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Static balancing of an inverted pendulum with
prestressed torsion bars
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The Netherlands
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c InteSpring B.V., Molengraaffsingel 12-14, Delft, The Netherlands

Abstract

This paper presents a method for the design of a statically balanced inverted
pendulum. The non-linear moment-rotation characteristic of the pendulum’s
weight is approximated by a piecewise linear characteristic. Each transition
is realized by engaging or disengaging one or more torsion bars, by means of
mechanical stops. The whole set of torsion bars is located along the hinge
axis of the pendulum. A prototype with three parallel torsion bars was built.
Experimental evaluation of the prototype revealed a 99% work reduction of the
balanced pendulum with respect to the unbalanced one.

Keywords: static balancing, torsion springs, torsion bars, series spring,
parallel springs

1. Introduction

In order to alleviate the operating forces of mechanical devices, it is possible
to apply static balancing to counteract the weight of the system and/or its
payload [1]. The result is a more manageable device in the case that it is human-
operated, and less powerful actuators in the case that the device is powered.
Other advantages of static balancing include intrinsic safety [2], intuitive man-
machine interaction [3, 4], backlash reduction due to presstress, and weight
reduction of motors and brakes [5]. Because of these advantages static balancing
of weight has been proposed in numerous applications, especially in the fields of
robotics [6, 7, 8, 9, 10], orthotics and assistive devices [11, 12, 13], and consumer
products [14].

Most static balancing techniques involve the use of counter-masses [15],
which have the disadvantage of increasing the overall mass and inertia of the
system. A common alternative is to use extension springs [1], which have the
disadvantage that the volume they occupy increases when the spring is loaded.
In addition, most spring-based balancing techniques rely on the use of a special
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type of spring, namely a zero-free-length spring (ZFLS), which is not a com-
mon off-the-shelf component. Some authors have presented ways to circumvent
the need for ZFLS proposing alternative balancing methods that are based on
conventional springs with non-zero free-length [16, 17, 18, 19, 11].

Both kind of extension springs often have the disadvantage that the volume
they occupy crosses the empty space between the elements of the device, which
implies that the space is not available for other purposes. Think for example of
an application where static balancing is to be applied in a foldable structure,
such as a foldable sea container [20], to compensate the weight of the members
of the structure. If there were extension springs crossing the free space inside the
structure, this space would not be available for goods. Therefore more compact
solutions that solely occupy space near the hinges are sought.

Koser [21] present a cam mechanism in combination with a compression
spring that is designed as a compact unit at the base of a robotic manipulator.
However, the assessment of the practical applicability of the concept is not
completed up to the level of component design and physical evaluation. In
practice, the high forces on the cam system combined with the very small design
space may reveal as the limiting factors.

Shieh [22] presents a balancing mechanism that does not cross the free space
by applying a Scotch Yoke spring mechanism which can be integrated within
the link. Friction in the sliding parts are probably affecting the performance of
balancing significantly, but the authors make no mention of this possible issue.

The employment of torsion springs at the hinges of a linkage would eliminate
the named disadvantages. Torsion springs, namely, act at the point of rotation
between two bodies and thus do not elongate when loaded. Very little work has
been found that includes torsion springs for the purpose of balancing weights.

Gopalswamy [5] balances the weight of a parallelogram linkage with a sin-
gle torsion spring with a linear characteristic. The range where the balance
applies, however, is limited to the part of the sine characteristic that can be
approximated as linear.

Trease [23] developed a gravity balanced four-bar linkage. An optimization
procedure was used to obtain a constant potential energy of the masses and
the open-cross compliant joints, a type of torsional springs. As the authors
state, the presented solution is a specific one limited to the given parameter set
only. A similar result was obtained by Radaelli [24], who developed a general
design method for approximate static balancing of linkages with torsion springs.
In one of the examples, a pendulum is balanced by an additional double link,
obtaining in fact a four bar linkage with a balanced weight. In both cases the
links that are added to balance the pendulum occupy a considerable amount of
space. Therefore, in this regard, these solutions do not offer enough advantage
with respect to the helical spring balancers.

In the present paper the case is considered of a body, modelled by a point
mass connected by a weightless link to a revolute joint in an inverted pendulum
arrangement, representing, e.g., a side wall of a foldable sea container. The
pendulum moves over ninety degrees from the upright vertical position to a
horizontal position. The weight will be balanced with torsion springs, namely
torsion bars. Torsion bars have the advantage that they occupy approximately
the same space loaded as unloaded. Moreover, normally the bars are situated at
the hinge in the direction perpendicular to the plane of motion of the pendulum.
This is especially advantageous for pendulums with large out-of-plane width,
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such as the side wall of the container.
Since normal torsion springs have a linear moment-angle characteristic, they

can only linearly approximate the sinusoidal moment-angle characteristic of the
weight. We propose the judicial employment of mechanical stops and prestress
for the sequential activation or deactivation of different torsion bars in order to
result in a piecewise linear moment characteristic. This piecewise linear charac-
teristic can give better approximations of the nonlinear degressive characteristic
of the weight.

Eshelman [25] describes an invention where a multi-rate torsion bar is em-
ployed for vehicle suspensions. An increased torsional stiffness is obtained with
two serial torsion bars with one mechanical stop. Also Fader [26] describes a sim-
ilar torsion bar for vehicle suspensions, where more mechanical stops are used
to affect the total torsion stiffness of the bar. In his invention, Castrilli [27]
obtains non-linearity in the torsion characteristic of a bar with a continuous
contact profile along the length of the bar. This system can be regarded as
an infinite number of bars of infinitesimal length in series, all with their own
contact point.

All mentioned inventions concern torsion bars with increasing stiffness. A
degressive stiffness, however, can only be obtained if the stops make contact
initially, i.e. one or more bars are prestressed. Claus [28] designed such a
system for static balancing of the walls of a foldable container. In a small-scale
prototype he used a configuration of two serial torsion bars with one mechanical
stop. No other examples of torsion spring systems with positive but degressive
stiffness were found by the authors in literature.

The goal of this paper is to propose a method for balancing an inverted
pendulum by a piecewise linear approximation of the nonlinear characteristic,
obtained by the sequential (de-)activation of torsion springs. The design ap-
proach allows for unlimited number of linear segments. This number is only
limited by the physical implementation of the torsion bars.

The outline of this paper is as follows. In section 2 the design methodology
is described. Section 3 illustrates the design of the physical prototype, while
in section 4 the testing procedure and the test results are provided. Finally a
discussion and some conclusions can be found in sections 5 and 6, respectively.

2. Method

The present section starts with a description of the technical problem and
of the conceptual solution. After that the design method will be discussed.

2.1. Problem Description

Consider the system depicted in Fig. 1a. A point mass m is attached to
a weightless rigid link at a distance l from a hinge. The pendulum is allowed
to move between its upright vertical position a, and 90 degrees clockwise, to
the horizontal position b, thus [a, b] = [0, π2 ] rad. The weight of the pendulum
produces a negative sinusoidal moment-angle characteristic at the hinge. Fric-
tion and other non-conservative forces are neglected. To maintain the system in
equilibrium at every position, a system with a positive sinusoidal moment char-
acteristic is needed to counteract the weight, see Fig. 1b. Focusing on the given
range of motion it is required that the balancing system possesses a non-linear,
positive and decreasing stiffness.
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Figure 1: a) Inverted pendulum, b) moment-angle of pendulum and of ideal balancer.

A given design requirement is that the balancing system occupies as little
space as possible around the hinge. In a sea container, the direction out of the
plane of motion is along the hinge of the wall, thus along this hinge there is
space available for the balancing system. This requirement practically excludes
the employment of extension springs.

The high non-linearity and particularly the decreasing stiffness property
makes it hard to think of solutions with normally employed torsion springs,
since nearly all of those have a positive, maybe increasing stiffness.

2.2. Concept Solution

Obtaining a changing stiffness in a controlled manner can be done by the
subsequent employment of more springs and mechanical stops. The mechanical
stops serve to activate or deactivate a spring such to obtain a different compound
of active springs, resulting in a non-constant stiffness, see [29]. The employed
springs can be connected in series or in parallel or in a combination of both, as
will be explained next.

Series - Assume two serial extension springs are fixed at one end and loaded
at the other end, with a mechanical stop at the connection point of both springs,
see Fig. 2a. The mechanical stop is not making contact. Increasing the applied
load will cause the mechanical stop to make contact. Now one spring is allowed
to deform further, while the other one keeps its current deformation and no
longer contributes to the stiffness at the endpoint. The resulting stiffness is
higher than before.

Series prestressed - Consider now the other way around. The same two
springs are prestressed in such a way that the mechanical stop makes contact
at the starting position, see Fig. 2b. One of the springs will initially not deform
and therefore not contribute to the stiffness. Increasing the load will make the
mechanical stop lose its contact when the load equals the prestress force. Now,
both springs start to contribute to the stiffness, making the total stiffness lower
than before.

Parallel - Analogous reasoning can be applied to parallel springs. Consider
two parallel springs. One spring is connected to ground at one end and at a
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Figure 2: Variable stiffness with mechanical stops in extension springs. a) series making
contact, b) prestressed series releasing contact, c) parallel making contact, d) prestressed
parallel releasing contact.

common load point at the other end, and the other spring can be fixed or loose
at one end due to the mechanical stop, and is connected to the load point at
the other end, see Fig 2c. If the spring is unloaded initially, the total stiffness
will increase when the mechanical stop makes contact.

Parallel prestressed - Consider the fourth case where the mechanical stop
is initially active, thus there is a certain prestress force holding the contact.
Once the load equals the prestress force the contact gets lose and second spring
does not have any contribution to the stiffness. In fact, the second spring will
have only a rigid-body motion from that point on. Since in parallel systems the
stiffnesses add together, the result is a lower stiffness after contact is lost.

Extrapolating from this fundamental idea, it becomes possible to approx-
imate different non-linear curves by piecewise-linear curves possibly involving
two or more linear segments, obtained by one or more mechanical stops. The
explanation with the extension springs, which is more easily illustrated, also
holds for torsion springs or any other analogous situation with potential energy
storage elements.

2.3. Design Method

The present subsection describes the linear approximation of the sine curve,
that can be obtained by a single linear torsion spring for an approximate balance
with a number of static equilibrium positions. It is followed by a description
of the piecewise-linear approximation obtained by the passive (de-)activation of
different prestressed linear torsion springs with mechanical stops. The result is
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an improved approximation of the sine curve with two static equilibrium points
for every different spring.

2.3.1. Linear Approximation

Consider a single torsion spring, or any combination of springs, with a linear
moment characteristic. If employed as balancing system for an inverted pen-
dulum, the balance will always be approximate, and a certain number of static
equilibrium positions can be obtained, depending on the energy function of the
system to be balanced. The best fit between a linear segment and the segment
of the sine depends on the choice of the objective function. For example, the
maximum difference between both curves could be minimized to suppress high
peak forces. Alternatively one could take the integral of the squared difference
between both curves over the range of motion. This would lead to a lower work
done over the whole range of motion. The choice is related to the application
of the balanced system. With no real application at hand, in this paper the
second objective is arbitrarily chosen. The dimensionless difference ∆ between
the sine and the line (normalized by amplitude mgl = 1) is given by

∆ = sin (θ) − (Kθ +M) (1)

where K is the slope of the line and M is the level of the line at θ = 0. The
objective is the integral of the squared difference over the range of motion, as

f = min
K,M

∫ b

a

∆2dθ (2)

where K and M are varied to obtain the best fit. The optimization is performed
with the aid of the Matlab R© tool slmengine, which can perform a piecewise linear
fitting to any dataset by least squares optimization.

The sine curve in the range a = 0, b = π/2, the fitted line and the resulting
error curve are provided in Fig. 3. The optimized value for f is 0.0062. The
optimized parameters K and M are 0.66 and 0.11, respectively. The system can
be made with a torsional spring with stiffness k = Kmgl and neutral angle

α = −M
K

(3)

The maximum rotation which the spring undergoes is

Θ = b− α (4)

2.3.2. Two-piece Linear Approximation

For an improved approximation the sine can be fitted with two linear seg-
ments, see Fig. 4. Both line segments can be described by their slopes K1 and
K2, and their starting point defined by the coordinates θ1, M1, and θ2, M2. θ1
is defined by the starting point of the range of motion a, in this case θ1 = 0.
Moreover, M2 is determined by the first line segment and the intersection an-
gle θ2. The set of parameters that remains available for the optimization are
K1,K2,M1 and θ2. The dimensionless difference between the piecewise approx-
imation and the sine is now given by

∆ =

{
sin (θ) − (K1θ +M1) a ≤ θ < θ2
sin (θ) − (K2θ +M2) θ2 ≤ θ < b

(5)
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and the objective becomes

f = min
K1,K2,M1,θ2

∫ b

a

∆2dθ (6)

The values that result from the optimization are

[K1,K2,M1,M2, θ2] =[
0.88rad−1, 0.32rad−1, 0.02, 0.83, 0.91rad

] (7)

and, given the range a = 0, b = π/2, the obtained value of the objective is
f = 3.2647e− 4.

In a subsequent step, it is possible to choose whether to use two serial springs
or two parallel springs.

Series springs
If both springs are in series, then in the first segment only one spring is active,
and in the second segment also the other spring becomes active. The first spring
thus must have the stiffness k1 = K1mgl and neutral angle α1 = −M1

K1
while

the second spring has stiffness

k2 =
K1 ·K2

K1 −K2
mgl (8)

and neutral angle

α2 = −M2mgl

k2
(9)

Parallel springs
In the case that the springs are parallel the stiffness of the first spring is

k1 = (K1 −K2)mgl (10)

while the stiffness of the second bar is simply k2 = K2mgl. The neutral angles
of the two springs are

α1 = θ2 (11)

α2 = θ2 −
M2

K2
(12)
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2.3.3. Multi-piece Linear Approximation

The procedure above can in principle be extended for any number of serial
or parallel springs. Combinations of serial and parallel springs are also possible,
but will not be considered here. For n number of linear segments, there are
2n free parameters to optimize. These are the slopes K1,K2...Kn, the height
of the first intersection point M1 and the angles of the following intersection
points θ2, θ3...θn, see Fig. 5. The difference function and the objective function
are given by

∆ =


sin (θ) − (K1θ +M1) a ≤ θ < θ2
sin (θ) − (K2θ +M2) θ2 ≤ θ < θ3
...
sin (θ) − (Knθ +Mn) θn ≤ θ < b

(13)

and

f = min
x

∫ b

a

∆2dθ (14)

with
x = [K1 · · ·Kn,M1, θ2 · · · θn] (15)

.
Series springs

In the case of a serial configuration, the spring parameters are obtained with

ki = Kimgl i = 1

ki = Ki−1·Ki

Ki−1−Ki
mgl i = 2...n

(16)

αi = −Mimgl
ki

i = 1...n (17)

The maximum rotation undergone by the springs is

Θi = Mbmgl
Ki

i = 1...n (18)
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where Mb is the normalized moment at point b, that can be derived by

Mb = Mn +Kn (b− θn) (19)

Parallel springs
The spring parameters in the case of a parallel configuration of springs are
obtained with

ki = (Ki −Ki+1)mgl i = 1...n− 1
ki = Kimgl i = n

(20)

αi = θi+1 i = 1...n− 1
αi = θi − Mi

Ki
i = n

(21)

The maximum rotation undergone by the springs is

Θi = θi i = 1...n− 1
Θi = b− αi i = n

(22)

2.4. Number of bars

Evidently, the more linear segments are used, the better the approximation
to the sine curve is. However, the advantage in fitting result may in practical
cases not weight against the added complexity of a high number of springs.
Therefore a trade-off should be made between complexity and accuracy, which
is highly dependent on the intended application. Figure 6 shows the results of
optimized objective function f as a function of the number of linear segments
on a logarithmic scale. It can be observed that the advantage in accuracy is
decreasing as the number of segments increases.

2.5. Choice between parallel and series

Also here, it is dependent on what the intended application of the balanced
system is whether to prefer a serial configuration or a parallel one. However,
some guidance can be found in the metric given next.

Considering that potential energy required to lift the pendulum does not
change with the spring configuration, the sum of the maximum strain energy
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Figure 6: Result of optimization for different number of segments on logarithmic scale. Im-
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Nr. segments 1 2 3 4 5

series 1.01 1.69 2.48 3.29 4.11
parallel 1.01 1.92 2.82 3.69 4.54

Table 1: Sum of maximum strain energy in every bar, for different number of bars. Pendulum
parameters are normalized to mgl = 1.

that is stored in the different springs separately can be used as an indicator
for the efficiency of the system. The maximum energy storage U in the single
springs is given by

Ui =
1

2
kiΘ

2
i (23)

and the sum of the strain energy over all springs is

Utot =

n∑
i=1

Ui. (24)

Table 1 gives some comparative values of total strain energy for series and
parallel springs. It can be seen that the energy efficiency, as defined above, is
worse for parallel systems because the energy metric is increasing faster w.r.t.
serial systems.

3. Prototype

For the illustration and evaluation of the presented design approach, a pro-
totype has been designed, constructed and tested. In the presented prototype,
as an example for above mentioned possibilities, three parallel torsion bars are
used to approximate static balancing of an inverted pendulum. The choice of
three bars and the parallel configuration is arbitrary and is not related to the
efficiency metric discussed above. A trilinear approximation of the first quarter-
period of a sine function gives 2 orders of magnitude error reduction with respect
to a linear approximation, see Fig. 6.
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Parameter units value

m, g, l [kg,ms−2,m] 5, 9.81, 0.5
K1,K2,K3 [rad−1] 22.82, 14.79, 5.09
a, θ2, θ3, b [rad] 0, 0.68, 1.15, 1.57
M1,M2,M3,Mb [−] 0.26, 15.81, 22.74, 24.88
k1, k2, k3 [Nmrad−1] 8.03, 9.70, 5.09
α1, α2, α3 [rad] 0.68, 1.15, -3.32
Θ1,Θ2,Θ3, [rad] 0.68, 1.15, 4.89
d1, d2, d3 [m] 0.004, 0.005, 0.006
L1, L2, L3 [m] 0.247, 0.500, 1.975

Table 2: Design parameters

3.1. Torsion bars

The spring type selected for this prototype are torsion bars. Torsion bars
can occupy very narrow spaces along the hinge axis. Moreover, torsion bars
have an efficient efficient energy storage per material volume as compared to
springs that are loaded in bending [29], e.g., spiral springs and helical torsion
springs.

For the dimensioning of torsion bars the material properties shear modulus
G and maximum shear strength τmax are needed. Given a circular cross-section
of the bars, the length Li and diameter di must satisfy the following relation in
order to obtain the desired stiffness ki

Li =
JiG

ki
(25)

where J is the polar moment of inertia, given by

Ji =
πd4i
32

(26)

Moreover, as the maximum shear stress τ may not be exceeded, the following
inequality must be satisfied

Li ≥
diGΘi

2τmax
(27)

To use as little material as possible, one might want to chose the values for d
and L for which this inequality is just fulfilled. However, for practical reasons,
a round-off value of the diameter would be beneficial for the ease of purchasing
the bar.

With the material properties G = 79 GPa and τmax = 600 MPa (alloy steel
DIN 1.8159) the resulting design parameters are given in table 2.

The moment characteristic of the pendulum, the balancing system and both
together are plotted in Fig. 7

3.2. Construction

A picture of the entire prototype is provided in Fig. 8. Some details of
the construction are discussed next. The three bars have an L-shaped hook
at one end, and are clamped in a common aluminium block in such a way to
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impede relative rotation, see Fig 9a. This part is connected to a bearing and to
the pendulum, with masses at adjustable distances. The longest torsion bar is
positioned centrally with respect to the other two bars. It is assumed that the
influence of the offset of the two short bars from the axis of rotation is negligible.
At the free end of the two short bars a wing-shaped part is fixed. The wings can
make contact with a perpendicular bolt at every side such to impede further
rotation, see Fig. 9b. This system is the mechanical stop that makes the bar
active only in a certain range of motion. Due to the bending stiffness of the
bars it is not needed to support them at this end.

Figure 8: Picture of entire prototype. Three torsion bars with an arrangement of mechanical
stops serve as gravity balancing system for an inverted pendulum.

4. Evaluation

The testing of the prototype and the results from the measurements are
discussed in the present section. The mass of the pendulum and the distance of
the centre of mass from the rotation axis, for which the best results were found
experimentally, are

mreal = 5.0 kg (28)

12



(a) (b)

Figure 9: Prototype details pictures. a) L-shaped bar ends clamped, b) mechanical stops, the
wings touch the bolts impeding rotation from then on.

Nr Stable/Unstable Model [deg] Prototype [deg]

1 U 9.3 4
2 S 31.8 38
3 U 45.1 43
4 S 60.4 60.5
5 U 71.0 69
6 S 84.9 84

Table 3: Equilibrium positions, prediction and measurements.

lreal = 0.487 m (29)

The distance is 0.013 m smaller than the optimized value.

4.1. Equilibrium positions

The system is expected to exhibit six equilibrium positions within the given
range of motion, three stable ones and three unstable ones. The pendulum
is positioned in proximity of the expected equilibrium positions. In the case
of the stable equilibria, the system will spontaneously approach the state of
equilibrium. In the case of unstable equilibria, the point is searched manually by
feeling where the reaction force and the tendency to deviate from that position
are minimal. Once the pendulum is positioned at these positions, the angle
is measured with a bevel protractor. The results of this test are tabulated in
table 3.

4.2. Moment-angle measurements

The next test aims to get a precise moment-angle characteristic of the pro-
totype over the given range of motion. The measurements are performed with
a vertical tensile bench. The load cell is connected by a wire to an aluminium
disc with 30mm diameter. The disc, which is supported by a separate ball-
bearing, is connected to the balancing system with a pin connection between
the axis of the disc and the hollow axis of the balancing system. On the disc a
counter-mass is attached through a wire over a pulley to make all forces tensile
and thus measurable with this setup. This weight was later subtracted from the
measurement result.
Two separate measurements are performed. One in which only the disc with the
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mass and the pulley are connected, and one also including the pendulum with
its balancing system. Subtracting both measurements from each other gives the
moment contribution of the balanced pendulum. The measurements are per-
formed two ways, from 0◦ to 90◦ and back from 90◦ to 0◦. This way, a hysteresis
loop is obtained. Taking the mean of the values for both directions at every an-
gle gives an estimate of what the force would be in the absence of friction. This
estimate is based on the assumption that the contribution of friction at every
angle is equal in both directions. Figure 10 gives the measurements results of
the measuring setup (red), the setup with the balanced pendulum (green) and
the difference between both (blue). Also the mean value between the upper and
lower part of the latest hysteresis loop is plotted (black), which is considered to
be the moment coming from the balanced pendulum excluding friction. This
moment-angle characteristic is compared to the modelled one in Fig. 11.
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Figure 10: Moment-angle measurements. The measurements with the system and the mea-
surements setup are corrected with measurements of the setup alone. The results are corrected
for friction. The black line is considered to come from the balanced pendulum itself.
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Figure 11: Measurements compared with the model. The resulting line from Fig 10 is plotted
next to the error line of Fig 7

Two comparative parameters will be provided to evaluate the fit between the
modelled curve and the measured curve: the root mean squared error RMSE
and the correlation coefficient ρ. These parameters, however, do not quantify
the balancing quality. For this we take ratio R between the work done by the
balanced pendulum over the work done by the unbalanced pendulum in one way
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over the range of motion.

R =
Wbal pendulum

Wpendulum
=
Wbal pendulum

g ·mreal · lreal
(30)

The results are
RMSE = 0.0868 Nm

ρ = 0.8288
(31)

R =
0.1996J

23.8874J
= 0.0089 = 0.89% (32)

5. Discussion

5.1. Design approach

The discussed design approach based on a piece-wise linear approximation
of a sine curve through multiple torsion bars with preload and mechanical stops
seems to be a powerful and easy tool for the design of statically balanced inverted
pendulums. The present design concerned a range of motion of 90 degrees. The
design approach however, can be applied for different ranges of motion and po-
tentially also for other types of non-linear moment characteristics. Yet it is not
possible with springs with positive stiffness, to obtain a negative stiffness of the
balancing system.
It is possible, but left for future work, to add the possibility of combining se-
ries and parallel springs together. This might be beneficial for the material
and space-efficiency of the system. Also it must be investigated what type of
non-linearities are possible to achieve. For example, is it possible to combine
progressive and degressive slopes in one curve?

5.2. Measurements

The measurement results are quite satisfactory. The difference with the
modelled results are small and qualitatively the behaviour is as expected. This
can be verified with the number and location of the equilibria and the location
of the transition points, i.e. where contact conditions change. The amount of
work reduction of about 99% is also very satisfactory. About the measurements
themselves, the amount of measured hysteresis is considered high. As seen in
Fig. 10 however, most of the hysteresis stems from the measurements setup,
the disc and pulley, and not from the balancing system. It is also noticed that
significantly higher friction is present near the upright position of the pendulum.
This is presumably the effect of misalignment of the bearings.

5.3. Material

The design of the balancing system is developed for a mass of 5 kg on a
distance of 0.5 m. To obtain the best results in the prototype, however, a mass of
5 kg was fixed at a distance of 0.487 m. This difference of 2.6% is most probably
due to variations in the shear modulus of the material. For employment of such
a balancing mechanism in real-life applications either good tests beforehand
should reveal the exact properties of the material, or the mechanism should be
able to accommodate for adjustment of the torsional rigidity of the bars or one
of the other design parameters.
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5.4. Construction

The presented construction of the prototype revealed some interesting fea-
tures:

• The absence of bearings for the two contacting bars combines a reduction
in complexity and an improvement in terms of friction losses. In this case
the bending stiffness of the bars suffices to sustain themselves and to guide
themselves against the contacting points of the mechanical stops.

• The distance of the two short bars with respect to the axis of rotation
does not compromise noticeably the energy accumulation properties of
the bars, due to the low bending stiffness of the bars and the relatively
small bending deflection of the bars during motion.

6. Conclusions

This paper presents the development of a design approach for static balanc-
ing of an inverted pendulum. The design approach is based on a piecewise linear
approximation of the nonlinear moment characteristic of the pendulum, ob-
tained with sequential (de)-activation of torsion springs using mechanical stops
and pretension in a variety of arrangements. In the optimization procedure, the
area between the original curve and the approximation is minimized, resulting
in a system that requires minimal work for operation.

The design method is a tool to approximate balance with torsion springs in
series and parallel configurations, up to an unlimited number of springs, limited
only by physical construction constraints.

The method is used to approximate a sinusoidal curve, but can potentially be
used for the approximation of other types of non-linear moment characteristics.
For example, in a more complex linkage system subject to gravity, the effect
of the weight can be translated into a needed moment characteristic at one or
more hinges of the system.

A trilinear approximation of the first quarter-period of a sine function gives
a factor 100 error reduction with respect to a linear approximation. A prototype
with three parallel torsion bars was constructed and tested. As compared to the
unbalanced pendulum, less then 1% of the work is needed to turn the pendulum
90◦ from upright to horizontal.
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