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1 Introduction

Laser scanners help acquiring the 3D geometry of real-world objects in an efficient and
simple way. To obtain 3D information of the Earth’s surface, airborne Light Detection
And Ranging (LiDAR) technology is used to quickly capture high-precision measure-
ments of the terrain. The generated raw point cloud reflects the characteristics of a Digital
Surface Model (DSM) of the measured region. Unfortunately, laser scanning techniques
are prone to producing outliers and noise (i.e. wrong measurements), due to limitations
of the sensor, illumination situations and undesirable artifacts in the scene (Jenk et al.,
2006; |Han et al., 2017). This causes problems for further processing steps, e.g. extracting
a Digital Elevation Model (DEM) or object recognition. Therefore, a pre-process of the
point cloud is required to detect and remove spurious measurements.

In 1997 a nationwide DEM of the Netherlands was created with up to one height point
per 16 m?, using airbore LiDAR (ALS) (Lemmens, 2011). In the meantime LiDAR has
evolved and is recognized as a technology with many advantages and application pur-
poses. LiDAR features high accuracy and precision with a high level of detail. Point
clouds can easily contain up to millions of points per square kilometer (Lemmens, 2011).
High levels of automation and quick data capturing make it very convenient for detailed
3D-reconstruction of the real world. However, large data sets with millions of height
measurements make manual processing almost impossible. Automatic approaches are
necessary due to larger amounts of data, but efficient and effective methods are needed
(Papadimitriou et al., 2002), i.e. large computations on point cloud data need to be effi-
cient.

Multiples reflections on surfaces such as metal or window glasses cause fault distance
measurements and result in outlying data points. Besides affecting the visual appear-
ance of the dataset, these points cause geometric differences and have a negative effect
on further processing steps. An important pre-processing step is to detect and remove
such outliers. While outlier detection in datasets has been extensively researched, in 3D
point cloud data it is still an ongoing problem. Several methods for detecting outliers in
LiDAR data are proposed and studied, and are described in Section 2| Typical methods
are designed and developed in commercial software, e.g. TerraScan and LAStools. Free
alternatives exist as well in the form of open source projects like Point Cloud Library
(PCL). Often a density-based approach is offered, which depends on the local density of
its neighborhood. The neighborhood is defined by a sphere (TerraScan, PCL) or a 3x3x3
grid (LAStools). Usually this performs well for detecting isolated points (i.e. outliers), but
are incapable of removing outliers in a format of cluster (Shen et al., 2011). Furthermore,
Arge et al.|(2010) developed a cleaning algorithm which is incorporated in a commercial
product. These developments show large interest in automatic outlier detection from the
industry.

This thesis will be in collaboration with Deltares, a technological institute for water, soil
and infrastructure. Many companies, in e.g. forestry, water management, civil engineer-
ing, benefit from accurate 3D models of the real world. Terrain models provide valuable
information, and a DEM is especially important for water management. Airborne LiDAR
(ALS) is often used for creating such DEMs. Deltares flew airplanes to collect LIDAR data
from natural environments to understand the landscape. Large data acquisitions like this



Figure 1: Point cloud with high outliers (red); low outliers (blue)

are costly and can only be done once. However, due to limitations in the acquisition
method, outliers appear in the resulting data sets. These outliers can cause inaccuracy in
the creation of a DEM. For instance, outliers below the terrain, due to multi path (see Sec-
tion[L.1), will be seen as ground points and changes the height of its local neighborhood.

1.1 Sources of outliers in ALS

Outliers are basically erroneous measurements caused by the limitations of the laser scan-
ner. Some well knows reasons are described in this section. The first is caused by the foot-
print of a laser beam, which is an ellipse. It is possible that the beam is divided when it
hits the boundary of an object. Thus the reflection value of this point would be a weighted
average of the reflection from both surfaces, creating virtual points in between (El-Hakim!
and Beraldin, 1994). A second reason can be caused by surfaces with very high or low
reflectance. Such surfaces, such as black objects, glasses or metals can cause bias in the
distance measurement, because the receiver cannot resolve the reflected beam (Beraldin,
2004). The third reason is multi path reflection. When the laser beam hits a surface under
a angle, most of the beam can be deflected onto other close surfaces and then reflected
back into the receiver. This creates a false longer distance and thus a wrong data point

(Sotoodeh| 2006).

The mentioned limitations of LiIDAR cause different types of outliers. Many studies dis-
tinguish two types, high and low outliers, I will add a third type: cluster outliers (see Fig.

1)

o Low outliers - These are points that normally do not belong to the surface. They come
from multi-path errors and errors in the laser scanner. Normally, filters work on the
assumption that the lowest point belongs to the ground.

e High outliers - These are points that also normally do not belong to the surface. They
originate from hits off objects like birds, low flying aircraft, or errors in the laser
scanner. Most filters handle such outliers, because they float high in the air far from
neighboring points.



Figure 2: Point cloud of swamp forest in Indonesia with outlying clusters; provided by
Deltares

o Outlier clusters - These points are similar to high and low outliers, but form a cluster.
This makes them harder to detect, because they are not isolated individual points.
This asks for different detection methods, which many existing tools do not offer.
They can be caused by a flock of birds, but also exist due to limitations of the sensor.
An example is seen in Fig. [2} noise is created in an arch shaped cluster.

2 Related work

Most work on outlier detection is done in the field of statistics (Barnett, 1994 Hawkins),
1980). Algorithms in machine learning and data mining have considered outliers, but
mostly in a way to deal with them in order to successfully run an algorithm
land Laird, [1988). [Hawkins| (1980) defines an outlier as an observation that deviates so
much from other observations as to arouse suspicion that it was generated by a different
mechanism. Many studies propose methods to find these data points, but most of them
suffer from two problems. First, they are univariate, i.e. they only consider one variable.
Point cloud data is multidimensional (at least x, y, z), making it unsuitable. Secondly,
in all cases you have to perform expensive testing to find a distribution that fits the data
(Johnson et al.,[1998). This makes outlier detection in point cloud data different than what
we are used to from statistical methods. Outliers are caused from different sources and
are seen as measurements that differ from its local neighborhood, i.e. data points that do
not fit the local surface geometry (Sotoodeh, 2006). Different approaches are studied to
identify these outlying points, the next section gives an overview.




2.1 Overview point cloud outlier detection methods

Point cloud filtering has been an on-going research problem in several fields, including
computational statistics, computer graphics and more. As a result many filtering methods
have been proposed. Here, only studies associated with large scale point cloud filtering
are given attention. Methods for airborne LiDAR (ALS) captured data sets are given
highest priority, but Terrestrial Laser Scanning (TLS) and Mobile Laser Scanning (MLS)
datasets are studied as well. One major difference between these capturing methods, is
that ALS results in a point cloud with an equal density of points, whereas ALS and MLS
can have different local densities. This effects density-based approaches.

Papadimitriou et al. (2002) classifies five different categories of filters as distribution-
based, depth-based, distance-based, density-based and clustering approaches. Distribution-
based methods deploy some standard distribution model (e.g. Normal distribution) and
classifies outliers those points that deviate from the model. However, for arbitrary datasets
without prior knowledge of the distribution of points (e.g. point cloud datasets), finding
the which model fits the data best. Local surface fitting approaches, for instance moving
least squares or RANSAC, are also used for outlier detection. These methods can work
well when a point cloud is dense and is obtained from a smooth surface, e.g. urban envi-
ronments. Point clouds with discontinuities or high curvature areas, for example natural
environments, are not suited for surface fitting (Sotoodeh, 2007).

The depth-based approach is based on computational geometry and computes different
layers of k-dimensional convex hulls (Johnson et al,[1998). Objects in the outer layer are
identified as outliers. In these approaches, based on some definition of depth, data objects
are organized in layers in the data space, with the expectation that objects in the outer
layer are more likely to contain outlying points. To avoid the above mentioned problems
of distribution fitting and restriction to univariate datasets, depth-based approaches have
been developed (Johnson et al., 1998). However, algorithms for this method cannot cope
with large three-dimensional datasets (Sotoodeh, 2007).

Clustering algorithms are not optimized for outlier detection, since the main objective is
clustering. However, they can be used for this, but outliers are by-products, i.e. don’t
belong to a cluster (Jain et al., [1999). Teutsch et al. (2011) clusters point cloud data to
identify sets of neighboring points that belong to the same region. Most of the resulting
regions contained less than 10 points. They considered regions with less than 1000 points
outliers, and removed all regions below this threshold. Sithole|(2005) segments ALS data
to separate terrain, house roofs, bridges and trees. Points that don’t belong to a predefined
class are labeled as outliers.

Knorr et al.[(2000) originally proposed the distance-based approach. An point in a data
set P is a distance-based outlier if at least a fraction  of the points in the local neighbor-
hood is further than r from it. This outlier defintion is determined by two parameters, r
defines the distance and B defines a threshold for number of data points. Many existing
point cloud filters are based on this approach. TerraScan, PCL and GCAL implemented
filters which removes all points in its input cloud that don’t have at least some number
of neighbors within a certain range. It performs well on 3D point cloud data to detect
isolated points. However, this can lead to problems when the data set has both dense and
sparse regions (Breunig et al., 2000).



The density-based approach is proposed in Breunig et al.|(2000). Outliers can be seen as
isolated points, which depends on the local density of its neighborhood. The neighbor-
hood is defined by the distance to n nearest neighbors. Value 7 is a predefined value and
determines the size of a local neighborhood, used to calculate the density. This method
works without prior knowledge of the distribution of points and handles different local
point densities (Breunig et al., 2000). Sotoodeh! (2006) adopted the algorithm for outlier
detection in laser point clouds. The algorithm does not detect outlier clusters with the
point density higher than n points (where 7 is a predefined threshold). The detection
of single outliers and even cluster outliers with lower density than n seems satisfactory.
While the algorithm detects a part of outliers, the problem of the detection of the cluster
outliers is still a challenge.

The distance- and density-based approach attract more attention for outlier detection,
because they are more appropriate for high dimensional, large data sets (Papadimitriou
et al., 2002). This is also reflected in the available point cloud outlier detection methods
on the market, e.g. TerraScan, LAStools and PCL have routines based on distance and/or
density of neighboring points.

2.2 Dealing with large datasets

Not all methods can be categorized in one class. Some studies propose methods combin-
ing different approaches. [Tian et al. (2012) combines distance-based method and density-
based method, and it is effective for isolated outliers and clustered outliers in airborne
LiDAR point clouds. Outlier detection is based on a kernel density estimation. This is
used to identify low and high points. To deal with altering terrain heights, the dataset is
segmented into sections. This is done by dividing the point cloud into many blocks in the
2D horizontal plane. For every separate block the density probability distribution is esti-
mated. Then a density threshold is defined to eliminate outliers. Shen et al.|(2011) detects
outliers by calculating the mean distance for every point and its k-nearest neighbors. If
the average distance is larger than an adaptively preset value, the point is regarded as an
outlier. Finding nearest neighbors is a heavy computation for a large data set, such as a
point cloud. Therefore, they construct a kd-tree of an airborne LiDAR point cloud data
set to efficiently find the k-nearest neighbors. This method is also able to find clusters of
outliers by choosing a k larger than the cluster. Large computational cost is often a prob-
lem when analyzing 3D data. Many processing steps involve the local neighborhood for
every point in the point cloud.

Vo et al.|(2015) and |Plaza et al.|(2015) construct a 3D grid of a point cloud, i.e. voxelization
overlays the input point cloud. Voxelization aim to solve the time-consumption problem
of the local neighborhood techniques by reducing the scene to a voxel model. Features
are extracted from points inside a voxel instead of finding k-nearest neighbors for each
point. The voxelization of a point cloud starts by determining the minimum bounding
box. A specified edge length for each voxel divides the minimum bounding box in a 3D
grid of cells. Every voxel with points inside are stored in the voxel data structure, i.e.
voxels without points inside are disregarded. This structure has several advantages, the
number of voxels are significant less than the number of points, and the voxel structure
can be used to find neighboring voxels easily. Vo et al. (2015) overlays the voxels with



an octree structure. After the initial partition of voxels, non-empty voxels continue to
be divided, until either the minimum voxel size or residual is satisfied. These studies
showed that employing a voxel model (1) simplifies the initial data; (2) indexes the data,
and (3) defines neighborhood groups, and thereby avoids expensive searches for neigh-
boring points (Vo et al., 2015). Furthermore, by translating (X, y, z)-points data into a 2D
regular grid, image processing techniques can be used. In remote sensing, satellite im-
agery are considered to be raster data and image processing techniques are used, e.g. for
object detection. In Section 2.2.1]T will explain why this is important for this thesis.

2.2.1 Raster Processing with Morphological Operators

Mathematical morphology is a well known technique for the analysis and processing
of digital images (Soille, 2003). It was originally developed for binary images, but was
later extended to grayscale images, and other geometrical structures, such as graphs and
meshes. The basic operations in mathematical morphology are erosion and dilation, which
are performed over a neighborhood specified by a structural element (or kernel). Usually,
the kernel is a (n x n)-window that is shifted over the image and at each pixel of the im-
age, the kernel is compared with the set of the underlying pixels. Based on erosion and
dilation, two other operations, opening and closing, can be derived. Opening is just an-
other name of erosion followed by dilation, and closing is reverse of opening (i.e. dilation
followed by erosion). A nice property of opening is that it’s useful for removing noise.

Mathematical morphology is also used for filtering LiDAR data. Chen et al.| (2007) pro-
poses a method for filtering airborne LiDAR. The idea of this morphological method is ap-
proximating the terrain surface using morphological operations. The basic idea is based
on the observation that a large height difference between two nearby cells is unlikely to
be caused by a steep slope in the terrain The first step is to create a 2D raster of a point
cloud by taking the elevation value of the last return of every pulse in a Im x 1m cell.
Then the morphological opening can approximate the bare earth, i.e. trees and vegetation
are removed. Large elevation points can be corrected to the lower elevation value of other
cells inside the kernel. The same method also removed high outliers. Kilian et al.| (1996)
use multiple structure elements of different size in the morphological operation opening.
This method works on a rasterized dataset, whereas other methods work on the point
cloud directly. |Vosselman| (2000) works with the original, irregularly distributed point
data, even though it is computationally more expensive.

Gorte and Pfeifer|(2004) designed a method based on 2D mathematical morphology raster
processing, and transferred it into the 3D domain. Connectivity and neighborhood rela-
tions between voxels in a 3D raster can be established much easier than between the orig-
inal (x, y, z)-points, using morphological operations. Closing and opening are applied to
close gaps and holes, and remove isolated points.

2.3 Available point cloud outlier detection software

Outlier detection and removal software is already available in different formats. Many
software designed for LIDAR data analysis have a tool for removing outliers. This section



mentions some well known tools.

e LAStools is a software package with several different functions for LIDAR data, e.g.
classify, convert, tile and remove noise. This specific noise detection function is
called lasnoise. This tool flags or removes outliers from LAZ/LAS files. The func-
tion searches for isolated points and can be categorized as density-based approach.
The tool tries to find points, that have only a few points in their surrounding 3 by
3 by 3 grid of cells. Cell size and maximum number of points within the cells must
be determined by the user.

e Point Cloud Library (PCL) is open source project for point cloud processing. It in-
cludes two outlier removal tools categorized as distance-based approach. The first
computes the mean distance to its nearest neighbors. All points whose mean dis-
tances are outside an interval defined by the global distances mean and standard
deviation, are considered outliers. The second method counts the number of neigh-
bors within a specified radius for every point. Points that don’t have enough neigh-
bors in its radius are flagged as outliers.

o TerraScan is software for LIDAR Data Processing by TerraSolid. It has a similar tool
for outlier detection as PCL. It searches for isolated points, by counting the number
of neighbors in a specified radius. It also has a tool for detecting low points below
the ground level due to double reflection. TerraScan is often used in practice. For
example, AHN3 is removed from outliers using this product.

The available tools are able to detect outliers in an efficient way. However, they all share
one major issue: outlying clusters of points are not identified. They also require a lot of
parameter adjustment by the user to gain maximum result.

3 Research questions

3.1 Problem statement

Airborne LiDAR is prone to producing outliers in point cloud data. A pre-processing step
is required to remove such outliers. Existing software tools mainly use the density-based
or distance-based approach to detect and remove outliers (see Subsection[2.3). They suc-
ceed for the obvious high-, low- and isolated points, but fail to detect outlying clusters
(Subsection[I.I). This requires more complex computations and cannot be solved within
density- and distance-based approaches (Subsection 2.T). For efficient data processing,
many studies propose a voxel overlay structure of the point cloud (Subsection 2.2). Be-
sides simplifying the data, translating it into a raster creates opportunities to use existing
image processing techniques (Subsection 2.2.1). Mathematical morphology is used for
filtering point clouds, and several studies show methods for removing noise (Subsection
. However, the main focus is ground estimation, and not outliers detection. More-
over, again only isolated points are detected. The full possibilities of raster processing has
not been studied yet for the identification of massive airborne LiDAR point clouds. Raster
processing can be used in 2D and 3D to analyze a voxelized point cloud, e.g. connectivity,



shape detection, and noise removal.

3.2 Research question

As argued in the introduction and the related work section the main goal of this thesis is
to automatically identify outliers (i.e. isolated points, high and low, and outlying clusters)
in large scale airborne LiDAR point clouds. The corresponding main research question is
therefore:

e How can morphological operations be used on voxelized airborne LiDAR point cloud, from
natural environments, to detect outliers?

Subquestions for this research are

o What morphological operators can be used to detect outliers in a 2D raster, and how can this
be translated into 3D?

o What is the effect of different input parameters (e.g. voxel size, kernel shape) for outlier
detection algorithms?; And can these parameters be tuned automatically?

o What is the influence of scaling the dataset on processing time?

e How to minimize processing time on massive data sets?

3.3 Research Scope

To set the scope for this research it is important to mention that this study will use, and
test algorithms on, airborne LiDAR data from natural environments. Other laser scanning
techniques and urban environments will be disregarded. Furthermore, the main focus
of this study will be on morphological operators in a 3D raster, because this is where
the most contribution can be made. Studying different existing operators with different
kernels (i.e. shape/size) to detect different types of outliers is a novel approach.

Furthermore the research aims to develop an efficient method since it should be appli-
cable on massive data sets. It is beyond the scope of this study to benchmark different
methods, but the search for an efficient approach will be discussed in a theoretical way.
However, results from testing several approaches can be discussed, including the effect
of increasing the size of the dataset.

4 Methodology

Outlier detection is done in several steps. First the point cloud will be converted into a
3D voxel structure. After converting the point cloud to a 3D raster, erosion, dilation and
opening are applied to filter noise. Opening will remove isolated points, with erosion and
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Figure 3: Schematic overview methodology

dilation points can be connected or unconnected. Clusters of noise can be removed by
investigating the connectivity. When defining connectivity in 3D, a choice has to be made
between 6, 18 and 26-adjacency, depending on the number of voxels that are considered
neighbors of a voxel: only those with a common face, also those with a common edge,
or even also the ones with a common corner. The following sections will describe the
methodology stepwise (Fig. [3).

4.1 Voxelization

Analysis is performed in the 3D raster domain where every cell can be called a voxel.
In a point cloud, (x, y, z)-coordinates are stored explicitly, in addition topology should
be stored explicitly as well. In a 3D raster voxel locations are defined implicitly by the
position in the grid. However, a grid also creates voxels on locations where no data
points are located. Therefore, it can be decided to not store voxels without points inside.
In turn this requires voxels to be stored explicitly. A solution for this problem is the octree
data structure, in Subsection this will be described.

First the methods will be developed for a regular voxel grid. The voxel value will be lim-
ited to 0 for empty voxels and 1 for voxels with laser points inside. The most parameter in
this conversion is spatial resolution, i.e. the size of one voxel. This also determines the res-
olution of the 3D raster used for raster processing and how many voxels will be created.
The number of voxels in a 3D raster increases with the 3rd power of the resolution (when
expressed in voxels/distance) and may easily become impracticable when resolution is
chosen too fine. Memory capacity problems may occur in software that needs random
access within the 3D space (Gorte and Pfteifer| 2004).
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Figure 4: Morphological operations. Four basic operations are used on a example binary

image.
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Figure 5: 3D filter kernels

4.2 Morphological Operations

After transferring the point cloud to a 3D raster, neighborhood operators are applied to
analyze the data. The neighborhood operators are 3D extensions of mathematical mor-
phological operators, such as erosion, dilation and opening (Fig. [#). Opening operator is
used for noise reduction, i.e. isolated points are removed. A bigger kernel size can also
remove small clusters of noise. Different kernels must be studied and tested for detecting
noise, Fig. 5|shows examples of different kernels and structuring elements.

4.3 Octree

To overcome the problem of storing many empty voxels and memory capacity problems
may occur, an octree for space decomposition can be used. In an octree structure all
nodes are split into eight identical children, resulting in all voxels at a single level being
the same size. Only full octree nodes are subdivided, until a minimum voxel size is
reached. Lin and Wong| (1996) describes a method for mathematical morphology direct
on quadtree images. This can be extended in a 3D octree method. This will be studied
after the previous two steps showed promising results.
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Figure 6: Input point cloud with outliers; provided by Deltares

Figure 7: Vertical section of rasterized point cloud.

5 Preliminary Results

This section will show some very preliminary results. Instead of working with a 3D
raster, image processing is used on a 2D rasterized point cloud. This already shows some
potential in the method and is able to remove isolated outliers. In Fig. [f] the point cloud
is shown that is used. It has high and low outliers and cluster outliers that intersect the
landscape in a unfortunate way, making it hard to detect and remove.

From the input point cloud a vertical section is taken and converted in a binary raster.
Value 1 for cells with laser points inside and 0 for cells without laser points inside. A
spatial resolution of 1 meter is used (Fig. [7).

The raster image is then processed with erosion (Fig. [8a), dilation (Fig. and opening
(Fig. [9). The kernel has a resolution of 7x7 pixels. The result shows that all high outliers
are removed and many low outliers. From the outlying cluster many points are removed
as well. The kernel size influences this a lot, whereas a larger window removes more, but
could also remove 'good’ points. Also, multiple iterations can be investigated.
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(a) Erosion. (b) Dilation.

Figure 8: Morphological operators erosion and dilation of raster image.

Figure 9: Erosion followed with dilation is the opening operator. High outliers are all
removed and much of the low outliers as well. Even large part of the cluster noise is
removed.

6 Time planning

In Fig. [10| the planning is shown in a GANTT chart. It is priority to develop a working
algorithm using mathematical morphology for removing outliers. After a successful work
flow, an octree based implementation can be investigated.
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Figure 10: GANTT chart of thesis planning.
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7 Tools and datasets used

The most important mentioning in this section is which data set will be used for the study.
Deltares has many tiled point cloud data from natural environments containing millions
of points. In Fig. [f] one example set is already shown. This data set contains outliers
of every type and is very challenging to clean the complete data set. This makes it a
good point cloud for testing. For accuracy assessment this dataset needs to be manually
classified to compare the results with the ground truth.

Processing of the data will be done with Julia coding language. This is a novel language
trying to achieve the best of both C+ and Python. Dealing with large data sets, Julia pro-
vides a good alternative for developing filtering methods.

For image processing, OpenCV is used. This is an Open Source Computer Vision library.
Julia has a wrapper built for it.

Furthermore other software will be used for dealing with LAZ/LAS file. LAStools for
converting, compressing etc., and CloudCompare for visualization.

14
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