
 

 

 

  

Abstract— The increasing presence of distributed energy 

resources, information and intelligence in the electricity 

infrastructure increases the possibilities for larger economic 

efficiency of power systems. This work shows the possible cost 

advantages of applying a model predictive control (MPC) 

strategy to residential energy systems. MPC can take future 

information on energy demand and prices into account and 

might lead to lower energy costs for end consumers. The main 

objective in this paper is to illustrate the potential for 

operational cost savings when adopting MPC in the local 

control of residential energy systems, thereby mainly focusing 

on micro combined heat and power systems (micro-CHP). We 

conclude that the pricing regime of household energy has a 

large influence on potential cost savings.  
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I. INTRODUCTION 

A. Distributed energy resources 

ISTRIBUTED energy resources (DERs) are expected to 

play a significant role in the future electricity supply, 

see e.g. [1, 2]. The concept of DERs comprises distributed 

electricity generation, distributed energy storage, and 

responsive energy loads. DERs can play a crucial role in 

supporting key policy objectives such as electricity market 

liberalization, mitigating climate change, increasing the 

amount of electricity generated from renewable sources, and 

enhancing energy saving. In this paper we focus on 

residential, or micro (µ) DERs. Households consume final 

energy mainly in the form of electricity and heat and the 

domestic sector generally accounts for a large part of a 

country’s electricity and natural gas consumption. Specific 

potential for applying distributed generators at customer sites 
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lies in utilizing electricity and heat from combined heat and 

power systems (CHP). This leads to more efficient energy 

use and thus to cost savings and carbon emission reductions 

[3]. There has been significant progress toward developing 

kW-scale CHP applications, so-called micro-CHP or µCHP 

systems. These systems can be based on Stirling engine, 

internal combustion engine, gas turbine, or fuel cell 

conversion technology [1, 3]. For example, Stirling µCHP 

systems are expected to pervade the Dutch market 

substantially in the short- to mid-term [4]. In the UK, 

Germany, and Japan µCHP technology is also expected to 

play a significant role [3]. In addition, the introduction of 

more ICT facilitates the intelligent control of power 

networks and DER technologies, thereby creating ‘smart’ 

power systems. An ICT-enabled service that utilities could 

provide to their residential customers, for example, is 

offering varying electricity tariffs. Residential energy 

management systems could then anticipate future price 

changes leading to substantial operational cost savings. 

B. Paper objective and organization 

This paper focuses on the intelligent control of Stirling 

µCHP technology and connected residential energy storage 

systems. Thermal and electric load shifting falls outside the 

scope of this paper. We discuss the results of simulation 

studies and illustrate the potential economic benefits of 

applying novel control strategies to residential DERs in 

different system configurations. 

In previous work [5] we have already illustrated the 

possibility of achieving operational cost savings by 

controlling DERs more sophisticatedly. This work gives 

more thorough insight in the possible savings due to the use 

of a better system model, substantially better optimization 

solver algorithms, and by simulating over longer time 

periods and with much longer prediction horizons. We also 

present new results on the comparison of flexible µCHP 

control with stringent, thermal-led, control as well as on the 

influence of electricity storage in the controlled system. In 

that way we clearly show which elements of the controlled 

system are most responsible for the cost savings. We further 

also provide an overview of the incentives for the invloved 

actors to engage in contracts providing the necessary real-

time electricity tariffs for intelligent local control of DERs.  
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The paper is organized as follows. In Section II we 

describe the system under study as well as the concept of 

model predictive control (MPC). In Section III the economic 

incentives for the involved actors to apply MPC to 

residential DERs are explained. In Section IV the 

mathematical system models and control objectives are 

described. In Section V we illustrated the performance of the 

proposed controller through simulation studies on various, 

increasingly complex systems. 

II. SYSTEM DESCRIPTION AND MODEL PREDICTIVE 

CONTROL  

A. System description 

The analysis in this paper mainly focuses on the base case 

system shown in Fig. 1. The household can fulfill its 

electricity and heat demand through several alternative 

means. The µCHP unit installed in the household is based on 

Stirling technology [3]. Such a unit consists of a Stirling 

engine prime mover, conversion unit 1, and an auxiliary 

burner, conversion 2, which can provide additional thermal 

power. The Stirling engine converts natural gas (f1) into 

electrical energy (g) and heat (h1). The heat is supplied in the 

form of hot water to a central heat storage, the energy 

content of which is indicated by hs. The auxiliary burner also 

converts natural gas (f2) in providing the additional heat (h2). 

Heat consumption (hc) is taken from the heat storage. 

Electrical energy can be stored in a battery (es) (e.g., a 

lithium-ion battery). Electrical energy can flow to and from 

the battery, represented by (si) and (so), respectively. Locally 

generated electricity can be used directly by the household 

(ec), it can be stored, or it can be sold to the supplier (eext). 

Electricity can also be imported from the supplier (iext). The 

supplier thus sells primary fuel (f1+f2) as well as additionally 

required import electricity for the household. The supplier 

receives exported electricity from the household and possible 

pays households a certain feed-back tariff.   

B. Model predictive control 

To exploit the increased operational freedom in 

households with DER systems, we propose a decentralized 

controller for household energy flows. The controller uses 

the control technique Model Predictive Control (MPC) [6] 

and has the task to automatically determine which actions 

should be taken in order to minimize the operational costs of 

fulfilling residential electricity and heat requirements subject 

to operational constraints. There are distinct and forecastable 

patterns in residential energy demand and energy market 

prices of which predictive control can take advantage. The 

proposed controller uses MPC to: 

• take into account the decision freedom due to heat and 

electricity storage possibilities; 

• incorporate predictions on residential electricity and heat 

demands and energy prices; 

• incorporate models of the dynamics and constraints of 

installed generators and storages. 

MPC is based on solving at each control step an 

optimization problem over a prediction horizon subject to 

system dynamics, an objective function, and constraints on 

states, actions, and outputs. At each control step the 

optimization yields a sequence of actions optimizing 

expected system behavior over the prediction horizon. The 

controller applies the computed actions (control inputs) to 

the system until the next control step, after which the 

procedure is repeated with new system measurements. Due 

to the prediction horizon an MPC controller can take benefit 

of knowledge that it may have about the future, such as 

predicted energy demand or energy prices.  

III. ECONOMIC ASPECTS OF APPLYING MPC TO DERS 

A. Four, increasingly complex, system models 

In this paper we analyze the operational costs pertaining to 

residential energy use when adopting MPC in the 

deployment of DERs. To place the potential cost savings of 

applying MPC to the system described above in a broader 

perspective, we analyze four system models, each being 

based on the base case system of Fig. 1. Fig. 2 describes the 

four systems with accompanying overviews of the costs for 

the two actors involved in our analysis. The actors are the 

household with the locally installed and controlled DERs and 

an aggregator. We assume the aggregator to be an energy 

supply company. The energy use of the household is 

responsible for a certain amount of CO2 emissions, which are 

shown in Fig. 2 as well.  

The first system consists of a household with a 

conventional heating system: a high efficiency condensing 

 
 

Fig. 1. Conceptual overview of the system under study. 

 



 

 

 

 
 

Fig. 2. Four possible configurations of residential systems (top) and  

the accompanying costs for supplier and household and the CO2 

emissions of residential energy use (bottom). 

boiler and a hot water storage. The household imports all 

required electricity. The second system involves a household 

with a µCHP unit that is stringently (i.e. thermal-led) 

controlled. This control mode is explained further below in 

the paper. The third system has a more flexibly MPC-

controlled µCHP system, and the fourth system additionally 

has a battery to store electricity. The configuration of the 

fourth system is depicted in Fig. 1. 

B. Operational costs in the four systems  

It is now our hypothesis that each subsequent system will 

lead to more operational cost savings for households as well 

as for the aggregator. Looking at the first system, the 

aggregator and the household will incur operational revenues 

and costs over a certain period of time; the aggregator will 

incur a net revenue (profit) and the household a net cost.  

The second system involves a household with a 

stringently-controlled µCHP system. Deploying the µCHP 

will lead to lower CO2 emissions [3, 7] and this alone might 

be enough reason for some households to invest in these 

systems. Another reason may be the increased reliability of 

power supply. It is plausible, however, that a household will 

only invests in a µCHP system if the additional investment 

with respect to a conventional heating system leads to a 

positive net present value over a certain accepted period of 

time. With regulation in place on electricity feed-back tariffs 

and with a possible government investment subsidy the net 

present value of the extra investment might turns out to be 

positive over a period of about 5 years [7]. Then the 

investment in µCHP will provide considerable cost savings 

considering a lifetime of the system of some 15-20 years. 

This is shown by the move downwards in the household 

costs in Fig. 2. Due to the decrease in primary energy 

consumption of a household with µCHP (more gas use, but 

less electricity imports) the net revenues from µCHP 

customers will probably decrease for suppliers. This is even 

more so if suppliers will pay households for electricity that is 

fed back into the system. Since the supplier presently makes 

profit on electricity sold, he has no direct incentive to reduce 

the number of sold kWhs. The supplier could, however, 

invest in µCHP himself and then lease µCHPs to households. 

In that way he also captures customers in a competitive retail 

market. Also, new incentive structures, enforced by 

regulation, might provide suppliers with profits that are not 

solely dependent on the amount of energy sold. This is 

represented by the dashed downward sloping line 

representing aggregator costs in Fig. 2. 

The third system of Fig. 2 might lead to more cost 

advantages for households and aggregator due to the 

application of MPC in µCHP control. Households will only 

apply MPC if this leads to substantial cost savings. MPC 

might also include multi-objective control in which CO2 

minimization becomes an additional control objective. 

Energy flows can be controlled in such a way such that more 

residential emission reductions can be achieved. Exact CO2 

emission calculations are not the focus of this paper, 

however. We note that an important requirement for the 

potential cost savings with MPC is the presence of more 

real-time electricity pricing for household customers: with a 

flat rate, anticipative behavior aimed at cost reductions is 

useless. Contracts incorporating more real-time electricity 

import and/or export tariffs for residential customers could 

be offered by the supplier and we assume that these contracts 

are available. By providing the service of real-time tariffs to 

households, a household might be willing to share in the cost 

savings that MPC could entail for him. Sharing in the cost 

benefits could be contractually arranged between the supplier 

and the household. Also, when µCHP application, with or 

without MPC, leads to peak load reduction, the supplier 

might possibly have to buy less expensive peak electricity for 

its customers. Cost savings due to this could then be shared 

with households (e.g. via lower electricity or gas tariffs). 

Possible peak load reductions could also make network 

operators willing to reward households for applying (MPC-

controlled) µCHPs. These rewards could then flow to 

households via their supplier. Because a government might 

want to stimulate µCHP penetration in society, it could 

support the technology by providing subsidies to suppliers 

promoting µCHP to their customers or by making it 

obligatory for suppliers to provide the service of real-time 

electricity pricing to households. 

In the fourth system, the addition of a battery for 

electricity storage is expected to lead to more flexible control 

and therefore to more cost reduction potential for households 

with MPC. Also, we conjecture that the battery might be 

used to further enhance residential emission reductions due 

to the increased flexibility in energy flow control that it 

provides. Costs for the supplier might also decrease due to 

the leasing of the battery to households. 

 In the remaining part of the paper we will quantify the 

potential cost benefits of the above described systems. 



 

 

 

IV. SYSTEM MODEL FORMULATION  

A. Mathematical system model formulation 

Here the mathematical model of the base case system of 

Fig. 1 is described. First we define the binary variables CHP

kv  

and aux

kv , which indicate whether the installed µCHP prime 

mover and auxiliary burner are in operation at a specific time 

step k. In addition, the binary variables CHP

down,

CHP

up, , kk uu and 

aux

down,

aux

up, , kk uu  are start-up and shut-down indicators for the 

µCHP prime mover and auxiliary burner, respectively, at 

time step k.  

An electric energy balance has to be satisfied relating the 

power output of the Stirling engine, the input and output 

power flows of the electricity storage, the electricity 

consumption, and electricity exchanged with the energy 

supplier. This power balance is given by: 

ext, o, ext, i, c, = 0k k k k k kg i s e s e+ + − − − ,        (1) 

where
e 1,k kg fη= ⋅ , with ηe the electric efficiency of the 

Stirling engine. The power output of the Stirling engine can 

be modulated between part load and full load, which is 

modeled by the constraints:  
CHP

1, 1,maxk kf v f≤ ⋅                (2) 

CHP

1, 1,partk kf v f≥ ⋅ ,               (3) 

where f1,max and f1,part are the fuel consumption at part and full 

load. For the Stirling engine there is also a minimal operation 

time and a minimum down time. The constraints that force 

the prime mover to stay in operation until this minimum has 

been reached are:  
CHP CHP

up, up, 0,..., 1k n kv u n t+ ≥ = − ,           (4) 

where tup is the minimum number of simulation time steps 

that the prime mover has to stay in operation. The constraints 

that force the prime mover to stay out of operation during 

down-time are:  
CHP CHP

down, down1 , 0,..., 1k r kv u r t+− ≥ = − ,         (5) 

where tdown is the minimum number of simulation time steps 

that the prime mover has to stay out of operation. 

 The fuel consumption of the auxiliary burner is restricted 

to lie within: 
aux aux

2,min 2, 2,maxk k kv f f v f⋅ ≤ ≤ ⋅ ,          (6) 

where f2,min and f2,max are the minimal and maximum fuel 

consumption of the auxiliary burner. 

 The electrical energy and heat stored should be between 

minimum and maximum values: 

s,min s, s,maxke e e≤ ≤                 (7) 

s,min s, s,maxkh h h≤ ≤ ,              (8) 

where es,min and es,max are minimum and maximum energy 

levels of the battery, and hs,min and hs,max are minimum and 

maximum energy levels of the heat storage. 

The electricity flows to and from the battery are limited by 

an assumed battery charge or discharge time of half an hour 

[8]. This means that within one simulation time step of 15 

minutes, the battery could be maximally charged or 

discharged with an amount equal to half the total storage 

capacity. Because the battery could be charged as well as 

discharged in one simulation time step, the constraint 

limiting the flows to and from the battery is given by: 

i, o, s,max0.5k ks s e+ ≤ ⋅ ,             (9) 

where es,max is the maximum energy that can be stored in the 

battery. At each time step k electrical energy can either only 

be imported from or only be exported to the external energy 

supplier. Constraints on the import and export power flows 

are therefore: 

ext, e 1, o,k k ke f sη≤ ⋅ +               (10) 

ext, e, maxk ke x P≤ ⋅                (11) 

ext, c, i,k k ki e s≤ +                 (12) 

ext, i, maxk ki x P≤ ⋅                 (13) 

i , e, 1k kx x+ ≤ ,                (14) 

where Pmax is the maximum power flow allowed through the 

physical connection between the household and the external 

network and xe,k and xi,k are auxiliary binary variables 

indicating whether electrical energy is imported or exported 

The heat in the heat storage changes over time depending 

on the heat consumption and generation. The dynamics of 

the heat storage are modeled by: 

s, 1 s, 1, 2, cp,k k k k kh h h h h+ = + + − ,           (15) 

where 
1, tot e 1, 2, tot 2,( ) ,k k k kh f h fη η η= − ⋅ = ⋅ , and ηtot is the total 

efficiency of the µCHP unit. Similarly, the dynamics of the 

electricity storage are modeled by: 

s, 1 s, i, o,k k k ke e s s+ = + − .             (16) 

In order to let the modeled energy conversion units 

function as they should, the binary variables , ,
CHP

up,

CHP

kk uv and 

CHP

down,ku on the one hand, and , , aux

up,

aux

kk uv  and aux

down,ku  on the other, 

have to be linked. The relations between these variables are:  
CHP CHP CHP CHP

1 up, down,k k k kv v u u−− = −            (17) 

aux aux aux aux

1 up, down,k k k kv v u u−− = −             (18) 

CHP CHP

up, down, 1k ku u+ ≤                (19) 

aux aux

up, down, 1k ku u+ ≤ .               (20) 

The first system of Fig. 2 with conventional heating is 

described by the equations (1), with only the electricity 

consumption and import flows, (6), (8), (15), (18) and (20). 

The model of the third system is identical to the model of the 

fourth system, except for that the equations regarding the 

battery are omitted.  

Stringent, thermal-led, control is envisaged to be a standard 

control strategy to be used for µCHPs when they enter the 

market. The heuristics describing this control mode are 

described in detail in [7]. We briefly explain how the 

thermal-led control was modeled. The water in the central 

heat storage is heated by the Stirling engine from a minimum 

temperature of Ts,min_CHP up to a maximum of Ts,max_CHP and 



 

 

 

Ts,max_CHP = 75 °C

Ts,min_CHP = 55 °C

Ts,min_aux = 53 °C

Ts,max_aux = 58 °C

 
 

Fig. 3. Temperature levels of the water in the heat storage with which 

the thermal-led control operates. 

should then stop operating again until Ts,min_CHP is reached 

again. If the temperature drops below a certain level, 

Ts,min_aux, the auxiliary burner heats the water from this 

Ts,min_aux to Ts,max_aux. These values are set by us as shown in 

Fig. 3. The values of the temperature levels were set after 

consulting boiler manufacturers. The Stirling engine can 

operate at full load capacity in our model. So the only 

criterion on which the µCHP is operated is temperature. 

Interested readers are advised to consult [7] for more details. 

B. MPC control objective 

The objective of the MPC controller is to minimize the 

daily operational costs of residential energy use. These costs 

depend on the price pf for gas consumption, the hourly-

varying import electricity price pi,ext and the (possibly time-

varying) price at which electricity can be sold, pe,ext. The cost 

function for control step k with a prediction horizon of N is 

therefore defined as 

-1

1, 2, f ext, i,ext, ext, e,ext

0

( )

(( ) ).
N

k m k m k m k m k m

m

J

f f p i p e p+ + + + +
=

⋅ =

+ ⋅ + ⋅ − ⋅∑
(21) 

The prediction horizon considered by the MPC controller 

consists of prediction steps m, m=0,…,N-1. The length of 

one prediction step is defined as 15 minutes. The prediction 

model that the controller uses is the same as to the system 

model as described in Section IVA. The mixed-integer linear 

programming problem to be solved by the controller at each 

time step k involves minimizing (21) subject to the equality 

and inequality constraints (1)-(20) over the prediction 

horizon N. At each k the controller measures or estimates the 

current state of the system and uses this information in 

making its control decision.  

V. SIMULATION RESULTS 

A. Simulation input 

Residential electricity and aggregated heat demand 

profiles have been created with 2006 data from 

‘EnergieNed’, the Dutch Federation of Energy Companies. 

The profiles represent the consumption for an average Dutch 

household. Heat profiles have a resolution of one hour and 

electricity profiles of 15 minutes. We used a gas price of 

0.06 €/kWh [9]. The hourly varying electricity price has 

been constructed by substituting the variable supply part of 

the residential electricity tariff (0.06 €/kWh on a total 

variable tariff of about 0.17 €/kWh [10]) with Dutch power 

exchange prices of 2006. Because power exchange prices are 

known a day in advance these can be conveyed to the 

household and used in the MPC strategy. We have assumed 

the predicted residential heat and electricity demand which 

the MPC controller uses as being equal to the actual demand. 

In calculating the heat storage content we have used a 

storage volume of 100 liters and an environmental 

temperature of 20ºC. In the MPC model minimum and 

maximum temperatures for the heat storage of 55ºC and 

80ºC were set, respectively. The battery has a storage 

capacity of 2 kWh. 

B. Results 

We have implemented the systems and MPC controllers in 

Matlab v7.3 [11] using ILOG CPLEX v10 through the 

Tomlab interface [12] to Matlab. The standard Matlab linear 

optimization solver, as well as other tested Tomlab solvers, 

proved not to be able to solve the complex optimization 

problems we are dealing with. With a prediction horizon of, 

for example, 96 steps, at each simulation time step an 

optimization problem consisting of around 2000 equations 

and 1000 variables (real and binary) has to be solved.  

We have simulated system behavior for a three month 

winter period with varying prediction lengths for the MPC 

controller. The simulation results are shown in Fig. 4 and 5. 

Fig. 5 differs from Fig. 4 in that simulations were done with 

an electricity export price of 0. In Fig. 4 the feed-back tariff 

for households was equal to the variable import tariff.  

Looking at the results of Fig. 4 and 5 and comparing them 

with our hypotheses in section III, the following insights are 

gained. The conventional system leads to energy costs of 

around 540 € in the 3 month period. A household with a 

thermal-led µCHP will have costs of around 490 € when 

there is no feed-back tariff and 382 € with the variable tariff. 

This shows the savings for µCHP households and the 

necessity for a feed-back tariff to make µCHP really 

financially attractive to households. The savings that can be 

achieved without a feed back tariff are too little to lead to 

acceptable returns on investment and therefore will not 

convince consumers with average annual heat and electricity 

demand to invest in Stirling µCHP.   

With the more flexible MPC control applied to µCHP cost 

savings can be achieved when compared to the thermal-led 

system if a sufficiently long prediction horizon is used by the 

controller. Substantial cost savings can be achieved when 

there is no electricity feed-back tariff. For N=1 savings are 

then around 53 € and around 64 € for N=96. When a variable 

feed-back tariff is present, MPC does not lead to significant 

savings (around 6 €, for N=96 when compared to the 

thermal-led system) and will probably not outweigh the 

investments in the MPC controller and additional ICT.  

Adding the battery storage of 2 kWh capacity to an MPC 



 

 

 

controlled system leads to an additional saving of about 30 € 

in 3 months (with feed-back tariff present). This saving is 

exactly equal for adding the battery to the conventional or 

the µCHP system. When there is no feed-back tariff these 

savings are only around 17 €. With present investment costs 

of residential batteries of around 500-1000 €/kWh [8] these 

savings will not outweigh the investments in a stand-alone 

battery. With possible pluggable hybrid vehicles in the 

future, however, using these vehicles as MPC-controlled 

electricity storage systems at times when the user does not 

drive the car, seems a very interesting option.  

VI. CONCLUSIONS AND FURTHER STUDY 

We have discussed the application of model predictive 

control (MPC) to various, increasingly complex 

configurations of households. Simulation results illustrated 

that MPC gives better outcomes in terms of daily energy 

costs when a substantial prediction horizon is adopted by the 

controller. We also illustrated that applying MPC to µCHP 

does not lead to substantial energy cost savings in the case 

where the electricity feed-back tariff is equal to the import 

tariff. However, with a zero feed-back tariff, MPC control of 

µCHP is financially very attractive. 

We thus showed that MPC control of DERs can lead to 

cost savings, but that these savings are strongly dependent on 

the controlled physical systems and their surroundings in 

terms of (regulated) energy tariffs. We see MPC as a means 

of making DERs more cost effective due to the possibility of 

decreasing variable costs, but recommend MPC controllers 

to be designed in such a way that they are flexible and can 

adjust to evolving systems and system environments.  

Interesting options for further research are to apply MPC 

to fuel cell µCHP systems, due to the inherent different 

characteristics of fuel cells as compared to Stirling engines 

(e.g. the much smaller heat-to-power ratio for the fuel cell). 

Also larger heat storage capacities might improve the 

benefits of MPC control of µCHP, due to the increased 

flexibility in control. Further, virtual power plants, in which 

clusters of µCHP households could be centrally controlled 

using an MPC approach, might also lead to lower energy 

costs for a cluster of households and could further lead to 

better economies of scale in terms of ICT investments. 
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Fig. 5. Full simulation costs, for varying N, and for different systems, 

with no export tariff. 
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Fig. 4. Full simulation costs, for varying N, and for different 

systems, with equal electricity import and export tariffs. 

 


