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Wiro J. Niessen , Member, IEEE, Aad van der Lugt , and Theo van Walsum , Member, IEEE

Abstract— The Thrombolysis in Cerebral Infarction (TICI)
score is an important metric for reperfusion therapy assess-
ment in acute ischemic stroke. It is commonly used as a
technical outcome measure after endovascular treatment
(EVT). Existing TICI scores are defined in coarse ordinal
grades based on visual inspection, leading to inter- and
intra-observer variation. In this work, we present autoT-
ICI, an automatic and quantitative TICI scoring method.
First, each digital subtraction angiography (DSA) acqui-
sition is separated into four phases (non-contrast, arte-
rial, parenchymal and venous phase) using a multi-path
convolutional neural network (CNN), which exploits spatio-
temporal features. The network also incorporates sequence
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level label dependencies in the form of a state-transition
matrix. Next, a minimum intensity map (MINIP) is com-
puted using the motion corrected arterial and parenchy-
mal frames. On the MINIP image, vessel, perfusion and
background pixels are segmented. Finally, we quantify the
autoTICI score as the ratio of reperfused pixels after EVT.
On a routinely acquired multi-center dataset, the proposed
autoTICI shows good correlation with the extended TICI
(eTICI) reference with an average area under the curve (AUC)
score of 0.81. The AUC score is 0.90 with respect to the
dichotomized eTICI. In terms of clinical outcome prediction,
we demonstrate that autoTICI is overall comparable to eTICI.

Index Terms— Stroke, DSA, autoTICI, deep learning, brain
tissue perfusion, phase classification, MR CLEAN Registry.

I. INTRODUCTION

A. Clinical Background

STROKE remains one of the worldwide leading causes
of death and serious long-term disability [1]. Due to the

ageing population, stroke incidence is rising, which is posing
a large and still increasing public health burden to the society.
Ischemic stroke, which is caused by an occluded artery of
the brain, is the most common stroke type, accounting for
about 88% of all strokes [2].

Recent studies have shown that endovascular therapy (EVT)
improves outcome in patients with acute ischemic stroke
caused by a large vessel occlusion (LVO) in the anterior circu-
lation [3], [4]. This led to novel studies on maximizing patient
benefits before and during EVT. Many studies have focused
on pre-interventional patient selection and outcome prediction
based on scores such as Alberta Stroke Program Early CT
Score (ASPECTS) [5] and collateral score [6]. A recent
study [7] demonstrated that peri-procedural imaging data can
be valuable for predicting treatment outcome, which can in
turn assist interventionalists to achieve better treatment quality.

DSA is the imaging modality to guide the EVT procedure.
Despite rapid research progress in computational stroke related
biomarker extraction from computed tomographic angiography
(CTA) [8] and CT Perfusion (CTP) [9] images, automatic peri-
procedural imaging biomarker extraction from DSA is yet to
be further explored.
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One of the most widely adopted metrics for evaluation of
EVT quality and prediction of functional outcome on DSA
images is the so-called Thrombolysis In Cerebral Infarction
(TICI) score [2] and its variants, such as modified TICI
(mTICI) [10], extended TICI (eTICI) [11] and expanded
TICI [12]. The TICI scores define the extent of brain reperfu-
sion. For example, the eTICI score is defined as follows:

• eTICI 0: no perfusion or antegrade flow in the target
downstream territory (TDT). TDT refers to the occluded
brain region that was supplied via antegrade blood flow
prior to stroke onset [13];

• eTICI 1: blood flow past initial site of occlusion, but
with minimal brain tissue perfusion;

• eTICI 2A: perfusion of ≤ 50% of TDT;
• eTICI 2B: perfusion of ≥ 50% of TDT;
• eTICI 2C: nearly complete perfusion except for slow

flow or presence of small emboli in distal cortical vessels;
• eTICI 3: complete perfusion.

Above TICI score variants were introduced as attempts
towards standardizing EVT treatment success scoring. How-
ever, these grading metrics suffer from several shortcomings:

• Inter- and intra-observer variation: TICI assessment by
visual inspection is inherently error prone, as it is subject
to various factors, such as experience level of the rater and
inspection attentiveness. Moreover, a recent study showed
that TICI scores are generally overestimated by operators
during EVT compared to core-lab raters [14];

• Coarse ordinal scale: TICI-like scores are mostly defined
in 4-6 grades. Several studies have indicated that EVT
outcome is associated with greater degrees of reperfu-
sion [15]–[19]. More granular perfusion grading systems
would probably help to better assess treatment success;

• Conceptual confusion: in EVT terms, reperfusion is
the antegrade restoration of a capillary blush, whereas
recanalization generally refers to the restoration of blood
flow past the arterial occlusion [13]. In other words,
recanalization is a necessary but insufficient condition
for reperfusion. Although TICI scores define reperfusion
scales, the concept of recanalization and reperfusion
is often interchanged during visual TICI assessment in
clinical practice [13]. As a result, the cases of successful
recanalization without adequate brain tissue reperfusion
are usually overlooked, leading to overestimated TICI.

To mitigate the above limitations of existing TICI scoring
mechanisms, we pursue an objective, robust, and quantitative
TICI scoring algorithm in a fully automated manner.

B. Related Work

In recent years, the field of computer vision evolved rapidly.
Triggered by the advances in deep learning particularly, auto-
mated medical imaging analysis has gained momentum as
well. In the field of stroke imaging, various algorithms on
automatic quantification of imaging biomarkers have been
proposed lately. These algorithms can be categorized into two
groups based on the target imaging modality: pre-treatment
imaging and peri-procedural imaging.

For pre-treatment prognosis, MRI, CTA and CTP images
are widely used. Robben et al. [9] exploited a multi-path
CNN to predict the final infarct volume from CTP images and
treatment metadata. Nielsen et al. [20] demonstrated state-of-
the-art performance of a deep CNN on final lesion volume and
treatment outcome prediction on MRI images. Su et al. [8]
utilized a U-Net architecture to quantify collateral scores
from 3D CTA images. Related to brain perfusion estimation,
McKinley et al. [21] developed an automated pipeline for
penumbra volume estimation based on random forests using
multi-modal MRI.

For peri-procedural evaluation of treatment effect, DSA is
still considered the standard modality. Automatically quanti-
fied biomarkers on DSA have received less attention. As an
example, Liebeskind et al. [22] recently proposed a machine
learning based automatic arterial input function (AIF) extrac-
tion method. Concerning TICI scoring on DSA, to the best
of our knowledge, no fully automatic algorithm has been
proposed yet. Nevertheless, Prasetya et al. [23] recently
developed a quantitative TICI (qTICI) scoring pipeline which
demands manual annotation. First, given a DSA acquisition
under assessment, venous phase frames need to be manually
removed by a neuro/interventional radiologist so to exclude the
retrograde perfusion (via pial collaterals), as only antegrade
(via recanalization) perfusion defines the reperfusion. Second,
an estimated TDT is delineated by an expert observer for
each artery occlusion of the DSA under assessment. Lastly,
qTICI is defined as the percentage of reperfused pixels within
TDT based on a threshold relative to the maximum intensity.
Prasetya et al. [23] demonstrated reliable correlation between
qTICI and eTICI, revealing the potential value of quantitative
TICI as an objective biomarker. Nevertheless, as qTICI relies
on a series of manual steps, such a semi-automatic approach is
more time consuming than traditional TICI grading procedures
in practice. In addition, these manual steps are inevitably
subjective, which can introduce new factors to inter- and intra-
observer variability.

Beyond qTICI, we seek a fully automatic, yet explainable
step by step approach for quantitative TICI scoring.

C. Contributions

The main contribution of this work is two-fold:
• we propose a fully automatic and quantitative TICI scor-

ing algorithm, as an objective and robust alternative to
existing visual inspection based TICI scoring;

• we assess the proposed methods on a large multi-center
data set acquired in clinical routine.

The remainder of this paper is organized as follows:
Section II provides a detailed overview of our proposed meth-
ods and Section III describes the data used for experiments.
Section IV presents the experiment results and performance
evaluations of the proposed methods, followed by further
discussions in Section V. Finally, Section VI concludes the
paper.

II. METHOD

Existing TICI scores are visually graded by estimating the
extent of brain tissue-level reperfusion (post-EVT, numerator)
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Fig. 1. Proposed pipeline for automatic TICI scoring.

in the initial TDT (pre-EVT, denominator). This would require
a visual comparison between pre- and post-EVT acquisitions.
Following this definition and the visual TICI scoring princi-
ples, we propose to automatically extract the numerator and
denominator for quantitative TICI scoring.

As illustrated in Fig. 1, the proposed algorithm comprises
four components: phase classification, motion correction, per-
fusion segmentation and TICI scoring. First, given four DSA
acquisitions for each patient, both anteroposterior (AP) and
lateral views for both pre-EVT and post-EVT, each of these
acquisitions is separated into four phases, being non-contrast,
arterial, parenchymal and venous phase. We trained a multi-
channel CNN model to label image phases based on spatio-
temporal textural features, as well as sequence label transition
rules. Subsequently, venous phase frames are removed from
the sequence. Non-contrast frames are also excluded, as they
contain no valid information, but merely motion artifacts.
The remaining sequence frames are aligned based on affine
registration to correct motion artifacts. Third, a single 2D min-
imum intensity map (MINIP) is calculated from the aligned
sequence, which is then segmented into vessels, perfused
area and non-perfused (including background) area. Finally,
by comparing the perfusion area before and after EVT treat-
ment, a quantitative TICI score is deduced as the percentage
of re-perfused area out of previously occluded downstream
territory. Each of the components is further detailed below.

A. Phase Classification

The purpose of the phase classification step is to recognize
and separate the venous phase frames; these frames need to
be excluded from the series, because these may contain late
perfusion attributed to retrograde flow via pial collaterals.

In a broad sense, phase classification can be seen as a
video sequence labelling problem. Although 2D CNNs have
been shown powerful in extracting representative features
from images, temporal information is discarded when han-
dling videos. Many recent studies have investigated how to

effectively incorporate temporal frame dependencies in videos
sequence labelling, various innovations have been proposed.
Karpathy et al. [24] explored feature fusion of multiple frames.
Adding recurrent layers [25], [26] have been shown effective
in capturing frame ordering and long-range dependencies.
Alternatively, 3D CNNs have been studied several times [27],
[28] for spatio-temporal feature extraction. More two-stream
networks have been recently proposed to capture low-level
motion based on optical flow [29], [30]. A summary of related
works can be found in [30]. Above methods focus on learning
a global spatio-temporal description which best represents a
video sequence. In this work, we are especially interested
in detecting the phase transitions between individual frames.
On one hand, temporal dependencies do provide valuable hint
for labelling current frame. One the other hand, such video
descriptions are not necessarily sensitive to frame shifts.

Specifically on phase classification, existing methods can
be grouped into two types: supervised and unsupervised.
Lee et al. [31] used independent component analysis (ICA)
to separate a DSA acquisition into three images (arterial,
parenchymal and venous). Such unsupervised methods rely
on the assumption of an expected number of components. For
supervised methods, Schuldhaus et al. [32] utilized Rosenblatt
perceptron-based classification using handcrafted positional
intensity features.

In this work, we propose a deep learning framework using
a CNN with a customized CRF for automatic phase classi-
fication. An overview of the framework is shown in Fig. 2.
Provided a DSA sequence, a retrained ResNet18 takes each
frame together with its direct neighbors as input and predicts
a phase label. Next, on the sequence level, a tailored state-
transition diagram is applied on the predicted label probabil-
ities to ensure a logical label sequence based on maximum
likelihood.

1) Phase Definition: A complete run of a DSA acquisition
can be categorized into three phases based on the blood flow:
the arterial, parenchymal and venous phase. Fig. 3 shows an
example of each phase in AP and lateral views. In practice,
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Fig. 2. An overview of the phase classification framework.

Fig. 3. DSA examples of arterial (left column), parenchymal (middle
column) and venous (right column) phases. Top row: frontal view; bottom
row: AP view.

the first or last few frames generally have no visible contrast.
In this work, we consider non-contrast as an additional phase.
The phases were defined according to the following criteria
(determined by a clinical expert):

• Arterial phase:

– First frame: appearance of contrast in image;
– Last frame: appearance of contrast in cortical arterial

branches. These are the peripherally located arterial
branches which run on the cortex of the brain;

• Parenchymal phase:

– First frame: right after last arterial frame.

– Last frame: right before appearance of contrast in the
superior sagittal sinus (SSS);

• Venous phase:
– First frame: appearance of contrast in the SSS;
– Last frame: the last frame with clearly visible con-

trast thereafter.
It should be noted that a complete run of DSA does not

necessarily contain all four phases. Whether these phases are
all present depends on the level of the occlusion, the timing
of the acquisition with respect to the contrast injection and
the frame rate. In case of a carotid-T occlusion, mostly only
an arterial phase is present because no contrast penetrates
the affected hemisphere from the vessel where contrast was
injected, and in some short acquisitions, the venous phase may
not be present.

2) Network Architecture: The proposed network architecture
is shown in Fig. 2. The network is based on ResNet-18 pro-
posed by He et al. [33], to which we made modifications to
adapt it to our task. In our case, the input is set to three
consecutive 2D sequence frames, each for one input channel.
In such a way, local features of three consecutive frames are
fused. Our network ends with a fully connected (FC) layer
with softmax normalization, which outputs an array of four
elements with predicted per-phase probabilities.

3) Constrained Sequence Labelling: On the sequence level,
a handcrafted state transition diagram (see Fig. 2) is applied
to suppress invalid phase transitions from frame to frame. The
rationale is that although the network fuses neighboring frames
which possess temporal contrast flow information, the global
sequence level information is not fully exploited. For instance,
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Fig. 4. A MINIP before (a) and after (b) venous phase removal.

in a correctly ordered sequence, no arterial phase should
appear during or after parenchymal phase. All sequence labels
should follow a certain state transition logic. We embed this
logic to bring further robustness to the network.

In this work, we adopted the idea of conditional random
fields (CRFs) [34] and tailored it according to our task. CRFs
train a transition matrix between previous and current labels
by maximum likelihood learning. Instead of training the con-
ditional dependency between frames in a data-driven manner,
we handcrafted the structural logic between labels directly into
a transition matrix. The state transition diagram in Fig. 2 shows
the allowed transitions between phases, which translates into
the following transition matrix, where all allowed transitions
are denoted as Ti, j = 1:

T =

⎛
⎜⎜⎝

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

⎞
⎟⎟⎠ . (1)

We intentionally assigned equal weights to all allowed
transitions (Ti, j = 1) to avoid bias introduced by the training
data itself. The remaining decoding and inference steps were
kept the same as in CRF.

After phase classification, only arterial and parenchymal
phase frames are carried on for further processing. Fig. 4
shows an example of the venous phase removal effect.

B. Motion Corrected MINIP

The image segmentation and quantification steps rely on
the MINIP, which is a 2D image with each pixel being its
minimum intensity value (which reflects the attenuation caused
by iodine contrast agent) across the time axis of the sequence.
Patient movements (voluntary or involuntary) during image
acquisition may hamper this quantification, as they may cause
vessels to be less apparent, and to overlap with brain tissue in
the MINIP image. Therefore, the purpose of motion correction
is to correct frame misalignments introduced by patient motion
during image acquisition.

In this work, we used an affine registration that opti-
mizes the Mattes mutual information [35] with the adaptive
stochastic gradient descent (ASGD) [36] optimizer. Affine
registration was chosen to handle possible scaling and sheer
while avoiding additional artifacts that could be caused

Fig. 5. A MINIP image without (a) and with (b) motion correction.

by B-spline registration. Mattes mutual information could
allow us to handle contrast flow differences between frames.
Motion correction was performed using the SimpleElastix
toolbox [37]. The parameter file used in this work can
be found at https://elastix.lumc.nl/modelzoo/par0063/. Fig. 5
visualizes the sequence motion compensation on the calculated
MINIP image.

C. Perfusion Segmentation

The result of the previous steps is a MINIP of the motion
corrected DSA sequence, that only contains arterial and
parenchymal phases. From the constructed 2D MINIP image,
(see Fig. 1), we segment blood vessels and perfused area from
the image background, which serves as a prerequisite for the
subsequent (re-)perfusion quantification. Firstly, the contrast-
opacified blood vessels are segmented using the multi-scale
Frangi filter [38], which is a common technique for enhanc-
ing vessel-like structures. In this work, the scale of Frangi
vesselness filter was set to σmin = 2 and σmax = 12 according
to the vessel diameter range from 5 to 35 pixels. We chose
six different scales (scale step = 2) for detection of vessels
of various sizes. Default value of α = 0.5 was used. For γ
we chose 15 based on visual inspection on a set of repre-
sentative images. An intensity threshold of 0.08 was applied
on filter output to segment vessel structures. We opted for
such a proven vessel segmentation approach instead of deep
learning methods, as we do not rely on high precision vessel
segmentation, rather we exclude the vessel pixels such that
the perfusion area can be better segmented. Such a traditional
algorithm satisfied our needs. Next, the remaining pixels are
automatically clustered into two groups, perfused and non-
perfused (including background), using Otsu’s thresholding
technique [39], which is an effective and parameter free
method based on the image intensity histogram. Image back-
ground is included in the histogram so that perfused pixels can
be recognized. Finally, a segmentation colormap is constructed
(see Fig. 1), where vessels, perfused and non-perfused pixels
are represented in red, green and blue respectively.

D. TICI Quantification

Finally, a quantitative TICI score can be computed from the
resulted segmentation colormap. Both AP and lateral views
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Fig. 6. An example of TICI quantification. Red: brain mask; white:
TDTpreEVT; orange: reperfused area (TDTpreEVT ∩ PpostEVT).

are evaluated. Traditional visual TICI-like scores assess the
change in the level of perfusion after EVT with respect to
pre-EVT. Similarly, the proposed autoTICI score quantifies the
ratio of re-perfused area versus the initial TDT, which can be
formulated as follows:

autoTICI = TDTpreEVT ∩ PpostEVT

TDTpreEVT
, (2)

where PpostEVT denotes perfused pixels after EVT (green
and orange area in Fig. 6(c)) and TDTpreEVT is the initially
occluded brain area prior to EVT (white area in Fig. 6). While
PpostEVT is available in the segmentation colormap, the distinc-
tion between non-perfused pixels and pure image background
in the pre-EVT image is yet to be made. To this end,
we introduce an atlas-based approach to exclude the out-of-
skull pixels. More specifically, we utilize masked DSA atlases
to align the brain area from atlas to the post-EVT MINIP
of patients. 22 DSA acquisitions were selected as atlases
from patients without stroke (Section III-B.5). We applied
affine registration (similar to the registration used in motion
correction in Section II-B) to spatially align the atlases with the
post-EVT image. The atlas brain mask was used as the moving
image mask during registration. The final registered atlas for
each subject is the one with the maximum Mattes mutual
information [35]. The pre-EVT MINIP is also registered to
post-EVT MINIP. In such a way, the brain region mask on the
registered atlas can be mapped to pre- and post-EVT MINIP.
TDTpreEVT and PpostEVT are determined within the aligned
brain mask. As illustrated in Fig. 6, autoTICI represents the
ratio of reperfused pixels (orange area) versus the pre-EVT
TDT (white area).

III. DATA AND ANNOTATION

A. Data Selection

In this work, we used the MR CLEAN Registry [40]
dataset for training and evaluating the proposed methods. The
MR CLEAN Registry is an on-going multi-center registry
which contains all patients with acute ischemic stroke who
underwent EVT in the Netherlands since March 2014 [40].
Due to the large variety in acquisition systems and imaging
protocols in different centers as well as differences in patient
condition, the acquired DSA images possess great variability
in image appearance and quality. Therefore, it is necessary to

perform data selection in order to obtain a set of qualified yet
representative data for our study.

1) Phase Classification Dataset: For training and evaluating
the proposed phase classification algorithm, the following
selection criteria were applied:

• Sequence length: due to non-uniformed data collection
procedures across intervention centers, not all DSA acqui-
sitions were collected in the format of a sequence; often
only a few snapshots were stored. Moreover, we expect a
qualified image sequence to contain most of the contrast
flow. Based on our observation, acquisitions with less
than six frames are insufficient for our purpose, thus
excluded;

• Image quality: for the data to be usable, a number of
quality criteria must be met: (i) the acquisition must
be a cerebral DSA; (ii) the acquisition must possess a
sufficiently visible amount of contrast; (iii) the acquisition
should not exhibit substantial motion artifacts, such as
motion blur, which is not trivial to eliminate via post-
processing;

• Occlusion location: in this study, we consider patients
that had an occlusion of the intracranial internal carotid
artery (ICA) or the M1 segment, as these are the most
common indications for EVT.

The MR CLEAN Registry (part 1) contains data
of 1488 patients, which are collected from March 16, 2014 till
June 15, 2016. DSA acquisitions have been stored for
1479 patients, out of which 987 patients had an occlusion
of either ICA or M1. After removing all short acquisitions
(less than six frames), 872 patients remained. Subsequently,
192 patients were excluded due to lack of good quality image
sequences, which led to 680 qualified patients. From each of
those, we selected up to four acquisitions (pre-EVT/post-EVT,
AP/lateral view) per subject which were of good image quality
as described above.

For the purpose of phase classification, we ended up with
680 qualified patients, 1857 acquisitions and 30297 images.
Non-subtracted, duplicated, inverted, corrupted frames were
removed and finally all acquisitions were re-ordered according
to frame acquisition time.

2) TICI Quantification Dataset: To obtain a qualified DSA
dataset for TICI quantification experiments and the overall
algorithm evaluation, we applied further data selection criteria
on top of the selected dataset for phase classification as
follows:

• Reference eTICI score: in this study, eTICI score was
used as the reference standard for evaluating the proposed
autoTICI. Therefore, it is required that both pre-EVT and
post-EVT acquisitions were scored. In addition, a pre-
EVT eTICI score of 2 or higher indicates that the
occlusion has been reopened before EVT treatment, thus
these images were excluded for further analysis;

• Four acquisitions per patient: in order to investigate
the sensitivity of autoTICI on both AP and lateral views,
pre-EVT and post-EVT DSA acquisitions for both views
should be available;

• Image quality: for accurate TICI quantification,
the acquisition should fulfill the following image quality
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TABLE I
ETICI AND MRS SCORE DISTRIBUTION ON 141 TEST PATIENTS

criteria: (i) TDT of the brain should be fully visible in
the image view; (ii) the view of the acquisition should
not be substantially rotated. As our DSA images are
2D projections of the brain, affine transformations are
unable to fix 3D rotation artifacts in its 2D projects.

Out of the 680 qualified patients from the previous selection,
34 patients were excluded due to no valid eTICI score.
Following it, image quality criteria were applied and patients
with four acquisitions available were selected, which leads
to 141 patients (564 acquisitions) for TICI quantification and
testing of phase classification.

3) Dataset Division: The statistics of selected patient infor-
mation is summarized in Table I. Based on data quality
and availability, a subset of 141 out of 680 patients were
suitable for automatic TICI quantification. This subset was
fully annotated and used for testing of phase classification,
as well as evaluation of the entire pipeline. To ensure good
model generalizability, this test set was thus excluded from
the training set for phase classification. From the remaining
539 patients, 648 acquisitions (9440 images) were randomly
selected (to alleviate manual annotation effort) for training and
evaluating the phase classification model. In this way, the test
set is maximized and kept unseen from the trained model.

B. Data Annotation

1) TICI Score Reference Standard: In the MR CLEAN
registry, the eTICI [11] was visually scored by independent
core-lab neuroradiologists. In this work, we compared the
proposed autoTICI against eTICI.

2) Modified Rankin Scale (mRS): The mRS score assesses
the neurological independence of patients at day 90 following
an EVT. It is a seven-grade scale, running from no symptoms
(score: 0) to death (score: 6). In this study, we used the mRS
score as a reference to evaluate the outcome predictability of
the proposed autoTICI. Table I describes the mRS score dis-
tribution on the test data set. Note that 20 patients had missing
mRS records, which were imputed using multiple imputations
by chained equations (MICE) [41]. We dichotomized the
mRS scores to indicate favorable and unfavorable treatment
outcomes.

3) National Institutes of Health Stroke Scale (NIHSS): NIHSS
quantifies the impairment of stroke patients by evaluating

11 aspects. It is an ordinal score ranging from 0 (no sym-
toms) to a maximum of 42. In the MR CLEAN registry,
both the baseline (prior to EVT, NIHSSBL) and follow-up
(within 24 hours after EVT, NIHSSFU) scores were assessed.
In our experiments, we derived the NIHSS shift as follows:

NIHSSshift = NIHSSBL − NIHSSFU . (3)

4) Sequence Phase Labelling: Manual phase labelling was
performed independently by three annotators, one experienced
clinician, one colleague researcher and the first author, using
an in-house developed tool in MevisLab. According to the
phase definition (Section II-A.1), the sequence labelling output
is a per frame label sequence, with 0, 1, 2, 3 denoting non-
contrast, arterial, parenchymal and venous phase respectively.
648 randomly selected training sequences (Section III-A.1)
were randomly split into 3 parts, each annotated by one
operator. 141 testing sequences (Section III-A.2) were labelled
by all three operators independently, and consensuses were
derived afterwards.

5) DSA Atlas: We selected 22 DSA acquisitions (12 AP
and 10 lateral views) from 50 patients without stroke. Binary
brain masks were delineated on those atlases for registration
purposes as described in Section III-A.2.

IV. EXPERIMENTS AND RESULTS

A. Implementation

The proposed methods were implemented in Python. The
deep learning model for phase classification was developed
using PyTorch [42] on an NVIDIA 2080 Ti with 11 GB
of memory. The deep learning network was trained with a
batch size of 32 for 100 epochs. All training data were
iterated once per epoch. To enrich the diversity of training set
and prevent possible overfitting, the following augmentation
techniques were randomly applied during data loading: hor-
izontal flip, random rotation (∈ [−10◦, 10◦]), random affine
transformation (translation ∈ [0, 10%] of image width/height,
scale ∈ [0.8, 1.2]). For this multi-class classification task, cross
entropy was chosen as the loss function. We used the Adam
optimizer [43] with an adaptive learning rate initialized at
0.001, halved every 10 epochs.

B. Evaluating Phase Classification

In the evaluation of phase classification, we assessed the
added value of data augmentation, temporal information and
the handcrafted constrained transition matrix module via
an ablation study. Furthermore, we compared the method
with inter-observer variability among three human annotators.
Additionally, the impact of automatic phase classification
accuracy on autoTICI scoring is presented in IV-C.3.

1) Evaluation Metrics: The following metrics were adopted
in this experiment:

• average accuracy represents the percentage of correctly
classified images out of all the images;

• weighted F1 score refers to the harmonic mean of
the precision and recall. In a multi-class problem
of Nc classes, the weighted F1 (F1w) is an average of
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TABLE II
PERFORMANCE OVERVIEW OF PHASE CLASSIFICATION. ABLATION STUDY WAS PERFORMED WITH 5-FOLD CROSS VALIDATION ON THE

TRAINING AND VALIDATION SET. PERFORMANCE COMPARISON WITH HUMAN ANNOTATOR WAS ASSESSED ON THE TEST SET

F1 scores (F1i) weighted by the number of images (Si)
from each class, as in Eq. 4:

F1w =

Nc�
i=1

SiF1i

Nc�
i=1

Si

; (4)

• frame offset measures the phase classification accuracy
on sequence level, rather than image level. The phase bor-
der frame index offset between classified and ground truth
can serve as an insightful metric for phase classification
accuracy. In this experiment, the average absolute offset
and standard deviation of offset for first, last arterial phase
frame and last parenchymal phase frame were evaluated.

2) Ablation Study: Ablation experiments were performed to
assess the contribution of separate components of the proposed
algorithm. Table II summarizes the comparison under the
aforementioned metrics. In all ablated cases, the model per-
formance degraded. Without data augmentation, the general-
izability of the model was reduced as a result of overfitting on
the training data. Without incorporating neighboring frames as
temporal information, the overall image level accuracy slightly
dropped. The most marginal deterioration was observed at
arterial/parenchymal border frame accuracy (51% vs 46%).
Not surprisingly, by embedding human defined logic into the
model, an overall performance improvement was evidenced
across all metrics in the Table. More importantly, such a
constrained transform matrix enforces phase transition logic
within a sequence, suppressing unreasonable prediction errors.

3) Inter-Observer Variability: Smooth transition between
phases is often observed, which attributes to inter-observer
variability during phase annotation. In this section, the algo-
rithm variability is compared with three human annotators
on the selected 141 acquisitions in test set. We computed
the agreements in pairs for all combinations among the pro-
posed method and three human annotators. For the agreement
between the method and human annotators is defined as the
average agreement between the method and each of the annota-
tors. The inter-observer agreement is calculated as the average
agreement among all human annotator pairs. As shown in
Table II, the proposed method exhibits even better agreement

TABLE III
QUANTITATIVE AUTOTICI REPERFUSION STATISTICS

than the inter-observer agreement across all metrics, achieving
human level annotation precision on phase classification.

C. Evaluating autoTICI Quantification

On the test set (Table I), the relevance of autoTICI as a
brain tissue reperfusion measure was evaluated based on the
correlation with eTICI. Furthermore, we assessed the clinical
value of autoTICI in comparison to eTICI with respect to
mRS and NIHSS. Whereas the distribution of patients with
respect to eTICI and mRS is imbalanced, we did not attempt to
balance the distribution during data selection as this represents
realistic patient statistics in clinical practice.

1) autoTICI Vs eTICI: Fig. 7a shows the positive correlation
between the proposed autoTICI and eTICI on the test dataset.
According to eTICI definition, minimal tissue perfusion dif-
ference is expected between eTICI 0 and 1 or between eTICI
2C and 3. Therefore, eTICI 0/1 and eTICI 2C/3 are plotted
to better visualize the correlation in brain tissue reperfusion.
More quantitatively, Table III shows the reperfusion statistics
of autoTICI versus eTICI grades. The heatmap in Fig. 7b
illustrates the distribution of autoTICI over eTICI grades.
Furthermore, spearman correlation test also showed that both
AP and lateral view autoTICI scores were significantly asso-
ciated with eTICI with ρ = 0.54, (P < 0.001) and ρ = 0.65,
(P < 0.001), respectively. The stronger correlation with lateral
view autoTICI scores matches the expectation of clinical
experts because the brain area in AP views is about half
as in lateral projections and occlusion effects are generally
better visualized in lateral view. Reasons for the few outliers
shown in Fig. 7a and 7b include questionable eTICI annotation
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Fig. 7. Correlation between autoTICI and eTICI.

(recanalization without reperfusion), insufficient contrast and
suboptimal TDT registration.

Fig. 8. Prediction of treatment outcome (mRS) using autoTICI.

TABLE IV
AUTOTICI VS ETICI IN TERMS OF CORRELATION TO OUTCOME

We performed multinomial logistic regression between
autoTICI and eTICI on the test data with leave-one-out cross
validation. As shown in Fig.7c, a micro-average (biased aver-
age by class frequency) AUC of 0.76 and 0.78 for AP and
lateral view were achieved respectively. With both autoTICI
scores as input features, the micro-average AUC reached 0.81.
For dichotomized eTICI (failure: ≤ 2A; success: ≥ 2B),
autoTICI achieved an AUC of 0.90.

2) Correlation to Treatment Outcome: We further compared
autoTICI and eTICI with respect to their correlation to treat-
ment outcome in terms of mRS (III-B.2) and NIHSS (III-B.3).
We used both AP and lateral autoTICI scores as input features
for logistic regression. As shown in Fig. 8, cross validated
logistic regression between TICI scores and mRS showed that
autoTICI had a slightly higher AUC of 0.63 than 0.60 for
eTICI, though the difference was not statistically significant
(P = 0.52). Similarly, the accuracy of autoTICI and eTICI
were 0.66 and 0.62, respectively. Spearman correlation test
was applied between TICI scores and NIHSS shift scores,
which showed that autoTICI and eTICI were comparable with
ρ = 0.29 (P < 0.01) and ρ = 0.30 (P < 0.01), respectively.

Overall, both Fig. 8 and Table IV have demonstrated that
autoTICI and eTICI possess comparable but limited capa-
bility in outcome prediction. It is also understandable that
the relation between NIHSS (short term, at 24 hours after
EVT) and mRS (long term, at 90 days after EVT) scores
is not deterministic. Multiple recent studies [4], [40], [44]
have shown that reperfusion scores play an irreplaceable role
in outcome prediction, the long-term functional outcome is,
however, multifactorial.
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TABLE V
CORRELATION BETWEEN AUTOTICI AND ETICI CORRELATION

WITH RESPECT TO PHASE CLASSIFICATION ACCURACY

3) Impact of Phase Classification on autoTICI: As the cor-
relation between autoTICI and eTICI has been established in
Section IV-C.1, this correlation can be further employed to
assess the value of accurate phase classification. We introduced
offsets to the phase classification results and observed how
autoTICI is impacted in terms of its correlation with eTICI.
As shown in Table V, adding offsets of one or two frames
in classification results lead to noticeable deterioration in
autoTICI statistics.

V. DISCUSSION

We have presented a fully automatic, quantitative and truly
perfusion based TICI scoring method that is inspired by
traditional visual TICI assessment procedures. We exploited
convolutional neural networks to tackle the phase classifica-
tion challenge; it achieved performance on par with human
experts. On the MR CLEAN registry, we demonstrated that
the proposed autoTICI and eTICI are statistically significantly
associated and they are both comparable predictors of func-
tional outcome, revealing the potential value of autoTICI
as a computer-aided biomarker for peri-procedural treatment
assessment.

We have presented a deep learning based approach for DSA
phase classification with human level precision. Apart from
autoTICI, the proposed phase classification method can be
generalized for many automated DSA analysis tasks, such as
key frames selection, inter-acquisition temporal synchroniza-
tion or slow arterial flow detection. The proposed network uses
ResNet with a customized CRF. Although recurrent neural
networks, such as LSTM [45] or GRU [46] can be alterna-
tives in this task, we found that the proposed CRF handles
inter-frame relations well in an explainable way, especially
with limited number of labelled sequences (648 variable-
length sequences in our case). When considering prior-art
on phase classification, only Schuldhaus et al. [32] reported
a quantitative performance results. On 14 DSA acquisitions,
Schuldhaus et al. [32] reported 93% and 50% accuracy on
first arterial border match and last arterial border match
respectively. Accordingly, our proposed method achieved 92%
and 51% respectively over 648 acquisitions. A pure numerical
comparison seems to show comparable performance, but our
study has different characteristics. It was tested on 648 instead
of 14 acquisitions, these acquisitions originate from a multi-
center registry, and the frame rates (0.5-4 fps) are higher than
those (0.5-2 fps) reported by Schuldhaus et al. [32], and our
approach also separates the venous phase.

The MR CLEAN Registry is an observational multi-center
multi-year registry. This registry reflects daily practice in a
wide variety of hospitals which on the one hand leads to the
heterogeneity of data but on the other hand allows for broad
translatability. It can be noticed that 141 out of 1488 patients
end up suitable for autoTICI quantification. This is due to a
large heterogeneity on image quality, annotation, acquisition
process, and storage format as described in the data selection
procedure, rather than algorithmic limitations. Main reasons
for data exclusion in this study include missing DSA acqui-
sitions, corrupted, incomplete, or too short acquisitions, bad
image quality, occlusion location and image not showing the
entire TDT area.

Affine registration was performed for sequence motion cor-
rection and atlas registration. In the MR CLEAN Registry, one
of the limitations is that the original unsubtracted images were
mostly discarded, leaving only the subtracted ones. In this
case, motion correction does help in mitigating blur effects,
it is nevertheless incapable of handling the subtraction arte-
facts. Besides, due to lacking of background texture, the atlas
to patient registration relies on the skull outline and brain
vasculature. The skull skeleton shown in a subtracted image is
in fact the subtraction artifacts. Therefore, if the original non-
subtracted images could be used instead, which encompass
richer and more robust textural information, the registration
robustness and accuracy could be potentially improved.

Aside from Otsu’s thresholding, several alternatives for per-
fusion segmentation could be considered. One could quantify
changes in vessels and tissue perfusion by directly subtracting
the MINIP of parenchymal phase by the MINIP of arterial
phase. This is however problematic, mainly due to inter-
acquisition variations on contrast dilution and inject volume.
It remains an interesting research topic on how to obtain con-
trast profile independent DSA perfusion parameters. The inter-
acquisition variations could be alleviated if mechanical pumps
are utilized during contrast injection with a fixed injection
protocol, which however is not the case for MR CLEAN reg-
istry. Another alternative is to use the background statistics to
derive a fixed threshold for TDT selection. We opted for image
specific Otsu’s thresholding instead of fixed thresholding for
all patients. Other promising alternatives include deep learning
based segmentation methods, such as U-Net [47], which is not
studied in this work due to the massive amount of annotations
required.

eTICI is one of the most comparable metrics to autoTICI
as both are proposed as brain perfusion measures. However,
it should be pointed out that the definition of autoTICI and
eTICI are not fully identical. While autoTICI and eTICI focus
on brain tissue antegrade reperfusion quantification, eTICI also
considers evidence of contrast material penetration in vessels
past initial occlusion and slow flow in distal. Both eTICI 0 and
1 define minimal reperfusion, they are distinguished based
on whether contrast material has passed the initial occlusion.
Analogically, in case of (nearly) complete perfusion, eTICI
emphasizes the existence of slow flow in distal vessels in score
2C versus 3. Therefore, perfect correlation between autoTICI
and eTICI cannot be achieved and is not the aim of autoTICI.
In this work, a good correlation between the two (Fig. 7)
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serves as a proxy for demonstrating the relevance of autoTICI.
The outcome prediction capability of autoTICI reported in
Section IV-C.2 further consolidates the conclusion and reveals
the potential clinical value of autoTICI.

End-to-end deep learning based methods might be valid
alternatives to the automatic TICI scoring method proposed in
this study. The reasons that we opted for a step-by-step strategy
are (i) data: end-to-end training approaches treat all four
acquisitions of each patient as one input data sample. Such
methods generally require larger number of patients, as well
as more sophisticated GPU resources; (ii) interpretability:
while aiming for minimizing prediction errors, end-to-end
training approaches generally sacrifices causal interpretability.
The proposed method, by contrast, provides intermediate visu-
alizable outputs per step, offering enriched clinical insights;
(iii) quantitativity: rather than categorical TICI grading,
we seek quantitative brain reperfusion analysis methods. Train-
ing end-to-end networks for this purpose is not straightforward
due to lacking of quantitative ground truth. Nevertheless, both
phase classification and perfusion segmentation can benefit
from deep learning methods in this work.

From a clinical perspective, the proposed autoTICI provides
an objective, reproducible and quantitative measure of EVT
quality, eliminating human errors and variations. As it is a
true measure of tissue level reperfusion, human conceptual
confusion is avoided. Therefore, autoTICI overcomes the
aforementioned three shortcomings of existing TICI scores.
Moreover, the extent and location of non-reperfused areas
are real-time visualized, helping the operator to determine
whether additional attempts for clot removal should be under-
taken or additional drugs should be given to improve func-
tional outcome.

VI. CONCLUSION

We have presented a robust and fully automatic perfusion
quantification method, autoTICI. On a large routinely acquired
multi-center dataset, we have demonstrated that autoTICI
is significantly correlated with the eTICI reference with a
dichotomized AUC of 0.90 and possesses comparable treat-
ment outcome predictive capability with an AUC of 0.63 ver-
sus 0.60, revealing its potential in future studies and clinical
practice.
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