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Abstract. This paper proposes a simulation-based optimization technique for high-
dimensional toll optimization problems of large-scale road networks. We formulate a novel
analytical network model. The latter is embedded within a metamodel simulation-based
optimization (SO) algorithm. It provides analytical and differentiable structural informa-
tion of the underlying problem to the SO algorithm. Hence, the algorithm no longer treats
the simulator as a black box. The analytical model is formulated as a system of nonlinear
equations that can be efficiently evaluated with standard solvers. The dimension of the sys-
tem of equations scales linearly with network size. It scales independently of the dimension
of the route choice set and of link attributes such as link length. Hence, it is a scalable for-
mulation suitable for the optimization of large-scale networks. For instance, the model is
used in the case study of the paper for toll optimization of a Singapore network with more
than 4,050 OD (origin-destination) pairs and 18,200 feasible routes. The corresponding ana-
lytical model is implemented as a system of 860 nonlinear equations. The analytical net-
work model is validated based on one-dimensional toy network problems. It captures the
main trends of the simulation-based objective function and, more importantly, accurately
locates the global optimum for all experiments. The proposed SO approach is then used to
optimize a set of 16 tolls for the network of expressways and major arterials of Singapore.
The proposed method is compared with a general-purpose algorithm. The proposed meth-
od identifies good quality solutions at the very first iteration. The benchmark method iden-
tifies solutions with similar performance after 2 days of computation or similarly after
more than 30 points have been simulated. The case study indicates that the analytical struc-
tural information provided to the algorithm by the analytical network model enables it to
(i) identify good quality solutions fast and (ii) become robust to both the quality of the ini-
tial points and to the stochasticity of the simulator. The final solutions identified by the pro-
posed algorithm outperform those of the benchmark method by an average of 18%.

Funding: This work was supported by Division of Civil, Mechanical, and Manufacturing Innovation
and the work of C. Osorio is partially supported by the U.S. National Science Foundation [Grant
1351512].

Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2021.1043.
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1. Introduction

review of congestion pricing methods is given in de

Transportation demand management (TDM), also re-
ferred to as travel demand management or traffic de-
mand management, consists of strategies to reduce
or redistribute travel demand in time or space, such
as to improve, for instance, the efficiency or the sus-
tainability of the transportation network. The tempo-
ral and spatial dimensions of travel (e.g., departure
time, mode, route) and even the decision of whether
to travel can be shaped through TDM (Saleh and
Sammer 2009). TDM strategies include pricing and
incentives (negative pricing). Pricing strategies are
deployed more widely than incentives. Congestion
pricing has been studied extensively. A recent
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Palma and Lindsey (2011). Toll optimization is one
of the most studied types of congestion pricing. Both
offline and online toll optimization strategies have
been proposed. Offline strategies can be static (i.e.,
they yield a single toll for the entire time horizon of
interest at a given toll location) or dynamic (i.e., they
yield a time-dependent toll, such as in time-of-day
tolling). Online strategies can be reactive or proac-
tive (also known as anticipatory or predictive). Reac-
tive strategies use observed traffic conditions to de-
termine tolls, whereas proactive strategies combine
both observed and predictive traffic conditions to
determine the tolls.
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Table 1. Recent Toll Optimization Literature

Offline
Online  Analytical ~ Simulation-based =~ Toll Network

Study Static ~ Dynamic

Lou et al. (2011) v v 1 One highway segment

Dong et al. (2011) 4 v 2 One part of the I-95 corridor and its
surroundings with 3459 links

Hassan et al. (2013) v v 2 One corridor along with its adjacent
arterials

Jang et al. (2014) 4 4 1 One 14-mile highway corridor in the
San Francisco area

Toledo et al. (2015) v v 1 One 14-km highway corridor

Zheng et al. (2016) v v 1 Area-based toll for Sioux-Falls network

Chen et al. (2016) v v 5 Network of highways and arterials in
Maryland (USA) with 2158 links

Gupta et al. (2020) 4 v 13 Network of Singapore’s expressways
and major arterials with 1150 links

Liu et al. (2017) v v 7 13-Link network

Han et al. (2017) v v 10 10-Link network

Vu et al. (2018) 4 v 16 Network of Singapore’s expressways
and major arterials with 1,150 links

Chen et al. (2018) v v 5 Network of highways and arterials in
Maryland (USA) with 2,158 links

Zhang et al. (2018) 4 v 2 Highway corridor in Texas
with 167 links

This paper v v 16 Network of Singapore’s expressways

and major arterials with 1,150 links

Table 1 summarizes some of the recent toll optimiza-
tion literature. For each paper (i.e., each row), the table
indicates whether it considers an offline static problem,
an offline dynamic (i.e., time-dependent tolls) problem,
or an online problem (whether reactive or proactive).
The table also indicates whether the traffic model used
for toll optimization is analytical or simulation based,
the dimension of the toll vector, and a summary of the
network of the largest case study in the paper.

The table indicates that the focus of recent work has
mostly been on online (i.e., real-time) problems. None-
theless, such approaches are mostly limited to simple
applications that consider a single corridor with its
neighboring arterials. Few approaches, including
Gupta et al. (2020), Chen et al. (2016), and Vu et al.
(2018), have considered more intricate and large-scale
network topologies. Most literature has focused on
low-dimensional problems. The recent works of Gup-
ta et al. (2020) and Vu et al. (2018) consider a higher-
dimensional problem that optimizes 13 and 16 tolls,
respectively, distributed throughout Singapore.

The congestion pricing literature has extensively
studied the importance of accounting for a detailed
description of travel demand. For instance, accounting
for the heterogeneity in the value of time across the
population is important (Lou et al. 2011, Jang et al.
2014, Gupta et al. 2020). Furthermore, Vu et al. (2018)
have enhanced the methods to account for elasticity of
travel demand such that the travelers can change their
mode and departure time and even cancel their trip in
response to tolls. The work of Vu et al. (2018)

considers distance-based tolling. The increased com-
plexity of the demand modeling component has fos-
tered the use of simulation-based models, which can
embed detailed probabilistic travel demand models
with random coefficients, such as value of time.

When the toll optimization problem is formulated as a
simulation-based optimization problem, the most com-
mon approaches are the use of black box (i.e., general-
purpose) algorithms such as genetic algorithms (Gupta
et al. 2020, Vu et al. 2018) in combination with a con-
strained local search technique (Zhang et al. 2018). Such
approaches can be directly used to address a variety of
formulations (e.g., changes in the objective function or
the feasible region can be readily accounted for). None-
theless, this limits their performance under tight compu-
tational budgets or small samples. Given the computa-
tional cost of running high-resolution or large-scale
traffic simulators, algorithms that can yield good quality
solutions within few simulations are essential to address
intricate optimization problems such as toll optimization.

The recent approach of Chen et al. (2016) has
considered a metamodel approach to address the
simulation-based optimization (SO) problem. A gen-
eral-purpose Kriging metamodel is used to address a
five-dimensional problem for a large-scale network
with nonlinear network topology. They also apply
similar simulation-based optimization techniques for
improving the travel time reliability of the network
(Chen et al. 2018). The advantage of using a general-
purpose metamodel is that the approach can be direct-
ly applied to a variety of problem formulations.
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Nonetheless, this generality also comes with the need
to run a significant number of simulations prior to op-
timization. For instance, for the five-dimensional case
study of Chen et al. (2016), a set of 100 points are sim-
ulated prior to optimization. This limits the use of the
approach for high-dimensional problems. Distance-
based toll optimization problems have also been
receiving recent attention; Liu et al. (2017) provide a
review. This paper tackles a problem with a decision
vector of dimension 16. As indicated in Table 1, this is
considered a high-dimensional problem in the toll op-
timization literature. However, it is not considered a
high-dimensional problem for the broader field of
continuous simulation-based optimization, where
problems with approximately 100 variables are con-
sidered high-dimensional (Wang et al. 2016).

This paper focuses on the design of toll optimiza-
tion problems with the following characteristics. First,
we consider large-scale road networks such that the
large-scale (e.g., across a full city or metropolitan re-
gion) impact of the tolls is accounted for. In particular,
the use of a large-scale network model allows for cap-
turing the impacts of the tolling on traffic assignment.
This is particularly important when considering com-
muting patterns, where travelers with long-distance
commutes will react to changes in tolls throughout
the network. Second, we consider networks with intri-
cate topologies. In particular, we aim to go beyond the
analysis of linear-topology corridor studies. Third, we
consider high-dimensional problems such that vari-
ous tolls distributed throughout the network are si-
multaneously or jointly optimized. This is important
such as to account for the global (or joint) impact of
tolling on traffic assignment. This also allows for the
coordination of tolls such as to account for equity con-
siderations. Fourth, we focus on the use of stochastic,
high-resolution, simulation-based traffic models. The
latter allows for a detailed (e.g., probabilistic, dynam-
ic) description of travel demand, which is essential to
forecast the impact of tolls on congestion patterns.

This paper contributes to this area by focusing on
the design of computationally efficient algorithms.
These are algorithms that are designed to yield a good
quality solution within a few simulation runs. The
case study of this paper considers an offline static
problem. We view the design of these computational-
ly efficient offline algorithms as the building block for
efficient real-time algorithms.

Computational efficiency can be improved through
parallel computations such as in Gupta et al. (2020),
Vu et al. (2018). Nonetheless, as our transportation
systems and users become more real-time responsive
and more connected, the intricacy of both the traffic
simulation tools used and of the transportation opti-
mization problems addressed increases. Hence, there
is a need for computationally efficient algorithms.

Our approach to achieve computational efficiency is
to allow the algorithms to exploit problem-specific
structural information. More specifically, we propose
to formulate an analytical network model that approx-
imates the mapping between the tolls and the net-
work-wide traffic conditions. We then embed this
analytical structural information within the algorithm.
In other words, this analytical information is com-
bined with simulation-based information to identify
suitable toll vectors.

This paper proposes a SO algorithm that enables
high-dimensional toll optimization problems for
large-scale networks to be addressed in a computa-
tionally efficient way. The essential component of the
proposed methodology is the formulation of an ana-
lytical network model that provides an analytical and
differentiable mapping between the toll vector and
the network-wide performance metrics (such as reve-
nue and traffic conditions). The proposed formulation
is scalable and hence, suitable for large-scale net-
works. More specifically, for a network with n links,
the analytical network model is formulated as a sys-
tem of n nonlinear equations. Importantly, the analyti-
cal network model has endogenous traffic assignment,
which is one of the main distinctions from our past
work (Osorio and Bierlaire 2013, Osorio and Chong
2015). Nevertheless, its complexity (i.e., the dimension
of the corresponding system of equations) scales inde-
pendently of the dimension of the route choice set, of
link attributes (e.g., link length, number of lanes), and
of origin-destination matrix dimensions.

The proposed formulation is embedded within a
metamodel SO algorithm and is used to address a high-
dimensional offline toll optimization problem for a large-
scale Singapore network. More specifically, 16 tolls that
are distributed throughout the network of Singapore ex-
pressways and major arterials are optimized. The net-
work is modeled as set of more than 1,150 links, 2,300
lanes, and 4,050 OD pairs with more than 18,000 routes.

Section 2 presents the proposed methodology.
Validation experiments are presented in Section 3, fol-
lowed by a Singapore case study in Section 4. Conclu-
sions are discussed in Section 5.

2. Methodology

2.1. Problem Formulation

To formulate the toll optimization problem, we intro-
duce the following notation:

x decision vector (i.e.,toll vector) in a given
currency unit;
f(x) simulation — based objective function;

Fi(x) hourly flow on link i;

E[Fi(x)] expected hourly flow on link i;
xr lower bound vector;

xXu upper bound vector;

T set of links with tolls;

7 set of all links.
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The problem is formulated as follows:

max f(x) = ZT XE[Fi(x)] (1)
X < x < xy. ()

The decision vector x is the vector of toll rates, with el-
ement i denoted by x;. For the case study of Section 4,
the dimension of x is 16. In other words, the tolls of 16
distinct locations are determined simultaneously. The
objective function f(x) (Equation (1)) is an unknown
simulation-based function, which in this paper is the
expected hourly revenue. Term i in the summation
represents the expected hourly revenue for toll i. The
latter is defined as the product of the toll and of the
expected number of vehicles per hour that travel on
link i. This expected link flow is a function of the tolls
because the tolls impact traffic assignment (i.e., when
choosing their routes, the travelers account for the toll
costs). This expectation is an unknown function, which is
estimated via simulation. The toll optimization problem
considers lower and upper bound constraints for the tolls
(Equation (2)). These bounds are available in analytical
form; that is, they are not simulation-based constraints.
This problem formulation considers the main incentive
from the perspective of the toll operator: revenue maxi-
mization. The proposed methodology is suited to ad-
dress other problem formulations that account explicitly
for how tolls impact network performance. This can be
done by including in the objective function additional
network-wide performance metrics such as travel times
and speeds. In summary, the problem is a SO problem
with continuous decision variables, simulation-based
objective function, and analytical deterministic bound
constraints. Other problem formulations that account,
for instance, for the level of service or the social welfare
can also be addressed with the proposed methodology.
In practice, dynamic tolls throughout a network are
determined independently (i.e., the spatial dependencies
between tolls is not explicitly accounted for in the optimi-
zation). Commonly used approaches in practice are rule-
based approaches or lookup tables that determine tolls
based on the prevailing traffic conditions. An example is
the dynamic tolling on 1-394 in the Minneapolis-St. Paul,
MN, metropolitan area (Halvorson et al. 2011). Recent lit-
erature has addressed the spatial dependencies between
tolls. However, many recent studies focus on the analysis
of a single toll, as illustrated in Table 1. The proposed for-
mulation simultaneously determines all tolls in the net-
work. In the Singapore case study of this paper, a set of
16 tolls distributed throughout Singapore are jointly or
simultaneously determined. This allows us to account
for the joint impact of tolls on the spatial and temporal
propagation of congestion. For instance, a toll on an up-
stream link influences flow on downstream links, which
influences downstream tolls. This illustrates the impor-
tance of accounting for these dependencies between the

tolls for toll optimization. More generally, it illustrates
the intricate mapping between the toll vector, the under-
lying traffic dynamics, and the resulting objective
function.

In practice, the toll bounds (Equation (2)) are typically
given by the context. The upper bound is usually set by
regulations. It is not a decision variable. As an example
of the discussion of such regulations, we refer to Alba-
late et al. (2009), and an example from the U.S. context is
given by Zhang et al. (2018). The lower bound can be set
based on tolling policies. For example, it can be set such
as to avoid large toll fluctuations across time intervals.

This paper considers static tolls. In other words, for
a given time period (e.g., weekdays, morning peak pe-
riod) the toll costs are determined offline and fixed.
The traffic simulator used to determine the tolls is a
dynamic traffic model. The use of a dynamic simula-
tion model, unlike a static one, enables a more de-
tailed description of vehicle-to-vehicle interactions.
Therefore, it can provide a more detailed description
of the spatial and temporal propagation of congestion
and a more accurate estimation of travel times. Argu-
ably, the most important factors when determining
tolls are the value of time of users and the travel time
estimates. The simulation model used accounts for
heterogenous value of time of the traveler population.
Hence, as congestion levels and travel times vary
across time, the proportion of users that are willing to
pay the toll may also vary. A dynamic model com-
bined with a route choice model that embeds heterog-
enous value of time allows us to capture this.

2.2. Metamodel SO Algorithm

We use in this paper the general metamodel SO
approach of Osorio and Bierlaire (2013). To briefly
describe its main ideas, we introduce the following nota-
tion. The index k refers to a given SO algorithm iteration.

my metamodel function;

By parameter vector of metamodel 7;

By, element j of the parameter vector B;

fa(x)  approximation of the SO objective function

provided by an analytical traffic model;
¢(x;B;) polynomial component of the
metamodel m;
analytical traffic model formulated as a
system of nonlinear equations.

To address Problem (1)-(2), each iteration k of the SO
algorithm solves a metamodel optimization problem
of the following form:

max (% Br) = Brofa(x) + ¢ (x; By) ®)
hx;p) =0 @
xp <x <xy. ©)

Problem (1)-(2) differs from Problem (3)-(5) in two main
ways. First, the SO objective function, f(x), is replaced by

h(x; p)
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an analytical and differentiable function known as the
metamodel ;. The latter is a parametric function that is
defined as the sum of: (i) an analytical approxima-
tion of f(x) provided by an analytical traffic model
(fa(x) term) and (ii) a polynomial function (¢ term).
The metamodel can be seen as the approximation of
f provided by an analytical traffic model and cor-
rected for with both a scaling factor () and an
additive error term (¢ term). The polynomial, ¢, is
defined as a quadratic function with diagonal sec-
ond-derivative matrix. More specifically,

T T
(6 Be) = Pry + Z;J XjPjjp1 + Z;J szﬁk,jwﬂ/ (6)
j= j=

where T is the dimension of the decision vector x.
Equation (6) defines the function ¢ of (3), which is the
general-purpose (i.e,, not problem-specific) compo-
nent of the metamodel. Second, it has an additional
set of constraints (Equation (4)) that represent the ana-
lytical traffic model. The latter is formulated as a sys-
tem of nonlinear equations.

Each iteration k of the SO algorithm carries out the
following main steps: (i) use all simulation observa-
tions collected so far (i.e., all estimates of f(x)) to fit
the parameter vector, B,, of the metamodel (the least-
squares problem that is solved to fit B, is detailed in
the online appendix; it aims to minimize a distance
function between the metamodel predictions and the
simulated estimates of f(x)); (ii) solve the metamodel
optimization problem (3)-(5); and (iii) simulate new
points (for instance, simulate the optimal solution of
the metamodel optimization problem).

The main component of the metamodel that can en-
able it to address high-dimensional and intricate SO
problems (e.g., nonconvex) in a computationally effi-
cient way is the analytical traffic model approximation
(i.e., fa term). This term provides a problem-specific
approximation of f, whereas the polynomial provides
a general-purpose approximation. In other words, de-
pending on the choice of f (e.g., revenue, consumer
surplus, etc.), the functional form of f4 will vary,
whereas that of ¢ will not. The analytical traffic model
provides analytical structural information to the SO
algorithm. More specifically, it provides an analytical
and physically plausible (i.e., problem-specific) approxi-
mation of the mapping between the decision vector and
the objective function. Traditional SO algorithms treat
the simulator as a black box. The use of f4 enables prob-
lem- and network-specific information to be provided to
the algorithm. Hence, the simulator is no longer treated
as a black box.

The main challenge in this metamodel SO approach
is the formulation of an analytical traffic model that
has the following properties. First, it should provide a

good approximation of the unknown simulation-based
objective function f (such that the optimal solutions
to Problem (3)-(5) are good quality solutions to
Problem (1)-(2)). Second, it should provide a good glob-
al approximation (i.e., a good approximation in the en-
tire feasible region). This differs from local metamodels
such as polynomials. Third, it should be computational-
ly efficient to evaluate. Because Problem (3)-(5) is solved
at every iteration of the SO algorithm, it needs to be
solved efficiently (otherwise, we are better off allocating
the computing resources to running additional simula-
tions). Fourth, it should be a scalable model such that it
can be used for large-scale networks, that is, the system
of equations (4) needs to be efficiently evaluated for
large-scale networks. Fifth, it should be differentiable
such that Problem (3)-(5) can be solved with a variety of
traditional gradient-based algorithms. In Section 2.3, we
formulate an analytical traffic model with all of the
above properties for toll optimization problems. This
general metamodel SO idea has been formulated and
used to design efficient algorithms for various transpor-
tation problems, including various traffic signal control
problems (Osorio and Chong 2015, Osorio and Nanduri
2015, Chong and Osorio 2018, Chen et al. 2019), and
more recently for model calibration problems (Zhang
et al. 2017).

2.3. Traffic Model Formulation
To formulate the analytical traffic model, we intro-
duce the following additional notation:

Endogenous variables of the analytical
traffic model :

Vi expected hourly demand per lane of link i;
ki expected density per lane of link i;
v; expected(space — mean)speed per lane
of link i;
tr expected travel time for router;
Z toll cost for router;
P(r) route choice probability for router.

Exogenous parameters of the analytical
traffic model :

ds expected hourly travel demand for OD
pairs;

K jam density per lane of link i;

o maximum speed of link i;

qeep lane flow capacity;

n; number of lanes of link i;

l; average lane length of link 7;

01,6, coefficients of the route choice model;

ai;,ap; parameters of the fundamental diagram
of link i;

c scaling parameter common to all links;

O(r) OD pair of router;

R1(i) set of routes that include link i;

Ra(s)  set of routes of OD pairs;

R set of all routes;

L(r) set of links of router;
T set of links with tolls;
7 set of all links.
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The analytical traffic model is formulated as follows:

falx) = D xiny; (7a)
1 i€T

Yi=— Z P(?’)do(r) Viel (7b)
i e ()

eelt,+622r
P(r) = 5 s YTER (70)
j€R2(O(r))

t, = Z ti VreR (7d)
ieL(r)

Z, = Z x; VreRr (7e)
ieL(nNNT
Ui

X2,
v = v;naX(l - (H%)“l) vieZ  (7g)
jlam
ki:cqlc_apyi Viel (7h)

Equation (7a) is the approximation of the expected
hourly revenue provided by the analytical traffic
model. It is the analytical counterpart of Equation (1),
where the simulation-based expected hourly flow of
link i, E[F;(x)], is replaced by the analytical expected
hourly demand of link i. The latter is defined as the
product of the hourly demand per lane of link 7, y;,
and the number of lanes on link i, #;. The hourly de-
mand per lane of link 7 is defined by Equation (7b) as
the ratio of the sum of the expected demand for all
routes that travel through link i and of the number of
lanes of link i. The expected route demand is the prod-
uct of the route choice probability and the total de-
mand for the underlying OD (Origin-Destination)
pair. The route choice probability (Equation (7c)) is
approximated as a multinomial logit model with a
utility that is a function of the route’s expected travel
time and the route’s toll cost. The expected route trav-
el time (Equation (7d)) is the sum of the expected trav-
el times of its links. The route toll cost is the sum of
the tolls that are on the given route (Equation (7e)).
Equation (7f) defines the expected link travel time as
the ratio of the link length and the expected (space-
mean) link speed. The fundamental diagram of the
link is given by Equation (7g). It relates link densities
to link speeds. Finally, Equation (7h) relates the link
demand to the link density. The underlying assump-
tion is that the ratio of density to jam density is
proportional to the ratio of hourly demand to flow
capacity. The proportionality constant, ¢, is common for
all links. In this model, a common flow capacity value
is used for all links. This system of equations (7) defines
the system of equations denoted / in Equation (4).

In summary, the above analytical traffic model pro-
vides a simplified (compared with the simulator) de-
scription of how tolls impact the spatial distribution
of vehicular flow. The system of equations (7)

accounts for the dependencies between tolls (recall the
discussion in Section 2.1) through an analytical de-
scription of how tolls impact route choices, which in
turn impacts the spatial propagation of congestion
and the corresponding toll revenues.

The above model (Equation (7)) is implemented for
a network with 7 links as a system of n nonlinear
equations. In other words, the complexity of the mod-
el (i.e., the dimension of the corresponding system of
equations) scales linearly with the number of links in
the network and is independent of other link attrib-
utes such as link length or lane attributes. What is par-
ticularly remarkable is that the analytical model has
endogenous traffic assignment (i.e., endogenous route
choice), yet its complexity does not depend on the size
of the route choice set. For instance, for the Singapore
case study of this paper, the analytical model consid-
ers a network with 860 links, 4,050 OD pairs, and
more than 18,200 routes and is implemented as a sys-
tem of 860 nonlinear equations. This is a scalable formu-
lation suitable for large-scale network optimization.

A description of how this analytical model differs
from the simulation model used for the case studies of
this paper is given in the online appendix. The exoge-
nous parameters of the analytical model are calibrated
as follows.

The simulator considers multilane links, with het-
erogeneous lanes, whereas the analytical model as-
sumes all lanes of a link to be homogeneous. Hence,
the link attributes (K", o™ and ¢;) of the analytical
model are estimated as the average, over all lanes of
the link, of the individual lane attributes of the simu-
lator. The parameters of its fundamental diagram of
each link of the analytical model are defined based on
those of the simulator; the specific equation that gov-
erns this is detailed in the online appendix. For all
lanes, the analytical model uses a single lane flow ca-
pacity value (denoted ), and its value is set as the
maximum flow capacity value, among all of the simu-
lators lanes. The simulator has a predetermined route
choice set, which defines the route choice set of the
analytical model. Additional details on this are pro-
vided in the online appendix. The simulator allows
for time-dependent OD demand matrices. The time-
independent OD demand, d, of the analytical model is
obtained as the average, over the time period of inter-
est, OD demand. For the case studies of this paper,
the proportionality coefficient ¢ of Equation (7h) is
kept to the same value, which is set to 1/6. This value
was obtained through insights from numerical experi-
ments on a toy network. As is described in the online
appendix. the simulator uses a route choice model
with a probabilistic value of time, whereas the analyti-
cal model considers a deterministic value of time. The
coefficients of the route choice model (denoted 67 and
0,), including the value of time, are estimated as the
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expected value of the probabilistic coefficients of the
simulator’s route choice model.

3. Validation

We carry out experiments on a synthetic small toy net-
work, as illustrated in Figure 1. The network has one
OD pair and three multilane links in a diverge node
topology. In other words, all trips have a common ori-
gin link. After traveling on link 1, the travelers can
choose between links 2 and 3. The only difference be-
tween links 2 and 3 is that link 2 is tolled. This is a
one-dimensional problem (i.e., a scalar toll value). We
consider experiments with two different value of time
(VOT) values ($15/h and $30/h). For each of the
experiments, we consider four different demand sce-
narios. Three demand scenarios have a constant OD
demand with values of 3,600, 4,800, and 6,000 vehicles
per hour, respectively. The fourth demand scenario
considers time-dependent OD matrices, where de-
mand increases gradually (from 3,600 to 6,000), and
the average demand is 4,800 vehicles per hour. These
experiments cover various levels of congestion
ranging from free-flowing conditions to congested
conditions.

Figure 2 displays eight plots. The top plots display
the objective function (i.e., expected revenue function
f of Equation (1)) estimates obtained via simulation.
The bottom plots display the approximations derived
by the analytical network model (i.e., function f4 of
Equation (3)). A given row of plots displays, from left
to right, the demand scenarios with constant demand
of 3,600, constant demand of 4,800, constant demand
of 6,000, and increasing demand with an average of
4,800, respectively. Each plot displays two curves that
correspond to a given VOT value; a VOT of 15 corre-
sponds to the solid curve, and a VOT of 30 corre-
sponds to the dashed curve. Note that the different
plots have different y-axis limits. For a given demand
scenario (i.e., a given plot), as the VOT increases, the
maximum revenue increases, and the toll for which
maximum revenue is obtained also increases. This
holds for all demand scenarios. This trend is well rep-
licated by the analytical model. For a given demand

Figure 1. Toy Network Topology

Link 1

Origin

scenario (i.e., when comparing a given column of
plots), the analytical model has an accurate approxi-
mation of the value of the optimal toll. This holds for
all demand scenarios, with both constant and time-de-
pendent demand. Nonetheless, the magnitude of the
revenue functions differ. The analytical model tends
to overestimate the simulated revenue.

Figure 3 considers the same set of experiments. It
now displays, in the same plot, the experiments with
common VOT value yet different demand scenarios.
As before, the top (resp. bottom) plots correspond to
simulation-based estimates (resp. analytical approxi-
mations). The four demand scenarios are represented
as follows: constant demand of 3,600 (blue curve),
constant demand of 4,800 (black curve), constant de-
mand of 6,000 (green curve), and increasing demand
with an average of 4,800 (red curve). The top plots in-
dicate that for a given VOT value, as the average de-
mand increases, so does the maximum revenue, yet
the value of the optimal toll does not vary much. The
analytical model captures these trends, as indicated
by the bottom plots. Because the analytical model is
time invariant (in particular, it is a stationary model),
the revenue values for both demand scenarios (cons-
tant demand and increasing demand) with an average
demand of 4,800 are identical. The simulator, which is
a dynamic model, also yields similar expected reve-
nue functions for these two demand scenarios.

We address the toll optimization problem for this
toy network. We consider a VOT value of $15/h and a
constant demand of 4,800 vehicles per hour. We com-
pare our proposed approach with the derivative-free
generalized pattern search algorithm (Mathworks,
Inc. 2016). This algorithm was chosen as a benchmark
for the following reasons. As a derivative-free algo-
rithm, it does not rely on first-order derivative infor-
mation, which can be computationally costly to esti-
mate. It is suitable for noncontinuous and
nondifferentiable objective functions, as is the case of
our simulation-based objective function (the traffic
simulator relies on noncontinuous and nondifferentia-
ble functions). Moreover, recent work has highlighted
the good performance of similar direct search

Link 2

Destination

Link 3
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Figure 2. Comparison of the Simulation-Based Objective Function and the Analytical Objective Function for Various Demand
and Value of Time Scenarios
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techniques when used under tight computational
budgets (Dong et al. 2017).

We consider 20 different initial points, which are uni-
formly drawn from the feasible region (Equation (2)).
For each initial point, we run each method (i.e., algo-
rithm), allowing for a computational budget of 50 simu-
lations (i.e., the algorithm is terminated once a total of
50 simulations are evaluated).

Figure 4 displays the performance of each method
considering each of its 20 runs. Each plot displays the
estimate of the objective function of the current iterate
(i.e., the point considered to have best performance so
far) as a function of the total number of simulated
points (i.e., computational budget used so far). The
top (resp. bottom) plot considers the proposed (resp.
benchmark) method.

The top plot indicates that all 20 runs of the pro-
posed method identify at iteration 1 a solution with
excellent performance. This shows the ability of the
proposed method to perform well regardless of the
quality of the initial solution. In other words, it is ro-
bust to the quality of the initial point. The benchmark
method gradually finds points that have improved
performance compared with the initial point. Its per-
formance for low computational budgets (e.g., 10

simulation runs) is sensitive to the quality of the initial
point. For larger budgets, it has a performance similar
to that of the proposed method. All 20 runs of the pro-
posed method converge to the same final solution,
which is the global optimal solution. For the bench-
mark method, 16 of the 20 runs converge to this value,
and the other four runs converge to a local optimum
with an estimated objective function that is 4% lower
than the global optimal solution.

4. Singapore Case Study

We consider a case study with a network model of the
major arterials and expressways of Singapore as seen
in Figure 5(a). We consider a set of 16 tolls to opti-
mize. The 16 toll gantries are distributed throughout
the network and labeled in the figure with red circles.
The expressway links are represented with orange
lines, and the major arterials are represented with yel-
low lines. The simulation model of the network is dis-
played in Figure 5(b). It accounts for all expressway
links and a few arterial links. Currently, Electronic
Road Pricing (ERP) is deployed in Singapore such
that travelers are charged at gantries when they enter
a zone. The toll to be charged varies across the day
(time-of-day tolling) and location. The pricing is
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Figure 3. (Color online) Comparison of the Simulation-Based Objective Function and the Analytical Objective Function for Vari-

ous Demand and Value of Time Scenarios
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predetermined; it is reviewed quarterly and published
so that the travelers know exactly the toll they will
pay. We refer to Seik (2000) for the history of the ERP
system in Singapore.

The network model consists of 1,150 links with
more than 2,300 lanes, 4,050 OD pairs with more than
18,000 routes. Note that of the 1,150 links of the

Figure 4. (Color online) Comparison of the Performance of the
Algorithms for a Toy Network Toll Optimization Problem
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simulator, only 860 belong to routes of the predeter-
mined route choice set. Details on how this choice set
is defined are given in the online appendix.

Hence, the analytical model accounts only for those
860 links. Demand is defined, in the simulator, as cali-
brated, time-dependent OD matrices for every five-
minute interval. We simulate a weekday 8 to 9:30 a.m.
period; during this period, expected travel demand is
of the order of 226,247 trips. We determine the tolls
such as to optimize revenue for the 9 to 9:30 a.m. peri-
od. We set the lower toll bound to its smallest value of
S$0 and upper toll bound to a relatively high value of
5$5 (Singapore dollars). As a reference, toll values in
Singapore for the period of May to August 2018 are
provided by the Land Transport Authority (2019), and
toll values tend to be significantly lower than 5$5. We
consider five initial points. Each initial point is uni-
formly drawn from the feasible region (Equation (2)).
For a given point, we run each algorithm once and al-
low for a computational budget of 80 simulations.

We compare the performance of the algorithms as a
function of the number of simulated points (i.e., the
amount of computational budget depleted). This
allows for a comparison that is hardware (e.g., compu-
tational resources) and software (e.g., code implemen-
tation) agnostic. We also compare their performance
as a function of the total computation time. The runs
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Figure 5. (Color online) Singapore Network
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Notes. (a) Singapore expressway network (map data: Google Maps 2017). (b) Simulation network model.

are carried out on various servers, which do not guar-
antee equal CPU allocation to each job. Hence, the
computation times are indicative of efficiency, yet
the differences may not be solely attributable to the
algorithm.

Figure 6 displays the performance of each algorith-
mic run as a function of computation time. The red
dashed lines represent the proposed metamodel SO
method. The black dotted lines represent the bench-
mark method. For each algorithm, there are five lines,

which correspond to five different initial points. The
x-axis displays the total computation time in days.
The y-axis displays the simulation-based estimate of
the objective function of the current iterate. Note that
on average one simulation run takes approximately
two hours to compute. Figure 6 indicates that all five
runs of the proposed method significantly outperform
the benchmark runs for the first two days of computa-
tion. Then, there is a phase where all runs of the
benchmark outperform four runs of the proposed
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Figure 6. (Color online) Revenue of the Current Iterate as a
Function of the Cumulative Computation Time
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method. After day 3.5, four of the proposed method
runs outperform all benchmark runs. The fifth run
outperforms two of the five benchmark runs.

This figure illustrates that the proposed method
often (in four out of five instances) identifies final sol-
utions that significantly outperform the solutions pro-
posed by the benchmark method. When comparing
the objective function value of the final solution and
averaging over the five runs, the proposed method
yields an average improvement of 19% (average
revenues of 289,678 vs. 244,158). Similarly, when com-
paring the revenue of the best solution (out of the 5
solutions) proposed by each method, the proposed
method yields an improvement of 18% (revenue of
303,450 vs. 258,090). The best solution is defined as
that with the highest objective function estimate. Four
of the five proposed solutions (i.e., solutions derived
by the proposed method) have very similar objective
function values. This indicates robustness of the meth-
od to both the quality of the initial point and the sto-
chasticity of the simulator. There is higher variability
among solutions derived by the benchmark method.

During the first two days of computation, the
benchmark method slowly finds solutions that gradu-
ally improve performance. As of day 2, it finds solu-
tions with performance comparable to those of the
proposed method and that significantly outperform
the initial solutions. On the other hand, the proposed
method immediately (ie., at iteration 1) identifies
solutions with significantly improved performance
compared with the initial solution (at iteration 1, the
revenue improves on average by 95%; i.e., average
revenues of 190,150 vs. 97,229). This initial improve-
ment is entirely due to the analytical network model.

More specifically, when the algorithm starts, there
are no simulation observations available; hence, the
first current iterate is defined as the solution to the an-
alytical network model problem (i.e., a problem that
maximizes fa(x) of Equation (3) subject to constraints
(4)-(5)). This shows the added value of the structural
information provided by the analytical network mod-
el. Also note that the solutions to this analytical net-
work model problem are the same for all five initial
points. This shows the added value of using an analyt-
ical network model that provides a good global
approximation of the objective function (rather than
using local models, such as polynomials). It is this
analytical network model that leads to a SO algorithm
that is robust to the quality of the initial points.

Figure 7 differs from the previous figure in that it
considers the performance as a function of the total
number of simulated points (instead of the total com-
putation time) (i.e., the two figures differ in their
x-axis). This figure serves to compare the performance
of the algorithm independently of hardware and soft-
ware considerations. The lines are almost identical to
those of the previous figure. All conclusions from the
previous figure also hold here.

Figure 8 considers for each algorithm the five solu-
tions it yields upon termination and displays the coor-
dinates of the solutions (i.e., toll values). Each plot
contains 16 boxplots, one for each toll (i.e., each i val-
ue). For a given i, the boxplot illustrates the variability
(across the 5 solutions) of the toll values, x;. The top,
middle, and lower plot display, respectively, the five
initial points, the five final solutions of the proposed
method, and the five final solutions of the benchmark
method. The top plot confirms that the five initial
points are very different (i.e., high variability). The
middle plot shows that for most tolls there is little var-
iability across toll values. More specifically, 13 of the
16 tolls have low variability (the tolls with high vari-
ability are indexed 5, 8, and 16). The lower plot shows
that the benchmark method yields solutions with low-
er variability than the initial point, but with higher
variability than the proposed method. More specifi-
cally, 10 of the 16 tolls have lower variability under
the proposed method than under the benchmark
method. For the proposed method, eight of the tolls
have a variance smaller than 0.1, whereas for the
benchmark method, only one of the tolls is below this
threshold.

Figure 9 considers all of the points simulated across
all 10 runs (5 for the benchmark method and 5 for the
proposed method). For each of these points, it evalu-
ates the analytical approximation of the objective
function provided by the analytical network model. In
other words, it considers a given x and solves the sys-
tem of nonlinear Equations (7) to obtain fa(x), which
is the analytical network model approximation of f(x)
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Figure 7. (Color online) Revenue of the Current Iterate as a
Function of the Number of Simulated Points
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of Equation (1). For each simulated point, x, Figure 9
displays fa(x) along the x-axis and the simulated esti-
mated of the expected revenue (i.e., an estimate of
f(x)) along the y-axis. Each point (i.e., each x value) is
displayed as a cross. The figure also displays the diag-
onal line (dashed blue line). This figure shows that
most points lie along a line with positive slop. This in-
dicates that the analytical network model provides ap-
proximations that have high positive correlation with
the simulation-based estimate. It is remarkable that
such a simple analytical formulation captures the
main trends of such an intricate simulation-based ob-
jective function.

Figure 8. (Color online) Variability of the Toll Vectors for the
Initial Points and the Solutions Proposed by Each Method
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Figure 9. (Color online) Comparison of the Simulated Reve-
nue and the Revenue Approximated by the Analytical Net-
work Model
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5. Conclusions

This paper proposed a simulation-based optimization
technique for high-dimensional toll optimization
problems of large-scale road networks. The main nov-
elty is the formulation of an analytical network model.
The latter is embedded within a metamodel simula-
tion-based optimization (SO) algorithm. It provides
analytical and differentiable structural information of
the underlying problem to the SO algorithm. Hence,
the algorithm no longer treats the simulator as a
black box.

The analytical model is formulated as a system of
nonlinear equations that can be efficiently evaluated
with standard solvers. The dimension of the system of
equations scales linearly with network size and inde-
pendently of the dimension of the route choice set and
of link attributes, such as link length. Hence, it is a
scalable formulation suitable for the optimization of
large-scale networks. For instance, the model is used
in Section 4 for toll optimization of a Singapore
network with more than 4,050 OD pairs and 18,200
feasible routes. The corresponding analytical model is
implemented as a system of 860 nonlinear equations.

The analytical network model is validated based on
one-dimensional problems of a toy network. It
captures the main trends of the simulation-based
objective function and, more importantly, accurately
locates the global optimum for all experiments. The
proposed SO approach is then used to optimize a set
of 16 tolls for the network of expressways and major
arterials of Singapore. The proposed approach identi-
fies good quality solutions at the very first iteration of
the algorithm. This is entirely due to the analytical
structural information provided by the analytical net-
work model. More specifically, at iteration 1, the
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proposed method improves the objective function val-
ue by 95%. The benchmark method is slow to identify
solutions with good performance; this is achieved af-
ter 2 days of computation or similarly after 30 points
are simulated. The proposed algorithm yields final
solutions that outperform those of the benchmark
method by an average of 18%. The experiments also
indicate that the analytical structural information ena-
bles the SO algorithm to become robust to both the
quality of the initial points and the simulator’s
stochasticity.

This general idea of formulating and using structur-
al analytical problem-specific information is promis-
ing for the design of real-time algorithms. Cities
worldwide are increasingly collecting real-time data
and adapting their operations to respond to the real-
time variations of demand and of supply. Hence,
there is a pressing need to develop algorithms that
both are real-time feasible and capture the network
performance at a large-scale (e.g., an entire city or
metropolitan region). Coupling general-purpose black
box techniques (e.g., machine learning, simulation-
based optimization) with such analytical structural in-
formation is a promising approach to enable them to
achieve real-time feasibility for both high-dimensional
problems and large-scale networks. Such structural in-
formation can also improve the robustness of these
methods (e.g., to measurement errors, to sparse data).

There are various ways in which the structural in-
formation of the analytical traffic model can be used
to enhance the performance of real-time algorithms.
One promising approach is to use the analytical ap-
proximation of the simulation-based objective func-
tion to design a sampling distribution that balances
the traditional exploration-exploitation trade-off.
Ideas along these lines have been developed, for simu-
lation-based signal control problems, in Tay and Osor-
io (2017). This allows us to simulate both (i) points
with good performance (i.e., good objective function
estimates) and (ii) points that further explore the feasi-
ble region.

The majority of the computational effort lies in the
evaluation of the simulation model. For online optimi-
zation, it is essential to find more efficient ways of
performing simulation evaluations. The traditional
approach is to focus on parallelization. Promising,
and recently proposed ideas, include marginal simula-
tion (Corthout et al. 2014) and multimodel optimiza-
tion (Osorio and Selvam 2017).

This paper focuses on the design of algorithms that
can identify points with good performance within a
tight computational budget (i.e., within few simula-
tion runs). Hence, the algorithm is terminated once
this computational budget is reached (i.e., once a max-
imum number of simulations are performed). This
does not guarantee a locally optimal solution. If larger

computational budgets are considered (e.g., at least 2
orders of magnitude higher), then the algorithm can
incorporate local optimality stopping criteria. Per-
forming such local optimality tests is computationally
demanding. Therefore, it is essential to devise strate-
gies that trade off the frequency of performing these
tests with the associated computational costs. A dis-
cussion of these trade-offs in the context of discrete
SO is discussed in Xu et al. (2013).

In practice, changes in tolls can impact not only
route choices but also departure time and mode
choices. The simulator used in this paper can account
for changes of departure time, mode, and trip cancel-
lations. This can also be accounted for in the analytical
model, just as we did in this paper for route choice.
This entails using a simplified mode and/or departure
time choice model. This is particularly important
when considering a dynamic problem (where tolls
vary over time) such as to properly account for how
tolls impact the temporal distribution of demand.

The simulator accounts for time-varying network
demand, link demand, and link states. The analytical
model used to build the metamodel is a stationary
model, which does not account for temporal varia-
tions in demand and link states. The extension of
these ideas to address a dynamic problem (where tolls
vary across time intervals) will require the use of an
analytical model that captures these temporal varia-
tions. A straightforward approach would be to formu-
late a time-dependent analytical traffic model. The
main challenge would then be to derive a sufficiently
tractable analytical formulation. A different approach,
which has recently been proposed for a class of high-
dimensional SO problems (OD calibration problems),
is to use one stationary model per time interval and to
account for the temporal variations through the meta-
model parameters (Osorio 2019). The extension of
these ideas for dynamic toll optimization is part of on-
going work.

The approach of this paper enables a detailed, com-
putationally inefficient, simulation-based traffic model
to be used to tackle, in a computationally efficient
way, a toll optimization. Computational efficiency is
achieved by combining, at every iteration of the algo-
rithm, information from the simulation-based model
with information from a simplified analytical and
computationally efficient traffic model. In this paper,
the analytical model is specified as a system of
differentiable nonlinear equations. The use of other
analytical traffic models, and the study of their corre-
sponding accuracy-efficiency tradeoffs, is of interest
for future work. This could lead to new and interest-
ing challenges in the formulation and solution of the
corresponding metamodel optimization problems.

An interesting extension is to account for a multi-
class setting with different classes (i.e., types) of users.
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This could allow for a more realistic representation of
demand with different types of travelers (e.g., com-
muters, infrequent travelers) with different values of
time or willingness to pay. In particular, there is a re-
cent interest in the field for the design of personalized
tolls (i.e., there is a toll for each user class), following
the ideas of personalized mobility services (Danaf et al.
2019).

In this paper, the route choice sets of both the simu-
lator and the analytical traffic models are predeter-
mined and computed offline. In the case where the
traffic simulator considers an endogenous route
choice generation (e.g., the route choice set is comput-
ed on the fly prior to each network loading operation),
it is of interest to formulate a metamodel framework
where the route choice set of the analytical model is
also endogenous. The main methodological chal-
lenge here is to analytically account for the impact of
simultaneous changes in both the decision vector
and the route choice set on the analytical objective
function and to do so in a scalable way such that it
can used for networks with high-dimensional route
choice sets.

The approach of this paper enables a detailed, com-
putationally inefficient, simulation-based traffic model
to be used to tackle, in a computationally efficient
way, a toll optimization. Computational efficiency is
achieved by combining, at every iteration of the algo-
rithm, information from the simulation-based model
with information from a simplified analytical and
computationally efficient traffic model. In this paper,
the analytical model is specified as a system of
differentiable nonlinear equations. The use of other
analytical traffic models, and the study of their corre-
sponding accuracy-efficiency tradeoffs, is of interest
for future work. This could lead to new and interest-
ing challenges in the formulation and solution of the
corresponding metamodel optimization problems.
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