestimation
Dependent Variables 𝐻 𝑝 𝑀 ±𝑆𝐷(Exp) 𝑀 ±𝑆𝐷(No Exp) 𝐻 𝑝 𝑀 ±𝑆𝐷(Exp) 𝑀 ±𝑆𝐷(No Exp)

Accuracy 0.00 .963 −0.19±0.15 −0.18±0.24 1.38 .241 0.10±0.27 0.00±0.30
Agreement Fraction 0.00 .963 0.01±0.25 0.04±0.32 0.88 .349 0.01±0.38 −0.06±0.28
Switch Fraction 0.04 .843 −0.03±0.39 0.04±0.41 0.02 .884 0.06±0.47 0.05±0.33
Accuracy-wid 0.00 .951 −0.25±0.30 −0.22±0.31 0.50 .478 0.16±0.36 0.11±0.39

RAIR 0.02 .878 −0.23±0.48 −0.24±0.57 0.00 .968 0.11±0.46 0.14±0.46
RSR 0.96 .327 −0.33±0.50 −0.50±0.51 1.84 .175 0.35±0.72 0.10±0.66

and those from the first batch of tasks), we conducted a Kruskal-Wallis H-test (among these
participants) by considering whether explanations are provided. Overall, no significant
difference is found for all behavior-based dependent variables considering all 87 partici-
pants who showed miscalibration in the first batch and then received the tutorial interven-
tion. We further check the logic units-based explanation impact according to participants
with underestimation (37 participants) and overestimation (50 participants) respectively
(cf. Table 3.6). No significant difference is found for all behavior-based dependent vari-
ables. Although participants with explanations show better performance improvement in
RSR, such difference is not significant.

H4: Two-factor analysis for final performance

To verify H4, we conducted a two-wayANOVA to compare the performance and (appropri-
ate) reliance measures of participants under the effect of providing tutorial intervention
and logic units-based explanations. In this analysis, only the second batch of tasks are
taken into consideration, as the performance of the first batch of tasks is not affected by
the tutorial intervention. According to the test results shown in Table 3.7, no significant
impact (in the significance level of 0.0125) is found for tutorial intervention, logic units-
based explanations and their interaction effect. Thus, H4 is not supported.

Table 3.7: ANOVA test results for H4 on behavior-based dependent variables in the second batch of tasks.

Dependent Variables Accuracy Agreement Fraction Switch Fraction Accuracy-wid RAIR RSR
Variables 𝐹 𝑝 𝐹 𝑝 𝐹 𝑝 𝐹 𝑝 𝐹 𝑝 𝐹 𝑝
Tutorial 2.41 .122 3.74 .054 3.87 .050 1.63 .203 4.70 .031 0.20 .652
XAI 2.10 .148 0.30 .587 1.00 .319 3.35 .068 2.05 .153 0.23 .632

Tutorial × XAI 0.05 .824 0.00 .990 0.00 .956 0.10 .746 0.00 .923 0.05 .832

According to the results of H3, the tutorial intervention shows positive impact on par-
ticipants with initial overestimation, no significant effect on participants with accurate
self-assessment, and negative impact on participants with initial underestimation. As in-
dicated by Figure 3.4, the participants show compatible distribution in the three groups
with different initial self-assessment. The contradicting effects on the participants with
miscalibrated self-assessment get canceled. That may explain why the tutorial interven-
tion does not show significant impact across experimental conditions. On the other hand,
we did not find any support for effectiveness of logic units-based explanations in reliving
DKE or facilitating appropriate reliance in analysis of H1 - H3.
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3.5.3 Further Analysis On the DKE
According to Dunning and Kruger [60], participants demonstrating the DKE are less com-
petent and overestimate their performance. For further analysis of DKE in our study, we
follow the method in the original study as well as consequent replications [60, 96], to
split the participants in all conditions into performance-based quartiles. The top-quartile
corresponds to those demonstrating high performance (top 25%), the bottom quartile cor-
responds to those with low performance (bottom 25%), and we combine the two quar-
tiles in the middle comprising of participants with a medium level of performance in
the first batch of tasks. As our tutorial is demonstrated to be effective in calibrating
self-assessment, we do not take the second batch of tasks into consideration. In total,
101 participants among 249 participants showed an overestimation of performance in the
first batch of tasks. In high accuracy group (63 participants), 35 participants showed un-
derestimation of their own performance, and 21 participants demonstrated accurate self-
assessment, while only 7 participants (11.1%) show overestimation of performance in the
first batch of tasks. In comparison, 46 participants (73.0%) in low accuracy group (63 par-
ticipants) show an overestimation of performance in the first batch of tasks, while only 6
participants and 11 participants showed underestimation of their performance and demon-
strated accurate self-assessment, respectively. This alignswith the observation of Dunning
and Kruger [115, 116]: top-performance group shows the tendency to underestimate their
performance, while low-performance group shows tendency to overestimate their perfor-
mance. With this observation, we can take low accuracy group as a representative group
of participants with DKE, and take high accuracy group as a representative group of par-
ticipants without DKE. This aligns with and validates our motivation to design a tutorial
intervention to mitigate DKE, and improve self-assessment and appropriate reliance on
AI systems.

Table 3.8: Kruskal-Wallis H-test results for reliance-based measures on high accuracy group and low accuracy
group. “††” indicates the effect of variable is significant at the level of 0.0125.

Dependent Variables 𝐻 𝑝 𝑀 ±𝑆𝐷(High) 𝑀 ±𝑆𝐷(Low)
Agreement Fraction 54.68 <.001†† 0.75±0.15 0.46±0.18
Switch Fraction 13.09 <.001†† 0.46±0.32 0.27±0.21
Accuracy-wid 81.00 <.001†† 0.74±0.24 0.21±0.15

RAIR 25.71 <.001†† 0.64±0.45 0.21±0.21
RSR 46.41 <.001†† 0.76±0.39 0.18±0.37

The impact of DKE on Reliance. To further analyze how the DKE affects user reliance
on AI systems, we compared the reliance-based measures of high accuracy group and low
accuracy group using a Kruskal-Wallis H-test. The results are shown in Table 3.8. Post-
hoc Mann-Whitney tests using a Bonferroni-adjusted alpha level of 0.0125 ( 0.054 ) also con-
firmed the significant difference. As we can see, participants in the low accuracy group
(representative for participants with DKE) achieve a relatively poorer appropriate reliance
than participants in the high accuracy group. Participants in the low accuracy group
demonstrate significantly less reliance and appropriate reliance on AI systems, which also
reflects that under-reliance is to blame for their low performance. We also compared the
time spent by participants in the high accuracy group with participants in low accuracy
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group through a Kruskal-Wallis H-test. The difference of time spent on tasks between the
two groups is non-significant (𝑝 = 0.018, borderline significance in Kruskal-Wallis H-test).
On average, the high accuracy group spent around 30 minutes (SD=12 minutes), while the
low accuracy group spent around 34 minutes (SD=13 minutes). Interestingly, despite the
fact that participants in the low accuracy group spent longer time on the task they still
relied poorly on the AI system. This is consistent with what has been widely understood
as an impact of the DKE metacognitive bias.

3.5.4 Further Analysis of Trust
In addition to the behavior-based reliance measures, we also assessed the subjective trust
of participants in AI systems. In this subsection, we explore the impact of our tutorial
intervention and logic units-based explanation on user trust in the AI system.
The effect of tutorial intervention on trust. To explore whether our tutorial interven-
tion had any effect on user trust in AI system, we conducted Wilcoxon signed ranks test
comparing the trust before and after the tutorial. On average, participants’ trust in the
AI system does not show significant difference after the tutorial intervention (increased
from 2.996 to 3.016; 𝑇 = 1063.5, 𝑝 = 0.952). This suggests that the main impact of the tu-
torial was on helping users calibrate their competence (i.e., their self-assessment) without
directly shaping their trust in the AI system.

Table 3.9: ANCOVA test results on trust-related dependent variables. With different self-assessmnet patterns,
we divide all participants into three groups. “††” indicates the effect of variable is significant at the level of
0.0125.

Variables 𝐹 𝑝 𝜂2
Group 1.15 .318 .009
ATI 1.22 .271 .004

TiA-PtT 10.21 .002†† .040

To further analyze how other covariates shape user trust in AI system, we decided
to conduct AN(C)OVAs despite the anticipation that our data may not be normally dis-
tributed because these analyses have been shown to be robust to Likert-type ordinal data [94].
As no significant difference is found between the trust before and after the tutorial, we
aggregated the trust across the two batches of tasks as users’ trust in theAI system. Consid-
ering our main hypothesis, we aimed to explore whether overestimation of performance
and accurate self-assessment shape user trust in the AI system. For that purpose, we con-
sider the three groups of participants (based on self-assessment, the same criteria in H1)
with different self-assessment patterns. The results are shown in Table 3.9. As we can
see, propensity to trust was the only user factor which corresponded to a significant im-
pact on TiA-Trust. In a further Spearman rank-order test, we observed that there is a
significant positive correlation between TiA-PtT and TiA-Trust, 𝜌(249) = 0.22, 𝑝 < .001;
suggesting a weak linear relationship between users’ propensity to trust an AI system and
the subjective trust measured with respect to the AI system in our study. We also con-
ducted the Spearman rank-order tests with TiA-PtT and other reliance-based variables.
No significant correlation was found between TiA-PtT and reliance measures.
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3.6 Discussion
3.6.1 Key Findings
Our analysis of the impact of miscalibrated self-assessment on reliance suggests that par-
ticipants with DKE tend to overestimate their own competence and rely less on AI sys-
tems, which results in under-reliance and much worse performance. To mitigate such
cognitive bias, we introduced a tutorial intervention including performance feedback on
tasks, alongside manually crafted explanations to contrast the correct answer with the
users’ mistakes. Experimental results indicate that such an intervention is highly effec-
tive in calibrating self-assessment (significant improvement), and has some positive effect
on mitigating under-reliance and promoting appropriate reliance (non-significant results).
We also note that after making participants who overestimated their performance aware
of their miscalibrated self-assessment, participants tend to rely more (appropriately) on
the AI system (i.e., increased Switch Fraction and appropriate reliance measures, non-
significant results, from Table 3.4) and achieve a higher performance improvement when
logic units-based explanations are provided (insignificant results from Table 3.6). How-
ever, we did not find any significant evidence to support that the logic units-based expla-
nations can amplify the effect of the tutorial intervention in calibrating self-assessment,
or relieving the impact of DKE.

The tutorial and calibrated self-assessment demonstrate a positive impact in facilitat-
ing appropriate reliance for participants who overestimated themselves, but an opposite
trend was observed on participants who underestimated themselves. We found such dif-
ference can be explained partially by the change of self-assessment. The calibration of
overestimation can bring positive impact, while the calibration of underestimation may
also turn into overestimation or algorithm aversion, which may explain the decrease in
performance and appropriate reliance. The tutorial was initially designed to reveal the
shortcomings of participants with DKE. While for participants without DKE, there is a
risk that some participants did not get exposed to their shortcomings in this tutorial and
only found the AI system also made mistakes, which in turn even caused overestimation
of themselves. An alternative explanation is that the performance feedback in tutorial
intervention showed one mistake from the AI system, which led to algorithm aversion.
As pointed out by [33]: “people more quickly lose confidence in algorithmic than human
forecasters after seeing themmake the same mistake.” These findings advance our current
understanding of human-AI decision making, and provide useful insights that can drive
guidelines for designing interventions to promote appropriate reliance.

Positioning in Existing Literature. In our study, we found that DKE can have a nega-
tive impact on user reliance on the AI system and our proposed tutorial intervention can
mitigate such an impact. In the context of human-AI decision making, DKE is closely
relevant to a popular stream of research around user confidence[65, 114]. For the partici-
pants who overestimated their performance, the designed tutorial intervention calibrated
their self-confidence (as reflected in their self-assessment) and facilitated appropriate re-
liance. In contrast, the negative impact on participants who underestimated their perfor-
mance can be explained by: (1) the calibrated self-assessment which can also bring over-
confidence, or (2) their confidence/trust in the AI system being eroded by the observed
mistake(s) of the AI system [70, 87]. The latter is consistent with findings in the literature
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on algorithm aversion [33]. More empirical studies are required to confirm and explain
these observations, breeding promising grounds for future research.

The participants with DKE show under-reliance on AI systems, which also aligns with
the finding from Schaffer et al. [97]. Authors found that participants who reported higher
familiarity with the task domain relied less on the intelligent assistant. The effectiveness of
our tutorial intervention to calibrate self-assessment and mitigate under-reliance is also
consistent with existing work using user tutorial / education interventions to mitigate
unexpected and undesirable reliance patterns. All these tutorial interventions share a
common objective of changing the mindset of users. For example, Chiang et al. [108] re-
ported that user tutorials such as machine learning literacy interventions can effectively
help high-performance individuals to reduce over-reliance without affecting the reliance
of low-performance individuals. Similarly, Chiang et al. [50] showed that a brief education
session about the possible performance disparity of an ML model (on data with different
distribution) can effectively reduce over-reliance on such cases. While their work focused
more on changing human understanding of AI systems (performance, uncertainty, etc.),
our work aims to help users calibrate their competence (i.e., their self-assessment) on spe-
cific tasks. As a result, their main objective was to realize when AI systems are not reliable
to reduce over-reliance, while we attempt to mitigate under-reliance for participants who
overestimate themselves.
Logic Units-based Explanations Do Not Have the Expected Effect. In our study,
the logic units-based explanations did not aid in further amplifying the calibration effect
of the tutorial intervention. This is in line with the findings of Wang et al. [107] and
Schaffer et al. [97]. With a comparative study about four types of different explanations,
authors found that “on decision making tasks that people are more knowledgeable, expla-
nation that is considered to resemble how humans explain decisions (i.e., counterfactual
explanation) does not seem to improve calibrated trust.” One potential explanation is that
such explanations do not fulfill the three desiderata of AI explanations [107] (refer to sec-
tion 3.2.1): the logic units-based explanations may help participants understand the AI,
but fail to help them recognize the uncertainty underlying the AI or calibrate their trust
in the AI in AI-assisted decision making. Another potential cause is such explanations
may introduce automation bias [97], which will cause over-reliance. Our results suggest
that logic units-based explanations may still be hard to follow, because participants still
need to connect and interpret the logic units by themselves. A limitation of our current
work is that we did not gather explicit input from participants on their perceived under-
standing of the explanations. One further step to ground such logic units into readable
logical claims may work better for users. However, we do not deny the prospect that some
XAI methods may have the potential to help mitigate DKE and calibrate user confidence
in human-AI decision making. For example, contrastive explanations may work in the
context of human-AI decision making [155, 156].

3.6.2 Implications
As our findings suggest that participants with DKE tend to rely less on AI systems, it im-
plies that future work should look more closely at the effects of self-assessment in human-
AI collaboration. Although our tutorial intervention shows significant improvement in
calibrating self-assessment, the improvement in appropriate reliance is still limited (with
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borderline significance). Meanwhile, such calibration of self-assessment may even hurt
the team performance for participants with initial underestimation of their performance.
For these participants, the tutorial calibrated their underestimation, which may also lead
to illusion of superior performance (overestimation of themselves). In order to further
promote appropriate reliance in human-AI collaboration, we need to develop more effec-
tive human-centered tutorials. Meanwhile, participants who show lower performance
in our scenario have significantly higher probability to overestimate their performance,
which aligns with DKE properties. Thus, we can leverage overestimation of individual
performance as an indicator of such a meta-cognitive bias and further mitigate it with
personalized or appropriate interventions.

Guidelines for Tutorial Designs to Promote Appropriate Reliance. While our tu-
torial intervention proved to be effective in helping users calibrate their self-assessment,
accurate self-assessment does not necessarily translate to optimal appropriate reliance.
Compared with participants with accurate self-assessment, the participants with underes-
timation showed a significantly better performance in RSR (see Table 3.3), and calibrat-
ing such underestimation may even lead to decreased appropriate reliance (see Table 3.4),
which indicates accurate self-assessment does not necessarily lead to optimal appropriate
reliance. One possible cause is that while the tutorial makes such users aware that they
underestimated themselves and they can make correct decisions when the AI system is
wrong in the task, users may have an illusion of superior capability than the AI system.
As a result, on tasks where AI systems aremore capable, usersmakemistakes by exhibiting
under-reliance on the AI system due to recalibrated overestimation of their own compe-
tence. Our findings suggest that we should pay attention to avoiding such side effects of
making users overestimate themselves in comparison to the AI system. To avoid such side
effects, tutorials designed to mitigate a specific kind of bias should be carefully checked be-
fore subjecting them to broad participant pools. This also implies that tutorials designed
for promoting appropriate reliance should not only reveal the shortcomings of users or
AI systems (i.e., when they are less capable of making the right decision), but also their
strengths (i.e., when they are capable or more capable). This has useful implications for
the future design of interventions to mitigate cognitive biases in human-AI collaboration.

In previous work on mitigating over-reliance with a tutorial intervention, researchers
focused on revealing the AI systems’ brittleness [50, 108]. Combined with their findings,
we argue that a more effective tutorial to promote appropriate reliance can be one that
helps users understand both themselves and AI systems, and not only revealing the weak-
ness but also showing the strengths of each. With such a comprehensive understanding,
human decision makers can potentially have a better chance to understand when they
should rely on AI systems, and when they should rely on themselves, ultimately leading
to (more) appropriate reliance. More work is required to understand whether and how ex-
planations can mediate this process of creating a better understanding among users of AI
system capabilities in comparison to their own. This resonates with recent work exploring
human-AI complementarity [22, 25, 70].
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3.6.3 Caveats and Limitations
Potential Biases. Our research questions focused on DKE and reliance and how to miti-
gate such impact. As we cannot pre-identify which participants have DKE, we recruit the
participants and determine it with performance assessment. However, such assessment
may be affected by other factors, which can lead to biased results. For example, although
we relied on a pilot study to inform our task selection while creating two batches of tasks
with comparable difficulty levels, we cannot be certain that they would be perceived the
same way on average across the participants.

As pointed out by Draws et al. [157], cognitive biases introduced by task design and
workflow may have a negative impact on crowdsourcing experiments. With the help of
Cognitive Biases Checklist introduced [157], we analyzed potential bias in our study. Self-
interest bias is possible, because crowd workers we recruited from the Prolific platform are
motivated bymonetary compensation. To alleviate any participantswith low effort results,
we put attention checks to remove ineligible participants from our study. As the question
and context in Reclor dataset may be something participants familiar with, familiarity bias
and availability bias can also affect our results.
Transferability Concern. In our study, all analyses are based on the logical reasoning
task, which most laypeople are capable of dealing with. However, in practice, the applica-
tion scenarios may be affected by more factors (like user expertise, familiarity, and input
modality). This gap can be a potential threat to the transferability of our findings and
implications. However, Dunning and Kruger [60] showed that participants suffer from
DKE across multiple scenarios: “participants scoring in the bottom quartile on tests of hu-
mor, grammar, and logic grossly overestimated their test performance and ability.” These
effects were replicated in a number of other tasks, like human-AI collaboration [97] and
crowdsourcing [87, 158]. Our findings are therefore highly relevant and can play an im-
portant role in informing the design for appropriate reliance in the context of human-AI
interaction, collaboration, and teaming.

3.7 Conclusions and Future Work
In this chapter, we present a quantitative study to understand the impact of the Dunning-
Kruger effect (DKE) on reliance behavior of participants in a human-AI decision making
context. We propose a tutorial intervention and explore its effectiveness in mitigating
such an effect. Our results suggest that participants who overestimate their own perfor-
mance tend to rely less on the AI system. Combined with the findings that participants
with DKE show a much higher probability of overestimating their performance, we con-
clude that participants with DKE rely less on AI systems, and such under-reliance hinders
them in achieving better performance on average (RQ1). Through a rigorous experimental
setup and statistical analysis, we found the effectiveness of our tutorial intervention inmit-
igating DKE (RQ2). However, we found that the tutorial may mislead some participants
(i.e., participantswho underestimated themselves) to overestimate their performance or ex-
hibit algorithm aversion, which in turn harms their appropriate reliance on the AI system.
Our findings suggest that, to fully mitigate the negative impact of the Dunning-Kruger
effect and achieve appropriate reliance, more comprehensive, insightful, and personalized
user tutorials are required. We reflected on guidelines for better tutorial designs based on
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our key findings.
We found that our tutorial intervention failed to make a difference in participants’

subjective trust in the AI systems. Instead, we found that users’ general propensity to
trust has a significant impact on shaping their subjective trust in the AI system. Future
work can further look into how user trust can be reshaped with different interventions or
by using more effective explanations (e.g., contrastive explanations or logical explanations
in natural language). We hope the key findings and implications reported in this chapter
will inspire further research on promoting appropriate reliance.
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4
Developing Critical Mindset with

Debugging AI systems
Powerful predictive AI systems have demonstrated great potential in augmenting human de-
cision making. Recent empirical work has argued that the vision for optimal human-AI col-
laboration requires ‘appropriate reliance’ of humans on AI systems. However, accurately esti-
mating the trustworthiness of AI advice at the instance level is quite challenging, especially in
the absence of performance feedback pertaining to the AI system. In practice, the performance
disparity of machine learning models on out-of-distribution data makes the dataset-specific
performance feedback unreliable in human-AI collaboration. Inspired by existing literature
on critical thinking and a critical mindset, we propose the use of debugging an AI system as an
intervention to foster appropriate reliance. In this chapter, we explore whether a critical eval-
uation of AI performance within a debugging setting can better calibrate users’ assessment of
an AI system and lead to more appropriate reliance. Through a quantitative empirical study
(𝑁 = 234), we found that our proposed debugging intervention does not work as expected in
facilitating appropriate reliance. Instead, we observe a decrease in reliance on the AI system
after the intervention — potentially resulting from an early exposure to the AI system’s weak-
ness. We explore the dynamics of user confidence and user estimation of AI trustworthiness
across groups with different performance levels to help explain how inappropriate reliance pat-
terns occur. Our findings have important implications for designing effective interventions to
facilitate appropriate reliance and better human-AI collaboration.

4.1 Introduction
With the rise of deep learning systems over the last decade, there has been a widespread
adoption of AI systems in supporting human decision makers [22], albeit without always
fully understanding the societal impact or downstream consequences of relying on such
systems [52, 113]. Due to the opaqueness of some AI systems, users have struggled to

This chapter is based on a peer-reviewed paper:  Gaole He, Abri Bharos, and Ujwal Gadiraju. To Err Is AI!
Debugging as an Intervention to Facilitate Appropriate Reliance on AI Systems. In Proceedings of the 35th ACM
Conference on Hypertext and Social Media, pp. 98-105. 2024. https://doi.org/10.1145/3648188.3675130

https://doi.org/10.1145/3648188.3675130
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determine when exactly they are trustworthy and have failed to achieve a complementary
team performance. As a result, several previous studies that have explored human-AI col-
laboration and teaming across different contexts have reported improvements over human
performance stemming from AI assistance, although this often falls short of AI perfor-
mance [25, 70]. To realize the full potential of complementary team performance, human
decision makers need to identify when they should rely on AI systems (i.e., identifying
instances where AI systems are capable or more capable than humans) and when they are
better off relying on themselves (i.e., identifying instances where AI systems are less capa-
ble than humans). Such a reliance pattern has been defined as appropriate reliance [22, 49].

In practice, it is common that users need to deal with data from unknown distributions
and unseen contexts, meaning that AI systems in the real-world need to provide users
with advice on out-of-distribution data [25, 50]. Under such circumstances, the estimated
performance of an AI system or the so-called ‘stated accuracy’ of the system (i.e., accuracy
on pre-defined test sets) cannot faithfully reflect the trustworthiness of the AI system.
Only a few works [49] have explored how humans rely on AI systems when performance
feedback is limited or scarce. Previous work has found that user agreement with AI advice
in tasks where they have high confidence significantly affects their reliance on the system,
in the absence of the stated accuracy or performance of the system [49]. To help users
assess the trustworthiness of AI systems, a practical solution that has been proposed, is to
provide meaningful explanations along with AI advice [159, 160]. Post-hoc explanations
have been found to improve user understanding of AI advice in empirical studies exploring
human-AI decisionmaking [22, 107]. However, most existing XAImethods have remained
ineffective in helping users assess the trustworthiness of AI advice at the instance level,
adversely affecting the degree of appropriate reliance of users on AI systems [107, 161].

To realize the goal of appropriate reliance, human decision makers need to be capa-
ble of evaluating AI advice and the trustworthiness of the AI system critically. We argue
that such a critical mindset can help users avoid blindly following AI advice (i.e., avoiding
over-reliance), and also prevent them from distrusting AI advice when it can be productive
(i.e., avoiding under-reliance). Inspired by recent works on explanation-based human de-
bugging of AI systems [162, 163], we propose explanation-based debugging as a training
intervention to increase appropriate reliance on AI systems. We posit that such a debug-
ging intervention has the potential to help users understand the limitations of AI systems
— that neither explanations of the AI advice nor the advice itself are always reli-
able. Recognizing these limitations can help users better understand when an AI system
is trustworthy and thereby increase appropriate reliance on the system. In this chapter,
we aim to empirically evaluate the effectiveness of using a debugging intervention as a
means to increase appropriate reliance and address the following research questions.

RQ1: How can a debugging intervention help users to estimate the performance of
an AI system, both at the instance and at the global level?
RQ2: Howdoes a debugging intervention affect the reliance of users on anAI system?

To answer the above questions, we propose three hypotheses considering the effect
of the debugging intervention on AI performance assessment as well as reliance, and the
task ordering effect of debugging intervention on appropriate reliance. We tested these
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hypotheses in an empirical study (𝑁 = 234) of human-AI collaborative decision making in
a deceptive review detection task (i.e., identifying whether one piece of review is written
based on real experience). Interestingly, however, we found that the proposed debugging
intervention fails to calibrate user estimation of AI performance and further promote ap-
propriate reliance.

Our results highlight that when presented with the weakness of the AI system in an
early stage of the debugging intervention, users underestimate AI performance and rely
less on the AI system. Users’ overestimation of their own competence may further am-
plify such an effect. We analyzed user confidence evolution across the different reliance
patterns exhibited, which helps explain why inappropriate reliance occurs. Through an
analysis exploring relatively less-competent individuals, we found that the underestima-
tion of AI trustworthiness may also play a role in shaping under-reliance, which is poten-
tially relevant to the metacognitive bias called the Dunning-Kruger effect [60]. Our work
has important implications for designing effective interventions to promote appropriate
reliance in the context of human-AI decision making.

4.2 Related Work
Our work is closely related to the studies on human-AI decision making, appropriate re-
liance on AI systems, and explanation-based debugging of machine learning systems.
Human-AI Decision making. With the technical advances of deep learning methods in
the recent decade, researchers have shown much interest in putting such methods for a
wide arrange of applications (likemedical image analysis [164], autonomous driving [165]).
However, due to the intrinsic uncertainty and opaqueness of such AI systems, it would be
undesirable to make AI systems automate the decision making, especially in high-stakes
scenarios (e.g., legal judgment, medical diagnosis). Under such circumstances, AI systems
are expected to play a supporting role for human decision makers. According to GDPR,
users have the right to obtainmeaningful explanations to workwith such AI systems [166].
Motivated by this, a series of work has proposed to construct human-centered explainable
AI systems [27, 124, 126] for better human-AI collaboration. Existing work has widely ex-
plored how different user factors (e.g., expertise [167, 168], risk perception [110], machine
learning literacy [108]) and interaction designs (e.g., performance feedback [57, 111, 119],
explanation [107], user tutorial [117, 169]) will affect user trust in and reliance on AI sys-
tems.
Appropriate Reliance on AI Systems. One important goal of human-AI decision mak-
ing is complementary team performance [25, 70], which requires appropriate reliance [40].
In practice, however, humans always misuse (i.e., over-reliance [170], relying on automa-
tion when it performs poorly) or disuse (i.e., under-reliance [107, 112, 171], rejecting au-
tomated predictions when it is correct) AI systems. Such inappropriate reliance results
in sub-optimal team performance, which is always worse than AI alone [25, 70]. To miti-
gate such issues, existing work has proposed different interventions including user tutori-
als [108, 117], cognitive force functions [55], and improving AI literacy of the use case [50].
Another stream of work proposed to improve the transparency of AI systems with effec-
tive explanations [107, 122], performance feedback [49], and global model properties [172].
In summary, these works presented users with extra information about AI systems (more
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than advice) or changed users’ mindset and knowledge of AI systems.
Explanation-based Debugging. Explanation-based debugging was found to be helpful
for improving human understanding of machine learning system [173]. Recent works
in both natural language processing tasks [162] and computer vision tasks [163] have
explored how to leverage explanations for model debugging. The core idea of such
explanation-based debugging is to check whether the explanations from AI systems mis-
align with human (expert) knowledge. From human feedback, it would be possible to
improve machine learning models’ robustness, e.g., with reducing spurious reasoning pat-
terns [174, 175] and bias in dataset [176]. Debugging in programming is the process by
which programmers can determine the potential errors in the source code and resolve
these errors [177]. Inspired by such an idea, we proposed debugging as an intervention to
help participants understand the limitations of both explanations and advice of AI systems.
In such an error finding and resolution process, users may learn when the AI system is
trustworthy.

Compared with these studies, our focus is to promote appropriate reliance on AI sys-
tems by improving users’ capability to critically evaluate AI performance at the instance
level. For that purpose, we design an elaborate debugging intervention to help users re-
alize the limitations of both AI advice and AI explanation, which may result in calibrated
trust in and appropriate reliance on the AI system.

4.3 Task, Hypotheses, and Intervention
In this section, we describe the deceptive review detection task and present how we de-
signed the debugging intervention. Based on the explanation-based debugging setting, we
further proposed our hypotheses to verify.

4.3.1 Deceptive Review Detection Task
In the context of AI-assisted decision making, the decision tasks are typically challeng-
ing for humans, while the AI system may achieve superior performance. In this chapter,
we base our experiment within such a challenging task – deceptive review detection –
where AI advice can be a realistic need. In each task, based on a hotel review, participants
are asked to identify whether it is genuine (i.e., written by real customers) or deceptive
(i.e., reviews written by people who did not stay at the hotel). An example of this task is
shown in Figure 4.1. This task has been used in prior work exploring Human-AI decision
making [117, 122]. We also used the same public dataset [122].¹
Using Text Highlights as Explanations. In our study, we consider a real-world sce-
nario where the performance of an AI system is not provided or available. To help partici-
pants assess the trustworthiness of advice from the AI system in each instance of decision
making, we provide local explanations for each prediction. Following Lai et al. [117], we
adopted BERT-LIME (a popular explanationmethod in text classification tasks) to generate
text highlights as local explanations for each AI advice. We first finetuned the BERT [178]
(bert-base-uncased) on the deceptive review detection dataset, and then generated the top-
10 highlighted features from post-hoc XAI method LIME [159] as explanations.

¹https://github.com/vivlai/deception-machine-in-the-loop

https://github.com/vivlai/deception-machine-in-the-loop
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Figure 4.1: Task interface and an example of the deceptive review detection task.

Selection of Tasks. To measure the effect of the debugging intervention in our study,
two batches of tasks with compatible difficulty levels are required. For that purpose, we
conducted a pilot study on human performance over 20 tasks randomly sampled from
evaluation and test set of the deceptive review detection dataset. We divided the trial cases
into two sets of 10 tasks with equal human performance in a pilot study (10 participants).

Two-stage Decision Making. Following existing empirical study design of human-AI
decision making [65, 85], all participants in our study work on each trial case with two
stages of decision making. In the first stage, only task input (i.e., one paragraph of hotel
review) is provided; participants need to make an initial decision on themselves. After
that, the same task input along with a local explanation (e.g., text highlights in review,
one example shown in Figure 4.1) and AI advice are provided. They will make the final
decision based on all information. To help participants work on this challenging task, we
provide a button to access the guidelines in each stage. In addition to making a decision for
each task, we also collected participants’ confidence in each decision with a 5-point Likert
scale: Very Unconfident, Rather Uconfident, Neutral, Rather Confident, Very Confident.

4.3.2 Hypotheses
Our experiment was designed to answer questions surrounding the impact of the proposed
explanation-based debugging intervention on user estimation of AI performance, and user
reliance on AI systems. Putting users into a debugging setting, they will try to challenge
the AI advice and explanations. Along with the real-time feedback about the debugging
results, they can have a better understanding of how the AI system works and when the
explanation and advice are reliable. Thus, they can more accurately estimate the perfor-
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mance of the AI system when no performance of the AI system is provided, and rely on
the AI system more appropriately. Based on this, we expect to observe:

(H1) Encouraging users to critically evaluate the trustworthiness of AI advice at the
instance level in a debugging intervention, will improve their assessment of the AI
system’s performance at the instance and global levels.
(H2) Encouraging users to critically evaluate the trustworthiness of AI advice at the
instance level in a debugging intervention, will improve the extent to which users
appropriately rely on the system.

Within a debugging intervention, to present a balanced view of AI systems, we con-
sidered showing both the strength and weakness of an AI system (by providing accurate
or inaccurate advice). Thus, multiple tasks of different characteristics will be presented in
the debugging intervention. When these tasks are presented in different orders, users may
show different learning effects, which further affects the reliance on AI systems. Thus, we
hypothesize that:

(H3) The trustworthiness of AI advice at the instance level in a debugging interven-
tion corresponds to an ordering effect with respect to appropriate reliance.

4.3.3 Debugging Intervention
To help participants accurately assess the trustworthiness of AI advice at the instance
level and calibrate their reliance on the AI system, we designed a debugging intervention
with explanations generated with post-hoc explanation methods LIME [159]. Our data
and code is available with anonymous companion page.²
Explanation-BasedHumanDebugging. Through the debugging phase, all participants
are supposed to learn two important facts about the AI system: (1) the AI advice is not
always correct, and (2) explanations are not always informative and helpful in identifying
the trustworthiness of AI advice. Thus, we considered two main factors for each task: (1)
the correctness of AI advice, and (2) whether an explanation is informative (i.e., combined
with guidelines, whether or not such explanations can help participants easily identify
the correct answer). Participants subjected to training were presented with a hotel review
with explanatory elements consisting of a model prediction and color-coded highlights
showing 10 predominant features. Each token highlight shows the contribution of the
token to the model prediction on a 5-point Likert scale: deceptive, somwhat deceptive, neu-
tral, somewhat genuine, genuine. This difference in the contribution is distinguished by the
color and intensity of the highlight shown in the interface. An example of the debugging
phase is shown in Figure 4.2. They are instructed to read the text, and, when deemed nec-
essary, refine the explanations by adjusting the highlights and indicating whether the AI
advice is correct. After each task, the correctness of AI advice and missed adjustments will
be shown to the participant as real-time feedback. In practice, the explanations obtained

²https://osf.io/dh34y/?view_only=6a6833eafdbd4d5daa8c036579247159

https://osf.io/dh34y/?view_only=6a6833eafdbd4d5daa8c036579247159
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Figure 4.2: Screenshot of debugging interface.

from XAI methods may not always align with human understanding [179]. Besides realiz-
ing the explanations are not always helpful, we hope participants can learn patterns they
can rely on to make the decision given the guidelines. With that wish, the authors man-
ually adjusted the highlights generated with BERT-LIME according to the task guidelines
(from [117]) and take the adjusted highlights as ground truth for debugging phase.

Real-time Feedback in Debugging Intervention. We provide the real-time feedback
in each debugging task, to show whether AI advice is correct and which highlights partic-
ipants missed to adjust according to guidelines. One example of the feedback is shown in
Figure 4.3.

Figure 4.3: Screenshot of debugging feedback.
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Selection of the Debugging Tasks. To create a balance between the strength and weak-
ness of the AI system, we manually selected four tasks with informative explanations
(where explanations and guidelines can help participants easily identify the correct an-
swer) and four tasks with uninformative explanations. The eight tasks presented in our
debugging phase are: (1) two tasks with correct AI advice and informative explanations,
(2) two tasks with correct AI advice and uninformative explanations, (3) two tasks with in-
correct AI advice and informative explanations, (4) two tasks with incorrect AI advice and
uninformative explanations. The tasks are balanced in whether explanations are informa-
tive and whether AI advice is correct. While the informative explanations are manually
selected, the correctness of AI advice is determined randomly.
Ordering Effect. When presenting the debugging phase to participants, the order of tasks
may have an impact on their estimation of AI performance and reliance on the AI system.
According to existing work [84, 87], first impressions (either good or bad) greatly affect
user estimation of AI performance and user trust in AI systems. Overall, both correct AI
advice and informative explanations tend to leave positive impression on users. As pointed
out by a recent study [180], the public would prioritize the accuracy of AI systems over
interpretability. Thus, compared with “wrong AI advice, informative explanation” case,
we would consider “correct AI advice, uninformative explanation” will leave participants
a better impression. With these concerns, we designed three orders of tasks:

• Random order.
• Decreasing impression order (i.e., from good to bad): correct AI advice, informative
explanation → correct AI advice, uninformative explanation → wrong AI advice,
informative explanation → wrong AI advice, uninformative explanation.

• Increasing impression order (i.e., from bad to good): wrong AI advice, uninforma-
tive explanation → wrong AI advice, informative explanation → correct AI advice,
uninformative explanation → correct AI advice, informative explanation.

4.4 Study Design
This section describes our experimental conditions, variables, participants, and procedure
in our study. This study was approved by the human research ethics committee of our
institution. More implementation details can be found in the appendix (4.8.1).

4.4.1 Experimental Conditions
In our study, all participants worked on deceptive review detection tasks with a two-stage
decision making process (described in Sec. 4.3.1). In all conditions, the top-10most impor-
tant features obtained from BERT-LIME are highlighted as an explanation for AI advice to
help participants identify the trustworthiness of AI advice.

The differences between conditions are whether debugging intervention is adopted
and the order of debugging tasks. To comprehensively study the effect of debugging inter-
vention, we considered four experimental conditions in our study: (1) no debugging inter-
vention (represented as Control), (2) with debugging intervention, debugging tasks in ran-
dom order (represented as Debugging-R), (3) with debugging intervention, debugging tasks
in decreasing impression order (represented as Debugging-D), (4) with debugging inter-
vention, debugging tasks in increasing impression order (represented as Debugging-I). In
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Table 4.1: The different variables considered in our experimental study. “DV” refers to the dependent variable.

Variable Type Variable Name Value Type Value Scale

Assessment (DV)

EAP Continuous, Interval [0, 10]
ETP Continuous, Interval [0, 10]
MAP Continuous, Interval [0, 10]
MTP Continuous, Interval [0, 10]
CCD Continuous, Interval [0, 10]

Reliance (DV)

Agreement Fraction Continuous, Interval [0.0, 1.0]
Switch Fraction Continuous, Interval [0.0, 1.0]

RAIR Continuous, Interval [0.0, 1.0]
RSR Continuous, Interval [0.0, 1.0]

Performance (DV) Accuracy Continuous, Interval [0.0, 1.0]

Trust (DV)

TiA-R/C Likert 5-point, 1: poor, 5: very good
TiA-U/P Likert 5-point, 1: poor, 5: very good
TiA-IoD Likert 5-point, 1: poor, 5: very good
TiA-Trust Likert 5-point, 1:strong distrust, 5: strong trust

Covariates
ATI Likert 6-point, 1: low, 6: high

TiA-PtT Likert 5-point, 1: tend to distrust, 5: tend to trust
TiA-Familiarity Likert 5-point, 1: not familiar, 5: very familiar

conditions with debugging intervention, participants were presented with eight selected
tasks with performance feedback and manually adjusted contribution of tokens. While
in Control condition, the eight tasks selected are presented as normal tasks without any
feedback of AI advice correctness or adjusted explanation feedback. Such a control set-
ting is designed to compare with debugging intervention and eliminate the learning effect
brought by the eight tasks.

For each batch of ten tasks, the AI system was configured to provide correct advice on
eight of them and incorrect advice on two tasks. To eliminate the potential ordering effect
of trial cases, we randomly assigned one batch of selected tasks (see section 4.3.1) as the
first batch and further shuffled the task order within each batch.

4.4.2 Measures And Variables
To have a more comprehensive view of variables used in our experimental analysis, we
listed the main variables in Table 4.1. Notice that we do not add the confidence and di-
mensions from the NASA-TLX questionnaire [181] into it.

To verify H1, we assessed participants’ global estimation of AI system’s performance
with two questions: “From the previous 10 tasks, on how many tasks do you estimate
the AI advice to be correct?” and “From the previous 10 tasks, how many questions do
you estimate to have been answered correctly? (after receiving AI advice)”. The answers
to the two questions correspond to participants’ estimation of AI performance and team
performance respectively. We can refer to the estimated trustworthiness as estimated AI
performance (EAP) and estimated team performance (ETP). Comparing that performance
estimation with actual performance in abstract difference, we can calculate the degree of
miscalibration of AI performance (MAP) and team performance (MTP). If participants
can accurately estimate the performance of AI system at instance level, they may make
the final decision with high confidence. Thus, for the AI performance estimation at in-
stance level, we calculated the number of tasks they made the correct final decision with
indication of “Very Confident” (CCD).

To verify H2 and H3, we measured both reliance and appropriate reliance of partici-
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Table 4.2: The different appropriate reliance patterns considered in [29]. 𝑑𝑖 and 𝑑𝑓 refer to initial human decision
and final human decision respectively. 3 and × refer to correct and incorrect respectively.

𝑑𝑖 AI advice 𝑑𝑓 Reliance
× 3 3 Positive AI reliance
× 3 × Negative self-reliance
3 × 3 Positive self-reliance
3 × × Negative AI reliance

pants on the AI system. The reliance is measured with two widely adopted metrics: the
Agreement Fraction and the Switch Fraction. These look at the degree to which par-
ticipants are in agreement with AI advice, and how often they adopt AI advice in cases of
initial disagreement. They are commonly used in the literature, for example in [49, 57, 66].
As for the appropriate reliance, we followed Schemer et al. [29] to calculate the appropri-
ate reliance based on four reliance patterns (shown in Table 4.2). According to the four
reliance patterns where human initial decision disagree with AI advice and the correct an-
swer occurs in one of them, we can assess the appropriate reliance from two dimensions:

RAIR = Positive AI reliance
Positive AI reliance + Negative self-reliance

,

RSR = Positive self-reliance
Positive self-reliance + Negative AI reliance

.

They stand for whether users switch to AI advice when AI outperforms them, and whether
users can insist on correct decisions made by themselves when AI advice is incorrect. In
addition, we consider the accuracy in batches to measure participants’ performance with
AI assistance.

Instructions Pre-task
Questionnaire Task Batch 1

Debugging batch
Tutorial-R

Task Batch 2Post-task
Questionnaire

ATI, TiA-PtT,
TiA-Familiarity

Post-task
Questionnaire

Done

Start

Assessment (DV),
Trust (DV)

Assessment (DV),
Trust (DV) 10 trial cases

8 cases
Differ in conditions

10 trial cases

NASA-TLX Debugging batch
Tutorial-I

Debugging batch
Tutorial-D

Task Batch
Control

NASA-TLX

NASA-TLX

Figure 4.4: Illustration of the procedure that participants followed within our study. Blue boxes represent ques-
tionnaire phase, orange boxes represent task phase, and the red box represents the debugging intervention.
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For a deeper analysis of our results, a number of additional measures were considered
based on observations from existing literature [87, 153, 154]:

• Trust in Automation (TiA) questionnaire [90], a validated instrument to mea-
sure trust [87] consisting of 6 subscales: Reliability/Competence (TiA-R/C), Under-
standing/Predictability (TiA-U/P), Propensity to Trust (TiA-PtT), Familiarity (TiA-
Familiarity), Intention of Developers (TiA-IoD), and Trust in Automation (TiA-Trust).

• Affinity for Technology Interaction Scale (ATI) [91], administered in the pre-task
questionnaire. Thus, we account for the effect of participants’ affinity with technol-
ogy on their reliance on systems [87].

• NASA-TLX questionnaire [181] for the working load assessment of the debugging
intervention.

4.4.3 Participants
Sample Size Estimation. Before recruiting participants, we computed the required sam-
ple size in a power analysis for a Between-Subjects ANOVA using G*Power [92]. To cor-
rect for testing multiple hypotheses, we applied a Bonferroni correction so that the signif-
icance threshold decreased to 0.05

3 = 0.017. We specified the default effect size 𝑓 = 0.25 (i.e.,
indicating a moderate effect), a significance threshold 𝛼 = 0.017 (i.e., due to testing multi-
ple hypotheses), a statistical power of (1−𝛽) = 0.8, and that we will investigate 4 different
experimental conditions. This resulted in a required sample size of 230 participants. We
thereby recruited 324 participants from the crowdsourcing platform Prolific³, in order to
accommodate potential exclusion.
Compensation. All participants were rewarded with £3.8, amounting to an hourly wage
of £7.6 (estimated completion time was 30 minutes). We rewarded participants with extra
bonuses of £0.05 for every correct decision in the 20 trial cases. Such extra bonus for
correct decisions provides a monetary motivation for crowd workers to try their best on
each task, which is also widely adopted by existing work [50, 117].
Filter Criteria. All participants were proficient English speakers above the age of 18.
For a high-quality study, we require participants to have an approval rate of at least 90%
and more than 80 successful submissions on the Prolific platform. After reading the basic
introduction and guidelines about the deceptive review detection task, participants who
failed any qualification test (about understanding the task) were removed from our study.
After data collection, we excluded participants from our analysis if they failed any atten-
tion check (90 participants). The resulting sample of 234 participants had an average age
of 39 (𝑆𝐷 = 13) and a balanced gender distribution (48.7% female, 49.6% male, 1.7% other).

4.4.4 Procedure
The full procedure of our study can be visualized in Figure 4.4. In the beginning, all partic-
ipants will be presented with a basic introduction of the deceptive review detection task.
According to Lai et al. [117], guidelines about how to identify deceptive reviews are highly
useful in improving user performance on this task. Thus, we also follow them to provide
the guidelines in the introduction. Then, participants will be checked with two qualifi-

³https://www.prolific.co

https://www.prolific.co
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cation questions to ensure they carefully read the instruction and understand this task.
Any failure at the qualification test will result in removal from our study. All reserved
participants will then be asked to answer a pre-task questionnaire consisting of affinity
for technology interaction, TiA-PtT, and TiA-Familiarity.

As described in section 4.3.1, we selected two batches of tasks (10 for each batch) as
trial cases and 8 tasks for debugging intervention. For all conditions, participants will first
work on the first batch of tasks and go through a post-task questionnaire for assessment of
AI performance and subjective trust in AI system (i.e., with TiA subscales). The main dif-
ference between conditions (shown in the dashed box of Figure 4.4) is the 8 tasks presented
after the post-task questionnaire. In condition Control, participants will work on the 8
tasks as normal trial cases. No debugging intervention and result feedback will be pro-
vided. In comparison, we show debugging intervention and result feedback in conditions
Debugging-R, Debugging-I, and Debugging-D. In conditions with debugging intervention,
the participants will go through the debugging tasks with different task orders and be
asked about the task working load resulting from the debugging intervention, using the
NASA-TLX [181] questionnaire. Then, participants in all conditions will continue to work
on another batch of tasks and answer the same post-task questionnaire as the one after
the first task batch.

4.5 Results and Analysis
In this section, we present the main results of our study (i.e., hypothesis tests) and further
exploration about reliance shaping with confidence dynamics.

4.5.1 Descriptive Statistics
In our analysis, we only consider participants who passed all attention checks, as a mea-
sure of participant reliability [93]. Participants were distributed in a balanced fashion
across conditions: 57 (Control), 59 (Debugging-R), 60 (Debugging-D), 58 (Debugging-I). On
average, participants spend around 51 minutes (𝑆𝐷 = 14) in our study.
VariableDistribution. The covariates’ distribution is as follows: ATI (𝑀 = 3.91, 𝑆𝐷 = 0.94,
6-point Likert scale, 1: low, 6: high), TiA-PtT (𝑀 = 2.89, 𝑆𝐷 = 0.61, 5-point Likert scale, 1:
tend to distrust, 5: tend to trust), TiA-Familiarity (𝑀 = 2.29, 𝑆𝐷 = 1.09, 5-point Likert scale,
1: unfamiliar with AI system used in study, 5: familiar with AI system used in study).

The working load of debugging intervention is measured with NASA-TLX question-
naire (scale in [-7, 7]). For all dimensions except “Performance”, a higher value indicates a
higher working load. In the dimension “Performance”, a smaller value indicates a higher
estimated performance on tasks. We visualized the dimensions in Figure 4.5. In general,
participants think the debugging intervention requires high “Mental Demand” and “Ef-
fort”, but low “Physical Demand” and “Temporal Demand”. While most participants do
not show high expectations in achieved “Performance”, they also do not get troubled with
“Frustration”.
PerformanceOverview. On average across all conditions, participants achieved an accu-
racy of 0.64 (𝑆𝐷 = 0.11) over the two batches of tasks, still lower than the aforementioned
AI accuracy of 0.8. The agreement fraction is 0.66 (𝑆𝐷 = 0.13) while the switching fraction
is 0.31 (𝑆𝐷 = 0.22). With these measures, we confirm that when disagreement appears par-
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Figure 4.5: Box plot illustrating the distribution of the different dimensions in NASA-TLX questionnaire. 𝑀 and
𝑆𝐷 represent mean and standard deviation respectively.

ticipants in our study did not always switch to AI advice and participants did not blindly
rely on the AI system. In the two batches of tasks (10 for each batch), the average esti-
mated AI performance are 5.81 (𝑆𝐷 = 1.91) and 5.79 (𝑆𝐷 = 1.71) respectively; the average
estimated team performance is 6.64 (𝑆𝐷 = 1.74) and 6.44 (𝑆𝐷 = 1.87) respectively. Overall,
participants underestimated the performance of the AI system and believed they could
outperform the AI system on this task after receiving AI advice.

4.5.2 Hypothesis Tests
H1: the effect of critical evaluation setting on AI performance estimation
To verify H1, we used Wilcoxon signed rank tests to compare all assessment-based depen-
dent variables of participants before and after the debugging intervention (only partici-
pants in condition Debugging-R, Debugging-D, Debugging-I are considered). The results
are shown in Table 4.3. Although no significant results were found to support H1, we
found that participants in Debugging-D condition showed a worse MTP after the debug-
ging intervention, in contrast to our expectations. Thus, H1 is not supported.

Table 4.3: Wilcoxon signed ranks test results for H1 on AI performance estimation. “†” indicates the effect of
variable is significant at the level of 0.017 (adjusted alpha).

Condition Debugging Debugging-R Debugging-D Debugging-I
DV 𝑇 𝑝 𝑇 𝑝 𝑇 𝑝 𝑇 𝑝
MAP 3833 .662 363 .742 463 .238 457 .826
MTP 4006 .957 512 .892 324 .992† 528 .160
CCD 3761 .753 474 .717 379 .660 429 .603

To have a closer look at how participants’ assessment of the AI performance and Team
performance change after debugging intervention. We compared the assessment of AI
performance and team performance across conditions. With Kruskal-Wallis H-test, we
found no significant difference in the estimation across conditions with debugging inter-
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Table 4.4: Participants’ estimation of AI performance and Team Performance.

Condition Debugging-R Debugging-D Debugging-I
Estimation Before After Before After Before After

EAP 6.05±1.63 5.97±1.65 5.92±1.89 6.07±1.67 6.00±2.20 5.64±1.90
ETP 6.81±1.55 6.36±1.85 6.68±1.48 6.57±1.65 6.81±1.90 6.60±1.92

Table 4.5: Wilcoxon signed ranks test results for H2 on reliance-based dependent variables. “†” indicates the
effect of variable is significant at the level of 0.017 (adjusted alpha).

Condition Debugging Debugging-R Debugging-D Debugging-I
Dependent Variables 𝑇 𝑝 𝑇 𝑝 𝑇 𝑝 𝑇 𝑝

Accuracy 6494 .998† 840 .952 679 .935 684 .970
Agreement Fraction 6332 .896 756 .639 512 .475 897 .971
Switch Fraction 6812 .953 703 .735 762 .565 817 .979

RAIR 6340 .981 628 .829 722 .618 807 .995†
RSR 2494 .736 241 .325 311 .953 292 .461

vention. We show their estimation with mean value and standard deviation (𝑀 ±𝑆𝐷) in
Table 4.4. We found that (1) generally, participants showed a worse estimation of AI per-
formance and team performance after the debugging intervention; (2) only participants in
the Debugging-D condition showed a slight increase in the estimation of AI performance.

H2: the effect of critical evaluation setting on appropriate reliance
Similarly, to analyze the effect of the debugging intervention on user reliance on the AI
system (H2), we used Wilcoxon signed rank tests to compare all reliance-based depen-
dent variables of participants before and after the debugging intervention. The results
are shown in Table 4.5. Overall in all conditions with the debugging intervention, the im-
provement in reliance caused by debugging intervention was not statistically significant.
With a post-hoc Mann-Whitney test on Accuracy, we found that: after the debugging
intervention, the accuracy drops significantly. For a fine-grained analysis, we further con-
ducted Wilcoxon signed rank tests on each condition with the debugging intervention.
We found that participants in the Debugging-I condition show a significant difference in
RAIR, while no significant difference is found with post-hoc Mann-Whitney test. The
observed results do not support the H2.

Although no significant improvement was found in the performance and reliance mea-
sures due to debugging intervention, we did witness a drop in reliance measures generally:
Accuracy (0.67 → 0.63), Agreement Fraction (0.68 → 0.66), Switch Fraction (0.34 →
0.28), RAIR (0.38→ 0.30), RSR (0.64→ 0.61). This is evident in the condition Debugging-
I: Accuracy (0.68 → 0.63), Agreement Fraction (0.71 → 0.66), Switch Fraction (0.39
→ 0.29),RAIR (0.43→ 0.29),RSR (0.59→ 0.61). When AI advice is in disagreement with
users’ initial decision, users tend to rely on themselves more than they should. This results
in decreased (appropriate) reliance and accuracy. In the deceptive review detection tasks,
the AI system performs generally better than participants. The reduced reliance may help
explain why we found a decreased accuracy on average.
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H3: ordering effect of debugging tasks
For the analysis of the ordering effect, meanwhile mitigating the individual differences
and learning effect brought by the eight tasks used in debugging phase, we compared
the difference of reliance-based dependent variables (calculated with the difference be-
tween the second batch and the first batch) and user reliance on the second batch with
participants of all conditions with Kruskal Wallis test. No significant difference is found
with such comparisons. To compare the task working load brought by debugging inter-
vention of different ordering, we conducted Kruskal-Wallis H-test on the six measures in
the NASA-TLX questionnaire. No significant difference is found. Thus, H3 is also not
supported.

To further look at how the ordering effect of debugging tasks affects the final perfor-
mance of participants. We counted the participants who achieved an accuracy level above
80% (i.e., compatible with or better than provided AI system) in the second task batch.
After filtering out the participants who blindly rely on the AI system (i.e., Agreement
Fraction is 1.0), we found the number of participants in condition Debugging-D (14) is
clearly more than in condition Debugging-R (9) and Debugging-I (9). In comparison, the
number of participants who achieved an accuracy level above 80% in condition Control
is 11. Although the ordering effect does not show a significant statistical difference, such
an observation lends partial support to H3.

4.5.3 Exploratory Analyses
Trust Analysis
To explore whether our debugging intervention had any effect on user trust in AI sys-
tem, we conducted Wilcoxon signed ranks test comparing the trust before and after the
debugging intervention. On average, there is a slight drop in assessed trust in automation
subscales (i.e.,TiA-R/C,TiA-U/P,TiA-IoD,TiA-Trust) after the debugging intervention,
but no statistically significant difference are found in test results. This suggests that the
designed debugging intervention can calibrate user reliance and estimation of AI perfor-
mance without directly shaping their trust in the AI system.

Table 4.6: Kruskal-Wallis H-test results for user estimated trustworthiness and miscalibration of estimated per-
formance based on performance quartiles. “††” indicates the effect of the variable is significant at the level of
0.017. “Top”, “Middle”, and “Bottom” refer to participants in the top quartile, middle quartiles, and bottom quar-
tile based on the performance of the first batch of tasks, respectively.

Variables 𝐻 𝑝 𝑀 ±𝑆𝐷(Top) 𝑀 ±𝑆𝐷(Middle) 𝑀 ±𝑆𝐷(Bottom) Post-hoc results
EAP 41.54 <.001†† 6.85±1.48 5.84±1.91 4.69±1.68 Top > Middle > Bottom
ETP 15.85 <.001†† 7.29±1.40 6.65±1.66 5.98±1.96 Top > Middle, Bottom
MAP 40.89 <.001†† 1.32±1.33 2.29±1.74 3.31±1.68 Top < Middle < Bottom
MTP 22.67 <.001†† 1.46±1.24 1.34±1.12 2.24±1.28 Top, Middle < Bottom
CCD 23.17 <.001†† 2.08±1.70 2.06±1.78 0.86±1.00 Top, Middle > Bottom

Covariates Impact on Trust and Reliance
To analyze the impact of covariates on user trust and reliance, we conducted the Spear-
man rank-order tests with covariates and the average trust and reliance-based dependent
variables on two batches of tasks. The results show that, propensity to trust (i.e., TiA-
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PtT) is the only factor which shows sinificant positive correlations with trust-based mea-
sures: TiA-R/C (𝑟(234) = 0.270,𝑝 = .000), TiA-U/P (𝑟(234) = 0.165,𝑝 = .011), TiA-IoD
(𝑟(234) = 0.234,𝑝 = .000), TiA-Trust (𝑟(234) = 0.303,𝑝 = .000).

Users’ Estimation of AI Trustworthiness
To further understand how users’ estimation of AI trustworthiness affects their reliance
and performance, we split the participants in all conditions into performance-based quar-
tiles. To avoid the impact of debugging intervention, we only considered user performance
in the first batch of tasks. The top quartile corresponds to those demonstrating high ac-
curacy (top 25%), the bottom quartile corresponds to those with low accuracy (bottom
25%), and we combine the two quartiles in the middle comprising of participants with a
medium level of performance in the first batch of tasks. To show how these participants
differ in their appropriate reliance and estimation of AI trustworthiness, we adopted the
Kruskal-Wallis H test to compare the estimated performance and their assessment of the
AI system’s performance at the instance and global levels. Post-hoc Mann-Whitney tests
using a Bonferroni-adjusted alpha level of 0.017 ( 0.05

3 ) were used to make pairwise com-
parisons of performance. Generally, participants in the high accuracy group showed more
appropriate reliance (i.e.,RAIR andRSR) than the low accuracy group (with statistical sig-
nificance). The results of user estimation of performance, AI trustworthiness, and miscali-
bration of performance are shown in Table 4.6. Overall, participants in the high accuracy
group showed significantly higher AI performance and team performance in comparison
with the low accuracy group. Meanwhile, the high accuracy group also has a more pre-
cise estimation of AI performance and team performance (i.e., significantly lower MAP
and MTP) and makes more correct decisions confidently (significantly higher CCD). It
also indicates that the underestimation of AI trustworthiness can be the main cause of the
under-reliance, which results in lower accuracy.

Figure 4.6: Illustration of dynamics of confidence change in the 20 tasks of each condition. The brown dashed
line represents the debugging intervention.
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Table 4.7: Reliance and confidence correlation.

Pattern Dependent Variables 𝑀 𝑆𝐷

Reliance

Initial agreement 0.38 0.75
Initial disagreement -0.42 0.99
Final agreement 0.23 0.90

Final disagreement -0.44 0.90
Switch behavior -0.32 1.17

Appropriate
Reliance

Positive AI reliance -0.34 1.17
Negative AI reliance -0.23 1.18
Positive self-reliance -0.41 0.88
Negative self-reliance -0.48 0.89

Confidence Analysis
We show the difference in confidence dynamics of four conditions in Figure 4.6. On av-
erage, participants show positive confidence (above neutral) in their final decisions. Af-
ter receiving the debugging intervention, both Debugging-I and Debugging-R conditions
showed decreased confidence, but it comes back to the average level soon and keeps vi-
brating around it. By contrast, participants in condition Debugging-D showed increased
confidence after the debugging intervention and keeps relatively stable compared with all
other conditions.

We calculated the confidence change after receiving AI advice based on nine different
reliance patterns: whether initial decision agrees with AI advice, whether final decision
agrees with AI advice, switch behavior, and four reliance patterns considered in calculat-
ing appropriate reliance (see Table 4.2). The results are shown in Table 4.7. In general, par-
ticipants indicated increased confidence when AI advice agreed with their initial decision,
and showed decreased confidence when AI advice disagreed with their initial decision.
And even if participants choose to switch to AI advice given initial disagreement, they
tend to show decreased confidence in the final decision. Considering the four patterns
in calculating appropriate reliance, users’ confidence drop seems to be more severe when
insisting on their own decision, compared with adopting AI advice.

4.6 Discussion
4.6.1 Key Findings
In order to promote appropriate reliance on AI systems by calibrating user estimation of
AI performance, we proposed a debugging intervention to educate participants that AI sys-
tems are not always reliable and that the explanations may also not always be informative.
We hypothesized that the proposed debugging intervention could improve critical think-
ing about the AI system, which can facilitate appropriate reliance on the AI system. As
opposed to our hypotheses, such a debugging intervention fails to calibrate participants’
estimation of AI performance at both the global and local levels. Participants tended to
rely less on the AI system after receiving the debugging intervention. Through an ex-
ploratory analysis based on different performance quartiles, we found that participants
who performed worse in our study tended to underestimate AI performance. Thus, they
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achieved suboptimal team performance, which is largely impacted by the under-reliance
on the AI system. These findings can also be explained using the lens of plausibility of
the XAI intervention. According to Jin et al. [182], plausibility can substantially affect
user perceived trustworthiness of the AI system. The debugging intervention may make
the XAI (i.e., text highlights in our study) less plausible to users, which results in more
tendency to underestimate AI performance.

In our study, no significant difference was found between the different ordering of
debugging tasks across experimental conditions. However, participants whowere exposed
to the weakness of the AI system at the beginning of the debugging intervention, showed a
more obvious tendency to disuse the AI system. Such under-reliance was found to result in
sub-optimal team performance. This finding is in line with recent work that has uncovered
similar ordering effects and cognitive biases influencing outcomes in human interaction
with intelligent systems [84, 87]: a bad first impression of an AI system can lead to an
underestimation of AI competence and reduced reliance on the system.
Confidence Analysis. We calculated the confidence change after receiving AI advice
based on nine different reliance patterns: whether initial decision agrees with AI advice,
whether final decision agrees with AI advice, switch behavior, and four reliance patterns
considered in calculating appropriate reliance (see appendix). In general, participants in-
dicated increased confidence when AI advice agreed with their initial decision (+0.38 on
average), and showed decreased confidence when AI advice disagreed with their initial
decision (−0.42 on average). And even if participants choose to switch to AI advice given
initial disagreement, they tend to show decreased confidence in the final decision (−0.32
on average). Considering the four patterns in calculating appropriate reliance, users’ con-
fidence drop seems to be more severe when insisting on their own decision, compared
with adopting AI advice.

In further analysis of covariates (cf. Sec 4.5.3), we found that general propensity to
trust shows a positive correlation with all trust subscales. However, no significant cor-
relations were found between the propensity to trust and reliance, which indicates that
the increased trust due to the propensity to trust does not translate to reliance behav-
iors. Meanwhile, the confidence dynamics in different reliance patterns showed that AI
advice may amplify the confidence of user decisions when in agreement and decrease
user confidence when in disagreement. Under disagreement, users appear to rely more on
themselves (i.e., indicated by confidence decrease), as opposed to adopting AI advice.

4.6.2 Implications
Our findings suggest that the debugging intervention and similar interventions with train-
ing purposes (e.g., user tutorial) may suffer from the cognitive bias brought by the ordering
effect within such interventions. If we want to use such interventions to show users both
strength and weakness of AI systems, we should avoid leaving users with a bad first im-
pression of the weakness of the AI system. Meanwhile, in our study, participants tend to
be optimistic about the team performance while underestimating the AI performance. It
is possibly caused by meta cognitive bias — Dunning-Kruger effect [30, 60]. According
to previous work [60], Dunning-Kruger Effect is mainly triggered among less-competent
individuals overestimating their own competence/performance in a task. In our study, we
found that less-competent individuals showed a greater tendency to underestimate the AI
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performance and make fewer correct decisions with confidence (see Table 4.4). This indi-
cates that the underestimation of AI systems can also contribute to under-reliance in the
context of human-AI decision making. According to He et al. [30], an overestimation of
self-competence can result in under-reliance on the AI system. Both the overestimation of
self-competence and the underestimation of AI competence can contribute to an illusion
of superior competence over the AI system. As a result, users with such an illusion tend to
disuse the AI system. To conclude whether the underestimation of AI performance plays a
role in triggering the Dunning-Kruger effect in the context of human-AI decision making,
more work is required in the future.

Through our study, we also found that the reliance patterns (e.g., agreement, disagree-
ment) have a clear correlationwith user confidence change. When the AI system disagrees
with human initial decision, decisionmakers’ confidence shows a clear decrease. And com-
pared with insisting on their own decision, they may have higher confidence when giving
agency to AI advice. Such observation may be a dangerous signal for appropriate reliance.
Further research is required to explore how to keep user confidence on themselves when
exposed to a disagreement from an AI system.

4.6.3 Caveats and Limitations
Our debugging intervention may have left participants with a negative impression of the
AI system, which could irreversibly harm the trust and reliance on the system (as shown
by prior literature exploring first impressions of AI systems [87]). To make the debugging
intervention more effective in building up critical mindsets and facilitating appropriate
reliance, future research can explore how to avoid such side-effects. The high difficulty
of the task and the debugging intervention may have influenced our findings. In a highly
complex task, crowd workers may not be patient and engaged enough to fully under-
stand the AI system at both the global and local level. Although we only focus on one
specific task to verify the effectiveness of the proposed debugging intervention, such an
application-grounded evaluation is still highly valuable [183]. In this chapter, we used a
rigorous setup to explore the effectiveness of a debugging intervention, which can inform
the future design of effective interventions for better human-AI collaboration.

Potential Bias. As pointed out by Draws et al. [157], cognitive biases introduced by task
design and workflow may have negative impact on crowdsourcing experiments. With
the help of Cognitive Biases Checklist introduced [157], we analyzed potential bias in our
study. Self-interest bias is possible, because crowd workers we recruited from the Pro-
lific platform are motivated the monetary compensation. Thus, it would be challenging
to keep participants engaged in the debugging intervention and highly motivated to learn
from the weakness of AI system. That could be also potential reason why the debugging
intervention does not work as expected. To alleviate any participants with low effort
results, we put attention checks to remove ineligible participants from our study. The ob-
servation of reduced reliance brought by bad first impression also happens withAnchoring
Effect. Meanwhile, the participants generally under-estimate the AI performance and be-
lieve they can outperform AI system, which also may fall into Overconfidence or Optimism
Bias.
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4.7 Conclusion
In this chapter, we present an empirical study to understand the impact of the debugging
intervention on the estimation of AI performance and user reliance on the AI system. Our
results suggest that we should be careful in presenting the weakness of the AI system to
users, to avoid any anchoring effect which may result in under-reliance. While our ex-
perimental results do not provide support to our original hypotheses, we can not fully
reach a conclusion that debugging intervention does not help with facilitating appropri-
ate reliance on the AI system. Future work may explore how to mitigate potential bias
brought by the users’ overestimation of themselves along with the underestimation of AI
performance. Meanwhile, our observations of confidence dynamics in different reliance
patterns also provide insights for future study of human-AI decision making.

4.8 Appendix
4.8.1 Experimental Details
Guidelines. Following Lai et al. [117], we provided the following guidelines in the user
study:

• Deceptive reviews tend to focus on aspects that are external to the hotel being re-
viewed, e.g., husband, business, vacation.

• Deceptive reviews tend to containmore emotional terms; positive deceptive reviews
are generally more positive and negative deceptive reviews are more negative than
genuine reviews.

• Genuine reviews tend to includemore sensorial and concrete language, in particular,
genuine reviews aremore specific about spatial configurations, e.g., small, bathroom,
on, location.

• Deceptive reviews tend to contain more verbs, e.g., eat, sleep, stay.

• Deceptive reviews tend to contain more superlatives, e.g., cleanest, worst, best.

• Deceptive reviews tend to containmore pre-determiners, which are normally placed
before an indefinite article + adjective + noun, e.g., what a lovely day!

Timer. Besides attention checks, we also add a timer to ensure each participant spends
enough time on the questionnaire, task instruction, and decision tasks. A conservative
estimate through trial runs reflected that participants would take at least 25 seconds to
complete each decision task and 30 seconds to complete each debugging task. We reduced
the time for the decision making in the second stage to 15 seconds.
Qualification Test. To ensure participants carefully read the task instruction and under-
stand the task, we used two questions for the qualification test.

• In this study, the deceptive reviews written by? Option 1: An AI system, option 2:
People without actual experience.
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• Indicate whether the following statement is true or false: ”Guidelines are provided
for finding deceptive reviews”. Option 1: True, option 2: False.

Attention Checks. To prevent participants from providing low-effort results in question-
naires and decision tasks, we add attention check tasks that are similar to normal ones. For
example, we asked participants to select a specified option in the questionnaire. One exam-
ple of attention check in decision tasks is shown in Figure 4.7. To ensure participants read
the hotel review with attention, we put the instruction in the last sentence to select a spe-
cific option (e.g., “In order to confirm you have read this paragraph, please select Genuine
and indicate that you are Very confident in this answer.”). We have such attention checks
in the middle of each task batch, long questionnaires, and the debugging intervention.

Figure 4.7: Screenshot of attention check in decision tasks.
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5
Analogy-based Concept-level

Explanations
Concepts are an important construct in semantics, based on which humans understand the
world with various levels of abstraction. With the recent advances in explainable artifi-
cial intelligence (XAI), concept-level explanations are receiving an increasing amount of
attention from the broad research community. However, laypeople may find such ex-
planations difficult to digest due to the potential knowledge gap and the concomitant
cognitive load. Inspired by prior work that has explored analogies and sensemaking, we
argue that augmenting concept-level explanations with analogical inference information
from commonsense knowledge can be a potential solution to tackle this issue. To inves-
tigate the validity of our proposition, we first designed an effective analogy-based expla-
nation generation method and collected 600 analogy-based explanations from 100 crowd
workers. Next, we proposed a set of structured dimensions for the qualitative assessment
of such explanations, and conducted an empirical evaluation of the generated analogies
with experts. Our findings revealed significant positive correlations between the quali-
tative dimensions of analogies and the perceived helpfulness of analogy-based explana-
tions, suggesting the effectiveness of the dimensions. To understand the practical utility
and the effectiveness of analogy-based explanations in assisting human decision-making,
we conducted a follow-up empirical study (𝑁 = 280) on a skin cancer detection task with
non-expert humans and an imperfect AI system. Thus, we designed a between-subjects
study spanning five different experimental conditions with varying types of explanations.
The results of our study confirmed that a knowledge gap can prevent participants from
understanding concept-level explanations. Consequently, when only the target domain
of our designed analogy-based explanation was provided (in a specific experimental con-

This chapter is based on two peer-reviewed papers: Gaole He, Agathe Balayn, Stefan Buijsman, Jie Yang, and
Ujwal Gadiraju. Opening the Analogical Portal to Explainability: Can Analogies Help Laypeople in AI-assisted Deci-
sion Making? Journal of Artificial Intelligence Research 81 (2024): 117-162. https://doi.org/10.1613/ jair.1.15118.
and  Gaole He, Agathe Balayn, Stefan Buijsman, Jie Yang, and Ujwal Gadiraju. It Is Like Finding a Polar
Bear in the Savannah! Concept-Level AI Explanations with Analogical Inference from Commonsense Knowledge. In
Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, vol. 10, pp. 89-101. 2022.
https://doi.org/10.1609/hcomp.v10i1.21 990; Best Paper Award

https://doi.org/10.1613/jair.1.15118
https://doi.org/10.1609/hcomp.v10i1.21990
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dition), participants demonstrated relatively more appropriate reliance on the AI system.
In contrast to our expectations, we found that analogies were not effective in fostering
appropriate reliance. We carried out a qualitative analysis of the open-ended responses
from participants in the study regarding their perceived usefulness of explanations and
analogies. Our findings suggest that human intuition and the perceived plausibility of
analogies may have played a role in affecting user reliance on the AI system. We also
found that the understanding of commonsense explanations varied with the varying ex-
perience of the recipient user, which points out the need for further work on personal-
ization when leveraging commonsense explanations. In summary, although we did not
find quantitative support for our hypotheses around the benefits of using analogies, we
found considerable qualitative evidence suggesting the potential of high-quality analogies
in aiding non-expert users in their decision making with AI-assistance. These insights can
inform the design of future methods for the generation and use of effective analogy-based
explanations.

5.1 Introduction
In recent years, we have witnessed the rise of machine learning (ML) methods for various
applications (e.g., machine translation and object detection). Despite their high accuracy,
more and more researchers recognize the necessity to obtain meaningful explanations of
these ML methods for real-world scenarios, especially in high-stakes scenarios like medi-
cal diagnosis. Machine learningmodels may provide unreliable predictions based on spuri-
ous patterns (e.g., Tesla’s self-driving system mistook the moon for a yellow traffic light¹),
which may cause catastrophic consequences [184]. With meaningful explanations, hu-
mans can better understand the internal working mechanisms and exercise control over
powerful machine learning models. With this perspective, a growing number of explain-
able artificial intelligence (XAI) methods are being proposed to provide explanations for
ML model behaviors [159, 183, 185].

Identifying and communicating the salient parts of the input (e.g., through pixels in
image, or highlighted tokens in text) as explanations is a typical and model-agnostic XAI
method [159, 163, 186], called feature attribution. While such salient parts of the input
may be helpful for AI practitioners who have the relevant knowledge, it is still challeng-
ing for laypeople to interpret them. To provide more human-friendly explanations, Kim
et al. [187] proposed to derive high-level concepts to describe the internal state of models.
Comparedwith low-level salient features, high-level concepts have been shown to bemore
understandable for laypeople. However, in many real-world tasks, these high-level con-
cepts (e.g., chemicals, cells in medical diagnosis) are still not comprehensible for laypeople
due to the gap of domain knowledge and expertise. At the same time, it is unnecessary for
users or stakeholders (e.g., patients or loan applicants taking medical or financial advice)
to fully understand the explanation technically. Their information need is often satisfied
by understanding explanations adequately enough to achieve better decision making for
their own benefit.

The challenge, therefore, is to provide the right kind of explanations. Transparency
about systems, and the provision of explanations, is likely to be a requirement in the AI

¹https://www.autoweek.com/news/green-cars/a37114603/tesla-fsd-mistakes-moon-for-traffic-light/

https://www.autoweek.com/news/green-cars/a37114603/tesla-fsd-mistakes-moon-for-traffic-light/
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Concept-level explanation (target sentence): With cribriform and
fused glands in needle core biopsy from prostate, this is diagnosed as
adenocarcinoma of the prostate.

Analogy-based explanation: Cribriform and fused glands in needle
core biopsy is definitely a sign of prostate cancer. It is like recognizing
a unicorn due to the horn on its head.

Positive for
prostate cancer

?

!

Input Sample MLmodel Model Prediction

Figure 5.1: Example of analogy-based explanation in prostate cancer detection. The medical image and the
concept-level explanation are sourced from [188].

Act [189] for a wide range of systems. Likewise, according to General Data Protection
Regulation (GDPR),² the users of AI systems should have the right to access meaningful
explanations of model predictions [166]. This implies that intelligible explanations which
can facilitate such an understanding for laypeople are required. We argue that analogy-
based explanations can be a potential solution to fill in this gap in understanding. We
illustrate our motivation through an example in Figure 5.1. Given a concept-based ex-
planation extracted from an ML model, laypeople may still have difficulties connecting
the concepts (i.e., cribriform and fused glands in needle core biopsy) with specific model
predictions (i.e., positive for prostate cancer). Such explanations can be difficult to un-
derstand due to the lack of domain knowledge and expertise, and they can be a heavy
burden when figuring out the causality or relevance of observing these concepts to make
the prediction [51, 190, 191].

An analogy can be interpreted as a structural mapping from a target domain to be clari-
fied, onto a source domain which the recipient of the analogy is more familiar with [58, 59].
For example, in Figure 5.1, the target domain, medical diagnosis, is clarified based on a
source domain: fantasy. Through everyday experiences, laypeople master commonsense
knowledge of the world and build up sophisticated mental models to deal with regular
tasks; e.g., a single horn on the head of a beast is an important pattern for recognizing
a unicorn. With analogy-based explanations, high-level concepts and model predictions
can be translated into everyday concepts that laypeople are familiar with, by triggering
their capabilities of analogical inference. From this standpoint, we argue that laypeople
can leverage the sophisticated mental models of their worldly experiences to interpret
the behavior of ML models and generate meaningful analogy-based explanations. Thus,
users can understand that the complex concepts in “cribriform and fused glands in nee-
dle core biopsy” are also a strong pattern which indicates the model prediction “positive

²https://gdpr-info.eu/

https://gdpr-info.eu/


5

104 5 Analogy-based Concept-level Explanations

for prostate cancer.” Laypeople (or non-expert users) can thereby use the explanation ade-
quately enough to inform their decisions, without having to understand the concepts from
a technical standpoint, addressing the knowledge gap while reducing their cognitive load.

Despite the intuitive promise and potential of analogy-based explanations, how to gen-
erate such analogy-based explanations remains an open question. In addition, we also lack
a framework to qualitatively characterize and evaluate the generated analogies. Hence, in
this chapter, we first address the following research questions:

(RQ1) How can we generate high-quality analogy-based explanations using non-
experts?
(RQ2) How can we systematically assess the quality of analogy-based explanations?

To the best of our knowledge, no work has yet investigated whether conceptually
high-quality, analogy-based, explanations can be helpful for human-AI collaborative deci-
sion making. Inspired by recent literature on human-centered explainable AI [27, 126], a
human-grounded evaluation [183] can further our understanding of the impact of analogy-
based explanations in decision support. Hence, as a second step of our work beyond gen-
erating analogy-based explanations and evaluating their conceptual quality, it is also im-
portant to validate their effectiveness in assisting human decision making in practice. To
this end, we aim to address the following questions:

(RQ3): How do analogies for concept-level explanations shape the understanding of an
AI system among non-expert users?
(RQ4): How do analogy-based explanations affect user reliance on AI systems?

To answer RQ1, we designed a novel analogy generation method that leverages tem-
plates and crowd computing to obtain high-quality analogy-based explanations. To an-
swer RQ2, we first defined a structured set of dimensions through which one can con-
ceptually assess the quality of analogy-based explanations. Then we recruited 100 crowd
workers as non-experts to generate analogy-based explanations using our method. After
that, we carried out an expert evaluation of the quality of the collected explanations across
the different dimensions. To answerRQ3 andRQ4, we formulated four hypotheses about
the effect of the analogy-based explanations on user understanding, appropriate reliance,
cognitive load, and decision making efficiency. We tested these hypotheses in an empiri-
cal study with crowd workers (𝑁 = 280), asked to perform a skin cancer detection task, in
four different human-AI collaborative decision making settings.

In our empirical study, we found that the mere presence of the target domain infor-
mation within the analogy-based explanations was most effective in mitigating under-
reliance but also gave rise to over-reliance. However, we did not find an improved un-
derstanding of the AI system or a statistically significant increase in appropriate reliance
when all the information contained in the analogy-based explanations was presented. This
was particularly the case when analogies were provided on demand. Surprisingly, such
analogy-based explanations could even have some negative impact on the appropriate re-
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liance. Analyzing the participants’ qualitative feedback about the analogy-based explana-
tions helped us understand the unexpected reliance patterns (i.e., over-reliance and under-
reliance) and the potential role of human intuition and plausibility in shaping our findings.
Introducing analogies did not pose a significantly higher cognitive load on users, or cause
a significant delay in decision making efficiency. Collectively, our findings suggest that
although analogies may not be universally effective in fostering appropriate reliance in
the context of human-AI decision making, there is some potential for analogy-based ex-
planations in assisting laypeople for efficient decision making if they can be personalized.
Our main contributions can be summarized as follows:
• A novel analogy-based explanation generation method with non-expert crowds and a
dataset of analogies generated using this method.

• An elaborate set of qualitative dimensions to assess the quality of analogy-based expla-
nations.

• An extensive evaluation of the quality of the analogy-based explanations collected from
two distinct AI tasks.

• A rigorous empirical study in the context of human-AI decision making to understand
the effectiveness of analogy-based explanations in a skin cancer detection task.

• Guidelines for the generation of effective analogy-based explanations and for the appro-
priate use of such analogy-based explanations.
Note that this manuscript is an extended version of the paper [98], extended in the fol-

lowing ways: To validate the effectiveness of analogy-based explanations, (1) we proposed
new research questions and hypotheses about the impact of analogy-based explanations
on a user’s understanding of an AI system and their appropriate reliance on the system;
and (2) we conducted an empirical study of human-AI decision making on a skin cancer
detection task to test these hypotheses; (3) based on the results from our empirical study,
we synthesized guidelines for future work on the generation and use of analogy-based
explanations in the context of human-AI decision making.

If not used appropriately, analogy-based explanations may not work as expected to
improve human-AI collaborative decision making. To the best of our knowledge, this is
the first work that combines analogy-based explanations with commonsense knowledge
in the context of human-centered explainable AI. Based on the results from our empirical
study, we synthesize promising future directions for further XAI research.

5.2 Background and Related Work
We position our work in the following realms of related literature: commonsense knowl-
edge, analogy-based explanation, human-AI decision making and the context of human-
centered explainable AI.

5.2.1 Commonsense Knowledge
Commonsense knowledge is “information that humans typically have that helps them
make sense of everyday situations” [192]. It has been proved to be highly useful in various
AI applications, like question answering [193], dialogue systems [194] and visual reason-
ing [195]. However, due to the intrinsic implicitness, commonsense knowledge is usually
omitted in oral or written communication [192]. To collect such implicit knowledge, re-
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searchers have proposed to make use of the wisdom of crowds, through text mining of
corpora [196, 197], and via games with a purpose [198, 199].

In recent years, commonsense knowledge has been used to also improve the explain-
ability of AI models. In commonsense reasoning tasks, explanations from humans which
contain rich commonsense knowledge, have been shown to be highly useful both to boost
performance and to aid understanding [200]. In addition to generating commonsense ex-
planations with humans, some studies have also demonstrated that commonsense knowl-
edge can help build connections between multiple statements [201] and enhance natural
language explanation generation with extractive rationales [202].

To facilitate the understanding of concept-level explanations, we propose to generate
commonsense explanations for laypeople. The commonsense knowledge containedwithin
such explanations forms the source domain over which laypeople can exercise their ana-
logical reasoning, to improve their understanding of the concept-level explanations.

5.2.2 Analogy-based Explanations
Analogy-based explanations have been extensively studied in many research domains
such as logic, linguistics, and philosophy. “An analogy is created when some aspects of an
unknown target are compared with those of a source about which more is known” [203].
Due to such intrinsic property for elucidating new knowledge with existing knowledge,
analogies have been adopted as explanation in education, and supported by multiple re-
search work [204–206].

In the context of artificial intelligence, the importance of analogies has been recog-
nized by multiple AI applications such as representation learning [207], preference learn-
ing [208], and image processing [209]. Readers can refer to [210] for a more comprehen-
sive survey of analogical inference in the context of AI, which is beyond the scope of this
chapter. However, only a few works [51, 211] explored the potential of analogy-based
explanations in the context of XAI. While such works show and argue that analogy-based
explanations have great potential in XAI, it is still unclear howwe can measure the quality
of analogy-based explanations and how we can efficiently generate such analogy-based
explanations for machine learning applications.

As for analogy generation, in addition to previous methods that relied on human intel-
ligence for drawing out analogies in instructional, teaching and educational contexts [212,
213], some research has also explored the automatic generation of analogies. Veale et
al. [214] explored how lexical resource HowNet [215] can support analogy generation
with two approaches: (1) abstraction via a taxonomic backbone, (2) selective projection
via structure-mapping on propositional content. Chiu et al. [216] propose to generate lexi-
cal analogies with the help of dependency relations from unstructured text data. However,
such methods do not incorporate commonsense knowledge, making it inappropriate for
explaining to laypeople the complex concept-level explanations. That is why we adopt a
crowd computing-based method to generate analogy-based explanations.

In this chapter, we propose structured dimensions for the qualitative assessment of
analogy-based explanations. We also design a crowd computing method to generate such
explanations, and empirically evaluate its effectiveness.



5.3 Quality of Analogy-based Explanations

5

107

5.2.3 Human-Centered XAI and the Human-AI Decision Making
Explainability is a concern for AI systems, especially for black box deep learning mod-
els. To provide meaningful explanations for AI predictions, a wide range of explainable
artificial intelligence (XAI) tools have been proposed [217]. However, due to the inher-
ent human-centric property of explainability (i.e., explanations are only successful if they
match the specific needs of the person receiving them), there is no one-size-fits-all solu-
tion in the growing collection of XAI techniques [27]. Consequently, researchers have in-
creasingly begun to explore the area of human-centered explainable artificial intelligence
(HCXAI) [27, 104, 126, 127], by putting the human at the center of technology design [126].

Human-AI decision making has emerged as an important paradigm to augment hu-
man capabilities with the computational prowess of AI systems, leading to complementary
teamwork and effective decision making [22]. In the collaborative decision making pro-
cess, human factors (e.g., AI literacy [108] and cognitive bias [218]) and interaction with
AI systems (tutorial intervention [30, 117] and performance feedback [49]) are observed
to affect subjective trust and reliance behaviors greatly. In recent works with human-
AI decision making, researchers have shown great interest in achieving complementary
team performance with appropriate reliance on the AI system by exploring a multitude of
factors including human and task factors [29, 30, 219, 220].

To help users better understand AI advice and inform the trustworthiness, XAI meth-
ods are widely analyzed in human-AI decision making. Based on a comprehensive litera-
ture review, Wang et al. [107] summarized three desiderata of AI explanations to facilitate
complementary teamwork: (1) Explanations of an AI should improve people’s understand-
ing of it, (2) Explanations of an AI should help people recognize the uncertainty underlying
the AI, and rely on the high-confidence predictions when model confidence is calibrated,
(3) Explanations of an AI should empower people to trust the AI appropriately. However,
most XAI methods are rarely found helpful in achieving a complementary performance in
human-AI decision making [25, 70, 221]. Sometimes, XAI methods can even make users
suffer from automation bias [222], which will cause over-reliance on the AI system.

AI systems have become ubiquitous in intelligent applications around our daily life,
and involve nearly everyone as stakeholder rather than experts only. Different commu-
nities of stakeholders [223] have different goals and explainability needs. For example,
system developers require explainability to debug the system, while system users may
place more emphasis on the explainability of outputs in order to aid their own decision
making [223, 224]. As a result, explanations should be tailored to different stakeholders.

Inspired by previous studies about analogy-based explanations [51, 211], we focus on
explainability for laypeople using such explanations:
• Laypeople lack technical expertise and domain knowledge to interpret AI systems. Analogy-
based explanations fill in such knowledge gap with concepts they are familiar with.

• Analogy-based explanations provide familiar information for laypeople, which reduces
the cognitive load for comprehension compared to concept-level explanations which
contain uncommon terminologies.

5.3 Quality of Analogy-based Explanations
We first conducted a systematic review of existing works in the area of analogy-based
explanations, in order to understand how the quality of analogy-based explanations has
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been empirically investigated in prior literature.

5.3.1 Effective Analogies
Properties of analogical argument. Analogies have been widely used as explanations
for educational and learning purposes [204, 206]. With analogical inference, humans can
compare one new topic that is being introduced with another topic they are already fa-
miliar with, which leads to a better understanding of the new topic by relating back to
previous knowledge [225]. However, to make the analogy-based explanations work as an
aid to understand new knowledge or events, several properties need to be satisfied by the
analogical arguments. Aristotle’s theory provides us with four important and influential
criteria for the evaluation of analogical arguments [226]:
• The strength of an analogy depends upon the number of similarities.
• Similarity reduces to identical properties and relations.
• Good analogies derive from underlying common causes or general laws.
• A good analogical argument need not pre-suppose acquaintance with the underlying
universal (generalization).
In previous studies, researchers also emphasized the importance of the quality of struc-

tural mapping. According to [58, 203], an analogy needs to fullfill certain constraints to
work as expected – (i) there should only be a single one-to-one correspondence between
each pair of elements; (ii) it must involve common relationships across the source domain
and target domain (iii) an analogymust describe systems of connected relations, which per-
mits the generation of inferences. According to the multiconstraint theory [227], people
use analogies guided by a series of constraints that favour coherence in analogical reason-
ing [206]. The constraints are semantic similarity, structural correspondence, and purpose.
Specifically, the similarity in concept level contributes to analogical reasoning, while the
structural constraint helps to establish an isomorphism between source domain and target
domain. Furthermore, the analogical reasoning is guided by the purpose. In addition to
ensuring the analogical properties of the structural mapping, Thalheim et al. [228] further
considered the “degree of structural adjustment” (i.e., the extent to which the structure is
considered independent on the later use). This dimension evaluates the transferability of
the generated source artifact.
Factors shaping the effectiveness of analogies. Apart from the properties of ana-
logical argument, there are other factors which affect the effectiveness of analogy-based
explanations. To guarantee the usefulness of analogy-based explanations, explanation
consumers should be familiar with the source domain (e.g., the generated commonsense
explanations in our case). According to Galesic et al. [76], the most helpful analogies boast
a high relational similarity between the source and target domain and a high familiarity
with the source domain. Thalheim et al. [228] also argued that the source domain of effec-
tive analogies should be “easily interpretable and understandable”.

5.3.2 Synthesizing a Structured Set of Dimensions
Analogical Properties. According to the above, the quality of generated analogy-based
explanations is largely reflected by the quality of the analogical properties, that rely on
comparing the source domain (i.e., generated commonsense explanation) to the target
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sentence. In this chapter, we base the quality of analogical properties on four aspects:
(1) structural correspondence between the target domain (i.e., observed concepts and
model prediction) and source domain (i.e., concepts used in the explanation), (2) relational
similarity between the target domain (i.e., relation between observed concepts andmodel
prediction) and source domain (i.e., relation between concepts in explanation), (3) trans-
ferability, i.e., the extent to which the structure is considered independent of its later use,
and (4) helpfulness, i.e., the extent to which the generated commonsense explanation is
considered helpful to understand the target sentence.

Among these dimensions, “relational similarity” and “structural correspondence” have
been highlighted by existing works with phrases like “semantic similarity” [227] and
“structural alignment” [229]. “Helpfulness” corresponds to the “purpose” mentioned in
Holyoak and Thagard’s multiconstraint theory [227], while “transferability” corresponds
to the “degree of structural adjustment” [228]. To assess the “helpfulness” of explanations,
we need to ground them within specific tasks. In this chapter, we conduct human-based
evaluation to assess the extent to which the analogy-based explanations can be helpful to
explain the original concept-level explanations. In practice, the generated analogy-based
explanation may also be fit to explain other concept-level explanations which show sim-
ilar information. To serve that purpose, one can argue that high-quality analogy-based
explanations should be capable of generalizing to more tasks. Thus, we also consider the
“transferability” of generated analogy-based explanations.

As mentioned above, the generated analogy-based explanations can be used to explain
other tasks than the one used for generation. In such cases, it is also necessary to evaluate
the quality of the explanations. All the dimensions we propose can be used to assess such
quality for these new tasks.

Utility. In addition to the above dimensions, we identified dimensions specifically related
to the generated commonsense explanations. These dimensions are independent of the
target sentence, but may also affect the effectiveness of analogy-based explanations.

Some dimensions are identified from the factors shaping the effectiveness of analogies
mentioned previously. They are: (5) explainee’s familiaritywith the concepts mentioned
in generated explanation; (6) simplicity of the analogy-based explanation, which de-
scribes how easily laypeople can interpret and understand the explanation would be [228].
We also identify other dimensions based on intuitively desirable expectations from effec-
tive explanations. Reducing the scope for misunderstanding can aid the overall compre-
hension of analogy-based explanations. Thus, we also consider the dimension of (7) mis-
understanding, which occurs when different interpretations exist for a single analogy-
based explanations. For example, the phrase “subway definitely contains seats” can be
interpreted as referring to e.g., either the restaurant, “Subway”, or an underground rail-
way. To ensure the utility of generated explanations, it is vital to ensure that they are
(8) syntactically correct, and (9) factually correct. That means the explanations are
comprehensible according to syntactic grammar, and describe the truth about the world.
Further details including our annotation of these dimensions are provided in section 5.5.
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5.4 Analogy Generation
We propose a crowd computing method to generate analogy-based explanations using
image classification tasks as an empirical lens, and verify the effectiveness of our proposed
set of dimensions in determining the quality of the analogy-based explanations.
Tasks for Analogy Generation. To collect useful analogy-based explanations from
crowd workers, we need to adopt task contexts which non-experts are capable of inter-
preting and explaining. We also consider the relationship explicitness in the task domain.
In some domains, it is difficult to elucidate relationships between concepts and labels
other than ascribing correlation (e.g., food to calorie level). In others (such as furniture to
places), most concepts and the labels have a clear indication of relationships like “PartOf”,
“SignOf”, and “FoundAt”, which also appear in commonsense knowledge bases like Con-
ceptNet [197]. Hence, we select two image classification tasks: calorie level classification
(CLC) and scene classification (SC).

(a) Calorie dataset. (b) Places dataset.

Figure 5.2: Examples of tasks used to generate analogies.

For the calorie level classification task, we used the dataset provided by Buçinca et
al. [68], where two possible labels are attached to images: (1) high calorie level, fat more
than 30%, (2) low calorie level, otherwise. In this task, participants are given an image (see
Figure 5.2a) along with concepts highlighted with bounding boxes (i.e., chocolate and ice
cream) and the predicted calorie level. For the scene classification task, we used a subset of
the Places dataset [230], which covers six place labels: living room, bathroom, hospital room,
conference room, bedroom, dining room (Figure 5.2b is an example of a conference room). In
both tasks, we ask participants to describe the relevance of given concept(s) and labels,
e.g., the relevance of food concept(s) and calorie levels, with explanations constructed
using everyday concepts and given templates.
Templates for Analogy-based Explanations. To help crowdworkers associate the con-
cepts with model predictions, we provide templates for generating analogy-based expla-
nations. Machine learning models may learn both useful concepts and spurious concepts
to make predictions [187]. Some of the useful concepts can directly lead to the correct con-
clusion, while others are highly relevant and helpful to predict the label but not definite.
In comparison, the spurious concepts are irrelevant or insufficient (like predicting a dog in
image by focusing on grass field) to make the prediction, and sometimes even contradict
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Table 5.1: Templates used in analogy generation with placeholders presented to the users (bold text in square
brackets).

Relevance Template Example

Positive
Evidence

Definite
Sign Of

Mayonnaise is definitely a sign of high calorie food. This is like a [trunk] is
a definitely sign of [an animal being an elephant].

Typically
Associated with

Chocolate is typically associated with high calorie food, while rarely associ-
ated with low calorie food. This is like [printers] can typically be associated
with [offices], but it’s also possible to associate [printers] with [homes].

Inconclusive
Evidence

Insufficient

Bread is not sufficient to indicate high calorie, as both high calorie food and
low calorie food may contain it. This is similar to howwe can find [chair] in
both [a living room] and [a bedroom], you can’t determine which room
it is by seeing a [chair].

Irrelevant A plate is irrelevant to indicate high calorie food. This is similar to to how
[an arbitrary stone] is irrelevant for [recognising a continent].

Negative
Evidence

Seldom Found
At

Carrots are seldom found in high calorie food. This is like [cats] can seldom
be found in [water].

Contradict With A vegetable salad contradicts with high calorie food. This is similar to how
one cannot find [water] in [electrical appliances].

with our commonsense knowledge, leading to an incorrect prediction. Hence, we decide
to use six templates based on three different relevance levels (i.e., positive evidence, incon-
clusive evidence, and negative evidence). For each relevance level, we have one template
to indicate the type of relationship and another one to indicate relevance. The templates
along with examples can be found in Table 5.1.
Task Selection. To balance the generated analogies in each relevance category, we man-
ually selected two tasks for each category according to the authors’ interpretation of their
relevance levels. Thus, we use 12 tasks for analogy generation: 6 for calorie level (CLC)
and 6 for scene classification (SC).
Hints for Analogy Generation. Through a pilot study, we learned that although non-
expert crowd workers can generate analogies based on their own experience, it becomes
challenging to generate new analogies after a handful of tasks. To help crowd workers in
generating high-quality analogies, we provide a list of hint domainswith a clickable button
in the interface. The list contains: weather, animals and plants, place, transportation, food,
art, education, sports, finance, clothes, electronics, games and toys, health.
Analogy Generation Procedure. To generate high-quality analogies, we provide the
six templates shown in Table 5.1 to each participant. Participants are first asked to select
one template, comprising one sentence with placeholders for concepts. They can then
refer to our example analogies and everyday domains provided as hints. Next, based on
the template, they are asked to fill in one word or phrase (up to five words) as a concept
in each placeholder. All participants are forbidden to fill in concepts belonging to the
task domain (such as places and furniture in the Places task). An example of the analogy
generation interface is shown in Figure 5.3.



5

112 5 Analogy-based Concept-level Explanations

2

1

3
atmosphere

nitrogen

oxygen

Figure 5.3: Analogy generation main interface and workflow. (1) Participants select a template to describe the
relevance level; (2) refer to examples and everyday domains as hints; and (3) fill in concepts in placeholders to
generate analogy.

5.5 Study I: Analogy Generation and Evaluation
In the first study, our experiment mainly consists of two stages: (1) analogy generation
with crowd workers, (2) evaluation of generated analogies with third-party experts.

5.5.1 Analogy Generation Based on Non-experts
Pilot Study. We conducted a pilot study with 7 participants hired from Prolific³ crowd-
sourcing platform. All participants were asked to complete 12 tasks (6 for CLC, 6 for SC).
Through the pilot study, we gained the following insights:
• After generating several analogies, participants found it difficult to generate new analo-
gies (i.e., required more time for analogy generation and repeated concepts used). To
help with this issue, we provided a list of daily domains as hints. As a consequence, we
also reduced the number of tasks that each participant was required to complete in the
analogy generation phase of the main study.

• Some participants used the examples or concepts shown in one task (e.g., calorie) as
answers for another one (e.g., places). To counter such behavior, we decided to limit
each participant to a single generation task.

Informed by these observations, we asked each participant in the main study to work on
6 analogy generation tasks from one task domain (either CLC or SC).
Participants. In the main study, we recruited 50 crowd workers for the calorie task,
and 50 crowd workers for the places task. In total, 600 analogy-based explanations were
generated. We compensated each worker with £1.35 (i.e., 9 min × hourly salary £9). All

³https://www.prolific.com/

https://www.prolific.com/
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participants were proficient English-speakers above the age of 18 and they had an approval
rate of at least 90% on the Prolific platform.
Quality Control. To discourage unreliable behavior (e.g., copy-pasting concepts from the
task description and examples provided), we enforce all concepts mentioned in the task
description and possible labels in each task as taboo phrases (words). We also prevent
participants from generating the same analogy-based explanations twice.

Table 5.2: Structured dimensions used in qualitative assessment of analogy-based explanations.

Category Dimension Questionnaire Scale

Analogical
Properties

Structural
Correspondence

How well can you align the properties of the explanation
concepts to the properties of the concepts in the target sen-
tence?

5-point Likert

Relational
Similarity

How similar do you perceive the relationship between con-
cepts in the explanation and the relationship between con-
cepts in the target sentence?

5-point Likert

Transferability How well can the explanation be used in other contexts? 5-point Likert
Helpfulness How helpful is this explanation for you to understand the

target sentence? 5-point Likert

Utility

Familiarity How familiar are you with the concepts in the explanation? 5-point Likert
Simplicity Do you think the explanation is simple enough for others

to understand? 5-point Likert

Misunderstanding Do you think this explanation lead to more than single in-
terpretation? {Yes, No}

Syntactic
Correctness Whether the analogy sentence is syntactically correct? {Yes, No}

Factual
Correctness

Whether it describes a fact about real world? Canwe switch
it to make it factual? (switch concept A and concept B in
template)

{Yes w/o
switch, Yes &
switch, No}

5.5.2 Analogy Evaluation with Experts
Experts. To ensure a fair evaluation of the quality of generated analogies, we recruited
5 external AI experts from the department of the authors’ institute using a purposeful
sampling strategy [231]. All experts had at least a basic knowledge of machine learning
and explainable AI.

For the purpose of this evaluation, we considered a subset of the analogies generated
from 23 participants in the calorie task and 26 participants in the place task (we randomly
sampled around half of the participants in our study). In total, we consider 294 analogy-
based explanations for evaluation. We ensured a 10% (i.e., 29 analogy-based explanations)
overlap across experts. Thus, each expert evaluated 82 different analogy-based explana-
tions. On average, each expert spent 2.5 hours on this qualitative evaluation.
Qualitative Assessment. Based on our synthesis of the dimensions for quality of analo-
gies (cf. Section 5.3.2), the quality of analogy-based explanations was mainly assessed
across two categories: (1) analogical properties and (2) utility. We followed an itera-
tive coding process [232] to characterize the quality of the analogy-based explanations
across dimensions informed by our synthesis from literature. While different terminolo-
gies (e.g., degree of structural parallelism [226], degree of structural analogy [228], seman-
tic similarity [227]) were adopted to assess the quality of analogies and their quality as
explanations, we aimed to address the redundant definitions and integrate a structured
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set of dimensions for the qualitative assessment (see dimension and questionnaire in Ta-
ble 5.2).

Annotation Rubrics. Through iterative coding interspersed with discussions, the au-
thors finally constructed the following annotation rules to guide the qualitative assess-
ment:
• If the concepts of commonsense explanation are of the same domain as the target sen-
tence (regarded as invalid due to non-compliance with analogy generation instruction),
annotators can skip that annotation.

• For Factual Correctness, take the generated explanation “The pink feather is definitely
a sign of flamingo” as an example. This explanation can be factually correct after we
switch the order of “pink feather” and “flamingo”.

• When Misunderstanding exists, we consider one analogy as factually correct when a
single interpretation can be true. For example, “subway is definitely a sign of seat”.
When interpreting the “subway” as the one in transportation, we can consider it as
being factually correct.

• For Transferability and Helpfulness, assign ‘1’ when Factual Correctness = No
• We devised additional, concrete rubrics for each of the other dimensions. While we do
not present them here for space consideration, they can be found online.⁴

Procedure. In the beginning, we provided an annotation manual for each expert. They
spent around 10 minutes on reading the annotation manual which contains both dimen-
sions and annotation rules we mentioned above. In this process, we also answered their
questions to clarify any issues related to quality evaluation. After that, each expert inde-
pendently worked on the 82 samples provided according to the rubric we provided.

Annotation Agreement. We calculated the annotation agreement based on 29 samples
(overlap for experts) in evaluation experiment. As 7 analogy-based explanations are rec-
ognized as invalid (crowd workers generate the explanation with concepts via the same
domain as target sentence), we calculated the Krippendorff’s 𝛼 scores based on the valid 22
analogy-based explanations. Due to the subjectivity in evaluating the dimensions in the
5-point Likert scales, wemerge the 5 items into three levels of attitude (i.e.,Negative={1,2};
Neutral={3}; Positive={4,5}) when calculating the Krippendorff’s 𝛼 scores. The results are
respectively 0.15 for Structural Correspondence, 0.17 for Relational Similarity, 0.22 for Fac-
tual Correctness, 0.64 for Syntactic Correctness, 0.35 for Misunderstanding, 0.03 for Famil-
iarity, 0.14 for Helpfulness, 0.11 for Transferability, and 0.14 for Simplicity. Naturally, the
experts show relatively higher agreement on Factual Correctness, Syntactic Correctness, and
Misunderstanding, which are more objective than the other dimensions. The disagreement
on other dimensions is due to the subjectivity of the task [233]: knowledge and the quality
of an analogy-based explanation vary depending on one’s own experience of the world.

For further illustrative analysis, let us consider an example analogy-based explana-
tion which received disagreement among experts on most dimensions — “Lemon is seldom
found in high calorie food. This is similar to how having hair is irrelevant for recognising a hu-
man”. All experts see this analogy-based explanation as factually correct and syntactically

⁴https://github.com/delftcrowd/HCOMP2022_ARCHIE/blob/main/annotation_manual/annotation_manual.p
df

https://github.com/delftcrowd/HCOMP2022_ARCHIE/blob/main/annotation_manual/annotation_manual.pdf
https://github.com/delftcrowd/HCOMP2022_ARCHIE/blob/main/annotation_manual/annotation_manual.pdf
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Table 5.3: Evaluation of the following analogy by 5 experts illustrating disagreement – “Lemon is seldom found
in high calorie food. This is similar to how having hair is irrelevant for recognising a human.”

Dimension 𝐸1 𝐸2 𝐸3 𝐸4 𝐸5
Structural Correspondence 4 3 5 1 2

Relational Similarity 1 1 5 1 3
Familiarity 4 5 5 5 2
Helpfulness 1 5 5 1 2

Transferability 4 5 5 1 2
Simplicity 3 5 5 2 3

correct without any misunderstanding. As the experts assessment reveals in Table 5.3, the
experts diverge on most dimensions of the Likert scale.

For further insights in the disagreement, we ask the experts to explain their scoring.
We find multiple user factors can lead to disagreement. For instance, we observed that:
(i) The overall negative attitude of 𝐸4 (“I just gave it a low number because I didn’t really
understand what it was trying to tell me”) towards this explanation, and the severity of
𝐸5 make them rate most dimensions lower. (ii) As the relationship between “lemon” and
“high calorie” is not explicit, experts seem to have different interpretation of the relation-
ship, leading to disagreement on Relational Similarity. While 𝐸1, 𝐸2, 𝐸5 would rate it low,
𝐸3 judge it high, because “calorie is a common property of food, which is not unique to Lemon.
having hair is also a common (mostly) property of humans, which is not unique to a specific
person”. (iii) Some experts have more abstract thinking on the properties and relations,
again causing disagreement. 𝐸1 gives a 4 to Structural Correspondence because they think
“human” and “high calorie” have some connections. And 𝐸2 would rate Relational Similar-
ity as 1 because “people have hair, lemon are not high calorie food”. Besides, we also notice
that both 𝐸1 and 𝐸5 take this explanation as unhelpful due to poor Relational Similarity.

5.5.3 Results and Analysis
In this subsection, we present the quality assessment results for the generated analogies
with the proposed approach.

Descriptive Statistics
In the analogy generation experiment, crowd workers are asked to generate explanations
with concepts in a different domain from the target sentence. The generated analogies
that violate this requirement are then regarded as being invalid. Among the 294 gener-
ated analogy-based explanations, 255 (nearly 87%) were recognized as valid by all five
experts. As the annotation rubric described, experts only provide qualitative evaluation
for valid analogy-based explanations. Finally, we gathered 358 valid evaluation results for
410 samples (82×5, with 29 samples overlap for each).

When generating the analogy-based explanations, crowd workers used everyday con-
cepts in domains “Animals”, “Scene/Place”, and “Weather” most frequently, which are also
in the hint list we provide. For the identified relationship between concepts in generated
analogy, crowd workers prefer to use “FoundAt” (175 times), “SignOf” (158 times), and
“PartOf” (24 times).
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Dimension Label Example
Structural
Correspon-
dence

1 Chocolate and cream contradict with low calorie food. This is similar to how one cannot find tsumanis
in uk.

3 Nuts is insufficient to indicate high calorie. This is similar to how we can find hairdryer in both hotel
and hairdresser, you can’t determine where it is if you see hairdryer.

5 A medical monitor is a definite sign of hospital room. This is like an echocardiogram is definitely a
sign of pulse oximeter.

Relational
Similarity

1 Nuts are seldom found in high calorie food. This is similar to how one cannot find fire hydrants in
boats.

3 Fireplace is not sufficient to indicate bedroom. This is similar to how we can find wig in both pan-
tomime and courtroom, you can’t determine where it is if you see wig.

5 A medical monitor is a definite sign of hospital room. This is like doctor is definitely a sign of surgery.

Transferabi-
lity

1 A fireplace is a definite sign of bedroom. This is like art is definitely a sign of human expression.
3 Beet and apple contradict with high calorie food. This is similar to how one cannot find toys in a

clothes store.
5 Chocolate and ice cream is a definite sign of being high-calorie. This is like keyboard is definitely a

sign of having a computer.

Helpfulness
1 Toothbrush and towel are insufficient to recognize a bathroom. This is similar to how we can find

reading in both education and hobby.
3 Chocolate and cream are definitely a sign of high calorie food. This is like udders are definitely a sign

of cow.
5 A fireplace can seldom be found in a bedroom. This is like dogs can seldom be found in a fishtank.

Familiarity
1 Chocolate and cream contradict with low calorie food. This is similar to how one cannot find bargains

in harrods.
3 Chocolate and cream are seldom found in low calorie food. This is like roar can seldom be found in

big animal.
5 Nuts is not sufficient to indicate high calorie food. This is similar to how we can find books in both

libraries and schools, you can’t determine where it is if you see books.

Simplicity
1 Carrot is not sufficient to indicate high calorie. This is like diets can typically be associated with field

of hay, but it’s also possible to associate diets with gemstones in a gold mine.
3 Table and chair is insufficient to indicate a conference room. This is like atmosphere can typically be

associated with nitrogen, but it’s also possible to associate atmosphere with oxygen.
5 Chocolate and ice-cream are a definite sign of high-calorie. This is like duvet is definitely a sign of

bed.

Table 5.4: Examples of analogies generated for the different scale items of each dimension of the qualitative
analysis.

Analogy quality. Among 358 valid evaluation results, 310 cases were found to be syn-
tactically correct, 198 cases were factually correct without switching placeholder A and
B, 49 cases are factually correct with switching (in total, 79.7% of explanations could be
generated as factually correct). Meanwhile, only 53 cases were found to potentially lead to
multiple interpretations. We compare the quality of analogy-based explanations based on
the category of Factual Correctness. As shown in Figure 5.4, the factually correct analogy-
based explanations show better quality in nearly all dimensions in 5 point Likert scale
than factually incorrect counterparts. As factually incorrect analogies would not be taken
as effective explanations for humans, we only report qualitative results on the factually
correct ones in the following analysis.

The distribution of dimensions in 5-point Likert scale can be visualized with the box-
plots in Figure 5.5. Overall, the generated analogies show good quality in most qualitative
dimensions except Structural Correspondence and Relational Similarity. The experts con-
sider that the analogies are easy to understand and involve familiar everyday concepts,
which indicates these explanations are of relatively low cognitive load. To be concrete
about how the explanations differ in quality, we show examples of scoring 1, 3, 5 for di-
mensions in 5 point Likert scale in Table 5.4. Note that we do not expand on examples for
Factual Correctness, Syntactic Correctness, and Misunderstanding, which are trivial.

To further investigate how qualitative dimensions affect the perceived helpfulness of
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Figure 5.4: Stacked histogram illustrating the difference across the qualitative dimensions based on Factual Cor-
rectness. All dimensions were measured on a 5-point Likert scale.
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Figure 5.5: Box plot illustrating the distribution of the different dimensions considered in our study. All dimen-
sions were measured on a 5-point Likert scale. For all dimensions, 1 indicates a poor quality while 5 indicates a
good quality. 𝑀 and 𝑆𝐷 represent mean and standard deviation respectively.
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analogy-based explanations, we calculated Spearman rank-order correlation coefficients
between Helpfulness and the other Likert-based dimensions. We found a significant posi-
tive correlation between all dimensions andHelpfulness: Structural Correspondence, 𝑟(247) =
0.191, 𝑝 = 0.003; Relational Similarity, 𝑟(247) = 0.374, 𝑝 = 0.000; Familiarity, 𝑟(247) = 0.312,
𝑝 = 0.000; Transferability, 𝑟(247) = 0.445, 𝑝 = 0.000; Simplicity, 𝑟(247) = 0.467, 𝑝 = 0.000.
This confirms that our qualitative dimensions are substantially indicative of their per-
ceived helpfulness. Our findings suggest that if we ensure the generated explanations
are of high quality across these dimensions, they have a higher likelihood of being helpful
in understanding the target sentence.

Comparison between Different Tasks
Among 410 annotations, 174 cases are generated from calorie level classification (CLC)
task, while 236 cases are generated from scene classification (SC) task. According to the
results, 109 and 138 cases are identified as both valid and factually correct for CLC and
SC tasks, respectively. We compared the difference between the quality of analogies gen-
erated with the calorie task and places task. We found a significant difference (𝛼 = 0.05)
on the assessed Relational Similarity (𝐻(1) = 7.54, 𝑝 = 0.006) with a Kruskal-Wallis H-test.
Post-hocMann-Whitney tests further show that the Relational Similarity of analogy-based
explanations generated from SC task is significantly better than the counterparts from
CLC task. However, no significant difference exists in the other qualitative dimensions.

The reason for such a phenomenonmay be that the relationship between “concept” and
“label” in the SC task is more explicit than in the CLC task. This may make it easier for
participants to generate analogy-based explanations while keeping similar relationships.
However, such good analogical properties do not translate to higher perceivedHelpfulness.
This indicates that the interplay between qualitative dimensions and perceived helpfulness
may be complex. Better quality on a single dimension (Relational Similarity here) may not
necessarily lead to a better understanding.

5.6 Study II: Effectiveness ofAnalogy-basedExplanations
in Medical Diagnosis

Our first study showed that our proposed method can generate conceptually high-quality
analogy-based explanations when non-expert workers are involved in the collection pro-
cess. Besides evaluating analogy-based explanations with qualitative dimensions, it is
also important to check how effective they are when assisting users in decision making in
practice. Thus, we conducted an empirical study of human-AI decision making in medical
analysis. In this section, we first present our hypotheses and experimental setup, which
had all been preregistered before any data collection.⁵ Then, we show the experimental
results. Finally, we discuss the findings and implications of this study. This study was
approved by the human research ethics committee of our institution.

5.6.1 Hypotheses
It is still unknown how analogies will affect user understanding of concept-level explana-
tions and how analogy-based explanations affect user reliance onAI systems. Based on our

⁵https://osf.io/jm3ap

https://osf.io/jm3ap
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findings from Study I and findings from existing work [204–206], analogies have proven
effective in aiding users in understanding new knowledge. Little has been done to build an
empirical understanding of the effectiveness of analogies in real-world decision-making
tasks where concept-level explanations are employed [234]. Addressing this research gap,
we hypothesize that analogies can help users better understand AI systems, and that such
an improved understanding will further help users rely on AI systems more appropriately.

H1: Using analogy-based explanations can help users better understand AI systems,
compared to conventional concept-based explanations.
H2: Using analogy-based explanations can facilitate appropriate reliance on AI sys-
tems, compared to conventional concept-based explanations.

Analogies have proven to be effective in helping humans understand new knowledge
and reduce the cognitive load for learning new knowledge [235]. While analogies can
help improve users’ understanding, the additional analogical inference requires more ef-
fort, which may be time-consuming. Therefore, we hypothesize that users can maintain a
similar team performance and be more efficient in their decision making when engaging
with analogy-based explanations when they deem it to be necessary (i.e., on demand).

H3: Analogy-based explanations can reduce the perceived cognitive load of users in
their decision making process.
H4: Providing analogy-based explanations on demand can improve users’ efficiency
in their decision making process.

5.6.2 Task
In our study, we selected a real-world medical diagnosis scenario — skin cancer detection
based on skin lesions as a test bed to verify the effectiveness of analogy-based explanations
in human-AI decisionmaking. All task data are selected from the HAM10000 [236] dataset.
In this task, given an image of a pigmented skin lesion, users are asked to decide whether
the shown image depicts a ‘malignant’ or ‘benign’ skin lesion. The rationale for selecting
the skin cancer detection task is three-fold: (1) This is a realistic scenario for human-AI
collaboration, where humans are designated to make final decisions due to accountability
concerns. (2) Medical concepts in this task are relatively challenging for laypeople to
digest, which fits our motivation of providing analogy-based commonsense explanations
that can be leveraged and used to communicate the explanations to laypeople. (3) There is
a substantial need for AI assistance to help doctors and medical experts check increasingly
large volumes of images. Thus, the settingwe chose is realistic and alignedwith real-world
needs.
Medical Concepts. In our study, we followed Yuksekgonul et al. to adopt eight medi-
cal concepts to help users diagnose skin cancer based on their assessment of malignant
versus benign skin lesions [237]. The eight concepts are: Blue-Whitish Veil, Regular Dots
& Globules, Irregular Dots & Globules, Regression Structures, Irregular Streaks, Regular
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Blue-Whitish Veil

Dots & Globules – type 2

Streaks – type 1 Streaks – type 2

Pigment Network – type 1 Pigment Network – type 2Dots & Globules – type 1

Regression Structure

Figure 5.6: The overview of medical concepts shown to participants in Study II.

Streaks, Atypical Pigment Network, and Typical Pigment Network. Note that these con-
cept names contain words like “Irregular” and “Atypical”, which can clearly indicate their
correlation to the model’s prediction (i.e., benign and malignant) — simplifying an other-
wise complex decision making task. To test the learning effect potentially stemming from
concept-based explanations, we replaced such hints with the abstractions of “type 1” and
“type 2”. In our study, we provided participants with an overview figure illustrating the
eight different medical concepts to aid their decision making (shown in Fig 5.6). For each
concept, we provided an image of an example skin lesion to swiftly illustrate the concept
and help user understanding. To help participants remember and rely on these concepts
along with concept-level explanations in their decision making, we provided a button (cf.
Figure 5.9) below the concept-level explanations, that triggers a pop-up window contain-
ing the overview of medical concepts.
Selection of Tasks. To ensure diversity in the selected tasks and to cover the use of
different medical concepts, we selected 14 tasks based on seven fine-grained categories in
the HAM10000 dataset. To faithfully reflect the performance of the AI system used, we
selected tasks based on performance of the post-hoc concept bottleneck model [237] on
the HAM10000 dataset.

First, we generate model predictions on the validation set of the HAM10000 dataset
(same split as [237]). Then, based on the performance of each category (shown in Table 5.5)
and the sample size of each category, we selected 14 tasks (10 with correct predictions, 4
with wrong predictions). In our study, the accuracy of the AI system is 71.4% (10 / 14).
Pilot Study. To understand how capable non-expert crowd workers are in this task, we
recruited 20 participants from Prolific. The Prolific platform has been shown to be a reli-
able source for participant recruitment in similar XAI studies over the last few years [62,
109, 234] and has a growing reputation as a suitable platform for human subjects research
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Table 5.5: Descriptive statistics of the HAM10000 dataset and AI performance across the seven categories in the
dataset.

Category Label #Tasks Error Rate Selected Task
Benign keratosis-like lesions benign 220 9.1% 1 correct, 1 wrong
Dermatofibroma benign 23 4.3% 2 correct
Melanoma malignant 223 35.4% 1 correct, 1 wrong
Vascular lesions benign 28 10.7% 2 correct
Basal cell carcinoma malignant 103 28.2% 1 correct, 1 wrong
Melanocytic nevi benign 1,341 2.9% 1 correct, 1 wrong
Actinic keratoses benign 65 10.8% 2 correct

across different scientific domains [238, 239]. Each participant in our study received 2 GBP
(8 GBP per hour ⁶) for working on the 14 trial tasks independently. We filtered out three
outliers who spent less than 5 mins on the tasks. On average, the remaining 17 partici-
pants achieved an accuracy of 59.2% on 14 tasks, which is worse than the AI performance
(71.4 %). Thus, the introduction of the AI system in the decision making process within
our study can be beneficial to achieve better team performance.

5.6.3 Experimental Setup
Experimental conditions
To answer the above research questions, we designed a between-subjects study consisting
of four experimental conditions. Example explanations in different conditions are shown
in Table 5.6. Participants in all these conditions saw the systems’ advice, but the five
conditions differed in the inclusion of additional explanations.

• Control: no additional explanation.
• Concept: concept-based explanation from post-hoc Concept Bottleneck Mod-
els [237], similar to ExAID [240] (see Table 5.6).

• Concept-Imp: we provide more details about how important each concept is, which
is the target domain in our proposed analogy-based explanations (see Table 5.6).

• Analogy: analogy-based explanation for each concept (see Table 5.6).
• Analogy-OD: We show the same explanations as the Concept-Imp condition. When
users require further clarification and indicate this by clicking the Clarify button,
we provide an analogy on demand.

Explanation Generation. The AI system in our study is based on a post-hoc concept
bottleneck model [237]. We trained the post-hoc concept bottleneck model following its
official implementation.⁷ As tested by Yuksekgonul et al. [237], it can provide concept-
based explanations aligned with medical knowledge. The post-hoc concept bottleneck
model first learned concept activation vector for skin lesions based on concept banks from
the Derm7pt [241] dataset. Then a linear classifier is trained to make binary predictions.

⁶This was rated as a ‘good’ hourly rate by the platform at the time of running the study.
⁷https://github.com/mertyg/post-hoc-cbm

https://github.com/mertyg/post-hoc-cbm
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Table 5.6: Example of explanations in different conditions. In condition Analogy-OD, when the “clarify” button
is clicked, the analogy is shown on another line for the sake of clarity.

Condition Explanation Type
Concept absence of Streaks - type 1: strong evidence
Concept-Imp Streaks - type 1 is definitely a sign of malignant. Thus, absence of Streaks -

type 1 helps make prediction of benign.
Analogy Streaks - type 1 is definitely a sign of malignant. Thus, absence of Streaks -

type 1 helps make prediction of benign. This is like how a beak is a definite
sign of a bird.

Analogy-OD Streaks - type 1 is definitely a sign of malignant. Thus, absence of Streaks -
type 1 helps make prediction of benign. Clarify

Concept observation of Dots & Globules - type 1: moderate evidence
Concept-Imp Dots & Globules - type 1 can typically be associated with benign.
Analogy Dots & Globules - type 1 can typically be associated with benign. This is like

fish can typically be associated with oceans, but it’s also possible to associate
fish with rivers.

Analogy-OD Dots & Globules - type 1 can typically be associated with benign. Clarify

Based on the linear layer weight w ∈ ℝ𝑘 and concept activation vector c ∈ ℝ𝑘 for each
image, we generate concept-level explanations based on the contribution of each concept.
For concept 𝑐𝑖 , 𝑖 ∈ [1,𝑘], the contribution to final prediction is 𝑠𝑖 =𝑤𝑖 ∗𝑐𝑖 . To generate simple
heuristics-based concept-level explanations (Concept condition), we use two thresholds to
identify the importance of each concept:

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ = {
𝑠𝑡𝑟𝑜𝑛𝑔, |𝑠𝑖 | >= 𝜖1

𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒, 𝜖2 <= |𝑠𝑖 | < 𝜖1
𝑖𝑔𝑛𝑜𝑟𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(5.1)

In our study, we set 𝜖1 = 0.5, 𝜖2 = 0.1. A positive value for contribution 𝑠𝑖 indicates
that the absence/presence of concept 𝑐𝑖 helps predict that the lesion is malignant, while
a negative value indicates the tendency to predict benign. Following the templates used
in Table 5.1 for Concept-Imp condition, we generate the target domain of analogy-based
explanations. To account for errors caused by the absence of concepts, we further clarify
the target domain with relation to the alternative class prediction. Instead of claiming
“absence of [concept] is definitely a sign of [model prediction]”, we use “[concept] is def-
initely a sign of [alternative option]. Thus, absence of concept helps make prediction of
[model prediction].” For example, Streaks - type 1 is definitely a sign of malignant. Thus,
absence of Streaks - type 1 helps make prediction of benign. To increase clarity and reduce
scope for misinterpretations caused by using double negative expressions (e.g., Absence
of [concept] seldom found at benign), we do not provide any explanations in the form of
double negative expressions.

To provide high-quality analogies, we generate analogy-based explanation with two
stages. In the first stage, based on the evaluation results of Section 5.5.3, we only consider
analogies which are syntactically correct, factually correct, and easy to understand (Sim-
plicity > 3). In the second stage, we manually curated and selected the analogies reserved,
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which resulted in 37 valid analogies: “Definite Sign Of” (11), “Typically Associated With”
(9), “Seldom Found At” (9), “Contradict With” (8). Based on the contribution of each con-
cept 𝑠𝑖 and the sign of predictions, we map each concept to a template. Then we generate
the analogies by randomly sampling valid candidates in each template.

Measures and Variables

Table 5.7: The different variables considered in our experimental study. “DV” refers to the dependent variable.
RAIR, RSR, and Accuracy-wid are indicators of appropriate reliance.

Variable Type Variable Name Value Type Value Scale

Learning Effect (DV) F1 of malignant concepts Continuous [0.0, 1.0]
F1 of benign concepts Continuous [0.0, 1.0]

Performance (DV) Accuracy Continuous, Interval [0.0, 1.0]
Accuracy-wid Continuous [0.0, 1.0]

Reliance (DV)
Agreement Fraction Continuous, Interval [0.0, 1.0]

Switch Fraction Continuous [0.0, 1.0]
RAIR Continuous [0.0, 1.0]
RSR Continuous [0.0, 1.0]

Trust (DV)
TiA-Reliability/Competence Likert 5-point, 1: poor, 5: very good

TiA-Understanding/Predictability Likert 5-point, 1: poor, 5: very good
TiA-Intention of Developers Likert 5-point, 1: poor, 5: very good
TiA-Trust in Automation Likert 5-point, 1:strong distrust, 5: strong trust

Cognitive Load (DV)

Mental Demand Likert -7: very low, 7: very high
Physical Demand Likert -7: very low, 7: very high
Temporal Demand Likert -7: very low, 7: very high

Performance Likert -7: Perfect, 7: Failure
Effort Likert -7: very low, 7: very high

Frustration Likert -7: very low, 7: very high
Efficiency (DV) Time of decision making Continuous [0.0, +∞] (s)

Covariates

ATI Likert 6-point, 1: low, 6: high
TiA-Propensity to Trust Likert 5-point, 1: tend to distrust, 5: tend to trust

TiA-familiarity Likert 5-point, 1: unfamiliar, 5: familar
Medical diagnosis expertise Likert 5-point, 1: no expertise, 5: extensive expertise

Skin cancer expertise Likert 5-point, 1: no expertise, 5: extensive expertise

Other
Helpfulness of Explanation Likert 5-point, 1: unhelpful, 5: helpful
Helpfulness of Analogy Likert 5-point, 1: unhelpful, 5: helpful

Experience Category {Yes, No}
Confidence Likert 5-point, -2: unconfident, 2: confident

All variables analyzed in this chapter are summarized in Table 5.7.
Dependent Variables. To assess the learning effect for participants (H1), we calculated
the F1 measures with respect to benign and malignant cases, respectively. In the post-task
questionnaire, we asked participants to select the concepts positively associated with be-
nign and malignant labels. To analyze the impact of analogy-based explanations on user
reliance, we adopted the Switch Fractionmetrics as reliance measures [57, 66]. To assess
the appropriate reliance (H2), we followed Schemer et al. [29] to adopt Relative positive
AI reliance (RAIR) and Relative positive self-reliance (RSR) metrics. The two measures
assessed users’ appropriate reliance from two dimensions (i.e., appropriate adoption of
AI advice and insistence on their own decision), which can help analyze the dynamics
of reliance. To provide an overview of participants’ performance under initial disagree-
ment, we considered Accuracy-wid (i.e., accuracy with initial disagreement). To analyze
the impact of analogy-based explanations on cognitive load (H3), we adopted NASA-TLX
questionnaire [242]. For the analysis of decision making efficiency (H4), we measured the
average time spent on each decision task, which is measured in seconds.
Covariates and Trust. As pointed out by prior studies [243], user domain expertise also
affects their trust and reliance on the AI system. Thus, we assessed participants’ general
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medical expertise by gathering responses on a 5-point Likert-scale ranging from 1: to 5:
(“To what extent are you knowledgeable about medical diagnosis?”), and specific expertise
on skin cancer detection task (“Do you have any experience or knowledge about skin can-
cer?”) on a 5-point Likert-scale ranging from 1: to 5:. We accounted for the effect of par-
ticipants’ affinity with technology through the Affinity for Technology Interaction Scale
(ATI) [91]. To assess participants’ subjective trust in the AI system, we adapted the Trust
in Automation (TiA) questionnaire [90] to the context of the “AI system”. We included
six subscales from the TiA questionnaire: Reliability/Competence (TiA-R/C), Understand-
ing/Predictability (TiA-U/P), Propensity to Trust (TiA-PtT), Familiarity (TiA-Familiarity),
Intention of Developers (TiA-IoD), and Trust in Automation (TiA-Trust).

Other Variables. Meanwhile, for conditions with explanations (analogies), we also as-
sessed the helpfulness of explanations (analogies) with the question, “To what extent did
you find the explanations (analogies) helpful to make decisions?” Responses were gathered
on a 5-point Likert scale from 1 to 5 corresponding to the labels unhelpful, somewhat un-
helpful, neutral, somewhat helpful, helpful. We further collected the reasons (open text) for
perceived helpfulness with “Why did you find the explanation (analogies) to be helpful or
not helpful?” For participants in Analogy and Analogy-OD conditions, we collected their
comments and feedback (open text) to the analogies with: “Please share any comments,
remarks or suggestions regarding the use of analogies to explain the medical concepts.” For
a deeper analysis of our results, we collected responses from participants regarding their
perceived user experience (“Have you ever had this or seen it on others?”) and confidence
(“How confident are you with your decision?”) on 5-point Likert-scales along with each trial
task.

Participants

Sample Size Estimation. Before recruiting participants, we computed the required sam-
ple size in a power analysis for a between-subjects study using G*Power [92]. We specified
the default effect size 𝑓 = 0.25 (i.e., indicating a moderate effect), a significance threshold
𝛼 = 0.0125 (i.e., 0.054 , due to testing multiple hypotheses), a statistical power of (1−𝛽) = 0.8,
and the consideration of 5 different experimental conditions. This resulted in a required
sample size of 265 participants. We thereby recruited 486 participants from the crowd-
sourcing platform Prolific⁸, in order to accommodate potential exclusion.

Compensation. All participants were rewarded with £2, amounting to an hourly wage
of £8 (estimated completion time was 15 minutes). In addition to this, we rewarded par-
ticipants with extra bonuses of £0.1 for every correct decision in the 14 trial cases. Such
monetary bonuses have been shown to motivate and encourage participants to exert gen-
uine effort in decision making tasks, which is also a contextual requirement to encourage
appropriate system reliance [40].

Filter Criteria. All participants were proficient English speakers above the age of 18, and
they had finished more than 40 tasks and maintained an approval rate of at least 90% on
the Prolific platform. We excluded participants from our analysis if they failed at least one

⁸https://www.prolific.co

https://www.prolific.co
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attention check or any missing response. The resulting sample of 280 participants had an
average age of 37 (𝑆𝐷 = 13.0) and a gender distribution (51.4% female, 48.6% male).

Instructions,
Consent Form

Pre-task
Questionnaire

ATI, expertise

Post-task
Questionnaire

Start

TiA, Learning Effect,
NASA-TLX

14 trial cases

Example

Done

Concept

Concept-Imp

Analogy

Control

Analogy-OD

Two examples,
concepts

Figure 5.7: Illustration for the decision making setup.

Procedure
The entire procedure of our study is illustrated in Figure 5.7. All participants first read the
same basic instructions and consent forms. Next, participants were asked to complete a
pre-task questionnaire to measure their affinity for technology interaction and expertise
in medical diagnosis and skin cancer. To onboard participants on the skin cancer detec-
tion task, and help them understand the labels malignant and benign, we provided them
with two examples of benign and malignant skin lesions before they began working with
the tasks. After the examples, all participants excluding the Control condition obtain an
overview of the medical concepts relevant to our study (cf. Figure 5.6).

Next, participants across all conditions worked on 14 trial tasks. In each trial task, we
followed a two-stage decision making process [35, 65, 85]. In the first stage, participants
worked on the task without any extra information (one example shown in Figure 5.8). In
the second stage, AI advice and explanations were provided, and participants had a chance
to alter their decision (one example shown in Figure 5.9). After the task phase, post-task
questionnaires were adopted to assess their cognitive load, their trust in the AI system,
and criteria of making final decisions (open text). For all participants excluding the Con-
trol condition, we assessed their learning effect through a specific question (“Please select
the concepts positively associated with malignant/benign skin lesions.”), their perceived help-
fulness of explanations, and open text reasons for the perceived helpfulness. Participants
in condition Analogy and Analogy-OD were additionally asked to report their perceived
helpfulness of the analogies and to provide rationales/feedback in open text fields.
Attention Checks. To ensure the reliability of participants’ responses, three attention
check questions were placed at the pre-task questionnaire (ATI), task phase, and post-task
questionnaire (Trust in automation). Each attention check asked participants to select a
specific option [93, 143].
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Figure 5.8: Screenshot of the task interface in the first stage of decision making.

Figure 5.9: Screenshot of the task interface in the second stage of decision making for the Concept-Imp condition.
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5.6.4 Experimental Results
Descriptive Statistics
In our analysis, we only consider participantswho passed all attention checks. Participants
were distributed in a balanced fashion over the four experimental conditions as follows:
55 (Control), 55 (Concept), 55 (Concept-Imp), 53 (Analogy), 62 (Analogy-OD).

Distribution of Covariates. The covariates’ distribution is as follows: ATI (𝑀 = 3.87,
𝑆𝐷 = 0.87, 6-point Likert scale, and 1: low, 6: high), Medical Diagnosis Expertise (𝑀 = 1.47,
𝑆𝐷 = 0.81, 5-point Likert scale, and 1: no expertise, 5: extensive expertise), Skin Cancer Ex-
pertise (𝑀 = 1.59, 𝑆𝐷 = 0.81, 5-point Likert scale, and 1: no expertise, 5: extensive expertise),
TiA-Propensity to Trust (𝑀 = 2.76, 𝑆𝐷 = 0.57, 5-point Likert scale, 1: tend to distrust, 5:
tend to trust), TiA-Familiarity (𝑀 = 2.31, 𝑆𝐷 = 1.05, 5-point Likert scale, 1: unfamiliar, 5:
familiar).

Performance Overview. On average across all conditions, participants achieved an ac-
curacy of 63.3% (𝑆𝐷 = 0.11), which is worse than the AI accuracy (71.4%). The agreement
fraction was found to be 0.79 (𝑆𝐷 = 0.16) while the switch fraction was 0.57 (𝑆𝐷 = 0.30).
With these measures, we confirm that in the face of disagreement with AI advice, partici-
pants in our study did not always switch to AI advice or blindly rely on the AI system. As
all dependent variables are not normally distributed, we used non-parametric statistical
tests to verify our hypotheses.

Table 5.8: Accuracy, experience, and confidence for the 14 tasks used in our study. “Acc” and “Con” refer to
accuracy and confidence. The subscript 𝑖 and 𝑓 refer to the initial and final decisions, respectively. “Experience
ratio” refers to the ratio of participants who reported seeing similar skin lesions in their life.

Task ID Acc𝑖 Acc𝑓 Con𝑖 Con𝑓 Experience ratio Ground Truth AI correctness
ISIC-0033051 0.864 0.954 0.52 1.07 0.05 malignant 3
ISIC-0032013 0.857 0.950 0.21 0.91 0.14 benign 3
ISIC-0027107 0.657 0.889 0.00 0.60 0.07 benign 3
ISIC-0028763 0.632 0.864 -0.01 0.57 0.09 benign 3
ISIC-0034271 0.557 0.832 0.01 0.57 0.09 benign 3
ISIC-0027665 0.554 0.818 -0.06 0.34 0.10 benign 3
ISIC-0034155 0.443 0.793 -0.04 0.48 0.04 malignant 3
ISIC-0033790 0.539 0.771 0.00 0.29 0.05 benign 3
ISIC-0028076 0.457 0.750 -0.06 0.24 0.05 benign 3
ISIC-0032557 0.043 0.368 0.93 0.30 0.05 benign 3
ISIC-0029323 0.525 0.304 -0.05 0.29 0.05 malignant ×
ISIC-0032269 0.386 0.282 0.00 0.38 0.06 malignant ×
ISIC-0024924 0.379 0.186 0.26 0.61 0.14 benign ×
ISIC-0029260 0.311 0.100 -0.03 0.71 0.04 benign ×

Performance Per Task. Considering the 14 tasks in our study, we calculated the accuracy
and confidence based on all valid participants. The results are shown in Table 5.8. Gener-
ally, the accuracy of participants increased after being exposed to correct AI advice and
decreased after being exposed to wrong AI advice. Overall, participants showed higher
confidence after being exposed to AI advice. The only exception is task ISIC-0032557,
where participants showed less confidence in their final decision. Among all tasks, most
participants indicated that they never saw the skin lesion image on themselves or on some-
one they know. This is illustrated by the low experience ratios observed across all tasks
(cf. Table 5.8).
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Helpfulness of Explanations and Analogies. In the post-task questionnaire, partici-
pants were asked to report their perceived helpfulness of explanations (for conditions with
explanations) and perceived helpfulness of analogies (for condition Analogy and Analogy-
OD). The distributions of perceived helpfulness are shown in Figure 5.10. Overall, 61.8%
participants reported positive attitudes towards the provided concept-based explanations.
Meanwhile, 39.1% participants in condition Analogy and Analogy-OD found that the pro-
vided analogies were helpful to some extent.

(a) Helpfulness of explanations. (b) Helpfulness of analogies.

Figure 5.10: Distribution of perceived helpfulness of explanations and analogies.

H1: The impact of analogy-based explanations on learning effect
To analyzeH1, we compared the F1 of learned concepts for the benign and malignant skin
lesions. Considering that five concepts are positively correlated with label “malignant”
and three concepts are positively correlated with label “benign”, we adopted the weighted
average F1measures (F1𝑎𝑣𝑔 = 5

8F1𝑚𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡 + 3
8F1𝑏𝑒𝑛𝑖𝑔𝑛) to assess user understanding of the

AI system. The Kruskal-Wallis H-test results are: 𝐻(279) = 1.79,𝑝 = 0.616. The mean and
std are: 𝑀 ±𝑆𝐷(Concept) = 0.55±0.20;𝑀 ±𝑆𝐷(Concept-Imp) = 0.58±0.19;𝑀 ±𝑆𝐷(Analogy)
= 0.56 ± 0.21; 𝑀 ± 𝑆𝐷(Analogy-OD) = 0.52 ± 0.22. No significant difference was found to
suggest a learning effect. Thus, we did not find empirical support for H1 in our study.

Table 5.9: Kruskal-Wallis H-test results for performance-based and reliance-based dependent variables across
five conditions. † and †† indicate the effect of variable is significant at the level of 0.05 and 0.0125, respectively.

Dependent Variables Accuracy Agreement Fraction Switch Fraction Accuracy-wid RAIR RSR
H 2.18 11.03 8.42 15.81 12.77 6.16
p .703 .026† .078 .003†† .012†† .187

M(Control) 0.63 0.83 0.55 0.50 0.53 0.32
M(Concept) 0.64 0.76 0.51 0.49 0.49 0.48

M(Concept-Imp) 0.65 0.83 0.67 0.65 0.70 0.35
M(Analogy) 0.62 0.77 0.55 0.51 0.54 0.39

M(Analogy-OD) 0.63 0.78 0.58 0.55 0.58 0.43

To verify H2, we used Kruskal-Wallis H-tests to compare participants’ performance
across all conditions. The results are shown in Table 5.9. Among the dependent vari-
ables we analyzed across the conditions, we found that participants exhibited significant
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differences in their appropriate reliance. Through post-hoc Mann-Whitney tests using
a Bonferroni-adjusted alpha level of 0.0125, we found that: (1) participants in condition
Concept-Imp showed significantly higher Accuracy-wid than participants in conditions
Control, Concept, Analogy; (2) participants in condition Concept-Imp showed a signifi-
cantly higherRAIR than participants in conditions Control, Concept, Analogy. The results
indicate that the target domain of our analogy-based explanation can help users appropri-
ately rely on AI systems, which is mainly by addressing the under-reliance. However, this
may also trigger over-reliance on the AI system, which is reflected by the relatively low
RSR in comparison with other conditions. At the same time, we found that the analogies
did not have the expected effect in facilitating appropriate reliance. However, our results
suggest that providing analogies on demand can have a better impact on appropriate re-
liance (non-significant). Thus, we did not find empirical support for H2 in our study.

H3: The impact of analogy-based explanations on cognitive load

Table 5.10: ANOVA test results for user cognitive load across five conditions. “Avg” refers to the average cognitive
load among six dimensions. † and †† indicate the effect of variable is significant at the level of 0.05 and 0.0125,
respectively.

Cognitive Load Avg Mental Physical Temporal Performance Effort Frustration
F 5.81 7.01 0.65 0.67 1.08 3.03 1.98
p .000†† .000†† .625 .616 .368 .018† .098

M(Control) -2.25 -0.02 -5.25 -4.35 -1.04 0.87 -3.69
M(Concept) -1.42 2.05 -4.45 -4.33 -1.11 1.85 -2.53

M(Concept-Imp) -0.88 2.62 -4.89 -3.85 -0.13 2.82 -1.85
M(Analogy) -1.07 2.13 -4.53 -3.85 -0.32 2.04 -1.91

M(Analogy-OD) -0.98 2.95 -4.68 -4.32 0.11 2.35 -2.31

To analyze H3 for the impact of experimental conditions on cognitive load, we con-
ducted a one-way ANOVA. Our findings are shown in Table 5.10. Overall, participants
who received explanations reported a higher perceived cognitive load. Through post-hoc
Turkey HSD tests using a Bonferroni-adjusted alpha level of 0.0125, we found a signifi-
cant difference: For both average cognitive load and mental demand, Control< Concept,
Analogy, Concept-Imp, Analogy-OD. Thus, we did not find support for H3.

H4: The impact of analogy-based explanations on decision making efficiency
To analyze H4, we compared participants’ task completion time (units: seconds) in the
14 tasks with Kruskal-Wallis H-test. The results show a significant difference: 𝐻(279) =
23.73,𝑝 = .000. Post-hocMann-Whitney test results showed that participants who received
explanations spent significantly more time making decisions: Control < Concept, Analogy,
Concept-Imp, Analogy-OD. 𝑀 ±𝑆𝐷(Control) = 462±309; 𝑀 ±𝑆𝐷(Concept) = 548±210; 𝑀 ±
𝑆𝐷(Concept-Imp) = 575 ± 209; 𝑀 ±𝑆𝐷(Analogy) = 574 ± 242; 𝑀 ±𝑆𝐷(Analogy-OD) = 658 ±
341.

For a more fine-grained analysis, we calculated the average time spent on each cor-
rect/wrong decision per person for each user group (shown in Table 5.11). With Kruskal-
Wallis H-test, we compared the average time per correct/wrong decision. The post-hoc
Mann-Whitney test results are still consistent with the overall decision making efficiency:
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participants who received explanations spent significantly more time making decisions.
Thus H4 is not supported by our experimental results.

Table 5.11: Time per decision (in seconds). The “Decision-level” is calculated by average on all decisions in each
condition. The “Human-level” is calculated by the average of all humans in each condition.

Granularity Decision-level Human-level
Correctness 𝑀 ±𝑆𝐷 (Correct) 𝑀 ±𝑆𝐷 (Wrong) 𝑀 ±𝑆𝐷 (Correct) 𝑀 ±𝑆𝐷 (Wrong)

Control 34.19±39.85 30.92±31.06 34.17±23.71 30.16±21.31
Concept 37.90±29.74 41.35±32.17 37.83±14.82 41.67±19.00

Concept-Imp 39.86±32.34 43.25±39.69 40.78±16.18 41.84±20.46
Analogy 40.71±35.37 41.51±31.49 40.84±19.79 42.78±19.92

Analogy-OD 47.21±59.91 46.66±51.51 46.99±27.13 46.63±32.16

5.6.5 Exploratory Analysis
The Impact of First Impression
Prior work has demonstrated the significant impact of first impressions of AI systems in
shaping user trust and reliance [87, 99, 244]. We thereby analyzed the potential impact
of task ordering and the accuracy of AI advice. To this end, we grouped participants
according to the AI accuracy within the first five tasks. Participants who either never en-
countered wrong AI advice or did so only once are grouped within “Good First Impression”,
and others are grouped within “Bad First Impression.” We compared participants’ perfor-
mance and reliance on AI systems with Kruskal-Wallis H-test. We found no significant
difference, suggesting that first impressions of the AI system did not have an effect within
our study.

Analysis of Trust and Covariates
An ANCOVA analysis across the experimental conditions revealed no significant differ-
ence in the perceived trust of the participants in the AI system (TiA). For all covariates,
we conducted Spearman rank-order tests with dependent variables.
The impact of propensity to trust. As shown in Table 5.12, TiA-Propensity to Trust
significantly affected user trust in the AI system. With Spearman rank-order test, we
found that TiA-Propensity to Trust positively correlated with all trust measures: TiA-R/C,
𝑟(278) = .650, 𝑝 = .000; TiA-U/P, 𝑟(278) = .344, 𝑝 = .000; TiA-IoD, 𝑟(278) = .283, 𝑝 = .000;
TiA-Trust, 𝑟(278) = .677, 𝑝 = .000. Meanwhile, TiA-Propensity to Trust also showed signifi-
cant positive correlationwith performance and appropriate reliancemeasures: Agreement
Fraction, 𝑟(278) = .227, 𝑝 = .000; Switch Fraction, 𝑟(278) = .220, 𝑝 = .000; RAIR, 𝑟(278) = .183,
𝑝 = .002; RSR, 𝑟(278) = −.216, 𝑝 = .000. It is worth noting that the general propensity to
trust positively correlated with all trust dimensions, and Agreement Fraction, Switch
Fraction, RAIR, but negatively correlated with RSR. Thus, participants with a higher
propensity to trust tend to rely more on the AI system after the XAI is provided. How-
ever, this addresses under-reliance to some extent but also causes over-reliance.
Other covariates. For TiA-Familiarity, we found a strong positive correlation with some
trust measures: TiA-R/C, 𝑟(278) = .232, 𝑝 = .000; TiA-Trust, 𝑟(278) = .286, 𝑝 = .000. For
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Table 5.12: ANCOVA test results corresponding to user trust across experimental conditions. † and †† indicate
the effect of variable is significant at the level of 0.05 and 0.0125, respectively.

Dependent Variables TiA-R/C TiA-U/P TiA-IoD TiA-Trust
Variables 𝐹 𝑝 𝜂2 𝐹 𝑝 𝜂2 𝐹 𝑝 𝜂2 𝐹 𝑝 𝜂2

Experimental Condition 1.02 .397 0.01 0.45 .769 0.01 4.47 .002†† 0.05 3.06 .017† 0.02
Medical Expertise 0.47 .493 0.00 3.05 .082 0.01 0.03 .868 0.00 0.22 .639 0.00

Skin Cancer Expertise 2.97 .086 0.01 0.09 .766 0.00 1.64 .201 0.01 0.01 .927 0.00
ATI 0.58 .448 0.00 2.10 .149 0.01 3.68 .056 0.01 2.03 .155 0.00

TiA-Propensity to Trust 182.14 .000†† 0.39 31.72 .000†† 0.10 35.53 .000†† 0.11 223.51 .000†† 0.44
TiA-Familiarity 1.58 .210 0.00 0.22 .641 0.00 0.52 .471 0.00 3.35 .068 0.01

ATI, we found a strong positive correction with TiA-Trust, 𝑟(278) = .149, 𝑝 = .012. How-
ever, according to the results of ANCOVA analysis of trust (Table 5.12), the impact of ATI
and TiA-Familiarity is insignificant. No strong correlation was found for the covariates
of expertise in medical diagnosis expertise. We found a strong negative correlation with
the skin cancer expertise and Switch Fraction: 𝑟(278) = −.175, 𝑝 = .003. Among 280 partic-
ipants, 166 reported zero skin cancer experience or expertise.

Impact of user opinions towards explanations and analogies
Opinion towards explanations. To understand how users’ perceived helpfulness of
explanations affects user trust and reliance on the AI system, we conducted the Spear-
man rank-order test for participants in the condition Concept, Concept-Imp, Analogy, and
Analogy-OD. The results show that, the perceived helpfulness of explanations is positively
correlated with user trust: TiA-R/C, 𝑟(223) = .400,𝑝 = .000; TiA-U/P, 𝑟(223) = .397,𝑝 =
.000; TiA-IoD, 𝑟(223) = .249,𝑝 = .000; TiA-Trust, 𝑟(223) = .407,𝑝 = .000. However, there is
no significant correlation between the perceived helpfulness of explanations and reliance-
based dependent variables.
Opinion towards analogies. Similarly, to understand how users’ perceived helpfulness
of analogies affects user trust and reliance on the AI system, we conducted the Spearman
rank-order test for participants in condition Analogy and Analogy-OD. The results show
that the perceived helpfulness of analogies is positively correlated with user trust: TiA-
R/C, 𝑟(113) = .303,𝑝 = .001; TiA-U/P, 𝑟(113) = .290,𝑝 = .002; TiA-IoD, 𝑟(113) = .368,𝑝 =
.000; TiA-Trust, 𝑟(113) = .297,𝑝 = .001. Meanwhile, there is no significant correlation
between the perceived helpfulness of analogies and reliance-based dependent variables.

24.5% participants in the Analogy condition found the analogies to be helpful (per-
ceived helpfulness > 0), while 51.6% participants in the Analogy-OD condition thought the
analogies are helpful. This may also help explain why participants in the Analogy con-
dition showed slightly lower Switch Fraction, Accuracy-wid, RAIR and RSR in com-
parison with the Analogy-OD condition. Combined with the strong positive correlation
between perceived helpfulness and user trust in the AI system, we can infer that partici-
pants in the Analogy condition showed less trust and reliance on the AI system (i.e., they
exhibited under-reliance on the AI system). Meanwhile, participants in the Concept-Imp
condition showed very low RSR, which indicates over-reliance on the AI system.

Qualitative Analysis of Feedback
We asked all participants in our study for their rationales in their decisionmaking using an
open-ended question (“Please describe how you made your decisions in these tasks.”). Using
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the thematic analysis software, ATLAS.ti,⁹ we conducted a thematic analysis and selected
the top-5 topics mentioned by users (shown in Table 5.13).

Table 5.13: Resulting main themes from the thematic analysis of participants’ responses to the open questions
pertaining to the decision criteria.

Topic Frequency Participant Feedback
Picture 91 (1) I looked at the pictures and tried to match themwith the descrip-

tions for either malignant or benign. - Analogy-OD (2) based on the
image content and my understanding of malignant features. - Con-
trol (3) by judging the photos. - Analogy

Examples 77 (1) Based on the examples shared and severity of the colours and
depth of the shape. - Analogy (2) I looked at the image and referred
back to the malignant and benign images and tried to think which
it resembled. - Analogy

Explanations 77 Started off by remembering the concepts and applying them to the
initial image. Then refining that based on the AI. Generally trusted
the AI’s decisions more than my own. I weighed up the Positive
and Negative evidence. - Analogy

Intuition 68 (1) I went entirely on instinct. If the image made me feel uncomfort-
able I labelled it malignant. Funnily enough most of the time my
instincts were in agreement with the AI. - Control (2) how i thought
it maybe should look if it was something bad. - Analogy

AI advice 62 (1) Applied the knowledge that I previously had and the information
taught in this task; used AI to help if I was a bit confused and it was
labeling the image. - Analogy-OD (2) Based on my intuition and
recommendations from the AI system. - Analogy

For participants who received explanations alongwith the AI advice, we asked for their
feedback regarding the usefulness of explanations. According to the 139 participants who
reported the explanations to be “somewhat helpful” or “helpful”, the main reasons are
summarized below:

1. the explanations enrich the context of decision making or help make the decision -
32.4%;

2. the explanations help improve the understanding of the AI system - 18.7%;
3. the explanations help confirm or validate their decision - 7.2%
The main reasons due to which workers found explanations to be either “somewhat

unhelpful” or “unhelpful” are summarized below:
1. participants lack knowledge or expertise to interpret explanations - 41.9%;
2. participants failed to understand the explanations - 16.3%;
3. explanations are difficult to apply - 11.6%.
In case of analogies, the major reason that workers reported perceiving analogies as

helpful were that analogies aided their understanding and reasoning (15 participants, 33.3
%). The top-5 reasons for perceiving analogies as unhelpful are as follows:

1. participants failed to connect the source domain with the target domain - 22.9%;
2. participants think the analogies do not make sense - 18.6%;
3. participants think the concepts are not relevant - 14.3%;

⁹https://atlasti.com
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4. participants fail to understand the analogies - 12.9%;
5. participants think the analogies are not necessary - 10%.
We asked participants in conditions Analogy and Analogy-OD for their feedback and

comments on the provided analogies. Overall, we found conflicting attitudes toward the
provided analogies. While some users found merit in their use, others found them to be
distracting. This is reflected in the sample quotes from two participants below.

“It’s definitely useful and helpful for getting the point across to laymen like my-
self ”.

“I don’t get the relevance of using analogies to explain medical concepts. I also
don’t think they were explaining the concepts. It was essentially saying water is
wet...”.

Insights from users to improve the effectiveness of analogy-based explanations.
Based on the feedback from participants in the relevant experimental conditions in our
study, we summarized the following potential directions to further improve the effective-
ness of analogy-based explanations:

• Enhancing the relation between the target domain and the source domain (analogies). Among
participants who found analogies to be “unhelpful,” many of them claimed that they
failed to understand the analogies or make immediate connections or associations with
the target domain.

• Providing analogies in a more relevant domain. Some participants complained that they
failed to connect the concepts used in the analogies with the context of medical anal-
ysis. Analogies in a relevant domain can potentially help improve the plausibility and
trustworthiness of analogy-based explanations.

• Providing analogies selectively or on demand. When the original explanation is clear
enough, some participants would take the analogies as unnecessary or even distracting.
Some others reported feeling annoyed: “However, when the concept is straightforward or
otherwise readily met in normal daily life, the use of an analogy can easily be perceived
as condescending or even irritating and thus antagonize, rather than assist, the person
concerced.” However, if a lot of analogies are used, users may feel overwhelmed, which
may hurt their trust and satisfaction with the analogy-based explanations.

5.7 Discussion
In summary of the experimental results, Table 5.14 provides an overview of the findings.
Based on the findings in Study I and Study II, we elaborately discussed the potential effect
of analogy properties. We also identify and synthesize the limitations of our studies.

5.7.1 Key Findings and Implications
Subjectivity of Analogies. The results of the study I especially highlight the subjective
nature of the qualitative dimensions that characterize analogies. According to Krippen-
dorff’s 𝛼 , we find that experts show clear disagreement on most qualitative dimensions.
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Table 5.14: Summary of key findings in two studies.

Study Findings

Study I

The proposed qualitative dimensions were found to positively correlate with the perceived
helpfulness of analogy-based explanations.
The expert evaluation results show that experts do not always agree on some qualitative
dimensions (e.g., Structural Correspondence).

Study II

The analogy-based explanations fail to bring improved user understanding, which is as-
sessed by the learning effect of the concepts.
Participants showed similar levels of performance across all conditions, participants
showed better appropriate reliance in condition Concept.
Participants who received explanations indicated higher cognitive load.
Participants who received explanations spent significantly more time making decisions.

This is possibly because of the different experiences of theworld each expert has, leading to
different interpretations and familiarity of the commonsense facts in the analogies. Prior
work on inter-rater disagreement suggested that disagreement is not always noise but
can also be a signal [245]. With disagreement from multiple explainees, we can address
the ambiguity and vagueness of analogy-based explanations and seek further improve-
ment [246, 247]. When evaluators find that one commonsense explanation falls short in
specific dimensions, we can involve another crowd worker to improve it according to the
feedback.

The comparison between the quality of explanations generated from the two tasks
shows that better quality on a single dimension (like Relational Similarity) does not neces-
sarily translate to better helpfulness in understanding the target sentence. However, if an
explainee (e.g., 𝐸1 and 𝐸5) thinks the explanation is of poor Relational Similarity, they may
tend to judge it unhelpful. Meanwhile other user factors (like abstract thinking, personal
interpretation, and general attitude in disagreement analysis) may also affect the perceived
helpfulness and other qualitative dimensions. This points out the need for further studies
about the impact of user factors (e.g., experience, belief) and qualitative dimensions on the
helpfulness of analogy-based explanations.

Contradicting with the assumption that commonsense knowledge should be accepted
and understood by all humans [192], the disagreement from experts also reveals that com-
monsense explanations are not one-size-fits-all solutions for laypeople. This is in line with
findings for explainable AI [27, 179]. In the future, one should adjust the commonsense
explanations according to the explainee’s belief about the world to ensure the effective-
ness of such analogical inference from commonsense knowledge. This also suggests that
the role of personalization should be carefully considered when generating commonsense
explanations.
Automatic Analogy Generation and Evaluation. In study I, we observed that around
one-third of generated analogies are not factually correct, and that it can be difficult for
workers to generate analogies that demonstrate a high Structural Correspondence and Re-
lational Similarity. This highlights the need for strategies to support workers in generat-
ing effective analogies. Especially, we envision the development of machine-in-the-loop
crowdsourcing tasks, e.g., by using relational knowledge bases andmachine learningmeth-
ods as an auxiliary toolkit to facilitate automation [214, 216]. Knowledge bases store real
world facts in a pre-defined format, typically a triplet ⟨ subject, predicate, object ⟩. Hence,
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once the relationship between the concept and label in a target sentence is identified, it
would be straightforward to find correct everyday facts sharing the same relationship
along with high Structural Correspondence. This would provide high-quality candidate
concepts to the crowd workers, reducing their work load.

Our results of study I highlight that most qualitative dimensions show a significant
positive correlation to perceived helpfulness. Yet, it would be expensive to always obtain
a human evaluation for quality control. Future work should hence investigate the (semi-
)automatic assessment of the different quality dimensions (or at least of helpfulness). For
Syntactic Correctness, one could involve automation toolkits (like syntactic error detection
provided by Grammarly¹⁰) to provide suggestions for fixing syntactic errors when par-
ticipants generate analogies on the fly. For Simplicity and Misunderstanding, one could
maintain a list of everyday concepts and a list of concepts with multiple interpretations
for ease of automatic check. Recent work on jury learning [248] proposed amethod to con-
duct automatic pseudo-human value judgement with machine learning models, which can
be an alternative to expert-based quality evaluation, while accounting for the subjectivity
of each dimension.

The Role of Human Intuition. In study II, many participants reported that they relied
on their intuition to make their final decisions. This indicates that human intuitions play
a critical role in shaping user understanding and reliance behaviors. Our findings suggest
that human intuition can be a potential factor to achieve the goal of appropriate reliance
on AI systems. This is in line with prior findings about human intuition in the human-AI
decision making context [249, 250].

On the one hand, human intuition may facilitate complementary collaboration with
the AI system. On the other hand, human intuition can also cause bias when making
decisions. In our study, we found that the Agreement Fraction is relatively high (on av-
erage, around 0.80 across all conditions), while RSR is low for most conditions. In other
words, when AI advice is wrong and users disagree, they tend to rely on AI advice instead
of their initial decision (which is correct). This indicates a clear over-reliance on the AI
system. This is also found in prior studies about the pitfalls of XAI interventions [70, 107].
Such over-reliance can be associated with confirmation bias and the illusion of explana-
tory depth [218]. Meanwhile, participants also showed clear under-reliance in condition
Control, Concept, Analogy (significantly worse than condition Concept-Imp). A potential
cause for such under-reliance can be the Dunning-Kruger effect [60]. As reported by He
et al. [30], “users who overestimated their capability on the task tend to exhibit under-
reliance.” In our study, several participants reported that they did not find explanations
and analogies helpful. However, we found a strong positive correlation between the per-
ceived helpfulness of explanations (analogies) and the subjective trust in the AI system.
We can infer that participants’ trust was negatively affected by the perceived unhelpful-
ness of analogies, which may have further impacted user reliance on the AI system. In
the broader context of human-AI decision making, it would be arguably impossible for
most laypeople to comprehensively understand complex AI systems. According to Lee et
al. [40], “trust guides reliance when complexity and unanticipated situations make a com-
plete understanding of the automation impractical.” Thus, participants in our study may

¹⁰https://www.grammarly.com/

https://www.grammarly.com/
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have exhibited under-reliance due to uncalibrated trust.

TheRole of Plausibility. Through the results of the empirical study, we found that many
participants thought (1) the target domain of proposed analogy-based explanations was
clear enough; and (2) extra analogies are not always helpful, especially when participants
fail to connect them with the target domain. Such findings can be partially explained
by the plausibility of explanations. Participants implicitly hold the belief that “plausible
explanations typically imply correct decisions, and vice versa” [182]. Those participants
who may have found the analogies to be implausible may have perceived certain AI ad-
vice as untrustworthy and thereby relied less on the AI system. Such under-reliance could
result in sub-optimal team performance. This may help explain the finding that partici-
pants in the Analogy condition showed worse RAIR than participants in the Concept-Imp
condition. Compared to the Analogy condition, more participants in Analogy-OD took the
analogies as plausible (perceived helpfulness > 0). Meanwhile, participants in Analogy-OD
condition showed higher Switch Fraction, Accuracy-wid, and RAIR and RSR. This in-
dicates that providing analogies on demand may be a good design to facilitate human-AI
collaboration. When analogies are not used appropriately, both under-reliance and over-
reliance can be triggered due to implausibility.

5.7.2 Caveats and Limitations
Bias inTemplates. We used 6 pre-defined templates to help participants generate analogy-
based explanations. While crowd workers can generate syntactically correct explanations
to elucidate the relevance level in concept-based explanations, these templates may lead
to biases in the analogy generation [149, 157]. These templates show an initial bias to
relationships which may limit the participants’ creativity in generating useful analogies.
However, as we found through our study, participants benefit from domain cues that can
help them anchor their creativity and generate high-quality analogies.

Restricted Usage. Meanwhile, analogy-based explanations may not be the ideal solution
for all application scenarios. According to results from our study, we summarize several
scenarios inappropriate to adopt analogy-based explanations. First, when the original task
is simple enough and only involves everyday concepts, analogy-based explanations may
not work as expected. In such scenarios, analogy-based explanations turn out to pose
more cognitive load and make it confusing to users. Second, when no explicit properties
and relationship are associated with the task domain (like CLC in our study), analogy-
based explanations may not be as effective for laypeople. In these tasks, it would be very
hard to generate effective analogies due to a lack of explicit structural correspondence and
relational similarity.

As the analogy-based explanations are generated based on concept-level explanations,
cascading effects are also a limitation for analogy-based explanations. If the concept-level
explanations do not faithfully reflect the internal state of AI systems, there is no chance
for analogy-based explanations to do so. Furthermore, as analogy-based explanations are
more familiar to most users, they have the potential to be more persuasive than original
concept-based explanations. In other words, when the concept-level explanations mislead
AI system users, effective analogy-based explanations generated from them may amplify
such impact.
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Potential Human Biases. Draws et al. have demonstrated that cognitive biases intro-
duced by task design andworkflow can negatively impact crowdsourcing experiments [157].
Using the Cognitive Biases Checklist [157], we analyzed the potential biases in our study
and reported our findings here. On the task ISIC-0032557 most participants thought that
they made correct decisions and reported a high confidence in their decisions. However,
that may have been a result of an illusion of their competence on the task. They achieved
only 4.3% accuracy on this task. This suggests that Overconfidence or Optimism Bias
bias (i.e., Dunning-Kruger effect [30, 60]) may have played a role in shaping these out-
comes. Meanwhile, some participants also reported that the explanations helped confirm
and validate their initial decision, suggesting a potential role of Confirmation Bias in
shaping our findings. In our study, we provide 4-7 concept-level explanations / analogy-
based explanations along with each task. From the open text feedback, two participants
reported an information overload. This may have some negative impact on user trust and
reliance. Due to the Self-interest Bias, crowd workers may not have thoroughly checked
explanations in each task.

Threats to generalizability. In study I, we generated and evaluated analogy-based
explanations on two relatively simple and low-stake tasks. The perceived quality of
analogy-based explanations should be further evaluated with more realistic decision sce-
narios which require AI support. Although the generated analogy-based explanations are
thought to be highly transferable, it is unknown how our findings and insights can general-
ize to complex and high-stake tasks. If the generated analogies are not always transferable,
it would be valuable to investigate how to generate effective analogy-based explanations
for specific high-stake tasks, e.g., with experts.

Since human intuition may have heavily affected decision making in this task, some
findings in study II may not generalize to tasks where human intuition does not have
a dominant role. In our studies, only the relevance level between concepts and model
predictions is highlighted and explained with analogies. However, analogies can be used
to express more complex structural corresponding and relationally similar events in real-
world problems. Our findingsmay not carry forward tomore complex concept-level expla-
nations (e.g., in case of a greater number of concepts or more complex relational structures
between concepts).

5.8 Conclusions and Future Work
In this chapter, we propose to elucidate concept-level AI explanations with analogical in-
ference from commonsense knowledge in order to facilitate meaningful collaborations be-
tween an AI system and non-expert humans receiving advice from the AI system. To this
end, we first designed a template-based analogy generation method, and we instantiated
our method by recruiting crowd workers to generate analogy-based explanations using
two image classification tasks – calorie level classification and scene classification (RQ1).
To assess the quality of the generated explanations, we then synthesized a structured set
of quality dimensions and applied it to our explanations (RQ2). An expert-led evaluation
showed that our proposed method can generate high-quality analogy-based explanations
with non-expert workers.

To comprehensively explore how analogy-based explanations affect user understand-
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ing of and reliance on the AI system, we then conducted a follow-up empirical study on
a skin cancer detection task (RQ3 and RQ4). Results from this second study showed that
(1) the lack of domain expertise hinders user understanding of concept-level explanations;
(2) compared to traditional concept-level explanations, the improved concept-level expla-
nations (i.e., target domain of our analogy-based explanations) can promote appropriate
reliance on the AI system by mitigating under-reliance, but may also trigger over-reliance;
(3) providing analogies on demand can be a good design for adoption of analogy-based ex-
planations; (4) yet analogy-based explanations should be carefully designed and used in
order to effectively elucidate concept-level explanations. Experimental results provide
limited support that analogy-based explanations can facilitate user understanding of the
AI system or appropriate reliance on the AI system. However, we cannot deny the po-
tential of analogy-based explanation in assisting laypeople for effective decision making.
Compared to concept-level explanations, the additional analogies do not cause a signifi-
cant delay in decision making or pose a significantly higher cognitive load. Our findings
suggest that the key challenge is in generating high-quality analogies and the potential
for personalization. Based on the qualitative analysis of participants’ feedback and user
reliance patterns, we summarized guidelines for future work about generating effective
analogy-based explanations and on the appropriate usage of analogy-based explanations.

In this chapter, we focused on generating high-quality analogy-based explanations us-
ing non-expert crowd workers, and evaluating their effectiveness. With the results from
the first study (𝑁 = 100), it is evident that both generation and evaluation of analogy-
based explanations are challenging and time-consuming. In the imminent future, we will
consider including machine learning algorithms and leverage knowledge bases to auto-
mate this task while achieving scalability and efficiency. In our second study (𝑁 = 280),
we found that analogy-based explanations do not work as expected in facilitating appro-
priate reliance. However, we found enough evidence that highlights their potential for
aiding laypeople in understanding AI systems. Hence, further research about the gener-
ation of effective analogy-based explanations and their appropriate use is required. Par-
ticularly, we also found that the understanding of commonsense explanations varies with
the experience of the recipient user, which points out the need for further work on the
personalization of commonsense explanations.
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6
Conversational XAI Decision

Support
Explainable artificial intelligence (XAI) methods are being proposed to help interpret and un-
derstand how AI systems reach specific predictions. Inspired by prior work on conversational
user interfaces, we argue that augmenting existing XAI methods with conversational user in-
terfaces can increase user engagement and boost user understanding of the AI system. In this
chapter, we explored the impact of a conversational XAI interface on users’ understanding of
the AI system, their trust, and reliance on the AI system. In comparison to an XAI dashboard,
we found that the conversational XAI interface can bring about a better understanding of
the AI system among users and higher user trust. However, users of both the XAI dashboard
and conversational XAI interfaces showed clear over-reliance on the AI system. Enhanced
conversations powered by large language model (LLM) agents amplified over-reliance. Based
on our findings, we reason that the potential cause of such over-reliance is the illusion of ex-
planatory depth that is concomitant with both XAI interfaces. Our findings have important
implications for designing effective conversational XAI interfaces to facilitate appropriate re-
liance and improve human-AI collaboration.

6.1 Introduction
In recent years, deep learning-based AI systems have brought about tremendous possi-
bilities to change and affect our daily life [251, 252]. Due to the intrinsic opaqueness of
such systems, automating critical decision making by using AI systems is far from reli-
able [253]. However, leveraging such powerful AI systems to assist and empower human
decision makers is an alternative that has gained prominence [22]. In such a collabora-
tive decision making process, explanations are incorporated to increase intelligibility and
ensure that decision makers can make informed decisions [254]. Post-hoc explainable AI

This chapter is based on a peer-reviewed paper:  Gaole He, Nilay Aishwarya, Ujwal Gadiraju. Is Conversa-
tional XAI All You Need? Human-AI Decision Making With a Conversational XAI Assistant. 30th International
Conference on Intelligent User Interfaces (IUI ’25), March 24–27, 2025, Cagliari, Italy. https://doi.org/10.1145
/3708359.3712133.

https://doi.org/10.1145/3708359.3712133
https://doi.org/10.1145/3708359.3712133
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(XAI) methods are typically used to help explain AI predictions from deep learning-based
AI systems.

To realize the goal of complementary team performance, users of an AI system are
expected to rely appropriately on AI advice [29]. Such appropriate reliance requires a
comprehensive understanding of the AI system and its underlying rationale alongside
the AI advice [40, 171, 255], which play important roles in calibrating user trust and re-
liance behaviors [66, 256]. According to several empirical studies in human-AI collabora-
tion [22, 66, 107], most XAI methods are not as helpful as expected and are even harmful
at times (e.g., causing over-reliance). The reasons behind this are multi-fold: (1) Most
existing XAI methods can only provide specific types of information [257] (e.g., feature
importance [186], counterfactual reasoning [258]). (2) In practice, there are diverse stake-
holders of AI systems [223, 224] (e.g., developers, experts, and laypeople) having different
levels of domain expertise and AI literacy. (3) The information needs of diverse stakehold-
ers can vary greatly. Thus, a specific type of XAI method can seldom address varying
information needs, resulting in a lack of understanding of the AI system.

Based on folk concepts in the theory of mind literature, Jacovi et al. [259] argue that
successful explanations can provide users with the necessary components to build a coher-
ent mental model. We extrapolate that to make critical decisions with AI assistance, users
need to build a relatively more complete and coherent mental model by exploring differ-
ent explanations provided by XAI methods. However, such a process can be complex—it
requires processing information based on a variety of aspects, depending on the XAI meth-
ods. When presenting tailored explanations for specific audiences, designers need to trade
off the simplicity and completeness of the explanations [260]. Instead of selecting a single
specific explanation, an XAI dashboard enables users to explore their information needs
by providing them access to their desired explanations on demand. Such an interactive in-
terface can bring forth the advantages of both simplicity and completeness and has been
increasingly recognized as an effective design [261, 262]. However, not all users have
the necessary AI knowledge and experience to understand or benefit from such explana-
tions [257]. Nor can all users articulate their information needs and find suitable XAI
methods to address their concerns [263]. Therefore, we need a more flexible, dynamic,
and personalized approach to resolving users’ explanation needs.

Conversational user interfaces can provide a human-like interaction [264] and simplify
complex tasks with filtered information [265], which can bring better user experience and
higher user engagement. Inspired by prior work on conversational user interfaces for
XAI [263], we argue that augmenting existing XAI methods with conversational inter-
faces can potentially boost users’ understanding of the AI system through an improved
exploration of their explanation needs. Such interaction may benefit humans by fostering
increased engagement and helping build a relatively more coherent and complete men-
tal model that aids their information needs. Thus far, only a few studies [266–270] have
explored how conversational interfaces can be combined with XAI methods. However,
existing work has not systematically explored the impact of conversational XAI interfaces
on user trust and reliance in the context of critical decision making. Our work presents a
study that addresses this under-explored research and empirical gap.

In this chapter, we explored how conversational XAI interfaces shape user understand-
ing of an AI system. To this end, we aim to address the following research questions:
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RQ1: How does a conversational XAI interface shape user understanding of an AI system,
in comparison with an XAI Dashboard?
RQ2: How does a conversational XAI interface influence user trust and reliance on an
AI system, in comparison with an XAI Dashboard?

To answer these questions, we conducted an empirical study (𝑁 = 306), exploring
human-AI collaborative decision making in a loan approval task (i.e., making a binary de-
cision based on a loan applicant profile). To further our understanding of the impact of en-
hanced conversation with flexible user input and high-quality text responses based on XAI
outcomes, we considered large language model (LLM) agents to power the conversational
XAI interface. Overall, we found that users with conversational XAI interfaces tended to
rely more on the AI system. However, such increased reliance did not always translate
into appropriate reliance. Instead, it was characterized by clear patterns of over-reliance.
Compared to an XAI dashboard, we observed limited improvements in user understanding
and trust brought forth by the conversational XAI interface. We found a strong correla-
tion between most measures of user understanding and user trust with users’ reliance
behaviors.

Our results collectively suggest that both the XAI dashboard and the conversational
XAI interface worked as persuasive technology. Leveraging LLM agents to power the con-
versational interface can increase the perceived plausibility of explanations, potentially
amplifying such impact. These observations highlight that supporting specific AI ad-
vice with interactive XAI interfaces can lead to creating an illusion of explanatory depth.
To this end, users may overestimate the capability of the AI system. Our findings suggest
that apart from improving user experiences with conversational interfaces, addressing the
illusion brought about by such persuasive technologies can be pivotal in facilitating ap-
propriate reliance on AI systems. Systematic empirical explorations are fundamentally im-
portant to understand how conversational interfaces can be leveraged effectively to foster
optimal human-AI collaboration. In the absence of such efforts, designers and practition-
ers are often left to make less-informed choices that can lead to unintended consequences.
In this spirit, our work has important theoretical implications for promoting appropriate
reliance using XAI methods, and in equal part, design implications for effective conversa-
tional interfaces to support human-AI collaboration.

6.2 Related Work
This chapter focuses on exploring the impact of an XAI dashboard and a conversational
XAI interface on user understanding of an AI system (RQ1), which may further affect
user trust and appropriate reliance (RQ2). Thus, we position our work in the following
realms of related literature: human-AI decision making (§6.2.1), explainable AI (§6.2.2),
and conversational user interfaces (§6.2.3).

6.2.1 Human-AI Decision Making
While predictive AI systems are powerful, they are seldom perfect [271]. Transparency
and accountability issues prevent deep learning-based AI systems from automation in
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high-stakes applications like medical diagnosis [272]. In comparison, human workers
(e.g., medical doctors) show strong reliability and accountability for their work outcomes
and decisions, which serve as the foundation for customers to trust their services. With
these concerns, human-AI collaborative decision making is regarded as a promising ap-
proach to taking advantage of both humans and AI to achieve more accurate and reliable
decision outcomes.

Complementary team performance is an important goal for human-AI decision mak-
ing [70, 219], and will continue to be vital in the age of LLMs [273–275]. To achieve
complementary team performance, users of AI systems are expected to rely on AI advice
appropriately [29]. To this end, users are expected to follow AI advice when the AI system
is more capable than them, and not rely on AI advice when the AI system is less capable.
When users fail to calibrate their trust in the AI system, they may misuse or disuse the
AI advice, resulting in over-reliance and under-reliance, respectively. The causes for un-
expected reliance behaviors are complex. For example, algorithm aversion [33, 113] and
algorithm appreciation [137] can cause under-reliance and over-reliance, respectively. Ex-
isting work has extensively explored how confidence [66, 114], risk perception [85, 110],
performance feedback [49, 111], and explanations [52, 107, 109] can affect human-AI de-
cision making.

Prior studies found that human factors like expertise and domain knowledge [99, 108]
and cognitive bias [30, 218] can greatly affect user trust [276] and appropriate reliance [29]
on the AI system. To mitigate the negative impact of some human factors, researchers
have proposed tutorial interventions [30, 108, 117, 172], cognitive forcing functions [31,
55, 277], and improving transparency of the AI system [49, 107, 122]. Chiang et al. [108]
found that a tutorial intervention to reveal the limitations of the AI system can effectively
reduce over-reliance. Others have explored the role of task factors such as task complexity
and uncertainty in shaping trust and reliance in human-AI decision-making [220, 278].
Buccina et al. [55] proposed cognitive forcing functions to compel people to engage more
thoughtfully with explanations along with AI advice. They found that such interventions
can effectively mitigate over-reliance.

In previous work, researchers [107, 279–281] explored how different XAI methods may
affect user understanding of an AI system, trust, and reliance. It is still unclear how the
interaction interfaces to present XAI methods will substantially affect user understanding
of an AI system, trust, and reliance. In this chapter, we propose to fill in such research gap
and explore whether conversational XAI interface can facilitate user understanding of the
AI system, which further contributes to increased trust and appropriate reliance.

6.2.2 Explainable AI
While deep learning-based AI systems have been recognized as powerful predictive toolk-
its, explainability has been a primary concern that prevents them from becoming wide-
spread practice. According to GDPR, users of AI systems have the right to obtain meaning-
ful explanations along with AI predictions [166]. Under such circumstances, researchers
have proposed a diverse set of XAImethods like feature attribution explanations [159, 186],
counterfactual explanations [282], and contrastive explanations [283, 284]. For a more
comprehensive review of existing XAI methods and criteria to evaluate XAI methods, we
encourage readers to refer to recent work [217, 285].
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As humans have diverse information needs, there is no one-size-fits-all solution [27].
With a proposal of putting users/humans at the center of technology design [104, 126],
more and more researchers have started to explore human-centered XAI [27, 127]. In such
line of literature, researchers focus on the function of explanation — how explanations af-
fect user understanding and what characteristics make explanations effective [190, 286].
The mental model [287] denotes how one person build an internal representation of the
external reality,¹ and plays an important role for analyzing human-centered XAI [119, 288–
290]. Through empirical user studies, researchers found that many properties of explana-
tions like simplicity [190], completeness [289] will substantially affect user mental model
and the effectiveness of explanations.

According to Jacovi et al. [259], effective explanations should produce coherent men-
tal models (i.e., communicate information which generalizes to contrast cases), be com-
plete to avoid misunderstanding and be interactive to address contradictions. We recog-
nize that conversational XAI interfaces can satisfy all the above key properties for provid-
ing effective explanations. Thus, we argue that a conversational XAI interface may benefit
users with a better understanding of the AI system, which can further facilitate user trust
and appropriate reliance. Existing work has explored conversational XAI interfaces in
the contexts of collaborative scientific writing [269] and decision support with a focus on
team performance [266]. None of the existing works, however, have systematically ex-
plored the impact of conversational XAI interfaces on trust and appropriate reliance. To
fill this knowledge and empirical gap while complementing existing efforts, we designed
a controlled study with loan approval tasks to analyze the impact of a conversational XAI
interface on human-AI decision making.

6.2.3 Conversational User Interfaces
A conversational user interface (CUI) is a user interface for computers that emulates a
conversation with a real human [291]. CUIs have been studied widely across multiple dis-
ciplines, such as natural language processing, human-computer interaction, and artificial
intelligence. Since the famous Turing Test [292], the capability to conduct human-like con-
versation has for long been recognized as an important property of artificial intelligence.
Researchers have shown great enthusiasm for developing intelligent conversational user
interfaces. CUIs have beenwidely adopted in crowdsourcing [293], dialogue systems [294],
search engines [295], and recommender systems [296, 297]. Nowadays, conversational as-
sistants like Apple Siri, Amazon Alexa, and ChatGPT have shown promising potential in
assisting users in their daily life and work.

The main benefits of conversational user interfaces are the natural interaction expe-
rience that they facilitate [298], improved user engagement [293], better understandabil-
ity [270] and accessibility. Compared with traditional graphical user interfaces (GUIs),
CUIs have the advantages ofmore human-like interaction [264], simplifying complex tasks
with filtered information [265], and leading to a higher subjective trust in the system [299].
Informed by these prior works, we infer that a conversational XAI interface can have simi-
lar advantages over a conventional XAI Dashboard (i.e., a GUI to access current XAI meth-
ods). With conversational XAI interfaces, users may better understand the AI system and
develop higher trust and more appropriate reliance on the AI system.

¹https://en.wikipedia.org/wiki/Mental_model

https://en.wikipedia.org/wiki/Mental_model
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Compared with these studies, our focus is to analyze the impact of the XAI interfaces
(i.e., an XAI dashboard and a conversational XAI interface) on human-AI decision making.
While several works [266, 267, 269, 300] have positioned the conversational XAI interface
as a promising direction to support human-AI collaboration, this is still an under-explored
research topic that requires more empirical studies.

6.3 Task, Method, and Hypotheses
In this section, we describe the loan approval task and present our hypotheses, which have
been preregistered before data collection.

Figure 6.1: Screenshot of the loan approval task interface. This is the first stage of decision making. (A) Loan
Applicant profile is shown in the table with 11 features. (B) To help understand the tabular data, we also provided
a textual description below. (C) After going through the profile, participants are asked to decide whether this
loan application is ‘Credit Worthy’ or ‘Not Credit Worthy.’

6.3.1 Loan Approval Task
The basis for our experimental setup is a task where participants have to decide whether
a loan application is Credit Worthy or Not Credit Worthy using the publicly avail-
able loan prediction dataset.² The rationale for selecting the loan approval task as a test
bed is three-fold. Firstly, this task was chosen as a critical decision making scenario for
human-AI collaboration, where there is a clear risk and a benefit when adopting AI advice.
Secondly, most laypeople are familiar with this context and can make informed decisions
based on their knowledge. Thirdly, It has also been adopted by existing research in behav-
ioral economics [83] and human-AI collaboration [65, 234].

In the loan approval task, participants are presented with eleven features (including
loan amount, income, and the absence or presence of credit history) in both table format
and text description (as shown in Figure 6.1). Based on the application profile (composed of

²https://www.kaggle.com/altruistdelhite04/loan-prediction-problem-dataset

https://www.kaggle.com/altruistdelhite04/loan-prediction-problem-dataset
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Table 6.1: Conversation setup to trigger different XAI responses. Different XAI methods can correspond to
different information needs identified in theXAI question bank [257]. Queries correspond to the options provided
in the conversational XAI interface.

XAI
method

Information
needs

Queries User Input XAI Response

PDP How How does [a given feature]
influence credit worthiness in
general?

Feature
Dropdown
Selection

Figures illustrating probability
distribution when varying spe-
cific features and description
messages

SHAP Why What are the most important
features influencing the cur-
rent prediction?

N/A Figures illustrating the relative
importance of all the features
and description messages

MACE Why, Why not,
How to be that

What is the minimum change
in the applicant’s profile
needed to switch the current
prediction?

N/A Text Description of minimum
change in the profile

WhatIf What if, How to
be that, How to
still be this

What would happen to the
credit worthiness for [a differ-
ent input]?

Feature Val-
ues

Model prediction on a new pro-
file

Decision
Tree

Why, How to
still be this

Which sequence of steps led to
the current prediction?

N/A Figures illustrating the decision
path and description message

the eleven features), participants are asked to decide whether the loan applicant is credit
worthy to get the loan approved. This simulates a realistic scenario where participants
interact with an AI system and may rely on AI advice and XAI methods due to the in-
herent complexity in decision-making [301]. As the selected loan approval task is one
where decision making is fully based on the eleven features, it would be easier to assess
users’ decision criteria based on the top-ranked features explicitly specified by the users
themselves.

Task Selection. All participants in our study were presented with ten loan approval tasks
in the main task phase. All such cases are selected from the test set of a random split of
the full dataset (training / test ratio 4:1). All tasks were evenly split between those where
the loan applicant should be Credit Worthy (CW) for the loan being approved and those
where the applicant profile should beNot Credit Worthy (NCW). As shown in Table 6.2,
we selected the ten tasks according to prediction correctness and model confidence. We
first trained an XGBoost Classifier [302] based on the training set. For both CW cases and
NCW cases, we selected one high-confidence correct prediction, one random-confidence
correct prediction, one low-confidence correct prediction, and one high-confidence wrong
prediction. While we adopted another random-confidence correct prediction for class
NCW, we selected another low-confidence wrong prediction for class CW to control the
accuracy of the AI system to be 70%. This experimental design was also informed by a pilot
study without AI advice. We recruited 20 participants from the Prolific platform to work
on the selected loan approval tasks, and found that they achieved an accuracy level around
60%. To ensure the AI system is helpful to improve human decision making accuracy and
maintain the risk of accepting wrong advice, we manually controlled the accuracy of the
AI system to be 70%. During the study, we randomly shuffled the task order for each
participant to prevent ordering effects [84].
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Table 6.2: Task selection criteria for our study. ‘CW’ and ‘NCW’ refer to Credit Worthy and Not Credit
Worthy, respectively.

Task ID Groud Truth Correctness Model Confidence
1 CW 3 High
2 CW 3 Low
3 CW 3 Random
4 CW × Low
5 CW × High

6 NCW 3 High
7 NCW 3 Low
8 NCW 3 Random
9 NCW 3 Random
10 NCW × High

Two-stage Decision Making. In our study, we adopted a two-stage decision making
process for each loan approval task. Every participant in our study is first asked to work
on the loan approval task without any assistance from the AI system. After that, they
were given a second chance to alter their initial choice according to the AI advice (i.e., AI
prediction) and AI explanations (e.g., XAI dashboard, according to different experimental
conditions). This setup is similar to the update condition in work by Green et al. [65].
This setup is apt for analyzing user incorporation of system advice and user trust in the
AI system [35, 85]. It is a widely adopted setup in empirical studies exploring human-AI
decision making [30, 49, 107, 108]. To assess user decision criteria, we ask users to indicate
the three most important features influencing their decision at each stage along with their
confidence in each decision.

6.3.2 Design of XAI Interfaces
XAI methods. Our selection of XAI methods is informed by the taxonomy of XAI
methods regarding user information needs [107, 257, 285]. Following the XAI question
bank [257], we selected six user information needs associated with the rationale of AI
advice: how (global model-wide explanation), why, why not, how to be that (a different
prediction), how to still be this (current prediction), and what if. These user information
needs can be addressed with five widely-used XAI methods (correspondence summarized
in Table 6.1). These are (1) A global explanation method – PDP (i.e., partial dependency
plot) [303], which visualizes how one feature globally impacts the model prediction, (2)
Feature importance attribution method – SHAP [186]. Based on Shapley values, the SHAP
method provides feature importance to indicate how each feature supports or opposes the
current model prediction. (3) Counterfactual explanation method – MACE [258]. MACE
will inform users of the minimum changes in the applicant profile required to flip model
prediction. (4) Widely adopted interactive XAI toolkit – WhatIf.³ Based on the WhatIf
toolkit, users can modify the applicant profile and obtain the model prediction for the

³https://pair-code.github.io/what-if-tool/

https://pair-code.github.io/what-if-tool/
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new profile. (5) Decision tree-based explanation.⁴ This is one popular XAI method, which
makes decisions based on a tree-structure decision criteria. In our implementation, we
provide the decision path to reach the AI advice. We implemented all these XAI methods
by using the OmniXAI library.⁵ More details can be found in supplementary materials.

(a) XAI Dashboard with WhatIf Response. (b) Conversational XAI interface with SHAP Response.

Figure 6.2: Screenshots illustrating the XAI interfaces we designed. Additional screenshots demonstrating all
XAI methods across both XAI interfaces are available in the supplementary materials.

XAI Dashboard. Following existing standards, the XAI dashboard is an interactive in-
terface that provides users with XAI responses on demand when accessed through the
navigation tab (see Figure 6.2a). Users can explore all XAI methods by focusing on one
at a time, which ensures both simplicity and complete coverage of the available five XAI
methods.
Conversational XAI Interface. Templating conversational interactions via a rule-based
agent [304] can be an effective method to guide users in exploring their information
needs and understanding the model decisions. Thus, we adopted a rule-based conversa-
tional agent to power the conversational XAI interface. By referring to the XAI question
bank [257], we first set up five user intents (see Table 6.1), which can be answered with
the corresponding XAI responses.

To provide a smooth conversational experience, we curated the five user intents into
three categories: about AI advice (SHAP, MACE, Decision Tree — XAI responses required
no user input), AI advice for modified applicant profile (WhatIf, where users need to revise
the applicant profile), and the global impact of a specific feature (PDP, where users need
to specify a feature of interest). At the beginning of the conversation, users are guided
to select one category among the three and then specify one query to check or specify
user input. After users receive one XAI response, we repeat the aforementioned process.

⁴https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
⁵https://github.com/salesforce/OmniXAI

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://github.com/salesforce/OmniXAI
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All user intents are wrapped into an iterative loop, and users can stop the conversation
after receiving at least two different XAI responses. All the conversations are guided by
empowering participants to select options using custom buttons and commands (i.e., drop-
down selection for PDP or feature input for WhatIf, shown in Figure 6.2a). Such designs
have been widely adopted in domains such as conversational crowdsourcing [293, 305], or
customer service chatbots and proven to be effective in addressing user information needs
and are easy to use for laypeople [306].
Evaluative Conversational XAI Interface for Decision Support. Based on the col-
lected user decision criteria in the initial decision, we further adapted the conversation to
guide users to check such features (i.e., top-3 features selected in the initial decision mak-
ing). This is inspired by the evaluative AI for explainable decision support [307], which
argues for ‘providing evidence for and against decisions made by people.’ Such evalua-
tive conversational XAI interfaces nudge users to think about their initial decision criteria
further by comparing them with explanations from AI systems. To this end, it is similar
to cognitive forcing functions [55], which has been adopted to calibrate user trust and
reliance behaviors.

To achieve the goal of evaluative decision support in our conversational XAI inter-
face, we adopted guiding messages in the customized buttons with user decision criteria (
i.e., the top-3 features the user selected in initial decision making). For XAI methods that
require user input (i.e., PDP and WhatIf), we adapted the guiding message with user de-
cision criteria. For example, instead of selecting one option for PDP, users have an extra
option to directly explore how one of the selected features influences credit worthiness.
We believe that doing so can help them to explore how the selected features will affect the
model prediction. After obtaining the XAI response, the conversational assistant sends a
message to check whether the user wants to continue exploring the current XAI method
by eithermodifying or selecting a feature randomly sampled from user decision criteria. In
the case of SHAP, MACE, and Decision Tree (i.e., XAI methods which do not require user
input), the conversational assistant sends a message about how their initial decision crite-
ria work in current XAI methods, serving as evaluative feedback. Similarly, this message
helps them to check how their decision criteria differ from the AI system (as reflected by
explanations provided via the XAI methods). After users obtain the SHAP, MACE, or De-
cision Tree XAI response, the conversational assistant provides an extra option message
to guide them to explore the PDP (i.e., global explanation on feature variation) response
with one randomly selected feature from their initial set of top-3 features.
Conversational XAI Interface with LLM Agents.⁶ While rule-based agents can in-
form the flow in conversational interactions, they lack the flexibility to deal with user
needs in a bilateral human-like conversation. To address such concerns and further our
understanding of the impact of flexible interaction and enhanced conversation quality in
the conversational XAI interface, we built another conversational XAI interface powered
by LLM agents. The benefits of introducing LLM agents are two-fold: (1) LLMs have
shown promising user query understanding capability, which enables understanding user
information needs and generating coherent and high-quality personalized conversation
⁶To notice that, the conversational XAI interface supported with LLM agents was adopted as a follow-up com-
parison with other conditions. In the pre-registration, we only include samples and hypotheses associated with
other XAI interfaces.
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responses [13]. (2) When equipped with XAI methods as potential tools, LLM agents can
provide suitable XAI responses on demand, which may provide a better user experience
(e.g., more flexible expression of information needs and high-quality text responses based
on XAI outcomes).

Apart from the difference in agents (LLM agents in this case), the entire procedure
is identical to the basic conversational XAI interface. Our implementation of the LLM
agent is based on autogen [308] and GPT-4. Given user queries, the LLM agent-based con-
versational XAI transforms user intents into pre-defined explainers and elaborates on the
generated explanations to generate coherent text responses. We also provide the five hint
questions (as shown in Table 6.1) to trigger potential XAI responses during the conver-
sation in a randomized order on every task. Users can ask the LLM agent any questions
using textual input. For more implementation details of our LLM agent-based conversa-
tional XAI interface, readers can refer to our supplementary materials.

6.3.3 Hypotheses
Our experiment was designed to answer questions surrounding the impact of conversa-
tional XAI interfaces on user understanding, trust, and reliance on AI systems. XAI dash-
boards, which can switch between different XAI methods with a navigation bar, have been
recognized as a promising interactive interface to present explanations towards model
decisions [263, 309, 310]. Considering its wide application for model explainability, we
consider it a strong baseline in our study. As shown in prior work, conversational user
interfaces have the advantages of more human-like interaction [264] and simplified un-
derstanding of complex tasks with filtered information [265] over graphical user inter-
faces. Compared with the XAI dashboard (where users interact with the dashboard in a
uni-lateral fashion), the conversational XAI interface has the potential to increase user
engagement, and provides a more natural bi-directional way for users to explore their in-
formation needs and develop an understanding of the AI system. As a result, users with a
conversational XAI interface may develop a better understanding of the AI system. Thus,
we hypothesize that:

(H1): Compared to the XAI dashboard, the conversational XAI interface creates a
better understanding of the AI system among users.

Prior work has highlighted that humans show higher trust when interacting with in-
telligent systems using a conversational interface compared to conventional web inter-
faces [299]. Further, conversational user interfaces have been shown to increase worker
engagement in microtask crowdsourcing [293] compared to a traditional GUI. Such in-
creased engagement can potentially help users deliberate, reflect, and thereby make better
decisions, relying on the AI systemmore critically. Conversational XAI interfaces can help
users explore and address different information needs, which may bring a higher trust in
the AI system. Thus, we hypothesize:
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(H2): Compared to the XAI dashboard, the conversational XAI interface will help
users exhibit a relatively higher trust in the underlying AI system.
(H3): Compared to the XAI dashboard, the conversational XAI interface will help
users exhibit a relatively more appropriate reliance on the underlying AI system.

Evaluative decision support in the XAI interface may further help users reassess their
initial thoughts about the AI system andAI advice. By revealing the difference among their
decision criteria and providing explanations for the AI system’s advice, users can obtain
a better understanding of the AI system and make more critical decisions [307]. This can
in turn facilitate critical thinking about the AI system, leading to a potential calibration
of user trust and increased appropriate reliance on the AI system. Thus, we hypothesize
that:

(H4): Adaptive steering of conversations for evaluative decision support in the con-
versational XAI interface will increase user trust and appropriate reliance on an AI
system.

6.4 Study Design
This section describes our experimental conditions, variables, and procedures related to
our study. This study was approved by the human research ethics committee of our insti-
tution.

6.4.1 Experimental Conditions
The main aspects of our research questions and hypotheses concern the effect of different
XAI interfaces. In our study, all participants worked on the loan approval tasks with a two-
stage setup (described in Section 6.3.1), where AI advice is provided in the second stage
of decision making. The only difference is the nature of the interface through which AI
advice is explained. Considering this factor as the sole independent variable in our study,
we designed a between-subjects study with five experimental conditions:

• Control: no XAI interface.

• Dashboard: with XAI dashboard interface (as described in Section 6.3.2).

• CXAI: with a conversational XAI interface (as described in Section 6.3.2).

• ECXAI: with a evaluative conversational XAI interface (as described in Section 6.3.2).

• LLM Agent: with a conversational XAI interface powered by LLM agents (as de-
scribed in Section 6.3.2).

6.4.2 Measures and Variables
Our hypotheses mainly considered five types of dependent variables: user understanding,
user trust, performance, reliance, and appropriate reliance on the AI system.
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User Understanding of the AI System. This chapter focuses on analyzing the impact
of the XAI interfaces instead of evaluating the quality of explanations [311]. In our study,
user understanding of the AI system is a function of interactive exploration with the
XAI interfaces, which can evolve while working on tasks. Note that we consider and
describe perceived explanation utility as a separate construct below. Based on existing lit-
erature [312–315], we synthesized and adopted four dimensions to assess user understand-
ing of the AI system. As a result of practice through our study, users can potentially learn
across tasks and understand the system. We aim to capture this through the dimensions
of Perceived Feature Understanding, Learning Effect across tasks, and Understanding of the
System. All questionnaires used to assess user understanding can be found in supplemen-
tary materials. To objectively quantify user understanding of the features, we calculated
nDCG [316] of users’ top-3 features and the SHAP feature importance ranking as Objec-
tive Feature Understanding. For the relevance scores, we adopted a decreasing relevance
for the SHAP feature order (based on the abstract value of SHAP values) with an interval
of 1. Thus the relevance scores range from [1, 11] for the 11 features we used. Besides, Per-
ceived Feature Understanding is also used as an indicator of perceived user understanding.

Explanation Utility. Alongside user understanding, the perceived explanation utility is
an important aspect identified in the existing literature on human-centered XAI [27, 124,
127, 290]. We synthesized and adopted four dimensions based on existing literature to
evaluate the explanation utility provided in conditions with XAI interface. According to
Jacovi et al. [259], effective explanations can provide users with a coherent and complete
mental model to explain the current AI prediction. Thus, we adopted the dimensions
of Explanation Completeness and Explanation Coherence in our post-task questionnaires.
According to Hsiao et al. [317], perceived Explanation Clarity and Explanation Usefulness
are also important dimensions for assessing perceived explanation goodness.

User Trust. Mohseni et al. [318] showed that understandability and predictability are de-
sired properties for trustworthy intelligent systems. Moreover, the perceived competence
of the AI system (i.e., users’ confidence about the system’s capabilities) and reliability
of the AI system (i.e., the extent to which the system is perceived not suffer from unex-
pected errors) are also identified as essential constructs to establish trust [319, 320]. In
addition to capturing these attributes, we also captured subjective trust of users by adopt-
ing three validated subscales from the trust in automation questionnaire [321]. These are
TiA-Reliability/Competence (TiA-R/C), TiA-Understanding/Predictability (TiA-U/P), and
TiA-Trust in Automation (TiA-Trust). Each subscale is calculated as the average score (5-
point Likert) across related questions. These measures have been shown to be meaningful
to use in empirical studies of human-AI decision making [22, 234].

Performance and Reliance. As has been argued by prior work, assessing user reliance
on the AI system when users agree with AI advice can be inaccurate [29]. Thus, we mea-
sure both performance and user reliance from two distinct standpoints. Besides the global
user performance (i.e., overall Accuracy), we also considered user performance when their
initial choice disagreed with AI advice (i.e., Accuracy-wid). Similarly, we consider Agree-
ment Fraction (i.e., how often users agree with AI advice in their final decisions) as a global
measure of reliance. We consider Switch Fraction (i.e., how often users adopt AI advice in
cases of initial disagreement) as another precise indicator of user reliance. To assess ap-
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propriate reliance, we followed Schemer et al. [29] to adopt Relative positive AI reliance
(RAIR) and Relative positive self-reliance (RSR) metrics. These measures enumerate all
cases when the user initially disagrees with AI advice, but the correct decision is present
in one of them. By calculating the positive reliance patterns among all potential actions,
RAIR and RSR assess whether users know when they should rely on the AI system and
themselves, respectively. To our knowledge, they are the most representative objective
measures of appropriate reliance.
Other Variables. To dive deep into the impact of different XAI interfaces, we also con-
sidered other variables in our study. User confidence has been identified as an important
factor in human-AI decision making [65, 114, 170]. In our study, we recorded user confi-
dence in each stage of decision making tasks with the question–“What is your confidence
level while making this decision?.” As described in Section 6.3.3, the conversational XAI
interface may benefit human-AI decision making with higher user engagement. To quan-
titatively analyze such impact, we adopted the UES-SF [322] questionnaire in our study
and considered the average score across all dimensions as an indicator of user engagement.

6.4.3 Participants
Sample Size Estimation. To ensure that our empirical study has a sufficient sample size
for statistical analysis, we computed the required sample size in a power analysis for a
Between-Subjects ANOVAusing G*Power [92]. To correct for testingmultiple hypotheses,
we applied a Bonferroni correction so that the significance threshold decreased to 0.05

4 =
0.0125. We specified the default effect size 𝑓 = 0.25, a significance threshold 𝛼 = 0.0125
(i.e., due to testing multiple hypotheses), a statistical power of (1 − 𝛽) = 0.8, and that we
will investigate four different experimental conditions/groups. This resulted in a required
sample size of 244 participants. We thereby recruited participants from the crowdsourcing
platform Prolific.⁷ As illustrated in Figure 6.3, participants were recruited continuously
and randomly assigned to an experimental condition, simultaneously accommodating for
potential exclusion until the required sample size was reached (as described below). As a
result, 352 participants were recruited for conditions Control, Dashboard, CXAI, and ECXAI,
of which 107 were excluded. In the experiment process, the LLM Agent condition was
considered as a follow-up study, which is not included in the initial sample size estimation.
For ease of comparison with other conditions, we recruited 61 valid participants for LLM
Agent condition.
Compensation. All participants were rewarded with £4, amounting to an hourly wage
of £8 deemed to be a “good” payment by the platform (estimated completion time was 30
minutes). On top of this basic payment, we rewarded participants with extra bonuses of
£0.05 for every correct decision in the ten loan approval tasks. This bonus setting encour-
ages participants to reach a correct decision to the best of their ability, which is also a
contextual requirement to encourage appropriate system reliance [40].
Filter Criteria. All participants were proficient English speakers above the age of 18, and
had finished over 40 tasks while maintaing an approval rate of over 90% on the Prolific
platform. To ensure reliable participation, we employed attention check questions (one

⁷https://www.prolific.co

https://www.prolific.co
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for decision making, three for questionnaires) in our study. All attention check questions
explicitly direct participants to select a specific option. They were designed to look similar
to the questions or decision making tasks they were embedded in [93]. If users read our
instructions and engaged genuinely with the task, passing these attention check questions
is straightforward. We excluded participants from our analysis if they failed at least one
attention check or if we found any missing data. The resulting sample of 306 participants
had an average age of 32 (SD = 7.8) and a gender distribution (53.6% female, 46.4% male).

6.4.4 Procedure

Onboarding
Tutorial

Post-task
Questionnaire

• User
Understanding

• Trust
• User Engagement

Collaborative
Decision Making

• Two-stage
Decision Making

• AI advice
• XAI interfaces

(Condition -specific)

Pre-task
Questionnaire

Consent Form &
ML Background

End

+

• XAI methods
• XAI Interface

(Condition-specific)
• Example Task

Start

Randomized
Condition Assignment

• Control
• Dashboard
• CXAI
• ECXAI
• LLMAgent

Figure 6.3: Illustration of the procedure that participants followed in our study. This flow chart describes the
experimental condition CXAI.

The complete procedure participants followed in our study is illustrated in Figure 6.3.
All participants will be first randomly assigned to one experimental condition. To proceed
with participation, all participants were first asked to sign an informed consent form by
clicking a button and also indicate their prior experience with machine learning. Next,
participants were asked to complete a pre-task questionnaire to measure their affinity for
technology interaction (i.e., ATI). Then, an onboarding tutorial and a practice example
were provided to help participants get familiar with the two-stage decision making setup
and the corresponding XAI interface depending on the experimental condition.⁸ At this
stage, participants in the Control condition only see one practice example to get familiar
with the loan approval task. Participants then worked on the ten selected tasks within
a two-stage decision making setup. Finally, they were asked to fill in post-task question-
naires (including the TiA questionnaire and questions pertaining to user understanding
of the AI system via the XAI methods).

6.5 Experimental Results
In this section, we present the results of our empirical study. In addition to the main
results, we carried out exploratory analyses to draw nuanced interpretations of our key

⁸More details pertaining to the onboarding tutorial can be found in the supplementary material.
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insights. Readers can refer to the appendix. Our code and data can be found at Github.⁹

6.5.1 Descriptive Statistics
To ensure the reliability of our results and interpretations, we only consider participants
who passed all attention checks. Finally, the participants considered for analysis were
distributed in a balanced manner across the four experimental conditions: 61 (Control),
61 (Dashboard), 62 (CXAI), 61 (ECXAI), 61 (LLM Agent). On average, each task consumes 13
API calls to obtain responses in LLM Agent condition, including generating reply messages
and XAI usage. The average time (mins) spent across conditions are: 22 (Control), 34
(Dashboard), 52 (CXAI), 45 (ECXAI), 62 (LLM Agent). With Kruskal-Wallis H-tests and post-
hoc Mann–Whitney test, we confirmed significance: Control < Dashboard < CXAI, ECXAI
< LLM Agent.
Distribution of Covariates. The covariates’ distribution is as follows: ML Background
(22.5% with machine learning background knowledge, 77.5% without machine learning
background knowledge), ATI (𝑀 = 3.99, 𝑆𝐷 = 0.90; 6-point Likert scale, 1: low, 6: high),
TiA-Propensity to Trust (𝑀 = 2.88, 𝑆𝐷 = 0.71; 5-point Likert scale, 1: tend to distrust, 5: tend
to trust), and TiA-Familiarity (𝑀 = 2.67, 𝑆𝐷 = 1.10; 5-point Likert scale, 1: unfamiliar, 5:
very familiar).
Performance Overview. On average across all conditions, participants achieved an ac-
curacy of 64.5% (𝑆𝐷 = 0.11), which is still lower than the AI accuracy (70%). The agreement
fraction is 0.847 (𝑆𝐷 = 0.16), and the switching fraction is 0.522 (𝑆𝐷 = 0.41). With these
measures, we confirm that when users disagree with AI advice, they do not always blindly
rely on AI advice. As all dependent variables are not normally distributed, we used non-
parametric statistical tests to verify our hypotheses.
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Figure 6.4: Bar plot illustrating the explanation utility across conditions. Error bars represent the 95% confidence
interval.

Explanation Utility. To illustrate how the XAI interface will affect the perceived expla-
nation utility, we adopted a bar plot of explanation utility across conditions. As shown
in Figure 6.4, participants achieved similar level of Explanation Completeness and Expla-
nation Clarity. Meanwhile, participants with conversational XAI interfaces (i.e., condition
CXAI, ECXAI, and LLM Agent) achieved slightly higher Explanation Coherence and Explana-

⁹https://github.com/delftcrowd/IUI2025_ConvXAI

https://github.com/delftcrowd/IUI2025_ConvXAI
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tion Usefulness. Based on one-way ANOVA, we analyzed the impact of XAI interfaces in
perceived explanation utility. There is no significant difference across conditions.

6.5.2 Hypothesis Tests
For the convenience of the readers, we have provided concise insights in the main body
of this section and placed additional tables and figures (e.g., estimation plots) that provide
further details in the supplementary materials.¹⁰

Table 6.3: Kruskal-Wallis H-test results for XAI interfaces (H3 and H4) on reliance-based dependent variables.
The post-hoc results are based on Mann–Whitney tests. “††” indicates the effect of the variable is significant at
the level of 0.0125.

Dependent Variables 𝐻 𝑝 𝑀 ±𝑆𝐷 Post-hoc results
Control Dashboard CXAI ECXAI LLM Agent

Accuracy 9.09 .059 0.62 0.65 0.67 0.64 0.63 -
Agreement Fraction 33.66 .000†† 0.74 0.86 0.89 0.85 0.89 Control < Dashboard, CXAI, ECXAI, LLM Agent
Switch Fraction 19.14 .001†† 0.31 0.57 0.58 0.57 0.57 Control < Dashboard, CXAI, ECXAI, LLM Agent
Accuracy-wid 5.06 .281 0.46 0.50 0.52 0.55 0.42 -

RAIR 11.01 .026† 0.35 0.50 0.60 0.52 0.48 Control < CXAI

RSR 38.26 .000†† 0.57 0.29 0.23 0.26 0.11 Control > Dashboard, CXAI, ECXAI, LLM Agent
Dashboard > LLM Agent

H1: effect of XAI interfaces on user understanding
To analyze the main effect of the XAI interfaces on user understanding of the AI system,
we conducted an Analysis of Covariance (ANCOVA) with the experimental condition as
between-subjects factor and TiA-Propensity to Trust, TiA-Familiarity, ATI, and ML Back-
ground as covariates. While our data may not be normally distributed, we still adopted
AN(C)OVAs for analysis because these analyses have been shown to be robust to Likert-
type ordinal data [94]. For this analysis, we considered all participants across three exper-
imental conditions with XAI (i.e., Dashboard, CXAI, and ECXAI). We found no significant
differences resulting from the different XAI interfaces (i.e., experimental condition). How-
ever, the TiA-Propensity to Trust showed a significant impact on all dimensions of user
understanding. For the objective feature understanding (continuous value, non-normal
distribution), we conducted Kruskal-Wallis H-tests by considering different XAI interfaces.
A significant difference (𝐻 = 16.19,𝑝 = .001) was found between participants with different
XAI interfaces. Through post-hoc Mann–Whitney U test, we found that LLM Agent condi-
tion achieved significantly worse objective feature understanding than the Dashboard, CXAI,
and ECXAI conditions. Thus, we did not find any support for H1.

H2: effect of XAI interfaces on user trust
To verify H2 (i.e., the impact of XAI interface on user trust), we conducted an Analysis of
Covariance (ANCOVA)with the experimental condition as between-subjects factor and TiA-
Propensity to Trust, TiA-Familiarity, ATI, and ML Background as covariates. This allows us
to explore the main effects of the XAI interface on subjective trust as measured by the
three subscales of the Trust in Automation questionnaire [321].

As we found, the experimental condition (i.e., XAI interface) only showed a signif-
icant impact in TiA-U/P. With post-hoc Tukey’s HSD test, we found that participants

¹⁰https://github.com/delftcrowd/IUI2025_ConvXAI/blob/main/supplementary_materials.pdf

https://github.com/delftcrowd/IUI2025_ConvXAI/blob/main/supplementary_materials.pdf
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who received XAI showed significantly higher trust in Understandability/Predictabil-
ity (i.e., Control < Dashboard, CXAI, ECXAI). Besides the significant results, participants in
the LLM Agent condition showed a consistent but non-significant trend across all measures:
Control < LLM Agent < Dashboard, CXAI, ECXAI. However, no significant difference is found
between the Dashboard condition and conditions with conversational XAI. At the same
time, there is no significant impact of the experimental conditions observed on the depen-
dent variables of TiA-R/C and TiA-Trust. Meanwhile, we found that TiA-Propensity
to Trust had a significant impact on all trust-related dependent variables, and that users’
affinity to technology interaction (ATI) also had a significant impact on TiA-U/P.

To better understand effect sizes in terms of the TiA-U/P and go beyond p-values,
we adopted an estimation plot [323] (shown in supplementary materials, Figure 3). As
reflected by the swarm plot, participants with conversational XAI interface (i.e., condi-
tion CXAI and ECXAI) exhibited a marginally higher TiA-U/P in comparison with condition
Dashboard. Thus, we found partial support for H2.

H3: effect of XAI interfaces on appropriate reliance
To verifyH3, we conducted a Kruskal-Wallis H-test to compare the performance, reliance,
and appropriate reliance measures of participants across four experimental conditions.
As shown in Table 6.3, participants showed significantly higher reliance (i.e., Agreement
Fraction and Switch Fraction) with access to the XAI dashboard or conversational XAI in-
terface. However, the increased reliance is not necessarily appropriate reliance. Only
participants with access to conversational XAI interface (i.e., condition CXAI) showed sig-
nificantly better RAIR in comparison with the condition Control. We also found that
participants showed significantly worse RSR with access to the XAI dashboard or conver-
sational XAI interface. We also notice that participants in the LLM Agent condition showed
significantly worse RSR compared to the Control and Dashboard conditions, which indi-
cates that the LLM Agent condition led to severe over-reliance on the AI advice. Thus, H3
is not supported by our experimental results.

There is no significant difference in team performance (i.e., Accuracy and Accuracy-
wid). To interpret our data beyond p-values and better understand effect sizes in terms of
the overall team performance, we adopted estimation plots [323] (shown in supplementary
materials, Figure 4). Based on the normal distribution sampled for these measures, we can
infer the reliance difference based on the mean difference of the estimated distribution.
We found that: (1) Compared to the Control condition, participants in the CXAI condition
showed a clearly higher mean accuracy. (2) Participants in the ECXAI condition showed
slightly better Accuracy-wid than the Dashboard condition and the CXAI condition. Simi-
larly, we adopted estimation plots [323] (cf. supplementary materials, Figure 4) to draw
meaningful interpretations related to our appropriate reliance measures. We found that:
(1) Compared to the Control condition, participants in the CXAI condition showed a sig-
nificantly higher RAIR. At the same time, participants in the CXAI condition showed a
slightly higher RAIR compared with participants in Dashboard and ECXAI conditions. (2)
Participants in the Dashboard and ECXAI conditions showed slightly better RSR than the
CXAI condition.
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H4: effect of evaluative conversation on user trust and appropriate reliance
According to results reported for H2 and H3, no significant difference in user trust and
appropriate reliance was found between experimental condition CXAI and ECXAI. Thus,H4
is not supported.

6.5.3 Additional Exploratory Analyses
Impact of Covariates
As shown in the analysis forH2 (cf. Table 6.4), covariates like TiA-Propensity to Trust and
ATI have shown some impact on user trust. To further analyze the impact of covariates on
human-AI decision making, we conducted Spearman rank-order tests between covariates
and all categories of dependent variables. The results are shown in Table 6.4. We have
the following main findings: (1) Overall, TiA-Propensity to Trust significantly positively
impacted most dependent variables in user understanding, trust, and reliance categories.
(2) While the propensity to trust positively correlated with user reliance (i.e., Agreement
Fraction and Switch Fraction), it negatively affects RSR. In other words, some participants
with a higher propensity to trust tend to over-rely on the AI system. (3) TiA-Familiarity
and ATI only showed some positive impact on user understanding and user trust. No
significant correlation was found for user reliance. (4) ML background showed positive
correlation with user trust. Meanwhile, some dimensions of explanation understanding
also show a borderline positive correlation

Table 6.4: Correlation of covariates and dependent variables. “†” and “††” indicate the effect of the variable is
significant at the level of 0.05 and 0.0125, respectively.

Covariates Propensity to Trust TiA-Familiarity ATI ML background
Dependent Variables 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝

Perceived Feature Understanding 0.344 .000†† 0.131 .041† 0.148 .021† 0.049 .444
Explanation Completeness 0.366 .000†† 0.106 .097 0.073 .254 0.152 .017†

Explanation Coherence 0.387 .000†† 0.131 .040† 0.087 .175 0.135 .035†
Explanation Clarity 0.427 .000†† 0.069 .285 0.129 .044† 0.142 .026†

Learning Effect Across Tasks 0.232 .000†† 0.173 .007†† 0.115 .072 0.147 .021†
Understanding of System 0.343 .000†† 0.082 .202 0.146 .022† 0.080 .210
Explanation Usefulness 0.423 .000†† 0.166 .009†† 0.172 .007†† 0.083 .196

Objective Feature Understanding 0.108 .092 -0.152 .017† 0.013 .844 -0.024 .714
TiA-R/C 0.677 .000†† 0.126 .028† 0.171 .003†† 0.153 .008††
TiA-U/P 0.472 .000†† 0.083 .150 0.243 .000†† 0.158 .006††

TiA-Trust 0.774 .000†† 0.235 .000†† 0.154 .007†† 0.164 .004††
Accuracy 0.091 .111 0.073 .202 -0.039 .502 -0.019 .740

Agreement Fraction 0.223 .000†† 0.055 .335 0.030 .598 -0.039 .499
Switch Fraction 0.137 .016† -0.030 .595 -0.001 .982 0.037 .518
Accuracy-wid 0.056 .326 0.032 .582 -0.045 .434 0.057 .322

RAIR 0.118 .040† -0.001 .980 -0.026 .648 0.026 .654
RSR -0.186 .001†† -0.024 .674 -0.080 .162 -0.038 .505

The Impact of User Perceptions onTheir Behavior
Prior work has shown that user trust can substantially affect user reliance behav-
iors [40, 87]. To further analyze how perception-based variables (i.e., user trust, user un-
derstanding, and explanation utility) affect team performance and user reliance behaviors,
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we conducted Spearman rank-order tests between corresponding categories of variables.
The results are presented in Table 6.5.

Table 6.5: Correlation between perception-based variables (i.e., user understanding, explanation utility, and user
trust) and behavior-based variables. “†” and “††” indicate the effect of the variable is significant at the level of
0.05 and 0.0125, respectively.

Behavior-based Variables Accuracy Accuracy-wid Agreement Fraction Switch Fraction RAIR RSR
Perception-based Variables 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝

Perceived Feature Understanding 0.045 .484 -0.024 .709 0.254 .000†† 0.117 .067 0.096 .135 -0.293 .000††
Objective Feature Understanding 0.332 .000†† 0.195 .002†† 0.469 .000†† 0.322 .000†† 0.269 .000†† -0.297 .000††

Learning Effect Across Tasks 0.084 .192 -0.085 .184 0.170 .008†† -0.006 .931 0.007 .913 -0.135 .035†
Understanding of System 0.114 .076 -0.083 .197 0.157 .014† 0.010 .877 -0.017 .795 -0.153 .016†

Explanation Completeness 0.050 .435 0.056 .387 0.146 .022† 0.142 .026† 0.157 .014† -0.170 .007††
Explanation Coherence 0.107 .095 -0.030 .643 0.270 .000†† 0.068 .286 0.005 .935 -0.218 .001††

Explanation Clarity 0.002 .973 -0.111 .083 0.190 .003†† 0.081 .204 0.042 .514 -0.235 .000††
Explanation Usefulness 0.125 .051 0.081 .206 0.361 .000†† 0.266 .000†† 0.229 .000†† -0.300 .000††

TiA-R/C 0.127 .047† 0.090 .162 0.224 .000†† 0.195 .002†† 0.175 .006†† -0.200 .002††
TiA-U/P 0.099 .123 0.051 .430 0.210 .001†† 0.132 .038† 0.125 .051 -0.182 .004††

TiA-Trust 0.145 .024† 0.032 .617 0.254 .000†† 0.164 .010†† 0.152 .017† -0.203 .001††

We found that: (1) Agreement Fraction and RSR are significantly correlated with most
dimensions of user understanding, explanation utility, and user trust. However, these di-
mensions are positively correlated with Agreement Fraction but negatively correlated with
RSR. This suggests that the improved user understanding, explanation utility, and user
trust with XAI interfaces can partially explain the increased over-reliance on theAI system.
(2) While user trust dimension TiA-R/C and TiA-Trust positively correlated with reliance
measures (Agreement Fraction and Switch Fraction), and RAIR, they negatively correlated
with RSR. As a result, they do not show a significant correlation with Accuracy-wid. This
corroborates that higher user trust in the AI system does not necessarily translate into ap-
propriate reliance behaviors. (3) Overall, Objective Feature Understanding seems useful to
facilitate appropriate reliance. With a higher objective Feature Understanding, participants
demonstrate better team performance and higher reliance. Although it still contributes to
over-reliance (reflected by negative correlation with RSR), it shows a more positive impact
on appropriate reliance (i.e., Accuracy-wid and RAIR). In comparison, the positive impact
of Explanation Usefulness, TiA-R/C, and TiA-Trust on mitigating under-reliance (i.e., posi-
tive correlation with RAIR) get canceled by the side effect of over-reliance (i.e., negative
correlation with RSR). As a result, these variables do not significantly contribute to team
performance.

Confidence Dynamics
As shown in Figure 6.5, we illustrate the confidence dynamics of participants in each con-
dition along with the task order. In general, we found that participants reported a higher
confidence after being exposed to AI advice and explanations. While participants in the
Control condition, the Dashboard condition, and the ECXAI condition reported a fluctuat-
ing trend of confidence along the task order, participants in the CXAI condition reported
a relatively clear ascending trend of confidence both before and after the AI advice (and
explanations). Participants in the LLM Agent condition showed a clear upward and then
downward trend in their confidence related to their final decisions. This suggests that
participants in this condition first developed over-confidence in the AI system and then
calibrated their confidence. Interestingly, we observed that the confidence dynamics of
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Figure 6.5: Line plot illustrating the confidence dynamics among users after receiving the AI advice (and expla-
nations). The orange line and blue line illustrate the confidence dynamics before and after receiving AI advice
(and explanations), respectively.

participants in the CXAI condition converge after a few tasks. The narrow confidence gap
before and after receiving AI advice may indicate that participants in the CXAI condition
calibrate their confidence in the AI advice, which reflects a better understanding of the
AI system. To compare the confidence across conditions, we conducted ANOVA tests for
both initial confidence (average across tasks) and final confidence (average across tasks).
Although the CXAI, ECXAI, and LLM Agent conditions showed slightly better user confidence
on average, we found no significant differences across conditions.

Further Analysis of User Engagement
We measured subjective user engagement reported by each participant in our study using
the UES-SF questionnaire [322]. The distribution of user engagement across the different
experimental conditions was as follows: Control (𝑀 = 3.15,𝑆𝐷 = 0.72), Dashboard (𝑀 =
3.33,𝑆𝐷 = 0.66), CXAI (𝑀 = 3.20,𝑆𝐷 = 0.63), ECXAI (𝑀 = 3.28,𝑆𝐷 = 0.67), LLM Agent (𝑀 =
3.44,𝑆𝐷 = 0.71). While participants in the LLM Agent condition reported slightly higher
engagement with the XAI interface, we found this to be non-significant (based on ANOVA
analysis).

Further Analysis of Enhanced Conversation and XAI Usage
To compare how enhanced conversation (i.e., adaptive steering for evaluative decision
support and more flexible conversational interactions with LLM agents) affects user inter-
action with the conversational interface, we analyzed the usage of the XAI methods. To
compare the usage of each XAI method, we conducted a Kruskal-Wallis H-test for total
usage per participant. Across all five XAI methods, no significant differences in usage fre-
quency were found between the CXAI and ECXAI conditions. The most obvious difference
is that participants in the CXAI and ECXAI conditions used PDP method significantly more
frequently: CXAI(𝑀 = 13.5), ECXAI(𝑀 = 14.1), LLM Agent(𝑀 = 3.6). Meanwhile, participants
in the LLM Agent condition showed significantly more usage of WhatIF, MACE, and SHAP
methods than the CXAI and ECXAI conditions. The reason for such difference in the usage
of XAI methods can be caused by the design of the rule-based conversational agent in
the CXAI and ECXAI conditions. In the rule-based conversation agents, all messages are
pre-defined, and users see them in a fixed order. Such fixed order may have biased user
selection of the XAI responses. In comparison, the hint questions are randomized in con-



6

160 6 Conversational XAI Decision Support

dition LLM Agent, and users can also use the free text input to ask anything they prefer. As
a result, participants in the LLM Agent condition may have more flexible access to explore
personalized information needs.

Figure 6.6: Illustration of the XAI usage used in our study. This Sankey diagram describes the sequence of
interactions with XAI methods by users in the LLM Agent experimental condition.

To obtain further insights, we explored the user conversation history in the LLM Agent
condition. Among all 61 users in LLM Agent , 1,946 user queries are asked in total. Among
them, around 40% are based on the hint questions (5 questionswe provide to trigger XAI re-
sponses, see Table 6.1). The valid user queries mainly consist of three types of intent: user
queries to obtain XAI responses (e.g., hint questions and some similar questions), greetings
(e.g., “Hi”, “Thank you”), and opinion-seeking queries to the conversational agent (e.g., “Do
you think the loan application is creditworthy?”). Whenmeaningless user queries are fired
(such as gibberish, random strings or something irrelevant to our task context), the LLM
agent-based conversational interface can handle them properly (e.g., “I do not understand
this. Please check information related to the current task.”). To visualize the dynamics
of user information needs along with exploring conversation, we adopted the Sankey dia-
gram (Figure 6.6) to show the dynamic flow of XAI usage. Only a few participants in the
LLM Agent condition asked for more than three XAI responses in each task, so we only con-
sidered the first three usages of XAI methods. As we can see, after using one XAI method,
participants tend to use a different XAI method in the next step, which indicates that most
participants explored diverse information needs in the LLM condition LLM Agent.

6.6 Discussion
6.6.1 Key Findings
Our experimental results show that participants with an interactive XAI interface (i.e., ei-
ther an XAI dashboard or a conversational XAI interface) can obtain a relatively high
degree of perceived understanding, trust, and reliance on the AI system. However, the
increase in trust and reliance may potentially stem from an illusion of their understand-
ing of explanatory depth [62, 324]. As a result, they do not necessarily know when the
AI advice is trustworthy and worth relying on. This is reflected by the over-reliance we
observed (see Table 6.3) in all conditions with interactive XAI interfaces. with an LLM
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agent-based conversational XAI interface (Section 6.5.2), we observed that over-reliance
was further reinforced (i.e., worse RSR) and users obtained significantly worse objective
feature understanding compared to other conditions with XAI interfaces. This indicates
that instead of calibrating user trust and reliance on the AI system, enhancing the conver-
sation quality may further induce the illusion of explanatory depth. While no significant
results are observed to support the superiority of conversational XAI interface over XAI
dashboard, our exploratory analyses revealed the potential of conversational XAI inter-
faces (powered by LLMs) in increasing user exploration of the explanation methods. Par-
ticipants with the conversational XAI interface reported a slightly better perceived user
understanding and perceived explanation utility. As for trust and appropriate reliance, we
see that participants showed a slightly higher trust (cf. Section 6.5.2), team performance
(cf. Section 6.5.2), and relatively higher RAIR (cf. Table 6.3). We also found that partici-
pants with a conversational XAI interface (CXAI, ECXAI, and LLM Agent conditions) did not
report a higher user engagement than participants with an XAI dashboard, suggesting
that both the interactive interfaces are equally effective in engaging the participants.

Positioning in Existing Literature. In our study, we found that interactive XAI in-
terfaces can have a negative impact of increasing over-reliance on the AI system. This
is consistent with the findings of previous empirical studies of human-AI collabora-
tion [22, 66, 107]. Our results indicate that participants perceive the conversational XAI
interface to lead to a relatively better user understanding and team performance than the
XAI dashboard. This is in line with findings of Slack et al. [263], where they found Talkto-
Model (a conversational XAI interface) was preferred by most participants and achieved
better team performance when collaborating with users. We extend existing empirical
work by going one step further to explore the impact of conversational XAI interfaces on
trust and appropriate reliance. We found that users tend to show relatively higher trust
and appropriate reliance on the conversational XAI interface. Further enhancement of
the conversation (i.e., adaptive steering for evaluative decision support) does not neces-
sarily help further improve user understanding, user trust, and appropriate reliance on
the AI system (i.e., the ECXAI and LLM Agent conditions). Instead, we found that it can
even be harmful (cf. Section 6.5.2), which is reflected by a decreased user understanding
of the AI system, user trust, and appropriate reliance in the LLM Agent condition. Our
exploratory findings suggest promising avenues for future research — further exploring
how conversational XAI interfaces can affect user trust and reliance on the AI system
through additional confirmatory studies in different contexts. Our work is an important
first exploration to this end, and more empirical studies are required to corroborate and
further contextualize these observations. As we strive towards optimal human-AI decision
making, we highlight an important trade-off that needs to be managed between creating
user-friendly, seamless, and plausible conversational XAI interfaces and simultaneously
fostering critical consideration of AI advice.

6.6.2 Implications of Our Work
Interactive XAI Interfaces Can Amplify Illusions of Explanatory Paths. Our work
has important theoretical implications for promoting appropriate reliance on AI systems
with XAI methods. In our study, participants with the XAI dashboard as well as the con-
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versational XAI interfaces showed obvious over-reliance on the AI system. The reason
behind this can be that participants with XAI interfaces developed illusions of the intel-
ligence level of the AI system. Prior work has shown that conversational interfaces can
build user trust [299], and XAI can bring about an illusion of explanatory depth [62]. Both
can contribute to uncalibrated trust in the AI system and cause over-reliance. Their combi-
nation could potentially amplify users’ over-reliance depending on other task, human, and
system factors. As our results suggested, participants with conversational XAI interface
(i.e., CXAI) showed slightly better perceived user understanding across multiple dimen-
sions (non-significant results) and trust (i.e., Understanding/Predictability) than partici-
pants with XAI dashboard. At the same time, participants in condition CXAI also showed
the best RAIR and relatively worse RSR (see Table 6.3), while participants in the LLM Agent
condition showed the worst RSR (see Section 6.5.2). Combined with exploratory findings
in Table 6.5 — user understanding, explanation utility, and user trust is positively cor-
related with over-reliance. This indicates that the conversational XAI interface appears
to be more persuasive to users and leads to relatively more over-reliance on the AI sys-
tem. Thus, optimizing the XAI interfaces as a persuasive technology [325] may not be
the ideal approach to promoting appropriate reliance on AI systems. In extreme cases,
persuasive technology can even help untrustworthy AI systems deceive end users to gain
their trust [326]. Instead, we should focus on developing methods and interfaces that can
ensure that the XAI responses provided will not mislead users by creating an illusion of
system intelligence or explanatory depth.

Why boosted conversations did not work as expected. In contrast to our expectation,
boosted conversations (i.e., in the ECXAI and LLM Agent conditions) did not provide further
benefits in user understanding, trust, and appropriate reliance. According to the confi-
dence dynamics (see Figure 6.5), enhanced conversation quality in condition LLM Agent
seems to enlarge the confidence gap between the two stages of decision making (i.e., be-
fore and after checking AI advice and XAI responses), especially when comparing the LLM
Agent condition with the CXAI condition. Although the LLM-powered condition of LLM
Agent was expected to lead to the most natural and personalized XAI responses among
all conditions with XAI interfaces, participants in the LLM Agent condition demonstrated
the least objective feature understanding, subjective trust, and appropriate reliance. Com-
bined with the findings of confidence dynamics, we infer that introducing LLM agents to
a conversational XAI interface may amplify the illusion of explanatory depth. As a re-
sult, participants in the LLM Agent condition exhibit high over-reliance on the AI system.
Based on these findings, we argue it would be more important to align the plausibility of
XAI responses with the trustworthiness of the AI system rather than solely improving the
interactional quality and experiences with the XAI responses. This is in line with exist-
ing work on plausibility in XAI [327]: “a plausible but unfaithful interpretation may be
the worst-case scenario.” In comparison, the evaluative conversation enhances user self-
reflection of their decision criteria. As a result, participants in condition ECXAI indicate a
relatively lower Agreement Fraction and RAIR than condition CXAI (cf. Table 6.3). Thus, we
can infer that the evaluative conversation brings about some side effects — under-reliance
on the AI system. At the same time, the evaluative conversations fail to facilitate user
understanding, calibrate user trust in the AI system, or mitigate over-reliance. Further
research is required to understand how to provide suitable evaluative decision support in
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conversational human-AI interactions.
Towards more effective conversational XAI interfaces. Our work has important im-
plications for designing effective conversational XAI interfaces. Rather than being persua-
sive, we expect effective XAI interfaces to be accessible and low-barrier interfaces that can
enhance user engagement and guide users to explore their information and explanation
needs. As a result, users can have a better user experience, and a more comprehensive
understanding of the AI system (e.g., including both strengths and weaknesses), resulting
in more appropriate reliance on the AI system. In our study, the conversational XAI in-
terface failed to facilitate a significantly better user understanding, trust, and appropriate
reliance. Based on our findings, there are multiple potential approaches to improve the
effectiveness of the conversational XAI interface.

Firstly, the trustworthiness of AI advice should be calibrated within the conversation.
As we found, the improved user experience and conversation quality do not necessarily
translate into appropriate reliance. To that end, users need to be supported with faith-
ful conversations, which may help them realize whether AI advice is trustworthy. To
tackle the vulnerability of improved plausibility (e.g., introducing LLMs or other persua-
sive technology), future work can explore how to align the trustworthiness of AI advice
with the plausibility of conversational XAI responses. Secondly, conversational XAI inter-
faces could be used to address potential issues associated with AI literacy. Conversational
interactions have been proven to be effective in supporting novice and low-literacy users
in using mobile interfaces [328]. Prior work has shown that AI literacy plays an important
role in calibrating user trust and reliance behavior [108]. Thus, leveraging conversational
XAI interfaces to narrow down the literacy gap when working with AI systems can also be
a promising future direction to explore. Thridly, although adaptive evaluative steering for
evaluative decision support fails to facilitate optimal human-AI decision making, it leads
to substantial impacts on user perception and user reliance behavior. For example, partic-
ipants in condition ECXAI achieved slightly higher Explanation Coherence, slightly higher
Accuracy-wid and decreasedAgreement Fraction compared to condition CXAI. Such an eval-
uative AI [307] conceptual framework could still be a promising approach to facilitating
human-AI interaction within a conversational manner. Future work can further combine
such evaluative conversational XAI with cognitive forcing functions [55] through the di-
alogue to help calibrate user trust and reliance. Similarly, Ehsan et al. [253] proposed
the framework of Seamful XAI to augment explainability and user agency in human-AI
collaboration by revealing the “seams” (i.e., imperfections of the AI system). Combined
with these ideas, we can guide users to explore both the strengths and weaknesses of the
AI system. Such a conversation may be more engaging and may potentially achieve simi-
lar functions as cognitive forcing functions [55] to help participants make decisions more
critically. This is an important direction for future work.

6.6.3 Caveats and Limitations
In our study, we selected the most representative five XAI methods as the basis to form
our interactive XAI interfaces. We cannot overrule that this design choice may have been
a bottleneck for some participants in our study, as they may have had information needs
that are not covered by the XAI methods. Once users find that their queries cannot be
answered properly based on pre-defined XAI methods, their trust and reliance on the AI
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system may decrease. Having said that, our setup is representative of current state-of-the-
art AI-assisted decision making methods. In our study, the conversational XAI interfaces
in the CXAI and ECXAI conditions are built upon rule-based dialogue systems. All conver-
sations are guided in a pre-defined manner, which lacks flexibility in communication. We
developed an LLM agent-based conversational XAI interface (i.e., the LLM Agent condition)
to select XAI methods on demand, improve the scope and quality of user interactions, and
flexibly communicate the corresponding explanations. We found that more flexible and
plausible conversations did not necessarily help further improve user trust and appropri-
ate reliance on the AI system. Instead, it amplified over-reliance and negatively impacted
user understanding of the AI system. Based on these results, we can infer that, improving
the conversational quality by using more human-like utterances may be more persuasive
and strengthen the illusion of explanatory depth.

According to prior studies about crowdsourcing [93], some participants can rush
through the study and provide low-effort results. To alleviate participants with low-effort
results, we adopted attention checks in the questionnaire and tasks in our study. Mean-
while, it would be challenging to keep participants engaged in the XAI interface and highly
motivated to learn from the explanations of XAI responses. To ensure that participants
spent enough effort to interact with the conversational XAI interface, participants were
required to view at least two different types of XAI responses in each conversation. This
was, however, not explicitly mentioned and participants were alerted to this only when
they tried to proceed without engaging with the XAI methods.

Potential Bias. Our study is based on a crowdsourcing setup, which may be affected
by cognitive biases introduced in the task design and workflow. With the help of the
Cognitive Biases Checklist introduced by Draws et al. [157], we analyzed potential bias in
our study. As crowd workers are motivated by monetary compensation, the self-interest
bias is possible. As participants showed a relatively high degree of trust and Agreement
Fraction with AI advice, Confirmation Bias may have also affected our results. The rule-
based conversational agents in the CXAI and ECXAI conditions may bias the usage of XAI
methods (see Section 6.5.3). As a result, the participants in the two conditions showed
similar usage patterns of XAI methods, which may lead to similar user understanding and
reliance patterns.

Broader Societal Implications. Our findings add to the urgency to be careful when
employing AI-based decision support systems due to their tendency to act as persuasive
technologies. Although evaluative conversations led to an increase in user trust and re-
liance in our study, contrary to expectations, this did not amount to an increased appropri-
ate reliance. Future work can explore similar ‘evaluative AI’ [307] operationalizations in
conversational human-AI interaction and decision support. We found that users’ propen-
sity to trust is strongly correlated with their subjective trust in the AI system and their
appropriate reliance (cf. Section 6.5.2 and covariate analysis in supplementary materials).
Participants with a higher propensity to trust showed significantly higher trust and re-
liance (i.e., Agreement Fraction and Switch Fraction) on the AI system. As a result, they
were more likely to develop an illusion of explanatory depth and over-rely on misleading
AI advice. Such a tendency to trust may have originated from a lack of AI literacy [108]
and a critical mindset [31]. These results, along with recent findings in the IUI commu-
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nity [108] suggest that the development and deployment of AI systems and XAI interfaces
can systematically favor individuals with higher AI literacy or critical mindsets, and there-
fore cause disparities to others. Further work is required to ensure that different types of
users (with varying AI literacy or differing individual traits) can equally benefit from AI
systems and related interfaces.

6.7 Conclusion
In this chapter, we presented a first-of-its-kind empirical study to understand the impact
of an XAI dashboard and a conversation XAI interface on user understanding of the AI
system, and their further impact on user trust and appropriate reliance. Compared to
participants with the XAI dashboard, participants with the conversational XAI interface
showed a slightly better understanding (RQ1), and demonstrated a slightly higher trust
in the AI system (RQ2). However, our findings suggest that the XAI interfaces were per-
suasive and have the potential to bring about an illusion of the AI systems’ capability,
which in turn increased over-reliance on the AI system. Moreover, we found that eval-
uative conversational interactions do not work as expected in facilitating user trust and
understanding. With experimental results associated with conversational XAI interfaces
powered with LLM agents, we found that boosting the conversation quality and flexibility
(i.e., with LLM-based conversational agent) may further reinforce over-reliance and hurt
user understanding and user trust. Our insights and observations can inform the future
design of conversational XAI interfaces to promote complementary human-AI collabora-
tion. Conversational XAI interfaces should balance user engagement with seamful design
requirements that can promote decision making that is married with critical reflection.

Our results indicate that we should be careful in presenting XAI methods with an in-
teractive XAI interface, which may cause over-reliance on the AI system. While our exper-
imental results do not provide support to our original hypotheses, more work is required
to further contextualize the effectiveness of conversational XAI interfaces in shaping user
understanding, trust, and appropriate reliance. As opposed to further improving user ex-
periences with conversational XAI interfaces in the context of human-AI decision making,
future work should first focus on mitigating the illusion of explanatory depth brought by
the XAI methods.

6.8 Appendix
Questionnaire. To assess the user understanding of the AI system and explanation utility,
we collected questionnaires shown below from participants:
• Perceived Feature Understanding:

1. The explanations helped you improve and/or reinforce your understanding of the influential fea-
tures.
2 Strongly disagree 2 Disagree 2 Neutral 2 Agree 2 Strongly Agree

• Understanding of the System
1. I can understand why the system provided specific explanations.
2 Strongly disagree 2 Disagree 2 Neutral 2 Agree 2 Strongly Agree

• Learning Effect across Tasks
1. My understanding of AI system and decision criteria improve over the tasks.
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2 Strongly disagree 2 Disagree 2 Neutral 2 Agree 2 Strongly Agree
To assess the explanation utility, we collected questionnaires shown below from partici-
pants:
• Explanation Completeness

1. The explanations provide a sufficient rationale that supports the AI advice.
2 Strongly disagree 2 Disagree 2 Neutral 2 Agree 2 Strongly Agree
2. The explanations sufficiently express the uncertainty of the AI advice.
2 Strongly disagree 2 Disagree 2 Neutral 2 Agree 2 Strongly Agree

• Explanation Coherence
1. The explanations you received are consistent with your initial expectations.
2 Strongly disagree 2 Disagree 2 Neutral 2 Agree 2 Strongly Agree

• Explanation Usefulness
1. The provided explanations are useful in making final decision.
2 Strongly disagree 2 Disagree 2 Neutral 2 Agree 2 Strongly Agree

• Explanation Clarity
1. Explanations are clear enough to inform my final decision.
2 Strongly disagree 2 Disagree 2 Neutral 2 Agree 2 Strongly Agree
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7
Fine-grained Transparency and

Appropriate Reliance
In recent years, the rapid development of AI systems has brought about the benefits of in-
telligent services but also concerns about security and reliability. By fostering appropriate
user reliance on an AI system, both complementary team performance and reduced human
workload can be achieved. Previous empirical studies have extensively analyzed the impact of
factors ranging from task, system, and human behavior on user trust and appropriate reliance
in the context of one-step decision making. However, user reliance on AI systems in tasks with
complex semantics that require multi-step workflows remains under-explored. Inspired by re-
cent work on task decomposition with large language models, we propose to investigate the
impact of a novel Multi-Step Transparent (MST) decision workflow on user reliance behav-
iors. We conducted an empirical study (𝑁 = 233) of AI-assisted decision making in composite
fact-checking tasks (i.e., fact-checking tasks that entail multiple sub-fact verification steps).
Our findings demonstrate that human-AI collaboration with an MST decision workflow can
outperform one-step collaboration in specific contexts (e.g., when advice from an AI system
is misleading). Further analysis of the appropriate reliance at fine-grained levels indicates
that an MST decision workflow can be effective when users demonstrate a relatively high
consideration of the intermediate steps. Our work highlights that there is no one-size-fits-all
decision workflow that can help obtain optimal human-AI collaboration. Our insights help
deepen the understanding of the role of decision workflows in facilitating appropriate reliance.
We synthesize important implications for designing effective means to facilitate appropriate
reliance on AI systems in composite tasks, positioning opportunities for the human-centered
AI and broader HCI communities.

7.1 Introduction
With the rapid development of artificial intelligence (AI) in recent years, there is a grow-
ing recognition of the promising value of AI assistance [329, 330]. AI systems have
This chapter is based on a peer-reviewed paper: GaoleHe, Patrick Hemmer, Michael Vössing, Max Schemmer,
Ujwal Gadiraju. Fine-Grained Appropriate Reliance: Human-AI Collaboration with a Multi-Step Transparent Deci-
sion Workflow for Complex Task Decomposition. Under review at CSCW 2026. https://arxiv.org/abs/2501.10909.

https://arxiv.org/abs/2501.10909
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been used to answer knowledge-intensive questions [331], provide recommendations in e-
commerce platforms [332], and even help make critical decisions [333]. While AI systems
promise high effectiveness and use across domains, there is no guarantee of their correct-
ness [22, 28]. Thus, accountability and verifiability become a major concern before adopt-
ing such systems into existingworkflows. To address these concerns, researchers and prac-
titioners are actively exploring the potential of human-AI collaboration [22, 123, 334, 335].
However, human-AI collaboration is not always effective, and there is a growing body
of evidence suggesting that in many contexts human-AI team performance is inferior to
AI performance alone [70, 123]. To address such issues and ensure complementary team
performance (i.e., where the team performance can exceed the individual performance of
both teammembers), users should accept advice from the AI system when it is correct and
be able to override it when AI advice is incorrect. Such reliance patterns are denoted as
appropriate reliance [29], which has become a focal research topic at the intersection of
AI and human-computer interaction.

In this context, existing work has explored how user trust and reliance are shaped by
different aspects surrounding task characteristics [301], AI systems [111], and user fac-
tors [22]. However, most of the research focuses on decision making or data annotation
tasks which can be solved in a so-called one-stepmanner [301]. In such a setting, a decision
making task can be solved without requiring any intermediate steps. Herein human-AI
collaboration allows humans to contrast their individual decisions against that of the AI,
often enriched by further information, e.g., its confidence or explanations on how a deci-
sion was derived [22]. The ultimate goal here, is to enable humans to (hopefully) derive
correct final decisions, leading to optimal team performance. In contrast to the one-step
decision making setting, human-AI collaboration in complex multi-step decision making
situations that require a composite semantic understanding and a multi-step workflow
(e.g., composite fact checking [336]) is still under-explored.

In this chapter, we address this research gap by investigating the potential benefits
and pitfalls of asking decision makers to follow the same multi-step workflow as that of an
advisory AI system (i.e., completing a sequence of decomposed sub-tasks) along with fine-
grained transparency of AI systems. We consider the context of composite fact-checking
due to its growing relevance in the age of LLMs, allowing us to simultaneously draw in-
sights in a timely real-world task. The benefits of such a setup are two-fold. Firstly, such
a workflow-based decision process enables us to analyze multi-step user decision making,
where user decisions at the intermediate steps affect their final decision and reliance on
the AI system. The key idea here is that following the same workflow as the AI system can
provide global transparency— an overview of the process of theAI system (i.e., task decom-
position) —which allows users to check and verify intermediate steps of the AI system and
better inform their reliance on AI advice. Secondly, each intermediate step can be viewed
as a sub-task. Compared to global transparency, the sub-task information (i.e., local deci-
sion criteria and evidence) entails local transparency (i.e., at the level of a specific sub-task)
of the intermediate decisions of the AI system. User reliance on the sub-task information
(which is also input to the AI system) provides a fine-grained view to analyze appropriate
reliance on the AI system. With the fine-grained transparency by design [337, 338], we
denote such a multi-step workflow in our study as multi-step transparent (MST) decision
workflow. In this spirit, a multi-step transparent (MST) decision workflow can potentially
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facilitate appropriate reliance on the AI system and help advance our understanding of
fine-grained user reliance.

Although appropriate reliance has been extensively studied in relatively simple
tasks [22], it is still unclear how user reliance is shaped by a multi-step decision workflow
to solve complex tasks. When intermediate steps are adopted to solve complex tasks, users
of the AI system may have more decisions to make sequentially. For example, to verify
the claim “General Agreement on Trade in Services is a treaty created to extend the multilat-
eral trading system to service sector and all members of the WTO are parties to the GATS.”,
workers need to verify three sub-facts: (1) General Agreement on Trade in Services is a
treaty; (2) General Agreement on Trade in Services is created to extend the multilateral
trading system to service sector; (3) All members of the WTO are parties to the GATS. In
such a multi-step decision workflow, accurate decisions at the intermediate steps can be
important.

The intermediate steps and intermediate answers generated by the AI system can pro-
vide global transparency — overall logic of the AI system (i.e., complex fact-checking
with task decomposition and answer aggregation). At the same time, the retrieved evi-
dence at each intermediate step enables users to verify the intermediate answers generated
by the AI system. In this way, it can increase the transparency of the AI system’s inter-
mediate decisions through verifiability [221], which is denoted as local transparency. In
this context, we propose to explore appropriate reliance on AI systems at the fine-grained
level of intermediate steps and the level of task input of each step. In this chapter, we
address the following research questions:

• RQ1: How does a multi-step decision workflow shape user reliance on an AI sys-
tem?

• RQ2: How do global transparency and local transparency shape user reliance in a
multi-step decision workflow?

To this end, we conducted an empirical study (𝑁 = 233) in a composite fact-checking
task (i.e., identifying the factual accuracy of claims based on supporting documents). On
the one hand, our findings provide empirical evidence that fine-grained appropriate re-
liance positively contributes to appropriate reliance at the level of overall task. With an
MST decision workflow, users developed a fine-grained appropriate reliance on the inter-
mediate steps, which enabled them to detect misleading AI advice. On the other hand, we
found that an MST workflow does not improve human-AI team performance and appro-
priate reliance on AI advice in comparison to a one-step decision workflow. In contrast to
facilitating appropriate reliance globally, the MST decision workflow was effective only
in a relatively challenging context, where AI advice is misleading. To encourage more
precise intermediate decisions, we asked participants to reflect on the usefulness of sup-
porting documents, which nudge users to carefully work on sub-tasks based on local trans-
parency. We found such an intervention to increase user consideration in the intermediate
steps brought about worse team performance and reliance patterns. Combined with the
cognitive load feedback across experimental conditions, we infer that such an interven-
tion imposes a high cognitive load on users, limiting its expected impact. However, we
found that the MST workflow can help users develop a critical mindset when making final
decisions. This can partially explain why participants using an MST workflow showed
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decreased reliance on the AI system and their confidence decreased after access to the AI
advice.

Our results highlight that the multi-step transparent decision workflow in complex
tasks did have some positive impact in facilitating appropriate reliance. Appropriate re-
liance at the intermediate steps may be a prerequisite to making the MST decision work-
flow effective. While an MST workflow can help mitigate over-reliance in the presence
of misleading AI advice, it may also cause under-reliance without enough explicit con-
siderations in the intermediate steps. We infer that there is no one-size-fits-all decision
workflow to achieve optimal team performance in complex tasks. To this end, future work
in the human-centered AI and relevant research communities should explore how to dy-
namically adapt and combine multiple decision workflows according to the contextual re-
quirements of human-AI collaboration. Our findings suggest that apart from the benefits
of improving user consideration of the fine-grained transparency with specific interven-
tions, it is important to consider potential trade-offs with concomitant side effects (e.g., a
high cognitive load caused by such interventions). Finally, we identify promising future
directions that explore how to improve human-AI team performance and promote global
appropriate reliance by characterizing fine-grained appropriate reliance. Our work has
important theoretical implications for promoting appropriate reliance on AI systems in
complex tasks and practical implications for the effective use of interventions to support
human-AI collaboration.

7.2 Related Work
Our work proposes to analyze fine-grained appropriate reliance on AI systems in han-
dling complex tasks with a multi-step transparent decision workflow. Thus, we position
our work in four realms of related literature: trust calibration and appropriate reliance in
AI-assisted decision making (7.2.1), multi-step hybrid workflows for complex tasks (7.2.2),
transparency and verifiability of AI systems in human-AI collaboration (7.2.3), misinfor-
mation and fact-checking (7.2.4).

7.2.1 Trust Calibration and Appropriate Reliance in AI-assisted De-
cision Making

Existing empirical studies [22, 49, 70] and theoretical frameworks related to user trust [40]
and reliance behavior [29] highlight that users of an AI system need to identify when an
AI system is accurate to rely on and when it is inaccurate and should be overridden. Such
ideal reliance patterns are recognized as appropriate reliance on the AI system, but have
proven to be extremely hard to obtain even by leveraging explainable AI methods [107].
Prior literature has adopted different definitions of trust; interpreting trust as either a sub-
jective attitude or as objective user behavior in different contexts. Following the growing
interpretation in AI-assisted decision making [22, 40], we operationalize user trust as a
subjective attitude and user reliance as objective behavior in this chapter. In most em-
pirical studies [22, 57, 234] where AI systems outperform human decision makers by a
margin, the team performance has been reported to be typically worse than that of the AI
alone. Addressing such challenges, empirical studies in one-step decisionmaking contexts
have been proposed to mitigate under-reliance [107] (i.e., disuse of accurate AI advice) and
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over-reliance [55, 108] (i.e., misuse of misleading AI advice).
Trust calibration has been extensively analyzed in interactions with AI systems [339,

340] and automation systems [37, 341–343]. The primary goal is to align or adjust the
level of trust that a human places in an AI system or automated technology based on
the actual capabilities of that system. Prior work [343–345] has shown that transparency
of the system (e.g., pertaining to uncertainty or the reasoning process behind AI advice)
can provide users with more situation awareness, and contribute to trust calibration. In
particular, existing research has explored how information about AI performance [111],
uncertainty of AI advice [121, 220, 346], and reasoning process [347] affects user trust.
As pointed out by Lee et al. [40], trust can substantially impact user reliance behaviors.
Trust calibration has been shown to play an important role in facilitating appropriate
reliance [348], aligning these lines of research.

Across multiple domains and diverse setups, researchers have found that many aspects
surrounding user factors (like AI literacy [108] and cognitive bias [30]), task characteristics
(e.g., task complexity [301] and proxy task [68]), and AI transparency (e.g., explainable
AI [107]) have a substantial impact on user reliance. To mitigate the negative impact of
these factors, researchers have proposed effective user interventions. User tutorials have
been proposed as an intervention that aims at educating users to fill in the knowledge
gap [108, 117] and recognize the weaknesses of an AI system [50]. Others have suggested
performance feedback [30, 111] through training sessions to calibrate user perceptions of
the accuracy of an AI system. Buccina et al. [55] proposed cognitive forcing functions to
mitigate the illusion of explanatory depth [62] brought about by explainable AI methods.

While existing work has explored how to evaluate and promote appropriate reliance
on a global level, little is understood about user reliance behaviors on fine-grained levels
in decision making contexts that go beyond one-step decisions and require sequential
decisions. In this chapter, we consider a composite fact-checking task as a test bed to
explore how users leverage the intermediate steps and supporting documents in a multi-
step transparent workflow. Although multi-step workflows have been widely adopted
in crowdsourcing [349–351] and crowd-AI hybrid systems [352], they have been under-
explored in the context of AI-assisted decision making.

7.2.2 Multi-step Hybrid Workflows for Effective Task Completion
With the goal to obtain high-quality human annotations in complex tasks, prior crowd-
sourcing literature [349–351] has explored how to decompose complex tasks into multiple
microtasks. To ensure text generation quality, Bernstein et al. [353] proposed the “Find-
Fix-Verify” workflow, which splits complex text writing and editing tasks into a series of
generation and review stages. Through empirical studies on writing, brainstorming, and
transcription, Little et al. [354] found that both iteration and multiple votes can increase
the average quality of responses, which is referred to as the “Iterate-and-Vote” workflow.
With the rise of conversational agents in recent years, Qiu et al. [293] leveraged conversa-
tional microtask workflows to improve worker engagement. However, Retelny et al. [355]
argued that workflows can be a bottleneck to the effectiveness of crowdsourcing in com-
plex tasks.

Inspired by such crowdsourcing literature, researchers have also proposed to build
Crowd-AI Hybrid workflows [352] to obtain high-quality data services. For example, in-
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stead of obtaining fully manual annotations, asking crowd workers to follow a “Find-Fix-
Verify” workflow may boost work efficiency and ensure high-quality outcomes [356, 357].
Similar to the “Iterate-and-Vote” workflow, in a hybrid crowd-AI system, votes from crowd
workers and AI systems can also improve outcome quality [358]. With the rise of large lan-
guage models (LLMs), there is an increasing exploration of how conversational interaction
can boost crowd-AI hybrid intelligence [263, 269]. For instance, users can obtain writing
suggestions for a scientific paper using an LLM-powered conversational interface [269].
With a conversational human-AI interaction, users are involved in an implicit multi-step
workflow to complete a task. Existing research has explored LLMs to automate exploratory
conversations [359] and plan daily tasks [274]. Chaining multiple LLMs can achieve even
complex functions entailed in music chatbots and writing assistants [360]. For example,
Wu et al. [361] defined primitive operations based on LLMs and chained them to synthesize
controllable workflows dynamically. Such AI chains can also be adapted from crowdsourc-
ing workflows [362].

We draw inspiration from existing literature on workflows for accomplishing tasks,
and propose a multi-step transparent workflow for decision making in a complex fact-
checking task. In our study, participants were required to go through intermediate steps
of the AI (indicating the step-wise process of the AI), and verify the correctness of the final
AI advice. Such a process allows users to develop an understanding of AI advice in a step-
wise manner, and make a final decision based on both AI advice and their initial decision.
The multi-step transparent workflow is generated and executed by the AI system [363]
(i.e., LLMs coupled with retrieval-augmented generation[364]) to provide advice and sup-
port participants in the task. Such human-AI collaboration increases the transparency of
the AI system. We aim to explore whether the increased transparency in such a process
can facilitate appropriate reliance.

7.2.3 Transparency and Verifiability in Human-AI Collaboration
Transparency has been recognized as an important goal towards building trustworthy AI
systems [28, 365–367]. Existing work has explored the transparency of AI systems from
different angles — transparency in the reasoning process [368], transparency of data collec-
tion/curation [369], transparency of limitations (e.g., uncertainty) [370], transparency of
social context [110, 123] etc. Explainable AI (XAI) methods, which may be independent of
the actual AI system, are also widely adopted to increase the transparency of AI systems in
human-AI collaboration [27, 107, 123, 126]. Besides incorporating XAI to increase system
transparency, AI transparency is more explored theoretically [366]. Relatively few works
have attempted to empirically verify the impact of transparency on human-AI collabora-
tion. With an empirical study, Vossing et al. [347] found that providing the transparency
of the reasoning process can increase user trust, while providing transparency of system
uncertainty can decrease user trust [347].

Different from the transparency of AI systems, verifiability is typically associated with
specific AI advice. Within the context of human-AI collaboration, explainable AI meth-
ods [371, 372] are widely used to assist human decision makers by providing evidence
(e.g., highlighting a part of task input [159]) to support/oppose AI advice [107]. Among
the explainable AI methods, causal explanations [373, 374] propose to reason about the
causal relationships between the task input and AI advice, which provides a strong verifi-
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ability of AI advice. Recently, retrieval-augmented generation [364, 375] has emerged as
one popular paradigm to enhance the verifiability of LLMs. With the retrieved evidence
(e.g., documents or relevant structure knowledge) as a reference, humans can verify the
factual correctness of LLM generation.

In this chapter, we followed the idea of transparency by design [337, 338] to modu-
larize the complex fact-checking task into a series of sub-fact verification steps. With
the decomposed sub-facts and sub-fact verification results, we provided users with global
transparency of the AI system’s overall process of task decomposition. At the same time,
we also provide the retrieved documents in each sub-fact verification, which are input to
the LLM-based fact verification system. These documents provide local transparency of
the intermediate steps (i.e., sub-tasks). Thus, we provided fine-grained transparency of the
AI system and explored how user reliance is shaped through the multi-step transparent
(MST) decision workflow. To the best of our knowledge, this is the first empirical effort
to understand user reliance on an AI system with fine-grained transparency.

7.2.4 Misinformation and Fact-checking
From a data mining perspective [376], misinformation is mainly detected based on two
criteria: veracity and intentionality. Veracity mainly focuses on whether referred media
or an online post is factually false or inaccurate, regardless of intent. ‘Fact-checking’ is a
task mainly based on veracity, which assesses whether claims made in written or spoken
language are factually correct [377–379]. Intentionality is another dimension based on
the intent of the information creator/provider. For example, hate speech [380] and ‘fake
news’ in the political election [381]. Such misinformation, which often uses inflammatory
and sensational language to alter people’s emotions [382], can be harmful and widespread
online [383, 384]. Based on these criteria, different communities have developed deep
learning-based methods [378, 385] to automate checking the massive amount of informa-
tion online. In this chapter, we focus on the veracity of factual claims and conducted
fact-checking tasks in a human-AI collaborative setting.

While deep learning has been widely adopted to manage misinformation online, hu-
man partnership is still a crucial factor in this task [386]. In addition to domain experts
who are capable of detecting inaccurate or false information, researchers have explored
and showcased crowdsourcing as an effective means to conduct fact-checking [387–392].
Typically, crowdsourced fact-checking involves three steps in a complex workflow [391]:
(1) claim selection, which targets selecting check-worthy claims; (2) evidence retrieval,
which obtains necessary information sources (e.g.,with a search engine); and (3) claim ver-
ification, which includes discussion and aggregation of judgment across different crowd
workers and further produces explainable, convincing verdicts (i.e., justification produc-
tion). Prior to the rapid adoption of LLMs, the AI assistant in each stage of the complex
workflow was typically trained independently and served different purposes. Such dispar-
ity between AI systems in different stages prevents humans from building a coherent and
unified mental model when working with these sub-tasks. Recent advances have led re-
searchers to explore leveraging LLMs to enhance all sub-tasks and provide an end-to-end
workflow by chaining LLMs [363].

It is evident that LLMs bring new opportunities and challenges to the fact-checking
task [393–395]. On the one hand, LLMs have shown powerful natural language under-
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standing and generation capabilities that can help tackle sub-tasks of fact-checking sys-
tems [396]. For example, LLMs can retrieve highly relevant information sources [375] and
generate explanations to justify the verification process or the results [363]. Furthermore,
LLMs can provide an easy way for humans to communicate with the AI system, offering
further potential for human-AI interaction in fact-checking tasks [393]. On the other hand,
LLMs are known to hallucinate [397], i.e., generating seemingly plausible but incoherent
or factually incorrect content. LLMs have been shown to suffer from out-of-distribution
data issues [398] and evolving knowledge without external contextual input (e.g., retrieved
documents) [375]. Due to the uncertainty brought about by these prevalent flaws and the
lack of accountability, human-AI collaborative fact-checking (comprising at least human
oversight) is of fundamental importance in the era of LLMs.

In a user study of AI-assisted fact-checking, Nguyen et al. [386] found that crowdwork-
ers can be easily misled by wrong model predictions, but such errors can be reduced given
interactions with the AI system. With dynamic user input and updated AI system pre-
dictions, crowd workers make much fewer errors misled by wrong AI predictions. Thus,
Nguyen et al. [386] argued that ‘transparent models are key to facilitating effective hu-
man interaction with fallible AI models.’ Contributing to existing literature in the area
of human-AI collaboration for fact-checking, our work provides a multi-step transparent
decision workflow in assisting humans conduct fact-checking with fine-grained retrieved
evidence and decomposed sub-steps. Through this, we aim to provide fine-grained trans-
parency and facilitate appropriate reliance of humans on the AI system. Our insights add
further empirical evidence and advance our understanding of how transparency of the AI
system and decision workflow affects human-AI interaction.

7.3 Task and Hypothesis
In this section, we describe the composite fact-checking task (i.e., identifying the factual
accuracy of claims based on supporting documents), the multi-step transparent workflow
(MST), and present our hypotheses, which have all been preregistered before any data
collection.

7.3.1 Composite Fact-checking Task
To analyze how the MST decision workflow impacts human-AI collaboration in complex
tasks, we consider a composite fact-checking task. An example of solving a composite
fact-checking task based on the mutli-step transparent workflow is shown in Figure 7.1.
This task asks participants to decide whether a factual claim isTrue or False using the sup-
porting documents retrieved fromWikipedia. The reasons for selecting the composite fact-
checking task as our test bed are three-fold. Firstly, it contains tasks that require composite
semantic understanding and can be solved with a workflow. Secondly, the fact-checking
task requires evidence-based verification, which provides verifiability in the intermediate
steps. Thirdly, due to the practical need for content moderation online (e.g., hate speech,
rumors, and hallucinated content from generative AI systems), it is a timely and relevant
scenario for human-AI collaboration.
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General Agreement on Trade in Services is a treaty created to 
extend the multilateral trading system to service sector and all 
members of the WTO are parties to the GATS.

(1) General Agreement on Trade in 
Services is a treaty.

(3) All members of the WTO are 
parties to the GATS.

(2) General Agreement on Trade in 
Services is created to extend the 
multilateral trading system to service sector.

LLM

Sub-facts

Composite fact to verify

RAG-based sub-fact verification

The fact is True
Aggregate

Intermediate Answers

Corpus / Web

LLM

…

BM25

True vs False

(1) True

(2) True

(3) True

Task Decomposition

Figure 7.1: Illustration of the multi-step workflow on the composite fact-checking tasks using the ProgramFC
method [363]. The sub-facts and intermediate answers (in the purple box) provide global transparency in our
MST workflow. The retrieved documents (in the blue box) serve as local transparency in our MST workflow.

7.3.2 Multi-step Transparent Workflow
AI SystemSetup. In our study, we adopted an LLM-basedmethod called ProgramFC [363]
to serve as our AI system. Figure 7.1 illustrates how ProgramFC provides global trans-
parency and local transparency. The ProgramFC method conducts fact-checking with
two stages: (1) Using GPT-3.5 to generate decomposed steps to conduct composite fact-
checking. (2) After generation of the decomposed steps, these steps are executed using
another LLM, flan-t5-xl [399]. Using the generated decomposed steps (i.e., sub-facts to
verify), the execution step generates intermediate answers based on retrieved supporting
documents for each sub-fact. The documents are retrieved based on the popular BM25
algorithm [400], which leverages the query terms frequency appearing in documents to
achieve a ranking function. All source documents are from Wikipedia, which is provided
with the implementation of ProgramFC.¹ Finally, ProgramFC aggregates the intermediate
answers to obtain a final prediction of the factual accuracy for the composite fact. The gen-
erated decomposed steps, intermediate answers, and retrieved supporting documents form
the basis for the multi-step transparent workflow in our study. In our implementation,
we selected the aforementioned LLMs due to two reasons: (1) flan-t5-xl are representa-
tive open-sourced LLMs that are widely adopted in question answering and fact-checking
practice [399], (2) GPT-3.5 is representative of the performance of most open-sourced and
commercial LLMs at the time of data collection (i.e., Jan 2024), offering transferable find-
ings and implications within the scope of our empirical study.

Decision Workflow. In our study, all workflows follow a two-stage decision making
setup, a widely adopted design in AI-assisted decision making [30, 49, 107, 108]. In the
first stage, participants work on the fact-checking tasks based on the provided supporting
documents and the decision workflow. Next, they were given a chance to alter their ini-
tial choice following AI advice. In multi-step decision workflows, decomposed steps and
intermediate AI predictions are also shown to support user decisions. In the first stage

¹https://github.com/teacherpeterpan/ProgramFC

https://github.com/teacherpeterpan/ProgramFC
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of decision making, if participants do not find useful supporting documents to support or
refute the sub-fact / fact, they can choose ‘Uncertain’ beside the label ‘True’ and ‘False’.
In the second stage of decision making, participants are asked to make a binary decision
between ‘True’ and ‘False.’

A

B

C

Figure 7.2: Screenshots of the composite fact-checking task interface with the MST workflow. (A) The starting
point of the MST workflow, where the fact to check and decomposed steps are shown to users. (B) An inter-
mediate step in the MST workflow. (C) Final decision making page, where decomposed steps and intermediate
answers are provided as an explanation to the AI advice.

User Interface. The user interface of our study is shown in Figure 7.2. At the beginning
of the MST workflow, we show participants the composite fact to check and decomposed
steps (Figure 7.2 (A)). Next, participants are asked to follow the decomposed steps to verify
the sub-facts (Figure 7.2 (B)) based on supporting documents. In our study, each step is
providedwith three relevant documents retrieved using the BM25 algorithm [400]. Finally,
participants receive the final AI advice on the factual accuracy of the composite fact. The
decomposed steps and the corresponding AI advice at intermediate steps are also provided
as explanations for the final AI advice. As a baseline comparison to the MST workflow,
we also adopted a basic one-step fact-checking workflow, where participants were asked
to identify the factual accuracy of composite facts directly without explicitly decomposed
steps. To ensure a fair comparison in terms of the evidence presented to participants
across the two conditions, we gathered all documents retrieved in the three steps of the
MST workflow and showed them on one page for the basic fact-checking workflow.

7.3.3 Hypotheses
Our study mainly aims to contribute to understanding user reliance behaviors on AI sys-
tems in the context of solving complex tasks in a sequence of decomposed sub-tasks gen-
erated by LLMs. To this end, we devised a multi-step decision workflow and catered to
transparency along the decomposed steps and AI advice at the intermediate steps. The in-
termediate steps and answers work in facilitating a global transparency of the AI system,
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rendering the decision making process visible [347]. Within our study, the decomposed
steps generated by LLMs show the overall step-wise process of the AI system, which can
potentially cause user trust to increase [347]. Meanwhile, user trust has been found to
substantially impact user reliance behaviors [40]. Combining these findings from existing
work, we infer that providing decomposed steps generated by LLMs (i.e., global trans-
parency) can increase user reliance on the AI system. Thus, we hypothesize that:

(H1) Compared to only providing final AI advice, providing the decomposed steps
generated by LLMs (i.e., global transparency) will increase user reliance on the AI
system.

With the multi-step transparent workflow, users follow the same process (i.e., decom-
posed steps in the same order) to verify how the AI system works on the composite fact-
checking task. Throughout this process, the retrieved documents are provided to increase
the transparency of each step (i.e., sub-task). Based on local transparency, users make
independent judgments about the intermediate steps before being exposed to final AI ad-
vice and intermediate answers predicted by the AI system. In comparison, users with a
one-step decision workflow do not have the chance to work on the decomposed sub-tasks
following the same step-wise process of the AI system. Thus, users with a multi-step trans-
parent workflow may develop a more critical mindset when adopting the final AI advice
supported with intermediate steps and answers. In this way, they may be better equipped
to recognize when the AI system provides correct advice and when they should rely on
their own decisions. Thus, we hypothesize that:

(H2) Providing users with a multi-step transparent decision workflow of the AI sys-
temwill result in relativelymore appropriate reliance on theAI system, in comparison
to a one-step decision workflow with AI advice.

Although the intermediate steps and task input at each step (e.g., retrieved documents)
are designed to provide benefits in the decision making process, adequate consideration
and appropriate use can be a prerequisite for their effectiveness. If users can properly
leverage fine-grained transparency (i.e., developing precise decisions and reflections at
the level of intermediate steps and the level of task input in each step), they can benefit
from the multi-step decision workflow, thereby calibrating their reliance behaviors on the
AI system. Thus, we hypothesize that:

(H3) Within a multi-step decision workflow, more accurate intermediate user deci-
sions will result in relatively more appropriate reliance on the final AI advice.

7.4 Study Design
This study was approved by the human research ethics committee of our institution. Our
hypotheses and experimental setup had all been preregistered before any data collection.
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7.4.1 Experimental Conditions
Addressing the aforementioned RQs, we aim to explore the impact of a transparent de-
cision workflow on user reliance on an AI system in a composite decision making task.
Considering transparency of the decision workflow as the sole independent variable in
our study, we designed a between-subjects study with four experimental conditions (see
Table 7.1). In all conditions, participants follow a two-stage decision making setup (de-
scribed in Section 7.3.1). The different experimental conditions are presented below, with
each successive condition being a variant of the previous condition by a single factor.

1. Control — In this condition, participants follow a one-step fact-checking workflow
in the first stage and only have access to the final AI advice in the second stage.

2. MST-GT — In this condition, participants can additionally check the intermediate
steps from the AI system as global transparency in the second stage.

3. MSTworkflow — In this condition, participants follow a multi-step transparent work-
flow in the first stage, where they follow the same working logic (i.e., decomposed
steps in the same order) of the AI system, and check the retrieved documents
(i.e., part of AI input) at each sub-task. In the second stage of decision making,
they will be shown the intermediate steps and intermediate answers from both AI
systems and themselves (cf. Figure 7.2).

4. MSTworkflow+ — On top of condition MSTworkflow, participants in this condition
are asked to annotate the usefulness of the supporting documents in each inter-
mediate step. Such annotation encourages users to carefully check each retrieved
document at the intermediate steps and indicate their usefulness in informing their
intermediate decisions. This is designed to function similarly to cognitive forcing
functions [55], which nudge users towards critical use of AI advice.

Table 7.1: Differences between experimental conditions. The intermediate steps and answers are regarded as
global transparency. Users have access to local transparency through the multi-step transparent workflow.

Exp Condition Decision Workflow AI Assistance
Control one-step workflow AI Advice
MST-GT one-step workflow AI advice + global transparency

MSTworkflow multi-step transparent workflow AI advice + global transparency

MSTworkflow+
multi-step transparent workflow AI advice + global transparency+ document usefulness annotation

7.4.2 Task Selection
As described earlier, composite fact-checking is an important avenue for human-AI col-
laboration (e.g., credibility assessment systems [109]). All data used in our study is from a
public fact-checking dataset – FEVEROUS-S [336]. This dataset is widely used in compos-
ite fact-checking, which leverages documents as evidence. The ten selected tasks in our
study are shown in Table 7.2.
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Table 7.2: Selected tasks in our study. ‘Extra Notes’ provides special cases of the correctness of intermediate AI
advice and verifiability of intermediate steps.

ID Decomposed Steps generated by LLMs Ground
Truth

System
Ad-
vice

Extra Notes

1 (1) In 2014, both Orient Express and its holding company were renamed
Belmond and Belmond Ltd, respectively. (2) Orient Express is a hospitality
and leisure company that operates luxury hotels, train services and river
cruises worldwide. (3) Belmond Ltd partnered with Irish Rail in 2015 to
launch the luxury train Belmond Grand Hibernarian in Ireland.

True False two mislead-
ing interme-
diate advice

2 (1) Adrian Haynes is aWampanoag chief. (2) Adrian Haynes served in the
United States Navy during WWII from 1943 to 1947. (3) Adrian Haynes
had a stint with the Naval Supply Ninth Amphibian Force that took part
in the 1944 Anzio invasion in Italy.

True True one interme-
diate step is
not verifiable

3 (1) Lewis Friedmans (nominated for two emmys) shows have a focus on
the performing art. (2) Lewis Friedmans shows have received the Golden
Globes. (3) Lewis Friedmans has also written documentaries about Bob
Marley.

True True -

4 (1) General Agreement on Trade in Services is a treaty. (2) General Agree-
ment on Trade in Services is created to extend the multilateral trading
system to service sector. (3) All members of the WTO are parties to the
GATS.

True True -

5 (1) Edgar McInnis wrote poetry in his spare time. (2) Edgar McInnis won
the Newdigate Prize in 1925 for his poem ”Byron”. (3) Edgar McInnis re-
ceived Master of Arts degree in 1930 from Oxford University.

True True -

6 (1) Teldenia strigosa was described by Warren in 1903. (2) Teldenia
strigosa was found in New Guinea and Goodenough Island (in the
Solomon Sea). (3) The length of the forewings of Teldenia strigosa is 12.5–
15 mm.

False True one mislead-
ing interme-
diate advice

7 (1) The Travelling Church emigrants did not take any slaves with them
when they traveled. (2) The Travelling Church emigrants traveled over
the frozen and danger-filled Cumberland Gap. (3) The Cumberland Gap is
a pass through the long ridge of the Cumberland Mountains, and within
the Appalachian Mountains.

False True one mislead-
ing interme-
diate advice

8 (1) Tosi Fasinro finished fourth at the 1990 World Junior Championships.
(2) Tosi Fasinro won the 1993 UK Championships. (3) Tosi Fasinro took
one gold and one bronze at the AAA Championships.

False False -

9 (1) Stephanie Flanders was BBC’s economics editor for five years. (2)
Stephanie Flanders presented the docu-series Masters of Money. (3) Iain
Duncan Smith praised Stephanie Flanders because of her pro-Labour
stand in the coverage of unemployment figures.

False False one interme-
diate step is
not verifiable

10 (1) The wild water buffalo or Asian buffalo is an endangered species. (2)
The wild water buffalo or Asian buffalo is likely to become extinct shortly.
(3) The wild water buffalo or Asian buffalo has a population of less than
1,000, of which the majority is found in India.

False False -
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Selection Process. First, we generate decomposed steps for all tasks in the evaluation set
of the FEVEROUS-S dataset. The task decomposition is achieved with prompting LLMs
(GPT-3.5 in our study, but this can be easily replaced with other LLMs). The prompt is
based on the implementation of ProgramFC [363].² Next, we considered and retained all
tasks that can be solved by verifying 3 sub-facts. This resulted in 1,127 candidate composite
tasks. The ProgramFC algorithm achieved 67.7% accuracy on these tasks. Estimating that
each fact-checking task could take around 2-3 minutes for participants to complete, we
selected ten tasks from these candidates. Considering all possible cases of (Ground Truth,
AI Prediction) pairs, we randomly sample 10 tasks for each case (resulting in 40 tasks as
candidates). An author of this chapter then annotated the correctness of the decomposed
steps andmanually followed the decomposed steps to annotate both the usefulness of each
supporting document and the factual accuracy of each sub-fact in the decomposed steps.
After that, 15 tasks, where the decomposed steps were correct to verify the composite fact,
were reserved.

To balance the label distribution (True/False for the answer of each task), we selected
five tasks with ground truth “True” and five tasks with ground truth “False” (ten tasks
intotal). 70% accuracy is adopted when selecting the tasks, the rationale behind is: (1) it is
very close to the actual AI accuracy 67.7% (2) With such an accuracy level, the AI system
is compatible with crowd workers to provide decision support without risking optimal
performance with over-reliance, which makes it suitable to analyze user (appropriate) re-
liance patterns. To control the difficulty of tasks where AI prediction is wrong, tasks 1, 6,
and 7 contain one or two incorrect intermediate steps. Besides, tasks 2 and 9 contain one
intermediate step where the supporting documents are not enough to conclude the factual
accuracy. In the two tasks, the AI final advice and the intermediate steps are all correct.

7.4.3 Measures and Variables
Reliance-based dependent variables
In condition MSTworkflow and MSTworkflow+, participants have to assess the intermediate
correctness of each sub-fact. Each task is decomposed into three sub-tasks, which can
facilitate valid comparison across conditions. Based on the user assessments of the factual
correctness of intermediate steps and the ground truth (obtained through expert annota-
tion), we can measure appropriate reliance at intermediate steps (AR-Intermediate) as
average accuracy of user intermediate decisions. Participants in condition MSTworkflow+
were asked to annotate the usefulness of supporting documents when verifying each sub-
fact with a question: “Does this excerpt contain necessary information to verify the sub-fact?”.
There are four potential responses: “Useless: it does not contain any useful information to
verify the fact”, “Partial support: it contains some information partially support the sub-fact,
but not fully support”, “Full support: it contains all necessary information to support the sub-
fact”, “Contradiction: it contains necessary information to contradict with the sub-fact”. To
analyze how users appropriately leverage the intermediate supporting documents (AR-
Evidence), we adopted expert annotation of the usefulness of each supporting document
as ground truth and calculated users’ agreement ratio. Both AR-Intermediate and AR-
Evidence are averaged across intermediate steps of the workflow.

²https://github.com/teacherpeterpan/ProgramFC/blob/main/models/prompts.py

https://github.com/teacherpeterpan/ProgramFC/blob/main/models/prompts.py
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Since we aim to analyze the impact of different decision workflows on team perfor-
mance and (appropriate) reliance, we leveraged measures introduced by prior work and
typically used in this context due to their suitability [29, 30, 57, 66]; we adopted Team Per-
formance (i.e., average user accuracy based on their final decision) and Team Performance-
wid (i.e., average user accuracy where their initial decision disagrees with AI advice) to
measure user performance in our study. Following previous work by Yin et al. [57], Zhang
et al. [66], we measured user reliance by using the Agreement Fraction and the Switch
Fraction. These measures consider the degree to which user final decisions agree with
AI advice, and how often they switch to AI advice when their initial decision disagrees
with the AI advice. Following prior work [29] on the evaluation of appropriate reliance,
we adopted Relative positive AI reliance (RAIR) and Relative positive self-reliance (RSR) as
appropriate reliance measures. A low RAIR indicates under-reliance on the AI system,
while a low RSR indicates over-reliance on the AI system. To provide a precise definition
of reliance-based measures used in our study, we provide further details of calculation
formula in Appendix.

Other Variables
We also adopted measures for user trust, user confidence, cognitive load, and relevant
covariates to further our understanding of the impact of different decision workflows. The
confidence is collected along with decision making based on 5-point Likert scale.
User Trust. Motivated by existing work on user trust in automation [40], we assessed
user subjective trust with a post-task questionnaire. We adopted four sub-scales from
the trust in automation questionnaire [321]: Reliability/Competence (TiA-R/C), Under-
standing/Predictability (TiA-U/P), Intention of Developers (IoD), and Trust in Automation
(TiA-Trust).
Cognitive Load. As the decision workflows in our study provide different levels of trans-
parency of the AI system, there is a potential for the workflows to pose varying cogni-
tive load among users. We assessed user cognitive load using the NASA-TLX question-
naire [242].
Covariates. For a deeper analysis of our results, and to account for potential confounds
based on exisiting literature, we considered the following covariates:

• Familiarity with the AI system (Familiarity) and general propensity to trust (Propen-
sity to Trust) from the trust in automation questionnaire.

• User expertise in large language models (LLM Expertise) is assessed with a question
“To what extent are you familiar with large language models?”. Responses were
gathered on a 5-point Likert scale from 1 (No prior experience/knowledge) to 5 (Ex-
tensive prior experience/knowledge).

• User expertise in fact-checking tasks (Fact Checking Expertise) is assessed with a
question “Do you have any experience or knowledge with fact-checking?”. Re-
sponses were gathered on a 5-point Likert scale from 1 (No prior experience/knowl-
edge) to 5 (Extensive prior experience/knowledge).

Table 7.3 presents an overview of all the variables considered in our study.
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Table 7.3: The different variables considered in our experimental study. “DV” refers to the dependent variable.
RAIR, RSR, and Accuracy-wid are indicators of appropriate reliance.

Variable Type Variable Name Value Type Value Scale

Performance (DV) Team Performance Continuous, Interval [0.0, 1.0]
Team Performance-wid Continuous [0.0, 1.0]

Reliance (DV) Agreement Fraction Continuous, Interval [0.0, 1.0]
Switch Fraction Continuous [0.0, 1.0]

Appropriate Reliance (DV)

RAIR Continuous [0.0, 1.0]
RSR Continuous [0.0, 1.0]

AR-Intermediate Continuous [0.0, 1.0]
AR-Evidence Continuous [0.0, 1.0]

Trust (DV)

Reliability/Competence Likert 5-point, 1: poor, 5: very good
Understanding/Predictability Likert 5-point, 1: poor, 5: very good

Intention of Developers Likert 5-point, 1: poor, 5: very good
Trust in Automation Likert 5-point, 1:strong distrust, 5: strong trust

Cognitive Load (DV)

Mental Demand Likert -7: very low, 7: very high
Physical Demand Likert -7: very low, 7: very high
Temporal Demand Likert -7: very low, 7: very high

Performance Likert -7: Perfect, 7: Failure
Effort Likert -7: very low, 7: very high

Frustration Likert -7: very low, 7: very high

Covariates

Propensity to Trust Likert 5-point, 1: tend to distrust, 5: tend to trust
Familiarity Likert 5-point, 1: unfamiliar, 5: very familiar

LLM Expertise Likert 5-point, 1: No expertise, 5: Extensive expertise
Fact Checking Expertise Likert 5-point, 1: No expertise, 5: Extensive expertise

Other Usefulness of Evidence Category {useless, partial support, support, contradiction}
Confidence Likert 5-point, 1: inconfident, 5: confident

7.4.4 Participants
Sample Size Estimation. We computed the required sample size in a power analysis
for a Between-Subjects ANOVA using G*Power [92]. In our experimental analysis, we
applied a Bonferroni correction to correct for testing multiple hypotheses. The signifi-
cance threshold decreased to 0.05

3 = 0.017, and is applied to all statistical analyses. We
specified the default effect size 𝑓 = 0.25, a significance threshold 𝛼 = 0.017 (i.e., due to test-
ing multiple hypotheses), a statistical power of (1 − 𝛽) = 0.8, and that we will investigate
four different experimental conditions/groups. This resulted in a required sample size of
230 participants. We thereby recruited 284 participants from the crowdsourcing platform
Prolific,³ accommodating potential exclusion.
Compensation. To ensure a fair comparison across conditions, we set the basic pay-
ment for all participants to £4. This payment is based on the time estimation of condition
MSTworkflow+ (30 minutes) and a “Fair” payment criteria (£8 per hour) by the platform.
To motivate participants to reach correct decisions with their best ability, we rewarded
each correct decision with a bonus of £0.05. Such a setup is also regarded as a contextual
requirement to achieve appropriate trust in automation [40].
Filter Criteria. All participants were proficient English speakers aged between 18 and 50,
and they had finished more than 40 tasks and maintained an approval rate of at least 90%
on the Prolific platform. We excluded participants from our analysis if they failed at least
one attention check or if we found any missing data. In our study, frequently switching
from initial agreement to opposite AI advice is treated as an indicator of potentially un-
reliable behavior. We excluded the participants with three or more such indications and
participants who finished the study in a very short time (less than 15 minutes). These fil-

³https://www.prolific.co

https://www.prolific.co


7.5 Results

7

185

ter criteria ensure the quality of collected data by removing low-effort submissions. After
these filter criteria, we have 233 participants reserved for analysis. These participants had
an average age of 34 (SD = 7.5) and a reasonably balanced gender distribution (54.1% male,
45.9% female).

Pre-task
Questionnaire

• LLM Expertise
• Fact Checking

Expertise

Informed
Consent

Onboarding
Tutorial

• Introduction
• AI system

description
• Example task

with explanation

Task Phase

• 10 Tasks
• Decision

making with
workflows

Post-task
Questionnaire

• Trust-in-
automation

• NASA-TLX

Figure 7.3: An illustration of the procedure that participants followed in our study.

7.4.5 Procedure
At the start of our study, all participants were asked to provide us with informed con-
sent if they wished to proceed. Next, we gathered user self-reported expertise of large
language models and fact-checking tasks using two questions. Before formally working
on the tasks, we provide an onboarding tutorial to help participants get familiar with all
elements shown in our study and understand how to work on the composite fact-checking
tasks with an example. At this stage, participants in the condition MST-GT, MSTworkflow,
and MSTworkflow+ also have access to the decomposed steps and intermediate answers for
the example task. Next, participants worked on the ten selected tasks based on the deci-
sion workflow of the corresponding condition. Finally, they were asked to fill in post-task
questionnaires (including the trust in automation questionnaire and NASA-TLX question-
naire). We employed two attention check questions (one in the task phase and one in the
post-task questionnaire) to ensure the quality of collected data. Figure 7.3 illustrates the
procedure participants followed in our study.

7.5 Results
In this section, we will present the main experimental results and exploratory analysis for
our study. In the spirit of open science, our code and data can be found in OSF repository.⁴

7.5.1 Descriptive Statistics
To ensure the reliability of our results and interpretations, we only consider 233 partic-
ipants who passed all attention checks. These participants were distributed across four
experimental conditions in a reasonably balanced manner — 54 (Control), 62 (MST-GT), 60
(MSTworkflow), 57 (MSTworkflow+).

⁴https://osf.io/s4he5/?view_only=2810286e1e5c4573b723c4785d5fe45c

https://osf.io/s4he5/?view_only=2810286e1e5c4573b723c4785d5fe45c
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Distribution of Covariates. The covariates’ distribution is as follows: LLM Expertise
(16.7%with good/extensive background knowledge about LLMs, 83.3%without any knowl-
edge or with limited knowledge about LLMs), Fact Checking Expertise (28.8% with good
/ extensive background knowledge with fact-checking tasks, 71.2% without any knowl-
edge or with limited background knowledge in fact-checking tasks), Propensity to Trust
(𝑀 = 2.82, 𝑆𝐷 = 0.71; 5-point Likert scale, 1: tend to distrust, 5: tend to trust), and Familiar-
ity (𝑀 = 2.54, 𝑆𝐷 = 1.11; 5-point Likert scale, 1: unfamiliar, 5: very familiar).

Table 7.4: Participant performance on fact-checking tasks. ‘Accuracy’ is reported in percent (%). We use bold
and underlined fonts to denote the best and second-best performance in each task, respectively.

Task-ID System Advice Ground Truth Accuracy
Control MST-GT MSTworkflow MSTworkflow+ Avg

1 False True 33.3 15.0 14.5 28.1 22.3
2 True True 79.6 63.3 50.0 54.4 61.4
3 True True 70.4 68.3 59.7 66.7 66.1
4 True True 94.4 100 98.4 87.7 95.3
5 True True 98.1 100 91.9 94.7 96.1
6 True False 9.3 8.3 25.8 24.6 17.2
7 True False 59.3 50.0 62.9 43.9 54.1
8 False False 85.2 86.7 83.9 70.2 81.5
9 False False 87.0 90.0 83.9 73.7 83.7
10 False False 90.7 91.7 90.3 73.7 86.7

Performance Overview. On average across all conditions, participants achieved a Team
Performance of 66% (𝑆𝐷 = 0.12), which is still lower than theAI accuracy (70%). The average
Agreement Fraction is 0.78 (𝑆𝐷 = 0.14), and the average Switch Fraction is 0.50 (𝑆𝐷 = 0.30).
As for the appropriate reliance at fine-grained levels, participants in MSTworkflow and MST-
workflow+ conditions achieved an averageAR-Intermediate of 0.73 (𝑆𝐷 = 0.12); participants
in MSTworkflow+ condition achieved an average AR-Evidence of 0.64 (𝑆𝐷 = 0.24). With
these measures, we confirm that (1) participants in our study do not always blindly rely
on AI advice, and (2) participants put some effort into the intermediate steps and support-
ing documents. As all behavior-based dependent variables (i.e., performance, reliance, and
appropriate reliance) are not normally distributed, we used non-parametric statistical tests
to verify our hypotheses.

Table 7.4 shows the accuracy across conditions in the ten selected fact-checking tasks.
Among the seven tasks where system advice is aligned with the ground truth, partici-
pants in Control and MST-GT conditions showed higher accuracy. However, participants
in MSTworkflow and MSTworkflow+ conditions also showed competitive or even better per-
formance in the three tasks where system advice was misleading.

Cognitive Load. Based on the NASA-TLX questionnaire, we assessed participants’ cog-
nitive load based on six dimensions. As the workflows used in our study are of different
levels of complexity and annotation effort. We visualized their distribution across con-
ditions in Figure 7.4. To compare the cognitive load across conditions, we conducted a
one-way ANOVA test and post-hoc pairwise Tukey’s HSD test. The results indicate that
participants in MSTworkflow+ showed significantly higher Mental Load than other condi-
tions, and also showed much higher Frustration when compared to the Control condition.
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Figure 7.4: Bar plot illustrating the distribution of the cognitive load across different experimental conditions in
our study. **: p < 0.017

While for the reserved four dimensions, the difference is non-significant, we still observe
that participants in MSTworkflow+ condition showed higher cognitive load.

7.5.2 Hypothesis Tests
H1 and H2: effect of different workflows
To verify H1 and H2, we conducted Kruskal-Wallis H-tests to compare the performance,
reliance, and appropriate reliance measures of participants across the four experimental
conditions. The results are shown in Table 7.5. For the measures where significant dif-
ferences exist 𝑝 < 0.017, we conducted a post-hoc Mann-Whitney test to obtain pairwise
comparisons.

Table 7.5: Kruskal-Wallis H-test results for workflow on reliance-based dependent variables. “††” indicates the
effect of the variable is significant at the level of 0.017.

Dependent Variables 𝐻 𝑝 𝑀 ±𝑆𝐷 Post-hocControl MST-GT MSTworkflow MSTworkflow+

Team Performance 15.13 .002†† 0.71±0.11 0.67±0.10 0.66±0.13 0.62±0.14 Control > MST-GT, MSTworkflow > MSTworkflow+
Agreement Fraction 16.37 .001†† 0.80±0.11 0.83±0.13 0.75±0.13 0.72±0.16 Control, MST-GT > MSTworkflow, MSTworkflow+
Switch Fraction 3.07 .381 0.47±0.27 0.54±0.34 0.46±0.26 0.52±0.30 -

Team Performance-wid 12.20 .007†† 0.64±0.27 0.52±0.26 0.52±0.24 0.49±0.21 Control > MST-GT, MSTworkflow, MSTworkflow+
RAIR 3.64 .302 0.60±0.39 0.54±0.42 0.48±0.34 0.52±0.33 -
RSR 13.77 .003†† 0.73±0.43 0.47±0.47 0.65±0.46 0.46±0.48 Control, MSTworkflow > MST-GT, MSTworkflow+

Impact on user reliance. As shown in Table 7.5, compared to Control condition, MST-GT
condition showed significantly higher Agreement Fraction and a non-significantly higher
Switch Fraction. This supports that providing transparency in the AI system’s intermediate
steps (i.e., global transparency) increases user reliance on the AI system. Thus, we find
support forH1. However, with global transparency in final decision making, participants
in conditions with a multi-step decision workflow (i.e., MSTworkflow and MSTworkflow+)
showed significantly lower Agreement Fraction.
Impact on appropriate reliance. Although there is no significant difference on RAIR
across conditions. It is clear that participants in Control condition showed the highest
RAIR and RSR corresponding to the highest level of appropriate reliance. Participants in
MST-GT and MSTworkflow+ conditions showed significantly worse RSR than Control and
MSTworkflow conditions, which is a reflection of over-reliance. Meanwhile, participants in
the MSTworkflow condition showed the worst RAIR, which reflects a sub-optimal human-
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AI collaboration due to under-reliance. The reliance pattern differences between MST-GT
and MSTworkflow conditions are a result of the decision workflow. Thus, we can infer that
the MST decision workflow can help mitigate the over-reliance caused by providing global
transparency. At the same time, it also introduces new issues of under-reliance. Thus, we
do not find support for H2.

H3: The impact of consideration in the intermediate steps
As Table 7.5 shows, participants in MSTworkflow+ condition showed less reliance on the
AI system and worst self-reliance (RSR measure) and team performance compared to MST-
workflow condition. In contrast to our expectation, the document usefulness annotation
intervention fails to bring higher appropriate reliance at the intermediate steps (i.e., AR-
Intermediate) – MSTworkflow condition achieved betterAR-Intermediate than MSTworkflow+
condition. Thus, the results from Table 7.5 are not sufficient to verify H3.

To analyze how explicit consideration in the intermediate steps shapes user reliance,
we evenly re-split participants in MSTworkflow and MSTworkflow+ conditions based on AR-
Intermediate – high consideration (with higher AR-intermediate, top 50%) and low con-
sideration (with lower AR-intermediate, bottom 50%). Similar to the statistical analysis
forH1 andH2, we conducted Kruskal-Wallis H-test to compare the performance, reliance,
and appropriate reliance measures of participants across the groups of participants. The
results are shown in Table 7.6.

Table 7.6: Kruskal-Wallis H-test results for H3. “††” indicates the effect of the variable is significant at the level
of 0.017.

Dependent Variables 𝐻 𝑝 𝑀 ±𝑆𝐷 Post-hoc Results
high consideration low consideration

Team Performance 21.90 .000†† 0.70±0.11 0.58±0.13 high > low
Agreement Fraction 7.43 .006†† 0.78±0.14 0.70±0.14 high > low
Switch Fraction 2.42 .120 0.54±0.27 0.44±0.28 -

Team Performance-wid 7.97 .005†† 0.56±0.22 0.45±0.21 high > low
RAIR 7.71 .005†† 0.59±0.33 0.41±0.31 high > low
RSR 0.01 0.917 0.56±0.48 0.55±0.48 -

For the measures we found a significant difference between the two groups, we con-
ducted a post-hoc Mann-Whitney test to reach a conclusion. As we can see, participants
with higher explicit considerations of the intermediate steps inMSTworkflowwill achieve
higher RAIR and a similar level of RSR. It infers that low explicit considerations of the in-
termediate steps may cause under-reliance. Thus H3 is supported by our experimental
results.

We also found that participants with a high AR-Intermediate achieved comparable per-
formance across all conditions, which provides support for the effectiveness of the MST
workflow. Meanwhile, participants in group low consideration showed much worse
team performance, Agreement Fraction and RAIR (non-significant). This indicates that pre-
cise decisions at the intermediate steps play a critical role in making the MST workflow
effective in human-AI collaboration.

7.5.3 Exploratory Analysis
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Impact of Trust
Inspired by prior work [40, 234], we analyzed how subjective user trust differs across con-
ditions to provide further insights about the impact of different decision workflows. We
conducted anAnalysis of Covariance (ANCOVA)with the decision workflow as independent
variable and TiA-Propensity to Trust, TiA-Familiarity, LLM Expertise, and Fact Checking Ex-
pertise as covariates. This allows us to explore the main effects of the decision workflow
on subjective trust measured with the Trust in Automation questionnaire [321]. Table 7.7
shows the ANCOVA results of the trust-related dependent variables. While there exists
a borderline impact of decision workflow in TiA-R/C and TiA-U/P, the results are non-
significant. Thus, we found that user trust in the AI system was not influenced by the
decision workflow. However, we found that participants’ general Propensity to Trust had
a significant impact on their trust. Propensity to Trust shows a strong positive correlation
with user trust, which will be detailed in Section 7.5.3.

Table 7.7: ANCOVA test results on trust-related dependent variables. “†” and “††” indicate the effect of the
variable is significant at the level of 0.05 and 0.017, respectively.

Dependent Variables TiA-R/C TiA-U/P TiA-IoD TiA-Trust
Variables 𝐹 𝑝 𝜂2 𝐹 𝑝 𝜂2 𝐹 𝑝 𝜂2 𝐹 𝑝 𝜂2

Exp Condition 2.78 .042† 0.02 3.31 .021† 0.04 1.63 .183 0.01 0.85 .470 0.01
LLM Expertise 2.33 .128 0.01 1.50 .222 0.01 1.00 .319 0.00 2.13 .146 0.00

Fact Checking Expertise 1.83 .178 0.00 0.01 .934 0.00 0.17 .676 0.00 0.63 .427 0.00
TiA-Propensity to Trust 211.76 .000†† 0.47 36.31 .000†† 0.13 96.24 .000†† 0.29 211.82 .000†† 0.48

TiA-Familiarity 3.59 .059 0.01 0.01 .922 0.00 5.06 .025† 0.02 2.08 .151 0.00

Impact of covariates
In our study, we considered user expertise in large language models (LLM Expertise), user
expertise in fact-checking tasks (Fact Checking Expertise), Familiarity, and Propensity to
Trust obtained from questionnaires as covariates. These covariates may have a substan-
tial impact on user trust and user reliance. To analyze how the covariates impact the
dependent variables used in our study, we conducted Spearman rank-order tests between
covariates and all dependent variables (i.e., performance, reliance, appropriate reliance,
trust, and cognitive load). The corresponding results are presented in Table 7.8. Our find-
ings suggest that — (1) Participants with a relatively higher LLM Expertise, Fact Checking
Expertise, or Familiarity reported a higher cognitive load. (2) Participants with a relatively
higher LLMExpertise, Familiarity, or Propensity to Trust also reported a higher level of trust
in the AI system. (3) Participants with a relatively higher Propensity to Trust exhibited a a
higher Agreement Fraction and Switch Fraction, indicating more reliance on the AI system.
However, the increased reliance may translate into over-reliance, as this corresponds with
a significant negative correlation with RSR. (4) Interestingly, higher LLM Expertise does
not necessarily help improve team performance in this task. Instead, the weak negative
correlation between LLM Expertise and Team Performance suggests that participants with
higher LLM Expertise performed worse.

Appropriate Reliance at Intermediate Steps
To further explore the relationship between the appropriate reliance in fine-grained levels
(i.e., AR-Intermediate and AR-Evidence) and global (appropriate) reliance, we conducted
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Table 7.8: Spearman rank-order correlation coefficient for covariates level on dependent variables. “††” indicates
the effect of the variable is significant at the level of 0.017.

Covariates LLM expertise Fact checking expertise Familiarity Propensity to Trust
Dependent Variables 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝
Mental demand 0.073 .270 0.043 .517 -0.094 .152 0.072 .275
Physical demand 0.326 .000†† 0.233 .000†† 0.250 .000†† 0.131 .046
Temporal demand 0.158 .016†† 0.093 .157 0.178 .007†† 0.053 .424
Performance -0.050 .452 -0.104 .112 -0.056 .397 -0.020 .763
Effort 0.152 .020 0.061 .357 -0.072 .272 0.109 .098
Frustration -0.020 .757 -0.029 .660 0.017 .795 -0.145 .027
Reliability/Competence 0.215 .001†† 0.035 .597 0.268 .000†† 0.699 .000††
Understanding/Predictability 0.146 .026 0.054 .412 0.106 .106 0.371 .000††
Intention of Developers 0.272 .000†† 0.138 .035 0.311 .000†† 0.580 .000††
Trust in Automation (TiA) 0.247 .000†† 0.079 .229 0.273 .000†† 0.725 .000††
Team performance -0.158 .016†† -0.083 .204 -0.143 .029 -0.077 .240
Agreement Fraction -0.017 .791 -0.002 .977 0.006 .924 0.174 .008††
Switch Faction 0.049 .453 0.036 .582 0.054 .414 0.217 .001††
Team Performance-wid -0.127 .052 -0.070 .285 -0.149 .023 -0.086 .191
RAIR -0.046 .480 -0.022 .736 -0.015 .823 0.136 .039
RSR -0.120 .068 -0.087 .187 -0.095 .149 -0.235 .000††

the Spearman rank-order test separately for participants in MSTworkflow and MSTwork-
flow+ conditions. The results are shown in Table 7.9. We found a strong positive mono-
tonic relationship between the fine-grained appropriate reliance (i.e., AR-Intermediate and
AR-Evidence) and performance-based measures (Team Performance and Team Performance-
wid). AR-Intermediate also shows some positive impact on Agreement Fraction and RAIR,
which indicates that participants with higher AR-Intermediate have less chance to be im-
pacted by the under-reliance issues. In contrast to what one can intuitively expect, we
found that AR-Evidence does not necessarily show a significant positive correlation with
appropriate reliance. We will further discuss these findings in section 7.6.

Table 7.9: Spearman rank-order correlation coefficient for AR-Intermediate and AR-Evidence on dependent vari-
ables. “††” indicates the effect of the variable is significant at the level of 0.017.

Dependent Variables Team performance Agreement fraction Switch faction Team performance-wid RAIR RSR
Fine-grained AR 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝
AR-Intermediate 0.477 .000†† 0.300 .000†† 0.114 .217 0.308 .001†† 0.270 .003†† 0.089 .337
AR-Evidence 0.474 .000†† 0.227 .090 -0.066 .624 0.300 .023 0.132 .329 0.123 .362

Confidence Dynamics
User confidence in their decision also plays an important role in shaping their reliance on
AI systems. We illustrated user confidence dynamics using a line plot (Figure 7.5) based
on their average confidence along with task order. For participants in MSTworkflow and
MSTworkflow+ conditions, we calculated the average confidence (i.e., Initial-avg) and min-
imum confidence (i.e., Initial-min) of the three intermediate steps for their initial decision
confidence. Overall, participants were confident with both their initial and final decisions,
which is around 4.0 (corresponding to “somewhat confident”). It is evident that the gap
in confidence for participants in Control and MST-GT conditions is relatively smaller than
the participants in MSTworkflow and MSTworkflow+ conditions. We also found that the gap
between the average initial confidence and minimum initial confidence is relatively stable
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(around 0.5 on a 5 point scale). Compared with MSTworkflow condition, the participants
in MSTworkflow+ condition showed relatively lower initial confidence and final confidence.
This reflects that participants indicated more uncertainty about their decisions in the pres-
ence of the document usefulness annotation in MSTworkflow+ condition.
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Figure 7.5: Line plot illustrating the confidence dynamics among users after receiving the AI advice (and expla-
nations). The orange line and blue line illustrate the confidence dynamics before and after receiving AI advice
(and explanations), respectively.

7.6 Discussion
7.6.1 Key Findings
Our experimental results show that the multi-step transparent workflow can be effective
in specific contexts (e.g., in challenging tasks where AI advice is misleading) and that ap-
propriate reliance at intermediate steps is important to ensure effective human-AI collab-
oration and team performance. Our analysis of appropriate reliance at the intermediate
steps highlights that the MST workflow can facilitate human-AI collaboration when users
make explicit considerations of the intermediate steps (cf. Table 7.6). We also found that
participants who do not demonstrate fine-grained appropriate reliance at the intermedi-
ate steps may exhibit under-reliance behavior on the final AI advice. Based on the user
confidence dynamics, we found that participants with the MST workflow reported higher
confidence in their initial decision, but also showed a decreased confidence after checking
the AI advice and in the presence of transparency cues such as intermediate steps and in-
termediate answers. These findings can be explained as follows—participants with a MST
workflow obtained more verifiability of the AI advice, which contributes to developing
higher self-confidence (reflected by initial confidence) and a critical mindset on AI advice.
These benefits may help mitigate over-reliance caused by the potential illusion of explana-
tory depth shown in condition MST-GT, but they may also decrease user reliance on the AI
system and cause under-reliance when they make errors in the intermediate steps.

Impact of the Multi-step Transparent (MST) Workflow on User Reliance. In our
study, we found that global transparency (i.e., overall logic of the AI system — task de-
composition and intermediate answers) can have the negative impact of increasing over-
reliance on the AI system (cf. Table 7.4 and Table 6.3). This is consistent with findings in ex-
plainable AI literature — explainable AI can cause over-reliance on the AI system [55, 401].
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Although the MST workflow does not always work as expected to facilitate appropriate
reliance on the AI system, our results suggest that it works well in some specific contexts
(e.g., challenging tasks where AI advice can be misleading). Similar findings have been
pointed out in crowdsourcing literature – crowdsourcing workflows can be useful in spe-
cific contexts but may also constrain complex work [355]. While the multi-step workflow
can help address over-reliance on the AI system, it can also introduce under-reliance when
users make mistakes at the intermediate steps. Such impact is highly similar to the impact
of second opinion in AI-assisted decision making [277]. This is because, when there is no
performance feedback, users may doubt the accuracy level of the AI assistance after dis-
agreements with AI advice (caused by misleading second opinion / intermediate decision).
As a result, users may decrease their trust and reduce reliance on the AI system.

Document Usefulness Annotation Did Not Work as Expected. The cognitive forc-
ing function of document usefulness annotation (condition MSTworkflow+) did not show
the effectiveness to increaseAR-Intermediate. In contrast to our expectations, the interven-
tion to increase user consideration of the evidence on top of the MST workflow resulted in
decreased team performance and relatively lower appropriate reliance. With such an inter-
vention, users demonstrated less confidence in themselves at intermediate steps and final
decisions. Consistent with our expectations, we found that participants in the condition
MSTworkflow+ reported much higher cognitive load than other conditions (cf. Figure 7.4).
A potential explanation is that the byproduct of a high cognitive load overrides the ben-
efits of the multi-step transparent workflow. The decreased self-reported confidence in
decisions can be a signal of uncertainty. As a result, users may turn to rely more on the
AI system, which helps explain the over-reliance on misleading AI advice (cf. Table 6.3).

Our analysis of the impact of covariates (Section 7.5.3) also provides interesting in-
sights: (1) participants who reported a relatively higher LLM expertise tended to show
higher subjective trust but performed worse (cf. Table 6.4); (2) participants with a higher
propensity to trust showed higher subjective trust, and higher reliance, in fact resulting
in over-reliance. (3) Different from other covariates, the fact checking expertise does not
show a strong correlation with trust and reliance on the AI system. Based on these obser-
vations, we can infer some user factors (i.e., LLM expertise, familiarity, and propensity to
trust in our study) can potentially increase user trust. However, the increased user trust
is not calibrated according to the actual AI performance, which hinders effective human-
AI collaboration. In summary, these user factors may lead to uncalibrated trust in the AI
system, which causes over-reliance. These findings are consistent with previous empir-
ical studies of AI-assisted decision making [30, 234], and our work sheds light on how
they extend to the context of human-AI decision making using a multi-step transparent
workflow.

This is the first work that has explored how a multi-step transparent workflow shapes
user reliance and when such a workflow can be effective. While previous work has exten-
sively studied user reliance and appropriate reliance at a global level [22], our work is the
first to explore the fine-grained levels of appropriate reliance — appropriate reliance in
the intermediate steps aligned with evidence. Our results indicate that participants who
made better use of the intermediate steps and evidence achieved better team performance
(cf. Table 7.6 and Table 7.9). Their reliance patterns were also positively impacted by their
consideration of the intermediate steps (i.e., positive correlation between AR-Intermediate
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and RAIR in Table 7.9). These findings suggest promising future directions to explore in
the context of decision making with RAG-based AI systems and human-AI collaboration
with decision workflows.

7.6.2 Implications
Suitable workflows and user interventions can ensure effective human-AI collab-
oration. Our work has important implications for designing effective human-AI collabo-
ration workflows. In our study, we found that participants who followed a basic one-step
decision workflow performed better on relatively easy tasks. In comparison, participants
who adopted a multi-step transparent workflow performed better on challenging tasks
where AI advice was misleading. Our findings suggest that there is no one-size-fits-all so-
lution for human-AI collaboration workflows. This echoes findings in previous analyses of
workflows in crowdsourcing [355]. Multiple aspects in task characteristics (e.g., task com-
plexity [301]), user factors (e.g., cognitive bias [30, 84]), and system transparency (e.g., rea-
soning process [337]) may impact the final decision outcome. As opposed to seeking and
designing for optimal human-AI workflows that can always lead to high effectiveness,
future work can explore how to combine multiple human-AI workflows depending on dif-
ferent contextual requirements. For example, in tasks where an AI system demonstrates
low confidence, we may expect more useful and independent input from human decision
makers. We would then need to adopt a suitable workflow (such as an MST workflow) to
improve team performance, a critical mindset for critical consideration of AI advice and
the verifiability of AI advice.

We also found that some interventions (i.e., condition MSTworkflow+) can pose a high
cognitive load on users of the AI system, which can result in the side effects of user frus-
tration and decreased effectiveness. This is consistent with prior findings of unforeseen
negative impacts of user interventions [22, 218]. Such a phenomenon has also been ob-
served in prior empirical studies [30, 84, 107, 277, 401] of AI-assisted decision making.
For example, some prior work [84, 107, 401] found that explainable AI can help address
under-reliance, but also simultaneously led to a higher over-reliance. Providing a second
opinion shows a similar impact [277] on mitigating over-reliance while increasing under-
reliance. These observations reveal that user interventions can be effective only in specific
contexts. Therefore, a trade-off between the benefits and harms of user interventions can
be a prerequisite for their effectiveness. Identifying the target audience and contextual
requirements for user interventions based on behavioral and psychological patterns can
be a promising direction to explore.

Fine-grained Analysis to Promote Appropriate Reliance. Our experimental results
suggest that appropriate reliance at a global level and complementary team performance
may be dependent on more fine-grained appropriate reliance on the intermediate steps
(i.e., global transparency) and supporting documents (i.e., local transparency). While most
existing work has explored a one-step decision workflow, the user decision making pro-
cess and user decision criteria are not accessible for analysis. Existing empirical studies
typically set up experiments with several conditions by controlling factors about user,
task, and AI system. In such a setup, the user reliance on more fine-grained task input
and the surrounding context (e.g., relevant documents) are typically not considered for



7

194 7 Fine-grained Transparency and Appropriate Reliance

analysis. We argue that this limits us, as a community, from developing an insightful un-
derstanding of appropriate reliance on AI advice. In this spirit, our work has important
methodological implications for both studying and promoting appropriate reliance with a
fine-grained analysis. Our findings and implications can help develop human-centered AI
systems for complex tasks highlighting accountability, like medical diagnosis, loan predic-
tion, supply chain optimization, etc. The users would benefit from the critical mindset and
intermediate results of a multi-step transparent workflow. In the future, human-centered
AI studies exploring appropriate reliance could consider more structured workflows for
decision making and operationalize fine-grained user reliance.

7.6.3 Caveats and Limitations
Transferability Concerns. In our study, we used the lens of a single complex task —
composite fact-checking supported with retrieved documents, and a specific AI system —
an LLM-based system that first decomposes a complex fact and then verifies sub-facts by
leveraging retrieval-augmented generation. It is unclear how our findings and implica-
tions can transfer to a different context where task characteristics (e.g., difficulty, uncer-
tainty and risks) and system characteristics (e.g., transparency and system accuracy) are
different [220, 301]. It is noteworthy that in multi-step decision workflows, there can be
dependencies between sub-tasks. In our study, we considered sub-tasks that are largely in-
dependent (i.e., sub-facts could be treated independently). This presents a limited view of
multi-step decision workflows and future research is needed to extend our work to work-
flows with dependencies. Our setup of fine-grained transparency and multi-step decision
workflow offers a relatively general framing to analyze multi-step human-AI collaboration
and fine-grained appropriate reliance. Future work can follow this framing to explore how
different aspects surrounding task characteristics, AI systems and user factors affect user
trust and reliance in a multi-step human-AI collaboration.

Impact of cognitive load. We found significant differences in the perceived cognitive
load of participants across different experimental conditions, suggesting that the MSTwork-
flow+ condition required participants to consistently exert relatively more effort. A qual-
itative follow-up or an in-person user study with a selection of participants may provide
deeper insights. More work is needed to understand the effectiveness of such workflows
that are demanding of users during the decision making process itself. Such workflows
may be less suited in low-stakes compared to relatively high-stakes contexts, where cog-
nitive effort can be considered as a viable trade-off for better team performance.

Potential Bias. As our study is carried out with crowd workers, participants with a MST
workflow may spend more effort and feel more temporal demand. Their performance
may be impacted by self-interest bias [157]. To ensure the collected data is of high quality,
we made sure that participants in each condition received a fair payment according to
platform standards and provide bonuses to motivate correct decisions.

7.7 Conclusion
In this chapter, we conducted an empirical study to analyze how a multi-step transparent
(MST) decision workflow shapes user reliance in a composite fact-checking task. Com-
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pared to a basic workflow and one-step human-AI collaboration, participants with anMST
workflow showed a more critical mindset in making decisions while relying on AI advice.
As a result, the MST workflow tackled over-reliance on AI advice to some extent but also
led to a decrease in user reliance on the final AI advice and user confidence, which may
cause under-reliance (RQ1). When participants demonstrate explicit considerations of AI
advice in the intermediate steps (i.e., when they can achieve high appropriate reliance at
fine-grained levels), such under-reliance can be mitigated. Then the MST workflow can
facilitate effective human-AI collaboration. Increasing the transparency of the AI system
by providing intermediate steps and answers caused over-reliance on the AI system. At
the same time, we found that the MST workflow with an additional task that attempts
to cognitively engage participants by annotating the supporting documents and increase
critical reflection may pose a demanding cognitive load on participants. This resulted in
harming the overall human-AI collaboration, as reflected by the user experience, team per-
formance, and appropriate reliance of participants in that experimental condition. Having
said that, through further analysis (cf. Table 7.6), we found appropriate reliance at the level
of intermediate steps may be required to ensure the effectiveness of the MST workflow.
We also found that appropriate reliance on the retrieved evidence is positively correlated
with team performance. Based on this finding, we infer that the transparency of the AI
system at the level of task input can also play a positive role in facilitating appropriate
reliance and complementary human-AI collaboration (RQ2). More work is required to
further advance our understanding of this problem.

Our results indicate that the MST workflow can be effective in specific contexts, and
there is no one-size-fits-all decision workflow to achieve optimal human-AI collaboration.
A trade-off between the benefits (e.g., fine-grained transparency and critical consideration
of AI advice, more verifiability) and side effects (e.g., higher cognitive load) of decision
workflows should be considered in human-AI collaboration. Our findings have important
implications for designing effective decision workflows to facilitate appropriate reliance
and better human-AI collaboration.
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8
Plan-then-execute LLM Agent

Workflow
Since the explosion in popularity of ChatGPT, large language models (LLMs) have continued
to impact our everyday lives. Equipped with external tools that are designed for a specific
purpose (e.g., for flight booking or an alarm clock), LLM agents exercise an increasing capa-
bility to assist humans in their daily work. Although LLM agents have shown a promising
blueprint as daily assistants, there is a limited understanding of how they can provide daily
assistance based on planning and sequential decision making capabilities. We draw inspira-
tion from recent work that has highlighted the value of ‘LLM-modulo’ setups in conjunction
with humans-in-the-loop for planning tasks. We conducted an empirical study (𝑁 = 248)
of LLM agents as daily assistants in six commonly occurring tasks with different levels of
risk typically associated with them (e.g., flight ticket booking and credit card payments). To
ensure user agency and control over the LLM agent, we adopted LLM agents in a plan-then-
execute manner, wherein the agents conducted step-wise planning and step-by-step execution
in a simulation environment. We analyzed how user involvement at each stage affects their
trust and collaborative team performance. Our findings demonstrate that LLM agents can be
a double-edged sword — (1) they can work well when a high-quality plan and necessary user
involvement in execution are available, and (2) users can easily mistrust the LLM agents with
plans that seem plausible. We synthesized key insights for using LLM agents as daily assis-
tants to calibrate user trust and achieve better overall task outcomes. Our work has important
implications for the future design of daily assistants and human-AI collaboration with LLM
agents.

8.1 Introduction
Autonomous agents have been regarded as a research focus for artificial intelligence (AI)
over the last century [402]. With thewish that autonomous agents canmake our life better,

This chapter is based on a peer-reviewed paper:  Gaole He, , Gianluca Demartini, Ujwal Gadiraju. Plan-Then-
Execute: An Empirical Study of User Trust and Team Performance When Using LLM Agents As A Daily Assistant.
CHI Conference on Human Factors in Computing Systems (CHI ’25), April 26-May 1, 2025, Yokohama, Japan.
https://doi.org/10.1145/3706598.3713218.

https://doi.org/10.1145/3706598.3713218
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many autonomous agents have been designed as virtual personal assistants [403]. These
AI assistants (e.g., Siri) perform well (albeit imperfectly) in following user instructions to
execute low-risk tasks like playing a song, reporting weather forecasts, or searching for an
image to support everyday tasks. However, on tasks entailing potential risks (e.g., mone-
tary payments or hiring an employee), humans hesitate to trust suchAI systems due to loss
aversion [404] and algorithmic aversion [33, 113, 138, 405]. Only when users can obtain a
sense of control by being able to modify the outcomes of imperfect AI can they overcome
such algorithm aversion and be willing to collaborate with imperfect AI systems [35].

With the recent rise of large language models (LLMs) in natural language understand-
ing and generation [13], researchers have started to analyze LLM-based agents and their
applicability in a plethora of tasks [406, 407]. The term ‘LLM agent’ refers to an artificial
entity based on LLMs that perceives its context, makes decisions, and then takes actions in
response [406]. Compared to existing deep learning and LLM-based methods (e.g., chain-
ing multiple LLMs [361]), LLM agents provide more flexibility in task solving and user
interaction, which makes them suitable for daily assistance. This is primarily due to three
reasons. First, with a planning module, LLM agents can generate a dynamic plan based
on the tools provided [406, 407]. Such plans are typically defined in a logical structure —
step-wise plans, which can be easily understood by humans. Second, with LLMs as a core
control module, users can access and interact with external toolkits via a more natural
interaction (i.e., conversation) with LLM agents [13, 408], reducing manual control efforts
over function-specific tools. For example, LLM agents can complete time-consuming jobs
like information seeking and information filtering (e.g., searching for a flight in itinerary
planning) based on specific user needs. Third, the Markov decision process of LLM agents
can generate a sequence of actions (i.e., using external toolkits) as output.¹ Paired with
an understanding of actions and necessary parameters for the interaction with the LLM
agents, users can get involved in the real-time execution of tasks with LLM agents and fix
potential problems while benefiting from task delegation.Based on an intuitive framework
for task delegation, Lubars et al. [409] found that user trust can play an important role in
human delegation behaviors to AI systems. However, there is a relatively limited under-
standing of user trust development and calibration in collaboration with LLM agents.

There is also a growing debate in the machine learning and AI research communi-
ties about whether LLMs can be truly considered as planning and reasoning agents [410].
With this in the backdrop, existing work on automated task completion has revealed that
LLM agents can exhibit promising performance in handling complex tasks like playing
games [411], answering complex questions [412], and in simulating social behavior [413].
However, such agents are still far from perfect [410, 414]. Due to the probabilistic nature
of LLMs, there is much uncertainty in automating LLM agents for tasks with high risks
attached. To avoid unintended or unexpected consequences, there is a need for user con-
trol over the real-time execution process. Through an empirical study of LLM planning
capabilities, planning experts found that “LLMs’ ability to generate executable plans au-
tonomously is rather limited” [414]. However, when combined with a sound planner in
an ‘LLM-Modulo’ mode, “the LLM-generated plans can improve the search process for
underlying sound planners” [414]. Humans can potentially be the ‘sound planners’ who

¹In our study, the usage of one tool is the same as executing one action. Therefore, we refer to a tool and an
action interchangeably.
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can work in conjunction and optimize plans drafted by LLMs, which can then be executed
by LLM agents. Such human-AI collaboration can reduce human efforts in generating a
reliable plan from scratch.

Drawn by the promise of LLM agents, there have been some early explorations [415]
of adopting them in human-AI collaboration. However, existing works have primarily
analyzed how LLM agents can serve specific use cases (e.g., design creation [415]), while
others have conducted structured interviews to obtain expert insights [416, 417]. Yet, lit-
tle is known about how well LLM agents can work as general purpose daily assistants—to
assist users in everyday tasks with varying stakes—and how user trust and team perfor-
mance evolve by interacting with LLM agents.

In our work, we address this research gap and adopt LLM agents to assist humans in
everyday tasks by following a plan-then-execute workflow [418]. First, the LLM agent
generates a step-wise plan formulated with a hierarchical structure. Then, the LLM agent
executes the generated plan by transforming it into a sequence of actions (leveraging ex-
ternal toolkits). The benefits of such a plan-then-execute framing are three-fold: (1) Com-
pared to a dynamic process where planning and execution are bound closely, separating
planning and execution into two stages provides more task clarity to the users, which re-
duces user cognitive load and contributes to the quality of task outcomes [419]. (2) With
planning at the beginning of the task, users can develop a global understanding of how the
LLM agents will execute the task. Based on a follow-up step-by-step execution, it would
be straightforward for users to be involved in such a process and control the outcomes of
task execution. (3) Planning and execution are representative abstractions of how LLM
agents work. The findings of such an empirical study can be generalized to human-AI
collaboration with other kinds of LLM agents (e.g., dynamic planning-execution). To this
end, we propose the following research questions:

• RQ1: How does human involvement in the high-level planning and real-time exe-
cution shape their trust in an AI system powered by LLM agents?

• RQ2: How does human involvement in the high-level planning and real-time ex-
ecution of tasks with an AI system powered by LLM agents affect the overall task
performance?

Addressing these research questions, we carried out an empirical study (𝑁 = 248) of
human-AI collaboration in six different everyday scenarios with varying stakes and risks
attached (e.g., credit card payment and itinerary planning). We found that user involve-
ment in the planning and execution can be beneficial in addressing imperfect plans and
fixing execution errors. As a result, LLM agents can achieve better task performance. How-
ever, we also found that user involvement in the planning and execution stages of the LLM
agent fails to calibrate user trust in corresponding task outcomes. A potential reason here
is that the plausible plans generated by the LLMs can mislead users into trusting the LLM
agents when they are in fact wrong. Our findings highlight that user involvement can
also bring about additional trade-offs to consider: (1) user involvement in the planning
and execution poses a high cognitive load on users and decreases user confidence in their
decisions; (2) user involvement can be harmful in some task contexts (e.g., user involve-
ment reduces plan quality). Further research is required to understand when to provide
necessary user involvement. Our key insight is that as opposed to following a fixed mode
of user involvement, it is prudent to explore how user involvement in planning and exe-
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cution can be tailored to fit the task and the user. Based on our quantitative and qualita-
tive findings, we share insights for designing effective LLM agents as daily assistants and
synthesize promising directions for further research around LLM agents in the context
of human-AI collaboration. Our work has important theoretical implications for human-
AI collaboration with LLM assistance and design implications for plan-then-execute LLM
agents to support human-AI collaboration.

8.2 Background and Related Work
Our work proposes to analyze how user involvement in the planning and execution stages
of LLM agents shapes user trust in the LLM agents and the overall task performance of
LLM agents. Thus, we position our work in three realms of related literature: human-AI
collaboration (§ 8.2.1), trust and reliance on AI systems (§ 8.2.2), task support with LLMs
and LLM agents (§ 8.2.3).

8.2.1 Human-AI Collaboration
In recent decades, deep learning-based AI systems have shown promising performance
across various domains [420, 421] and applications [10, 422]. However, such AI sys-
tems are not good at dealing with out-of-distribution data [423, 424], and their intrinsic
probabilistic nature brings much uncertainty in practice [425]. Such observations raise
wide concerns about the accountability and reliability of AI systems [365]. Under such
circumstances, human-AI collaboration has been recognized as a well-suited approach
to taking advantage of their promising predictive power and ensuring trustworthy out-
comes [22, 426]. While humans can provide more reliable and accountable task outcomes,
too much user involvement to check and control AI outcomes is undesirable [427]. It
goes against the premise that AI systems are introduced to reduce human workload. In
that context, researchers have theorized and empirically analyzed when and where users
could and should delegate to AI systems [409, 427].
Task Delegation. While humans prefer to play the leading role in human-AI collabo-
ration [409], delegating to AI systems can bring benefits like cost-saving and higher effi-
ciency. Apart from manual delegation decisions, it is common to apply automatic rules
for human delegation (e.g., heuristics obtained from domain expertise or manually crafted
rules [427]). Many user factors like trust [409], human expertise domain [219], and AI
knowledge [428]) have a substantial impact on human delegation behaviors. Another
relevant stream of recent research has explored AI delegation to humans [428–430]. Re-
searchers have investigated the conditions under which AI systems should defer to a hu-
man decision maker, which may bring benefits of improved fairness [429], accuracy [431],
and complementary teaming [432]. Compared to human delegation, AI delegation has
been observed to achieve more consistent benefits in team performance [430, 433]. In col-
laboration with LLM agents, users need to determine when they should be involved in
high-level planning and real-time execution. Such involvement decisions are similar to
the delegation choices made by users. While task delegation is not the focus of our study,
future work can explore this further.
AI-assisted Decision Making has attracted a lot of research focus in human-AI collabo-
ration literature. Most existing work has conducted empirical studies [22] and structured
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interviews [426] to understand how factors surrounding the user, task, and AI systems af-
fect human-AI collaboration. User factors like AI literacy [108], cognitive bias [434], peer
input [278], and risk perception [110, 120] have been observed to substantially impact user
trust and reliance on the AI system. Similarly, task characteristics like task complexity and
uncertainty [220, 301] and factors of the AI system (e.g., performance feedback [49, 119],
AI transparency [347], stated accuracy [234], and confidence of AI advice [66, 121]) also af-
fect user trust and reliance on the AI system. For a more comprehensive survey of existing
work on AI-assisted decision making, readers can refer to [22].

While machine learning and deep learning methods have been extensively analyzed
in existing human-AI collaboration literature, to our knowledge, human-AI collaboration
with LLM agents is still under-explored. Unlike previous studies where AI systems only
follow a fixedmode to generate advice, LLM agents can be equippedwithmore logical clar-
ity and can provide a step-wise plan and can follow a step-by-step execution. With such
a plan-then-execute setup, LLM agents can bring high flexibility as well as uncertainty in
high-level planning and real-time execution. Little is known about how well LLM agents
can work as daily assistants while handling tasks entailing varying stakes and potential
risks. In our study, we analyzed the impact of user involvement in such AI systems by
adjusting their intermediate outcomes (plan and step-by-step execution) to calibrate their
trust and improve task outcomes. Our findings and implications can help advance the
understanding of the effectiveness of LLM agents in human-AI collaboration.

8.2.2 Trust and Reliance on AI systems
Trust and reliance have been important research topics since human adoption of au-
tomation systems [40, 435]. Due to the widespread integration of AI systems and
LLMs in all walks of society, there has been a growing interest in understanding user
trust [275, 276, 436] and reliance [32] on AI systems. User trust in the context of human-
AI collaboration is typically operationalized as a subjective attitude toward AI system-
s/AI advice [40]. In comparison, user reliance on AI systems is based on user behaviors
(e.g., adoption of AI advice and modification of AI outcomes). The two constructs have
been shown to be highly related [40, 437]: for example, user trust can substantially affect
user reliance [40]. However, they are intrinsically different and cannot be viewed as a
direct reflection of each other [348]. Most existing work has, therefore, studied the two
constructs separately in terms of subjective trust and objective reliance.

Earlier work exploring human-AI trust primarily focused on the impact of different
contextual factors surrounding user (e.g., risk perception [110]), task (e.g., task complex-
ity [301]), and system (e.g., stated accuracy [57, 66]). Empirical studies have shown that
most users tend to trust AI systems that are perceived to be highly accurate [57]. Such
trust is vulnerable, as the AI system may provide an illusion of competence with persua-
sive technology (e.g., explanations [62, 359]) or overclaimed performance [57]. Even if
the AI systems are accurate on specific datasets, they still suffer from out-of-distribution
data [50, 438]. The misplaced trust in the AI systems can lead to misuse of the systems.
Several empirical studies [87] have shown that once users realize the AI system errs or
performs worse than expected, their trust in the AI system can be violated, even resulting
in the disuse of the AI system. Both the misuse and disuse of the AI system hinder optimal
human-AI collaboration.
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To address such concerns, researchers have explored how to help users calibrate their
trust in the AI system. Different techniques to help users realize the trustworthiness of the
AI system have been proposed [111, 365, 439]. For example, increasing the transparency
of AI systems by providing confidence scores [66], explanations [107], trustworthiness
cues [440], and uncertainty communication [441]. However, the actual trustworthiness
of the AI system does not always align with user perception. As found by Banovic et
al. [326], untrustworthy AI systems can deceive end users to gain their trust. Another
example is that users can develop an illusion of explanatory depth brought by explainable
AI techniques [62], which leads to uncalibrated trust in the AI system. Even if users have
indicated trust in the AI system, theymay turn to relymore on themselves in final decision-
making. The reasons are complex, and many factors, such as accountability concerns [442,
443] and cognitive bias [30], may affect user reliance behaviors.

While trust calibration is an important goal in human-AI collaboration, it may be not
enough to ensure complementary team performance. Through empirical user studies with
different confidence levels of AI predictions, Zhang et al. [66] found that “trust calibration
alone is not sufficient to improve AI-assisted decisionmaking”. To achieve optimal human-
AI collaboration, humans and AI systems need to play complementary roles [334, 444],
and humans need to know when they should adopt AI assistance. In other words, humans
should rely on AI advice when AI systems are correct and outperform them, and override
AI advice when AI systems are incorrect or less capable than humans. Such user reliance
patterns are denoted as appropriate reliance [29, 255], which is the key to achieving com-
plementary team performance.

The main issues that lead to sub-optimal human-AI collaboration are: under-reliance
(i.e., disuse AI assistance when AI systems outperform humans) and over-reliance (i.e.,mis-
use AI assistance when AI systems are wrong or perform worse than humans) [29]. Users
with an uncalibrated trust in the AI system can be easily misled to disuse or misuse AI
systems [445]. Researchers have proposed various interventions to promote appropriate
reliance [30, 49, 50, 108, 277, 446] and calibrate user trust in AI systems [55, 66]. For ex-
ample, explainable AI methods have been shown to help reduce over-reliance [256] and
under-reliance [107] in different scenarios albeit with little consistency across contexts.
Another example is tutorial interventions, which have shown effectiveness in user on-
boarding [117], mitigating cognitive biases [30] and developing AI literacy [108]. For a
more comprehensive overview of interventions to facilitate trust calibration and appropri-
ate reliance, readers can refer to [22, 32, 348, 436].

LLM agents [407] have gained much popularity in recent years, distinguishing them
from most prior AI systems. They can communicate through conversation, plan logically,
and can be built to leverage powerful external tools to achieve complex functions. While
trust and reliance have been extensively analyzed in existing human-AI collaboration lit-
erature, it is still unclear how users trust and rely on AI systems powered by LLM agents.
In our work, calibrated trust is adopted as an important goal for human-AI collaboration
in the planning and execution stage. Meanwhile, users are expected to fix potential errors
in the planning and execution stages, reflecting their reliance on the AI system. Our work
can substantially advance the understanding of trust and reliance on plan-then-execute
LLM agents.



8.3 Method

8

203

8.2.3 Task Support with LLMs and LLM Agents
LLMs and LLM agents bring new opportunities and challenges to human-AI collabora-
tion [408]. It is evident that their generation capabilities can help reduce the cognitive
effort from humans. But LLMs are also riddled with challenges such as hallucination [397]
(i.e., generated text seems plausible but is factually incorrect). Failure to handle such is-
sues may bring fatal errors with unaffordable costs depending on the context (e.g.,medical
diagnosis).

Due to the capability of generating coherent, knowledgeable, and high-quality re-
sponses to diverse human input [447], a wide community of human-computer interaction
researchers has paid attention to large language models [366]. Researchers have actively
explored how LLMs can assist users in various tasks like data annotation [448, 449], pro-
gramming [450], writing [269, 273], and fact verification [451]. All the above functions
can be achieved with elaborate prompt engineering using a single LLM. By chaining multi-
ple LLMs with different functions, humans can customize task-specific workflows to solve
complex tasks [361]. Apart from obtaining answers with a one-shot text generation, LLMs
also provide convenient conversational interactions. Through empirical studies, such con-
versational interactions have been shown to be effective in human-AI collaboration with
multiple applications, such as decision making [263, 452, 453], scientific swriting [269],
and mental health support [454]. With the growing popularity of LLMs, more and more
humans have begun to adopt LLMs (e.g., ChatGPT) to boost their work efficiency and
productivity [13].

LLM agents have been shown to have good planning, memory, and toolkit usage capa-
bilities [406, 407]. When suitable toolkits are provided, LLM agents can readily generate
a task-specific plan and solve the tasks using toolkits. Attracted by the promise of LLM
agents, there have been some early explorations [415–417] of adopting them in human-AI
collaboration contexts. These works were mostly analyzed in specific use cases (e.g., de-
sign creation [415]). It is unclear how user trust and team performance are affected by
user interactions with LLM agents in a sequential decision making setup (i.e., solving a
task by executing a sequence of actions) where users can be in control of the execution.
To fill this research gap and advance our understanding of user control over LLM agents,
we carried out a quantitative empirical study.

8.3 Method
8.3.1 Overview of User Involvement in Plan-then-execute LLM

Agents
In our study, we adopted plan-then-execute LLM Agents [418] as assistants to help users
handle daily tasks, e.g., itinerary planning and currency transactions. Figure 8.1 illustrates
how users collaborate with plan-then-execute LLM agents. First, the LLM agents will
generate a step-wise plan based on a prompt specifying the plan format adopted from [455].
Then, users will make necessary edits to the plan based on the provided edit tools (will
be further detailed in Section 8.3.2). After the user edit, we obtained the step-wise plan
as outcomes of the planning stage. Next, the LLM agents will transform the step-wise
plan into a sequence of action predictions, which will be served in a step-by-step manner.
Userswill join the real-time execution process and checkwhether they approve the current
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Task: My account ID is 54321, and the 
password is PWD2023. I plan to make 
two foreign exchange transactions. The 
first is to buy 10,000 euros (with USD), 
and the second is to sell 5,000 US dollars 
(to EUR). Please help me operate.

1. Log in to user account
1.1 Obtain account login information 
(Account ID: 54321, Account 
Password: PWD2023)
1.2 Log in to the account
1.3 Confirm successful login

User-Involved
Planning

2. Conduct foreign exchange transactions –
buy euros
2.1 Buy euros
2.1.1 Obtain information for buying euros 
(Currency Type: EUR, Purchase Amount: 
10000)
2.1.2 Buy the specified amount of euros
2.1.3 Confirm successful euro purchase

Action
Prediction

Manual Specify
Action / Feedback

Involve vs Approve Approve

Successful
Login!

3. Conduct second foreign exchange transactions
3.1 Sell USD dollars
3.1.1 Obtain information for selling US dollars 
(Currency Type: USD, Sell Amount: 5000)
3.1.2 Check the US dollar holdings
3.1.3 Obtain US dollar holdings information 
(Foreign Exchange Holdings Information: 
Obtained US dollar holdings information)
3.1.4 Sell the specified amount of US dollars
3.1.5 Confirm successful US dollar sale

Successful
Transaction!

Successful
Transaction!

1. Log in to user account
1.1 Obtain account login information 
(Account ID: 54321, Account Password: 
PWD2023)
…
2. Conduct foreign exchange transactions
2.1 Buy euros
…
2.2. Sell US dollars
…

Initial Plan Generation
with LLM

Plan Edit

Execution
Outcome

User-Involved
Execution

Planning
Outcome

LLM
Planning

Approve ApproveInvolve

Figure 8.1: Illustration of the human-AI collaboration with plan-then-execute LLM agents.

predicted action (i.e., blue card shown in Figure 8.1) or they would like to modify the
current action prediction. The user involvement in execution stages will be introduced in
Section 8.3.3. After the iterative execution of all steps, the task is solved. The evaluation of
task performance is mainly based on the plan quality and execution accuracy of the action
sequences.
Implementation details. In our study, we adopted GPT-3.5-turbo as the backbone LLM
to serve the plan-then-execute LLM agent. The backend LLM agent implementation is
mainly based on the Langchain plan and execute agent.² The execution of tasks are based
on a simulation environment, where all tools/actions of the LLM agents are pre-defined as
backend APIs hosted with Flask³. In the spirit of open science, all code and data analysis
results can be found at Github.⁴

8.3.2 Planning
While LLMs can generate high-quality plans, there is no guarantee of their correctness and
their further impact on the execution of the plan. Thus, involving users in the planning
stage and controlling the plan quality would be essential to ensure successful subsequent
execution.
Plan Format. The step-wise plan in our study followed a hierarchical structure, adapted

²https://api.python.langchain.com/en/latest/plan_and_execute/langchain_experimental.plan_and_ex
ecute.agent_executor.PlanAndExecute.html
³https://github.com/pallets/flask
⁴https://github.com/RichardHGL/CHI2025_Plan-then-Execute_LLMAgent

https://api.python.langchain.com/en/latest/plan_and_execute/langchain_experimental.plan_and_execute.agent_executor.PlanAndExecute.html
https://api.python.langchain.com/en/latest/plan_and_execute/langchain_experimental.plan_and_execute.agent_executor.PlanAndExecute.html
https://github.com/pallets/flask
https://github.com/RichardHGL/CHI2025_Plan-then-Execute_LLMAgent
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from a benchmark for LLM agents toolkit usage [455]. The whole plan consists of multiple
sub-steps, which are at most three levels (e.g., 1., 1.x, 1.x.y where x,y are integers). All sub-
steps started with the same prefix index are denoted as one primary step (e.g., the three
blocks of planning outcome in Figure 8.1). A high-level step (e.g., 1.) will provide high-
level instruction of the current primary step, while low-level steps (e.g., 1.x, 1.x.y) will
provide subsequent details. In the execution stage, each primary step will be used as the
execution unit. The LLM agent will transform one primary step into a predicted action
filled with parameters. Thus, we ask participants to provide all necessary details in sub-
steps of each primary step. Each primary step will be transformed into single action in
the follow-up execution stage. If one primary step requires two actions to accomplish, it
may cause a potential loss of one action. Thus, when a plan contains one primary step
that contains information about two potential actions (e.g., the initial plan in Figure 8.1),
we consider it as a low-quality plan with ‘grammar errors.’⁵ All these plan format designs
are informed in our onboarding tutorial.

Figure 8.2: Screenshot of user-involved planning interface.

User-involved Planning. Figure 8.2 shows one screenshot of user-involved planning
in our study. At the top of the interface, we provide a task description along with three
buttons: ‘Show Potential Actions’, ‘Plan Edit Instruction’, and ‘Add one step’. By clicking
‘Show Potential Actions’, we provide a prompt window to show concrete documentary
descriptions of all potential actions (including action purpose and parameters) to be used
in the execution stage. All instructions used in our tutorial are accessible with clicking the
button ‘Plan Edit Instruction’. After users join the planning stage, an initial plan generated
by LLMwill be presented in the orange area. We allow users to edit the planwith following
interactions:

• Add step. By clicking ‘Add one step’ button, users can insert a valid sub-step index
into the whole plan, and then they can edit the plan text.

• Delete step. By clicking the ‘Delete step’ button at the end of one step, all sub-steps
associated with that step will be deleted from the plan.

⁵Note that this is not to be confused with the notion of grammar in language.
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• Edit step. By clicking the text input area in each step, users are allowed to edit the
text with keyboard input.

• Split step. By clicking the ‘Split step’ button associated with one step, we will split
the original primary step into two primary steps. A new primary step will start the
current step and contain all follow-up sub-steps. For example, if we click ‘Split step’
for the plan show in Figure 8.2 at index ‘2.2’. We will generate a new blank step ‘3.’
(where user input is expected) and re-index all sub-steps with ‘2.2.x’ to ‘3.1.x’. At the
same time, the original plan steps behind it will be automatically updated. Through
this action, users can easily split one step that contains too much information into
two primary steps. Figure 8.1 shows an example of plan edit with ‘split step’.

8.3.3 Execution

Primary Step

Predicted Action

Feedback

Action
Prediction

Action
Execution

Specify Action

Execute Action

Proceed

Give feedback and
predict action again

Feedback

Daily
Assistant

Give feedback 
and try againNext Step

Keep execution results
and move forward

(a) Illustration of user-involved execution of one pri-
mary step.

(b) Screenshot of conversation interface for user-
involved execution.

Figure 8.3: User-involved execution flow chart and interface. Panel (a): a flow chart illustrating how each pri-
mary step is executed with two stages: action prediction and action execution. Panel (b): a screenshot of the
conversation interface for user-involved execution.

After the planning stage, we obtain a plan with a step-wise structure. In the execution
stage, the LLM agent executes the outcome of the planning stage (i.e., a step-wise plan in
text) in a step-by-step manner. In each step, the LLM agent translates a single step of the
plan into one action, which is implemented with an API call in the backend. This setup is
a simulation of real-world applications, which provide services with API calls (commonly
implemented as langchain tools⁶). Such a simulation setup is effective in developing and
validating theory [456] and has been widely adopted in existing research on agent-based
modeling and HCI studies [457]. To provide a smooth user experience, we adopted a con-
versational interface to present the execution process. Figure 8.3b shows one screenshot

⁶https://python.langchain.com/v0.1/docs/modules/tools/

https://python.langchain.com/v0.1/docs/modules/tools/
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of user-involved execution in our study. As we can see, after a message of the first pri-
mary step of the plan, the LLM agent predicts one action ‘create_alarm’. In our study, to
provide a tidy view of the action prediction, we wrap the predicted action as one card (the
blue area in Figure 8.3b).

User-involved Execution. Figure 8.3a presents a flow-chart to illustrate a primary step
executed by the daily assistant (i.e., LLM agent). First, given one primary step, the daily
assistant predicts an action based on a given list of prepared actions (i.e., pre-defined APIs
in the backend). After users check the predicted action, they can choose from one of
the following three buttons to respond. (1)‘Proceed’: It indicates users agree that the
predicted action is correct. After clicking this button, the LLM agent moves forward to
execute it and shows the execution result of this action. (2) ‘Feedback’: Users can give
text feedback based on the message input area at the bottom of the conversational inter-
face. This triggers another action prediction based on the current primary step and user
feedback. Then, users are provided with the three options to proceed again. (3) ‘Specify
Action’: Users can override the current action prediction with the manual specification
of one action. If users choose this response, they are first asked to choose one action from
the prepared action list and then fill in the parameters manually. The LLM agent directly
executes the user-specified action. After one action is executed, if users are not satisfied
with the results, they can choose to re-execute this step by providing text feedback (i.e., by
clicking button ‘Give feedback and try again’), which works similarly to the ‘Feedback’
option. If users are satisfied with the execution results, they can click the ‘Next Step’ but-
ton and move to execute the next primary step. By iterating over this process through
the step-wise plan, users can choose to either approve or get involved in modifying the
execution outcomes in each step. All actions are predicted and executed in the backend
(i.e., the respective API calls are triggered).

8.3.4 Hypotheses
Our experiment is designed to answer questions of how human involvement in the plan-
ning and execution stages will shape their trust and overall task performance. To analyze
such impact, we regulate the levels of automation in the LLM agent through the planning
and execution stage as baselines for comparison. The automatic planning and execution
denotes that the LLM agent directly generates the task outcomes without user involve-
ment.

With user involvement in the planning stage, users have the opportunity to fix poten-
tial mistakes or issues in the plan generated by LLMs. Working on such plan editing tasks
is similar to debugging, which has been argued to bring about a critical mindset [31] to the
generated plan. With a critical mindset, users may better calibrate their trust in the plan-
ning outcome. We also consider user involvement in planning to be beneficial to the plan
quality, which can then contribute to the overall task performance. Thus, we hypothesize
that:

(H1): Compared to automatic planning, user-involved planning will result in a higher
calibrated trust in the plan.
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(H2): Compared to automatic planning, user-involved planning will result in better
overall task performance.

In the user-involved execution process, users manually check the action prediction and
execution results of each primary step. Such user involvement increases the chances of
discovering potential mistakes of LLM agents. Once users realize that the LLM agent made
mistakes, they can get involved in modifying the execution outcome of the current step.
By fixing these mistakes, the overall task performance gets improved. With such involve-
ment in fixing potential errors, users will be more critical of trusting the task outcome.
Therefore, we hypothesize that:

(H3): Compared to automatic execution, user-involved execution will result in a
higher calibrated trust in execution outcome.
(H4): Compared to automatic execution, user-involved execution will result in better
overall task performance.

8.4 Study Design
This section describes our experimental conditions, tasks, variables, procedure, and par-
ticipants in our study. Our study was approved by the human research ethics committee
of our institution.

8.4.1 Experimental Conditions
In our study, users collaborate with LLM agent-based daily assistants in two stages: plan-
ning and execution. To comprehensively understand the effect of user involvement at
each stage, we considered a 2 × 2 factorial design with four experimental conditions: (1)
automatic planning, automatic execution (represented as AP-AE), (2) automatic planning,
user-involved execution (represented as AP-UE), (3) user-involved planning, automatic ex-
ecution (represented as UP-AE), (4) user-involved planning, user-involved execution (rep-
resented as UP-UE). In conditions with user-involved planning, users are allowed to edit
the plan generated by LLM with the actions of edit/add/delete/split step. By comparison,
in conditions with automatic planning, users will directly adopt the plan generated by the
daily assistant. In conditions with user-involved execution, users can interact with the
step-by-step execution LLM agent (cf. Section 8.3.3) and refine execution results with text
feedback or manual specification. By comparison, in conditions with automatic execution,
users will directly accept the automatic execution results.

8.4.2 Tasks
To analyze how LLM agents can serve as daily assistants, we adopted tasks from a plan-
ning dataset designed for LLM agents — UltraTool [455]. We selected daily scenarios:
currency transactions, credit card payments, repair service appointments, alarm setting,
flight ticket booking, and trip itinerary planning. The selected tasks are shown in Table 8.1.
For more details about how the plan-then-execute LLM agent works on the selected tasks
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Table 8.1: Selected tasks in our study. The ‘Risk’ is based on the risk feedback obtained with pilot study. #A and
#C refer to the number of actions and the number of named concepts in each task, respectively.

ID Risk Domain Task Description #A #C Notes
1 High Finance My account ID is 54321, and the password is PWD2023. I plan to make

two foreign exchange transactions. The first is to buy 10,000 euros (with
USD), and the second is to sell 5,000 US dollars (to EUR). Please help me
operate.

4 4 simple task,
imperfect
plan

2 High Finance Please inquire about the current debt amount of my credit card with the
last five digits 12345, and deduct the corresponding 12000 USD from my
savings card number 6212345678900011 to repay this debt, then help me
check the amount of the outstanding bill for the same credit card within
30 days after today.

4 6 complex task,
imperfect
plan

3 High Repair I need to schedule a repair for my TV at 6 PM tomorrow evening. The
brand is Sony, model X800H, and there is an issuewith the screen. Please
book the repair service and tell me the reservation number.

4 7 complex task,
imperfect
plan

4 Low Alarm I need to set an alarm for every weekday morning at 7:30, and then
cancel the alarm for Thursday, changing it to 8:00 in the evening.

2 3 simple task,
correct plan

5 Low Flight I have an important meeting to attend next Wednesday, and I need to
book a flight ticket from London to Amsterdam for tomorrow, it must be
a morning flight, and then return from Amsterdam to London tomorrow
night, please handle it for me.

2 6 simple task,
correct plan

6 Low Travel Please plan a trip forme departing onOctober 1st at 8:00 AM to Japan, re-
turning on October 7th at 11:00 PM, including Tokyo Disneyland, Senso-
ji Temple, Ginza, Mount Fuji, Kyoto cultural experience, Universal Stu-
dios Osaka, and visiting the Nara Deer Park on October 4th, and help
me find hotels where the nightly cost does not exceed 10,000 Japanese
yen.

3 11 complex task,
correct plan

(e.g., automatic plan, pre-defined actions, automatic evaluation, and explanation for errors
in automation), please refer to the appendix. All tasks in UltraTool dataset are annotated
with the step-wise plan format described in Section 8.3.2. The execution of these tasks is
based on a simulation environment (described in Section 8.3.3) where all required actions
are implemented as backend APIs. In our study, all tasks are executed in a simulation
setup, which has been a popular method for orchestrating meaningful human-centered
AI studies [183, 220].

Task Selection. First, based on the domain distribution of the UltraTool dataset, we se-
lected seven domains: Finance, Alarm, Travel, Tracking, Restaurant, Flight, and Repair.
For each domain, we only consider tasks that contain more than ten steps (including all
sub-steps) and require at least three uses of actions. Then, we manually selected ten tasks:
four from the finance domain and one for each of the others. With a pilot study, we tested
how users work on the ten tasks. We recruited 10 participants from the Prolific platform
and only considered the feedback of 9 participants who passed all attention checks. Us-
ing the question “How much risk do you perceive in this task when relying on this daily
AI assistant?”, we collected the perceived risk of working with the LLM agents on each
task using a 5-point Likert scale, ranging from 1: not risky at all—to—5:very risky. We
categorize the ten tasks into a high-risk group (top 5) and a low-risk group (bottom 5).
We selected three tasks from each group while balancing the complexity of the task de-
scription (three simple tasks and three complex tasks) and the correctness of the provided
plan (three correct plans and three imperfect plans). Based on existing literature on task
complexity [301, 458], we considered component complexity to inform our selection. This
is assessed as the ‘total number of distinct information cues that need to be processed to
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perform the task’. Here, we considered the number of unique actions and the number of
named concepts provided in each task. According to prior work [459], most people can
only handle 5 to 9 concepts at the same time. The component complexity of all complex
tasks in our study is more than nine. The six tasks selected are shown in Table 8.1. Besides
the six tasks, we used one simple task (i.e., checking bank account balance) as the example
in the onboarding tutorial.

8.4.3 Measures and Variables
The variables and measures used in our study refer to existing empirical studies of human-
AI collaboration [22]. All measures adopted in our study can be summarized in Table 8.2.

Table 8.2: The different variables considered in our experimental study. “DV” refers to the dependent variable.

Variable Type Variable Name Value Type Value Scale

Calibrated Trust (DV) Calibrated Trust in planning (CT𝑝 ) Binary 0: miscalibrated trust, 1: calibrated trust
Calibrated Trust in execution (CT𝑒 ) Binary 0: miscalibrated trust, 1: calibrated trust

Task Performance (DV)
Plan Quality Likert 5-point, 1: low, 5: high

Action Sequence Accuracy (ACC𝑠 ) Binary 0: mismatch, 1: exact match with ground truth
Execution Accuracy (ACC𝑒 ) Binary 0: wrong execution result, 1: correct execution result

Trust

Reliability/Competence Likert 5-point, 1: poor, 5: good
Understanding/Predictability Likert 5-point, 1: poor, 5: good

Intention of Developers Likert 5-point, 1: poor, 5: good
Trust in Automation Likert 5-point, 1:strong distrust, 5: strong trust

Covariates

LLM Expertise Likert 5-point, 1: No experience, 5: Extensive experience
Automatic Assistant Expertise Likert 5-point, 1: No experience, 5: Extensive experience

Propensity to Trust Likert 5-point, 1: tend to distrust, 5: tend to trust
Familiarity Likert 1: unfamiliar, 5: very familiar

Exploratory

Confidence Likert 5-point, 1: unconfident, 5: confident
Risk Perception Likert 5-point, 1: not risky at all, 5: very risky

Open Feedback on Planning Text Open Text
Open Feedback on Execution Text Open Text

Other Open Feedback Text Open Text

Cognitive Load

Mental Demand Likert -7: very low, 7: very high
Physical Demand Likert -7: very low, 7: very high
Temporal Demand Likert -7: very low, 7: very high

Performance Likert -7: Perfect, 7: Failure
Effort Likert -7: very low, 7: very high

Frustration Likert -7: very low, 7: very high

Calibrated Trust. To assess calibrated trust in the planning stage and execution stage,
we assessed user trust at each stage with a question “Do you trust that [the execution
of this plan / the execution process] can provide a correct outcome based on the task
instructions?”. Based on the plan quality evaluation (5-point Likert), the calibrated trust
in the planning (CT𝑝) is calculated based on the frequency at which users trusted the high-
quality plan (expert annotation with 5) and users distrusted the plan with other evaluation
results. Similarly, for the calibrated trust in execution (CT𝑒), we calculated the frequency
at which users trusted the correct execution results and distrusted the wrong execution
results. The two measures can be calculated as:

CT𝑝 =𝕀(trust = ‘Yes’,plan quality = 5)
+ 𝕀(trust = ‘No’,plan quality < 5) (8.1)

CT𝑒 = 𝕀(trust = ‘Yes’,ACC𝑒 = 1)+ 𝕀(trust = ‘No’,ACC𝑒 = 0) (8.2)
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To assess the task performance, we mainly considered the task outcome from the plan-
ning and execution stages.
Plan Quality. As for the planning outcome, we evaluate the plan quality based on a
5-point Likert scale: 1. low-quality plan, task requirements not covered; 2. low-quality
plan, task requirements covered but with grammar errors; 3. medium-quality plan, task
requirement covered but with at least one action intent mismatchwith ground truth action
sequence; 4. medium-quality plan, task requirements covered but miss or have wrong
details for action parameters; 5. high-quality plan, covering all task requirements and
providing all necessary details.
Execution Performance. The execution of the step-wise plan will result in an action
sequence. We provide a ground truth action sequence as a reference to evaluate the gen-
erated action sequence. We measure the action sequence accuracy (ACC𝑠) as the strict
match of the action sequence and ground truth. Meanwhile, if one action sequence con-
tains some redundant actions that are not harmful (e.g., searching for flights), the execution
results should still be correct. Thus, we also consider execution accuracy (ACC𝑒) as a task
performance measure.
Subjective Trust and Covariates. To enrich our analysis of user trust, we followed exist-
ing work to adopt the six subscales from the Trust-in-automation questionnaire [321]. The
four subscales — Reliability/Competence, Understanding/Predictability, Intention of Develop-
ers, Trust in Automation are used as subjective measures of user trust in the LLM agent.
Meanwhile, the Familiarity and Propensity to Trust are also used as covariates. Besides
them, we considered user expertise in LLMs and user expertise in automatic assistants as
covariates.
Exploratory Variables. To enrich our understanding of LLM agent as daily assistant, we
assessed user confidence (both planning and execution) and risk perception along with
each task. After users finish the study, we also ask for their open-text feedback on the
planning and execution stages as well as other comments. To check the cognitive load
of user involvement in our study, we adopted the NASA-TLX questionnaire [242], which
contains six subscales.

8.4.4 Participants
Sample Size Estimation. To ensure sufficient statistical power, we estimated the re-
quired sample size for a 2 × 2 factorial design based on G*Power [92]. To correct for
testing multiple hypotheses, we applied a Bonferroni correction so that the significance
threshold decreased to 0.05

4 = 0.0125. We specified the default effect size 𝑓 = 0.25 (i.e., indi-
cating a moderate effect), a significance threshold 𝛼 = 0.0125 (i.e., due to testing multiple
hypotheses), a statistical power of (1 − 𝛽) = 0.8, and that we will investigate 4 different
experimental conditions/groups. This resulted in a required sample size of 244 partici-
pants. We thereby recruited 347 participants from the crowdsourcing platform Prolific⁷,
to accommodate potential exclusion.
Compensation. All participants were rewarded with an hourly wage of £8.1 deemed

⁷https://www.prolific.co

https://www.prolific.co
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to be “Fair” payment by the platform (estimated completion time was 30 minutes). As
participants in condition UP-UE spent longer in the study, we paid each participant a
commensurate bonus accounting for an extra 10 minutes. We rewarded participants with
extra bonuses of £0.05 for every high-quality plan and correct execution result. According
to existing literature [40], such a bonus setup can help incentivize participants to reach
a correct decision. In comparison with existing literature exploring human-AI decision
making [22], our reward setup is above the average payment and can be considered as be-
ing sufficient to elicit ecologically valid behavior among participants (i.e., aiming to arrive
at accurate execution results). Moreover, similar bonus structures akin to our setup have
been effective in incentivizing reliable participant behavior and improving data quality
across different studies with crowdsourced participants [220, 460–462].
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Figure 8.4: Bar plot for cognitive load across all conditions. ** indicates significance (𝑝 < 0.0125) through post-
hoc Tukey HSD test. The error bars represent the 95% confidence interval.

Filter Criteria. All participants were proficient English speakers between the ages of 18 -
50. We also constrained their prior experience (at least 40 successful submissions) and had
an approval rate of above 90% on the Prolific platform. We excluded participants from our
analysis if they failed any attention check, or represented an outlier regarding the plan
quality. Outliers were 4 participants who generated more than three low-quality plans
among six tasks. The reserved 248 participants had an average age of 32.5 (𝑆𝐷= 8.1) and a
balanced gender distribution (50%, 49.6% female, 0.4% other).

8.4.5 Procedure
Participants were first presented with a study description and an informed consent for
data collection. Only those who signed the informed consent were allowed to continue
onto our study. Next, participants were asked to complete a pre-task questionnaire to
measure their expertise on LLMs and automatic assistants.

Participants were then assigned to one of the experimental conditions, which dif-
fered in the level of user involvement in the planning stage and execution stage. With
an onboarding tutorial, we showcased the necessary interactions that participants were
expected to perform in the planning and execution stages. We used an example task to
help participants understand how to work with the plan-then-execute LLM agent. After
the onboarding tutorial, participants worked on the selected tasks, which were shuffled
at random for every participant to prevent task ordering effects. After the participants
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finished the task batch, we measured their perceived cognitive load using the NASA-TLX
questionnaire [242], their overall trust in the daily assistant using the trust in automation
questionnaire [321], and we gathered their feedback on our system (related to planning,
execution, and other aspects) using open-ended text.

8.5 Results
In this section, we will present the main experimental results and exploratory analysis for
our study.

8.5.1 Descriptive Statistics
In total, our analysis is based on 248 participants, who are balanced across conditions:
AP-AE (63), AP-UE (64), UP-AE (61), and UP-UE (60). All edited plans in user-involved
planning conditions are evaluated by the authors following the plan quality criteria de-
scribed in Section 8.4.3.
Distribution of Covariates. In our study, most participants claimed to have some ex-
perience with using large language models (𝑀 = 3.6,𝑆𝐷 = 1.0) and automatic assistants
(𝑀 = 3.4,𝑆𝐷 = 1.1). In the trust in automation questionnaire, participants indicated a
medium level of Familiarity (𝑀 = 2.9,𝑆𝐷 = 1.2) and Propensity to Trust (𝑀 = 3.0,𝑆𝐷 = 0.7).
Performance Overview. Overall, users show calibrated trust in the planning (𝑀 =
0.50,𝑆𝐷 = 0.13) and calibrated trust in the execution (𝑀 = 0.64,𝑆𝐷 = 0.19). For the execu-
tion outcome, we find that although it is tricky to obtain a ground truth action sequence
(𝑀 = 0.48,𝑆𝐷 = 0.17), the action sequence has a relatively high recall of ground truth ac-
tions (𝑀 = 0.77,𝑆𝐷 = 0.11). The successful rate for correct execution (𝑀 = 0.52,𝑆𝐷 = 0.18) is
higher than the strict evaluation of the action sequence. We also collected user subjective
trust with four subscales of the trust in automation questionnaire: Reliability/Competence
(𝑀 = 3.49,𝑆𝐷 = 0.77), Understanding/Predictability (𝑀 = 3.30,𝑆𝐷 = 0.56), Intention of Devel-
opers (𝑀 = 3.61,𝑆𝐷 = 0.81), Trust in Automation (𝑀 = 3.52,𝑆𝐷 = 1.01). With a two-way
ANOVA analysis considering user involvement in planning and execution, we do not find
any significant impact of user involvement on subjective user trust in AI systems across
conditions.
Cognitive Load. The cognitive load of participants across the four experimental condi-
tions is shown in Figure 8.4. Based on two-way ANOVA, we analyzed the impact of user
involvement in planning and execution affect user cognitive load. User involvement in
planning shows a significant impact on Mental Demand, Temporal Demand, and Frustra-
tion. User involvement in execution shows a significant impact on Performance and Effort.
With post-hoc TukeyHSD test, we confirmed such impact — involvement in both planning
and execution posed a higher cognitive load on participants.
User Involvement. Among 121 participants in conditions with user-involved planning,
104 participants edited at least one task plan. Meanwhile, 90 participants used the provided
buttons (i.e., add/delete/split step) in our study. In total, delete step is used 394 times, add
step is used 183 times, split step is used 126 times. Among 124 participants in conditions
with user-involved execution, 114 participants interacted with the conversation interface
to change action prediction (i.e., have at least one task where they choose to give feedback
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Table 8.3: Task-specific evaluation results for user-involvement in planning on calibrated trust in planning (CT𝑝 )
and plan quality. We also report the mean value for each measure on each condition.

CT𝑝 Plan Quality
Tasks AP-AE AP-UE UP-AE UP-UE Post-hoc results AP-AE AP-UE UP-AE UP-UE Post-hoc results
Avg 0.51 0.50 0.50 0.50 - 3.8 3.8 3.6 3.7 AP > UP
task-1 0.11 0.20 0.13 0.27 - 2.0 2.0 2.3 2.4 AP < UP
task-2 0.21 0.11 0.20 0.17 - 3.0 3.0 2.9 2.9 -
task-3 0.10 0.03 0.10 0.07 - 3.0 3.0 2.7 2.9 AP > UP
task-4 0.94 0.97 0.80 0.90 AP > UP 5.0 5.0 4.3 4.8 AP > UP
task-5 0.87 0.84 0.90 0.82 - 5.0 5.0 4.6 4.8 AP > UP
task-6 0.81 0.81 0.85 0.75 - 5.0 5.0 4.7 4.6 AP > UP

Table 8.4: Task-specific evaluation results for user-involvement in planning on task performance. ACC𝑠 denotes
the strict accuracy of an action sequence, and ACC𝑒 denotes the correctness of execution results. Bold fonts are
used to highlight the best performance across conditions.

Tasks ACC𝑠 ACC𝑒
AP-AE AP-UE UP-AE UP-UE Post-hoc results AP-AE AP-UE UP-AE UP-UE Post-hoc results

Avg 0.53 0.46 0.46 0.48 - 0.54 0.53 0.47 0.56 -
task-1 0.00 0.00 0.10 0.12 AP < UP 0.00 0.00 0.10 0.13 AP < UP
task-2 0.78 0.64 0.61 0.57 - 0.78 0.72 0.66 0.75 -
task-3 0.44 0.12 0.36 0.28 - 0.44 0.42 0.36 0.52 -
task-4 0.95 0.89 0.75 0.82 AP > UP 0.95 0.89 0.75 0.82 AP > UP
task-5 0.98 0.91 0.90 0.90 - 0.98 0.91 0.92 0.90 -
task-6 0.05 0.22 0.02 0.18 - 0.06 0.23 0.03 0.22 -

or override predicted action). Meanwhile, 105 participants specified at least one action in
the task batch. In total, Specify Action is used 445 times, feedback to the LLM agent is used
91 times before action execution, and feedback to the LLM agent is used 163 times after
execution.

8.5.2 Hypothesis Verification
As the tasks selected in our study are of different initial plan quality and risk levels, we
conducted a task-specific analysis in each hypothesis verification.

The Impact of User Involvement in Planning on Calibrated Trust
To verify H1, we adopted the one-way ANOVA test and post-hoc Tukey HSD test on the
calibrated user trust in planning (i.e., CT𝑝). The results are shown in Table 8.3. Only in
task-4, we found user involvement in planning will have a negative impact on calibrated
trust in planning. To avoid a potential impact of user involvement in the execution stage,
we conducted a two-way ANOVA test to confirm the findings. We only find a significant
difference in task-4. Post-hoc Tukey HSD results show that participants in conditions
with automatic planning (AP) showed significantly higher calibrated trust in planning out-
comes than those in conditions with user-involved planning (UP). Thus, our experimental
results do not support H1.

We noticed that the calibrated trust in planning is quite low in the high-risk tasks
where all initial plans are imperfect. This indicates that many users across all conditions
consider the generated plan trustworthy. On tasks with low risk, where the initial plan is
of high quality, users achieved much higher calibrated trust in the planning outcome. We
also find that conditions with user-involved execution (UE) show slightly higher CT𝑝 in
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task-1 and task-4 than conditions with automatic execution (AE). With the same statistical
test as H1 analysis, such differences are not significant.

The Impact of User Involvement in Planning on Task Performance
To verify H2, we considered plan quality, the accuracy of action sequences (ACC𝑠), and
the execution accuracy of the plan (ACC𝑒) for analysis. For plan quality (cf. Table 8.3),
we conducted one-way ANOVA on plan quality considering the user involvement in the
planning stage. We found that overall user involvement in the planning stage caused a
decrease plan quality, especially on tasks with a perfect plan (i.e., task 4, 5, 6, where plan
quality = 5) and task-3. However, in task-1, where the original plan contains a grammar
error, we find that user involvement in planning can improve the plan quality. As the
action sequence accuracy (ACC𝑠) and execution accuracy (ACC𝑒) are not normally dis-
tributed, we conducted the Kruskal-Wallis H-test by considering the user involvement in
the planning as the independent variable. The results are shown in Table 8.4. With fur-
ther post-hoc Mann-Whitney tests, we found that while participants achieved a relatively
higher accuracy of action sequences in condition AP-AE, the condition UP-UE achieved
the best execution accuracy. In most tasks, condition UP-UE achieved better or compatible
performance as other conditions. The only exception is task-4, where user involvement in
the planning caused a significantly worse performance (both ACC𝑠 and ACC𝑒). As user
involvement does not consistently lead to improved performance, these results are not
enough to support H2.

We found that in task-1 and task-6 most participants in the AP-AE condition achieved
a very low success rate. This is mainly due to the imperfect plans and imperfect execu-
tion generated by LLMs. In task-1, the plan generated by LLMs includes one step which
contains two actions to execute. Due to the inability to edit the plan, the LLM agent exe-
cution missed one transaction in conditions with automatic planning. In task-6, the plan
generated by LLMs is correct. However, in the automatic execution of step 2 of the plan
(i.e., selecting an itinerary suggested), the LLM agent has a high probability of choosing
an itinerary that does not match the task description. If the participants do not carefully
check the task description, and correct this agent behavior, the execution results would
be wrong. This also helps explain why user involvement substantially improves the task
outcome accuracy in task-6. More details about tasks can be found in the appendix.

Table 8.5: Task-specific evaluation results for user-involvement in execution on task performance. Bold fonts
are used to highlight the best performance across conditions.

Tasks ACC𝑠 ACC𝑒
AP-AE AP-UE UP-AE UP-UE Post-hoc results AP-AE AP-UE UP-AE UP-UE Post-hoc results

Avg 0.53 0.46 0.50 0.51 - 0.54 0.53 0.50 0.58 -
task-1 0.00 0.00 0.10 0.12 - 0.00 0.00 0.10 0.14 -
task-2 0.78 0.64 0.67 0.62 - 0.78 0.72 0.69 0.78 -
task-3 0.44 0.12 0.42 0.29 AE > UE 0.44 0.42 0.42 0.53 -
task-4 0.95 0.89 0.94 0.88 - 0.95 0.89 0.94 0.88 -
task-5 0.98 0.91 1.00 0.98 - 0.98 0.91 1.00 0.98 -
task-6 0.05 0.22 0.02 0.19 AE < UE 0.06 0.23 0.04 0.23 AE < UE



8

216 8 Plan-then-execute LLM Agent Workflow

The Impact of User Involvement in Execution on Calibrated Trust in Execution
Outcome
As we observe in Table 8.3, user involvement in planning can have some negative impact
on the plan quality, which further impacts the execution stage. To control such impact,
we filtered out the tasks where plan quality decreased after user-involved planning in the
analysis of user involvement in the execution stage. To verify H3, we conducted one-
way ANOVA on calibrated trust in execution outcome (CT𝑒). The results are shown in
Table 8.6. We found that user involvement in execution causes no significant difference
across conditions. Thus, H3 is not supported by our experimental results.

Table 8.6: Task-specific evaluation results for user-involvement in execution on calibrated trust in execution
(CT𝑒 ). We also report the mean value for each measure on each condition.

Tasks CT𝑒
AP-AE AP-UE UP-AE UP-UE Post-hoc results

Avg 0.66 0.65 0.64 0.65 -
task-1 0.48 0.44 0.51 0.49 -
task-2 0.78 0.83 0.71 0.80 -
task-3 0.51 0.41 0.60 0.47 -
task-4 0.94 0.92 0.88 0.86 -
task-5 0.89 0.92 0.96 0.94 -
task-6 0.37 0.38 0.28 0.42 -

The Impact of User Involvement on Overall Task Performance
Similar to the verification of H3, we excluded the tasks where plan quality decreased after
user-involved planning in this analysis. As the plan is generated before user involvement
in the execution, we only considered ACC𝑠 and ACC𝑒 in the analysis of user involvement
in the execution stage. To verify H4, we conducted Kruskal-Wallis H-test by considering
the user involvement in the execution as the independent variable. The results are shown
in Table 8.5. With post-hoc Mann-Whitney tests, we found that user involvement in the
execution stage showed significantly higher ACC𝑠 and ACC𝑒 in task-6 (where the LLM
assistant mainly failed to choose the most suitable itinerary plan). We found that partici-
pants in the AP-AE condition achieved the best accuracy of action sequences (i.e., ACC𝑠),
and participants in condition UP-UE achieved the best execution accuracy (i.e., ACC𝑒). In
other words, the executed action sequence in condition AP-AE is more aligned with the
ground truth action sequence annotated by the authors. However, with user involvement
in the execution stage, participants in condition UP-UE have a better opportunity to ob-
tain correct task outcomes by correcting potentially flawed actions. Such a difference is
due to our measure of ACC𝑒 , which tolerates the non-risky actions (e.g., search flight)
and failure of action predictions. In contrast, our measure of ACC𝑠 considers this as a
wrong action sequence. Thus, in task-3, even if we find automatic execution achieved
significantly better ACC𝑠 than user-involved execution, participants in condition AP-UE
and UP-UE obtained comparable or higher execution accuracy (i.e.,ACC𝑒) than conditions
with automatic execution. While user involvement shows some positive impact on the ex-
ecution accuracy, such impact is not significant and consistent across all tasks. Only in
task-6, where users can correct the errors made by the LLM agent (i.e., the wrong itinerary
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selection mentioned in Section 8.5.2), user involvement in the execution shows a signifi-
cant contribution to the task performance. Thus, these results are not enough to strictly
support H4.

8.5.3 Exploratory Analysis
The Impact of Covariates
For further insights into all user factors on user trust and team performance, we calculated
Spearman rank-order correlation coefficients for user trust, calibrated trust, risk percep-
tion, and task performance. As can be seen in Table 8.7, we found these covariates mainly
show correlations with subjective user trust, calibrated trust in execution, and risk per-
ception. First, all covariates (i.e., user factors) positively correlated with user trust (four
subscales in the trust in automation questionnaire [321]) and negatively correlated with
perceived risk (average over six tasks). It indicates that users with more expertise or fa-
miliarity with such systems tend to trust the daily assistant and show less perceived risk
when using it. Meanwhile, users with a general propensity to trust also tend to trust the
AI system. Besides user trust, Assistant Expertise and Propensity to Trust show a signifi-
cant negative correlation with calibrated trust in the execution outcome. Apart from the
above correlation, these user factors do not significantly correlate with task performance
measures or calibrated trust in the planning outcome.

Table 8.7: Spearman rank-order correlation coefficient for covariates level on dependent variables. All measures
are calculated based on average over task batch. “†” and “††” indicate the effect of the variable is significant at
the level of 0.05 and 0.0125, respectively.

Covariates llm expertise assistant expertise Familiarity Propensity to Trust
Category Variables 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝

User Trust

Reliability/Competence 0.334 .000†† 0.245 .000†† 0.321 .000†† 0.679 .000††
Understanding/Predictability 0.307 .000†† 0.164 .010†† 0.208 .001†† 0.380 .000††
Intention of Developers 0.406 .000†† 0.324 .000†† 0.362 .000†† 0.517 .000††
Trust in Automation 0.380 .000†† 0.278 .000†† 0.356 .000†† 0.698 .000††

Calibrated Trust CT𝑝 0.053 .404 0.053 .402 0.056 .378 0.037 .566
CT𝑒 -0.120 .059 -0.195 .002†† -0.032 .621 -0.174 .006††

Risk Perception Perceived Risk -0.187 .003†† -0.180 .004†† -0.237 .000†† -0.363 .000††

Task Performance
ACC𝑠 0.037 .560 -0.014 .823 0.110 .085 0.018 .772
ACC𝑒 -0.000 .995 -0.037 .567 0.085 .184 0.007 .911
Plan Quality -0.035 .587 -0.037 .560 0.080 .211 -0.032 .611

Impact of Plan Quality and Risk Percetion.
Besides the measures calculated over task batch, a task-level analysis of plan quality and
risk perception can deepen our understanding of their impacts. Besides measures adopted
in Table 8.7, we include task-level confidence in this analysis and exclude the subscales
from the trust in automation questionnaire. Thus, we calculated Spearman rank-order
correlation coefficients for task-level measures across all groups of participants (shown in
Table 8.8). As we can see, both plan quality and risk perception significantly correlate with
user trust, calibrated trust, task performance, and user confidence. The plan quality shows
a significant positive correlationwithmost measures, which indicates users perform better
and calibrate their trust in the LLM agents in tasks with a high-quality plan. By contrast,
the risk perceptions shows a negative correlation with most measures and also a negative
correlation with the plan quality.
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Table 8.8: Task-specific spearman rank-order correlation coefficient for plan quality and risk perception. “†” and
“††” indicate the effect of the variable is significant at the level of 0.05 and 0.0125, respectively.

Category Variables Plan Quality Risk Perception
𝑟 𝑝 𝑟 𝑝

User Trust Trust-p 0.056 .032† -0.293 .000††
Trust-e 0.258 .000†† -0.160 .000††

Calibrated Trust CT𝑝 0.723 .000†† -0.102 .000††
CT𝑒 0.221 .000†† 0.000 .995

Task Performance
Plan Quality - - -0.141 .000††
ACC𝑒 0.400 .000†† -0.110 .000††
ACC𝑠 0.446 .000†† -0.096 .000††

Confidence Confidence-p 0.137 .000†† -0.532 .000††
Confidence-e 0.225 .000†† -0.271 .000††

Failure Analysis
Aswe find that plan quality substantially affects task execution accuracy, we look into task
performance across different plan qualities. For the tasks with low-quality plans (plans
fail to cover task information or plan with grammar errors, i.e., plan quality=1, 2), the
execution accuracy is 1.8%. While for tasks with a plan that may mislead action prediction
(plan quality = 3, 4), our LLM agent-based daily assistant achieved 59% execution accuracy.
The average execution accuracy for tasks with a high-quality plan (plan quality =5) is
66.7%.

We further check 717 tasks where a high-quality plan (plan quality = 5) is provided.
Among them, 235 tasks provide wrong execution results. The main causes are: (1) Wrong
action parameter prediction (48.9%). While action names match, one or more parame-
ters mismatch the expected value at some step of the action sequence. (2) Invalid actions
(48.5%). Given a perfect plan, the LLM agent failed to predict one valid action (failed to
predict one action name or failed to predict some action parameter value) to execute in
some steps. (3) Wrong action name prediction (2.6%). The generated action sequence has
at least one action name prediction that mismatches the ground truth.
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Figure 8.5: Bar plot for confidence dynamics, the x-axis denotes the task ordering index (shuffled for every
participant). The error bars represent the 95% confidence interval.
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Table 8.9: Excerpts from participants’ responses to open questions soliciting their opinions.

Opinions towards Planning Sentiment Reason
I really like how organized it is. The step by step and numerical plan-
ning allows it to make sense in a clear and structured way, meaning
there is less room for errors or misinformation

Positive Helpful with reducing
error

It was remarkable how quickly. It was able to achieve the goals which
was set out in the tasks. I quite liked it I would definitely want some-
thing like this in my life as It would my my life much easier

Positive Effective and make life
easy

As I said previously, it’s far, far too detailed in an unnecessary way.
I’m not sure people need the entire plan of what the AI will do, as
long as the job gets done.

Negative Too detailed

I found it really helpful, but made me slightly nervous thinking all my
plans being successful are in the hands of ai tech

Mixed Helpful assistant,
agency concerns

Opinions towards Execution Sentiment Reason
The execution stage was amazing. I feel like this could be the future
and we wont need to call or talk to people to get this kind of thing
done ever again.

Positive Promising future

The execution stage went smoothly, except for a few rare instances of
an error response before also saying the AI’s automatic reply (which
was correct).

Mixed Smooth user experi-
ence, error response

I found it clunky and nit that user friendly Negative Clunky, not user-
friendly

This bit is user friendly, but very robotic, which makes it difficult to
trust

Mixed User-friendly, distrust
due to robotic nature

Confidence Dynamics
To visualize the user confidence in the planning and execution stage, we draw point plots
(see Figure 8.5) for user confidence in the task order. Overall, condition AP-AE shows the
highest confidence in both the planning and execution stages. To verify the impact of user
involvement in confidence, we adopted two-way ANOVA and post-hoc Tukey HSD test.
We find that: (1) with user involvement in the planning, participants showed significantly
lower confidence in planning (AP-AE > UP-AE, UP-UE); (2) with user involvement in the
execution, participants showed a significantly lower confidence in execution (AP-AE >
AP-UE, UP-UE). Meanwhile, users typically showed a higher confidence in the execution
stage. Compared with conditions with automation execution (i.e., condition AP-AE and
UP-AE), the confidence gap narrows down in the conditions with user-involved execution
(i.e., condition AP-UE and UP-UE).

8.5.4 Analysis of Open Feedback
At the end of our study, we collected open feedback regarding the planning stage, execu-
tion stage, and any other feedback using the following question: ‘Please share any com-
ments, remarks or suggestions regarding the planning/execution stage of LLM Assistant’ and
‘Do you have any other comments, remarks or suggestions regarding the study? ’. Overall, we
analyzed all the feedback based on user opinions (positive, negative, mixed, neutral) and
their suggestions. In our analysis, we ignored all responses that did not directly lead to
useful input such as ‘None’, ‘N/A’, and ‘No comment’.
Feedback and Suggestions. While most comments tended to demonstrate positive opin-
ions towards LLM agents as daily assistants (more than 80%), there were also negative
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opinions regarding the difficulty, expertise, and trust. We provide example excerpts from
participants in Table 8.9. Besides opinions towards the system, some participants also ap-
preciated our user-centric setup:

”The study does a good job of emphasizing user experience by asking about perceptions of
risk, trust, and confidence. This approach ensures that the evaluation is user-centric, which is
important for assessing the real-world applicability of the LLM Assistant.”

Some participants also provided suggestions on how to further improve the general
design of LLM agent-based daily assistants. Regarding the plan edit, participants hoped for
the provision of more convenient edit operations like ‘drop/drag’ to adjust the plan-related
text ordering and an ‘undo’ operation to tolerate unexpected mistakes. Some participants
also found the plans too detailed, which could increase their perceived cognitive load (cf.
Table 8.9 except 3). As for the execution, many participants found it to be smooth. At the
same time, some believed that additional verification in each step could further enhance
the reliability of daily assistants:

“For the execution stage, I commend it for creating an input formatting box to execute the
user’s request validating each requirement.”

Other comments from participants reflected on the entire plan-then-executeworkflow:
“The planning was really challenging, and I mostly left the default plans (they looked

fine). This worked in the main, but a couple clearly needed revisiting. I would approach this
iteratively: plan, test, observe, back to planning, then another test, before reaching the desired
outcome.”

Our findings suggest open research opportunities to explore more effective ways to
provide an overview of plans that trade-off user cognitive load resulting from granular
descriptions, with the need to provide details to help users identify flaws. For example,
we can consider developingmethods to interactively allow users to flesh out further details
in a plan.

8.6 Discussion
8.6.1 Key Findings
Our experimental results show that user involvement in the plan-then-execute workflow
with LLM agents can help fix imperfect plans in planning and wrong action predictions
in the step-by-step execution. However, user involvement does not ensure a consistently
positive impact on calibrated trust and overall task performance across different tasks.
User Involvement Fails to Calibrate User Trust. Overall, user involvement in the plan-
ning and execution does not significantly impact user trust and calibrated trust in planning
and execution outcomes. As Table 8.3 shows, user involvement in planning can harm plan
quality in tasks with a high-quality initial plan, which may potentially cause worse task
performance in the subsequent execution stage. Our experimental results do not support
H1 orH3, which indicates user involvement does not necessarily help calibrate user trust
in our study. Instead, with a task-specific correlation analysis (cf. Table 8.8), we found that
the plan quality has a significant positive correlation with calibrated trust in both planning
and execution outcomes. Combined with task-specific user trust and task-specific confi-
dence, we can infer that users tend to trust the LLM agent overall. Such trust can be ex-
pected and calibrated in tasks with a high-quality plan. In contrast, users fail to calibrate
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their trust in the tasks where a low-quality plan is provided. A potential cause of such
miscalibrated trust is the plausibility of plans generated by LLMs (i.e., plans that appear to
be likely correct). In our study, all initial plans are formulated with a clear, logical struc-
ture, which covers most of the task requirements. At first glance, such high-quality text
pieces seem quite plausible and trustworthy. We also received some open text feedback
such as, — “The plans look nice, I do not find any space for improvement” and “the plan-
ning stage of the LLM assistant was helpful and trustworthy.” Findings from recent work
on LLM-assisted fact checking corroborate this, wherein authors found that convincing
explanations provided by LLMs can cause over-reliance when LLMs are wrong [451].

User Involvement can Benefit Task Performance. User involvement in planning and
execution can positively impact overall task performance, especially execution accuracy.
As the results in Table 8.3 and Table 8.4 show, user involvement in planning can help
address imperfect plans (e.g., task-1 with grammar error). Doing so further contributes to
improvements in the execution accuracy. After controlling the plan quality, we found that
user involvement in the execution can provide the best execution accuracy among most
tasks considered in our study (cf. Table 8.5). Based on the failure analysis (Section 8.5.3),
LLM agents can make mistakes in executing high-quality plans, which can be attributed
to prediction errors (i.e., wrong action name or action parameters) and prediction failures
(i.e., failure to provide valid action prediction). In practice with deployed LLM services,
there is no reliability guarantee for the generated plan in planning or predicted actions in
execution. User involvement can play an important role in the plan quality control and
risky action control, ensuring that only correct and safe actions are executed to obtain
desirable task outcomes.

Other Findings. We also found some user factors and perceptions that affect user trust
and task performance. As seen in Table 8.7, nearly all covariates show a significant posi-
tive correlation with user trust in the AI system. Some of these covariates also impact user
trust in the planning and execution outcomes. Overall, these findings indicate that users
who are familiar with such systems tend to show higher user trust. However, some fac-
tors also correlate negatively with the calibrated trust in the execution outcomes and risk
perception of using the LLM agents as daily assistants. This reflects that these factors can
cause miscalibrated trust and reduced risk perception when working with the LLM agent.
While we found that risk perception negatively correlated with user trust, calibrated trust,
task performance, and confidence (cf. Table 8.8), it does not mean risk perception is harm-
ful in the human-LLM agent collaboration. The main cause is that users may only notice
the risks of using LLM agents when the task is provided with a relatively low-quality
plan. Risk perception is important to calibrate user trust in the planning and execution
outcomes. Collaborative workflows should support users with the provision to take over
control of planning and/or execution stages based on their perceived risk.

8.6.2 Implications
The Impact of Convincingly Wrong LLM Outcomes. As our study follows a plan-
then-execute workflow for users to collaborate with LLM agents, users were not offered a
chance to revise the plan after starting with execution. Users following a wrong plan can
lead to negative outcomes. Combined with existing work on algorithm aversion [33] and
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the impact of negative first impressions on user trust [87], we can infer that such convinc-
ingly wrong content [451] can bias user trust and reliance towards the extremes. Before
users take notice, they may develop an uncalibrated trust in the AI system, as observed
through our findings in high-risk tasks (i.e., tasks 1,2,3) and corroborating work by Si et
al. [451]. As a result, users over-rely on AI assistance, which is misuse akin to behavior
that resonates with algorithm appreciation [34]. Once users notice such phenomena, their
trust in the LLM-based systems may sharply decrease, resulting in disuse due to algorithm
aversion. This can be a result of the misalignment between perceived AI performance and
actual AI performance. Existing human-AI collaboration literature has provided poten-
tial solutions for such problems, ranging from performance feedback interventions [30]
to agreement-in-confidence heuristic [49, 463]. Future work can combine these insights
to explore effective interventions for user trust calibration with convincingly wrong LLM
outcomes.

Insights for Effective Collaboration with Plan-then-execute LLM Agents. Our
work has important theoretical implications for effective human-AI collaboration with
plan-then-execute LLM agents. On the one hand, user involvement can be necessary to
achieve complementary team performance. Although LLM agents have shown promis-
ing planning and execution capabilities, they are never perfect due to probabilistic uncer-
tainty. With user involvement in the planning, users can fix imperfect plans with grammar
errors (cf. Table 8.3 task-1). With user involvement in the execution, users can fix uncer-
tainty issues (e.g., LLM agent predicts invalid actions) and prevent risky actions (e.g., LLM
agents choose an itinerary conflicting with task requirements, cf. Table 8.5, task-6). On
the other hand, user involvement may also bring uncertainty and even harm LLM agent
performance. In tasks where the LLM agent provides a high-quality plan (cf. task 4, 5,
6 in Table 8.3 and Table 8.4), user involvement can harm the plan quality, which further
negatively impacts the execution accuracy. Moreover, user involvement in planning and
execution poses a significantly higher cognitive load on users (cf. Figure 8.4) and nega-
tively impacts user confidence (cf. Figure 8.5). Thus, too much human involvement in
collaboration with plan-then-execute LLM agents can be undesirable. User involvement
in the execution process brings more consistent benefits than user involvement in the
planning stage. As suggested by the participants, iterative LLM agent simulation may be
one potential way to decide when users should be involved. The LLM agent may first con-
duct a plan-then-execute round to obtain a clear plan and execution results. With humans
checking the whole process and simulated outcomes, humans can decide whether to be
involved in revising the plan or the execution process. In this way, we can minimize user
involvement while keeping highly effective task outcomes through LLM agents.

Human Oversight and Designing Flexible Collaborative Workflows. In our study,
we found that human oversight does not consistently lead to improved outcomes. One
potential cause can be the disparity between the planning and execution of LLM agents.
Specifically, it is unclear how one plan step will be transformed into one action. When
users realize one plan step can be wrong during the execution stage, they may need to
articulate it or manually override the agent action, posing a high cognitive load. Even
worse, when users realize the LLM agent missed one action due to limited steps designed
in the plan (in task-1), they do not have a chance to change the plan or add one extra step.
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To address such concerns, we may need a more flexible collaborative workflow where
humans can fix planning and execution simultaneously. In this way, users can exercise
more flexible control over the workflow and the task outcomes. For instance, the action
prediction from the LLM agent can be provided along with each step in the planning stage.
Users can thereby be informed of the potential impact of their edited plan, which provides
more straightforward feedback and helps users adjust the plan according to the expected
actions.

8.6.3 Caveats and Limitations

Limitations and Potentail Biases. To ensure reliable task outcomes, humans are ex-
pected to fix imperfect plans (e.g., grammar errors, misleading action intents) in the plan-
ning stage. However, not everyone in conditions UP-AE and UP-UE noticed such grammar
errors and split the plan in task-1. Similarly, not everyone in conditions AP-UE and UP-UE
noticed that the LLM agent chose an itinerary that conflicted with task requirements. As
discussed earlier, LLM agents can generate plausible plans, which may mislead user trust
in the planning and execution outcomes. In that case, participants in our study may have
easily ignored some convincingly wrong plan steps or execution actions. In our study, one
primary step in the plan is only transformed into a single action. In practice, LLM agents
can generate multiple actions for one specific goal. However, such action generation and
execution modes are challenging for humans to get involved in and control, as the execu-
tion of the action sequences is automated by the LLM agent within one goal. Furthermore,
using multiple actions to achieve one primary step (i.e., goal) also results in higher task
complexity and reduced task clarity, which may impact the task outcomes [419].

Transferability Concerns. Although we selected representative tasks for daily scenar-
ios, our study may not sufficiently cover all potential cases of daily assistance with LLM
agents. Some task characteristics (e.g., task complexity, time consumption) may also im-
pact how users are willing to rely on AI assistance. Moreover, complete control over the
plan-then-execute LLM agents may not be desirable for some simple tasks (e.g., setting
alarms). Once the efforts to control/interact with LLM agents are greater than the efforts
to execute the tasks themselves, users will be unwilling to adopt such “assistance.” Future
work can look into what daily user needs are suitable for LLM agents to support. In our
study, the execution of plans is conducted in a simulation environment. While it has been
proven to be effective in prior work of agent-based modeling and HCI studies [457], more
work is needed to understand how execution of tasks in real-world environments with
additional dependencies and complexities can influence our findings.

Participants in our study only followed a relatively fixed mode in collaboration with
LLM agents, and they could determine when to get involved in the planning and execution
stages. The experimental conditions considered in our study range from full automation
(i.e., AP-AE) to complete user control (i.e., UP-UE). Such a setup provides good flexibility,
and simulates the spectrum of real-world practice. Our findings and implications provide
valuable insights to guide future research on human-AI collaboration with LLM agents.
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8.7 Conclusion
In this chapter, we empirically studied human-AI collaboration using plan-then-execute
LLM agents. Adopting such LLM agents in various everyday scenarios, we analyzed the
impact of user involvement in the planning and execution stages on user trust and overall
task performance. We provide various interactions in each stage to help users fix imperfect
plans and modify execution outcomes. Our results suggest that the LLM agents can pro-
vide plausible plans (in text) to cover task requirements, which can be convincingly wrong.
As a result, users develop uncalibrated trust in the planning and execution outcomes, and
user involvement in the planning and execution stages fails to calibrate user trust (RQ1).
We also found that the plan quality substantially affects the subsequent execution accu-
racy. Thus, when user involvement in planning can fix imperfect plans, the overall task
performance (i.e., plan quality, accuracy of action sequence, and execution accuracy) is
improved. However, user involvement in planning can also harm task plan quality where
the original plan is good to begin with. As a result, the LLM agents demonstrate worse
task performance in these tasks. In contrast, user involvement in execution brings about
a more stable positive impact on task performance (RQ2). Our results suggest that plausi-
ble but wrong LLM outcomes can be detrimental to user trust calibration and overall task
performance. We discussed the impact of convincingly wrong LLM outcomes and pro-
vided potential solutions and insights for future work. Furthermore, we synthesized key
insights for better control and effective collaboration with plan-then-execute LLM agents.
We also shed light on opportunities to design flexible collaborative workflows with human
oversight for effective collaboration with LLM agents.

Our results indicate that user involvement in the LLM agent workflow can be impor-
tant in ensuring reliable task outcomes. Future work can further investigate how to detect
and handle plausible but imperfect LLM outcomes and design effective interventions to fix
such problems. We hope that our key findings and implications reported in this chapter
will inspire further research on human-AI collaboration with LLM agents.
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9
Conclusions

Our research focuses on not only performance-related outcomes (e.g., team performance,
appropriate reliance, and calibrated trust), but also experience-related outcomes (e.g., user
satisfaction, work load, and user agency). To approach the goal of appropriate reliance, we
explored calibrating user perception of competence (Part I), facilitating user understanding
with human-centered XAI methods (Part II), and enhancing user control with collabora-
tive workflows (Part III). The findings and implications obtained from empirical studies
help advance the understanding of fundamental aspects of human-AI collaboration. This
dissertation can also inspire future research by offering insights into intervention method-
ologies, experimental design, and theoretical foundations.

In this concluding chapter, we revisit the aforementioned research questions, sum-
marize key findings, and discuss the implications and limitations of the research work
described in this dissertation. Furthermore, based on recent advances in relevant tech-
nologies and methodologies, we point out promising future directions.

9.1 Summary of Findings
Part I: Calibrating User Perception of Competence
In human-AI collaboration, users may easily develop uncalibrated trust in AI systems,
potentially originating from a miscalibrated estimation of AI competence and self-
competence. Thus, we mainly focus on the following research questions in Part I:

RQ1-a: How does the perceived performance of humans and AI systems shape user
reliance on AI systems?
RQ1-b: How to mitigate the impact of cognitive bias associated with misperception
on user reliance on AI systems?

To answer these research questions, we conducted a series of quantitative empirical
studies. We started by analyzing the impact of human understanding of system accuracy
on their reliance behaviors (Chapter 2). Based on two empirical studies, we found that
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explaining the AI system’s stated accuracy with analogies was insufficient to facilitate
appropriate reliance on the AI system. However, based on these results, we reasoned
that under-reliance on the AI system may be a result of users’ overestimation of their
ability to solve the given task. With a further empirical analysis of Dunning-Kruger effect
(DKE) [60] (Chapter 3), we found that participants who overestimate their performance
tend to exhibit under-reliance on AI systems, which hinders optimal team performance.
To mitigate such an effect, we proposed a tutorial intervention that gives performance
feedback to users about the performance of both the AI system and themselves. While
we found the effectiveness of our tutorial intervention in mitigating DKE, we also found
that the tutorial intervention can mislead some other participants (i.e., participants who
underestimated themselves) to overestimate themselves.

To further understand the impact of user perception of AI competence and the ef-
fectiveness of proposed debugging intervention, we conducted an empirical user study
(Chapter 4) in deceptive review detection tasks. Based on the experimental results, we
found that our proposed debugging intervention does not work as expected to facilitate
appropriate reliance. Instead, we observe a decrease in reliance on the AI system after
the intervention — potentially resulting from an early exposure to the AI system’s weak-
ness. Through an exploratory analysis based on different performance quartiles, we found
that participants who performed worse in our study tended to underestimate AI perfor-
mance. Thus, they achieved suboptimal team performance, which is largely impacted by
the under-reliance on the AI system.

Part II: Facilitating User Understanding with Human-centered XAI
For effective human-AI collaboration, users need to develop a good understanding of
the AI system. With a recent trend of human-centered explainable AI [27, 124, 126], re-
searchers advocate putting user information needs as the focus of explainable AI. We rec-
ognized one empirical gap in tasks that require domain expertise (e.g., medical diagnosis)
– the explanations for AI advice may be difficult for laypeople to understand. Meanwhile,
digesting such explanations also poses too much cognitive load on users. To fill such re-
search gaps, we proposed to adopt analogy-based concept-level explanations (Chapter 5).
Specifically, we focused on the following research questions:

RQ2-a: How do analogies for concept-level explanations shape the understanding of
an AI system among non-expert users?
RQ2-b: How do analogy-based explanations affect user reliance on AI systems?

To answer these research questions, we conducted an empirical study (𝑁 = 280) on
a skin cancer detection task with non-expert humans and an imperfect AI system. The
results of our study confirmed that a knowledge gap can prevent participants from under-
standing concept-level explanations. Although we did not find quantitative support for
our hypotheses around the benefits of using analogies, we found considerable qualitative
evidence suggesting the potential of high-quality analogies in aiding non-expert users in
their decision making with AI-assistance.

Apart from the explainable AI methods or explanations with AI advice, the interface to
present explainable AI methods may also substantially affect user exploration of informa-
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tion needs. Inspired by prior work on conversational user interfaces [263–265], we argued
that augmenting existing XAI methods with conversational user interfaces can increase
user engagement and boost user understanding of the AI system. To this end, we explored
the following research questions:

RQ3-a: How does a conversational XAI interface shape user understanding of an AI
system, in comparison with an XAI Dashboard?
RQ3-b: How does a conversational XAI interface influence user reliance on an AI
system, in comparison with an XAI Dashboard?

To answer these research questions, we conducted an empirical study (𝑁 = 306) by
comparing several variants of conversational XAI interfaces with the XAI dashboard in
a loan approval task (Chapter 6). Compared to an XAI dashboard, we observed limited
improvements in user understanding and trust brought forth by the conversational XAI
interface. Overall, we found that users with conversational XAI interfaces tended to rely
more on the AI system. However, such increased reliance did not always translate into
appropriate reliance. Instead, it was characterized by clear patterns of over-reliance. Fur-
thermore, with an LLM agent-based conversational XAI interface, we observed that over-
reliance was further reinforced, and users obtained a worse understanding of AI decision
criteria. Our findings suggest that the XAI interfaces were persuasive and have the po-
tential to bring about an illusion of the AI systems’ capability, which in turn increased
over-reliance on the AI system.

Part III: enhancing user control with collaborative workflows
While most prior work has extensively analyzed human-AI collaboration in a one-step
decision making setup, the decision making for complex tasks typically follows a multi-
step manner. It is unclear how fine-grained transparency of the AI systems and multi-step
decision workflow will impact user reliance. Thus, we analyzed the following research
questions:

RQ4-a: How does a multi-step decision workflow shape user reliance on an AI sys-
tem?
RQ4-b: How do global transparency and local transparency shape user reliance in a
multi-step decision workflow?

To answer these research questions, we conducted an empirical study (𝑁 = 233) in
composite fact-checking tasks (Chapter 7). Our findings demonstrate that human-AI col-
laboration with a multi-step transparent decision workflow can outperform one-step col-
laboration in specific contexts (e.g.,when advice from an AI system is misleading). Further
analysis of the appropriate reliance at fine-grained levels indicates that a multi-step trans-
parent decisionworkflow can be effectivewhen users demonstrate a relatively high consid-
eration of the intermediate steps. We also found that participants who do not demonstrate
fine-grained appropriate reliance at the intermediate steps may exhibit under-reliance be-
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havior on the final AI advice. Based on these results, we infer that the multi-step transpar-
ent workflow provides better verifiability of the AI advice, which contributes to develop-
ing higher self-confidence and a critical mindset on AI advice. While it may help mitigate
over-reliance caused by the potential illusion of explanatory depth, it may also decrease
user reliance on the AI system and cause under-reliance issues.

Although LLM agents have shown a promising blueprint as daily assistants, there is
a limited understanding of how they can provide daily assistance based on planning and
sequential decisionmaking capabilities. To ensure the reliability of task outcomes and user
agency in collaboration with LLM agents, we explore the impact of user involvement in
the planning and execution stages. Thus, we proposed to answer the following questions:

RQ5-a: How does human involvement in the high-level planning and real-time exe-
cution shape their trust in an AI system powered by LLM agents?
RQ5-b: How does human involvement in the high-level planning and real-time ex-
ecution of tasks with an AI system powered by LLM agents affect the overall task
performance?

To answer these research questions, we conducted an empirical study (𝑁=248) of LLM
agents as daily assistants in six commonly occurring tasks (e.g., flight ticket booking and
credit card payments) in Chapter 8. Our experimental results show that user involve-
ment in the plan-then-execute workflow with LLM agents can help fix imperfect plans
in planning and wrong action predictions in the step-by-step execution. However, user
involvement does not ensure a consistently positive impact on calibrated trust and overall
task performance across different tasks. Our findings demonstrate that LLM agents can
be a double-edged sword – (1) they can work well when a high-quality plan and necessary
user involvement in execution are available, and (2) users can easily mistrust the LLM
agents with plans that seem plausible.

9.2 Implications
Our work has important implications for designing effective user interventions and AI
assistants to facilitate appropriate reliance and improve human-AI collaboration.
Guidelines for Effective Tutorial Interventions. To calibrate user perception of
competence, we adopted several tutorial interventions (i.e., performance feedback tu-
torial in Chapter 3 and debugging tutorial in Chapter 4). While they have been ob-
served to be effective in calibrating user perception of competence, such calibrated self-
assessment/assessment of AI competence does not necessarily translate to optimal appro-
priate reliance. One possible cause is that while the tutorial makes such users aware that
they underestimated themselves and they can make correct decisions when the AI system
is wrong in the task, users may have an illusion of superior capability than the AI system.
Meanwhile, we also noticed that such tutorial interventions may also bring negative im-
pacts in specific contexts. For example, participants who underestimated their own compe-
tence showed worse reliance patterns on AI systems after tutorial intervention. To avoid
such side effects, tutorials designed to mitigate a specific kind of bias should be carefully
checked before subjecting them to broad participant pools. This also implies that tutorials
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designed for promoting appropriate reliance should not only reveal the shortcomings of
users or AI systems (i.e., when they are less capable of making the right decision), but also
their strengths (i.e., when they are capable or more capable). With such a comprehensive
understanding, human decisionmakers can potentially have a better chance to understand
when they should rely on AI systems, andwhen they should rely on themselves, ultimately
leading to (more) appropriate reliance. Our findings in Chapter 4 suggest that the debug-
ging intervention and similar interventions with training purposes (e.g., user tutorials)
may suffer from the cognitive bias brought by the ordering effect within such interven-
tions. While using such interventions to demonstrate the strength and weakness of AI
systems, we should be careful not to leave users with a bad first impression, highlighting
the weakness of the AI system.

Align Plausibility of Explanations with AI Trustworthiness. According to prior
work [182, 464], users of explainable AI systems implicitly hold the belief that “plausible ex-
planations typically imply correct decisions, and vice versa”. In Chapter 5, the participants
who may have found the analogies to be implausible may have perceived certain AI ad-
vice as untrustworthy and thereby relied less on the AI system. Such under-reliance could
result in sub-optimal team performance. Similarly, when users perceive the explanations
to be persuasive and plausible, they may tend to exhibit over-reliance on AI systems. In
Chapter 6, participants with both conversational XAI interface and XAI dashboard showed
over-reliance on the AI systems. Meanwhile, boosting conversation quality and flexibility
(i.e., with LLM-based conversational agent) may further reinforce over-reliance and hurt
user understanding and user trust. Based on these findings, we argue it would be more
important to align the plausibility of XAI responses with the trustworthiness of the AI
system rather than solely improving the interactional quality and experiences with the
XAI responses. This is in line with existing work on plausibility in XAI [327]: “a plausible
but unfaithful interpretation may be the worst-case scenario.”

Fine-grained Analysis to Promote Appropriate Reliance. Our experimental results
in Chapter 7 suggest that appropriate reliance at a global level and complementary team
performance may be dependent on more fine-grained appropriate reliance on the interme-
diate steps (i.e., global transparency) and supporting documents (i.e., local transparency).
While most existing work has explored a one-step decision workflow, the user decision
making process and user decision criteria are not accessible for analysis. Existing em-
pirical studies typically set up experiments with several conditions by controlling factors
about user, task, andAI system. In such a setup, the user reliance onmore fine-grained task
input and the surrounding context (e.g., relevant documents) are typically not considered
for analysis. We argue that this limits us, as a community, from developing an insightful
understanding of appropriate reliance on AI advice. In this spirit, Chapter 7 has important
methodological implications for both studying and promoting appropriate reliance with
a fine-grained analysis. Our findings and implications can help develop human-centered
AI systems for complex tasks highlighting accountability, like medical diagnosis, loan pre-
diction, supply chain optimization, etc. The users would benefit from the critical mindset
and intermediate results of a multi-step transparent workflow.

Insights for Effective Collaboration with Plan-then-execute LLM Agents. Chap-
ter 8 has important theoretical implications for effective human-AI collaboration with
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plan-then-execute LLM agents. On the one hand, user involvement can be necessary to
achieve complementary team performance. Although LLM agents have shown promising
planning and execution capabilities, they are never perfect due to probabilistic uncertainty.
With user involvement in the planning, users can fix imperfect plans with grammar errors.
With user involvement in the execution, users can fix uncertainty issues and prevent risky
actions. On the other hand, user involvement may also bring uncertainty and even harm
LLM agent performance. Moreover, user involvement in planning and execution poses a
significantly higher cognitive load on users and negatively impacts user confidence. Thus,
too much human involvement in collaboration with plan-then-execute LLM agents can be
undesirable. User involvement in the execution process brings more consistent benefits
than user involvement in the planning stage. As suggested by the participants, iterative
LLM agent simulation may be one potential way to decide when users should be involved.
The LLM agent may first conduct a plan-then-execute round to obtain a clear plan and
execution results. With humans checking the whole process and simulated outcomes, hu-
mans can decide whether to be involved in revising the plan or the execution process. In
this way, we can minimize user involvement while keeping highly effective task outcomes
through LLM agents.

9.3 Limitations and Future Work
Recent years have witnessed rapid growth in research on facilitating effective human–AI
collaboration. While the studies presented in this dissertation followed rigorous designs,
some limitations may stem from the technological constraints and conceptual understand-
ing available at the time of their implementation. This section acknowledges these limita-
tions and outlines promising directions for future research in this evolving field.

In Part I, the implementation of AI systems mainly involves simple classifier models
based on raw input features and hidden vectors obtained from transformer models. Mean-
while, we only provide explanations for AI advice with feature attribution (i.e., highlight-
ing the contribution of model input). Such explanations may not be interpretable enough
for users to understand, potentially affecting the expected tutorial interventions. With
the recent progress of large language models (LLMs), we can obtain more accurate AI
predictive power and more coherent and understandable explanations. Future work can
consider examining our findings and implications with improved technical implementa-
tion. Meanwhile, we also realized that the analysis in Part I only adopted relatively simple
tasks that do not require domain expertise. Future work may confirm their impacts in
different contexts by adjusting task-related factors (e.g., task complexity). Our implica-
tions also provide useful guidelines for creating effective tutorial interventions. Within
such a context, future work can consider providing a more user-friendly interaction de-
sign (e.g., with a dashboard to visualize the human and AI differences across tasks) to help
calibrate user perception of competence and promote appropriate reliance.

In part II, we found analogy-based explanations (Chapter 5) and evaluative decision
support (Chapter 6) did not perform as expected. These results may reflect limitations
in the implementation of the XAI methods. For example, neither approach provided suf-
ficiently informative signals to help users distinguish between correct and incorrect AI
outputs [250]. In addition, the cognitive effort required to engage in evaluative conver-
sation may have been too demanding in a crowdsourcing setting, diverting participants’
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attention from the core task of judging AI correctness.
In Chapter 2 and Chapter 5, the analogies are manually selected or generated with a

template-based crowd computing method. However, according to the recent advances in
LLMs, we can now rely on powerful LLMs (e.g., GPT-4o) to generate high-quality analo-
gies. Such analogy generation may be more cost-effective and can be adjusted according
to user needs. Meanwhile, our findings also highlight the importance of personalized and
flexible presentation of analogies. Instead of providing prepared analogies in human-AI
collaboration, we may consider setting up high-quality prompts tailored to user informa-
tion needs to provide analogies on demand. To our knowledge, this area is still underex-
plored and deserves more research efforts. Furthermore, the idea of using analogical in-
ference to help interpret AI predictions deserves further exploration. Such analogy-based
concept-level explanations have the potential to facilitate user understanding in complex
tasks that require domain expertise. Future work can consider applying it to knowledge-
intensive tasks where external knowledge sources (like a knowledge base and supporting
documents) can help generate high-quality analogy-based explanations.

In Chapter 6, we selected themost representative five XAImethods as the basis to form
our interactive XAI interfaces. We cannot overrule that this design choice may have been
a bottleneck for some participants in our study, as they may have had information needs
not covered by the XAI methods. Once users find that their queries cannot be answered
properly based on pre-defined XAI methods, their trust and reliance on the AI system
may decrease. While LLMs can ‘understand’ user information needs to some extent, their
effectiveness is not guaranteed. Thus, there is a substantial need to create a more com-
prehensive and precise approach to identifying user information needs and explainability
intent. Conversational XAI interface for decision support may substantially benefit from
such kind of research. Meanwhile, we would argue that evaluative decision support can be
a promising avenue to develop a critical mindset in human-AI collaboration. The findings
in this dissertation also confirm that the XAI decision support can provide users with an
illusion of explanatory depth, reinforcing over-reliance. Developing a critical mindset on
users of AI systems has been proven to be effective in facilitating appropriate reliance. The
evaluative XAI decision support may be a natural and low-barrier approach to advancing
user understanding while keeping a critical mindset in adopting AI advice.

A clear limitation of Part III is that users were still required to complete the entire
workflow alongside AI assistance, which may impose a substantial cognitive load on them.
Once the efforts to control/interact with complex workflow are greater than the efforts to
execute the tasks themselves, users will be unwilling to adopt such “assistance”. Future
work can explore how to provide necessary user involvement on demand, which can be
implemented with heuristics (e.g., based on AI uncertainty or the potential loss of wrong
outcomes at each step). Going one step further, future work can train a predictive system
to decide when to incorporate human oversight. An alternative to reduce user cogni-
tive load in such human-AI collaboration can be providing better visualization and user-
friendly interactive interfaces. Future work can design more effective user involvement
and low-barrier user interfaces for user control of agentic workflow.

Another limitation of part III is the potential risks brought by LLMs. In both Chap-
ter 7 and Chapter 8, LLMs generate convincingly wrong content (i.e., workflow and plans,
respectively) that may cause over-reliance. The perceived plausibility of AI-generated con-
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tent can foster an illusion of intelligence, prompting users to defer critical decisions to AI
systems inappropriately. Future work can combine the insights and findings from this
dissertation to explore effective interventions for user trust calibration with convincingly
wrong LLM outcomes. Meanwhile, LLMs still suffer from the inherent opaqueness and
uncertainty issues of deep neural networks. Even the explanations and reasoning process
of the LLMs have been observed to be insufficient to reflect their rationale for response
generation. Therefore, future work can further explore the transparency and rationale of
LLM functioning. We have noticed that there have been some proposals for the mechanis-
tic interpretability of AI systems. Future work may follow this thought to provide more
transparent AI assistance with powerful LLMs.

Based on the open feedback collected from human-AI collaboration with agentic work-
flow in Chapter 8, we also find that some users expressed concerns about losing agency
to AI systems. Moving forward, future research should not only focus on advancing
performance-related outcomes but also prioritize experience-based outcomes (e.g., user
satisfaction, workload, and user agency). Ethical frameworks must be embedded into the
development lifecycle of AI systems, ensuring that these tools augment rather than under-
mine human well-being.

A general limitation of this dissertation is that all empirical studies are based on crowd-
sourcing. The findings may be biased due to the contextual factors associated with crowd
workers and the online working environment. Meanwhile, all human-AI collaboration is
operationalized in a simulation environment (most existing work in human-AI collabora-
tion also suffers from it). Although we provide monetary bonuses to incentivize active
engagement, there can be some differences in practical human-AI collaboration. Future
work can aim to minimize such impacts and increase the transferability of findings/impli-
cations obtained with such a setup.
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