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Summary 
Aquatic vegetation attenuates local currents, dampens wave energy and promotes sedimentation. Its function as 
shoreline defence has gained strong interest in the recent years, since it may offer sustainable and cost-effective 
solutions to coastal protection problems. Predictions of wave dissipation by macrophytes require understanding 
of the hydrodynamics, plant motion and the coupling between the two. Moreover, the presence of aquatic 
organisms affects the velocity field across different scales, from the interactions with individual plants to the 
effects of a community of elements, and different methodologies are applied for each of them.  

Dynveg focuses on the interaction between the organisms and the surrounding fluid at the stem-scale. It 
describes the motion of a blade based on the balance between the parameterized flow-induced loads and the 
restoring action of the stiffness and the buoyancy of the plant. It has been validated against experimental data for 
steady flows (Dijkstra and Uittlenbogaard, 2010). Döbken (2015) further developed Dynveg for its implementation 
under wave hydrodynamics. Bakker (2015) conducted a series of experiments using artificial plants in the wave 
flume of the Fluid Mechanics Laboratory, at Delft University of Technology, in order to generate data to evaluate 
the performance of the model. 

The present work aimed to use the laboratory measurements to validate Dynveg for oscillatory flows, in the small 
plant deformation regime (i.e., using the data of the most rigid stem). Additional checks were carried out to 
validate the modelled tip displacement under uniformly distributed loads.  

After its validation, Dynveg was applied in a one-way coupling using different velocity profiles. The analysis 
started from a depth-uniform oscillatory flow and the complexity of the flow was progressively increased by 
adding the effect of the variations of the velocity over the water column, changes along the horizontal coordinate, 
non-linear effects and the eulerian flow in successive steps.  

Several conclusions were derived from the results. Plants have been observed to describe asymmetric 
trajectories under waves both in the field and laboratory experiments (Luhar et al., 2010; Luhar and Nepf, 2016), 
with larger deflections in the direction of wave propagation. This behaviour had been attributed to wave non-
linearities and to the streaming within the canopy. The asymmetry in the motion was not present in the results of 
Dynveg when the input velocity profile was constant over the vertical. Nevertheless, it appeared when linear wave 
theory was implemented, before introducing higher harmonics or the effect of the mean flow. The results seem to 
suggest that the orbital water motion drives the asymmetric plant posture under waves, although higher order 
effects may enhance it even further. This would have a number of implications on the methods used to study 
plant behaviour under waves. For instance U-tubes produce depth-uniform velocity profiles and their use in the 
laboratory would not include the mechanism that drives asymmetric plant motion.  

Variations of the velocity along the horizontal coordinate had a comparatively smaller influence in the predictions 
than the changes over the vertical for the analysed conditions, although that may not be necessarily the case for 
values of stiffness below the tested range or under more energetic wave conditions.  

Other trends found in the existing literature were also identified in the model results. Plant motion led the water 
flow in accordance to the observations by Mullarney and Henderson (2010) and Stevens and Hurd (2001). When 
stems with different flexibilities were modelled under the same wave conditions, the most rigid plants produced 
more energy dissipation. The model results showed that the work of a flexible stem could be the same that of a 
completely still plant even for tip excursions equal to the 20% of the stem height. This could considerably simplify 
the methods used to predict wave attenuation, since for those cases it would not be necessary to model plant 
motion. The modelled work decreased for the lowest values of stiffness. Longer plants were able to reduce their 
relative motion with respect to the fluid for a longer part of the wave period, whereas shorter stems stayed 
deflected for a longer fraction of the wave cycle in accordance to the studies by Gaylord and Denny (1997) and 
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Bradley and Houser (2009).  When the dimensionless work was plotted against the Cauchy number the curves 
corresponded to different stem lengths converged, with maximum discrepancies of around 10% for intermediate 
values of 𝐶𝑎 . Such relationships could be applied to develop simplified expressions to account for wave 
dissipation in computationally demanding coastal models 

It was concluded that Dynveg showed a satisfactory performance reproducing both the results of the 
experiments and field observations from the literature. The next step would be its validation against the 
experimental data obtained testing the most flexible stems. The model could also be validated using velocities 
measured within a canopy, at the laboratory or at the field, in order to incorporate the effect of the mass drift 
inside the vegetation. 

Once validated, Dynveg could be used in multiple applications. Firstly, more simple predictive frameworks could 
be developed to account for wave attenuation. The results of sensitivity analysis could be very useful in the 
planning of field campaigns, for instance in determining which parameters require more accurate measurements. 
Dynveg could also be combined with statistical methods to account for the variability in plant properties within a 
natural canopy and to evaluate the rates of gap formation in a meadow. The later application could have 
important implications to the success of future restoration projects.  

 

  



        Interaction between wave hydrodynamics and flexible vegetation 

13 

Table of contents 

1.	
   Introduction ....................................................................................................................................... 15	
  

1.1.	
   Problem description ................................................................................................................... 15	
  
1.2.	
   Scope and objectives ................................................................................................................ 16	
  
1.3.	
   Approach ................................................................................................................................... 17	
  
1.4.	
   Report outline ............................................................................................................................. 18	
  

2.	
   Theoretical background ................................................................................................................... 19	
  

2.1.	
   Flow over immersed bodies ....................................................................................................... 19	
  
2.2.	
   Wave hydrodynamics ................................................................................................................ 32	
  

3.	
   Model ................................................................................................................................................ 35	
  

3.1.	
   Dynamic blade model ................................................................................................................ 35	
  
3.2.	
   Numerical implementation ......................................................................................................... 37	
  

4.	
   Experiments by Bakker ..................................................................................................................... 39	
  

4.1.	
   Set-up ........................................................................................................................................ 39	
  
4.2.	
   Observations .............................................................................................................................. 40	
  

5.	
   Model validation for submerged rigid cylinders ............................................................................... 41	
  

5.1.	
   Determination of the force coefficients ...................................................................................... 41	
  
5.2.	
   Validation of Dynveg .................................................................................................................. 46	
  

6.	
   Analysis of plant dynamics under wave loading with Dynveg ......................................................... 51	
  

6.1.	
   Depth-uniform oscillatory flow ................................................................................................... 52	
  
6.2.	
   Linear wave theory ..................................................................................................................... 54	
  
6.3.	
   Linear wave theory including horizontal variations of the velocity field ..................................... 62	
  
6.4.	
   Eulerian flow ............................................................................................................................... 66	
  
6.5.	
   Second order Stokes waves ...................................................................................................... 68	
  

7.	
   Discussion ........................................................................................................................................ 71	
  

7.1.	
   Plant posture and stem excursion ............................................................................................. 71	
  
7.2.	
   Relative plant velocity ................................................................................................................ 73	
  
7.3.	
   Base forces ................................................................................................................................ 74	
  
7.4.	
   Effect of spatial variations in the velocity field ........................................................................... 75	
  
7.5.	
   Eulerian flow ............................................................................................................................... 76	
  
7.6.	
   Formulation of the drag .............................................................................................................. 77	
  
7.7.	
   Wave dissipation ........................................................................................................................ 78	
  

8.	
   Conclusions and recommendations ................................................................................................. 81	
  

8.1.	
   Conclusions ............................................................................................................................... 81	
  
8.2.	
   Recommendations ..................................................................................................................... 82	
  

9.	
   References ....................................................................................................................................... 87	
  



        Interaction between wave hydrodynamics and flexible vegetation 

14 

 

  



        Interaction between wave hydrodynamics and flexible vegetation 

15 

1.  Introduction 

1.1.  Problem descript ion 
Aquatic vegetation (or macrophytes) encompasses different species of organisms, such as coral reefs, algae 
forests, mangroves, and seagrasses, among others. They are an important part of coastal, estuarine and 
freshwater environments and provide multiple ecosystem services (Dijkstra, 2006). Macrophytes serve as a 
habitat for many species of birds, insects, and other aquatic life (Zedler et al., 2001; Greenberg et al., 2006). 
They enhance water quality by filtering, oxygen production and nutrient recycling (Peterson et al., 1984; 
Hemminga and Duarte, 2000). Moreover, aquatic vegetation attenuates local currents (Gambi et al., 1990), 
dampens wave energy (Fonseca and Calahan, 1992; Knutson et al., 1982; Möller et al., 1999) and promotes 
sedimentation (Shi et al., 2012; Callaghan et al., 2010), subsequently acting as a buffer against flooding and 
erosion. The function of coastal vegetation as a shoreline defence has gained strong interest due to the 
increasing concern and uncertainty related to sea level rise (Borje et al., 2011) and the increasing popularity of 
soft-engineering measures in coastal protection (Capobianco and Stive, 2000, Hook et al. 1988).  

Predictions of wave attenuation by macrophytes require understanding of the hydraulic processes in vegetation 
fields (Suzuki and Arikawa, 2011). This involves knowledge of the hydrodynamics (waves and currents), plant 
motion, and the interaction between the two. Furthermore, the presence of aquatic vegetation influences the 
velocity field across different scales, from turbulence production at a single stem to changes in the mean flow 
due to the cumulative effect of the elements of a meadow (Nepf, 2011). Initial models of wave dampening 
(Darylmple et al., 1984, Kobayashi et al., 1993) related wave height reduction with the work done by drag force 
acting on the blades. They introduced a number of assumptions, such as considering plants as rigid cylinders, 
the application of the linear wave theory and the use of calibration parameters among others (Nepf, 2011). 
However, even though such approaches proved to be applicable in practice, they are not suitable for the case of 
flexible vegetation since they do not reproduce the underlying physical processes.  

The study of wave attenuation has been addressed with different methodologies at the different scales involved 
(Zeller et al., 2014). Flow at the scale of the individual plants is dominated by the no-slip condition at every 
surface of contact (Nepf, 2012). Such a condition produces an energy transfer by turbulent motions from the 
mean flow to the molecular scale, where the energy is dissipated into heat. Numerical models for flow through 
vegetation with rigid stems have been developed and used extensively to reproduce such interactions (Li and Xie, 
2011). Direct numerical simulation (DNS) of the flow characteristics is still restricted to small-scale domains 
[𝑂  (10−3) to 𝑂  (10−2) m ] and low Reynolds number environments because of its high computational cost 
(Chakrabarti et al., 2016). As a consequence, most of the research has focused on Large Eddy Simulation (LES) 
models, which explicitly solve canopy turbulence larger than twice the grid mesh, and Reynolds Averaged 
Navier–Stokes equations (RANS) models, which only simulate mean velocity fields and require explicit 
specification of momentum sinks in the model equations (Chakrabarti et al., 2016).  

Nevertheless, the computational complexity of the problem increases considerably when the vegetation is 
flexible, since it requires accounting for the continuously varying geometry and position of the plants. Some 
attempts have been done based on the assumption of small plant deflection, such as those by Kutija and Hong 
(1996) or Erduarn and Kutija (2003). Ikeda et al. (2001) developed a 2D-LES model to simulate the wavy motion 
of flexible vegetation using a complex plant grid to track the movement of each stem. However, these kind of 
methods are too computationally demanding, which have led to the development of more simplified solutions to 
account for the interaction between vegetation and water motion. A widespread alternative consists of 
representing the momentum loss at the plant-fluid interface through the use of parameterized forces that depend 
on empirical coefficients. Several models of plant motion have been developed, schematizing an individual stem 
or blade as a number of segments and applying a balance between the parameterized fluid-induced loads and 
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the restoring forces acting at each of those sections (for instance, those proposed by Mullarney and Henderson, 
2010; Zeller et al., 2014; Abdelhram, 2007; Luhar and Nepf, 2016, among others). These approaches may be 
used to acquire a better understanding of the flow-induced dynamics at flexible elements under varying 
hydrodynamic conditions. Moreover, their findings can be applied to develop simple predictive frameworks that 
can be implemented in large-scale coastal models (Luhar and Nepf, 2016), where the dimensions of the domain 
make it unfeasible to use sufficiently fine grids to account for stem-scale processes. The inclusion of vegetation 
dynamics in wave attenuation models can be done through the use of drag coefficients or effective plant lengths 
in the momentum equations that incorporate the feedback between blade bending and water flow.  

Dynveg belongs to the category of process-based approaches. It simulates the movement of one single plant 
based on a Lagrangian balance between the posture-dependent hydrodynamic forces and the restoring action of 
buoyancy and stiffness (Dijkstra, 2006; Uittenbogaard, 2006). It has been successfully combined with the large-
scale model Delft3D to reproduce two-dimensional physical processes in meadows of flexible vegetation under 
steady flow (Dijkstra, 2006). It has also been applied together with an existing 1DV k-e turbulence model and 
validated against observations of plant motion, forces on vegetation and flow characteristics from laboratory 
experiments (Dijkstra et al., 2010). Döbken (2015) further developed Dynveg for its implementation under 
unsteady flows. A set of experiments was conducted in the wave flume of the Fluid Mechanics Laboratory at 
Delft University of Technology, in order to generate data to validate the performance of the model for oscillatory 
flows. Individual artificial plants were tested in a number of wave conditions, and stem positions, flow velocities 
and horizontal base forces where measured for each of those cases (Bakker, 2015). The aim of the present study 
is to use this data-set to evaluate the performance of Dynveg and, once validated, to apply it to obtain a better 
insight on plant response to wave hydrodynamics.  

1.2.  Scope and objectives 
The present thesis aims to improve the understanding of the processes between wave hydrodynamics and 
flexible vegetation using Dynveg to model the motion of one single stem. The research objectives can be 
summarized as follows: 

• Validation of Dynveg for the small deformation regime. Evaluation of the model capability to reproduce 
the measured forces obtained by Bakker (2015) in a set of laboratory experiments using a stiff mimic. 
Analysis of the performance of the model predicting tip motion using the equation of the deflection at the 
end of a cantilever beam. 

• Description the physical processes experienced by vegetation under wave hydrodynamics using 
Dynveg. Analysis of how changes in the wave properties and the associated flow kinematics affect the 
response of a stem. Evaluation of the influence of the characteristics of the vegetation (geometry, rigidity) 
on wave dissipation. Qualitative comparison of the results and trends reproduced by the model with the 
existing literature. 

• Evaluation of the suitability of U-tubes to study plant motion under wave hydrodynamics. Flow 
visualization tests are easy to perform in U-tubes, which may make them attractive candidates to 
analyse plant motion. The flow conditions generated in such structures have been simulated using 
Dynveg in order to study if they can reproduce the hydrodynamic forcing and plant behaviour 
experienced by submerged plants under waves. 

• Analysis of the limitations associated with the use of velocity profiles computed at one single location 
instead of a spatially varying velocity field. As a stem deflects, the different parts of the plant will be 
exposed to different phases of a wave. Such an effect is neglected when the velocity profile is only 
specified at one position.  
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1.3.  Approach 
The study was addressed in two steps: 

(1) Model validation for rigid vegetation 
(2) Analysis of the response of plants under wave loading using Dynveg.  

1.3.1. Model validation for rigid vegetation 

Dynveg was validated against the laboratory measurements obtained by Bakker (2015) testing the most rigid 
stem, for which the plant motion could be considered negligible. This simplifies the problem, since it is not 
necessary to reproduce the plant dynamics to evaluate the fluid forces on the vegetation. The Morison 
formulation is a semi-empirical equation that relates fluid forces with the kinematic properties of the flow through 
force coefficients. The value of such coefficients was determined by fitting the formula using the velocity and 
force time-series recorded in the experiments. A pair of values was determined for each of the wave conditions in 
which the plant was tested. The empirical coefficients together with the measured velocities were implemented 
as an input of the model. The computed forces were compared with the measurements, to evaluate the 
accuracy of the model. Additional checks were done in order to evaluate the performance of Dynveg, making use 
of the equation of the cantilever beam and reproducing forces calculated from linear wave theory. 

 

Figure 1. Flow chart of the Dynveg validation cycle for a rigid plant, using the velocity and force time-series recorded 
during the laboratory experiments for a single stem.  

1.3.2. Analysis of plant dynamics under waves using Dynveg 

Once the model was validated, it was used to study the response of a vegetation stem under waves. This 
analysis was conducted starting from the simplest case, a depth-uniform periodic flow. The complexity was 
progressively increased by implementing linear wave theory (introducing changes along the vertical coordinate), 
including horizontal variations in the velocity field and adding other higher-order effects (such as the effect of the 
return flow caused by mass transport by waves and non-linearity’s associated with steep waves).  
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Each of these effects were applied individually and then finally combined to see how they contributed to the 
behaviour of the stem. The influence of varying the properties of the plant (size, shape, stiffness) was also 
evaluated. 

 

Figure 2. Flow chart representing the structure of the analysis of plant dynamics under wave loading.  

1.4.  Report outl ine 
The relevant literature to contextualize the present work is presented in Section 2. The equations of Dynveg and 
the characteristics of its numerical implementation are introduced in Section 3. A series of flume experiments 
using plastic strips was conducted to obtain data to analyse the performance of the model. The set-up of such 
experiments is presented in Section 4. The validation procedure for a rigid stem and the obtained results are 
exposed in Section 5. Some of the results of Dynveg displayed fluctuations that were further analysed in 
Appendix B. Additional checks of the model are presented in Appendix A. The influence of the timestep and the 
numerical integration method are evaluated in Appendix C.  

After validating Dynveg, different wave kinematics and plant properties were tested in a series of model runs. The 
results of the analysis are shown in Section 7 and discussed in Section 8. The influence of the initial flow velocity 
on the computed plant motion was studied in Appendix D. The main conclusions and recommendations of the 
study are summarized in Section 9. The first steps in the validation of the model using experimental data of 
flexible vegetation are presented in Appendix E.  
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2.  Theoretical background 
The present Section provides an overview on the interaction between the vegetation and the surrounding fluid, 
starting with the processes caused by one single element (such as blades or stems) and progressively increasing 
the complexity until explaining the dynamics of a community of organisms. A still object immersed in a steady 
current results in the development of a boundary layer on its surface, and the characteristics of such region 
determine the resistance exerted by the vegetation on the fluid, as exposed in Section 2.1.1. When the flow is 
unsteady, additional inertial forces arise as a consequence of the changes in the velocity field. This aspect is 
further explored in Section 2.1.3. By reorienting and following the water motion, plants can modify their position 
under more extreme conditions to reduce the hydrodynamic forces. A brief review of this adaptive mechanism is 
presented in Section 2.1.4.1. Plant motion increases the complexity of the problem, since in order to evaluate the 
magnitude of the loads, it is necessary to reproduce the behaviour of the body. The different ways in which 
reconfiguration is addressed are discussed in Section 2.1.4.2. The problems associated with modelling plant 
dynamics and the characteristics of the existing models are presented in Section 2.1.4.3. The influence of one 
single plant on the hydrodynamics can be considered negligible. However, the cumulative effect of the forces in a 
canopy produces changes in the mean flow, drains energy from the fluid and attenuates waves. Such topics are 
discussed in more detail in Section 2.1.5. Lastly, some of the existing theories and equations to model wave 
hydrodynamics are introduced in Section 2.2. 

2.1.  Flow over immersed bodies 

2.1.1. Flow past individual rigid elements in steady flow 

2.1.1.1. Development of the boundary layer 

Flow at the scale of the individual elements is dominated by the no-slip condition at every surface (i.e., stem, 
blades and branches) (Nepf, 2011), which states that there will be no relative motion between a solid boundary 
and the viscous fluid immediately in contact with it (Day, 1990). The thin region on the surface of a body in which 
the fluid velocity changes from zero to the velocity of the undisturbed flow is denoted as boundary layer (Munson 
et al., 2013). Low fluid velocities and high velocity gradients result in a higher relative importance of viscous 
effects with respect to inertial effects and laminar flow within this region. As the thickness of the layer increases in 
the direction of the flow, perturbations may be stronger and overcome viscous damping (Nepf, 2011). This 
results in an outer region governed by turbulent transport of momentum and a second region, adjacent to the 
solid surface, where viscous shear stresses dominate (Stevens and Hurd, 2001). The Reynolds number defines 
the relative importance of inertial and viscous effects, Re: 

 𝑅𝑒 =
𝑢 · 𝐷
𝜐  (2.1) 

Where 𝑢 is the fluid velocity, 𝐷 is a characteristic length scale of the object and 𝜈 is the kinematic viscosity of the 
fluid. As the Reynolds number becomes larger, the importance of viscous effects is confined to a smaller region 
near the body, whereas for low Reynolds numbers, the presence of the object is felt throughout a relatively large 
portion of the flow field.  
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Figure 3. Idealized sketch of the flow regions within the boundary layer along a blade schematized as a flat plate (green 
line). Its thickness increases along the plate and is denoted by δ (x). The boundary layer is initially laminar right after the 
leading edge and becomes turbulent when the Reynolds number based on the distance along the plate (D = x) reaches 

a value of approximately Re ≈ 5·105  (White, 2008). After the transition, only a fraction of the layer of the remains 
laminar, the viscous sublayer (shaded area).  

In the cases where the morphology of the macrophyte is more irregular (for instance due to the presence of 
corrugations or bulbs in the blades) or when the branches or stems have a blunt shape, fluid particles experience 
changing pressure gradients as they travel along the curved surface (Hurd et al., 1996). If the energy losses due 
to friction are high enough, the boundary layer will not be able to overcome the adverse pressure gradient along 
the rear half of the undulation. This will result in flow separation and a wake region behind the object where the 
fluid recirculates and travels against the upstream flow. Boundary separation causes a decrease in the average 
pressure at the downstream side compared to the front part of the body, producing a force in the direction of the 
flow. 

 

 

Figure 4. The upper plot shows a schematic side view of an exposed blade of Macrocystis Integrifolia from a wave-
sheltered site. The square boxes indicate the bulb, middle and end regions of the blade. The lower plot shows flow 

separation behind the undulations at the middle region, photographed during laboratory visualization experiments in the 
University of British Columbia (Hurd et al., 1997). 
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2.1.1.2. Forces acting on a rigid submerged body in steady flow 

The interactions at the fluid-surface interface can be described in terms of both (turbulent and viscous) shear 
stresses on the body, 𝜏𝑤, and normal stresses due to the pressure, 𝑝. The resultant force parallel to the upstream 
velocity is termed the drag force, 𝐹!, and is given by: 

 𝐹! = 𝑝𝑐𝑜𝑠𝜃𝑑𝐴 + 𝜏!𝑠𝑖𝑛𝜃𝑑𝐴 (2.2) 

Here 𝑑𝐴 is a differential area element and 𝜃 defines the angle between the flow and the line perpendicular to the 
surface of the object. Since the distributions of the stresses are often very difficult to obtain, the drag force is 
usually parameterized using a quadratic law: 

 𝐹! =
1
2 𝑐!𝜌𝑢

!𝐴 (2.3) 

Where 𝐴 is the frontal area of the element from the direction of the flow, 𝑢 is the flow velocity, 𝜌 is the fluid 
density and 𝑐! is a dimensionless drag coefficient which includes the effect of both viscous and form (pressure) 
drag.  

2.1.1.3. Factors affecting the drag coefficient  

The size of the wake and the nature of the flow inside of it depend on several factors, such as fluid properties, 
flow speed and the geometry of the immersed body. Some species, such as Spartina anglica marshes can be 
approximated as circular vertical cylinders (Mendez and Losada, 2004). For circular cross-sections there is a 
strong dependency between the drag coefficient and the Reynolds number, which is illustrated in Figure 5. The 
magnitude of tidal currents in coastal wetlands usually ranges between 0.02 − 0.06  𝑚/𝑠  adjacent to the 
vegetation canopy, and 0.01 − 0.04  𝑚/𝑠 inside of it (Liu et al., 2016). Given the normally small scale of the 
vegetation, the associated Reynolds numbers vary between low and moderate values. For the smallest 𝑅𝑒 the 
flow remains attached to the surface and no separation occurs. Within the range of   5   <   𝑅𝑒   <   40 a pair of 
symmetric laminar vortices form in the wake of the cylinder (Sumer and Fredsøe, 2006). With increasing flow 
velocity the wake becomes unstable and vortices are shed alternatively at each side of the cylinder, forming a 
vortex street. A further increase in 𝑅𝑒 causes a transition from the initially laminar regime to turbulence within the 
wake, which is complete for 𝑅𝑒   >   200. The drag coefficient has an approximately constant value of 1 for higher 
Reynolds numbers (Munson et al., 2013). Increasing surface roughness and incoming turbulence result in an 
earlier transition to turbulence in the boundary layer (Sumer and Fredsøe, 2006).   

Figure 5. (a) Drag coefficient for a circular cross-section as a function of the Reynolds number. (b) Boundary layer and 
wake structure for different Reynolds numbers. Adapted from: (Munson et al., 2013) 
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For sharp-edged bodies the flow separates at the edges of the object regardless of the nature of the boundary 
layer, resulting in a smaller dependence on 𝑅𝑒. Varying angles of incidence, α, are related to the movement of the 
corners where flow separation occurs, as shown in Figure 6. Changes in the orientation of the body may lead to 
asymmetries in the shear layers emanating from the two sides of the cross-section and differences in the way 
they interact. They can also produce variations in the wake width, the possibility of flow reattachment on one of 
the surfaces after separation in the leading edges, and changes in the vortex formation length among other 
aspects (McClean and Sumner, 2004). Larger widths result in wider wakes and higher drag forces (Venugopal et 
al., 2005). Variations in any of these factors may modify the values of 𝑐𝐷 for submerged objects. 

 

 

Figure 6. Structure of the wake region for a finite square prism (left). Structure of the wake region as a function of the 
angle of attack for a square prism (right). Adapted from: (McClean and Sumner, 2004). 

Different aspect ratios (height of the body over its width) also influence the wake structure, as shown in Figure 6. 
In addition to the Karman vortex street, two sets of stream-wise counter rotating vortex pairs form close to the tip 
and the base of a finite cylinder (McClean and Sumner, 2014), increasing wake pressure recovery and reducing 
the drag force with respect to an idealized infinite prism (Nepf, 1999). This flow structure produces variations of 
𝑐𝐷 along the water column, with the lowest values of the coefficient at the extremes of the finite cylinder and 
larger values at the center (Ghisalberti and Nepf, 2004).  

For slender sections parallel to the flow, such as flat plates, the drag is dominated by friction whereas form drag 
is more relevant for bluff objects. As a consequence, streamlining of a body can result in considerable drag 
reduction at high 𝑅𝑒, but it can actually increase 𝑐𝐷 for very small Reynolds numbers due to the enlargement of 
the area where shear forces act (Munson et al., 2013). The previously mentioned trends are summarized in  
Figure 7. 
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 Figure 7. Character of the drag coefficient as a function of Reynolds number for objects with various degrees of 
streamlining, from a flat plate normal to the upstream flow to a flat plate parallel to the flow (two-dimensional flow). 

Adapted from: (Munson et al., 2013). 

2.1.1.4. Effect of the angle of attack 

Flow observations at steady flow past circular cylinders by Hoerner (1965) showed that in most cases the so-
called cross flow principle is applicable and the drag coefficient can be considered independent of the angle of 
attack (Sumer and Fredsøe, 2006). When the angle of incidence of the flow with respect to a body, 𝜃, is 
approximately larger than 35º the streamlines bend around the object in such a way that the flow incides 
perpendicular to it, as shown in Figure 8. Below this range of 𝜃  the streamlines do not bend and such 
assumption is not valid. The cross-flow principle has proven to be applicable in the subcritical range (i.e., 
300 < 𝑅𝑒 < 3 · 10!) and for post-critical flows (i.e., 3 · 10! < 𝑅𝑒 < 1.5 · 10!), whereas there is evidence that it 
may not hold true for the transcritical regime (𝑅𝑒 > 1.5 · 10!) (Sumer and Fredsøe, 2006). Nevertheless, as it was 
explained in Section 2.1.1.3, those values are beyond the range of Reynolds’ numbers associated to aquatic 
vegetation.  

 

Figure 8. Bending of the streamlines as they approach a circular cylinder at oblique attack, θ. Adapted from: 
(Kozakiewicz et al., 1995). 



        Interaction between wave hydrodynamics and flexible vegetation 

24 

According to the cross-flow principle, the friction drag coefficient 𝑐𝑆 (parallel to the body) and the form drag 
coefficient 𝑐𝑁 (perpendicular to it) for circular cylinders is given by: 

 𝑐! = 𝑓𝑐!𝑠𝑖𝑛𝜃 (2.4) 

 𝑐! = 𝑐!𝑐𝑜𝑠𝜃 (2.5) 

Where 𝑐𝐷 is the drag coefficient for a body perpendicular to the flow, 𝑓 is the ratio of the wet perimeter to the 
area of the cross section and 𝑐𝑓 is a viscous friction coefficient. 

Numerous measurements are available for flat strips perpendicular or almost parallel to the flow, but there is a 
limited number of experiments that analyse intermediate orientations (Dijkstra et al., 2006). Moreover, values of 
the drag coefficients obtained in experiments at a larger scale may not be applicable for smaller aquatic 
organisms because of differences in the structure of the boundary layer. Due to this uncertainty, Dijkstra et al. 
(2006) performed a series of experiments with rectangular plastic strips at different angles with the flow. Their 
dimensions were chosen to emulate the characteristics of eelgrass Zostera Marina. Horizontal and vertical forces 
on the strips were measured under a range of Reynolds numbers, resulting in the following fit: 

 𝑐! = 0.018  𝑓 sin 𝜃 (2.6) 

 𝑐! = min  (2 cos 𝜃 + 0.1 tan 𝜃 , 2𝜋) (2.7) 

Here 𝑐𝑁 was limited to 2𝜋 for stability reasons, which is a characteristic value of flat plates at small angles of 
attack with the flow (Dijkstra et al., 2006). 

2.1.2. Flow past a canopy of rigid elements in steady flow 

The canopy drag coefficient varies with the density of the array, the Reynolds' number of the individual elements 
(based on their width) and their morphology (Nepf, 2011). Shear-layer scale turbulence (i.e. turbulence produced 
due to shear on top of the canopy) may sweep through the meadow and shift the transition to turbulence in the 
wake to lower flow velocities, with 𝑅𝑒   <   200 (Ghisalberti and Nepf, 2004). In analogy to isolated bluff bodies, 
𝑐𝐷  increases with decreasing 𝑅𝑒 when drag forces arise from viscous stresses. An increase in density generates 
a larger drag for this range (Nepf, 2011). When pressure drag dominates 𝑐𝐷 reaches values of the order of 1. For 
the highest Reynolds' numbers its value decreases and falls below the value of isolated cylinders. Higher 
densities will result in lower 𝑐𝐷 for this regime due to the interactions between the canopy elements (Nepf, 1999). 
The wakes of upstream bodies reduce the impact velocity in the neighbouring objects and incoming turbulences 
delay flow separation in downstream elements (Zukauskas, 1987), resulting in smaller drag forces. 

2.1.3. Flow past individual rigid elements in oscillatory flow 

Flow reversal under oscillatory flow results in boundary layer removal every wave period. The adjustment time-
scale of the viscous and turbulent boundary layer is often sufficiently rapid (i.e. < 1 s) for steady conditions to 
develop even with fast changes in the background flow (Stevens and Hurd, 2001). Nevertheless, wake 
development depends on the ratio between the stroke of the motion and the geometry of the obstacle, which is 
often characterized by the Keulegan-Carpenter number, 𝐾𝐶 (Sumer and Fredsøe, 2006): 

 𝐾𝐶 =
𝑢 · 𝑇
𝐷  (2.8) 

In which 𝑢 is the maximum velocity, 𝑇 is the period of the oscillatory flow and 𝐷 is a length scale of the body. For 
very small 𝐾𝐶 separation may not even occur. When 𝐾𝐶 increases particles can travel larger distances relative to 
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the size of the object, resulting in separation and probably vortex shedding. As 𝐾𝐶 tends towards infinity, the flow 
in half a period resembles a steady current (Sumer and Fredsøe, 2006).  

The values of the drag coefficient are usually higher under waves than in steady flow, since the vortices shed in 
one half-cycle are swept back and form pairs with successive vortices of opposite sign during the next half-cycle 
(Venugopal et al., 2005). The resulting vortex pairs usually convect away from the body at an angle with respect 
to the flow that varies with 𝐾𝐶 (Graham, 1980). Sharp-edged cross sections are associated with flow separation 
at the leading edges for very low 𝐾𝐶 and consequently display larger values of 𝑐! in this range compared to 
smoother circular shapes, as shown in Figure 9.  

 

Figure 9. Drag coefficients for low values of the Keulegan-Carpenter number. Source: (Graham,1980). 

There are two additional contributions to the in-line force (i.e., resultant force in the direction of the flow) besides 
the drag for oscillatory flows. When an immersed body is set into motion due to the action of pressure, the mass 
of fluid in the immediate neighbourhood of the object is also accelerated due to the no-slip condition and follows 
its movement (Sumer and Fredsøe, 2006). The volume of displaced water is denoted as hydrodynamic mass and 
causes additional resistance against the motion. The second contribution is the Froude-Krylov force, which arises 
from the unsteady pressure gradient that accelerates the fluid past an object (Batchelor, 2000). 

The Morison formulation was developed for the calculation of force distributions exerted on piles by surface 
waves (Morison et al, 1950) and it has also been applied to define the external forces acting on a blade (Luhar 
and Nepf, 2016; Denny et al. 1998). Assuming that the velocity and acceleration of the body are negligible 
compared to that of the fluid, the total force per unit length is written as: 

 𝑑𝐹 =
1
2 𝜌𝑐!𝑤𝑢

! + 𝜌𝑐!𝐴
𝑑𝑢
𝑑𝑡 + 𝜌𝐴

𝑑𝑢
𝑑𝑡  (2.9) 

The first term in equation (2.9) is the drag force, previously defined in Section 2.1.1.2 in which 𝑤 is the width of 
the object. The second term corresponds to the hydrodynamic mass force and the third term represents the 
Froude-Krylov force, where 𝐴 is the cross-sectional area of the body, 𝑑𝑢/𝑑𝑡 is the acceleration of the fluid, 𝜌 is 
the fluid density and 𝑐𝑎 is the added mass coefficient. The two last terms are often combined using the inertia 
force coefficient 𝑐𝑀, defined as: 
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 𝑐! = 𝑐! + 1 (2.10) 

Resulting in: 

 𝑑𝐹 =
1
2 𝜌𝑐!𝑤𝑢

! + 𝜌𝑐!𝐴
𝑑𝑢
𝑑𝑡  (2.11) 

The inertial forces are predominant in the range of relatively small 𝐾𝐶 numbers, while drag forces dominate at 
large 𝐾𝐶 numbers, where inertial forces are constant (Okajima et al., 1998). The application of equation (2.11) 
relies on the definition of the empirical coefficients 𝑐! and 𝑐!. The inertia coefficient is closely related to the 
flow volume around the body (Venugopal et al., 2005) and can also be related to the flow properties, 
according to relationships that depend on the shape of the cross-section, as shown in Figure 10. 

 

Figure 10. Inertia coefficients for low values of the Keulegan-Carpenter number. Source: (Graham,1980). 

In the case that the relative motion of the body with respect to the flow is not negligible, the Morison equation 
can be written as: 

 𝑑𝐹 =
1
2 𝜌𝑐!𝑤(𝑢 − 𝑢!)

! + 𝜌𝑐!𝐴
𝑑𝑢
𝑑𝑡 + 𝜌𝑐!𝐴

𝑑𝑢!
𝑑𝑡  (2.12) 

In which 𝑢𝑣 and 𝑑𝑢𝑣  /𝑑𝑡 are the velocity and the acceleration of the body in the flow direction.  

2.1.4. Flow past individual flexible bodies 

2.1.4.1. Reconfiguration as an adaptive response to hydrodynamic loads 

Plants seek to maximize their surface area to capture the most sunlight as well to facilitate the mass exchange 
with the surrounding fluid (Harder et al. 2004). Nevertheless, an upright posture in the water column exposes 
them to higher hydrodynamic forces (Stewart, 2004). Aquatic organisms have evolved a variety of strategies to 
survive the large loads imposed on them, such as large waves (Koehl, 1984). One of those mechanisms is drag 
reduction by elastic reconfiguration (de Langre et al., 2012). By bending and twisting plants reduce their 
projected area perpendicular to the flow, and, on the other hand, they become more streamlined, diminishing the 
form drag (Vogel, 1994). Laboratory experiments by Gosselin et al. (2010) showed that the effect of streamlining 
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is prominent at the onset of reconfiguration whereas area reduction dominates in the regime of large 
deformations. Moreover, bending pushes aquatic vegetation closer to the ground, where the flow velocities are 
lower (Etnier and Vogel, 2000). For instance individuals of certain species may avoid overcritical loads by 
escaping into the benthic boundary layer (Harder et al, 2004).  

By swaying with the ambient flow organisms decrease their relative velocities and accelerations with respect to 
the fluid (Koehl, 1984). However, the effectiveness of such stress-reducing mechanism is conditioned by the 
morphology of the plants and their natural environment. Aquatic organisms gain momentum as they follow the 
fluid. At some point in their travel, plants are halted by the elastic attachment to the stationary substratum, which 
results in rapid deceleration and the imposition of an inertial force on their mass (Denny et al., 1998). Long and 
flexible organisms in rapidly accelerating flows (for instance under breaking waves) would experience strong 
inertia forces twice (once shoreward and once seaward) every wave cycle (Harder et al., 2004). In contrast, stiffer 
and smaller plants would not move substantially with the flow, which would result in lower inertia forces. 
Moreover, loads that result from the water’s acceleration are more efficiently minimized by a small overall size 
rather than area reduction, since inertia forces scale with the volume, as it can be observed in equation (2.12) 
(Gaylord and Denny, 1997). Reconfiguration is a more efficient adaptive response in habitats associated with a 
less violent water motion, where drag is the main form of mechanical loading (Gaylord, 2000).  

        

Figure 11. The left picture shows a specimen of Mastocarpus papillatus, characteristic of intertidal habitats. It 
quickly reconfigures to a more streamlined position and remains aligned with the flow during the passage of 
waves. Its small size minimizes inertia forces associated with the strong accelerations typical of its natural 

environment. The right photography portrays a giant kelp (Macrocystis pyrifera), which extends from depths of 30 
m or more to the surface. They can be found in subtidal areas, where they are exposed to comparatively less 
violent hydrodynamic loads and sway with the fluid motion for most of the wave period (Gaylord and Denny, 

1997). 

The ability of plants to follow the fluid is conditioned by their length in relation to the size of wave-driven orbits 
(Luhar and Nepf, 2016). Relatively short organisms (due to their reduced dimensions or under higher waves in 
shallower water) quickly readjust their shape and reach their maximum deflection with the initial wave impact, 
remaining extended during most of the period (Gaylord and Denny, 1997). Under such conditions, the relative 
velocities and accelerations approach the values for rigid vegetation and drag-reduction is only due to 
streamlining (Bradley and Houser, 2009). A longer plant (or the same aquatic organism exposed to smaller waves 
in deeper water) can continue to move over a larger fraction of the wave cycle. Thus, the upper part of the plant 
can follow the flow whereas drag forces are mainly generated at its base (Mullarney and Henderson, 2010; Luhar 
and Nepf, 2016).  

2.1.4.2. Modelling plant reconfiguration 

Assuming that an organism extends in the direction of the flow (and that its velocities and accelerations are 
considerably smaller than those of the fluid) the use of a constant drag coefficient or a constant relevant area in 
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equation (2.11) would yield to an expected increase in the drag with the velocity squared (Denny et al., 1988). In 
practice the increase would be lower (de Langre et al., 2013), since as presented in the previous section, the 
overall shape of a flexible biological body changes under different flow regimes (Harder et al., 2004). Several 
options have been suggested in the existing literature to accommodate such effects: 

• A number of authors (Dalrymple et al., 1984; Kobayashi et al., 1993; Mendez and Losada, 2004) have 
introduced the use of variable shape factors, 𝑐𝐷, that change with the fluid velocity while keeping the 
area constant (Harder et al., 2004). The effective drag coefficient is often empirically related to the 
Keulegan-Carpenter number or the Reynolds number, defined in terms of a length scale of the geometry 
(usually the width of the cross-section). This type of relationships has proven to provide reliable 
estimates for individual rigid cylinders. Nevertheless, drag forces in a flexible canopy depend on blade 
bending. Without including the effects of vegetation motion in the definitions of 𝑅𝑒  and 𝐾𝐶 , these 
dimensionless numbers only represent the strength of the flow. Since different species (with different 
mechanical properties) will react differently to the same flow conditions the fitting parameters will change 
in each field site (Zeller et al., 2014).  

• A second option is to regard the relevant area as varying with the velocity. Losada et al. (2016) used the 
concept of deflected length, ℎ, to compare the bending of Spartina Anglica and Puccinellia Maritima 
under waves: 

 ℎ
𝑙 = cos 𝜃 𝑑𝑠

!

!
 (2.13) 

Where 𝑙 is the total length of the blade, ℎ its effective height, 𝑑𝑠 is a segment of the blade and 𝜃 is the 
angle that it forms with the vertical direction. Luhar and Nepf (2011) introduced the concept of effective 
length, 𝑙𝑒, which besides accounting for area reduction also incorporates the effect of streamlining. 
Assuming that the cross-flow principle is applicable, 𝑙𝑒 is defined as:  

 𝑙!
𝑙 = cos! 𝜃 𝑑𝑠

!

!
 (2.14) 

In their study, they developed empirical relationships for unidirectional flows that related the effective 
length with the Cauchy number, 𝐶𝑎, a dimensionless parameter commonly used in the study of fluid-
structure interactions (Blevins, 1984). 𝐶𝑎 characterizes the relative importance of the bending stiffness 
with respect to the hydrodynamic loading and can be written as: 

 
𝐶𝑎 =

1
2
𝜌𝑐!𝑤𝑢!𝑙!

𝐸𝐼  (2.15) 

In which 𝑢 is the flow velocity, 𝑐𝐷 is the drag coefficient, 𝜌 is the fluid density, 𝑙 is the length of the blade, 
𝑤 its width and 𝐸𝐼 its flexural rigidity. In a latter publication in 2016, they derived analogous expressions 
for oscillatory flows where the effective length was also a function of a second parameter, the ratio of the 
blade length to the orbital excursion (𝐿). 

• Another possibility is the use of expressions derived from the second power relationship between drag 
and velocity, through the inclusion of the Vogel exponent, b, in the quadratic law defined in Section 
2.1.1.2. (de Langre, 2008): 

 𝐹! =
1
2 𝑐!𝜌𝑢

!!!𝐴 (2.16) 
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Alben et al. (2002) developed a simplified model in which a fibre was represented as an elastic beam 
loaded by the pressure drag, which was balanced by the tensile and bending forces in the material. The 
most rigid fibres displayed a quadratic growth of the drag with the flow speed (𝑏 = 0). For the most 
flexible blades the scaling between form drag and velocity was almost linear (𝑏 = −2/3). The Vogel 
exponent varied between both extremes over a significant range of Cauchy numbers (Gosselin et al., 
2010). Besides, aquatic vegetation can be positively buoyant; seagrass blades have gas-filled lacunae 
and kelps and other macroalgae have gas filled floats called pneumatocysts (Stewart, 2006). In those 
cases buoyancy acts a restoring mechanism and pushes the organisms to upright positions. Its 
contribution results in a sub-linear increase of the pressure drag with the flow speed (Luhar and Nepf, 
2011). Faster flows could result in alignment of the fibre with the flow and dominance of skin friction. 
This would result in 𝑢!/! scaling (𝑏 = −1/2) instead of a near-linear growth of the drag (Alben et al, 
2002).  

When the motion of the plant is significant, accurate predictions of the vegetation-induced forces require 
modelling the dynamics of the plants. There no universally accepted methodology to account for vegetation 
motion (Luhar and Nepf, 2016). A brief review of some of the existing models is presented below.  

 2.1.4.3. Modelling plant motion 

Several simple models for wave-forced vegetation motion have been proposed in the literature. Most of them are 
based on a balance between the hydrodynamic forces and the restoring forces in a single plant, with different 
simplifications of key aspects of the system. Elastic forces and buoyancy tend to keep vegetation straight. 
Nevertheless, the inclusion of rigidity makes the equations governing blade motion more strongly coupled and 
more difficult to solve (Zeller et al., 2014). As a consequence, many numerical studies have focused on cases 
where the flexibility of the stems was considered negligible or assumed the vegetation to be infinitely rigid. For 
instance, Abdelrhman (2007) developed a model for a seagrass blade under steady flow in which buoyancy was 
the main restoring force and the blade had no stiffness. Mullarney and Henderson (2010) derived an analytical 
method to reproduce the motion of a single stem exposed to oscillatory flow by linearizing the Euler-Bernoulli 
equation, under the assumption that the plant experiences small deflections. Nevertheless, the model did not 
include the effect of inertia and buoyancy. Luhar and Nepf (2011) covered intermediate rigidities in a latter study, 
but their model was limited to steady flow. Zeller et al. (2014) combined numerical modelling and experimental 
observations to simulate finite amplitude motions incorporating both drag and inertia forces. Luhar and Nepf 
(2016) developed a model to reproduce the motion of a stem exposed to oscillatory flow, assuming that it is 
inextensible and that it moves without twisting. The model results were compared to stem positions and forces 
measured during a series of laboratory experiments.  

Different species may be associated with different schematizations and simplifications. For instance, the feather 
boa kelp, Egregia menziesii is so flexible that for small lateral motions the restoring force is negligible, and the 
effect of stiffness is only significant when the deflection is larger than a certain threshold. A larger number of 
branches or additional structural elements would increase the complexity of the system. For terrestrial vegetation 
such problem has been addressed by modal superposition, adding up the solution of the oscillator equation for 
the different components of the plant (de Langre, 2008). 

2.1.5. Effects of a canopy in the hydrodynamics 

The effect of one single plant on a steady flow can be considered negligible. Nevertheless, the cumulative effect 
of the elements of a meadow results in significant drag, which causes redirection of the fluid over the top of the 
canopy and a decrease of the water velocity within the vegetated region (Nepf, 1999). As a result there is strong 
velocity shear and greatly increased turbulent intensities at the upper part of the plants relative to undisturbed 
flow (Gambi et al., 1990). If the momentum absorption by the canopy is high enough, the resulting velocity profile 
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resembles that of a mixing layer, with two regions of constant velocity separated by an inflection point (Ghisalberti 
and Nepf, 2008). Such a point makes the flow susceptible to Kelvin-Helmholtz instability, i.e. wave instabilities 
that grow and roll up into vortices that pass on top of the meadow at a fixed frequency (Holmes et al., 1996). 
These coherent structures can be identified as peaks in the velocity spectrum. When the flexibility of the 
vegetation is high enough, the oscillations in the streamwise velocity trigger a progressive, synchronous, low 
amplitude waving of the plants; the so-called monami (Ghisalberti and Nepf, 2002).  

There is also energy dissipation at the stem-scale within the canopy. The energy of the mean flow is converted 
into turbulent kinetic energy within the stem wakes when their flow structure is turbulent. When the wakes are 
laminar, the energy is directly dissipated into heat through viscous drag (Nepf, 1999). The latter mechanism may 
be dominant for the case of submerged flexible vegetation that bends in response to hydrodynamic loads (Nikora 
and Nikora, 2007). In principle, the determination of turbulence production would require using direct numerical 
simulations to fully resolve the turbulence (Zeller et al., 2014). A more simple approach estimates turbulence 
generation by parameterizing the forces between the vegetation and the fluid using the quadratic law. 

 

Figure 12. Effect of canopy density on the vertical profile of the mean flow. The upper plots show natural aquatic 
vegetation with different densities; (a) Seagrass Cymodocea nodosa at low stem density and (b) the seagrass Posidonia 
oceanica at high stem density. The lower plots represent the most important turbulent structures for different densities 
expressed in terms of 𝑎ℎ, where 𝑎 is the projected plant area per unit volume and ℎ is the water depth. Source: (Nepf, 

2012) 

Energy removal under oscillatory flows results in wave height attenuation. Such removal accomplished by the 
work done on the fluid by aquatic plants. Mathematically, the rate of work per unit length is defined as the 
product between the relative velocity between the ambient flow and the vegetation (𝑢 − 𝑢𝑣) times the force that 
the plants applies to the fluid in the direction of the flow, 𝑑𝐹, as shown in equation (2.9). The total work is 
obtained by integrating over the height of the stems, ℎ𝑣. Physically, it represents how much the organisms resist 
the motion of the fluid, consequently removing energy from the waves (Zeller et al., 2014).   

 
𝑊 = 𝑑𝐹   𝑢 − 𝑢!   𝑑𝑧

!!

!
 (2.17) 

The energy dissipation over the wave phase is given by: 

 
𝑊 =

1
𝑇 𝑊𝑑𝑡

!

!
 (2.18) 
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Where 𝑊 is the instantaneous work and 𝑇 is the wave period. 

Observations and theoretical studies have shown that the periodic flow generated by surface waves is less 
dampened within a canopy compared to a unidirectional current of the same magnitude (Lowe et al., 2005; 
Luhar et al., 2010; Luhar et al., 2013). Besides this, the lower in-canopy velocities are more easily reversed in 
comparison with the stronger upper flow and subsequently lead it in phase, in a similar manner to the streaming 
phenomena within the benthic boundary layer (Döbken, 2015). 

Both laboratory experiments and field measurements have suggested that waves induce a mean mass drift in the 
direction of wave propagation within submerged canopies. The magnitude of this current was found to be from 
20% up to 40% of the near bed oscillatory velocities within the meadow (Luhar et al., 2010; Luhar et al., 2013; 
Pujol et al., 2013; Ma et al., 2013). Döbken (2015) related the generation of the streaming to the vertical orbital 
velocity of fluid particles on top of the vegetation. Fluid parcels penetrate in the meadow with the backward 
motion, which produces a higher drag and flow reduction compared to the forward motion under the wave crest. 
In a period-averaged sense, the result is a residual drift in the wave propagation direction. Observations by Pujol 
et al. (2013) showed that for the case of emergent vegetation, where there was no discontinuity in the drag along 
the water column, the drift was not present. The degree of penetration of the streaming depends on the 
characteristics of the vegetation such as the height of the canopy, its density and the mechanical properties of 
the individual elements (Döbken, 2015; Pujol et al., 2013). Luhar et al. (2010) proposed that the induced drift is 
responsible for the asymmetry found in plant posture under waves, with the stems lying in the propagation 
direction under the crest and being more upright during the trough. It was hypothesised that the larger exposed 
area under the wave trough could result in a larger drag for the negative oscillatory velocities and consequently 
further reinforce the streaming.  

 

Figure 13. Eulerian velocity profile under pure oscillatory flow for three seagrass structures and two height ratios, ℎ!/ℎ, 
where ℎ

𝑣 is the height of the canopy and ℎ is the water depth. Solid lines represent the mean vertical profile (a) without 
vegetation; (b) submerged rigid vegetation, which shifts the negative velocities upwards and produces streaming within 
the canopy (c) flexible submerged vegetation and (d) emergent rigid vegetation. Luhar et al. (2010) also found a current 
in the direction of propagation inside the canopy for case (c). Such differences were attributed to the wavemaker and 

the amplitude of the waves in the experiments. Source: (Pujol et al., 2013) 
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Dissipation induced by aquatic plants is not uniform across all frequencies; vegetation has been found to behave 
a low-pass filter, producing higher attenuation of short period waves (Manca et al., 2012; Jadhav et al., 2013). 
Lowe et al. (2007) explained such phenomenon in terms of the higher ability of flows induced by high frequency 
waves to penetrate into the vegetation, resulting in larger drag forces and higher wave height reduction for such 
components. Bradley and Houser (2009) suggested that the increased attenuation for smaller periods waves was 
also due to the changes of the relative motions of seagrasses with frequency and that this mechanism may be 
more important under low-energy conditions. They also observed that although vegetation may sway with the 
flow, it does not move passively for most periods.  

The use of numerical models to reproduce plant motion has provided new insights to the stem response to 
oscillatory flows. For instance, Mullarney and Henderson (2010) modelled the motion of the sedge 
Schoenoplectus americanus under waves and compared it with field observations. They found that waves with 
high frequencies excited rigid vegetation modes that produced considerable dissipation. For the case of short 
waves, reducing the period resulted in a decrease of the effective stiffness and less attenuation. Zeller et al. 
(2014) also obtained higher dampening of high-frequency waves, which they associated with the ability of plants 
to react to changes in the flow and to move more in phase with it under long waves. Within a wave spectrum, 
seagrasses were observed not to move in phase with the higher peak frequency and appeared to follow less-
energetic waves at a lower frequencies, resulting in less dissipation for such wave components (Bradley and 
Houser, 2009).  

When multiple plants are combined in a canopy, the response of the individual stems is very sensitive to the 
arrangement of the elements and to blade-blade interactions. For instance, the collapse of the elements at the 
leading edge of a marsh produces a more even distribution of the hydrodynamic forces, higher stability of the 
community and lower wave attenuation (Fonseca et al., 2007).  

2.2.  Wave hydrodynamics 

2.2.1. Linear wave theory 

The small amplitude or linear wave theory is the simplest theory for two-dimensional progressive gravity waves. 
The theory is developed linearizing the equations that define the free surface boundary conditions, under the 
assumption that the amplitude of the wave is small compared to both the wavelength and the water depth. Its 
accuracy decreases for high waves at sea or waves propagating in nearshore shallow areas, where these 
conditions do not strictly hold (Sorensen, 2006). The various wave characteristics (i.e., surface elevation, particle 
kinematics, wave celerity) are derived from a velocity potential that satisfies both the requirement for irrotational 
flow and the boundary conditions. The horizontal and vertical components of the velocity of a water particle are 
defined by the following expressions: 

 𝑢(𝑥, 𝑧, 𝑡) =
𝜋𝐻
𝑇
cosh 𝑘(𝑧 + ℎ)
cosh 𝑘ℎ cos 𝜔𝑡 − 𝑘𝑥  (2.19) 

 𝑤(𝑥, 𝑧, 𝑡) =
𝜋𝐻
𝑇
sinh 𝑘(𝑧 + ℎ)
sinh 𝑘ℎ sin 𝜔𝑡 − 𝑘𝑥  (2.20) 

Where 𝐻 is the wave height, 𝑇 is the wave period, 𝑘 is the wave number, 𝜔 is the angular velocity, 𝑡 represents 
time, 𝑥 is the horizontal position of the particle, ℎ is the water depth and 𝑧 is the elevation in the water column. 
The different parameters and the reference system are shown in Figure 14.  
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Figure 14. Surface waves propagating from deep-water conditions (orbital motion), towards shallow water conditions 
(elliptical motion). The criterion depends on the wavelength compared to the still water depth, h. Adapted from: 

(Döbken, 2015).  

According to linear wave theory, the water surface is approximated as a sinusoidal wave and fluid particles 
describe closed elliptical paths under the free surface, with the horizontal and vertical velocities being 90º out of 
phase. The orbits tend to circles in deep water whereas in shallow water they degenerate into a back and forth 
motion along the bottom (Svendsen, 2006). 

2.2.2. Undertow 

The particle trajectories are only closed in the first order approximation. The contributions of higher order terms 
produce a larger displacement of the fluid particles in the direction of wave propagation than in the backward 
motion and result in a residual mass flux. The mass transport by waves can be obtained integrating the trajectory 
of the particles over a wave cycle, using a Lagrangian description of the motion. The vertical profile of the 
Lagrangian drift can be written as (Phillips, 1977): 

 𝑢(𝑧) = 𝜔𝑘𝑎!
𝜋𝐻
𝑇
cosh 2𝑘(𝑧 + ℎ)
2 sinh! 𝑘ℎ  (2.21) 

In the surf zone, due to the presence of a confined boundary, the mean mass flow over the wave period must be 
equal to zero. This results in a return current that is equal to the amount of water carried shoreward by the 
breaker, known as the undertow (Svendsen, 2006). Within the breaking zone there is a vertical imbalance of the 
forces, which results in the mass transport by waves being dominant in the upper part of the water column and 
an offshore return flow underneath (Brown et al., 2014). Out of the surf zone (for instance in the inner shelf), the 
Eulerian return flow is defined in magnitude by the velocity profile given by equation (2.21) but directed in the 
offshore direction, resulting in a piecewise compensation of the drift (Monismith et al., 2000).  
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Figure 15. (a) Water particle paths over a wave period. The full curves are the paths in second order Stokes wave 
motion, the dashed lines the equivalent linear wave solution. Adapted from: (Svendsen, 2006). (b) Structure of the mean 

flow in the surf zone. The Stokes drift tends to a depth-uniform profile and the undertow is parabolic. There is an 
integral compensation, but a vertical imbalance (c) Structure of the mean flow in the inner shelf, where the Lagrangian 

Stokes drift and the wave-driven Eulerian flow cancel at every point. Adapted from: (Brown et al., 2014). 

2.2.3. Stokes second order theory 

Real waves at intermediate water deviate from the sinusoidal shape assumed in linear wave theory. They are 
characterized by shorter and higher crests and longer and shallower troughs (Sorensen, 2006). Such differences 
are accentuated in shallow water, where waves grow in size as they shoal. The second order Stokes theory 
accounts for the non-linearities by introducing a forced oscillation that propagates at the same speed than the 
main harmonic and with a frequency twice as large, as shown in Figure 16. The additional contribution to the 
velocity associated with such component is given by: 

 𝑢!(𝑥, 𝑧, 𝑡) =
3
16 𝑐 𝑘𝐻

! cosh 2𝑘(𝑧 + ℎ)
sinh! 𝑘ℎ cos 2 𝜔𝑡 − 𝑘𝑥  (2.22) 

 𝑤!(𝑥, 𝑧, 𝑡) =
3
16 𝑐 𝑘𝐻

! sinh 𝑘(𝑧 + ℎ)
sinh! 𝑘ℎ sin 2 𝜔𝑡 − 𝑘𝑥  (2.23) 

Here 𝑐 is the wave celerity and 𝑢2 and 𝑤2 are the horizontal and vertical velocities of the higher harmonic, which 
add up to those calculated using small amplitude theory. The inclusion of non-linearities in the velocity field 
produces asymmetries in its amplitude over the wave period, with higher velocities under the wave crest and 
lower velocities during the trough. 

 

Figure 16. Second order Stokes wave. The Stokes wave, 𝜂  (𝑡), is the result of the addition of main component 𝜂!(𝑡) 
and the non-linear term 𝜂!(𝑡).  Adapted from: (Brorsen, 2007) 
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3.  Model 

3.1.  Dynamic blade model 
The vegetation model, Dynveg, describes the two-dimensional motion of a blade, excluding elongation or folding 
of the plant (Dijkstra and Uittenbogaard, 2010). In order to reproduce large deflections the blades are discretized 
in a number of segments defined by the coordinate s, measured along the plant from 𝑠 = 0 at the base to 
𝑠 = 𝑠!"# at the tip, as shown in Figure 17. The angle between the stems and the vertical direction is defined as 
𝜃. The coordinate 𝑛 represents the direction perpendicular to the leaf.  

 

Figure 17. Balance of forces in a segment s. Source: (Dijkstra and Uittenbogaard, 2010) 

For each of the partitions the balance of forces is given by: 

 
𝜌!𝑎

𝜕!𝑥
𝜕𝑡! = 𝑞! +

𝑑𝐹!
𝑑𝑠          

(3.1) 

 
𝜌!𝑎

𝜕!𝑧
𝜕𝑡!     = 𝑞! +

𝑑𝐹!
𝑑𝑠 + 𝑔(𝜌! − 𝜌!)𝑠𝑖𝑛 𝜃    (3.2) 

Where 𝑞!  and 𝑞!  are the distributed external forces along the leaf and 𝐹!  and 𝐹!  are the internal force 
components. The left hand terms represent the acceleration of the plant (𝜕!𝑥/𝑑𝑡!and 𝜕!𝑧/𝑑𝑡!), with  𝑎 being 
equal to the cross-sectional area of the blade. The motion of the surrounding virtual water mass is included 
through the density, 𝜌!: 

 𝜌! = 𝜌! + 𝑐!𝜌 (3.3) 

In which 𝜌! is the density of the stem, 𝜌 is the fluid density and 𝑐! is the added mass coefficient. The distributed 
loads consist of both the drag and the inertia forces and are defined by equations (3.4)-(3.7). The inertia part of 
the loads corresponds to the Froude-Krylov force, resulting from the horizontal and vertical acceleration of the 
fluid (𝑢 and 𝑤 respectively): 

 𝑞!,! = 𝑐!𝜌𝑎𝑢     (3.4) 
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 𝑞!,! = 𝑐!𝜌𝑎𝑤     (3.5) 

Here 𝑐! is the inertia coefficient, previously defined in equation (2.10). The drag force is defined in the local 
coordinate system of the blade (𝑠, 𝑛):  

 𝑞! =
1
2 𝜌𝑏𝑐! 𝑢 − 𝑥 𝑢! (3.6) 

 𝑞! =
1
2 𝜌𝑏𝑐! 𝑢 − 𝑥 𝑢! (3.7) 

Where 𝑏 is the width of the plant, 𝑢! and 𝑢! are the velocities parallel and perpendicular to the leaf and the drag 
coefficients 𝑐! and 𝑐! are defined using the empirical expressions presented in Section 2.1.1.4. The Cartesian 
and the local coordinates can be related through the transformation matrix Ω: 

Ω = sin 𝜃 − cos 𝜃
cos 𝜃         sin 𝜃        

The internal forces can be expressed as a function of hydrodynamic load and the plant acceleration by 
rearranging equations (3.1) and (3.2): 

 𝑑𝐹!
𝑑𝑠 = 𝜌!𝑎

𝜕!𝑥
𝜕𝑡! −   𝑞!         

(3.8) 

 𝑑𝐹!
𝑑𝑠 = 𝜌!𝑎

𝜕!𝑧
𝜕𝑡!     − 𝑞! − 𝑔 𝜌! − 𝜌! 𝑠𝑖𝑛 𝜃    (3.9) 

On the other hand, they are also coupled to the internal moment M:  

 𝑑𝑀
𝑑𝑠 =

𝑑𝑥
𝑑𝑠 𝐹! −

𝑑𝑧
𝑑𝑠 𝐹!         (3.10) 

The internal moment is related to the leaf’s curvature ∂θ/ds through the following equation: 

 𝑀 =   𝐸𝐼
𝜕𝜃
𝑑𝑠                (3.11) 

Since the leaf does not elongate, the Cartesian coordinates can be defined as a function of the deflection angle. 
This allows expressing the kinematic properties of the blade in terms of the angle 𝜃 and its derivatives: 

             
𝑑𝑥
𝑑𝑠 = sin 𝜃          (3.12) 

   
𝑑𝑧
𝑑𝑠 = cos 𝜃  (3.13) 

The tip of the plant is defined as unloaded (both forces and moments are equal to zero) and the root is fixed to 
the bed but allowed to rotate. Equations (3.1)-(3.13) can be combined into one integro-differential equation, 
which together with the boundary conditions, closes the problem and allows determining the only unknown, θ s .  
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The governing equation can be written as: 

 𝜕
𝜕𝑠 𝐸𝐼

𝜕𝜃
𝑑𝑠 !

= − cos 𝜃 𝑞! 𝑠! 𝑑𝑠!
!"#

!
+ sin 𝜃 𝑞! 𝑠! 𝑑𝑠!

!"#

!
           (3.14) 

+ 𝜌!𝑎 𝑠! cos 𝜃 𝑠 − 𝜃 𝑠!! 𝜃 𝑠!! 𝑑𝑠!!𝑑𝑠! +
!!

!

!"#

!
𝜌!𝑎 𝑠! sin 𝜃 𝑠 − 𝜃 𝑠!! 𝜃! 𝑠!! 𝑑𝑠!!𝑑𝑠!

!!

!

!"#

!
 

− cos 𝜃 𝑐!𝜌!𝑎
𝑑𝑢 𝑠!

𝑑𝑡 𝑑𝑠!
!"#

!
+ sin 𝜃 𝑐!𝜌!𝑎

𝑑𝑤 𝑠!

𝑑𝑡 𝑑𝑠!
!"#

!
 

3.2.  Numerical implementation 
The governing integro-differential equation was expressed in a dimensionless form by dividing it by the flexural 
rigidity of the blade, 𝐸𝐼, and multiplying it by the leaf length, 𝑆, resulting in (Uittenbogaard, 2006): 

 𝛼 𝜃 𝑠!! 𝑑𝑠!!
!!

!

!!"#

!
+ 𝛽 𝜃 𝑠!! 𝑑𝑠′′𝑑𝑠′

!!

!

!!"#

!
− 𝛾

𝜕𝜃
𝑑𝑠 !

= 𝛿 − 𝜂 1𝑑𝑠′
!!"#

!
         

(3.15) 

Where 𝛼,𝛽, 𝛾, 𝛿 and 𝜂 are dimensionless coefficients, defined below: 

 𝛼 =
𝜌!𝑎𝑆!

𝐸𝐼𝜏!  (3.16) 

 
𝛽 =

1
2 𝜌!𝑐!𝑤𝑆

! 𝑢
𝐸𝐼𝜏              (3.17) 

 𝛾 =   1               (3.18) 

 
𝛿 =

1
2 𝜌!𝑐!𝑤𝑆

! 𝑢 𝑢
𝐸𝐼                (3.19) 

 
𝜂 =   

𝜌! − 𝜌! 𝑔𝑎𝑆!

𝐸𝐼                (3.20) 

The equation was also discretized both in space and time in order to formulate a linear set of equations given 
implicitly in term of 𝜃!!!!!, with new time level 𝜃!!! (𝑗 = 0) and previous time levels 𝜃!, 𝜃!!!, corresponding to 
𝑗 = 1,2. The leaf was subdivided in 𝑠𝑚𝑎𝑥  segments of length Δ𝑠. The orientation of each segment 𝜃! was defined 
at its center. The integrals were discretized in space by the application of the mid point rule. The spatial 
derivatives were approximated by the second order central operator. The magnitude of the relative velocity in the 
drag,   𝑢 − 𝑥 , was defined in the previous time. The square of the angular frequency 𝜃! was considered as the 
product of the value of the previous timestep, 𝜃!, times the result of the new timestep, 𝜃!!!. 𝜃 was defined from 
the segment angle 𝜃 considering it slightly advanced in time (Uittenbogaard, 2006): 

 𝜃! = 𝜃!!! − 𝜃! (3.21) 

The angular acceleration term was approximated by three temporal time levels, according to: 
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 𝜃!! = 𝜃!!!! + 𝜃!!!! − 2𝜃!! (3.22) 

Lastly, the spatial derivative of 𝜃  was decomposed between the timesetps 𝜃!!!!  and 𝜃!!!!  using the theta-
method. The choice of the coefficient depends on the problem investigated; when the focus is the shape of the 
plant and there is not interest in smaller wavy motions 𝜎 = 1 provides increasing damping with larger wave 
numbers. A value of 𝜎 = !

!
 results in weaker damping of such motions.  

The previously exposed steps yielded the assemblage of the final matrix equation. The equation is defined as 
follows: 

 
𝐴!,!!!𝜃!!!

!!! + (𝐸!,!!! +
!"#$

!!!!!

!"#$

!!!!!

𝐵!,!!!)𝜃!!!
!!! + 𝐶!,!𝜃!!

!!! = 𝑑!

!!!

!!!!!!

 (3.23) 

Here 𝐴,𝐵,𝐶,𝐸 and 𝑑! are matrices containing coefficients and values of the variables defined a previous time 
levels. The equation is solved by Gauss elimination with partial pivoting, leading to the solution at the new time 
level, 𝜃!!! (Uittenbogaard, 2006). 
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4.  Experiments by Bakker 

4.1.  Set-up 
Experiments with artificial plants (“mimics”) were conducted in the wave flume of the Fluid Mechanics Laboratory, 
at Delft University of Technology, in order to generate data to validate Dynveg. A number of individual stems were 
tested under varying wave conditions. For the different set-ups, both motion and forces at the base were 
measured (Bakker, 2015).  

The wave flume is 40 m long and 0.8 m wide (Hu et al., 2014). A wave generator with an active wave absorption 
system is located at one side of the flume. Four rectangular mimics with different cross-sections and materials 
(ABS, polypropylene and polystyrene) were analysed. Two heights (ℎ = 0.15  m and ℎ = 0.30  m) were used for 
each mimic. The properties of the tested plants are summarized in Table 1. Eight different wave conditions were 
selected as input for wave generation, with a water depth of ℎ = 0.45  m in all of them. The drag force exerted on 
the individual stem was measured with a force transducer (FT) mounted in the false bottom. The wave properties 
were recorded by a number of capacitance-type wave gauges (WG), located at different positions along the 
flume. The instantaneous horizontal (𝑢) and vertical (𝑤) velocities were measured with an electromagnetic flow 
meter (EMF) at a fixed elevation in the water column. Every time the mimic set-up changed (the type of mimic or 
its height) the elevation of the measurements was modified. Nevertheless, since the flow is considered to be 
undisturbed by one single stem, velocity profiles under a certain wave conditions were obtained combining data 
from different experiments. The motion of the stem was captured with a video camera and post-processed to 
obtain the shape and location of the vegetation over time.  

 

Figure 18. Schematic overview of the experimental set-up. Source: (Bakker, 2015) 

Table 1. Properties of mimics that were used in the experiments, where Mimic 1 is the most flexible artificial plant and 4 
the most rigid. 

Mimic Length Width Thickness Young’s Modulus Density 
- hv [cm] b [mm] d [mm] E [N/m2] ρ

v
 [kg/m3] 

1 15/30 10.0 0.2 8.70E+08 950 
2 15/30 10.0 0.5 3.30E+09 1030 
3 15/30 8.0 1.6 2.20E+09 1090 
4 15/30 6.0 6.0 2.20E+09 1090 
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4.2.  Observations 
The most flexible mimics followed the wave motion, with more symmetric excursions under small waves and 
larger excursions in the wave direction under larger waves. This asymmetry was partially explained by the non-
linearity of higher waves (Bakker, 2015) but also by the reconfiguration of the stem, resulting in a streamlined and 
drag reducing position during the negative orbital velocity (Döbken, 2015). Periodic twisting of the mimics was 
recorded under the highest waves. 

 

Figure 19. Sketch of the asymmetric motion of flexible vegetation under waves. Source: (Bakker, 2015) 

Base forces were estimated using linear wave theory, the Morison formula and constant drag and inertia 
coefficients (𝑐! = 2, 𝑐! = 2) and compared with the results from the experiments. The differences were greater 
for flexible stems, where a large part of the mimic moved with the flow and the measured forces were 
considerably lower than the predictions. For such cases, a reduction of mimic length did not result in appreciable 
changes in the forcing. The correspondence between estimations and measurements was better for rigid 
mimics, where decreasing the height of the plant resulted in a similar decrease in the base force. Vibrations 
(3 ≤ 𝑓 ≤ 13  𝐻𝑧) were observed for the long stiff stems under large waves, associated with vortex shedding. The 
shortest and stiffest mimic experienced faster vibrations, with 𝑓 ≈ 50  𝐻𝑧 , that seemed to correspond to 
estimates of its first natural frequency (Bakker, 2015).  
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5.  Model val idat ion for submerged r igid cyl inders 
For the most rigid stem tested by Bakker (2015) (Mimic 4) the hydrodynamic force is small compared to the 
mechanical restoring force and the motion of the plant is negligible (𝑥 ≈ 𝑧 ≈ 0). The properties of the stiffest 
stem are summarized in Table 1. Since the plant can be assumed to remain still, the mean drag and inertia 
coefficients can be derived from the Morison equation directly introducing the measured velocities in equation 
(2.9). Values of 𝑐! and 𝑐! were calculated that minimized the difference between the recorded force and the 
estimate by the Morison formula in Section 5.1. The coefficients for each wave condition were introduced as an 
input in Dynveg together with the corresponding velocity records. This allowed to compute the forces at the base 
and to assess whether the model reproduces the results of the experiments. The comparison between the 
modelled and measured forces is shown in Section 5.2. Additional validations for the regime of small plant 
deformation are included in Appendix A.  

5.1.  Determination of the force coeff icients 

5.1.1. Method 

There are various techniques to determine the force coefficients experimentally for a particular wave record 
(Sumer and Fredsøe, 2006). Isaacson et al. (1991) discussed the relative accuracy of different approaches for 
periodic flows using numerical simulations and concluded that out of the examined techniques, the least squares 
method applied to the force time series was the simplest and most accurate. It consists of the minimization of the 
mean-squared difference between the measured and predicted forces (Borgman, 1972) and assumes constant 
values of the inertia and drag coefficients over the wave period. The sum of the errors over the length of the 
record is given by: 

 𝜀! = 𝐹! 𝑡 − 𝐹! 𝑡 ! (5.1) 

The minimum error 𝜀! corresponds to the pair of values of 𝑐! and 𝑐! that satisfy the following equations (Sumer and 
Fredsøe, 2006): 

 𝑓! 𝑢!(𝑡) + 𝑓! 𝑢(𝑡) 𝑢 𝑡 𝑢(𝑡) = 𝑢(𝑡) 𝑢 𝑡 𝐹!(𝑡) (5.2) 

 𝑓! 𝑢(𝑡) 𝑢 𝑡 𝑢(𝑡) + 𝑓! 𝑢!(𝑡) = 𝑢(𝑡)𝐹!(𝑡)  (5.3) 

with: 

 𝑓! =
1
2 𝜌𝑐!𝑤 (5.4) 

 𝑓! = 𝜌𝑐!𝐴   (5.5) 

Here 𝑢  (𝑡), 𝑢  (𝑡) and 𝐹!  (𝑡) denote the velocity, acceleration and force measured at time 𝑡, 𝜌 is the fluid density, 
𝐴 is the cross-sectional area of the stem and 𝑤 is its width.  

It should be born in mind that the method is quite sensitive to errors in time lag between wave and force signals 
and subsequently requires accurate estimations of the relative phase error (Isaacson et al., 1991). It can be used 
both for the whole record and for each individual wave cycle (Naghipour, 2001). A moving window approach was 
firstly adopted in this work, in which a least-square fit was applied over successive portions of the force time 
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series. This provided a picture of the variability of the estimated coefficients (Isaacson et al., 1991) and allowed to 
assess the convergence of the conditions to a steady state. A time interval equal to twice the wave period was 
used instead of doing a wave-by-wave analysis in order to minimize spurious effects. 

5.1.2. Time series correction 

Bakker (2015) conducted a total of 24 different experiments for mimic 4. For every length (ℎ! = 0 − 15 − 30 cm), 
8 wave conditions were tested resulting in 16 set-ups, i.e. combination of stem length and wave condition, from 
which the force coefficients can be obtained (Table 2). Data corresponding to the transient periods at the 
beginning and at the end of the experiments were not included in the analysis.  

Table 2. Test conditions for Mimic 4 with varying wave and stem configurations 

Mimic hv [m] H [m] T [s] Experiment 

4 

0.3 0.04 1.0 4L30H040T10EMF025 
0.3 0.04 2.0 4L30H040T20EMF025 
0.3 0.07 1.5 4L30H070T15EMF025 
0.3 0.07 2.5 4L30H070T25EMF025 
0.3 0.11 2.0 4L30H110T20EMF025 
0.3 0.11 3.0 4L30H110T30EMF025 
0.3 0.16 2.0 4L30H160T20EMF025 
0.3 0.16 3.5 4L30H160T35EMF025 

0.15 0.04 1.0 4L15H040T10EMF050 
0.15 0.04 2.0 4L15H040T20EMF050 
0.15 0.07 1.5 4L15H070T15EMF050 
0.15 0.07 2.5 4L15H070T25EMF050 
0.15 0.11 2.0 4L15H110T20EMF050 
0.15 0.11 3.0 4L15H110T30EMF050 
0.15 0.16 2.0 4L15H160T20EMF050 
0.15 0.16 3.5 4L15H160T35EMF050 

Every time a stem was tested in the laboratory the velocities were measured at a fixed height for all wave 
conditions. For instance, the elevation of the EMF for Mimic 4 with ℎ! = 30 cm was 𝑧 = 2.5 cm above the bottom 
in all the runs. This height was changed whenever a different type of plant was analyzed; when the length of 
Mimic 4 was changed to ℎ! = 15 cm the velocities were recorded at 𝑧 = 5 cm. In order to construct the 
complete velocity profile under a wave condition, time series for velocities from different types of stem were 
combined since the effect of a single plant on the hydrodynamics is considered negligible. The relative time shift 
between the flow measurements from different experiments was calculated in order to ensure that the velocities 
along the vertical coordinate corresponded to the same phase of the wave. The time shift was determined by 
maximizing the correlation between the surface elevation of each test case and that of the reference set-up, 
according to: 

 
𝑅(𝜂! 𝑡 , 𝜂! 𝑡 + ∆𝑡! ) =

𝜂!" 𝑡 , 𝜂!" 𝑡 + ∆𝑡!
!/∆!
!!!

𝜂!" 𝑡 + ∆𝑡!)!
!/∆!
!!!

 (5.6) 

Where 𝜂! and 𝜂! are the surface elevations for the configuration of interest and for another experiment with the 
same wave condition, 𝑇 is the wave period, ∆𝑡 is the timestep and ∆𝑡! is the time shift.  
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Figure 20.  (a) Correlated and (b) uncorrelated velocity signals from different experiments (with different mimics and 

heights of the EMF) for the wave condition 𝐻 = 0.07  m  and 𝑇 = 2.5  s 

Time shifts were also observed in the measured velocity, force and surface elevation signals caused by the low-
pass pre-filter in the EMF and wave gauges. The delay with respect to the force transducer was of 80 ms for the 
velocity and 30 ms for the surface elevation (Döbken, 2015), and these offsets were corrected for. For each 
mimic, depth-integrated values of the squared horizontal velocity were used to estimate the force coefficients: 

 
𝑢!(𝑡) =

1
𝑁 𝑢!!(𝑡)

!!!

!!!

 (5.7) 

Where 𝑁 is the number of elevations where the velocities were recorded and 𝑢!(𝑡) is the velocity time-series at a 
height 𝑧!. 

5.1.3. Evolution of the coefficients 

The coefficients obtained from fitting successive intervals of 2 wave periods displayed a similar temporal 
behaviour in all cases. The time evolution of 𝑐! for the longest mimic under the most energetic wave condition is 
shown in Figure 21. 

 

Figure 21.  Time-varying estimated drag coefficient estimated for mimic 4 with ℎ! = 0.3 m, 𝐻 = 0.16 m and 𝑇 = 3.5 s 
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As it can be observed in Figure 21, the wave-averaged drag coefficient fluctuates over time and does not 
converge to a steady value. Within a shorter adjustment period, a quasi-steady free surface elevation was 
reached in the experiment, as shown in Figure 22, for which the wave surface profile at contiguous periods was 
almost the same. Nevertheless, the convergence to the steady state is governed by a longer timescale, 
representative of the time required by the energy of the group to travel over the flume along the rays (Waseda et 
al., 1992). Wave harmonics produced by wave generators superimpose forming a wave train. Wave energy 
travels with the envelope of the free surface at a propagation speed that is lower than that of the individual 
waves, i.e. the wave celerity (Fredsøe and Deigaard, 1992). It is not known from either theory or experiments how 
much time is required to establish steady state dynamic conditions in a wave flume (Nath, 1978). Furthermore, 
laboratory measurements are affected by harmonic contamination by the wave maker, resonant modes within 
the flume and long bound wave motion among other effects that violate the assumption of steady flow (Tørum 
and Gudmestad, 2012).   

5.1.4. Convergence to steady state 

The undertow is an offshore-directed current that compensates for the shoreward mass of water in the presence 
of a confined boundary. Considering a Eulerian mass balance in the water column, it can be related to the wave 
energy density (Stive and Wind, 1986). As a consequence, the development of the undertow has been analysed 
to gain a better insight of the evolution of the wave energy during the experiments. 

 

Figure 22. Measured surfface elevation for Mimic 4 with ℎ! = 0.3  m, 𝐻 = 0.16  m and 𝑇 = 3.5  s. 

The time-evolution of the wave-averaged velocity at a fixed elevation below the wave trough is shown in Figure 
23.  Velocity profiles of successive time intervals do not coincide, neither the magnitude of the undertow reaches 
a constant value until the end of the time series. Moreover, a positive drift is observed around 𝑧 = 0.27  m 
although the Eulerian flow at such elevation should be negative according to the explanation given in Section 
2.2.2. The steady state was not achieved during most of the duration of the experiment, which may be a possible 
explanation for the variations of the wave-averaged force coefficients over time. 
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Figure 23. Development of the undertow for mimic 4 with ℎ! = 0.3  𝑚, 𝐻 = 0.16  𝑚 and 𝑇 = 3.5  𝑠. (a) Successive vertical 
mean velocity profiles. (b) Time evolution of the undertow at 𝑧 = 0.1  𝑚 with respect to the bottom. 

Since the coefficients oscillate around approximately mean values along the time series (Figure 22), time intervals 
were selected for each test case excluding the transient parts of the record for which average coefficients were 
calculated. The estimated force coefficients are plotted against the Keulegan Carpenter number in Figure 24.  

 

Figure 24. Estimated force coefficients for all the experiments with mimic 4 as a function of Keulegan-Carpenter 
number. The theoretical curve of 𝑐! suggested by Graham (1980) for squared cross-sections at low 𝐾𝐶 numbers 

𝑐! ≈ 𝐾𝐶!  is shown in a black dashed line.  

5.1.5. Comparison with the existing literature 

Despite the limited number of cases for which mimic 4 was tested, the force coefficients display a good 
correspondence with the trends found in other experiments conducted with squared cross-sections under 
waves. The drag coefficient decreases with increasing 𝐾𝐶 within a narrow range of values in accordance with 
studies by Okajima et al. (1998) and Graham (1980) among others. The highest values of 𝑐! (of around 2.2) are 
within the range of values reported in the literature (𝑐! = 2 − 3). Such values are obtained at low 𝐾𝐶 numbers, 
associated with early flow separation and vortex shedding at sharp-edged bodies (Venugopal et al. 2008). The 
rate of decrease slows down at 𝐾𝐶 ≈ 20, which approximately corresponds to the transition from the symmetric 
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to the asymmetric vortex shedding regime at the edges of the cylinder, as reported by Okajima et al. (1998) and 
Keulegan and Carpenter (1958). Heideman and Sarpkaya (1985) observed that 𝑐! converges to the steady state 
value of 2 for 𝐾𝐶  numbers larger than 150, with the formation of the Von Karman vortex street and an 
approximately constant wake width.   

The evolution of the inertia coefficient over 𝐾𝐶 also reproduced the trends found in the literature. At low 𝐾𝐶, 𝑐! is 
close to its potential flow value of around 2.8 (Bearman et al., 1984), decreases with 𝐾𝐶 until 𝐾𝐶 ≈ 80 (Bearman 
et al., 1984; Graham, 1980) and increases with 𝐾𝐶 beyond this point (Okajima et al., 1998).  

The force coefficients are more sensitive to the length to width ratio for higher values of 𝐾𝐶, as found by 
Nakamura et al. (1991).  A larger difference is obtained for different mimic lengths in such range due to the higher 
importance of end effects. In accordance to observations McClean and Sumner (2014), higher-pressure recovery 
for the shorter mimic resulted in a smaller value of 𝑐! and a larger inertia coefficient 𝑐! in comparison to the 
longer stem. 

5.2.  Val idation of Dynveg 

5.2.1. Validation 

Before conducting the validation of the model, the code was analyzed in detail to ensure that the equations had 
been correctly implemented. It was found that the work of Döbken (2015) did not include the Froude Krylov force 
and therefore this load was incorporated in the model. Once the modification was done, the velocity time series 
recorded during the experiments were introduced as an input in Dynveg and interpolated linearly in space, so 
that the flow was defined at every stem segment. The accelerations were computed from the measurements 
using backward differentiation. The force coefficients were given the values calculated from the measurements. 
The motion of the leaf was obtained solving the integro-differential equation introduced in Section 3 at every 
timestep, in which the unknown was the bending angle 𝜃  of each segment. The position, velocities and 
accelerations of the stem were derived from the angle 𝜃 making use of the compatibility equations and the 
boundary conditions, resulting in the following expressions: 

 𝑥 𝑥, 𝑧 = sin 𝜃   𝑑𝑠′
!

!
 (5.8) 

 𝑧 𝑥, 𝑧 = cos 𝜃 𝑑𝑠′!
!     (5.9) 

 𝑥 𝑥, 𝑧 = cos 𝜃 𝜃  𝑑𝑠′!
!      (5.10) 

 𝑧 𝑥, 𝑧 = −sin 𝜃 𝜃 𝑠! 𝑑𝑠′!
!      (5.11) 

 𝑥 𝑥, 𝑧 = −sin 𝜃 𝜃! + cos 𝜃 𝜃 𝑑𝑠′
!

!
 (5.12) 

 𝑧 𝑥, 𝑧 = −cos 𝜃 𝜃! − sin 𝜃 𝜃 𝑑𝑠′!
!      (5.13) 

Where 𝑥 and 𝑧 indicate the position of the stem and 𝑥 and 𝑧 and 𝑥 and 𝑧 are the horizontal and vertical velocities 
and accelerations respectively.  

The force at the base of the plant was obtained through two alternative procedures. 
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• The integrated force was calculated applying Morison’s equation, using the force coefficients derived 
from the measurements in Section 5.1 the interpolated measured flow velocities and the kinematic 
properties computed with Dynveg.  

• The force was also determined from the moment balance at the root of the plant. Considering that the 
stem remains still at its base: 

 !"
!"
= 𝑠𝑖𝑛 𝜃 ≈ 0  (5.14) 

 !"
!"
= 𝑐𝑜𝑠 𝜃 ≈ 1  (5.15) 

Introducing (5.14) and (5.15) in equation (2.6), the following expression is obtained:  

 
𝐹! = −𝐸𝐼

𝜕!𝜃
𝑑𝑠!  (5.16) 

Where the horizontal base force is directly related to the flexural rigidity and the curvature of the stem.  

The second definition allows to directly assess if the internal forces in Dynveg agree with the data produced in 
the experiments instead of comparing the measurements with a post-processed force. The latter may lead to a 
good correspondence with the results even if the movement of the plant is not reproduced accurately, due to the 
use of fitted force coefficients and given the small magnitude of the motion, which was assumed negligible in 
Section 5.1.  

5.2.2. Results 

Experiment and model results are shown below for the cases of the shortest stem under the less energetic wave 
condition (inertia dominated case, Figure 25) and for the longest mimic with the highest wave height (drag 
dominated case, Figure 26).  

 

Figure 25. Comparison of the horizontal forces at the base for Mimic 4 with ℎ! = 0.15  𝑚, 𝐻 = 0.04  𝑚 and 𝑇 = 1  𝑠. 
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Figure 26. Comparison of the horizontal forces at the base for Mimic 4 with ℎ! = 0.3  𝑚, 𝐻 = 0.16  𝑚 and 𝑇 = 2  𝑠. 

A good correspondence was found between the post-processed forces and the fitted forces (calculated using 
the Morison equation neglecting the motion of the plant). The latter deviates from the measured force time series 
at some points, at least partially due to the use of constant force coefficients. In practice, both the Reynolds 
number and the Keulegan Carpenter number change with the orbital velocities during the wave cycle, as shown 
in Figure 24, and this would result in different values of 𝑐! and 𝑐! over the wave period. 

The force calculated from the curvature of the stem at its base displayed fluctuations that had higher amplitude 
for the inertia dominated cases. Such oscillations were introduced through the time-differentiation of the 
recorded velocity signals, and propagated in Dynveg through the computed inertia forces. A low-pass filter 
function was applied to the acceleration time-series, as explained in Appendix B. The comparison of the 
measured and calculated forces after filtering is shown in Figure 27. 

 

Figure 27. Comparison of the horizontal forces at the base computed using velocities from the linear wave theory with 
the recorded forces after applying a low-filter function for Mimic 4 with ℎ! = 0.15 m, 𝐻 = 0.04  m and 𝑇 = 1  m. 

As it can be observed in Figure 27, Dynveg reproduced the results from the experiment with high accuracy and 
the large fluctuations were not present in the computed forces when continuous acceleration time-series were 
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implemented in the model. The complete analysis of the oscillations is presented in Appendix B. Additional 
checks of Dynveg, making use of the Morison formulation and the differential equation for the deflection of a 
cantilever beam, are included in Appendix A. The effect of the timestep and the integration method was also 
analyzed in Appendix C. Since the performance of the model was considered satisfactory, Dynveg was further 
used to study the interaction between wave hydrodynamics and flexible vegetation, developed in Section 6.  
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6.  Analysis of plant dynamics under wave loading with Dynveg 
In the present section, the motion and forces on a single stem under different wave conditions were modelled 
using Dynveg. The reference set-up is schematized in Figure 28. The characteristics of the stem were initially set 
equal to those of Mimic 2 from the laboratory experiments by Bakker (2015). Mimic 2 experienced significant 
deflections and moved with the flow during the tests, but it did not twist out of its plane (unlike Mimic 1, the most 
flexible plant), remaining within the assumptions of the model (Section 3). Its properties are summarized in Table 
1. The force coefficients were given constant values of 𝑐! = 2 and 𝑐! = 2 and the influence of the angle of attack 
was accounted for using the formulation by Dijkstra et al. (2006). The water depth was equal to ℎ = 0.45  m 
during the runs. The simulations were carried on until converging to a steady state, where the motion of the tip 
was the same in successive wave periods. 

 

Figure 28. Reference set-up for the runs, where ℎ is the water depth, ℎ! is the height of the stem and 𝐻! and 𝑇! are the 
wave height and wave period of the considered wave condition.     

Wave hydrodynamics were represented by different theories. The analysis started implementing a depth-uniform 
velocity profile that oscillates with the wave period, which is studied in Section 6.1. The depth-dependency of the 
oscillatory flow was firstly introduced through the use of linear wave theory, in which velocities decrease in 
deeper parts of the water column according to hyperbolic functions. The corresponding analysis is developed in 
Section 6.2. The influence of varying the geometry and mechanical properties of the plant is evaluated in Section 
6.2.4. The effect of using different formulations for the drag is addressed in Section 6.2.5. Previous sections 
defined the velocities at the same horizontal position for every height over the bed. Variations in the velocity field 
with the horizontal coordinate were incorporated in Section 6.3. Besides the oscillatory flow, mass transport by 
waves results in a mean return current that was implemented in Section 6.4. As it was explained in Section 2, the 
surface elevation for steeper waves deviates from the sinusoidal form described by the linear wave theory and 
results in asymmetries in the water particle velocities. Higher order effects were studied in Section 6.5. The 
analysis of the results presented below is discussed in more detail in Section 7. 
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6.1.  Depth-uniform osci l latory f low 

6.1.1. Method 

The simplest type of oscillatory flow consists of a sinusoidal current with a constant magnitude along the water 
column. The corresponding velocity profile would be represented by: 

 𝑢 𝑥, 𝑧, 𝑡 = 𝑢! cos𝜔𝑡 (6.1) 

 𝑤(𝑥, 𝑡) = 0 (6.2) 

Where 𝑢!  is the maximum horizontal velocity, 𝜔 is the angular frequency and 𝑡 represents the time. In the 
present study, the amplitude of the velocity was set equal to the value given by linear wave theory at the bottom 
(𝑧 = −ℎ): 

 𝑢! =
𝜋𝐻
𝑇 ·

1
sinh 𝑘ℎ (6.3) 

Where 𝐻 is the wave height, 𝑇 𝑘 is the wave number and ℎ is the water depth. In order to evaluate the behaviour 
of a stem a series of runs were carried out in Dynveg introducing different combinations of 𝐻 and 𝑇.  

 

Figure 29. Velocity profile under the simulated depth-uniform periodic flows at a timestep 𝑡. The velocities at every 
segment were defined at 𝑥 = 0.  The magnitude of the flow varied between – 𝑢! and 𝑢! over the period. 

The plant response was evaluated in terms of its trajectory and the horizontal hydrodynamic forces at the base. 

6.1.2. Plant motion 

The motion of the plant over a wave period showed similar behaviour for all the wave conditions tested, and is 
illustrated for two different wave heights in Figure 30. 
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Figure 30. Plant trajectory under oscillatory flow for 𝐻 = 0.05  m and 𝑇 = 2  s (left) and for 𝐻 = 0.10  m and 𝑇 = 2  s 

The stem followed the water motion during each half of the period. Larger deflections were obtained under higher 
velocities. The amplitude of the excursion was equal during both phases of the wave.   

6.1.3. Horizontal base forces 

Due to the symmetrical behaviour of the plant, the wave-averaged values of the forces at the base were equal to 
zero, as shown in Figure 31. 

 

Figure 31. Period-averaged dimensionless forces at the base, given by equation (6.4), as a function of the relative depth 
𝑘ℎ for depth-uniform oscillatory flow. The force was computed from the curvature, as indicated in Section 5 and 𝑘ℎ is 

defined as the product of the wave number 𝑘 and the depth ℎ 
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6.2.  Linear wave theory 
The effect of depth-variations in the velocity profile was implemented using linear wave theory, initially assuming 
that the horizontal position of the stem segments was equal to zero regardless of their actual location, i.e. 
𝑥!(𝑠, 𝑡) = 0, where 𝑠 is the coordinate along the stem.  

 𝑢(𝑥, 𝑧, 𝑡) =
𝜋𝐻
𝑇
cosh 𝑘(𝑧 + ℎ)
cosh 𝑘ℎ cos 𝜔𝑡  (6.3) 

 𝑤(𝑥, 𝑧, 𝑡) =
𝜋𝐻
𝑇
sinh 𝑘(𝑧 + ℎ)
sinh 𝑘ℎ sin 𝜔𝑡  (6.4) 

Different wave heights were used as an input, convering the range of small linear waves, high non-linear waves 
and intermediate heights in between both extremes (from 𝐻 = 0.01  m to 𝐻 = 0.2  m). The model was run for wave 
periods between 𝑇 = 0.1  𝑠 and 𝑇 = 12  𝑠 seconds at intervals of 𝑇 = 0.1  seconds for each of those wave heights. 
The comparison of the results is shown below. 

6.2.1. Base forces 

The forces at the base were calculated using the computed curvature, as indicated in Section 5. The wave-
averaged value of the load was determined according to: 

 
𝐹! =

1
𝑇 𝐹! 𝑡 𝑑𝑡

!

!
 (6.5) 

Where 𝑇 is the wave period and 𝐹(𝑡) is the instantaneous force at the base. The forces were expressed as 
dimensionless scaling force coefficients, using the exposed area of the stem and the orbital velocities at the 
bottom: 

 
𝐹!"# =

𝐹!
1
2 𝜌𝑤ℎ!𝑢!

!
 (6.6) 

Where ℎ! is the stem length, 𝑤 is its width, 𝑢! is the orbital velocity at 𝑧 = −ℎ and 𝜌 is the fluid density. The 
dimensionless base force was plotted against the relative depth, defined as the product of the wave number, 𝑘, 
and the water depth, ℎ. A comparison of the results obtained for different values of the wave height is shown in 
Figure 32. 
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Figure 32. Dimensionless horizontal base forces over the relative depth, kh, expressed as the product of the wave 
number 𝑘 and the depth ℎ 

The evolution of the dimensionless mean base force as a function of the frequency displayed similar trends for 
the different modelled wave heights. Nevertheless, the magnitude of the loads and the transition between 
different behaviours varied depending on the value of 𝐻. Four regimes are recognized in the curves, which are 
schematized in Figure 33: 

a) The base force was equal to zero for the highest frequencies. 
b) As the period increased, a second region appeared where the base force had positive values. 
c) When the periods increased even further, the force at the base decreased in magnitude until it became 

negative.  
d) A fourth region existed for wave heights larger than 𝐻 =   0.1  m, where the dimensionless forces were 

very small and larger than zero for very long periods. For the lowest frequencies the flow resembled a 
unidirectional current, and the mean force at the base over the wave cycle was equal to zero. 

Larger wave heights resulted in higher loads and shifted the transitions between the regions to higher 
frequencies. The motion and the distributed forces along the stem were analyzed for the case of 𝐻 = 0.15  m, 
selecting wave conditions representative of the different parts of the graph.   
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Figure 33. Different regimes found in the dimensionless force using linear wave theory. (a) Region of high frequency 
waves, associated to zero wave-averaged forces at the base. (b) Region of intermediate frequencies and positive mean 

base forces. (c) Region of long waves, associated to negative mean base forces over the wave cycle. (d) Very long 
waves, with very small and positive wave-averaged forces at the base. 

6.2.2. Stem motion 

The stem excursion over a wave period is plotted in Figure 34 for 𝐻 = 0.15  𝑚 and 𝑇 = 0.7  𝑠 (wave condition 
representative of the high-frequency region), 𝑇 = 2  𝑠 (corresponding to the region of intermediate frequencies 
and positive base forces), 𝑇 = 5  𝑠 (which belongs to the low frequency part of the curve, with negative values of 
the load at the base) and 𝑇 = 9  𝑠 (representing the very low frequency waves, which for the highest waves 
produced a small region with very small positive base forces). The relative velocities for the different cases are 
shown in Figure 35. 

 

Figure 34. Stem motion over one wave period for different wave conditions. 



        Interaction between wave hydrodynamics and flexible vegetation 

57 

 

Figure 35. Time series of the flow velocity (—), plant velocity (—) and relative velocity (—) at the tip of the stem. Subplot 
(a) corresponds to 𝐻 = 0.15  m  and 𝑇 = 0.5  s. Subplot (b) represents 𝐻 = 0.15  m and 𝑇 = 2  s. Subplot (c) displays the 

case of 𝐻 = 0.15  m and 𝑇 = 5  s. Subplot (d) was obtained for 𝐻 = 0.15  m and 𝑇 = 7s 

The stem displayed small trajectories under the high frequency waves (Figure 34 a). The total horizontal excursion 
at the blade tip (𝑥!"# = 𝑥!"# − 𝑥!"#) was equal to 1.2  cm over a wave period, and the plant stood upright in the 
water column. As the period increased (Figure 34 b), the stem motion became more asymmetric, and the plant 
assumed more streamlined positions in the direction of wave propagation while remaining more upright in the 
backwards motion. The total excursion of the tip became longer, and reached values of around 𝑥!"# = 20  𝑐𝑚. 
The plant moved slightly advanced in time with respect to the flow (Figure 35 b) and its velocity had a higher 
magnitude, resulting in relative velocities and drag forces acting in the opposite direction of the flow. 

A further increase of the period increased the time available for the plant to adjust to the flow (Figure 34 c), which 
caused a more symmetric displacement with a total amplitude of 𝑥!"# = 40  𝑐𝑚. Nevertheless the blade still bent 
slightly more in the downstream direction. As it can be observed in Figure 35 c, there is a part of period in which 
the plant remained pronated and still, and the relative velocity is approximately equal to the oscillatory velocity. 
For the longest periods the flow resembled a unidirectional current and the motion became symmetrical. Plants 
remained extended over a longer fraction of the wave period where the plant velocity is equal to zero.  

The influence of the initial phase of the wave at the beginning of the simulation was also explored. The model was 
run for a wave condition with different phases ranging from 𝜑 = 0º to 𝜑 = 180º at intervals of 45º. The motion of 
the stem converged after approximately five wave periods in all cases and no hysteresis effects were found. The 
results are shown in Appendix D.  
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6.2.3. Distributed forces 

The distributed forces along the segments of the stem are represented in Figure 36 for four different wave 
conditions.  

 

Figure 36. Wave-averaged distributed drag force along the stem segments from 𝑠 = 1 at the bottom until 𝑠 = 40 at the 
tip. Figure (a) corresponds to 𝐻 = 15  𝑐𝑚 and 𝑇 = 0.7  𝑠. Figure (b) represents 𝐻 = 15  𝑐𝑚 and 𝑇 = 2  𝑠. Figure (c) 

displays the case of 𝐻 = 15  𝑐𝑚 and 𝑇 = 5  𝑠. Figure (d) was obtained for 𝐻 = 15  𝑐𝑚 and  𝑇 = 9  𝑠   

For the shortest waves, the velocities were approximately zero at the lowest half of the stem, since the waves 
were effectively in deep water (Figure 36 (a)). The drag was only significant in the upper part of the plant and it 
was one order of magnitude smaller than inertia forces. Since the latter were considerably symmetrical over the 
period, the resulting wave-averaged force at the base was very small. Larger periods resulted in a region of 
positive drag forces close to the tip, and negative distributed forces at lower positions, as shown in Figure 36 (b) 
and Figure 36 (c). For the largest wave period the distributed forces were an order of magnitude smaller and had 
an opposite sign compared to smaller periods, as represented in Figure 36 (d). 

6.2.4. Effect of the length and the stiffness 

The effect of varying the length and the flexural rigidity of the plant was analyzed in a number of runs. The model 
was run for 𝐻 = 10 cm and 𝑇 = 3.5  s in all the simulations. The value of the Young’s Modulus was changed for 
the different cases, with values ranging from 1.5 · 10! to 6 · 10!"  𝑁/𝑚!. The stem density (𝜌!) and the geometry 
of the cross-section were kept constant. The simulations were performed for two lengths of the stem; ℎ! = 10 
cm and ℎ! =   30  𝑐𝑚. The work was expressed in a dimensionless form, according to: 
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𝑊!"# =

𝑊
𝜌𝑤ℎ!𝑢!!

 (6.6) 

The dimensionless work was plotted against the flexural rigidity, 𝐸𝐼, in Figure 37 a. The ratio between the total 
excursion of the tip and the length of the stem is represented as a function of 𝐸𝐼 in Figure 37 b. 

 

Figure 37 (a) Dimensionless work against the flexural rigidity. (b) Dimensionless tip excursion over a wave period, where 
𝑥!"# = 𝑥!"# − 𝑥!"# and ℎ is the length of the stem. Both graphs correspond to 𝐻 = 10  𝑐𝑚 and 𝑇 = 3.5  𝑠. 

For the largest values of the elastic modulus (𝐸 > 9.6 · 10!!  𝑁/𝑚!) the motion of the plant was negligible and the 
relative velocities were equal to the flow velocities. A decrease in the length resulted in slightly less dissipation for 
such range of stiffness. A further reduction of the rigidity led to appreciable tip motions, as shown in Figure 37. 
Nevertheless, the dissipation was still equal to that of a completely stiff plant. As the plant became more flexible, 
the upper part of the stem followed the waves for a longer time, whereas the base remained still. Since the 
largest contribution of the drag was generated at the lower part of the plant the effect of a longer stem produced 
a smaller increase in the dissipation compared to rigid case. The short and the long stem generated the same 
amount of work for 𝐸 = 1.92 · 10!!  𝑁/𝑚!. For the lowest flexibilities, both the motion and the work showed a 
stronger dependence on the vegetation height. The longer stem was able to sway with the flow under a larger 
fraction of the period before being limited by its size. The shorter stem reached sooner its maximum deflection, 
and remained extended and aligned with the flow during most of the passage of the wave, subsequently 
producing more work.  

The dimensionless attenuation was also plotted in Figure 38 against the Cauchy number, previously defined in 
equation (2.19), which resulted in a convergence of the behaviour of stems with different lengths. 
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Figure 38.Dimensionless work against the Cauchy number for 𝐻 = 10  𝑐𝑚 and 𝑇 = 3.5  𝑠. 

The relationship between dissipation and flexural rigidity was compared for three different wave periods, for the 
case of ℎ! = 30  cm, as shown in Figure 39. 

 

Figure 39. Dimensionless work against the flexural stiffness for 𝐻 = 10  𝑐𝑚 and 𝑇 = 1, 3.5  and 7  𝑠 

6.2.5. Effect of the formulation for the drag coefficient 

In order to evaluate the influence of the incidence angle on the drag coefficient three formulations were 
compared: 

(1) The use of constant value through the water column, regardless of the orientation of the segments. 

 𝑐! = 2 (6.7) 

(2) The formulation by Hoerner (1965) for circular cylinders, which included the influence of the angle of 
attack.  

 𝑐! = 2 cos 𝜃 (6.8) 

(3) The formulation by Dijkstra et al. (2006) for thin strips, which besides accounting for the angle of attack 
introduced an enhancement of 𝑐!when the plants lie parallel to the flow.  

 𝑐! = 2 cos 𝜃 + 0.1 tan 𝜃 (6.9) 

The analysis was done for Mimic 2, with ℎ! = 30  cm, 𝐻 = 0.15  𝑚 and 𝑇 = 3.5  𝑠 in which the drag was the 
dominating load. Both the deflection of the stem and the orientation of the fluid particles vary over the wave 
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cycle, which result in changes in the value of 𝑐! over time. The wave-averaged distribution of 𝑐! is shown in 
Figure 40 (a). The mean distributed drag load at every segment is represented in Figure 40 (b). The mean position 
of the stem is plotted in Figure 41. 

 

Figure 40. (a) Wave-averaged distribution of the distributed flow drag along the stem segments, from 𝑠 = 1 at the 
bottom until 𝑠 = 40 at the tip. (b) Wave averaged distribution of the drag coefficient over time. 

 

Figure 41. Wave-averaged stem position for the different formulations of the drag coefficient, 𝑐!. The angle between a 
stem segment and the vertical is represented by 𝜃. 

The use of a constant drag coefficient led to higher values of the hydrodynamic forces and a larger downstream 
position of the stem; the mean deflection of the tip was approximately a 25% longer when the influence of the 
angle of attack was not incorporated. The difference between formulations (2) and (3) was relatively smaller, of a 
12.5%. 
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6.3.  Linear wave theory including horizontal variat ions of the 
velocity f ield 

In order to evaluate how spatial variations affect the computed forces and motion, the same wave conditions 
were run using linear wave theory, defined by equation (2.19) and equation (2.20) in Section 2, firstly assuming 
that 𝑥 = 0 for all the segments of the stem, and secondly calculating the flow velocity in each of them as a 
function of their actual horizontal coordinate, 𝑥 = 𝑥!.  

6.3.1. Flow velocity 

The flow velocities experienced by the individual segments during a wave period, with and without the inclusion 
of the spatial variations, are shown in Figure 42 for 𝐻 = 0.1  m and 𝑇 = 2  s. The comparison was done at the tip 
of the plant in Figure 42 a and for a segment located in the middle of the stem in Figure 42 b. 

 

Figure 42. Flow velocity at the stem segments for (a) the tip of the plant 𝑠 = 𝑠!"# (b) the middle of the stem 𝑠 = 𝑠!"#/2. 
The blue line represents the velocities calculated using linear wave theory without spatial variations (assuming 𝑥 = 0 for 

every point) and the black line corresponds to the results obtained using linear wave theory as a function of the 
horizontal coordinate of the segments (𝑥 = 𝑥!). 

The curves of the velocities as a function of time were similar in the accelerating phase of the wave cycle, while 
the flow velocities increased in the propagation direction until reaching the maximum velocity of the oscillatory 
flow. However, since the tip swayed with the fluid and followed the wave during its forward motion, the region of 
positive velocities in Figure 42 a extends over an interval longer than half of the wave period. Similar effects can 
be observed in Figure 42 b. Nevertheless, the differences between the curves are smaller at the middle of the 
stem, given the decrease of the plant motion in lower positions in the water column towards the base, which is 
fixed to the bottom.  

6.3.2. Base forces 

The inclusion of the spatial variations in the velocity resulted in larger positive forces at the base, due to higher 
duration of the positive velocities experienced by the stem, as shown in Figure 44. 
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Figure 43. Comparison of the horizontal base force as a function of time for 𝐻 = 0.1  m and 𝑇 = 2  s calculating the 
velocities at 𝑥 = 0 (blue line) and at the position of the segments, 𝑥 = 𝑥! (black line). 

The trends found in the base load are analogous to those previously identified for the flow velocities. The period 
of the forcing changed when the phase-lag was incorporated. Negative base forces occurred later in time and 
positive forces were experienced for a longer fraction of the wave period. When the force was integrated over the 
wave-cycle, this resulted in higher positive mean values at the base, as observed in Figure 44. 

 

Figure 44. Wave-averaged dimensionless horizontal base force as a function of the relative depth, 𝑘ℎ (where 𝑘 is the 
wave number and ℎ is the water depth) for three different wave heights The blue line was computed using linear wave 

theory with 𝑥 = 0 for every segment. The black line was modelled using linear wave theory with the actual coordinate of 
the segments (𝑥 = 𝑥!).  

The deviation in the computed loads was evaluated calculating the difference between the wave-averaged values 
modelled assuming 𝑥 = 0 and those obtained using 𝑥 = 𝑥! (Δ𝐹! = 𝐹!,! − 𝐹!,!), relative to the force computed 
including the phase lag,  𝐹!,!. The loss of accuracy was not uniform for the different wave heights. For the highest 
wave (𝐻 = 0.15  m) the largest differences were obtained for the highest frequencies. For the smallest wave, 
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𝐻 = 0.05  m, the differences were larger for the longer waves. The relative error had maximum values of 40% for 
the dimensional mean values.  

The instantaneous base forces were one order of magnitude larger than the period-averaged values since the 
force signals were oscillatory and produced very small mean values. The relative error of the instantaneous forces 
was one order of magnitude smaller and did not exceed the 2%.  

6.3.3. Plant motion 

When the dependence on the horizontal coordinate was incorporated, the stem experienced a larger 
displacement in the direction of propagation and a smaller backwards motion, as illustrated in Figure 45. The 
second effect was dominant, which resulted in smaller plant excursions over a wave period.  

 

Figure 45. Plant motion for 𝐻 = 0.1  m and 𝑇 = 2  s computed using linear wave theory without horizontal variations in 
the velocity field (left) and calculating the velocities as a function of the position of the stem segments (right). 

 

Figure 46. Total amplitude of the horizontal motion of a stem, 𝑥!"# = 𝑥!"# − 𝑥!"#   as a function of 𝑘ℎ for 𝐻 = 0.1  m. 

The differences in the predicted motion were analyzed for 𝐻 = 0.1  m and a number of wave periods ranging from 
𝑇 = 0.5  s to 𝑇 = 7  𝑠, as shown in Figure 46. For the shortest waves the stem motion was practically zero and all 
the segments were exposed to the velocity field at 𝑥 = 0. Therefore, neglecting the horizontal coordinate did not 
introduce significant errors in the computations. The dependence of the flow on the horizontal coordinate also 
had a negligible effect for the largest periods, since the velocity variations occurred over distances that were 
considerably longer than the plant displacement. The most important discrepancies were obtained for 
intermediate frequencies.   
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The relative error was analyzed in order to quantify the magnitude of the differences for different wave 
frequencies. The error was evaluated calculating the difference in the predicted tip excursion with and without 
including the horizontal coordinate, ∆𝑥!"# = 𝑥!"#,! − 𝑥!"#,!, and dividing such value by excursion modelled using 
𝑥 = 𝑥! . As it can be observed in Figure 47, for the shortest waves there is an increase in the error with 
decreasing relative depth up to a value of 𝑘ℎ = 0.8  (𝑇 = 1.85  s ), where there is a maximum relative error 
approximately equal to 6%. For longer waves there is a reduction of the relative error with decreasing 𝑘ℎ. 

 

Figure 47. Ratio (%) of the difference between the maximum excursion for linear wave theory with 𝑥 = 𝑥! compared to 
𝑥 = 0, relative to prediction including spatial variations for 𝐻 = 0.1  m. 
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6.4.  Eulerian f low 
The effect of the mean return flow was incorporated adding the mean current defined by equation (2.21) to the 
velocities obtained using linear wave theory.   

 𝑢(𝑥, 𝑧, 𝑡) =
𝜋𝐻
𝑇
cosh 𝑘(𝑧 + ℎ)
cosh 𝑘ℎ cos 𝑘𝑥 − 𝜔𝑡  (6.10) 

 𝑤(𝑥, 𝑧, 𝑡) =
𝜋𝐻
𝑇
sinh 𝑘(𝑧 + ℎ)
sinh 𝑘ℎ sin 𝑘𝑥 − 𝜔𝑡 − 𝜔𝑘𝑎!

𝜋𝐻
𝑇
cosh 2𝑘(𝑧 + ℎ)
2 sinh! 𝑘ℎ  (6.11) 

6.4.1. Base forces 

The influence of the Eulerian flow on the computed base forces is illustrated in Figure 48. 

 

Figure 48. Wave-averaged dimensionless base force as a function of 𝑘ℎ for 𝐻 = 0.05  m (top), 𝐻 = 0.10  m (center) and 
𝐻 = 0.15  m (bottom). The result of linear wave theory with 𝑥 = 0 and 𝑢 = 0 is represented by a black line (—). The 

result of linear wave theory with 𝑥 = 0 and 𝑢 = 𝑢! (including Eulerian flow) is plotted in a solid blue line (—). The result of 
linear wave theory with 𝑥 = 𝑥! and 𝑢 = 𝑢! (including both the horizontal coordinate and the Eulerian flow) is 

represented by the blue dotted line (---).  

The dimensionless mean force was one order of magnitude larger when the mean flow was implemented. Unlike 
the oscillatory motion, the return current did not reverse its direction over the wave cycle and produced larger 
and negative period-averaged values. The strength of the current increased with larger wave heights and longer 
periods.  

The inclusion of the variations of the flow velocity along the horizontal coordinate had a relatively lower effect than 
the mean flow. The error associated with the assumption of 𝑥 = 0 showed a weaker dependency on the 
frequency for the lowest wave height. For the largest waves, the resulting base force had similar values with or 
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without including spatial variations of the flow field for the highest periods. Nevertheless, the relative importance 
of the variations of the flow along stem increased with the frequency. Calculating the velocity at the actual 
position of the segments for short waves produced larger loads in the direction of propagation, which 
compensated the effect of the return current and reduced the magnitude of the negative base forces. 

6.4.2. Plant motion 

The Eulerian flow increased the displacement of the stem against the direction of wave propagation and resulted 
in more symmetric trajectories over the wave cycle, as it can be observed in Figure 49. 

 

Figure 49. Stem trajectory over a wave period for 𝐻 = 0.1  m and 𝑇 = 2  s, without Eulerian flow (𝑢 = 0) and modelling 
the return current 𝑢! using equation the expression by Phillips (1977).  
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6.5.  Second order Stokes waves 
The velocities associated with higher harmonics were calculated using equation (2.22) and equation (2.23) and 
adding the non-linear terms to results of linear wave theory. 

 𝑢 𝑥, 𝑧, 𝑡 =
𝜋𝐻
𝑇
cosh 𝑘 𝑧 + ℎ
cosh 𝑘ℎ cos 𝑘𝑥 − 𝜔𝑡 +

3
16 𝑐 𝑘𝐻

! cosh 2𝑘(𝑧 + ℎ)
sinh! 𝑘ℎ cos 2 𝜔𝑡 − 𝑘𝑥  (6.13) 

 𝑤 𝑥, 𝑧, 𝑡 =
𝜋𝐻
𝑇
sinh 𝑘 𝑧 + ℎ
sinh 𝑘ℎ sin 𝑘𝑥 − 𝜔𝑡 +

3
16 𝑐 𝑘𝐻

! sinh 𝑘(𝑧 + ℎ)
sinh! 𝑘ℎ sin 2 𝜔𝑡 − 𝑘𝑥  (6.14) 

6.5.1. Base forces 

The effect of including higher-harmonics on the modelled base forces is illustrated in Figure 50. 

 

Figure 50. Wave-averaged dimensionless base force as a function of the 𝑘ℎ for 𝐻 = 0.05  m (top), 𝐻 = 0.10  m (center), 
𝐻 = 0.15  m (bottom). The result of linear wave theory with 𝑥 = 0 and 𝑢 = 0 (without horizontal variations or Eulerian 

flow) is represented in a black line (—). The base-force produced by a Stokes wave with 𝑥 = 0 and 𝑢 = 0 is 
represented in a solid blue line (—). The result for a Stokes wave with 𝑥 = 𝑥! and 𝑢 = 0  is shown in a dotted blue line 

(---). The base-force produced by a Stokes wave with 𝑥 = 𝑥! and 𝑢 = 𝑢! is plotted in a solid yellow line (—).  

The addition of the non-linear terms had a negligible effect for the smallest wave. Nevertheless it produced larger 
positive base forces for the lowest frequencies when the wave height increased. Conversely, the effect of 
including the dependency on the horizontal coordinate was negligible for the longest periods and became more 
significant for the largest values of 𝑘ℎ, in accordance to the results of the previous sections. When all the effects 
were combined (return current, variations along the horizontal and wave-non linearities), the Eulerian flow was 
dominant and produced negative mean forces at the base. 
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6.5.2. Plant motion 

The inclusion of higher-harmonics in the velocity enhanced the asymmetric motion of the plants in the direction of 
propagation of the waves, as it can be observed in Figure 51. 

 
Figure 51. Stem trajectory over a wave period for 𝐻 = 0.15  m and 𝑇 = 2  s, for a linear wave (left) and for a Stokes wave 

(right), without accounting for the variations of the velocity over the horizontal coordinate or the Eulerian flow.  
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7.  Discussion 

7.1.  Plant posture and stem excursion 
For the case of a depth-uniform oscillatory flow the computed trajectory of the plant was symmetric over the 
wave period. The effect of varying the velocity over the water column, with faster flow motion near the surface 
and lower speed close to the bottom, was introduced using linear wave theory. For short periods and small and 
moderate wave heights the plant motion was symmetric. However, a residual displacement in the propagation 
direction appeared when waves became longer and higher. This effect was present in spite of the symmetry of 
the velocity profile over the wave period and without including non-linear effects in the flow velocities. The total 
excursion over the wave cycle tended to become symmetric again when the periods became very long and the 
flow during each half period resembled a uni-directional current.  

The initial phase of the wave at the first timestep was also modified in a series of runs. This resulted in differences 
in the modelled plant motion at the beginning of the simulations, but the solutions converged to the same 
behaviour after a few wave periods, as shown in the Appendix D. This result seems to support the idea that the 
asymmetrical plant excursion was being driven by the orbital motion (Döbken, 2015). The concept is illustrated in 
Figure 52.  

 

Figure 52. Asymmetric motion of flexible vegetation under waves. Source: (Döbken, 2015) 

Assuming an initial phase of 𝜑   =   0º and drag-dominated conditions, positive velocities and the associated drag 
forces in the first part of the cycle would extend the plant in the forward direction (Figure 52 a). Downwards 
directed orbital velocities would subsequently push the vegetation into lower elevations in the water column 
(Figure 52 b). Therefore, the elliptical path of the flow would result in streamlined and drag reducing positions 
when the orbital velocities were negative (Figure 52 c). The negative drag forces would not be as high as the 
positive loads, which would produce a smaller horizontal displacement against the direction of propagation, and 
a more upright position of the plant under the wave trough compared to the crest (Figure 52 d). Considering 
𝜑   =   180º (i.e. negative velocities at the beginning of the simulation), the initial flow would move the plant against 
the travelling wave, but it would be followed by upwards directed water motion that would extend the stem to a 
more vertical position. This would increase the area exposed to the positive orbital velocities and after a few wave 
cycles the excursion would also be asymmetric in the direction of the waves.  

The highest modelled waves were steep and non-linear and their associated velocity field would differ from that 
derived using linear wave theory. The behaviour of a stem under the same wave condition would also change, 
since different loads would act on it. In order to represent the flow kinematics when higher order effects become 
important, the velocities were calculated in Dynveg using 2nd order Stokes Theory. The inclusion of wave non-
linearity enhanced the asymmetry of the modelled trajectory, especially for the highest waves. The residual 
motion was also more pronounced for higher periods when non-linear waves were used as an input.  
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The described behaviour is consistent with the findings of laboratory experiments and field observations. The 
results of these simulations cannot be directly compared to the experiments conducted by Bakker (2015) with 
flexible vegetation, in spite of using the geometrical and mechanical properties of Mimic 2 as an input in the 
model. The drag and inertia coefficients were given typical values for rectangular cross-sections from the 
literature and were kept constant during the runs, with 𝑐𝐷   =   2 and 𝑐𝑀 =   2. However, their actual values and 
dependence on flow properties was unknown. Force coefficients had already been shown to vary with the 
Keulegan Carpenter number for the most rigid mimic, as indicated in Section 5. The calculated drag coefficients 
remained relatively constant, with 𝑐𝐷   =   2, while the inertia coefficients varied between 𝑐𝑀   =   2 for low Keulegan 
Carpenter numbers until 𝑐𝑀   =   4  for the highest values of 𝐾𝐶 (Figure 24). Even though inertia forces are smaller 
than the drag for the latter case, a different value of 𝑐𝑀 could result in considerable differences in the predicted 
stem deflection during flow reversals, when flow acceleration becomes important and inertial loading is dominant. 
Deriving drag and inertia coefficient for the flexible mimics would require additional procedures, which are 
explained in the recommendations section and in Appendix E. However, despite the difference in the coefficients, 
the modelled trajectories of Mimic 2 displayed the same trends than the experimental results. Symmetrical 
motions were reproduced for lower wave heights and periods. Longer deflections under the wave crest and 
more upright positions under the through were experienced under the largest wave heights and periods.  

 

Figure 53. Comparison of the motion of the stem over the wave period modelled with Dynveg using linear wave theory 
with 𝑥 = 0 without including the effect of the Eulerian flow or higher harmonics. The smaller wave (left) produced a more 
symmetric trajectory, whereas a residual displacement in the direction of wave propagation was obtained for the higher 

wave (right).   

Luhar et al. (2010) associated the observed asymmetry in blade posture under waves to the drift induced by the 
canopy (introduced in Section 2, and further discussed in Section 7.5). Both experimental and numerical model 
results by Luhar and Nepf (2016) showed an asymmetrical plant excursion in the direction of wave propagation 
under high waves, without including the effect of the Eulerian flow within the vegetation. They attributed such 
behaviour to the forward velocities under the crest being larger than the backward velocities due to the presence 
of higher harmonics in the velocity signal. Nevertheless, the results obtained with Dynveg seem to suggest that 
the residual displacement is already present when the velocities are symmetric, although it is enhanced by non-
linearities in the velocity profile. 

The dependency of the plant behaviour on the vertical variation of the flow field may have important implications 
on both experimental studies and numerical models of plant motion. U-tubes have been widely used as a tool to 
study oscillatory forces on cylinders, for instance in laboratory experiments by Sarpkaya and Isaacson (1981) or 
Bearman et al. (1984) among others. A U-tube is a structure consisting of two vertical limbs at the sides and a 
horizontal section at the middle, where the object to be tested is attached. Water is forced to oscillate within the 
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tube at the resonant frequency by a horizontal plate or by a cylinder moving up and down at one of the lateral 
limbs (Williamson, 1984). The corresponding set-up is shown schematically in Figure 54. 

 

Figure 54. Schematic representation of a U-tube. Source: (Okijima, 1998) 

Flow visualization tests, such as Laser Doppler Velocimetry or Particle Image Velocimetry, are easier to perform in 
U-tubes in comparison to an open wave flume (Faltinsen, 1993) and this feature may turn them into attractive 
candidates to obtain simultaneous measurements of flow velocities and plant posture. Nevertheless, they 
generate velocity profiles with a constant magnitude along the water column.  

Since they do not reproduce the orbital motion of the water particles neither the variations of the velocity along 
the vertical coordinate, the tested stems would be exposed to forcing conditions that would not correspond to 
those generated under waves in the field (except under the shallow water regime, where the trajectories of the 
particles consist on a back and forth current), and the associated plant behaviour would not be the same either. 
Similar considerations can also be applied to the use of depth-averaged flow models to compute plant motion 
under wave-induced oscillatory flows. 

7.2.  Relat ive plant velocity 
The motion of the stem was not in phase with the flow periods for most cases. The upper part of the plants was 
slightly advanced in time with respect to the water motion, and it displaced at a higher speed (Figure 35). Lower 
segments of the plant had smaller velocities, tending to zero towards the base. Bradley and Houser (2009) had 
already suggested that in spite of the widely-accepted idea that plants passively follow the flow, plant motion was 
observed not to be passive in most of the cases. Moreover, the phase-lead by plant motion has also been 
identified by other authors (Mullarney and Henderson, 2010; Zeller et al., 2014).  

In a number of field experiments, Mullarney and Henderson (2010) measured water velocities using a velocimeter 
and plant posture was simultaneously captured with a video camera. Measurements under low energy wind 
waves (with 𝑇 = 2  𝑠) displayed the previously exposed behaviour. They also compared the field observations with 
the results of an analytical model based on the linearized Euler-Bernoulli equations. Model results showed that 
plants led water motion with phase differences decreasing from 90º to 0º with increasing wave frequency. Their 
field observations revealed that the relative phases could actually be larger than 90º, up to 120º.  

The dependence of the phase difference between water and plant velocities on the wave period was not 
investigated in detail in the present study, and is discussed in more depth in the recommendations section. 
Nevertheless, a direct comparison would not be possible for the present velocity field, neither with the model nor 
the experimental results. Mullarney and Henderson (2010) recorded field velocities that include Eulerian flow and 
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the superposition of different wave components. Besides, their model is based on the assumption of small 
deformations, which is violated in most of the runs with 𝑇 =   2  𝑠.  

Stevens et al. (2001) obtained field measurements of the movement of subtidal kelp fronds under waves of 
𝑇 =   2.8  𝑠. The relative motion was always non-zero in their observations. The plants followed the water flow 
during the rising velocity phase until just prior the crest, when the limitation associated with their tether slowed 
down the plant. This resulted in wave and kelp motion being slightly out of phase. Plant velocity was also larger 
than water velocity according to their measurements. Again, accurate comparisons are not possible since their 
measurements contained additional effects (non-zero mean flow, etc.) and the geometric and mechanical 
properties of a kelp deviate to those of the sea grass-like mimic that was modelled with Dynveg. But the main 
trends in relative plant motion described above were also reproduced by the model, which provides confidence 
in its performance.  

The present work also analyzed periods higher than those measured in the field by the previous authors. For the 
longest waves, plants also accelerated with the flow until they started to be limited by their attachment and 
slowed down. But longer periods resulted in stems reaching their maximum deflection and staying still during 
part of the wave cycle, with the relative velocity being equal to the flow velocity and the plants behaving as 
effectively rigid. For this portion of the wave phase, the reduction in exposed area was considerable. This 
occurred until flow reversal took place, when plants accelerated in the opposite direction and moved again 
leading the flow. Bradley and Houser (2009) analyzed vegetation height in the field, and found that under high-
energy conditions the canopy is extended and streamlined in the direction of the flow for a longer part of the 
wave-cycle. Such observations correspond to the region of zero plant motion in the velocity time-series modelled 
with Dynveg for very long waves. 

7.3.  Base forces 
The wave-averaged dimensionless base forces were also analyzed for a series of wave conditions, initially using 
linear wave theory and then adding second order effects in a later step. The shortest modelled waves were 
effectively in deep water. Under such waves, the drag force on the stem was comparatively smaller than inertia, 
and its effects were restricted to the upper part of the water column (Figure 36). The resulting mean force at the 
base was approximately equal to zero for this case (Figure 32). Longer periods resulted in asymmetric plant 
posture, as exposed in Section 4. The asymmetry in stem motion was associated with small and positive base 
forces over the wave cycle, with a maximum (dimensionless) value of 0.2 for waves with 𝐻   = 0.1  𝑚 and 0.5 when 
the wave height was 𝐻   = 0.15  𝑚. A further increase of the period showed a region of negative base forces for 
the higher and non-linear waves. In those cases, the distributed forces in the upper part of the plant were 
positive.  

It was previously explained that plants moved faster than the flow. Such motion was faster when the oscillatory 
velocities were negative. Therefore, the positive relative velocities had a higher magnitude than the negative ones 
and produced net positive distributed forces at the upper part of the plant. In the lower positions, the fact that the 
deflection was larger when the flow moved in the direction of propagation resulted in (1) lower elevation of a stem 
when the velocities were positive and (2) smaller values of the drag coefficient given the larger deflection angle 
during the forward motion. As a consequence, the wave-averaged distributed force was negative at the lower 
region of the stem. Since the distributed loads of the lower positions had a higher magnitude, the integrated 
value of the force was negative.  

When second order Stokes waves were introduced in the model, the effect of the larger flow velocities during the 
wave crests in comparison to the slower water motion during the trough produced drag forces with a higher 
magnitude in the forward wave phase, and a positive mean value at the base except for a small range of periods 
between 𝑇 = 1.47  s and 𝑇 = 1.53  s. This suggests that the negative average base forces that were previously 



        Interaction between wave hydrodynamics and flexible vegetation 

75 

obtained for the lowest frequencies were the mathematical response of the system to a prescribed velocity field 
that did not properly represent the properties of the flow under non-linear waves. When their characteristics were 
appropriately incorporated, the negative values disappeared.  

For the longest waves, the behaviour of the plant during each half period was very similar (the conditions 
resembled a unidirectional current) and the base forces tended to zero phase-averaged values. 

7.4.  Effect of spatial variat ions in the velocity f ie ld 
As a stem extends in the direction of the flow, the segments along its length are exposed to different flow speeds 
due to the spatial variations in the velocity field. This effect is illustrated in Figure 55. The dashed blue line 
represents the surface elevation at 𝑡 = 𝑡! and the solid blue line corresponds to 𝑡 = 𝑡!. The initial position of the 
plant 𝑥 𝑡! = 0  is shown by a dashed green line and the position at 𝑡 = 𝑡!,  𝑥 𝑡! = 𝑥! is represented by a solid 
green line. Since the hydrodynamic loads push the plant in the direction of wave propagation, the upper part of 
the stem is still exposed to positive velocities at 𝑡 = 𝑡!, whereas at its initial horizontal position flow reversal is 
taking place, and the flow velocity is equal to zero. This effect reduces down in the water column, when the 
amplitude of the motion decreases and the position of the stem does not change significantly over time 
(𝑥(𝑡!) ≈ 𝑥(𝑡!) ≈ 0).  

 

Figure 55. Schematized illustration of the phase lag effect. The dashed blue line represents the initial surface elevation 
(𝑡 = 𝑡!), the solid blue line corresponds to the surface elevation at the present time (𝑡 = 𝑡!). During the time interval 
∆𝑡 = 𝑡! − 𝑡! the plant moves from 𝑥 𝑡! = 0 to 𝑥 𝑡! = 𝑥!. The difference between the velocity computed keeping 

𝑥(𝑡) = 0 compared to using 𝑥 𝑡 = 𝑥! is representing using yellow arrows. The size of the arrows reduces down in the 
water column, where the motion of the plant is smaller. 

In order to evaluate how spatial variations affect the computed forces and motion, the same wave conditions 
were run using linear wave theory, firstly assuming that 𝑥 = 0 for all the elements and secondly calculating the 
flow velocity at the stem segments as a function of their horizontal coordinate, 𝑥 = 𝑥!. The properties of the 
vegetation were kept equal to those of Mimic 2. As it was observed in Figure 43, the curves of the velocities as a 
function of time were similar in the accelerating phase of the wave cycle, where the flow velocities increased in 
the propagation direction until reaching a maximum value. However, since the tip swayed with the flow and 
followed the wave during its forward movement, it continued experiencing positive velocities up to the point of 
maximum deflection, where the stem stopped and finally experienced the flow reversal. As a consequence, the 
area of positive velocities in extended over an interval larger than half of the wave period when the velocities were 
calculated using 𝑥 = 𝑥!. The associated drag forces were also larger with respect to linear wave theory with 
𝑥 = 0 . The difference was on the order of 40% in a wave-averaged sense, but the deviations of the 
instantaneous value of the force did not exceed 2%. The incorporation of the spatial variations of the velocity 
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along the stem produced larger deflections in the direction of wave propagation. Such differences were also 
small and were lower than 6% of the total excursion for the modelled runs.  

According to the previous results, the variation of the velocity field along the horizontal coordinate had a smaller 
influence on plant behaviour compared to the depth-dependency of the oscillatory flow. This implies that 
neglecting changes in the horizontal coordinate (for instance, using 1DV models to compute the hydrodynamics, 
or measuring the velocities at one single location in laboratory experiments) may be a valid assumption as long as 
the velocity profile is defined over the water column. The inclusion of spatial variations, with a three dimensional 
(3D) model, a laterally averaged two-dimensional (2DV) hydrodynamic model or measuring the flow velocities at 
several horizontal locations along a deflected stem in the laboratory, would increase the complexity of the 
problem without leading to a significant increase of accuracy.  

Nevertheless, the previous conclusion can only be applied to the tested conditions. Variations of the velocity 
along the horizontal coordinate may have a higher importance for more flexible plants or under more energetic 
wave conditions, and more complex methods would be required for those cases.  

7.5.  Eulerian f low 
As it was indicated in Section 2, water particles under waves describe orbital motions that are not closed 
resulting in a residual mass transport in the direction of wave propagation. In the presence of a confined 
boundary, the Lagrangian drift is compensated by a mean return flow in the opposite direction. The Eulerian flow 
was implemented in Dynveg using the expression by Phillips (1977).  

The inclusion of a negative mean current enhanced the displacement of the stems against the direction of wave 
propagation, compensating the effect of the orbital motion on plant posture. The base forces over a wave cycle 
were negative and considerably larger when the Eulerian flow was included, since unlike the pure oscillatory flow, 
the mean current did not change its direction over the wave period.  

Such a description of the vertical velocity profile is applicable for the set-up considered, when one single stem is 
modelled and its effect on the hydrodynamics can be considered negligible. However, the cumulative effect of a 
community of plants results in additional drag within the canopy, which produces a mass drift in the direction of 
wave propagation as explained in Section 2. Such current can be present at the top of the meadow or all over its 
height, depending on plant and flow properties. The streaming would expose aquatic vegetation to forces acting 
in the opposite direction than those obtained using equation (2.21). Therefore, the results of this Section do not 
represent the behaviour of a community of macrophytes in the field and cannot be compared with empirical 
observations. 

 

Figure 56. Comparison of the mean velocity profile inside and outside of a meadow. The undisturbed profile shows the 
effect of the boundary layer streaming close to the bottom. Adapted from: (Luhar et al., 2010).  
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7.6.  Formulat ion of the drag 
Several studies in the literature have modelled the motion of a blade using values of the drag coefficient derived 
for cylinders under steady flow (Mullarney and Henderson, 2010) or for smooth infinite flat plates (Abdelhrman, 
2007; Luhar and Nepf, 2011; Luhar and Nepf, 2016). As it was already mentioned in Section 2, drag coefficients 
obtained from large-scale objects may not be applicable to aquatic vegetation of smaller dimensions due to 
differences in the way that they interact with the flow. Besides, some of those models cited above neglected the 
influence of the angle of attack on the drag. For instance, very flexible vegetation may remain extended in the 
direction of the flow during most of the passage of the waves, and in that case the drag would be predominantly 
viscous (Nikora and Nikora, 2007). Dijkstra et al. (2006) conducted a series of experiments using plastic strips, 
with properties similar to those of eelgrass Zostera Marina. Such experiments were described in Section 2 and 
they allowed accounting for both plant deflection and differences in scale. In order to evaluate the relative 
importance of the described effects three formulations were compared, (1) a constant value of the drag, (2) the 
same value of drag coefficient projected according to the cross-flow principle (formulation by Hoerner (1965) in 
Section 2) and (3) the empirical formulation by Dijkstra et al. (2006). The main difference between (2) and (3) was 
that the expression by Dijkstra et al. (2006) incorporated the enhancement of the drag as the elements lie parallel 
to the flow for very large deflections. 

The multiplication of the drag coefficient by a cosine term introduced a reduction of its value for segments at 
upper positions of the water column. Larger deflection angles resulted in lower values of hydrodynamic forces. 
Since the constant formulation of the drag did not experience such a decrease, it produced larger forces and 
more pronounced deflections of the stem than the other two. For 𝐻   = 0.1  𝑚 and 𝑇 =   3.5  𝑠 mean horizontal 
position of the tip was a 25% larger when 𝑐!  was kept constant in comparison with the expressions that 
depended on the incidence angle. These results suggest that neglecting the variations of the drag coefficients 
with the angle of attack can lead to considerable differences in the predicted plant motion. The difference 
between the projected 𝑐! and the empirical formulation from plastic strips was comparative smaller, of 12.5%. 
The effect of the tangent term in the formulation by Dijkstra et al. (2006) was only relevant for the moments of 
maximum excursion over the wave period. Nevertheless, the present result shows that its influence is not 
negligible and that not introducing it could lead to significant errors in the predictions of the motion, especially 
under large waves and with low plant stiffness.  

Several additional considerations must be borne in mind. Formulations (2) and (3) include the relative orientation 
between the flow and the plant assuming that the cross-flow principle is valid in all cases, neglecting those values 
of theta which are out of the range of applicability. Besides, for oscillatory flows with 8 < 𝐾𝐶 < 20 even small 
deviations from 𝜃 = 90º result in the disruption of the vortex street and considerable changes in the force 
coefficients (Sumer and Fredsøe, 2006).  

Although the coefficients were implemented as a function of the angle of attack, variations of the flow structure 
along the stem were neglected. Pressure recovery near the tip (already presented in Section 2) results in lower 
values of 𝑐! at such position. Using the same value at every location would produce an overestimation of the 
forces and the associated motions at the tip (Luhar and Nepf, 2016).  

The influence of the Keulegan Carpenter number and the Reynolds number was not analyzed or incorporated in 
any of the runs. Nevertheless, Dijkstra et al. (2006) concluded that for the rectangular plastic strips tested under 
steady flow the dependence of 𝑐! on 𝑅𝑒 was very small, with 𝑐! ≅ 2. The coefficients derived for Mimic 4 (the 
stiffest stem analyzed by Bakker, with a squared cross-section) under oscillatory flow also remained 
approximately constant and equal to 𝑐! =   2  over the range of 𝐾𝐶  considered, as shown in Figure 24. A 
procedure to derive force coefficients for the tested flexible mimics is suggested is Section 8 and applied in 
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Appendix E. This would provide information on the behaviour of flexible stems under waves with varying cross-
sectional shapes.  

The adjustment scale of the turbulent and viscous boundary layer over macrophytes occurs sufficiently rapid (i.e. 
1 s) for steady state conditions to develop even with rapid change in the background flow (Stevens and Hurd, 
1997). The smallest period tested in the experiments was 𝑇   =   1  𝑠. Lower periods were modelled in Dynveg, 
starting with 𝑇   =   0.1  𝑠, for which values of 𝑐𝐷 derived from experiments where the boundary layer was fully 
developed are not applicable, and deviations from the computed behaviour can be expected.  

Unsteady vortex shedding cannot be reproduced in the present set-up. Resonance could be triggered if the 
frequency of such events was equal to the natural frequency of the stem (Luhar and Nepf, 2016). The 
undampened natural frequency 𝑓! for Mimic 2 can be estimated using the following expression (Blevins, 1984): 

 
𝑓! = 𝐶!

𝐸𝐼
ℎ!! 𝜌!𝑤𝑡 + 𝜌𝑐! 𝜋𝑤!/4

 (7.1) 

Where 𝐸𝐼 is the flexural strength, ℎ! is the length of the stem, 𝑤 is the width, 𝑡 is the thickness, 𝜌! is the density 
of the vegetation, 𝜌 represents the density of the fluid and 𝐶! = 0.56 is a constant. The application of equation 
(7.1) results in a resonance frequency of 𝑓𝑛 = 0.39  𝐻𝑧. Vortex shedding for steady flows occurs for values of the 
Strouhal number of around 0.2 (White, 2008). The Strouhal number represents the normalized shedding 
frequency and is given by: 

 𝑆𝑡 =
𝑓𝑤
𝑢!

 (7.2) 

Where 𝑓 is the frequency of vortex shedding, 𝑢! is the orbital velocity and 𝑤 is the width of the cross-section. 
Assuming 0.1 < 𝑢! < 0.4  𝑚/𝑠 and with 𝑤 = 0.01  𝑚 for Mimic 2, the frequency of the vibrations ranges between 
2 ≤ 𝑓 ≤ 12  𝐻𝑧. This interval is far from the fundamental frequency of the stem. Inclusion of the effect of damping 
would shift the natural frequencies of the plant to lower frequencies, which would make the separation even 
larger. Nevertheless, the previous value of 𝑆𝑡 corresponds to steady unidirectional flows. Since the Keulegan-
Carpenter number is the inverse of the Strouhal number, the analysis of the force coefficients as a function of 𝐾𝐶 
for Mimic 2 could provide a better insight on the values of 𝑆𝑡 for which vortex shedding was relevant during the 
experiments (Luhar and Nepf, 2016).  

7.7.  Wave dissipation 
The wave-averaged dimensionless dissipation, defined in equation (6.5), was evaluated for a stem under the 
same wave condition and geometry but varying its stiffness (Figure 37). For the highest values of the elastic 
modulus the motion of the plant was negligible, and the relative velocities were equal to the flow velocities. This 
resulted in the largest values of dissipation. A further reduction of the rigidity led to appreciable tip motions, of the 
order of the 20% of the plant height for a stem of ℎ𝑣 = 30  𝑐𝑚. Nevertheless, the dissipation was the same to that 
of a completely stiff plant; for the sake of wave attenuation the stem was effectively rigid. The previous result 
seems to support the assumption that, under certain conditions, the motion of the plant can be disregarded and 
vegetation can be assumed to be rigid. Bradley and Houser (2009) had already justified the idea based on 
empirical results, since plants were observed to be effectively rigid for high Reynolds numbers. As the plant 
became more flexible, the upper part of the stems swayed with the waves for a longer time, diminishing its 
relative motion with respect to the water and consequently reducing the work.  

As it was explained in Section 2, wave attenuation depends on the flexibility of the vegetation and on the relative 
scale of the geometry of the plant with respect to the orbital excursion (ℎ𝑣/𝐴). When the effect of the length of the 
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vegetation was incorporated, small differences in the dimensionless work arose for the highest rigidities. A 
shorter stem produced slightly less dissipation. Even though the work was divided by the height of the 
vegetation, a smaller plant is exposed to lower velocities in the water column that do not relate linearly to its size. 
For the largest flexibilities, a longer stem was able to sway with the flow and reduce the relative velocity over a 
larger fraction of the wave period, resulting in larger excursions and less attenuation. A shorter plant reached its 
maximum deflection sooner, and remained extended and aligned with the flow during most of the passage of the 
wave, subsequently producing more work over the period. Such trends were in accordance with the existing 
literature, for instance with observations by Gaylord and Denny (1997) and Luhar and Nepf (2016).  

The representation of the dimensionless mean dissipation against the Cauchy number resulted in the 
convergence of the curves of different stem lengths. The collapse was not perfect; the dimensionless dissipation 
was approximately a 10% larger for the shorter plant for intermediate values of Ca. Nevertheless, the similarity of 
the curves seems to support the role of 𝐶𝑎 dictating plant reconfiguration (Luhar and Nepf, 2013). It should be 
taken into account that there is some ambiguity in the definition of the Cauchy number used in the present work. 
𝐶𝑎 was defined using the orbital velocity at the bottom. Different combinations of 𝑎 and 𝑇 could produce the 
same value of 𝑢! at the base of the stem but would result a different variation of the velocity profile and the 
induced drag forces along its height (Luhar and Nepf, 2016). 

Several conclusions can be extracted from the previous analysis. In the first place, a considerable number of 
studies have analyzed wave attenuation neglecting plant motion and approximating vegetation stems as rigid 
cylinders (for instance, Dalrymple et al., 1984; Kobayashi et al., 1993, among others). Such approach has often 
been considered inappropriate for highly buoyant and/or flexible vegetation, where a more complex modelization 
of the forces would be required (Seymour, 1996). Nevertheless, the previous results seem to support that the 
effect of plant motion on wave dissipation can be negligible even with appreciable tip excursions approximately 
equal to a 20% of the stem length. Besides, the relationships between vegetation-induced work and the Cauchy 
number suggest that there may be more simplified ways to account for plant dynamics without solving the non-
linear equations of plant motion. For instance, outside of the regime of effectively rigid vegetation in Figure 38, an 
increase of 𝐶𝑎 with a factor of 10 produces approximately a 50% decrease in wave attenuation. Such result 
cannot be generalized and it is restricted to the set-up of the runs. But similar and more general simplified 
expressions could be derived conducting a large number of simulations, with varying hydrodynamic conditions 
and plant properties. 

The influence of the buoyancy was not investigated in the present study. Its effect as a restoring force would shift 
the onset of plant reconfiguration to higher values of the Cauchy number (Luhar and Nepf, 2011) and increase 
the region of values where the assumption of effective rigid plant is valid.  
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8.  Conclusions and recommendations 

8.1.  Conclusions 
The conclusions of the present work have been summarized in terms of answers to the research objectives, 
presented in Section 1. 

(1) Validation of Dynveg for the small deformation regime. Evaluation of the model capability to reproduce 
the measured forces obtained by Bakker (2015) in a set of laboratory experiments using a stiff mimic. 
Analysis of the performance of the model predicting tip motion making use of the equation of a 
cantilever beam. 

Dynveg was used to model the base forces for a rigid stem under a number of wave conditions that had been 
tested in a series of experiments conducted by Bakker (2015). A good correspondence was found between 
computed and measured forces for the drag-dominated cases. Nevertheless, the modelled force signal 
displayed considerable noise for the wave conditions were the flow acceleration was significant. The use of a 
low-pass filter function removed the noise and showed that it was not being introduced by the model. The 
computed tip motion was also compared to the result of the expression for the deflection at the end of a 
cantilever beam, under a number of uniform velocity profiles. The value of the displacement was similar in both 
cases and only differed in the third significant digit. It was concluded that Dynveg reproduced satisfactorily both 
motion and base forces in the small deformation regime.  

(2) Description the physical processes experienced by vegetation under wave hydrodynamics using 
Dynveg. Analysis of how changes in the wave properties and the associated flow kinematics affect the 
response of a stem. Evaluation of the influence of the characteristics of the vegetation (geometry, 
rigidity) on wave dissipation. Qualitative comparison of the results and trends reproduced by the model 
with the existing literature. 

Small waves with short periods generated symmetric stem motions over the wave period. An increase of the 
wave height and the period resulted in a residual displacement of the plant in the direction of the wave 
propagation. The asymmetry in the stem excursion was obtained before including non-linear effects and without 
incorporating the effect of the Eulerian flow, and it disappeared when a depth-uniform oscillatory flow was 
modelled. The inclusion of higher-harmonics enhanced the asymmetry of the motion even further.  

The modelled behaviours corresponded well with the laboratory observations by Bakker (2015) and Luhar and 
Nepf (2016). Luhar et al. (2010) had previously associated the observed asymmetry in plant motion to the 
streaming induced by the canopy. Luhar and Nepf (2016) explained it in terms of the velocities being higher 
under the wave crest compared to the through for the higher and non-linear waves. Nevertheless, the results of 
Dynveg suggest that the residual motion is associated with the orbital motion and the variations of the velocity 
profile over the water column, as previously indicated by Döbken (2015).  

The modelled motion of the stem was faster and advanced in time with respect to the flow in accordance to field 
observations by Mullarney and Henderson (2010) and Stevens et al. (2001). The value of such phase difference 
and its dependence on the wave frequency was not studied in further detail and it is discussed further in the 
recommendations section. The wave-averaged base force was also analyzed. Its value was approximately zero 
for the shortest waves, associated with symmetric tip excursions. Longer waves, with more asymmetric 
trajectories, resulted in a positive residual value at the base. A negative mean base force was initially obtained for 
high and very long waves, which disappeared when the effect of higher harmonics was included.  

The dependence of the wave dissipation on plant stiffness was also evaluated by varying the flexural stiffness of 
one stem and calculating the dimensionless work under the same wave condition. Beyond a certain value of 
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rigidity the dissipation was the constant regardless of the value of the stiffness. Nevertheless, it was observed 
that the stem motion could be significant for the effectively rigid regime, with total tip excursions approximately 
equal to the 20% of the plant height. This implies that the assumption of negligible plant motion can be valid even 
for appreciable plant displacements, which could allow to simplify considerably wave attenuation models. For 
higher flexibilities, shorter stems produced more work due to their lower capacity to follow the waves, in 
accordance to the observations by Gaylord and Denny (1997) and Luhar and Nepf (2016) among others. When 
the dimensionless work was plotted against the Cauchy number the curves corresponded to different stem 
lengths converged, with maximum discrepancies of around 10% for intermediate values of 𝐶𝑎. Such relationships 
could be applied to develop simplified expressions to account for wave attenuation in computationally 
demanding large-scale models, where it would not be feasible to solve stem-scale processes.       

(3) Evaluation of the suitability of the use of U-tubes to study plant motion under wave hydrodynamics 

U-tubes have been widely used in laboratory studies of wave forces on cylinders and the fact that flow 
visualization tests are easy to conduct in them may turn them into good candidates to study plant motion under 
waves. Nevertheless, they reproduce depth-uniform oscillatory flows that do not allow incorporating the effect of 
the orbital motion and the vertical variation of the velocity profile. Simulations using Dynveg suggest that the latter 
effect drives plant response to wave action and that the asymmetric behaviour of the vegetation observed in the 
field cannot be reproduced without including it.  

(4) Analysis of the limitations associated with the use of velocity profiles computed at one single location 
instead of a spatially varying velocity field.  

Flexible plants may follow the waves and extend in the propagation direction until being limited by their 
attachment to the substratum. Since different segments of the same stem would have different horizontal 
locations, they would not be exposed to the same flow velocities. This effect was evaluated in a series of runs, 
comparing the results using linear wave theory with and without including horizontal variations in the velocity field. 
The difference in the instantaneous base forces and horizontal position of the tip was smaller than the 2% for all 
the wave conditions considered. The inclusion of the dependency of the flow on the horizontal coordinate had 
considerably less influence in plant motion than the variations along the vertical. For the analyzed conditions, the 
use 1DV models would not lead to a significant loss of accuracy. Nevertheless, the variations of the velocity along 
the horizontal coordinate may have a higher importance for very flexible vegetation (with rigidities smaller than the 
tested value) or for more energetic wave conditions.   

8.2.  Recommendations 

Validation of the model for the experiments using flexible vegetation 

The performance of Dynveg has already been validated for one single stem experiencing small deformations, 
both against experimental data (comparing computed and measured forces using the data-set of Bakker (2015) 
in Section 5) and also contrasting the modelled plant displacement with the maximum deflection at the end of a 
cantilever beam (using uniform distributed loads as indicated in Appendix A). An additional step could be the 
validation of the model for the regime of large plant motions, using the experiments conducted by Bakker (2015) 
with flexible mimics. A possible approach would consist of obtaining force coefficients for each of the 
experiments, and using those together with the recorded velocity time-series to reproduce the plant dynamics 
with Dynveg. The comparison of the results of the model with the laboratory measurements would allow to 
evaluate the quality of the predictions. The procedure is schematized in Figure 57.  
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Figure 57. Flow chart representing the procedure of non-linear calibration of mean force coefficients for flexible 
vegetation consisting on (1) Implementing a number of coefficients (2) determining the errors (3) Calculating the error 

functions and (4) obtaining the pair of coefficients that minimizes the error. 

For the most flexible plants, stem motion is significant and cannot be assumed to be negligible. Therefore, the 
mean drag and inertia coefficients cannot be directly calculated from the experimental data set as it was done in 
Section 3. Dynveg could be used for as a non-linear fitting tool for each of the test cases, inputting iteratively the 
measured velocities together with different values of the force coefficients. Error functions could be developed in 
order to select the pair of 𝑐𝑀 and 𝑐𝐷 that minimizes the difference with the computations and the measurements. 
The evaluation of the predictions obtained with the optimum force coefficients would allow to assess if Dynveg 
accurately captures the dynamics of the response of a single vegetation stem under waves. The first steps in the 
validation of the model using the experimental data obtained with flexible mimics are presented in Appendix E.  

Validation of the model for flexible vegetation using in-canopy flow 

As it has been previously mentioned, waves drive a mean mass drift in the direction of wave propagation through 
submerged canopies (Lowe et al., 2007). Such streaming was not generated in the experiments since they 
tested one-single stem in the wave flume, which had negligible influence on the flow. In the present study, 
Dynveg computed plant motion in response to a prescribed wave-induced velocity field. Reproducing the mean 
current driven by the waves within a meadow would require capturing the impact that plants have on the flow. 
One possibility to account for such feedback would be to measure fluid velocities inside a physical canopy and 
input those in Dynveg rather than using measurements for undisturbed waves. This would allow to mimic the 
natural system in a more realistic manner and to validate the model against field observations. Measurements of 
water and plant motion could also be obtained testing an artificial seagrass canopy in the laboratory. Another 
option would be to couple Dynveg with the momentum equations for the fluid and solve iteratively for plant and 
water motion. Such approach could be used to compute multiple wave conditions and different plant 
characteristics, and to develop more simple and less-computationally expensive frameworks to account for plant 
motion in large-scale hydrodynamic models. 

Analysis of the eigenmodes of the vegetation in relation to wave dissipation 

The passage of waves exerts oscillating stresses on the vegetation. Moreover, there is also potential for 
resonance phenomena if the wave frequency matches one of the natural frequencies of a plant. A stem 
(characterized as a structure) has a series of resonance frequencies, each of which is associated with a specific 
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mode of vibration. Since wave dissipation depends on the relative motion between the flow and the stem, the 
different fundamental shapes would result in different rates of energy loss. Mullarney and Henderson (2010) 
analyzed the normal modes of stems with different geometries. They computed plant motion and wave 
dissipation, and obtained larger attenuation when the waves excited higher and effectively more rigid modes of 
vegetation motion. Their results are restricted to the assumptions of their model and the cases that they tested. 
Nevertheless, a dynamic analysis of the modelled plants would provide a better understanding of their response 
under different wave conditions and help interpreting the results of the model. A way to achieve this would be to 
compute an oscillatory velocity signal with constant amplitude and increase its frequency at a sufficiently slow 
rate over time. Every time the frequency matched one of the fundamental frequencies, the amplitude of the 
motion would increase considerably due to dynamic effects. Besides, as it was indicated in Section 7.6, a 
dynamic amplification phenomenon may also be triggered if the frequency of vortex shedding matches one of the 
natural frequencies of the stem (Luhar and Nepf, 2016). The study of this effect would require the combination of 
Dynveg with a hydrodynamic model solving for the turbulent motions in the fluid. However, the comparison of the 
natural frequencies of the vegetation with expressions for the Strouhal number from the literature could provide a 
first estimate for the potential of such effect. 

Analysis of wave dissipation for irregular wave spectra 

Monochromatic waves have been studied in the present work. Nevertheless, the actual sea surface is the result 
of the superposition of multiple wave components. Bradley and Houser (2009) conducted a series of field 
measurements using a digital video camera to capture plant motion and an ADV velocimeter. Cospectral analysis 
between recorded flow and blade velocities suggested that seagrass moved in phase with the current at a lower 
secondary frequency and out of phase with the higher peak frequency. Since the relative velocities were larger for 
the latter component, short-period waves experienced more dissipation. The response of the vegetation to 
different periods is also linked to the natural frequencies of the plant in relation to the frequencies of the 
spectrum, as explained in the previous section. A dynamic enhancement of plant motion can occur for certain 
frequencies. This effect could be studied using the velocity field produced by the superposition of several wave 
components as an input of Dynveg. Relative plant motion appears to drive frequency-dependent dissipation 
under low energy conditions (Bradley and Houser, 2009). However, for high-energy conditions the behaviour of 
the vegetation as a frequency-filter seems to be more related to the degree of penetration of the oscillatory flow 
within the canopy. Shorter-period waves are more effective driving flow within the vegetation, since given the 
same wave height they generate a larger pressure gradient in the canopy compared to a longer wave. This 
produces larger drag forces on the stems and more attenuation for high-frequency components. The latter 
phenomenon could be further studied coupling Dynveg with a hydrodynamic model that solves the momentum 
equations including the feedback between vegetation behaviour and flow properties. 

Conditions of the present study 

The present work has analyzed the behaviour of stems with seagrass-like properties. Nevertheless, there is 
considerably diversity in the characteristics and behaviour of aquatic organisms. For instance, an alga such as 
the feather boa kelp, Egregia menziesii is so flexible that small lateral deflections result in negligible restoring 
forces, and the blade can move unimpeded for a wide range of motion. Not until the blade is fully extended does 
further deflection result in an elastic restoring force (Denny et al., 1998). Different plant properties (constant or 
varying along the stem) could be inputted in the model in order to evaluate the performance of Dynveg predicting 
the motion of different vegetation species. Moreover, the height of the plant was smaller than the water depth in 
all the runs. As it can be observed in Figure 13, emergent rigid vegetation results in a strong current against the 
direction of wave propagation inside the vegetation (Pujol et al., 2013). Such a velocity profile would exert loads 
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on a stem of opposite sign to those produced in a submerged canopy. The response of emergent vegetation to 
wave hydrodynamics could also be investigated with Dynveg under wide range of wave conditions. 

Variability of vegetation properties 

The attenuation of waves by vegetation is a complex process involving the coupled dynamics of water and plant 
motion (Zeller et al., 2014). Further complexity is introduced due to the variability in vegetation morphology, 
canopy heterogeneity and bottom topography among other aspects. Besides, individual plants of the same 
species differ mechanically from one another even when they grow in a well-controlled environment (de Langre, 
2012). Given the uncertainty in the boundary conditions, even direct numerical simulation could not provide 
definitive results (Zeller et al., 2014). Conducting multiple field experiments could be used to derive probability 
distributions and typical parameters in different species of vegetation. Given the computational efficiency of 
Dynveg, the vegetation model could be combined with a statistical approach (i.e. Monte-Carlo simulations), to 
derive the probability density function of plant response for a certain plant type from the characteristics of the 
population obtained during field measurements (de Langre, 2012). The variability in the response would also 
indicate the suitability of using an average plant to represent a canopy.  

Camus et al. (2011) used cluster analysis for processing large wave datasets: such a tool may also be useful for 
examining the outputs of the Monte-Carlo simulation to identify trends or patterns in the results, for instance, 
several plant typologies within the same species that display common behaviours. These kinds of studies could 
be also done to analyze long-term ecological effects. For instance, they could allow identifying the rate of gap 
formation within a meadow (de Langre et al., 2012).  

As it was mentioned in the beginning of the present work, the function of coastal vegetation as a shoreline 
defence has gained strong interest since it can offer sustainable and cost-effective coastal protection solutions 
(Borsje et al., 2011). In current-dominated environments, such as a tidal region, a canopy can reduce 
considerably the near-bed velocities and hence the bed shear stresses (Luhar et al., 2010). Nevertheless, 
excessive drag can lead to stem rupture or dislodgement from the substrate (Luhar and Nepf, 2013). If a local 
area of meadow is lost, the diversion of the flow from the vegetated area to the adjacent bare bed can result in a 
feedback mechanism that maintains the fragmented structure and inhibits vegetation regrowth (Luhar et al., 
2008). Such effect is not that significant for wave-dominated environments, because of the lower reduction of the 
oscillatory velocities by a meadow in comparison to a unidirectional flow. Studying gap formation with a Monte-
Carlo analysis could have important implications to the success of future restoration attempts of ecosystem 
engineering species. 

The use of statistical methods in combination with Dynveg could have additional practical applications, such as in 
the planning of field measurement campaigns. They could provide information on which vegetation parameters 
require a more accurate measurement because of their influence in wave dissipation. For instance, a higher 
sensitivity to changes in the cross-section could imply that it is necessary to take samples at several locations to 
characterize the geometry of the plants. The influence of the stiffness would determine if there is a need to 
evaluate the effective flexural rigidity of the stems using bending tests in the laboratory. If the results were only 
sensitive to the stem length, it could be sufficient to collect information about the vegetation height using sonar 
techniques and estimate the remaining parameters from the existing literature.  
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Appendix A. Addit ional val idation for submerged r igid cyl inders 

Val idation of the motion 
An additional verification was done in order to assess if the forces had been correctly implemented in Dynveg. A stem 
was exposed to uniform loads along its height (Figure 1-A) and the modelled displacement of the tip was compared 
with the maximum deflection at the free end of a cantilever beam, 𝛿!"#. The theoretical magnitude of the movement 
was calculated from the integration of the basic differential equation of the deflection curve of a beam: 

 
𝛿!"# =

𝑞𝑙!

8𝐸𝐼
 (A.1) 

Where 𝑞 is the intensity of the load, 𝑙 is the length of the beam and 𝐸𝐼 is its flexural rigidity.  

The application of equation A.1. is restricted by the assumptions of linearly elastic material, originally straight shape and 
small angles of rotation, curvatures and deflections (Gere and Goodno, 2009). In order to ensure that the requirements 
were met, the most rigid mimic (i.e., mimic 4, section 1) was modelled and small loads were exerted to the plant.  

 

Figure 1-A. Ideal scenario for the validation of the inertia and drag forces. 

Two situations were considered: 

• Only drag forces act on the stem. The added mass coefficient was set to zero and the velocity was constant 
in time and space so that the Froude-Krylov force was equal to zero. Three cases were tested (𝑢 𝑧, 𝑡 =
0.001, 0.002, 0.003 m/s) in which the distributed load 𝑞 was given by: 

 𝑞 = 𝑓! =
!
!
𝑐!𝜌!𝑤𝑢!    (A.2) 

 Where 𝑢 is the flow velocity, 𝑐! is the drag coefficient, 𝜌! is the density of the fluid and 𝑤 is the width of the 
 mimic.  

• Only inertia forces act on the stem. The drag coefficient was set to zero and the magnitude of the depth-
uniform velocity profiles was increased at a constant rate every timestep. Three values of acceleration were 
modelled (𝜕𝑢/𝜕𝑡  (𝑧, 𝑡) = 0.01 − 0.02 − 0.03  m/s2). The distributed force resulted equal to: 

 𝑞 = 𝑓! = 𝑐!𝜌!𝐴
!"
!"
      (A.3) 

 Where 𝑐! is the inertia coefficient, 𝜌! is the fluid density, 𝐴 is the cross-sectional area of the stem and 𝜕𝑢/𝜕𝑡   
 is the flow acceleration. 

The density of the plants was set equal to that of the water to eliminate the buoyancy. The sudden application of the 
load in the first timestep resulted in free vibrations of the stem, which ceased after some time as shown in Figure 2-A. 
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The same values of force coefficients were used in all the scenarios (𝑐! = 1.8 and 𝑐! = 3.2). The comparison between 
the static deflection of the plant from Dynveg (when the dynamic effects were dampened) and the theoretical value from 
equation A.1. is shown in Table 1-A. 

 

Figure 2-A. Deflection of the tip of the stem modelled over time for the case of 𝑐! = 0, 𝑢 𝑧 = 0.001 m/s  and 
!"
!"
  (𝑧) = 0  m/s2 (only drag forces act on the stem). 

Table 1-A. Comparison between maximum deflections modelled with Dynveg (𝛿!"#,!"#) and the theoretical expression 
for a cantilever beam (𝛿!"#,!").  

du/dt (z)  u(z) f i fd δmax,eq δmax,Dyn δmax,eq/δmax,Dyn 
m/s2 m/s N/m N/m m m - 
0.01 - 0.0010 0 4.36E-06 4.30E-06 1.3842% 
0.02 - 0.0020 0 8.72E-06 8.60E-06 1.3841% 
0.03 - 0.0031 0 1.31E-05 1.29E-05 1.3843% 

0 0.001 0 6.64E-06 2.83E-08 2.79E-08 1.3833% 
0 0.002 0 2.66E-05 1.13E-07 1.12E-07 1.3843% 
0 0.003 0 5.98E-05 2.55E-07 2.51E-07 1.3841% 

The predicted deflection is very similar in both cases and only differs at the third significant digit. It is concluded that 
both the inertia and the drag force are correctly implemented in the model.  

Val idation of the forces 

The computation of the base forces by Dynveg was also verified contrasting the results obtained using three different 
procedures: 

(1) Calculating the velocities for a certain wave condition using linear wave theory in Matlab, introducing the 
velocities in Dynveg via input files, doing appropriate temporal and spatial interpolation and finally determining 
the forces of the stem within the model. 

(2) Directly calculating the flow velocities for a certain wave condition at the grid points for the timesteps of the 
simulation (inside the Fortran code: avoiding the use of input files and the interpolation of velocities in time 
and/or space) and calculating the loads exerted on the stem with Dynveg. 

(3) Calculating the velocities using linear wave theory and determining the base force applying the Morison 
equation (assuming negligible plant motion). In order to ensure that the relative velocity was equal to the flow 
velocity the properties of mimic 4 (defined in Table 1, section 1) were used in the set-ups. The same force 
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coefficients were implemented in the three approaches (𝑐! = 1.9 and 𝑐! = 3.1). The flexural rigidity of the 
stem was increased with a factor of 10 to guarantee that the motion of the plant was insignificant. 

The aim of step 1 was to check the performance of the interpolation subroutines, which were be further used in the 
non-linear fitting of the force coefficients for the cases of flexible vegetation (Appendix E). The comparison of the 
theoretical and computed base force (derived from the curvature of the stem, in accordance to equation 1.15) is shown 
below for an inertia dominated case, with 𝐻 = 0.01  𝑚 and 𝑇 = 1  𝑠 (Figure 3-A) and for a drag dominated case, with 
𝐻 = 0.2  𝑚 and 𝑇 = 3.5  𝑠 (Figure 4-A). 

 

Figure 3-A. Comparison of the horizontal forces at the base for mimic 4 with ℎ! = 0.30 m, 𝐻 = 0.02 m and 𝑇 = 1 s. 

 

Figure 4-A. Comparison of the horizontal forces at the base for mimic 4 with ℎ! = 0.30 m, 𝐻 = 0.20 m and 𝑇 = 3.5 s. 

As it can be observed in the figures, the force time series from the three procedures coincide in one single line and the 
performance of the model is considered satisfactory. 
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Appendix B. Analysis of acceleration for r igid cyl inders 

Analysis of the noise in the computed forces for the inert ia dominated 
cases 

The time-series of the computed forces displayed strong fluctuations for the wave conditions with the smallest 
wave height (𝐻 = 0.04  m) and the shortest wave periods (𝑇 = 1  s and 𝑇 = 2  s), which were not present in the 
measurements (Figure 1-B). Such cases were associated to large accelerations and a higher relative importance 
of the inertia forces. The oscillations were absent in drag-dominated cases, where the predictions of the model 
reproduced with high accuracy the results from the experiment. Consequently, the implementation of the 
acceleration in Dynveg was identified as a possible source of noise. In order to confirm such hypothesis, the 
Froude-Krylov force was set to zero in the model. The result of the run is shown in Figure 2-B. 

 

Figure 1-B. Comparison of the computed and measured horizontal forces at the base for ℎ! = 15  cm, 𝐻 =
0.04  m, 𝑇 = 1  s. The input velocities were obtained combining measurements of different set-ups. 

  

Figure 2-B. Comparison of the computed and measured horizontal forces at the base for ℎ! = 15  cm, 𝐻 =
0.04  m, 𝑇 = 1  s. The Froude-Krylov force was set equal to zero in the model. 
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As it can be observed, the force derived from the curvature at the base is 90º out of phase with the 
measurements and has a lower magnitude, since it only includes the effect of the drag. Nevertheless, it did not 
display the large oscillations that had been modelled previously. The post-processed force was determined using 
equation (2.12) with the measured velocities, the plant motion computed in Dynveg and the fitted force 
coefficients derived in Section 5. Even though the stem dynamics were not accurately reproduced in the model, 
the magnitude of the stem motion is so small compared to the flow properties that the result was still very similar 
to the measurements.  

Such tests seemed to confirm that the cause of the fluctuations resided in the acceleration. Figure 3-B shows the 
time-series of the acceleration for 𝐻 = 0.04  m and 𝑇 = 1  𝑠, calculated from the measurements using central 
differences.  

 

Figure 3-B. Time series of the acceleration obtained by central differences from the recorded velocities for mimic 
4 with ℎ! = 15  cm, 𝐻 = 0.04  m, 𝑇 = 1  s, and 𝑧 = 𝑚 

Two possible causes were suggested to cause discontinuities in the acceleration: 

• The velocity profiles were built combining data from different experiments. An example of an ensembled 
velocity profile is represented in Figure 4-B. The shape of the curve is not smooth and it displays 
considerable variations along the depth, which could produce jumps in the distributed forces along the 
plant, induce vibrations and result in deviations from the conditions of the experiments. 
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Figure 4-B. Instantaneous velocity profile obtained combining measurements from various experiments at 
different elevations for mimic 4 with ℎ! = 15  cm, 𝐻 = 0.04  m, 𝑇 = 1  s. 

• Another possible source of noise may be directly associated to the numerical differentiation of 
experimental data, which is very sensitive to errors yielded by the measurements. 

Separate checks were done in order to evaluate the effect of both factors. 

Depth-uniformity of the velocity profiles 

In the present check, instead of combining information obtained in different set-ups to derive a complete vertical 
profile, hyperbolic functions were fit to the velocities measured by the EMF (at a single height) for every timestep. 
The flow properties at the remaining elevations were calculated using such fit, according to: 

 𝑢(𝑧, 𝑡) = 𝐴(𝑡) · cosh  (𝑘𝑧) (B.1) 

 𝑤(𝑧, 𝑡) = 𝐵(𝑡) · sinh  (𝑘𝑧) (B.2) 

Where 𝑘  is the wave number, 𝑧  is the height with respect to the bottom and 𝐴(𝑡) and 𝐵(𝑡) are the fitting 
coefficients. The velocities were defined in Dynveg at the same heights (from 𝑧 = 2.5  cm  to 𝑧 = 32.5 cm at 
intervals of ∆𝑧 = 2.5  cm) and timesteps (∆𝑡 = 0.01  s) than the experiments. An instantaneous profile is shown in 
Figure 4-B. 
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Figure 4-B. Velocity profile obtained fitting hyperbolic functions to the measurements of the EMF.  

The accelerations were calculated through numerical differentiation inside the code. The modelled horizontal 
base forces are shown in Figure 5-B. 

 

Figure 5-B. Comparison of the computed and measured horizontal forces at the base for ℎ! = 15  cm, 𝐻 =
0.04  m, 𝑇 = 1  s.  The input velocities were calculated fitting hyperbolic functions to the measurements of the 

EMF. 

The use of continuous velocity profiles did not improve the quality of the predictions neither it smoothed the 
acceleration. Moreover, by deriving the velocities from one single measurement any error or fluctuation at those 
points would be propagated all over the water column. 

Time-differentiation of the velocity  

Continuous velocity time-series were generated to evaluate if the fluctuations were produced by Dynveg or were 
associated to the processing of experimental data. Linear wave theory was used to reproduce the flow velocities 
since the small waves of the inertia dominated cases were within its range of applicability. The results of the 
model are represented in Figure 6-B.   
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Figure 6-B .Comparison of the computed and measured horizontal forces at the base for ℎ! = 15  cm, 𝐻 =
0.04  m, 𝑇 = 1  s. The input velocities were calculated using linear wave theory. 

Using smooth velocity and acceleration time-series seemed to eliminate the noise of the computed signal. 
Therefore, a low-pass filter function was applied to the acceleration derived from the measurements before 
calculating the inertia forces in Dynveg. The filter operation was done using a rational transfer function of the form 
(Oppenheim et al.,1999): 

 
𝐻 𝑧 =

𝑏 1 + 𝑏 2 𝑧!!

𝑎(1)  (A.3) 

Where the denominator cofficient 𝑎 1  was defined as: 

 𝑎 1 =
∆𝑡
𝜏        (A.4) 

Here ∆𝑡 is the timestep and 𝜏 is the relaxation time, which was set to 0.06  s. The numerator coefficients were 
defined as 𝑏 1 = 1  and 𝑏 2 = 1 − 𝑎 1 . The time-series of the acceleration after the filtering procedure is 
shown in Figure 7-B.  
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Figure 7-B. Time series of the acceleration obtained by central differences from the recorded velocities and low-
pass filtering for mimic 4 with ℎ! = 15  cm, 𝐻 = 0.04  m, 𝑇 = 1  s. 

As it is shown in Figure 8-B, by filtering the signal the amplitude of the oscillations was reduced until it coincided 
with that of the measurements, and the model reproduced the results of the experiment with considerable 
accuracy.  

 

Figure 8-B .Comparison of the computed and measured horizontal forces at the base for ℎ! = 15  cm, 𝐻 =
0.04  𝑚 𝑇 = 1  s. The input velocities were obtained combining measurements from different set-ups. A low pass-

filter function was used to reduce the noise in the acceleration.  
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Appendix C. Model parameters 

Effect of the t imestep 

The effect of the timestep, Δ𝑡, on the computed base force was analyzed by running the same wave condition in 
Dynveg using different values of Δ𝑡. The results are shown Figure 1-C. 

 

Figure 1-C. Comparison of the computed forces at the base, 𝐹!, over time for different values of the timestep Δ𝑡, with 
Mimic 4, with ℎ! = 15  cm,𝐻 = 0.04  m and 𝑇 = 1  𝑠. 

The computed time-series coincided for ∆𝑡 = 0.001  𝑠 and ∆𝑡 = 0.01. Consequently, it was concluded that the 
second value allowed to reduce the duration of the simulations without leading to errors. The predictions showed 
significant differences when a value of ∆𝑡 = 0.05  𝑠 was used, and this timestep was considered too large for the 
present conditions.  

Effect of the theta-method 

The numerical method used to solve the integro-differential equation was defined by the parameter 𝜃, with  
0 ≤ 𝜃 ≤ 1, where 𝜃 = 0 corresponded to the explicit method and 𝜃 = 1 to the implicit method. As it can be 
observed in Figure 2-C, variations of the value of 𝜃 did not alter the results of the simulations.  

 

Figure 2-C. Comparison of the computed forces at the base, 𝐹!, over time for different values of the timestep Δ𝑡, with 
Mimic 4, with ℎ! = 15  cm,𝐻 = 0.04  m and 𝑇 = 1  𝑠. 
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Appendix D. Hysteresis effects 

Init ial phase of the velocity 

The effect of the initial phase of the velocity on the stem motion was analyzed by running the same wave 
condition using linear wave theory with 𝑥! = 0, changing the value of 𝜑 in equation (2.19) and equation (2.20) 
from 𝜑 = 0º  until 𝜑 = 180º  at intervals of 45º . The computed tip motion is shown for two different wave 
conditions in Figure 1-D and Figure 2-D. 

 

Figure 1-D. Comparison of the position of the tip, 𝑥, over time for Mimic 2, with ℎ! = 30  cm,𝐻 = 10  cm and 𝑇 = 2.5  𝑠. 

 

Figure 2-D. Comparison of the position of the tip, 𝑥, over time for Mimic 2, with ℎ! = 30  cm,𝐻 = 15  cm and 𝑇 = 6  𝑠. 

The behaviour of the stem changed for the different cases at the beginning of the simulations. Nevertheless, once 
the initial oscillations were dampened, the solutions converged into the same steady state. It was concluded that 
hysteresis effects did not affect the results of the model.  
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Appendix E. Val idation of Dynveg for f lexible vegetation  

Non-l inear f i tt ing of force coeff icients for f lexible mimics 

The procedure to obtain the force coefficients for flexible vegetation was applied for Mimic 3 with ℎ! = 0.3  𝑚 and 
with a wave condition of 𝐻 = 0.16  m and 𝑇 = 3.5  s as a proof of concept. Dynveg was ran using the velocities 
recorded in the experiments by Bakker (2015). The complete vertical profile was constructed using data from 
different set-ups, as indicated in Section 5. The velocities were differenciated to derive the accelerations and a 
low pass filter function was applied to smooth the time series. The force coefficients were varied in the 
simulations within the ranges of 𝑐! = 1 − 4 and 𝑐! = 1 − 4. The results of the model were compared with the 
experiment 3𝐿30𝐻160𝑇35𝐸𝑀𝐹300_𝑡𝑎𝑘𝑒1 . The laboratory records had been processed by Döbken (2015), 
producing a structure file which contained the measured velocities, base force and tip position during two wave 
periods. The comparison with the experiments was based on the horizontal position of the tip, 𝑥!"#(𝑡), and the 
horizontal force at the base, 𝐹!(𝑡). 

After performing the simulations, the velocities that had been introduced as an input in Dynveg were correlated 
with the time-series of the structure file. This was done to ensure that the computations corresponded to the 
same phase of the wave than the measurements. The modelled forces and positions were also shifted using the 
same offset. When the computed and recorded time-series were plotted, the forces were in phase with the 
experiments for all the combinations of 𝑐! and 𝑐!, as shown in Figure 1-E. Nevertheless there was an offset in the 
horizontal displacement of the tip which varied between ∆𝑡! = 2.57 − 2.77𝑠 for the different values of 𝑐! and 𝑐!, 
as illustrated in Figure 2-E (a).  

 

Figure 1-E. Comparison of results for 𝑐! = 2 and 𝑐! = 1. (a) Inputted and measured velocity time-series after 
correlation (b) Computed and measured forces after shifting using the offset obtain from (a).   

 
Figure 2-E. Comparison of results for 𝑐! = 2 and 𝑐! = 1 (a) Computed and recorded tip position after correlating 

the velocities. (b) Horizontal measured and computed tip positions after correcting for the phase shift of (a). 
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Such timeshift could have several causes. For instance, it could be associated to the procesing of the 
experimental data. In order to synchronize the measurements of the force transducer and the camera, a LED 
light was shifted on. The flash was recorded by both the camera and the data-acquisition software (Bakker, 
2015), and its duration was approximately equal to the found offset. Therefore, the shift could be caused by 
referencing the forces to the moment when the LED was shifted on and the stem position to the instant in which 
the light was turned off. Nevertheless, the causes of the delay have not been further investigated in the present 
work.   

In order to compare the amplitude of the modelled and measured time signals, the calculated tip position was 
correlated to the record to correct for the phase difference, as shown in in Figure 2-E (b). The root mean square 
error of both variables (𝐹! and 𝑥!"!) was calculated according to equation (E.1) and equation (E.2).  

 
𝜀! =

1
𝑁 𝑥!"#,! − 𝑥!"#,!

!!!

!!
 (E.1) 

 
𝜀! =

1
𝑁 𝐹!,! − 𝐹!,!

!!!

!!
 (E.2) 

Where 𝜀! and 𝜀! are the errors in the positions and the forces, respectively. The subscript 𝑚 refers to measured 
values and 𝐷 to the results of Dynveg and 𝑁 is the number of data points in the time interval considered, from 
𝑡 = 𝑡! until 𝑡 = 𝑡!. The comparison for the different values of 𝑐! and 𝑐! is represented in Figure 3-E. 

 

Figure 3-E. Root mean square error in the prediction of the horizontal force at the base (left) and in the horizontal 
tip displacement (right) 

Both the base forces and the tip motion were more sensitive to changes in the drag coeffiicient and considerably 
less influenced by modifications of the added mass coefficient, which is coherent with the fact that the case was 
drag-dominated. The error in the base load was minimized for a value of approximately equal to 𝑐! ≈ 2. The 
horizontal excursion of the tip was more accurately predicted for values of the drag coefficient ranging between 
𝑐! = 3 and 𝑐! = 3.5. The pair of force coefficients that minimized both errors in the forces and plant motion were 
𝑐! = 2.5 and 𝑐! = 2.5. The corresponding results are shown in Figure 4-E. 
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Figure 4-E. Comparison of results for 𝑐! = 2.5 and 𝑐! = 2.5. 

It can be observed that there are some deviations in the predictions, particularly at the peaks and at the transition 
from positive to negative velocities. The differences can be attributed to different factors. The force coefficients 
were kept constant in the runs regardless of the value of the Keulegan-Carpenter number. It was already shown 
Section 5 that Dynveg provided accurate predictions of the fitted forces (i.e., the forces calculated from the 
measurements and constant values of 𝑐! and 𝑐! using the Morison formulation) but could not exactly reproduce 
the recorded time-series, since in order to emulate those it would be necessary to incorporate the influence of 
the flow properties on the coefficients. There may be additional sources of error associated to the measuring 
devices and the processing of the experimental data. Moreover, there is also uncertainty in relation to the 
properties of the mimic. The manufacturer of Mimic 3 provided a possible range of values for the elastic modulus, 
with 𝐸 = 1.1 − 2.9 · 10!  𝑁/𝑚!. Bakker (2015) measured its value in the laboratory, attaching a weight, 𝑃, at the 
end of the stem and using the measured deflection, 𝛿!"#, to calculate 𝐸 from equation (E.3) 

 
𝛿!"# =

𝑃𝑙!

3𝐸𝐼 
(E.3) 

Here 𝑙 is the length of the stem and 𝐼 is the second moment of area. He obtained an intermediate value of 
𝐸 = 2.2 · 10!  𝑁/𝑚!, which was used in the previous runs. In order to evaluate the influence of variations of 𝐸, 
two additional simulations were performed using the extremes values of the interval given by the manufacturer. 
The results of the model are compared with the measurements in Figure 5-E. 

 

Figure 5-E. Effect of the stiffness on the computed base forces (left) and tip motion (right). The measurements are 
represented by a black line (—). The results of the largest elastic modulus 𝐸 = 2.9 · 10!  𝑁/𝑚! is shown with a red 
line (—) . The results obtained with the intermediate elastic modulus 𝐸 = 2.2 · 10!  𝑁/𝑚! is shown with a blue line 

(—). The results of the smallest value with 𝐸 = 1.1 · 10!  𝑁/𝑚! is represented by a yellow line (—). 
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The largest elastic modulus overestimated the measured peak force the 35% of its magnitude and 
underestimated the excursion of the tip in a 30%. The intermediate stiffness provided a slightly better results. The 
best fit was obtained with the smallest stiffness, for which the modelled forces and tip positions differed 
approximately in a 10%. 

The previous example may have additional implications for model validation using field measurements. Samples 
of seagrass can be collected in order to define the geometry of the vegetation of a site and bending tests can 
also be performed in the laboratory to determine their flexural rigidity. Nevertheless, there is considerable 
variability in the biomechanical properties of the plants of a meadow, even between individuals of the same 
species (de Langre, 2013). A number of environmental factors control plant growth and morphology, such as 
light, water temperature, sediment composition and inorganic carbon availability among others (Barko et al., 
1986). For instance, nutrient enrichment may increase the proportion of low-density tissues of the plant, 
consequently reducing its mechanical resistance (Lamberti-Raverot and Puijalon, 2012). Moreover, the bending 
stiffness for a single element may vary as the plant deflects in response to the hydrodynamic loading. The roots, 
stems and leaves of seagrasses have tissues with intercellular spaces (lacunae) filled with gas, mostly oxygen 
derived from photosynthesis (Karleskint et al., 2012). Such aereal spaces are surrounded by mesophyll cells 
(Hemminga and Duarte, 2000). Under high deformations the lacunae may be compressed against each other 
resulting in an increase of the young modulus of the plant. This process could not be captured by the use of a 
constant value of 𝐸. Given the sensitivity of the model to changes in the elastic modulus, deviations from the 
recorded vegetation motion can be expected associated to the uncertainties in the determination of the plant 
properties within a natural canopy. 

The work done by the vegetation was also represented as a function of the drag coefficient and the added mass 
coefficient. The dissipation could not be directly compared against the experiments, since the distributed forces 
along the stem were not measured in the laboratory. The modelled dissipation is shown in Figure 6-E. 

 

Figure 6-E. Wave-averaged energy dissipation as a function of the drag coefficient and the added mass 
coefficient.   

There is a 20% reduction in the dissipation when using 𝑐! = 2 instead of 𝑐! = 3, and the attenuation is two times 
larger for the maximum value of the drag coefficient (𝑐! = 4) compared to the smallest value (𝑐! = 1). Therefore, 
changes in the force coefficients can lead to important differences in the computed energy dissipation and 
uncertainties in their determination can alter considerably the predictions of wave-attenuation. 

   

 

 

 


