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Learning-based NLOS Detection and Uncertainty Prediction of

GNSS Observations with Transformer-Enhanced LSTM Network

Haoming Zhang, Zhanxin Wang and Heike Vallery

Abstract— The global navigation satellite systems (GNSS)
play a vital role in transport systems for accurate and consis-
tent vehicle localization. However, GNSS observations can be
distorted due to multipath effects and non-line-of-sight (NLOS)
receptions in challenging environments such as urban canyons.
In such cases, traditional methods to classify and exclude
faulty GNSS observations may fail, leading to unreliable state
estimation and unsafe system operations. This work proposes
a deep-learning-based method to detect NLOS receptions and
predict GNSS pseudorange errors by analyzing GNSS obser-
vations as a spatio-temporal modeling problem. Compared
to previous works, we construct a transformer-like attention
mechanism to enhance the long short-term memory (LSTM)
networks, improving model performance and generalization.
For the training and evaluation of the proposed network, we
used labeled datasets from the cities of Hong Kong and Aachen.
We also introduce a dataset generation process to label the
GNSS observations using lidar maps. In experimental studies,
we compare the proposed network with a deep-learning-based
model and classical machine-learning models. Furthermore, we
conduct ablation studies of our network components and inte-
grate the NLOS detection with data out-of-distribution in a state
estimator. As a result, our network presents improved precision
and recall ratios compared to other models. Additionally, we
show that the proposed method avoids trajectory divergence
in real-world vehicle localization by classifying and excluding
NLOS observations.

I. INTRODUCTION

On the way towards accurate and reliable localization of

transport systems in outdoor and large-scale environments,

global navigation satellite systems (GNSS) are widely used

as standalone positioning solutions or sensor observations in

advanced state estimation algorithms [1]. In the configuration

of Real-Time Kinematic (RTK) with GNSS-correction data

from a local ground-based augmentation service (GBAS),

centimeter accuracy can be achieved [2]. However, the per-

formance of GNSS-based localization approaches is highly

dependent on sufficient satellite visibility and low envi-

ronmental interference. These requirements are frequently

violated in complex environments such as urban canyons and

bridge-rich areas [3]. In such environments, infrastructure ob-

jects can easily block GNSS measurements, resulting in non-

line-of-sight (NLOS) receptions and multipath effects in the

received GNSS observations [4]. Compared to atmospheric
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influences or satellite orbit bias, which can be corrected by

the GNSS correction and ephemeris data, NLOS signals and

multipath delays cannot be adequately modeled by statistical

methods or eliminated using reference measurements from

an external data link [5]. Therefore, consistent and robust

vehicle localization in urban areas remains a challenge.

Many earlier works rely predominantly on statistical error

modeling or consistency checking within the obtained GNSS

observations to exclude strongly corrupted GNSS measure-

ments for vehicle positioning. In [6] and [7], multipath

errors are indirectly modeled using signal strength measures

such as signal-to-noise ratio (SNR) and carrier-to-noise ratio

(C/N0). However, such methods do not scale well in environ-

ments where multipath reflections with strong signal strength

exist [5]. In contrast, the receiver autonomous integrity mon-

itoring (RAIM) approach detects GNSS measurement faults

by checking the consistency of received redundant GNSS

observations. After computing a protection level that yields a

pre-defined integrity risk and alarm limit, the RAIM indicates

faulty measurements by utilizing online statistical tests [8].

Although RAIM has become the prime technology in current

GNSS solutions for fault isolation, this concept still assumes

Gaussian noise distributions of GNSS observations. More-

over, it requires sufficient measurement redundancy, which

cannot be fulfilled in urban areas and therefore leads to

conservative fault classifications [3]. Other prominent works

focus on state estimation algorithms that utilize robust error

functions, such as m-estimators, or integrate other sensors

to mitigate the effect of degraded GNSS measurements. In

[9] and [10], the authors have proposed a tightly coupled

fusion of inertial measurement alongside corrupted GNSS

observations based on factor graph optimization with robust

noise modeling using m-estimators and have shown superior

performance against classic Bayesian filters. The principle of

Graduated-Non-Convexity instead of traditional m-estimators

can further mitigate the impact of strongly corrupted GNSS

observations in urban areas [11]. However, these approaches

cannot explicitly exclude faulty GNSS measurement and thus

do not yet guarantee stability and robustness.

Another group of approaches employs prior environmental

information, such as 3D city models or fish-eye images,

to acquire a satellite-blocking mask in the sky plot that

is conducted for further visibility argumentation [12]±[16].

Also, lidar sensing, which is usually used as an optical vehi-

cle odometer, has been explored for GNSS fault exclusion.

The generated 3D point cloud map can provide a more

detailed and effective satellite-blocking mask considering

local objects such as trees and large vehicles. This mask
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can be used for GNSS fault exclusion in state estimators,

[17, 18]. However, these approaches rely on well-calibrated

third-party sensors or prior information and cannot always

guarantee real-time efficiency for fault detection.

Recently, learning-based methods have drawn great atten-

tion for NLOS classification and multipath error prediction

[19]. Pre-trained models can be inferred online for GNSS

fault detection after intensive data augmentation and offline

training. Some works have utilized classical machine learn-

ing methods such as fuzzy logic [20] or support vector ma-

chines [21, 22] to classify faulty GNSS measurements, which

achieve impressive classification accuracy in test data. Con-

sidering the time-correlated and strongly nonlinear proper-

ties of faulty GNSS observations, deep-learning-based (DL)

methods can extract semantic features and acquire better

generalization outcomes using pre-trained models [23]±[25].

Among all of these works, Zhang et al. proposed a particular

network architecture containing fully-connected layers and

long short-term memory (LSTM) networks for satellite visi-

bility classification and pseudorange error prediction [26]. In

[27], the pre-trained network in [26] has been utilized in a

state estimator to exclude the NLOS observations and shows

promising accuracy improvement. Although LSTM networks

are considered a feasible method to model sequential data

[28]. Therefore, they outperform other approaches for NLOS

detection [25]. However, LSTM networks are limited in

applications with multivariate features and contextual infor-

mation [29]. To overcome this problem, the self-attention

mechanism introduced as transformers can be utilized to

improve performance in sequential data modeling [30].

Inspired by [26] and [28], we consider the GNSS observa-

tions as time-series data and propose a transformer-enhanced

LSTM network for NLOS classification and pseudorange

error prediction. We follow the noise characteristics of the

GNSS observations in complex environments and consider

both temporal and spatial information in the feature extrac-

tion process. To train the network, we use the data set in

[26] and introduce a data generation process, which is used

to label the GNSS data from our measurement campaign

in the city of Aachen. We train the proposed network

alongside a baseline LSTM network in [26] and two classical

machine learning models: support vector machine (SVM)

and extreme gradient boosting (XGBoost). All models are

evaluated with test and unseen (out-of-distribution) data. We

also conduct ablation studies on our network components and

present comprehensive discussions on model performance,

data set quality, and the importance of features. Furthermore,

we employ the pre-trained models on unlabeled data from

our measurement campaign in the city of DÈusseldorf to

infer NLOS classifications, which are integrated into a state

estimator.

For the benefit of the research community, we release our

code and Aachen dataset in github1.

1https://github.com/rwth-irt/DeepNLOSDetection

II. DATASET GENERATION

A. Data Collection

For the training and testing of the learning-based al-

gorithm, we collected raw data in a measurement cam-

paign in Aachen and proposed a data labeling process. The

measurement campaign contains a route with a length of

17 km in different urban areas. The dataset consists of raw

measurements from an inertial measurement unit (IMU) at

100Hz, lidar point clouds at 10Hz, and GNSS measurements

at 10Hz using a NovAtel PwrPak7 receiver with RTCMv3

correction data received from the German GBAS server2.

B. Label Generation

Fig. 1 shows our label generation process. To obtain the

pseudorange residuals and satellite blocking masks, we use a

multi-sensor fusion state estimator and a GNSS preprocessor

from our previous work [31]. The raw GNSS measurements

with the ephemeris data and RTCMv3 correction data are

processed in the GNSS preprocessor to eliminate the satellite

orbit bias and the atmospheric delays. After GNSS pre-

processing, we feed the GNSS observations with the IMU

measurements and lidar point clouds into the state estimator,

where the pseudorange residuals are calculated and 3D lidar

maps are generated. The 3D lidar maps are used to mark

the satellite blockages in the sky plots, which are further

conducted for label generation. Fig. 2 shows the masked

sky plots. While generating labels, we query the neighbored

elevation and azimuth angles at each satellite and infer the

satellite with NLOS reception if the elevation/azimuth of the

satellite is masked according to and the pseudorange residual

is above a predefined threshold.

Fig. 1: Proposed labeling framework

C. GNSS Feature Selection

Following the previous work [26], we select the same five

features from the pre-processed GNSS observations for the

NLOS classification and pseudorange error prediction.

2https://sapos.de/
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Fig. 2: Sky plots from two scenes: a) urban tree-rich area,

b) urban. The received GPS satellites are marked in orange.

1) Elevation Angle (El): The satellite elevation angle

El provides an adequate quality measure of the satellite

visibility. Satellites with higher elevation angles are generally

less affected by the infrastructure objects. In classical GNSS

positioning approaches, satellites with low elevation angles

are excluded from state estimation algorithms. The elevation

angle Elk of k-th satellite can be calculated as

Elk = arcsin(h
sat,k

/rk), (1)

where the satellite’s height with respect to the vehicle in the

East-North-Up (ENU) frame is represented as hsat,k. The

variable rk denotes the geometric range from the vehicle to

the k-th satellite.

2) Azimuth Angle (Az): The satellite azimuth angle rep-

resents the horizontal geometric relation between the satellite

and the vehicle. As described in [26], azimuth angles allow

deducing the satellite visibility if multiple satellites with

similar azimuth angles but different elevation angles are re-

ceived. This feature is expected to provide more information

on the geometric context in learning-based methods. We

calculate the azimuth angle with

Azk = arctan(x
sat,k

/ysat,k), (2)

where the symbols xsat,k and ysat,k are the positions of k-th

satellite relative to vehicle’s position in the ENU-frame.

3) Carrier-to-Noise-Ratio (C/N0): The Carrier-to-Noise

Ratio C/N0 measures the satellite signal strength and char-

acterizes the satellite signal quality. Generally, the GNSS

observations used for positioning are expected to have higher

values C/N0. In urban scenarios, C/N0 can also effectively

represent interference due to NLOS receptions and multipath

effects [5].

4) Least-Square Pseudorange Residual (σsat
LS ): In many

GNSS standalone solutions, vehicle position can be calcu-

lated with an iterative least-square (LS) method using GNSS

observations. We use this positioning solution to calculate

pseudorange residuals, denoted as σsat,k
LS . Unlike the pseudor-

ange residuals calculated in the state estimator by combining

multiple sensors, the residual σsat,k
LS is highly related to

the quality of GNSS observations and represents the scale

of pseudorange errors. We calculate the LS pseudorange

residual by

σsat,k
LS = ρ̂k − ∥x̂r − x

sat,k∥2, (3)

where the range ρ̂k is the measured pseudorange, which is

corrected in the GNSS pre-processing process to eliminate

the atmospheric delays. The satellite position and the es-

timated vehicle position are represented as x
sat,k and x̂

r,

respectively.

5) Root-Sum-Squares of Pseudorange Residuals (RSS):
As introduced in [26], the root-sum-square of the pseu-

dorange residuals encodes the environmental condition by

summing up multiple pseudorange residuals in a certain time

window. If the vehicle is moving in urban areas in t = 1...T ,

larger RSS should be expected. We employ the RSS, shown

in

RSS =

√

√

√

√

T
∑

t=1

(σsat,k
LS,t )

2 (4)

as the last feature in the feature vector.

III. PROPOSED NETWORK

A. Problem Formulation

The pseudorange observations are commonly used to

represent the vehicle position in GNSS-based localization

approaches, as shown in

ρkt = rsat,kt + c(δtr − δtsat,k) + T (t) + I(t) +M + ϵk,
(5)

ρ̂kt = rsat,kt +M + ϵk, (6)

where the range rsat,kt = ∥xr
t − x

sat,k
t ∥ is the geometric

range between the vehicle and k-th satellite. The receiver

clock error δtr and the satellite clock error δtsat,k, multiplied

by the light speed c, represent the clock bias. The variables

T (t) and I(t) are tropospheric and ionospheric delays,

respectively.

In this work, we assume that the receiver clock bias is

estimated in the state estimator and therefore is subtracted

from (5). With the ephemeris and differential correction

data, the satellite clock bias and atmospheric delays can

be eliminated in a pre-processing process to acquire the

corrected pseudorange ρ̂kt . We denote the multipath delay and

the observation noise using M and ϵk, respectively. These

delays vary particularly in urban areas and become complex

and time-related due to NLOS receptions and multipath

effects [32].

Therefore, we consider the NLOS detection and error

prediction of pseudorange ρ̂kt as a spatio-temporal modeling

problem

[Vk, ϵ̂k] = NN

(

{

Elkτ , Azkτ , C/N0
k

τ , σk
LS,τ , RSSk

}T

τ=1

)

,

(7)

which predicts the satellite visibility Vk and pseudorange

error ϵ̂k using a neural network given all selected features in

a time series of T seconds.
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Fig. 3: Proposed Neural Network Architecture.

B. Neural Network Architecture

Considering the noise characteristics of GNSS observa-

tions in urban areas, we propose a neural network containing

three properties: 1. capturing the temporal variations of

selected features, 2. evaluating spatial contextual information

from other satellites, and 3. providing effective attention

for discriminative features. The proposed neural network

architecture is presented in Fig. 3.

Assuming that N satellites can be received at maximum,

we formulate the input tensor as a T second time series of

feature vectors from each satellite in a mini-batch B. To

extract high-level features that contain temporal information

from the received observations, we process the time series of

each satellite with LSTM networks individually. The LSTM

output features of all satellites are forwarded to a fully

connected layer to generate contextual key K and value V
features equivalent to transformer networks. Meanwhile, we

detach the LSTM output features as input for three network

components to obtain predictions for each target satellite.

Above all, we employ the same fully-connected layer to

generate the query features Q for the attention mechanism.

The features K, V , and Q are evaluated in the multi-head

attention sub-network, which is designed to propose spatial

discriminative features from contextual information. In the

header stack, we employ a bi-directional LSTM (Bi-LSTM)

by initializing its hidden states with the output features from

the foregoing LSTM network of the target satellite. The

output features of the attention mechanism are processed

in the Bi-LSTM, which is expected to extract the temporal

information of the discriminative features and mitigate the

effect of satellite ordering in the input tensor. We concatenate

the output of the Bi-LSTM network with LSTM features of

each target satellite to obtain high-level semantic features

for classification and regression problems, where a binary

TABLE I: Details of Datasets. The average and maximal

number of the received satellite are denoted with nsat
avg and

nsat
max. The maximal pseudorange error σρ

max is inferred with

ground-truth positioning. We present the ratio of LOS and

NLOS labels in the dataset with RLOS and RNLOS.

Dataset
Duration

s
nsat
avg nsat

max
σρ

max

m

RLOS

%

RNLOS

%

HK [26] 10573 17 25 1058.13 60.62 39.38

AC 2366 6 8 640.32 81.13 18.87

DUS3 810 7 11 355.74 - -

visibility indicator Vk and a predicted pseudorange error ϵ̂k

of the target satellite k are inferred, as shown in Fig.,3.

Because our input tensor does not contain high-

dimensional features, LSTM networks are constructed with

two hidden layers. We implement the MLPs with three

hidden layers and use ReLU as the activation function. For

more details, see the code introduced in Sec. I.

C. Implementation and Training

1) Training and Test Data: In this work, we use the Hong

Kong (HK) dataset [26] and our labeled dataset in Aachen

(AC) for training and testing. All dataset details are shown

in Tab. I. Compared to the HK dataset, where more NLOS

observations can be received due to the high urbanization

rate, the AC dataset only contains 18.87% of NLOS re-

ceptions, presenting an unbalanced dataset. To evaluate the

model generalization with data out-of-distribution, we use

unlabeled data recorded in DÈusseldorf (DUS) and predict the

satellite visibility. This prediction is validated using a state

estimation algorithm.

2) Training Protocol: We implement all models using

PyTorch4. deep-learning (DL) models are trained with the

Adam optimizer [33] by utilizing a multistep learning rate

scheduler. In the implementation, we use the MSE loss

for the NLOS classification and L1 loss in the regression

problem to predict the pseudorange error.

We employ the basic implementation in Sklearn5 for all

classical machine-learning models. The SVM classifier was

trained using the RBF kernel with the penalty parameter

C = 1.0. We implement XGBoost with 200 decision trees

and a learning rate α = 1.0 for the classification task.

The machine learning models are only trained for NLOS

classification, whereas the DL models conduct two loss

functions both for NLOS classification and pseudo-range

error prediction. We train all models with datasets from

Aachen and Hong Kong and consider testing procedures

using data from the same and different datasets, with the

aim of validating the generalization of the model.

IV. EXPERIMENTAL RESULTS

A. General Performance Metrics for NLOS Classification

1) Data In-Distribution: To evaluate the superiority of the

proposed network, we also train different classical machine-

3Only used for prediction.
4https://pytorch.org/
5https://scikit-learn.org/
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TABLE II: Performance Metrics using HK Dataset.

Model Precision Recall F1-Score Acc.

SVM
LOS 0.87 0.86 0.86

0.82
NLOS 0.72 0.74 0.73

XGboost
LOS 0.90 0.88 0.89

0.85
NLOS 0.77 0.80 0.78

DL [26]
LOS 0.80 0.96 0.87

0.81
NLOS 0.85 0.51 0.64

DL (ours)
LOS 0.90 0.91 0.90

0.87
NLOS 0.80 0.79 0.80

TABLE III: Performance Metrics using AC Dataset.

Model Precision Recall F1-Score Acc.

SVM
LOS 0.80 1.00 0.89

0.80
NLOS 0.39 0.01 0.01

SVM∗
LOS 0.91 0.72 0.80

0.72
NLOS 0.38 0.70 0.49

XGboost
LOS 0.86 0.88 0.87

0.79
NLOS 0.47 0.42 0.45

DL [26]
LOS 0.86 0.83 0.84

0.76
NLOS 0.40 0.47 0.43

DL (ours)
LOS 0.86 0.90 0.88

0.81
NLOS 0.51 0.42 0.46

learning approaches and the network proposed in [26] in

the experimental study. Tab. II and Tab. III show the general

performance metrics of all models using the same datasets

for training and testing.

Because the HK dataset presents well-balanced NLOS

observations compared to the AC dataset, as shown in Tab. I,

all models can achieve fair performance for both LOS and

NLOS classifications. Among all, the classical machine-

learning models also present high precision and recall ratios

and slightly outperform the model introduced in [26]. Our

implementation of the model [26] can reproduce similar

performance metrics and shows higher precision due to

different training protocols. Compared to [26], our proposed

model with the attention mechanism outperforms all other

models and presents both high precision and recall ratios.

We employ the same training and testing configurations

using the AC dataset that contains major LOS observations.

The performance metrics are shown in Tab. III. In contrast

to the LOS observations, which can be classified with high

accuracy and recall ratios, the performance for the NLOS

classification of all models degrades dramatically. Classical

models like SVM are more sensitive to imbalanced datasets

than DL models. This has also been discussed in [34]. To

validate this conclusion, we retrain the SVM using a modified

AC dataset containing equally sampled NLOS and LOS data,

denoted as SVM∗. It can be shown from this experiment that

the SVM trained with a balanced dataset shows improved

performance compared to other models. On the contrary, DL

models present expected learning performance even when

trained on unbalanced datasets.

2) Data Out-Of-Distribution: Furthermore, we conducted

the experiment to evaluate the performance of pre-trained

models on data out-of-distribution. As the HK dataset con-

tains a fair distribution of the NLOS and LOS observations,

we train all models using the HK dataset and test them

with the AC dataset. The results are shown in Tab. IV. In

TABLE IV: Cross-Dataset Performance Metrics: The models

are trained using the HK dataset and tested with the AC

dataset.

Model Precision Recall F1-Score Acc.

SVM
LOS 0.88 0.82 0.85

0.77
NLOS 0.42 0.54 0.47

XGboost
LOS 0.87 0.74 0.80

0.70
NLOS 0.32 0.54 0.40

DL [26]
LOS 0.86 0.81 0.84

0.74
NLOS 0.35 0.45 0.39

DL (ours)
LOS 0.89 0.79 0.84

0.75
NLOS 0.40 0.60 0.48

this experiment, the SVM and the proposed DL slightly

outperform other models and show similar performance

compared to each other. However, all models cannot show

fair performance in the NLOS classification compared to

Tab. III, where the classification precision and especially the

recall ratio are more elevated.

Discussion: For the NLOS classification task, we show

that all learning-based models perform well by training with

a well-balanced dataset. Even classical models present both

high-precision and recall ratios. One possible reason for

this result is that these models fit overwhelmingly on some

features, which are highly related to NLOS receptions. In

contrast, the contextual features that indirectly infer GNSS

faults are discounted. If the classical models are inferred with

data out-of-distribution, the recall ratio drops dramatically.

Thus, we expect that the DL networks can present more

generalized models. When comparing the DL models, our

network is optimized with an attention mechanism that effec-

tively captures the spatial and temporal information from the

GNSS observations, showing better performance. However,

the proposed method presents higher model complexity,

which requires a more thorough training procedure and

penalizes runtime efficiency. Considering the dataset quality,

we emphasize the importance of label balance in the datasets,

which plays a vital role in the performance of learning-

based methods. We also show the performance degradation

of all models while testing using data out-of-distribution.

One probable reason can be the inherent quantity difference

between the two datasets. For instance, we calculate the

maximum, minimum, and average C/N0 in two datasets

used for training, shown in Tab. V. Suppose that the model

has been pre-trained using a dataset with data bias. In that

case, the model will present a distribution shift, leading to

performance degradation, as discussed in [35].

TABLE V: Analysis of C/N0 in Two Datasets.

Dataset
max. C/N0

dB-Hz

min. C/N0

dB-Hz

avg. C/N0

dB-Hz

HK [26] 49.0 7.0 34.0

AC 57.0 22.0 49.0

B. Performance of Pseudorange Error Prediction

We only evaluated the baseline DL models in the pseu-

dorange error prediction task. The predicted pseudorange
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Fig. 4: Predicted and ground-truth pseudorange errors with

the model [26] and our network.

errors and ground-truth are illustrated in Fig. 4, presenting a

qualitative performance view. Compared to positive pseudo-

range errors, both models do not perform well in predicting

negative and large pseudorange errors, which have a non-

negligible impact on consistent state estimation. The average

prediction error when testing the proposed model amounts to

5.68m, which is lower than 6.53m from the model in [26].

Discussion: Even though the proposed network presents a

higher prediction accuracy, we indicate that the current pre-

trained DL models are not able to infer plausible pseudorange

error predictions. Because there are multiple interference

sources for the pseudorange, faulty pseudoranges present

highly complex noise distributions. Thus, the most probable

reason is the insufficient data samples of faulty pseudoranges

with large errors. This could be improved if the network

structure for the regression task is further optimized and more

faulty GNSS observations can be sampled for training.

C. Ablation Studies

Besides general performance metrics, we propose ablation

studies on feature importance and different components of

our DL model.

1) Feature Importance: Although the classical models

can achieve the same high accuracy as the DL models

when comparing the results in Tab. II and Tab. III, the DL

models show better generalization considering unbalanced

or unseen data. One reason to support this hypothesis can

be speculated with the feature permutation importance, as

shown in Fig. 5. While classical models significantly rely

on a few features, such as elevation angle and C/N0, DL

models tend to rate all features equally. This behavior should

be expected in this learning problem because features such

as azimuth angle and the Root-Sum-Squares (RSS) provide

crucial contextual information about signal blockage in urban
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Fig. 5: Feature Permutation Importance of different models.

TABLE VI: Performance metrics during ablation studies of

the proposed method.

Model Precision Recall F1-Score Acc.

w/o Att. Mecha.
LOS 0.83 0.91 0.87

0.82
NLOS 0.76 0.63 0.69

w/o BiLSTM
LOS 0.81 0.91 0.86

0.80
NLOS 0.76 0.57 0.65

areas. A fair weighting of all features can contribute more to

model generalization and, thus, avoid the overfitting effect.

2) Model Components: To prove our hypothesis in the

network design, we evaluated different components of our

model and discuss the effect of integrating the attention

mechanism and the Bi-LSTM network. For this experiment,

the HK dataset and identical training settings as in Tab. II

were employed to propose the results in Tab. VI.

As introduced in Sec. III-B, handling spatial information

using the attention mechanism benefits both model precision

and recall ratio for the NLOS classification, even when the

dataset contains more LOS observations. Replacing the Bi-

LSTM with a normal LSTM network penalizes the recall

ratio for NLOS detection. This phenomenon confirms the

superiority of the Bi-LSTM, as introduced in [36], that

the Bi-LSTM shows a large model capacity by preserving

information from both the past and future, especially when

contextual information is non-negligible.

D. Vehicle Localization with GNSS Fault Exclusion

In this experiment, we employ the pre-trained models

to infer the NLOS receptions of GPS-L1 and Galileo-E1

observations obtained using a NovAtel PwrPak7 receiver in

a measurement campaign in DÈusseldorf. The GNSS observa-

tions are not used for training and, thus, present data out-of-

distribution. By employing the pre-trained model using HK

and AC datasets, the predicted ratio of NLOS observations

of each model is shown in Tab.,VII.

We integrate the NLOS detections of all models in a graph-

optimization-based state estimation algorithm that fuses the

GNSS pseudorange and Doppler shift with IMU measure-
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Fig. 6: Vehicle Localization in Urban Area in DÈusseldorf with NLOS Exclusion. The GNSS Positioning-Velocity-Timing

(PVT) solution is shown in blue. a) presents the estimated trajectory without NLOS exclusion and the solution by fusing

GNSS observations and lidar odometry in a tight coupling. b) and c) illustrate the estimated trajectories with NLOS exclusion

using different learning models.

TABLE VII: Result of NLOS classification with data out-of-

distribution.

Model
R̂LOS

%

R̂NLOS

%

SVM 64.83 35.17

XGBoost 58.68 41.32

DL [26] 76.74 23.26

DL (ours) 74.76 25.24

ments in a tight coupling [31]. Here, we consider the dual-

constellation of GPS and Galileo measurements, which are

preprocessed with RTCM correction data. The pseudorange

observations, which are classified as NLOS receptions, are

excluded for integration into the graph.

As shown in Fig. 6 a), the GNSS observations in chal-

lenging environments are strongly corrupted. Thus, the state

estimator integrates observations with inconsistent sensor

measurement models, leading to a divergence in trajectory

estimation. This problem can be alleviated if the NLOS

observations are effectively excluded, illustrated in Fig. 6 c).

Compared to DL models, more NLOS observations are

identified using SVM and XGBoost. This reduces constraints

that are factorized from the GNSS observations in the

optimization problem, leading to dramatic trajectory drifting

and divergence, as shown in Fig.,6 b). Our hypothesis of this

problem can be referred to Sec. IV-C.1. The classical models

generally count on a few features. They are not capable

of extracting and evaluating high-level features, resulting in

overconfident feature weighting, and thus, proposing more

False-Positive NLOS classifications. The DL models identify

more LOS observations, which contributes to more sensor

observations integrated for state estimation. On this basis,

consistent trajectories are estimated if NLOS observations

can be effectively classified, as demonstrated in Fig.,6 c).

Discussion: In this experiment, our network infers more

NLOS receptions compared to the model in [26]. The ve-

hicle trajectory can be consistently estimated by excluding

the NLOS observations classified with our network, which

indirectly confirms that the proposed network can infer

more true-positive NLOS detections. However, the NLOS

exclusion can improve the consistency of the trajectory

estimation, but accuracy cannot yet be guaranteed. This

result can be associated with the insufficient number of

GNSS observations that survive after the NLOS exclusion in

our measurement campaign. Thus, since the NLOS detector

contributes a majorly to trajectory consistency, integrating

other sensors into the state estimator still presents a feasible

way to improve the precision of estimated trajectories in

challenging environments.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed a transformer-enhanced LSTM

network to detect NLOS receptions and predict pseudorange

errors of GNSS observations. The proposed network was

evaluated with a baseline LSTM network and classical ma-

chine learning models using two datasets from Hong Kong

and Aachen. Besides, we introduced a dataset generation

process using a multi-sensor state estimator. We conducted

experimental studies of the pre-trained models both for data

in-distribution and out-of-distribution. The results show that

the deep-learning-based methods proposed more generalized

models, which present considerable inference performance

for the NLOS classification. Moreover, the DL models are

less prone to overfitting compared to classical machine

learning models. Among all models, the proposed network,

enhanced by the attention mechanism, captures both tem-

poral and spatial information with all satellite observations

as contextual information and has achieved the best perfor-

mance even with data out-of-distribution. Furthermore, our

model shows effective NLOS detection in real-world vehicle

localization, where the consistent trajectory can be estimated.

For future work, more balanced datasets can be utilized to

train the proposed network. And the input tensor can be

extended with other advanced features, such as the Doppler
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rate consistency. We also plan to integrate the proposed

method into our online state estimator for effective NLOS

rejection [31].

ACKNOWLEDGMENTS

We sincerely thank Dr. Li-Ta Hsu, Dr. Guohao Zhang,

Dr. Weisong Wen, and Penghui Xu from the Department

of Aeronautical and Aviation Engineering at Hong Kong

Polytechnic University for their generous data exchange and

scientific discussions. We also thank Robin Taborsky from

the Institute of Automatic Control at the RWTH Aachen Uni-

versity and the public order offices in Aachen and DÈusseldorf

for their support in the measurement campaigns.

REFERENCES

[1] P. Groves, Principles of GNSS, Inertial, and Multisensor Integrated

Navigation Systems, Second Edition. Artech House, 2013.

[2] Y. Feng and J. Wang, ªGPS RTK performance characteristics and
analysis,º Journal of Global Positioning Systems, vol. 7, 06 2008.

[3] N. Zhu, J. Marais, D. BÂetaille, and M. Berbineau, ªGNSS position
integrity in urban environments: A review of literature,º IEEE Trans-

actions on Intelligent Transportation Systems, vol. 19, no. 9, pp. 2762±
2778, 2018.

[4] P. Groves, ªGNSS solutions: Multipath vs. NLOS signals. how does
Non-Line-of-Sight reception differ from multipath interference,º Inside

GNSS (Magazine), vol. 8, pp. 40±42, 12 2013.

[5] L.-T. Hsu, ªAnalysis and modeling GPS NLOS effect in highly
urbanized area,º GPS Solutions, vol. 22, 11 2017.

[6] Z. Zhang, B. Li, Y. Gao, and Y. Shen, ªReal-time carrier phase mul-
tipath detection based on dual-frequency C/N0 data,º GPS Solutions,
vol. 23, 11 2018.

[7] C. Comp and P. Axelrad, ªAdaptive SNR-based carrier phase multipath
mitigation technique,º IEEE Transactions on Aerospace and Electronic

Systems, vol. 34, no. 1, pp. 264±276, 1998.

[8] T. Walter and P. Enge, ªWeighted RAIM for precision approach,º in
Proc. 8th International Technical Meeting of the Satellite Division of

The Institute of Navigation (ION GPS 1995), Sept. 24, 1995.

[9] W. Wen, T. Pfeifer, X. Bai, and L.-T. Hsu, ªFactor graph optimization
for GNSS/INS integration: A comparison with the extended Kalman
filter,º NAVIGATION, vol. 68, no. 2, pp. 315±331, 2021.

[10] H. Zhang, X. Xia, M. Nitsch, and D. Abel, ªContinuous-Time factor
graph optimization for trajectory smoothness of GNSS/INS naviga-
tion in temporarily gnss-denied environments,º IEEE Robotics and

Automation Letters, vol. 7, no. 4, pp. 9115±9122, 2022.

[11] W. Wen, G. Zhang, and L.-T. Hsu, ªGNSS outlier mitigation via grad-
uated non-convexity factor graph optimization,º IEEE Transactions on

Vehicular Technology, vol. 71, no. 1, pp. 297±310, 2022.

[12] S. Xin, J. Geng, G. Zhang, H.-F. Ng, J. Guo, and L.-T. Hsu, ª3D-
mapping-aided PPP-RTK aiming at deep urban canyons,º Journal of

Geodesy, vol. 96, 2022.

[13] H.-F. Ng, G. Zhang, Y. Luo, and L.-T. Hsu, ªUrban positioning:
3D mapping-aided GNSS using dual-frequency pseudorange measure-
ments from smartphones,º NAVIGATION, vol. 68, no. 4, pp. 727±749.

[14] H.-F. Ng, L.-T. Hsu, M. J. L. Lee, J. Feng, T. Naeimi, M. Beheshti,
and J.-R. Rizzo, ªReal-time loosely coupled 3DMA GNSS/Doppler
measurements integration using a graph optimization and its perfor-
mance assessments in urban canyons of new york,º Sensors, vol. 22,
no. 17, 2022.

[15] X. Bai, W. Wen, and L.-T. Hsu, ªUsing sky-pointing fish-eye camera
and LiDAR to aid GNSS single-point positioning in urban canyons,º
IET Intelligent Transport Systems, vol. 14, no. 8, pp. 908±914, 2020.

[16] M. J. L. Lee, S. Lee, H.-F. Ng, and L.-T. Hsu, ªSkymask matching
aided positioning using sky-pointing fisheye camera and 3D city
models in urban canyons,º Sensors, vol. 20, no. 17, 2020.

[17] X. Liu, W. Wen, F. Huang, H. Gao, Y. Wang, and L.-T. Hsu,
ª3D LiDAR aided GNSS NLOS mitigation for reliable GNSS-
RTK positioning in urban canyons,º 2022. [Online]. Available:
https://arxiv.org/abs/2212.05477

[18] X. Liu, W. Wen, and L.-T. Hsu, ª3D LiDAR aided GNSS real-time
kinematic positioning via coarse-to-fine batch optimization for high
accuracy mapping in dense urban canyons,º Proc. of the 35th Inter-

national Technical Meeting of the Satellite Division of The Institute of

Navigation (ION GNSS+ 2022), 2022.
[19] L.-T. Hsu, ªWhat are the roles of artificial intelligence and machine

learning in GNSS positioning?º Inside GNSS, pp. 20±27, 2020.
[20] R. Sun, L.-T. Hsu, D. Xue, G. Zhang, and W. Y. Ochieng, ªGPS signal

reception classification using adaptive neuro-fuzzy inference system,º
The Journal of Navigation, vol. 72, no. 3, p. 685±701, 2019.

[21] L.-T. Hsu, ªGNSS multipath detection using a machine learning
approach,º in 2017 IEEE 20th International Conference on Intelligent

Transportation Systems (ITSC), 2017, pp. 1±6.
[22] T. Suzuki and Y. Amano, ªNLOS multipath classification of GNSS

signal correlation output using machine learning,º Sensors, vol. 21,
no. 7, 2021.

[23] Y. Quan, L. Lau, G. W. Roberts, X. Meng, and C. Zhang, ªConvolu-
tional neural network based multipath detection method for static and
kinematic gps high precision positioning,º Remote Sensing, vol. 10,
no. 12, 2018.

[24] R. Zawislak, M. Greiff, K. Kim, K. Berntorp, S. Di Cairano, M. Kon-
ishi, K. Parsons, P. V. Orlik, and Y. Sato, ªGNSS multipath detection
aided by unsupervised domain adaptation,º Proc. of the 35th Interna-

tional Technical Meeting of the Satellite Division of The Institute of

Navigation (ION GNSS+ 2022), pp. 2127±2137, 2022.
[25] A. Siemuri, K. Selvan, H. Kuusniemi, P. Valisuo, and M. S. Elmusrati,

ªA systematic review of machine learning techniques for GNSS use
cases,º IEEE Transactions on Aerospace and Electronic Systems,
vol. 58, no. 6, pp. 5043±5077, 2022.

[26] G. Zhang, P. Xu, H. Xu, and L.-T. Hsu, ªPrediction on the urban
GNSS measurement uncertainty based on deep learning networks with
long short-term memory,º IEEE Sensors Journal, vol. 21, no. 18, pp.
20 563±20 577, 2021.

[27] X. Bai, W. Wen, G. Zhang, H.-F. Ng, and L.-T. Hsu, ªGNSS outliers
mitigation in urban areas using sparse estimation based on factor
graph optimization,º in 2022 IEEE 25th International Conference on

Intelligent Transportation Systems (ITSC), 2022, pp. 197±202.
[28] B. Lim, S. O. Arık, N. Loeff, and T. Pfister, ªTemporal fusion

transformers for interpretable multi-horizon time series forecasting,º
International Journal of Forecasting, vol. 37, no. 4, pp. 1748±1764,
2021.

[29] Y. Li, Z. Zhu, D. Kong, H. Han, and Y. Zhao, ªEA-LSTM: Evolution-
ary attention-based lstm for time series prediction,º Knowledge-Based

Systems, vol. 181, p. 104785, 2019.
[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.

Gomez, L. u. Kaiser, and I. Polosukhin, ªAttention is all you need,º in
Advances in Neural Information Processing Systems, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017.

[31] H. Zhang, C.-C. Chen, H. Vallery, and T. D. Barfoot, ªGNSS/multi-
sensor fusion using continuous-time factor graph optimization for
robust localization,º 2023. [Online]. Available: https://arxiv.org/abs/
2309.11134

[32] M. Goode, S. Edwards, and P. Moore, ªTime correlation in GNSS
precise point positioning,º Proc. of the 26th International Technical

Meeting of the Satellite Division of The Institute of Navigation (ION

GNSS+ 2013), pp. 1207±1214, 9 2013.
[33] D. P. Kingma and J. Ba, ªAdam: A method for stochastic optimiza-

tion,º CoRR, vol. abs/1412.6980, 2014.
[34] R. Batuwita and V. Palade, Class Imbalance Learning Methods for

Support Vector Machines. John Wiley & Sons, Ltd, 2013, ch. 5, pp.
83±99.

[35] O. Wiles, S. Gowal, F. Stimberg, S.-A. Rebuffi, I. Ktena, K. Di Dvi-
jotham, and A. T. Cemgil, ªA fine-grained analysis on distribution
shift,º in International Conference of Learning Representations, 2022.

[36] Y.-L. He, L. Chen, Y. Gao, J.-H. Ma, Y. Xu, and Q.-X. Zhu, ªNovel
double-layer bidirectional LSTM network with improved attention
mechanism for predicting energy consumption,º ISA Transactions, vol.
127, pp. 350±360, 2022.

917

Authorized licensed use limited to: TU Delft Library. Downloaded on March 21,2024 at 14:39:38 UTC from IEEE Xplore.  Restrictions apply. 


