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A B S T R A C T

Electric demand and renewable power are highly variable, and the solution of a planning model relies on
capturing this variability. This paper proposes a hybrid multi-area method that effectively captures both
the intraday and interday chronology of real data considering extreme values, using a limited number
of representative days, and time points within each day. An optimization-based representative extraction
method is proposed to improve intraday chronology capturing. It ensures higher precision in preserving
data chronology and extreme values than hierarchical clustering methods. The proposed method is based
on a piecewise linear demand and supply representation, which reduces approximation errors compared to
the traditional piecewise constant formulation. Additionally, sequentially linked day blocks with identical
representatives, created through a mapping process, are employed for interday chronology capturing. To
evaluate the efficiency of the proposed method, a comprehensive expansion co-planning model is developed,
including transmission lines, energy storage systems, and wind farms.
1. Introduction

In modern power systems, capturing variability in electrical load
and renewable energy source (RES) outputs during operational periods
is vital for effective power system planning. However, integrating
short-term operational variability into long-term studies presents a sub-
stantial challenge. Attempting to account for every hourly time period
across multiple years results in large intractable problems. Therefore, to
accurately represent the variability in load and RES output power, the
extraction of suitable representative time periods becomes necessary.
Commonly employed in the literature [1–4], extracting representative
days (RDs) using clustering algorithms has been a prevailing method.
These RDs, each spanning 24 h, must faithfully maintain the chronology
and extreme values of the underlying time series. Notably, when long-
term energy storage systems (ESSs) are involved, interday chronology
preservation becomes essential [1].

Past research, such as [2], employed hierarchical clustering to ex-
tract typical RDs for weekends, weekdays, and holidays in each season.
Spectral clustering, as presented in [3], was utilized for RD extraction
by considering net load and the ramp of net load duration curves.
However, both approaches lacked consideration for interday chronol-
ogy and capturing extreme values. The study by [4] introduced an RD
selection method focused on capturing extreme operating conditions

✩ This work is part of the project Heuristic Efficient Proxy-based Planning of Integrated Energy Systems (HEPPIE), funded by Réseau de Transport d’Électricité
(RTE), France.
∗ Corresponding author.
E-mail addresses: m.moradisepahvand@tudelft.nl (M. Moradi-Sepahvand), s.h.tindemans@tudelft.nl (S.H. Tindemans).

for power system planning while disregarding interday chronology.
Additionally, [5] employed a time series aggregation (TSA) method,
relying on system state extraction, to maintain chronological data
sequence while disregarding extreme values. Notably, the considerable
number of sequential hourly system states in [5] does not significantly
decrease the problem complexity [6].

Efforts to capture data chronology introduced the chronological
time period clustering (CTPC) method in [7]. In addition, this method’s
inability to preserve extreme values was addressed and improved in [8].
However, CTPC-based methods remained inadequate for long-term ESS
cycle modeling [1]. To address these challenges, [1] developed a hybrid
clustering-based algorithm. It effectively maintained chronology and
extreme values by introducing sequentially linked day blocks (SLDs) for
long-term ESS modeling. According to comprehensive reviews of TSA
approaches presented in [6,9], many papers employed RDs with 24-
hour periods, applying the same data patterns for all system buses [1–
5,7,8]. Despite this, further complexity reduction can be achieved by
extracting appropriate representative hours (RHs) or time points (RTPs)
within each RD. The complexity challenge is highlighted by the fact
that power systems are diverse, exhibiting distinct load and RES gener-
ation patterns across multiple areas. Consequently, adopting identical
load and RES generation patterns for all buses yields unrealistic results.
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Conventional power system optimal power flow (OPF) models im-
plicitly utilize piecewise constant (PWC) formulations, describing in-
jections and loads with average power levels for a time interval (effec-
tively energy). However, PWC models tend to overestimate flexibility,
as they inaccurately model ramping and reserves [10]. In contrast,
piecewise linear (PWL) OPF formulations (also called ‘power-based’)
offer improved operational flexibility by more accurately represent-
ing instantaneous power trajectories [11,12]. In [10], a power-based
(i.e., PWL) economic dispatch model is introduced, and [12] presents a
security-constrained unit commitment power-based formulation, both
offering superior accuracy compared to traditional energy-based mod-
els. Similarly, the power-based generation expansion planning model
in [11] demonstrates enhanced accuracy in representing flexibility
requirements while considering short-term ESSs. However, this model
neglects long-term ESS and multi-area data considerations, as well as
inter-period chronology and the preservation of extreme values.

To tackle these limitations, this paper introduces a multi-area
method that effectively captures intraday and interday chronology,
while considering extreme values. The proposed method achieves this
using a limited number of RDs and RTPs within each RD, as well as an
adaptive optimization-based procedure to improve intraday chronol-
ogy and extreme values capturing by allocating RTPs across RDs in
accordance with the complexity of each day. Furthermore, in order
to capture the interday chronology necessary for modeling long-term
ESSs, the proposed method builds on the ERD methodology [6] in com-
bination with the SLD process to merge adjacent days introduced in [1].
We further enhance our method by transforming the problem formula-
tion from a traditional PWC to a PWL formulation. This enhancement
contributes to improved modeling accuracy by better representing op-
erational flexibility. To validate the proposed method effectiveness, an
expansion co-planning model is developed that includes transmission
lines, both short (battery) and long-term (hydropower pumped) ESSs,
and wind farms. In what follows, the main contributions are outlined:

• Proposing an optimization-based PWL RTP extraction method to
improve intraday chronology and extreme value capturing by
extracting both equal and unequal numbers of RTPs within each
RD.

• Improving generation cost modeling for thermal units within the
PWL framework.

• Developing a multi-area PWL-adapted clustering-based algorithm
for extreme-value sensitive RD extraction.

2. Reduction of days and time points

2.1. Piecewise linear model

In this paper, we use PWL OPF formulations in the proposed co-
planning model. This offers improved modeling of ramping and spin-
ning reserve in comparison with traditional PWC models. More impor-
tantly, it is anticipated that these benefits grow as the model represen-
tation becomes increasingly coarse-grained, i.e., when fewer RTPs are
used.

The shift from PWC to PWL necessitates a careful description of time
in an optimization model. In the PWC representation, measurements
refer to an interval of time, whereas in the PWL representation, values
refer to an instant in time.

In the following, the index 𝑡 is an integer time coordinate that
refers to a point in time, and a pair (𝑡 − 1, 𝑡) refers to a time interval.
To give a specific example of the PWL interpretation, snapshot power
measurements 𝑃𝑡 can be thought to represent a continuous function of
𝑡′:

𝑃 (𝑡′) = 𝑃𝑡 + (𝑡′ − 𝑡)(𝑃𝑡+1 − 𝑃𝑡) for 𝑡′ ∈ [𝑡, 𝑡 + 1] (1)

he energy consumed/produced during the interval [𝑡, 𝑡 + 1] is

(𝑃𝑡, 𝑃𝑡+1) =
1
2𝛥𝑡(𝑃𝑡 + 𝑃𝑡+1) (2)
2

where 𝛥𝑡 is the (real) time between time points indexed by 𝑡 and 𝑡+ 1.
2.2. Representative days

In this paper, the extreme-value sensitive method in [1] is developed
as a multi-area clustering-based algorithm to select RDs. Input data
consisting of hourly measurements of multiple features (wind, load)
in multiple areas, was first divided into daily sequences consisting of
25 hourly measurements (with midnight being represented in both
adjacent days). Euclidean distance between days (incl. all features and
areas) was used to hierarchically cluster days until the target number
was reached. By default, days during which one area’s maximum
net load (load minus maximum available wind capacity) occurs, are
marked as extreme days. These days are preserved, to improve planning
for system adequacy.

After extracting RDs, the SLDs are created through a mapping
process according to [1]. The outputs of the developed RD extraction
method are: sets of unordered RDs, i.e., , and ordered SLDs, i.e., ,
the weight of each RD 𝑑, i.e., 𝜔𝑑 , the association matrix 𝐷𝑠𝑑,𝑑 between
RD 𝑑 and SLD 𝑠𝑑, the number 𝑛𝐵𝑠𝑑 of RD repetitions within an SLD 𝑠𝑑,
and instant load and wind representative factors in each area 𝑎, RD 𝑑
and time 𝑡, i.e., 𝐹𝐿𝑎,𝑑,𝑡 and 𝐹𝑊𝑎,𝑑,𝑡.

2.3. Sparse day representation

In the PWL modeling framework, a representative day is initially
represented by 25 hourly time points (midnight to midnight). In this
section, we describe an optimization-based method to reduce this num-
ber with minimum loss of modeling accuracy. Two variations of the
method are proposed: one in which a specified number of time points is
extracted from a single RD, and another in which a total number of time
points is specified for all RDs. The latter makes it possible to extract
unequal numbers of RTPs within each RD, allowing for the extraction
of more RTPs from RDs with higher hourly variation. The optimization
for a single day is given by

𝑂
(

𝑦𝑅𝐷𝑎,𝑡,𝑓 , �̄�
)

= min
𝑍𝑎,𝑡,𝑓 ,𝐼𝑡 ,𝐸𝑅+,−

𝑎,𝑡,𝑓

∑

𝑎,𝑡,𝑓
𝐸𝑅+

𝑎,𝑡,𝑓 + 𝐸𝑅−
𝑎,𝑡,𝑓 (3a)

𝐸𝑅+
𝑎,𝑡,𝑓 − 𝐸𝑅−

𝑎,𝑡,𝑓 = 𝑦𝑅𝐷𝑎,𝑡,𝑓 −𝑍𝑎,𝑡,𝑓 ∀𝑎, 𝑡, 𝑓 (3b)

𝐸𝑅+
𝑎,𝑡,𝑓 ≥ 0, 𝐸𝑅−

𝑎,𝑡,𝑓 ≥ 0, ∀𝑎, 𝑡, 𝑓 (3c)

𝐼𝑡 ∈ {0, 1} ∀𝑡 (3d)
∑

𝑡
𝐼𝑡 = �̄�, 𝐼0 = 𝐼24 = 1 (3e)

𝑍𝑎,𝑡,𝑓 ≤ 𝑦𝑅𝐷𝑎,𝑡,𝑓 +𝑀
(

1 − 𝐼𝑡
)

∀𝑎, 𝑡, 𝑓 (3f)

𝑍𝑎,𝑡,𝑓 ≥ 𝑦𝑅𝐷𝑎,𝑡,𝑓 −𝑀
(

1 − 𝐼𝑡
)

∀𝑎, 𝑡, 𝑓 (3g)

𝑍𝑎,𝑡,𝑓 ≤ 1∕2
(

𝑍𝑎,𝑡−1,𝑓 +𝑍𝑎,𝑡+1,𝑓
)

+𝑀𝐼𝑡 ∀𝑎, 𝑡, 𝑓 (3h)

𝑍𝑎,𝑡,𝑓 ≥ 1∕2
(

𝑍𝑎,𝑡−1,𝑓 +𝑍𝑎,𝑡+1,𝑓
)

−𝑀𝐼𝑡 ∀𝑎, 𝑡, 𝑓 (3i)

Here 𝑎, 𝑡, and 𝑓 are indices of area, time points, and feature vectors.
𝑦𝑅𝐷𝑎,𝑡,𝑓 are the values of the relevant feature vector (load, wind) for the
given RD 𝑑. For 𝑓 = wind, 𝑦𝑅𝐷𝑎,𝑡,𝑓 = 𝐹𝑊𝑎,𝑑,𝑡; for 𝑓 = load, 𝑦𝑅𝐷𝑎,𝑡,𝑓 = 𝐹𝐿𝑎,𝑑,𝑡.
The objective (3a) is to minimize the integrated absolute error between
𝑦𝑅𝐷𝑎,𝑡,𝑓 and its approximation 𝑍𝑎,𝑡,𝑓 , summed over all areas, time points,
and features. Positive and negative deviations are accumulated in
𝐸𝑅+

𝑎,𝑡,𝑓 and 𝐸𝑅−
𝑎,𝑡,𝑓 , respectively ((3b)–(3c)). The sparse representation

is constructed by selecting �̄� time points using binary variables 𝐼𝑡, where
the first and last time of the day are always selected (3e). Constraints
(3f)–(3g) indicate that if a time point is selected (i.e., 𝐼𝑡 = 1), 𝑍𝑎,𝑡,𝑓 takes
the value of 𝑦𝑅𝐷𝑎,𝑡,𝑓 (a big-𝑀 formulation is used). Otherwise, it takes the
average of the neighboring values ((3h)–(3i); this is not required for
𝑡 = 0 and 𝑡 = 24).

The algorithm to balance RTPs across RDs minimizes the maximum
error across RDs using a greedy algorithm. A flowchart for the algo-
rithm is depicted in Fig. 1. First, a minimum number of RTPs (𝑟𝑑 = �̄�𝑚𝑖𝑛)

is assigned to each RD. After solving the optimization (3) for all RDs,
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Fig. 1. Proposed optimization-based algorithm to extract RTPs from each RD.

he day with the largest mismatch is identified and the number of RTPs
or that day is increased by one. The algorithm continues until the total
umber of RTPs is equal to the total number of RDs (||) times the

desired average number of RTPs (𝑟𝑎𝑣𝑔) per RD.
After termination of the RTP selection algorithm, only the 𝑟𝑑 se-

lected RTPs within each day are extracted for further use. Let 𝐽𝑑,𝑘 be
he index (hour) of the 𝑘th selected RTP on day 𝑑, with 𝐽𝑑,0 = 0 and
𝑑,𝑟𝑑−1 = 24. For consistency of notation between models, we let index
refer to the selected RTPs, so e.g., 𝐹𝑊𝑎,𝑑,𝑡 ← 𝐹𝑊𝑎,𝑑,𝐽𝑑,𝑡 . Moreover, to
ccount for unequal time steps, we define

𝑑,𝑡 = 𝐽𝑑,𝑡+1 − 𝐽𝑑,𝑡, ∀𝑑, 𝑡 ∈ {0,… , 𝑟𝑑 − 1} (4)

. Co-planning model formulation

This section describes the proposed PWL co-planning model, both in
ts reference form (all days, all time points) and variations with limited
Ds and RTPs.

.1. Model choices and notation

This formulation is based on the notion of areas that consist of one
r more electrical buses (indexed by 𝑏). The allocation of buses to areas
s represented by the matrix 𝑀𝐵 , where 𝑀𝐵

𝑏,𝑎 is 1 if bus 𝑏 is located in
rea 𝑎, and 0 otherwise. Similarly, the assignment of load demand 𝑙,
hermal generators 𝑔, wind power generators 𝑤 and storage systems 𝑠
o buses 𝑏 is given by matrices 𝑀𝐿, 𝑀𝐺, 𝑀𝑊 and 𝑀𝑆 , respectively,
ith 𝑀𝑋

𝑏,𝑥 indicating the assignment of resource 𝑥 to bus 𝑏.
Iterations or additions over sets are commonplace in optimization

roblems. For notational simplicity, ∀𝑥, where 𝑥 is a relevant index,
s used as shorthand for ∀𝑥 ∈  throughout this section: the relevant
et or tuple is implicit. Indices 𝑏, 𝑎, 𝑙, 𝑔, 𝑤, 𝑠 have corresponding sets
,, ,, and , respectively. Time points 𝑡 are part of the ordered

uple  , and whenever two neighboring time points (e.g., 𝑡 and 𝑡 + 1)
re referenced, ∀𝑡 only refers to those 𝑡 for which both are valid
ndices. Days 𝑑 may be part of an ordered tuple (the reference case)
r unordered set (RDs) . Indices 𝑠𝑑 are elements of the ordered set
.

Wind power is the only renewable resource in the present formu-
ation, but other variable power resources such as solar PV can be
dded in the same way. The ESSs are implemented as long-term units
hat require state variables to track an annual state of charge. More
enerally, the presentation in this section prioritizes clarity and com-
actness over the maximum efficiency of resulting equations. Generic
quations for investment and operation are presented in Sections 3.2
nd 3.3, followed by three specializations: reference model, RD model,
nd RDTP (RD and RTP) model. Some redundant equations could be
emoved for each of the resulting models.
3

.2. Investment options

Investment options in the proposed co-planning model are new
ransmission lines, ESSs, and wind farms. The corresponding total cost
f investment (CI) is given by

𝐼 =
∑

𝑛𝑙

[

𝐶𝐿𝑛𝑙𝐿𝐿𝑛𝑙𝑌𝑛𝑙
]

+
∑

𝑠

[

𝐶𝐸𝑠𝐸
𝑐𝑎𝑝
𝑠 + 𝐶𝐶𝑠𝐶

𝑐𝑎𝑝
𝑠

]

+
∑

𝑤

[

𝐶𝑊𝑤𝑊𝑤
]

(5)

All investment costs are converted to equivalent annual costs using
the capital recovery factor of each investment option [13]. 𝐶𝐿𝑛𝑙 , 𝐿𝐿𝑛𝑙
and 𝑌𝑛𝑙 are investment cost ($/km), length (km), and construction
binary variable of new lines, respectively. 𝐸𝑐𝑎𝑝

𝑠 , 𝐶𝑐𝑎𝑝
𝑠 , 𝐶𝐸𝑠 and 𝐶𝐶𝑠 are

ESS energy and power capacity variables and related investment costs,
respectively. 𝑊𝑤 and 𝐶𝑊𝑤 are the power capacity of the installed wind
farm and its investment cost. The investment constraints are given by

𝐸𝑐𝑎𝑝
𝑠 ≤ 𝐸𝑚𝑎𝑥

𝑠 , 𝐶𝑐𝑎𝑝
𝑠 ≤ 𝐶𝑚𝑎𝑥

𝑠 , 𝐶𝑐𝑎𝑝
𝑠 𝜙𝑠 ≤ 𝐸𝑐𝑎𝑝

𝑠 ∀𝑠 (6a)

0 ≤𝑊𝑤 ≤ 𝑊 𝑚𝑎𝑥
𝑤 ∀𝑤 (6b)

25%
∑

𝑙
𝐿𝑙 ≤

∑

𝑤
𝑊𝑤 (6c)

here, 𝐿𝑙 is the peak load in each load bus. Energy and power capacity
along with the energy-to-power ratio for each ESS is bounded in (6a).
𝜙𝑠(h) is the energy (MWh) to power (MW) ratio for each ESS. The
capacity of wind farms, considering a renewable portfolio standard
policy is limited by (6b) and (6c).

3.3. Operational model

In this subsection objective function and all related constraints for
modeling operational details in reference form and variations with RDs
and RTPs are presented.

3.3.1. Operational costs
The cost of operation for the day 𝑑 is given by

𝐶𝑂𝑑 =
∑

𝑡

[

∑

𝑔
𝐶𝐺𝑔,𝑑,𝑡 +

∑

𝑙
𝐶𝑆𝑙,𝑑,𝑡

]

(7)

where 𝐶𝐺𝑔,𝑑,𝑡 and 𝐶𝑆𝑙,𝑑,𝑡 are the cost of thermal generation and in-
voluntary load shedding in the interval [𝑡, 𝑡 + 1), respectively. Note
that we do not consider fixed operational costs in the current model,
but relevant terms can readily be added. The cost of load shedding is
modeled as

𝐶𝑆𝑙,𝑑,𝑡 =
𝑉 𝑂𝐿𝐿

2
(𝑃𝑆𝑙,𝑑,𝑡 + 𝑃𝑆𝑙,𝑑,𝑡+1)𝛥𝑑,𝑡 ∀𝑙, 𝑑, 𝑡 (8)

here 𝑉 𝑂𝐿𝐿 is the value of lost and 𝑃𝑆𝑙,𝑑,𝑡 is the lost load. In this pa-
er, thermal generation cost is modeled with a quadratic instantaneous
ost curve

𝑔𝑔(𝑃 ) =
1
2𝑎𝑔𝑃

2 + 𝑏𝑔𝑃

This quadratic cost function, combined with the generic PWL curve (1),
results in the following cost for the interval [𝑡, 𝑡 + 1) with duration 𝛥𝑡:

𝑐𝑔𝑔(𝑃𝑡, 𝑃𝑡+1) = 𝛥𝑡 ∫

1

0

[

𝑐𝑔𝑔(𝑃 (𝑡′))
]

d𝑡′

= 𝛥𝑡𝑐𝑔𝑔(
1
2 (𝑃𝑡 + 𝑃𝑡+1)) +

𝑎𝑔𝛥𝑡

24
(𝑃𝑡 − 𝑃𝑡+1)2

here the result is followed by integration and collection of terms. We
pproximate the thermal generation costs 𝐶𝐺𝑔,𝑑,𝑡 by the linear lower
onvex envelope determined by bounding each of the two terms:

𝐶𝐺𝑔,𝑑,𝑡 = 𝐶𝐺(1)
𝑔,𝑑,𝑡 + 𝐶𝐺(2)

𝑔,𝑑,𝑡 ∀𝑔, 𝑑, 𝑡 (9a)

𝐶𝐺(1)
𝑔,𝑑,𝑡 ≥ (𝑎𝑔𝜋𝑔,𝑘 + 𝑏𝑔)

𝑃𝐺𝑔,𝑑,𝑡 + 𝑃𝐺𝑔,𝑑,𝑡+1 − 1𝑎𝑔𝜋
2
𝑔,𝑘
𝛥𝑑,𝑡 2 2
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𝑃

3

p
∑

∑

≤

w
𝐵

3

s

|

|

|

|

|

w
a

∀𝑔, 𝑘, 𝑑, 𝑡 (9b)

𝐶𝐺(2)
𝑔,𝑑,𝑡

𝛥𝑑,𝑡
≥

𝑎𝑔𝜋𝑔,𝑘
12

(𝑃𝐺𝑔,𝑑,𝑡 − 𝑃𝐺𝑔,𝑑,𝑡+1) −
1
24𝑎𝑔𝜋

2
𝑔,𝑘

∀𝑔, 𝑘, 𝑑, 𝑡 (9c)

𝐶𝐺(2)
𝑔,𝑑,𝑡

𝛥𝑑,𝑡
≥ −

𝑎𝑔𝜋𝑔,𝑘
12

(𝑃𝐺𝑔,𝑑,𝑡 − 𝑃𝐺𝑔,𝑑,𝑡+1) −
1
24𝑎𝑔𝜋

2
𝑔,𝑘

∀𝑔, 𝑘, 𝑑, 𝑡 (9d)

𝜋𝑔,𝑘 =
(

𝑘−1
𝐾−1

)

𝑃𝐺𝑚𝑎𝑥
𝑔 ∀𝑔, 𝑘 (9e)

here 𝑘 ∈ (1,… , 𝐾) indexes the tangent lines and ±𝜋𝑔,𝑘 are the power
evels for which the linear constraints (9b)–(9d) are binding. Note that
𝐺𝑔,𝑑,𝑡 is the thermal generator output power.

.3.2. Power balance
The local power balance equations enforce the conservation of

ower in every bus.

𝑙
𝑀𝐿

𝑏,𝑙𝑃𝐿𝑙,𝑑,𝑡 +
∑

𝑠
𝑀𝑆

𝑏,𝑠𝑃𝐶𝑠,𝑑,𝑡 =

𝑔
𝑀𝐺

𝑏,𝑔𝑃𝐺𝑔,𝑑,𝑡 +
∑

𝑤
𝑀𝑊

𝑏,𝑤𝑃𝑊𝑤,𝑑,𝑡 +
∑

𝑠
𝑀𝑆

𝑏,𝑠𝑃𝐷𝑠,𝑑,𝑡

+
∑

𝑙
𝑀𝐿

𝑏,𝑙𝑃𝑆𝑙,𝑑,𝑡 + 𝑃𝑁𝑏,𝑑,𝑡 ∀𝑏, 𝑑, 𝑡 (10)

here, 𝑃𝐿𝑙,𝑑,𝑡 and 𝑃𝑊𝑤,𝑑,𝑡 are bus-specific demand pattern and wind
farm dispatched power. 𝑃𝐶𝑠,𝑑,𝑡 and 𝑃𝐷𝑠,𝑑,𝑡 are charging and discharging
power of each ESS. 𝑃𝑁𝑏,𝑑,𝑡 denotes the power transported to node
𝑏 by the network. The network consists of lines 𝑒𝑙 ∈  that are
present throughout and lines 𝑛𝑙 ∈  that are optionally constructed,
the presence of which is indicated by the binary variable 𝑌𝑛𝑙. The
location and orientation of lines are determined by the directed bus-line
incidence matrices 𝐴𝐸𝐿

𝑏,𝑒𝑙 , 𝐴
𝑁𝐿
𝑏,𝑛𝑙 and the oriented power flows are given

by the variables 𝐹𝐸𝑒𝑙,𝑑,𝑡, 𝐹𝑁𝑛𝑙,𝑑,𝑡. Then, the flows are determined by the
DC power flow equations given by

𝑃𝑁𝑏,𝑑,𝑡 =
∑

𝑒𝑙
𝐴𝐸𝐿
𝑏,𝑒𝑙𝐹𝐸𝑒𝑙,𝑑,𝑡

+
∑

𝑛𝑙
𝐴𝑁𝐿
𝑏,𝑛𝑙𝐹𝑁𝑛𝑙,𝑑,𝑡 ∀𝑏, 𝑑, 𝑡 (11a)

𝐹𝐸𝑒𝑙,𝑑,𝑡 = 𝐵𝑒𝑙
∑

𝑏
𝐴𝐸𝐿
𝑏,𝑒𝑙𝜃𝑏,𝑑,𝑡 ∀𝑒𝑙, 𝑑, 𝑡 (11b)

−𝐹𝐸𝑚𝑎𝑥
𝑒𝑙 ≤ 𝐹𝐸𝑒𝑙,𝑑,𝑡 ≤ 𝐹𝐸𝑚𝑎𝑥

𝑒𝑙 ∀𝑒𝑙, 𝑑, 𝑡 (11c)
−(1 − 𝑌𝑛𝑙)𝑀𝑛𝑙 ≤ 𝐹𝑁𝑛𝑙,𝑑,𝑡 − 𝐵𝑛𝑙

∑

𝑏
𝐴𝑁𝐿
𝑏,𝑛𝑙 𝜃𝑏,𝑑,𝑡

(1 − 𝑌𝑛𝑙)𝑀𝑛𝑙 ∀𝑛𝑙, 𝑑, 𝑡 (11d)

−𝐹𝑁𝑚𝑎𝑥
𝑛𝑙 𝑌𝑛𝑙 ≤ 𝐹𝑁𝑛𝑙,𝑑,𝑡 ≤ 𝐹𝑁𝑚𝑎𝑥

𝑛𝑙 𝑌𝑛𝑙 ∀𝑛𝑙, 𝑑, 𝑡 (11e)

here 𝜃𝑏,𝑑,𝑡 is the voltage phase angle, 𝑀𝑛𝑙 is big-M for each nl, and
𝑒𝑙(𝑛𝑙) is the line susceptance.

.3.3. Generation dispatch and curtailment
Thermal generators are constrained by the power and ramp con-

traints

0 ≤ 𝑃𝑅𝑔,𝑑,𝑡 ∀𝑔, 𝑑, 𝑡 (12a)

𝑃𝑅𝑔,𝑑,𝑡 ≤ 𝑃𝐺𝑔,𝑑,𝑡 ≤ 𝑃𝐺𝑚𝑎𝑥
𝑔 − 𝑃𝑅𝑔,𝑑,𝑡 ∀𝑔, 𝑑, 𝑡 (12b)

𝑃𝐺𝑔,𝑑,𝑡+1 − 𝑃𝐺𝑔,𝑑,𝑡

𝛥𝑑,𝑡

|

|

|

|

|

+
𝑃𝑅𝑔,𝑑,𝑡

𝜏
≤ 𝑅𝑚𝑎𝑥

𝑔 ∀𝑔, 𝑑, 𝑡 (12c)

|

|

|

|

|

𝑃𝐺𝑔,𝑑,𝑡+1 − 𝑃𝐺𝑔,𝑑,𝑡

𝛥𝑑,𝑡

|

|

|

|

|

+
𝑃𝑅𝑔,𝑑,𝑡+1

𝜏
≤ 𝑅𝑚𝑎𝑥

𝑔 ∀𝑔, 𝑑, 𝑡 (12d)

here 𝑃𝑅𝑔,𝑑,𝑡 is the flexible spinning reserve requirement (identical up
nd down) allocated to the generator 𝑔 and 𝜏 < 𝛥 is its delivery time,
4

𝑑,𝑡 f
and 𝑅𝑚𝑎𝑥
𝑔 is the maximum ramp rate (also up and down). Eqs. (12c)–

(12d) reflect the requirement to deliver the reserve contracted at
the start and end of the time period, respectively1. The total ramp
requirement is determined by [1]
∑

𝑔
𝑃𝑅𝑔,𝑑,𝑡 = 3%

∑

𝑙
𝑃𝐿𝑙,𝑑,𝑡 + 5%

∑

𝑤
𝑃𝑊𝑤,𝑑,𝑡, ∀𝑑, 𝑡 (13)

The bus-specific demand patterns in each area and load shedding
possibility are given by

𝑃𝐿𝑙,𝑑,𝑡 =
∑

𝑎,𝑏
𝑀𝐵

𝑏,𝑎𝑀
𝐿
𝑏,𝑙𝐹𝐿𝑎,𝑑,𝑡𝐿𝑙 ∀𝑙, 𝑑, 𝑡 (14a)

𝑃𝑆𝑙,𝑑,𝑡 ≤ 50%𝑃𝐿𝑙,𝑑,𝑡 ∀𝑙, 𝑑, 𝑡 (14b)

here, 𝐹𝐿𝑎,𝑑,𝑡 is instant load representative factors in each area. In con-
straint (14b) instantaneous load shedding is bounded by a percentage
of demand 𝑃𝐿𝑙,𝑑,𝑡. The bus-specific dispatched wind power in each area
is determined by

𝑃𝑊𝑤,𝑑,𝑡 =
∑

𝑎,𝑏
[𝑀𝐵

𝑏,𝑎𝑀
𝑊
𝑏,𝑤𝐹𝑊𝑎,𝑑,𝑡𝑊𝑤] − 𝑃𝑋𝑤,𝑑,𝑡

∀𝑤, 𝑑, 𝑡 (15a)

0 ≤ 𝑃𝑋𝑤,𝑑,𝑡 ≤
∑

𝑎,𝑏
𝑀𝐵

𝑏,𝑎𝑀
𝑊
𝑏,𝑤𝐹𝑊𝑎,𝑑,𝑡𝑊𝑤 ∀𝑤, 𝑑, 𝑡 (15b)

where 𝐹𝑊𝑎,𝑑,𝑡 and 𝑃𝑋𝑤,𝑑,𝑡 represent instant wind representative factors
in each area and wind curtailment.

3.3.4. Energy storage system
Each ESS has grid-side power limit of 𝐶𝑐𝑎𝑝

𝑠 , efficiencies 𝜂𝐶𝑠 (charg-
ing) and 𝜂𝐷𝑠 (discharging) and stored energy limit of 𝐸𝑐𝑎𝑝

𝑠 . The evolution
of stored energy levels is given by

𝐸𝑠,𝑑,𝑡+1 = 𝐸𝑠,𝑑,𝑡 + 𝛥𝑑,𝑡𝜂
𝐶
𝑠
𝑃𝐶𝑠,𝑑,𝑡 + 𝑃𝐶𝑠,𝑑,𝑡+1

2

−
𝛥𝑑,𝑡

𝜂𝐷𝑠

𝑃𝐷𝑠,𝑑,𝑡 + 𝑃𝐷𝑠,𝑑,𝑡+1

2
∀𝑠, 𝑑, 𝑡 (16)

The charge and discharge power of ESS are constrained by

0 ≤𝜂𝐶𝑠 𝑃𝐶𝑠,𝑑,𝑡 ≤ 𝐶𝑐𝑎𝑝
𝑠 ∀𝑠, 𝑑, 𝑡 (17a)

0 ≤ 1
𝜂𝐷𝑠

𝑃𝐷𝑠,𝑑,𝑡 ≤ 𝐶𝑐𝑎𝑝
𝑠 ∀𝑠, 𝑑, 𝑡 (17b)

0 =𝑃𝐶𝑠,𝑑,𝑡 × 𝑃𝐷𝑠,𝑑,𝑡 ∀𝑠, 𝑑, 𝑡 (17c)

Here, the complementarity constraint (17c) ensures that ESS can only
charge or discharge at 𝑡. We point out that in the PWL model, the
complementarity constraint is only strictly enforced at time points 𝑡,
but it is possible for the charging and discharging power to have
(implied) nonzero values in between these time points. As this leads
to a slightly conservative result (due to additional losses), we omit
further constraints that would introduce additional nonlinearities. (17c)
is implemented using binary variables as:

𝜂𝐶𝑠 𝑃𝐶𝑠,𝑑,𝑡 ≤ 𝑈𝑠,𝑑,𝑡𝐶
𝑚𝑎𝑥
𝑠 ∀𝑠, 𝑑, 𝑡 (18a)

1
𝜂𝐷𝑠

𝑃𝐷𝑠,𝑑,𝑡 ≤ (1 − 𝑈𝑠,𝑑,𝑡)𝐶𝑚𝑎𝑥
𝑠 ∀𝑠, 𝑑, 𝑡 (18b)

3.4. Reference model

In the reference model, stored energy levels are limited by

0 ≤ 𝐸𝑠,𝑑,𝑡 ≤ 𝐸𝑐𝑎𝑝
𝑠 ∀𝑠, 𝑑, 𝑡 (19)

Moreover, the 𝑑 indices refer to sequential days in the data set. There-
fore, we impose the following boundary constraints on all variables

1 We note that (12c) differs from the power-based start-of-hour ramping
ormulation proposed in [12].
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𝑋𝑦,𝑑,𝑡 that have indices 𝑑, and 𝑡 (and an 𝑋-specific index 𝑦), to impose
ontinuity between days and between the first and last day:

𝑦,𝑑+1,0 = 𝑋𝑦,𝑑,24 ∀𝑦, 𝑑 (20a)

𝑋𝑦,1,0 = 𝑋𝑦,||,24 ∀𝑦 (20b)

he objective function is to minimize the total planning cost, consisting
f the investment and operational parts.

eference Model:

𝑃𝐶ref = min

[

𝐶𝐼 +
∑

𝑑∈
𝐶𝑂𝑑

]

(21)

𝑠.𝑡 ∶ constraints (5)–(20),
 = (all days, sequentially),
 = (0,… , 24),

𝛥𝑑,𝑡 = 1 hr ∀𝑑, 𝑡

.5. Representative day model

When using RDs, the long-term ESS model must be adapted accord-
ngly. We follow the ERD (Enhanced Representative Days) methodol-
gy [6] with the extension to SLDs proposed in [1]. In this represen-
ation, the variables 𝐸𝑠,𝑑,𝑡 no longer represent the absolute state of the
harge of the ESS, but its change relative to the start of RD 𝑑. We define
ts total change in energy 𝐸𝑡𝑜𝑡

𝑠,𝑑 and its minimum/maximum excursion
during the day as follows:

𝐸𝑡𝑜𝑡
𝑠,𝑑 = 𝐸𝑠,𝑑,24, 𝐸𝑠,𝑑,0 = 0 ∀𝑠, 𝑑 (22a)
𝑙𝑜𝑤
𝑠,𝑑 ≤ 𝐸𝑠,𝑑,𝑡 ≤ 𝐸ℎ𝑖𝑔ℎ

𝑠,𝑑 ∀𝑠, 𝑑, 𝑡 (22b)

In addition, each ESS is assigned a variable 𝐿𝐸𝑠,𝑠𝑑 to track its state
f charge at the beginning (and end) of each SLD. The association of
Ds and SLDs is given by the matrix 𝐷𝑠𝑑,𝑑 , with element values {0, 1}

and the number of RD repetitions within an SLD is 𝑛𝐵𝑠𝑑 . The long-term
stored energy is tracked for every SLD, using the following equations:

𝐿𝐸𝑠,𝑠𝑑+1 = 𝐿𝐸𝑠,𝑠𝑑 + 𝑛𝐵𝑠𝑑
∑

𝑑
𝐷𝑠𝑑,𝑑𝐸

𝑡𝑜𝑡
𝑠,𝑑 ∀𝑠, 𝑠𝑑 (23a)

𝐿𝐸𝑠,1 = 𝐿𝐸𝑠,||

+ 𝑛𝐵
||

∑

𝑑
𝐷

||,𝑑𝐸
𝑡𝑜𝑡
𝑠,𝑑 ∀𝑠 (23b)

0 ≤ 𝐿𝐸𝑠,𝑠𝑑 +
∑

𝑑
𝐷𝑠𝑑,𝑑𝐸

𝑙𝑜𝑤
𝑠,𝑑 ∀𝑠, 𝑠𝑑 (23c)

0 ≤ 𝐿𝐸𝑠,𝑠𝑑+
∑

𝑑
𝐷𝑠𝑑,𝑑 [(𝑛𝐵𝑠𝑑 − 1)𝐸𝑡𝑜𝑡

𝑠,𝑑 + 𝐸𝑙𝑜𝑤
𝑠,𝑑 ] ∀𝑠, 𝑠𝑑 (23d)

𝐸𝑐𝑎𝑝
𝑠 ≥ 𝐿𝐸𝑠,𝑠𝑑 +

∑

𝑑
𝐷𝑠𝑑,𝑑𝐸

ℎ𝑖𝑔ℎ
𝑠,𝑑 ∀𝑠, 𝑠𝑑 (23e)

𝐸𝑐𝑎𝑝
𝑠 ≥ 𝐿𝐸𝑠,𝑠𝑑+

∑

𝑑
𝐷𝑠𝑑,𝑑 [𝐸

ℎ𝑖𝑔ℎ
𝑖,𝑑 + (𝑛𝐵𝑠𝑑 − 1)𝐸𝑡𝑜𝑡

𝑠,𝑑 ] ∀𝑠, 𝑠𝑑 (23f)

ombining all the above constraints results in the following RD model
n PWL representation.

epresentative Day Model (RD):

𝑃𝐶RD = min

[

𝐶𝐼 +
∑

𝑑∈
𝜔𝑑𝐶𝑂𝑑

]

(24)

𝑠.𝑡 ∶ constraints (5)–(18), (22)–(23),
 = (1,… ,# of SLDs),
 = {RDs},
𝜔𝑑 = {weight of each RD}, ∀𝑑

 = (0,… , 24),
5

𝛥𝑑,𝑡 = 1 hr ∀𝑑, 𝑡
.6. Representative day & time point model

Finally, the RDTP model can be constructed from the previously
resented constraints, using a set of RDs and unequal time points
omputed by (3), either using equal or unequal allocation to of RTPs
o RDs. The main difference with the RD model is that the set of time
ndices 𝑑 now depends on the RD 𝑑. This also necessitates updating
22a) to
𝑡𝑜𝑡
𝑠,𝑑 = 𝐸𝑠,𝑑,max(𝑑 ) ∀𝑠, 𝑑 (25)

he final model is then given by:

epresentative Day & Time Point Model (RDTP):

𝑃𝐶RDTP = min

[

𝐶𝐼 +
∑

𝑑∈
𝜔𝑑𝐶𝑂𝑑

]

(26)

𝑠.𝑡 ∶ constraints (5)–(18), (22b), (23), (25),
 = (1,… ,# of SLDs),
 = {RDs},
𝜔𝑑 = {weight of each RD}, ∀𝑑

𝑑 = (0,… , 𝑟𝑑 − 1), ∀𝑑

𝛥𝑑,𝑡 = variable, according to Eq. (4) ∀𝑑, 𝑡

4. Performance analysis

4.1. Study system

The effectiveness of the proposed co-planning model and represen-
tative period extraction methods was evaluated using the IEEE RTS
24-bus test system [14]. We considered seven areas with distinct load
and RES generation patterns based on the Netherlands (buses 9, 11, 15,
16, 26), Belgium (buses 17, 18, 25), France (buses 1, 3, 4, 24), Germany
(buses 6, 10, 12, 13), Denmark (buses 14, 19, 20), Sweden (buses 21,
22, 23), and Switzerland (buses 2, 5, 7, 8). Note that buses 25 and 26
with candidate wind farms are assumed to be expansion buses. All the
data for this test system, including system topology, cost of existing and
new candidate options, required parameters, along with data source
references, are available in [15]. The one-year load and renewable
energy generation data for each area are based on one year of data from
2019. The CPLEX solver in the GAMS environment [16] was employed
to solve the proposed MILP co-planning and optimization-based RTP
extraction problems. Additionally, the multi-area clustering-based RD
extraction algorithm was implemented in Matlab [17], running on a
PC with an Intel Xeon W-2223 CPU 3.60 GHz and 16 GB of RAM.

4.2. Numerical results

The planning problem was solved using different model formula-
tions. First, the reference model Ref-PWL (21) was solved using all
hours and days, with results shown in Table 1. Four new transmission
lines, four short-term ESS, and four long-term ESS, along with six wind
farms were scheduled for installation and the required CPU time was
≈ 67 hours, highlighting the importance of problem reduction.

To facilitate a comparison between PWL and PWC models, an
equivalent PWC reference model was constructed, by reformulating
Eqs. (8), (9a)–(9d), (16) and (20) to use 24 constant power values.
The investment decisions for the reference PWC model were identical,
and the other costs were comparable with the PWL model (within the
optimality gap). However, the advantages of the PWL approach become
evident when approximating the model in reduced space cases with RDs
and RTPs.

Models with representative days and/or time periods were com-

pared to their respective reference models on the basis of investment
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Table 1
Results for the reference model (Ref-PWL)

Cost: TCOa CI TPC

Value (×106$): 2021.4 776.4 2797.8

Planning Option: Transmission ESS (bus) Wind Farm

Line Short-term Long-term (bus)

Location: (7–8), (14–16),
(19–25), (16–26)

2, 3, 16, 25 8, 11, 19, 23 3, 5, 6, 14,
25, 26

Load Shedding
(GWh)

4.92

CPU Time (s): 242,825

a Total Cost of Operation.

Table 2
Error and CPU time comparison between cases RD-noEx & RD.

Case Error (%) CPU Time (s):
Operation Investment Total

𝑅𝐷 − 𝑛𝑜𝐸𝑥 6.214 −5.312 2.908 414
𝑅𝐷 −0.041 0.945 0.234 637

Table 3
Equal and adaptive number of RTPs comparison within each RD.

RD: #of Extracted RTP RD: #of Extracted RTP

Equal: Adaptive: Equal: Adaptive:

𝟏 10 09 𝟏𝟐 10 12
𝟐 10 10 𝟏𝟑 10 11
𝟑 10 10 𝟏𝟒 10 10
𝟒 10 09 𝟏𝟓 10 11
𝟓 10 10 𝟏𝟔 10 09
𝟔 10 10 𝟏𝟕 10 08
𝟕 10 11 𝟏𝟖 10 09
𝟖 10 11 𝟏𝟗 10 09
𝟗 10 11 𝟐𝟎 10 09
𝟏𝟎 10 13 𝟐𝟏 10 09
𝟏𝟏 10 10 TNRTPa 210 210

ATAEb(pu) 1.602 1.578

a Total Number of RTPs,
b Average of Total Absolute Error.

cost, operation cost, and total cost. The error metric used to analyze
the effectiveness of the proposed method is

Error =
𝑓 ∗
𝑐 (𝑣) − 𝑓 ∗

𝑐 (𝑣
∗)

𝑓 ∗
𝑐 (𝑣∗)

. (27)

Here 𝑣∗ represents the decision variables for the reference case, while
𝑣 denotes the fixed decision variables obtained from the reduced space
models. 𝑓 ∗

𝑐 signifies the desired cost type, assessed across all days and
hours (non-reduced).

In cases RD-noEx and RD, the PWL RD model (24) was evaluated
with 21 extracted RDs, ignoring and considering extreme value days,
respectively. The number of resulting SLDs was 271 for RD-noEx,
and 267 for RD. The results in Table 2 illustrate the significance of
capturing extreme value days. The error in total planning cost reduced
dramatically from nearly 3% to 0.23%, resulting from reductions in
investment and operation cost errors. Fig. 2 highlights the ability of the
extreme-day sensitive RD selection process to capture net load peaks.
The use of RDs reduced CPU time by up to 99.7%. For subsequent
results, the extreme day selection was used.

The efficacy of the RDTP model (26) was investigated next. The
benefit of an adaptive allocation of RTPs across RDs can be illustrated
in two other ways. First, as presented in Table 3, after executing the
proposed optimization-based method (3)–(4) to extract 10 RTPs within
each of the 21 extracted RDs, for a total of 210 RTPs, the adaptive
selection of numbers of RTPs resulted in an average total absolute error
6

(i.e., (3a)) of 1.578 pu, compared to a value of 1.602 pu for the case m
Fig. 2. Comparison of original net load and reconstructed net load based on RDs,
for two areas (top and bottom), for one month with hourly resolution. The ability to
capture net load peaks using extreme day preservation is highlighted.

Table 4
Error and CPU time comparison between cases RD-CTPC, RDTP-eq & RDTP-ad.

Case Error (%) CPU Time (s):

Operation Investment Total

𝑅𝐷 − 𝐶𝑇𝑃𝐶 −0.210 2.571 0.562 84
𝑅𝐷𝑇𝑃 − 𝑒𝑞 −0.089 1.712 0.411 97
𝑅𝐷𝑇𝑃 − 𝑎𝑑 −0.075 1.449 0.348 95

Fig. 3. Comparison of extraction of equal and unequal number of RTPs for PWL
models, alongside the CTPC method for PWC models.

where each RD was allocated exactly 10 RTPs. Additionally, Fig. 3
provides an illustrative example, comparing both methods of extracting
equal and unequal numbers of RTPs with the CTPC method, for load
data of area 07 in RD 10. The adaptive method assigned 13 RTPs to this
relatively variable day, allowing it to capture more details. Moreover,
both PWL-based methods are able to better approximate ramps, even
when larger time steps occur between RTPs.

The first case, RD-CTPC, is based on a PWC formulation. 10 repre-
entative time intervals were extracted from each of the 21 extracted
Ds using the CTPC method [7]. Planning errors were calculated using
27) by comparison with the PWC reference model and the obtained
esults are presented in Table 4. A significant reduction in CPU time is
bserved due to the use of RDs.

In cases RDTP-eq and RDTP-ad, the proposed optimization-based
ethod (3a)–(4) was utilized to extract 10 RTPs, with equal and
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Table 5
Results for case RDTP-ad.

Cost:: TCO CI TPC

Value (×106$) 2019.88 787.65 2807.53

Planning Option: Transmission ESS (bus) Wind Farm

Line Short-term Long-term (bus)

Location: (7–8), (14–16),
(19–25), (16–26)

2, 3, 16, 25 8, 11, 19, 23 3, 5, 6, 14,
25, 26

Load Shedding
(GWh)

4.71

CPU Time (s): 95

unequal RTPs within each of the 21 RDs, respectively. The results were
compared to Ref-PWL in Table 4. Both PWL-based methods outperform
the PWC-based approach with CTPC, and the adaptive allocation of
RTPs across RDs yielded a slight further improvement. Compared to
the RD methods, a speedup of approximately 6 times was obtained,
at a very minor reduction in accuracy (comparing RD with RDTP-
ad). Compared to the reference case Ref-PWL, the TPC and CI in case
RDTP-ad increased by 0.348% and 1.449%, respectively, and the TCO
decreased by 0.075%, as also presented in Table 4. Similar to the
RDTP-eq method, the CPU time was significantly reduced for both
RDTP methods. Jointly, the reduced error and large computational
savings confirm the effectiveness of the proposed RDTP-ad method in
balancing complexity and accuracy.

Table 5 shows the investment decision variables, along with TCO,
CI, and TPC for case RDTP-ad. The constructed transmission lines, as
well as the installed ESS and wind farm locations, were the same for
both cases Ref-PWL and RDTP-ad. The reason for the different costs
is attributed to the installed capacities of the ESS and wind farms. In
case RDTP-ad, more capacities were installed to cover extreme values
in the data, which led to a higher CI and lower TCO. Consequently,
load shedding was also slightly less in case RDTP-ad.

5. Conclusion

This paper proposed a hybrid multi-area piecewise linear (PWL)
adapted method for capturing interday and intraday chronology, con-
sidering extreme values. This was achieved by extracting representative
days (RDs) and time points (RTPs) within each RD, addressing a com-
plex co-planning problem involving transmission lines, energy storage
systems, and wind farms. To enhance the representation of intraday
chronology, an optimization-based RTP extraction approach was in-
troduced that adaptively extracts unequal numbers of RTPs within
each RD. The effectiveness of the proposed model with PWL OPF
formulations was evaluated using six different cases. The importance
of capturing extreme values was demonstrated. Moreover, the ability
of the adaptive method to assign more RTPs to RDs with higher hourly
variation facilitates the accurate representation of intraday chronology.
In the case study, the combination of these approaches resulted in a
time saving of > 99.9%, accompanied by a total planning cost error of
only 0.348%.

Future studies might investigate dealing with a decade of input
data for larger areas and additional renewable energy sources, such
as solar, can be explored to further validate and expand our findings.
Moreover, for optimal deployment of the method across a range of
practical scenarios, it will be important to establish rules of thumb on
how many RTPs to identify across which number of RDs, for a given
computational budget.
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