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Abstract

In this thesis, research is done on the influence and benefits of an iterative interaction be-
tween a scheduler and its subsystems for an updated scheduler which minimizes to a certain
cost. This is done by providing a case study of a beer brewery. The scheduler is obtained by
using a switching max-plus linear approach. The subsystems will be simulated, estimated and
predicted using the system dynamics of the beer brewing case study. The processes discussed
in the beer brewing process are mashing, brewing and fermentation. The simulation is done
by filling in the system dynamics with addition of noise. The estimation is done by using
an extended Kalman filter, and the predictions are done by filling in the system dynamics
with the estimated states and no addition of noise. The updating of the scheduler is done
by receiving the estimations and predictions of the subsystems and thereafter using model
predictive control on the switching max-plus scheduler, also called model predictive schedul-
ing. The results for the case study are shown as a substantiation of the conclusions drawn.
Ultimately, discussions and further research are given for the reliability of the conclusions and
extensions on the above summarized research.
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Chapter 1

Introduction

Modern day world often offers problems which can be modelled, analyzed and controlled as
discrete event systems, referred to as DES’s. In a significant amount of these DES’s, con-
ventional algebra can only formulate the problem as a non-linear one. A slight subclass of
these non-linear systems can be reframed, under the condition that synchronization but no
concurrency occurs, with the result of becoming linear in the max-plus algebra [1][8]. In ex-
isting literature a broad amount of applications can be found [9], such as max-plus models of
ribosome dynamics during mRNA translation [2], max-plus modelling of manufacturing flow
lines [12] and model predictive scheduling for container terminals [13].

Such max-plus linear systems are useful, since the analysis can be done by using techniques
and properties quite familiar in conventional linear algebra. For instance the eigenvalues,
eigenvectors, Cramer’s Rule and spectral radius [1][8].

A relatively new subclass of these max-plus linear systems, are the switching max-plus lin-
ear systems[16]. This technique gives the opportunity to change between certain modes in
a system, where for each mode a different state-space exists. This results in being able to
change the structure of the system, and therefore adjust the synchronization or order of the
system as will be elaborated later on in this report. Note that for this particular reason
switching max-plus linear systems are a useful extension of max-plus linear systems. A quite
remarkable coincidence is that in some cases, with the right conditions, similarities exist of
these switching max-plus linear systems with well known hybrid systems [17]. Examples of
applications of switching max-plus linear systems are changing recipes in production systems
[14] and gait switching in legged locomotion [10].

(Switching) max-plus linear systems are extensively used for the purpose of scheduling. Nor-
mally, scheduling consists of making timetables for specific jobs or processes. These jobs or
processes need to fulfill certain begin- and endtimes. For instance, in case of a railway net-
work, the trains need to fulfill certain departure- and endtimes of the timetable it is made
for. Most commonly, these schedulers are designed in a hierarchical way. This is illustrated
in figure 1-1, where a scheduler sends certain information about the begin- and endtimes in
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2 Introduction

a hierarchical way from top to bottom.

Figure 1-1: Hierarchical scheduler.

However, switching max-plus linear systems can adjust the timetable by assigning new routes,
new orders, or adjust synchronizations for and between different trains. Continuously opti-
mizing such scheduling problems with a high amount of for instance trains and different
possibilities for the trains to come from place A to place B, can be computationally very hard
though. For this purpose, iterative interaction within a certain time-step is proposed in [15].
In the referred study, the iterative interaction between the schedule- and subsystemlevel is
described via the use of an interface. This interface receives information from both levels as
is illustrated in figure 1-2. The question if this interface works, can already be agreed upon.
Though, the exact processes and problems which are encountered within this interface, are
worthy to look at.

Figure 1-2: Iterative scheduler with adaptive behaviour.
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3

The main scope of this thesis will therefore lie in the working of this iterative process. The
interface is just an illustrative way to explain the problem, but essentially it can be translated
to the research in the iterative manner the scheduler and subsystems communicate. Since a
switching max-plus linear approach is used to model the scheduler, the top-level will work
in the event-domain. The subsystem level however, will work in the (discrete)-time domain.
The main problem will lie in the iterative communication between this event-domain top-level
of the scheduler and the (discrete) time-domain bottom-level of the subsystems. This will be
practically substantiated by the modelling of a case study. For the case study a beer brewery
is proposed, where several processes are obtained as subsystems and the scheduler decides
whether which subsystem should start. Underneath the main problem, several subproblems
can be outlined as well.

The scheduler essentially consists of a switching max-plus framework, where different modes
are assigned to different routes through the resources in which the processes take place in the
case study. The modelling of these routes, as well as the choice for certain nominal process
times in the switching max-plus matrices, must be thought of. Finally, these solution must
be translated to initial begin- and endtimes for the subsystems.

When subsequently arriving at the subsystem-level which received these starting- and end-
times, the subsystem need to start. Though, since real systems are not obtained, simulations
need to be made with deviations in the nominal times for the scheduler to adapt to certain
deviations. These deviations must not be too random, neither to close to the nominal process
time. Considerations need to be made with respect to the process time.

Furthermore, when realizations are made for the simulations of the subsystem, an observer
need to estimate the states of the subsystems. An approach is proposed which serves as an
observer for the simulated subsystems. Afterwards, these estimated states, are used to put in
a prediction model for the subsystems, which can be send thereafter to the scheduler again
for the predicted process times.

Ultimately arriving again at the scheduler level, the predicted and updated process times
are used to come up with an updated schedule, and so on. Actually, the subsystems can be
looked upon as a big observer for the system matrices of the scheduler for the process times
of the subsystems. The update of the scheduler is an important topic. This update can be
considered using an event-based approach, or a time-based approach, as will be elaborated in
this report.

To conclude, the outline of this report is given. First in chapter 2, the top-level of the
schedule is discussed by giving background information with respect to the event-domain.
Scheduling using a switching max-plus approach is considered as well. Afterwards, in chap-
ter 3, the bottom-level is discussed by giving background infromation with respect to the
time-domain. General approaches for the simulations, estimations and predictions of the
subsystems are given. In chapter 4, the case-study is outlined to practically illustrate the
working of the iterative process between the scheduler and the subsystems. In this chapter,
mainly the methods and tools from chapter 2 and 3 are applied to the model of the case study.
Thereafter in chapter 5, the results of these applied methods are given. Finally in chapter
6, conclusions and discussions are given, to summarize this thesis report, and give extensions

Master of Science Thesis A.J.M. van Heusden



4 Introduction

for further research.
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Chapter 2

Background knowledge - Event
domain for the scheduler

In systems which behave like discrete event systems, the system does not behave according to
a certain time index t, but rather to an event- cycle- or batchcounter, denoted by the variable
k. To remain consistent, in the whole report, k denotes the event-, cycle- or batchcounter,
where for the discrete time-counter, the variable κ is chosen. First the background is given
for the max-plus algebra, whereafter model predictive control for max-plus linear systems
is obtianed for the update of the scheduler. Finally, the scheduler itself is outlined with a
switching max-plus approach.

2-1 Max-plus algebra

2-1-1 Max-plus algebra

In this thesis, the scheduling process will be done by using max-plus algebra. Basically
max-plus algebra consists of the operations maximization and addition, which replace the
conventional operations addition and multiplication. Many of the scheduling problems can
then be recasted linearly in the max-plus format. The following operations can be done in
max-plus algebra [7].

a⊕ b = max(a, b)

a⊗ c = a+ c
(2-1)

For a, b, c ∈ Rε = R ∪ −∞, also called the max-plus semi-ring. Note that the inverse of the
⊕-operator does not exist, namely when having the outcome b when having the maximization
of max(a, b), one can never find a. The only thing known is that a ≤ b. The above equations
can be extended to matrix algebra as:

(A⊕B)ij = aij ⊕ bij = max(aij , bij)

(A⊗ C)ij =
⊕n
k=1 aik ⊕ ckj = maxk=1,2,...,n(aik + bkj)

(2-2)
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6 Background knowledge - Event domain for the scheduler

Furthermore the zero- and one-operator are replaced by respectively ε = −∞ and e = 0. This
makes sense as will be shown in the following example compared with conventional algebra:

a+ 0 = a
a⊕ ε = max(a,−∞) = a

a · 0 = 0
a⊗ ε = a+−∞ = −∞ = ε

(2-3)

And for the one-operator the same procedure:

a× e = a
a⊗ e = a+ 0 = a

(2-4)

And so on. The matrices belonging to respectively the zero- and identity-matrices, can also be
obtained. For the zero-matrix it holds Eij = ε everywhere and for the identity-matrix it holds
(En)ij = ε and (En)ii = 0 for ∀i, j. Finally the powers of a matrix are considered. In max-plus
algebra the powers can be represented by the multiplication operator in conventional algebra:

A⊗
k = A⊗A⊗(k−1) = A⊗A⊗A⊗(k−2) = k ·A (2-5)

Where A⊗0 = En. Following up on the max-plus powers of a matrix, an important operator
is introduced. The Kleene-star product namely, is useful in solving max-plus linear equation.
The Kleene-star product is given by:

A∗ = En ⊕A⊗
1 ⊕A⊗2 ⊕A⊗3 ⊕ .... (2-6)

Ultimately, for the use of optimization in switching max-plus linear systems, max-plus binary
variables are introduced with their adjoint as:

u =
{
ε

0
(2-7)

and

ū =
{

0 when u = ε

ε when u = 0
(2-8)

In conventional algebra, the max-plus binary variables can be translated as:

vε = ε(1− v) (2-9)

Where v is a normal binary variable, such that if v = 0, vε = ε and if v = 1, vε turns out to
be 0. Later on, we will see this is important to model the max-plus algebra into conventional
solvers.

2-1-2 Max-plus linear systems

Max-plus algebra is mainly used in the sense of recasting non-linear problems when using
conventional algebra into linear problems in max-plus algebra. Many techniques from linear
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2-2 Model predictive control 7

algebra can be translated to the max-plus algebra. As well state-space descriptions can be
translated into max-plus algebra. This will result in:

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k)

y(k) = C ⊗ x(k)
(2-10)

In this framework, the variable k does not represent time-instances, but is represented as the
batch- job- or cyclecounter. For instance, in a railway network it could represent the k-th
train, or in an industrial plant, it could represent the k-th batch which need to be processes
in the plant. In most of the linear systems in max-plus algebra, the states x(k) represent
time-instances. The A- and B-matrix normally represent processing times or travelling times.
The input u(k) represents the time-instant batch/product k comes in. This input can be
controllable but does necessarily has to be, it could for instance also be considered as luggages
coming at random time-instances into a bagage handling system. The output of the system
y(k) can be considered as the time-instant the batch k comes out of a system. In the rest of
the report, to avoid misunderstandings with the states of the subsystems, the max-plus state
x(k) is replaced by z(k) such that:

z(k + 1) = A⊗ z(k)⊕B ⊗ u(k)

y(k) = C ⊗ z(k)
(2-11)

2-1-3 Switching max-plus linear systems

The extended class of max-plus linear systems, is the switching max-plus linear systems. In
this case the matrices can change by assigning them to a certain mode. In every mode, a
different A or B matrix exists. Furthermore the changing of the modes can be done by a
switching rule. The state-space description will look like:

z(k + 1) = A`(k) ⊗ z(k)⊕B`(k) ⊗ u(k)

y(k) = C`(k) ⊗ z(k)
(2-12)

Where the switching rule can be described for the mode `(k) as:

`(k) = φ(z(k − 1), `(k − 1), u(k), v(k)) (2-13)

It could be dependant on the previous state, the previous mode, the input u(k) and/or a
control variable v(k) which later on will be elaborated.

2-2 Model predictive control

The method for Model Predictive Control(MPC) is described in [6]. Essentially, it is a control
technique in which a cost function is minimized over a certain horizon for a system with a
specific state-space description. A big advantage of MPC, is the easy addition of several
constraints to the control problem. MPC is widely described in common literature, since the
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8 Background knowledge - Event domain for the scheduler

use can be extended to various types of different systems. The most simple system it can be
used for are linear systems:

z(k + 1) = Az(k) +Bu(k)

y(k) = Cz(k)
(2-14)

A certain cost function is added, which can be minimized over certain tunable control vari-
ables. Usually the control variable is described as u(k). Normally, the cost function is divided
for a part which minimizes some cost w.r.t. the output of the system, and some cost which
minimizes w.r.t. the input. This can be described as:

J(k) = Jout(k) + λJin(k) (2-15)

Where λ is a scaling factor in which way the attention need to be lied upon respectively
the input or output cost functions. A common output function is one with minimizing the
difference between a certain reference signal which can be seen as a due date or departure
time, where the input usually is minimized on its negative counterpart, which means the
system need to operate with the input as late as possible. In equations this boils down to:

J(k) =
Np∑
j=1
|(y(k + j|k)− r(k + j))| − λ

Np−1∑
j=1

u(k + j) (2-16)

The terms for y(k + j|k) can be found by recursively fill in the state-space description:

y(k + 1|k) = Cz(k + 1|k) = CAz(k|k) + CBu(k)

y(k + 2|k) = Cz(k + 2|k) = CA2z(k|k) + CBu(k + 1) + CABu(k)
(2-17)

Such that estimates can be put in vector form as:

ỹ(k) =


y(k + 1|k)
y(k + 2|k)

...
y(k +Np|k)

 = H


u(k)

u(k + 1)
...

u(k +Np− 1)

 +


C
CA
...

CANp

 z(k) (2-18)

With H as:

H =


CB 0 . . . 0
CAB CB . . . 0

...
... . . . ...

CANp−1 CANp−2 . . . CB

 (2-19)

Now the cost function can be minimized with respect to the tunable control variables u(k), ..., u(k+
Np − 1). Addition of constraint can be done by assigning the linear constraint matrices:

Fũ(k) +Gỹ(k) ≤ h(k) (2-20)

Often the control horizon is introduced. Since optimizing over a prediction horizon can be
computationally hard and not adding a lot to the optimal solution, the control inputs are
considered constant after the control horizon with Nc ≤ Np such that:

u(k + j) = u(k +Nc − 1) for j = Nc, ..., Np − 1 (2-21)

A.J.M. van Heusden Master of Science Thesis



2-3 Scheduling with max-plus algebra 9

Ultimately, minimizing the cost function gives a certain control input as optimal input for the
problem. Filling in this control input and repeating all the steps at the next time-instances
k + 1 up till k +Np is basically what model predictive control does.

The above format can easily be extended to max-plus algebra. The state-space can be con-
sidered as:

z(k + 1) = A⊗ z(k)⊕B ⊗ u(k)

y(k) = C ⊗ z(k)
(2-22)

Repeating the same steps as above, only now with the max-plus operators gives:

ỹ(k) =


y(k + 1|k)
y(k + 2|k)

...
y(k +Np|k)

 = H


u(k)

u(k + 1)
...

u(k +Np− 1)

 +


C

C ⊗A
...

C ⊗A⊗Np

 z(k) (2-23)

With the matrix H as:

H =


C ⊗B 0 . . . 0

C ⊗A⊗B C ⊗B . . . 0
...

... . . . ...
C ⊗A⊗Np−1 C ⊗A⊗Np−2 . . . C ⊗B

 (2-24)

From [18], it can be concluded that this model predictive scheduling format, can be easily
formulated in a Mixed-Integer Linear Problem(MILP) framework. This will be elabrated
in chapter 4 of this report. It essentially comes down to rewriting all the ⊕-operators into
seperate maximization constraints with linear terms in them, such that the overal problem
will have a linear cost function, with linear constraints.

2-3 Scheduling with max-plus algebra

The following section summarizes the process of the scheduler framed into max-plus algebra.
The scheduler is contained in the top level of the overall system and is considered to be in the
event-based domain, denoted by event- cycle- or batchcounter k. How this is done, and which
options there are regarding the scheduling process, is discussed in this section. Three options
are proposed for the scheduling with switching max-plus linear systems. These are routing,
ordering and at last synchronization. The 3 processes will be elaborated in this section
with several examples, where afterwards the whole scheduling problem will be outlined. The
following content is described in [18].

2-3-1 Routing

Routing is the process in which each job in a system needs to follow a specific route through
the system. This can be compared for example with a railway network in which the intercity
from Amsterdam to Eindhoven needs to follow another route than the intercity from Arnhem
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10 Background knowledge - Event domain for the scheduler

to Groningen. Consider a system of M jobs, then for each job j ∈ {1, ...,M}, the job need
to follow a specific set of operations where the operations pj can be done on the resources
Rj = {Rj,1, ..., Rj,pj} in processing order. The processing times are described by respectively
Tj(k) = {τj,1(k), ..., τj,pj (k)}. Now the state zj(k) = [zj,1(k) . . . zj,pj (k)]T can be considered
as the starting times of each of the operations of job j. If we consider the processing times
to be always greater than 0, the following inequalities can be obtained for job j:

zj,m(k) ≥ zj,l(k) + τj,l (2-25)

With l < m and τj,l > 0 ∀j, l. Converting this to a matrix for whole job j, this results in:
zj,1(k)
zj,2(k)

...

zj,pj (k)


︸ ︷︷ ︸

zj(k)

≥


ε ε . . . ε

τj, 1(k) ε . . . ε
ε τj,2 ε . . . ε
... . . . . . . . . . ...
ε . . . ε τj,pj−1 ε


︸ ︷︷ ︸

Arout,j
0

⊗


zj,1(k)
zj,2(k)

...

zj,pj (k)


︸ ︷︷ ︸

zj(k)

(2-26)

Or in a simple equation:
zj(k) = Arout,j0 zj(k) (2-27)

Now eventually, there will be a total of M jobs for which each a matrix can be obtained. The
matrix for the routing of the whole set of jobs will look like:

z1(k)
z2(k)
...

zM (k)


︸ ︷︷ ︸

z(k)

≥


Arout,10 E . . . E
E Arout,20 E . . . E
... . . . . . . ...

E
E . . . E Arout,M0


︸ ︷︷ ︸

Arout
0

⊗


z1(k)
z2(k)
...

zM (k)


︸ ︷︷ ︸

z(k)

(2-28)

Note that these equations are all dependant on the cycle k which is not necessarily the case.
In much practical situations, routes from jobs can also be travelled via previous cycles. In the
case routing is dependant on the previous cycle, the routing matrix equation will become:

z(k) ≥ Arout0 ⊗ z(k)⊕Arout1 ⊗ z(k − 1) (2-29)

In a production system this is often not necessary since there is only one job per cycle, as k
represents the product/batch counter. Though, alternate routes for the specific job can be
thought of as well. For instance when making a product in a production system, multiple
machines can be used. Or in a railway network, where for each individual train a routing
matrix is build, trains could have different routes from Arnhem to Groningen or Amsterdam
to Eindhoven. Therefore the routing matrices can be different for different routes. In the
general case there will be L alternative routes, then for each of the routes, we can obtain the
matrices Aµ,l with µ ∈ {0, 1} and l ∈ {1, ..., nl} where nl is the total number of alternative
routes.
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2-3 Scheduling with max-plus algebra 11

2-3-2 Ordering

Ordering is the process in scheduling where on the same resource, operations can be ordered
respectively after or before each other. This is different from the routing, where in routing
the route is defined for specific routes on different resources, whereas ordering is the process
in which different operations from different jobs are ordered in a specific sequence. As an
example, this can be seen as 2 trains following the same route from Rotterdam to Dordrecht
for instance, but where the order of the 2 trains is changed via a station in between. This
could happen when a faster train is behind a slower train.

In the ordering process, n operations are considered divided over N resources. When still
considering L alternative routes, parametrizations can be done by assigning max-plus binary
variables w(k) for each of the routes. Let Pl ∈ Bn×nε with l ∈ {1, ..., L} be a mtrix with
max-plus binary entries where [Pl]i,j = 0 if operation i and operation j are executed on the
same resource and [Pl]i,j = ε if operation i and j are executed on different resources. Then
the following matrix can be obtained:

P (w(k)) =
L⊕
l=1

w(k)⊗ Pl (2-30)

Now for the following part, let H(k) be considered as the seperation matrix, where Hi,j(k) 6= ε
is the seperation time between operation i and j if they may be scheduled on the same resource
and Hi,j(k) = ε if operation i and j can never be scheduled on the same resource. Ultimately
the matrices Γµ(k) are introduced with µ = 0, 1. These will be order decision matrices with
max-plus binary variables. [Γµ(k)]i,j = 0 if operation i in cycle k is scheduled after operation
j in cycle k + µ and [Γµ(k)]i,j = ε if operation i in cycle k is scheduled before operation j in
cycle k+µ. By defining γµ(k) as the vector with the stacked column vectors of matrix Γ+µ(k)
such that γµ(k) = vec(Γµ(k)), we can use this to obtain the notation Γµ(k) = Γ(γµ(k)). Now
adding up all the ordering matrices, one can come up with the following matrices:

Aordµ (w(k), γµ(k)) = P (w(k))� Γ(γµ(k))�H(k) (2-31)

Ultimately the operation ordering constraints in the system can be formulated by maximiza-
tion such that:

z(k) ≥ Aord0 (w(k), γ0(k))⊗ z(k)⊕Aord1 (w(k), γ1(k))⊗ z(k − 1) (2-32)

2-3-3 Synchronization

Synchronization is the process in which different jobs need to be synchronized with each other
for some kind of reason whatsoever. For instance, in a railway network, this can be seen as
transfers from one train to the other, where these transfers must allow a certain time for
the passengers to get from one train to the other. The train themselves can be observed as
jobs, but a certain synchronization between those trains must occur for people to transfer.
Whereafter the trains can continue doing their job, i.e. following their specific route. In
mathematical representation this can be seen set as the following rule. First we can define a
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12 Background knowledge - Event domain for the scheduler

number of modes for the synchronization l = 1, ..., Lsynch, where for every mode we obtain a
system matrix for µ = 0, 1:

[Asynchµ,l (k)]i,j =
{

0 if operation i in cycle k is to be scheduled behind operation i in cycle k-µ
ε elsewhere

(2-33)
Now the synchroiuzation constraints with respect to the different operations in the system
can be formulated as:

z(k) ≥ Asynch0 (s0(k))⊗ z(k)⊕Asynch1 (s1(k)⊗ z(k − 1) (2-34)

Where for µ = 0, 1 the following can be given:

Asynchµ (sµ(k)) =
Lsynch⊕
l=0

[sµ(k)]l ⊗Asynchµ,l (k) (2-35)

sµ(k) are max-plus binary variables for scheduling the synchronization. [sµ(k)]l = 0 has the
meaning that synchronization l is made and [sµ(k)]l = ε has the meaning synchronization l
is cancelled.

2-3-4 Overal scheduler

The overal scheduler has the decision variables w(k), γµ(k) and sµ(k) for µ(k) = 0, 1. Stacking
these into one vectorwill give:

v(k) =


w(k)
γµ0(k)
γµ1(k)
sµ0(k)
sµ1(k)

 ∈ BLtot
ε (2-36)

Where Ltot represents the total number of scheduling variables. Now we can formulate all the
above information from the previous paragraphs into one equation:

x(k) ≥ A0(v(k))⊗ x(k)⊕A1(v(k))⊗ x(k − 1) (2-37)

Where the matrices Aµ(v(k)) are made by combination of the following matrices:

Aµ(v(k)) = Ajobµ (w(k))⊕Aordµ (w(k), γµ(k))⊕Asynchµ (sµ(k))

=
⊕Ltot

l=1 vl(k)⊗Aµ,l(k)
(2-38)

Now by introducing inputs and reference signals. Inputs can be often seen as starting times
of jobs, and reference signals as lower bounds of certain operations to start. This can be quite
easily be added to the above equation:

z(k) ≥ B(v(k))⊗ u(k)

z(k) ≥ r(k)
(2-39)

Such that the overal equation with inputs and reference signals included can be formulated
as:

z(k) ≥ A0(v(k))⊗ z(k)⊕A1(v(k))⊗ z(k − 1)⊕B(v(k))⊗ u(k)⊕ r(k) (2-40)
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2-3 Scheduling with max-plus algebra 13

2-3-5 Optimization of the case study

The optimization in a scheduler lies in the fact a cost function need to be minimized with the
above maximization can be put in the optimization as constraint matrices. The outcome of
the optimization will result in the perfect decision variables w(k) and γµ(k) for each cycle k.
In the case study, these binary variables are formulated as v(k) and s(k). Since scheduling
problems can become quite complex with respect to the number of decision variable, the case
study in this thesis is provided with a problem only regarding the routing and ordering in a
specific scheduling problem. Such that the constraint matrices can be reformed into:

z(k) ≥ A0(w(k))⊗ z(k)⊕A1(w(k))⊗ z(k − 1)⊗B(w(k))⊗ u(k)
µmax⊕
µ=µmin

Aord,µ(w(k), γµ(k))⊗ z(k − µ)
(2-41)

In the dynamical scheduler, the above equation will be a function of inputs given by the
estimated arrival times of the subsystems. This will be practically explained in the case
study paragraphs.
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Chapter 3

Background knowledge - Time domain
for the subsystems

In this chapter, the main tools and background knowledge is discussed for the understanding
and modelling of the subsystems. The subsystems are modelled in the time-domain. To avoid
misunderstanding, the state will be modelled as x(κ) where the state for the event-based
domain is modelled as z(k). As is already mentioned, κ stands as the discrete time-counter,
where k stands for the event-counter. First the Euler-method is given, such that not too
complex non-linear continuous time systems can be discretized. Afterwards the Extended
Kalman Filter(EKF) is given as the observer for the subsystem such that the states can be
estimated accordingly. Finally the simulations, estimations and predictions for the subsystems
are discussed with some illustrative figures. The elaboration in the next chapter for the case
study will stick more or less to the same manner namely.

3-1 Euler Method

Essentially the Euler method is the easiest way to come up with a numerical solution to a
differential problem. This method basically consists of the first order Taylor expansion of a
function. First a simple differential equation is considered:

dy(t)
dt = f(t, y(t))

y(0) = y0

(3-1)

The Taylor expansion is given by:

y(t+ h) = y(t) + hy′(t) + 1
2h

2y′′(t) + 1
3!h

3y′′′(t) + ...+ 1
n!h

nyn(t) (3-2)

Where the higher order terms will be less and less involved if the time-step h is taking smaller
to 0. For the Euler method. Only the first 2 terms are used:

y(t+ h) = y(t) + hy′(t) (3-3)
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16 Background knowledge - Time domain for the subsystems

Now this can be reframed by using equation 3-1:

y(t+ h) = y(t) + hf(t, y(t)) (3-4)

Now by setting up the algorithm for finding each next value for yt the numerical solution can
be obtained starting with the initial value y0 untill the end time of the time interval in which
one wants to find the numerical solution.

y(κ+ 1) = y(κ) + hf(κ, y(κ))

y(0) = y0

t(κ+ 1) = t(κ) + h

(3-5)

3-2 Extended Kalman Filtering

The method for extended Kalman filtering is taken from [4]. Considering a non-linear system
in the form of:

x(κ+ 1) = f(κ, x(κ)) +H(κ, x(κ))w(κ)

v(κ) = g(κ, xκ) + η(κ)
(3-6)

Where f(κ) and g(κ) are vector-valued functions with ranges Rn and Rq, with values 1 ≤ q ≤
n and H(κ, x(κ)) a matrix-valued function with range in Rn ×Rq, such that for each κ the
first order partial derivatives of f(κ, xκ) and g(κ, xκ) with respect to all the components of
x(κ) are continuous. For the noise sequences of w(κ) and η(κ), we consider zero-mean white
noise processes such that:

E(w(κ)w(l)T ) = Q(κ)δ(κ, l), E(η(κ)η(l)T ) = R(κ)δ(κ, l)

E(w(κ)η(l)T ) = 0, E(w(κ)x(0)T ) = 0,

E(η(κ)x(0)T ) = 0

(3-7)

For all κ and l. The terms w(κ) ∼ (0, Q(κ)) and η(κ) ∼ (0, R(κ)) stand for the white noise
signals w(κ) and η(κ) having a mean of 0, and covariance matrix of respectively Q(κ) and
R(κ). By initializing for the estimates, the following is given:

x̂(0) = E(x(0)), x̂(1|0) = f(0, x̂(0)) (3-8)

Now the following algorithm can be obtained for estimating all the states using the measure-
ments v(κ) and information about the system dynamics as described above. First initialization
is done by:

P (0|0) = Var(x(0)), x̂(0) = E(x(0)) (3-9)

Now by increasing the step κ all the way to the maximum κ in which measurements are ob-
tained, the following algorithm can be obtained to give a minimum-variance unbiased estimate
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3-3 Modelling of the subsystems 17

of the state up till κ.

P (κ|κ− 1) = [∂f(κ−1)
∂x(κ−1) (x̂(κ− 1))]P (κ− 1|κ− 1)[∂f(κ−1)

∂x(κ−1) (x̂(κ− 1))]T

+H(κ− 1, x̂(κ− 1))Q(κ− 1)H(κ− 1, x̂(κ− 1))T

x̂(κ|κ− 1) = f(κ− 1, x̂(κ− 1))

G(κ) = P (κ|κ− 1)[ ∂g(κ)
∂x(κ)(x̂(κ|κ− 1))]T

[
∂g(κ)
∂x(κ)(x̂(κ|κ− 1))]P (κ|κ− 1)[ ∂g(κ)

∂x(κ)(x̂(κ|κ− 1))]T +R(κ)
]−1

P (κ|κ) =
[
I −G(κ)[ ∂g(κ)

∂x(κ)(x̂(κ|κ− 1))]
]
P (κ|κ− 1)

x̂(κ|κ) = x̂(κ|κ− 1) +G(κ)(v(κ)− g(κ, x̂(κ|κ− 1)))
(3-10)

The whole derivations of the extended Kalman filter can be found in the prescribed citation
[4].

3-3 Modelling of the subsystems

In the following sections, the main idea behind the simulations, estimations of the simulations,
and the subsequent predictions is given. This is more to illustrate, whereafter in chapter 4,
the state-spaces of the obtained processes are elaborated.

3-3-1 Data gathering and estimations

First of all, in this thesis, no real life systems are obtained and therefore no real life data can
be measured. This means certain realizations need to be made regarding the processes of the
subsystems. In general a subsystem can be described by a non-linear state-space description
as:

ẋ(t) = f(x(t), u(t))

y(κ) = h(x(κ))
(3-11)

Where the dynamics are assumed to be time-invariant, and the output is assumed to have no
feedthrough term. The noise is considered to be additive. Further research could also focus
on integrated noise, but this will not be discussed in this thesis. Furthermore, the noise is
assumed to be zero-mean white noise. The state-space description with additive noise will
look like:

ẋ(t) = f(x(t), u(t)) + w(t)

y(κ) = h(x(κ)) + v(κ)
(3-12)
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18 Background knowledge - Time domain for the subsystems

With mean and covariances as w(t) ∼ (0, Q) and v(κ) ∼ (0, R). The output measurements
y(κ) are considered to be discrete, since taking measurements from real systems are in general
discrete. The simulation in computer programmes, can not be done by continuous state-space
models. Therefore a discretization is made, with a small enough step size, such that the orig-
inal continuous model behaves the same as the discrete one. Note that the choice for which
method to use for the discretization of the continuous function, depends on whether the
function is highly non-linear or not. In this thesis, fortunately, the functions are not highly
non-linear and an easy discretization method with a not too small step size will fulfil.

The Euler-discretization method is used, which can be seen as the first order Taylor expansion
as is described in the prelimaries. This will look like:

x(κ+ 1) = x(κ) + Tsf(x(κ), u(κ)) + w(κ)

y(κ) = h(x(κ)) + v(κ)
(3-13)

Note that the covariance of the discrete zero-mean white noise signal w(κ) changes with the
covariance of the continuous time zero-mean white noise with a factor T 2

s . By making a noise
sequence in MATLAB, one can come up with a realization of the prescribed system dynamics
just by simply making a for-loop and iteratively updating the simulation from x(κ) up till
x(κ+ 1) as can be observed in Appendix B-2-2 and B-2-7.

The subsystems contained in this thesis, are mainly exponential growth function, where a
certain parameter p is subjected to some uncertainties. To explain the method for the esti-
mations, first a very simple 2D-model is proposed[4], for which a certain parameter need to be
estimated. Afterwards, in the chapters about the case study, this method is translated to the
subsystems from the case study. The subsystems are elaborated with their own state-spaces
in chapter 4. For now, a simple 2D-model is constructed for the explanation of the method.
The following state space description is used, and the problem becomes to estimate all the
states: [

x1(κ+ 1)
x2(κ+ 1)

]
=

[
x2(κ)x1(κ)
ζx2(κ)

]
+

[
0

w(κ)

]

y(κ) =
[
1 0

] [
x1(κ)
x2(κ)

]
+ v(κ)

(3-14)

To explain this in words, the estimation problem, is to estimate x1(κ) and x2(κ) which is
subjected to process noise, by only receiving measurements from x1(κ) which are subjected to
measurement noise. To do this, an extended Kalman filter is proposed, where in the previous
section this method is already outlined. The estimator will not be optimal, since the non-
linear model need to be linearized every iteration for the Kalman filter to work. Though as
we will see later in the case study, it works sufficiently well. In the state-space description
above ζ is considered as a memory factor, which value is 0 < ζ < 1. The choice for the values
of the covariance matrices Q and R, as well as the choice for the value of the memory factor
ζ are substantiated in chapter 5.
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3-3 Modelling of the subsystems 19

3-3-2 Predictions

Essentially the predictions are quite straightforward. By estimating the system its states at
discrete time-instant κ for job/batch or cycle k such that the state variables x1(κ, k) and
x2(κ, k), the states with respect to its own discrete time κ but also with respect to a specific
event/cycle/batch k, are within a certain accuracy known, the system dynamics can be filled
in with the expectation of the noise sequences. Since these expectations of the noise sequences
are 0, predictions can be made by just filling in the states iteratively for the next time steps in
the system dynamics without noise, and continue this step up till the end time of the process
or a desired threshold.

The problem with making predictions for the subsystems, is accuracy. The scheduler can
not do anything with predictions which are later on evidently so much off with respect to the
real end time of the process. Clearly, a logical update of the scheduler can not be obtained
with too much "randomness". To explain this, some simulations are shown for one of the sub-
systems. The predictions are made after time κ = 5 days but since the x-axis is in "milliDay",
this means κ = 5000 mDay. First a low covariance of the process noise is chosen, where later
on a 10 times higher covariance is chosen. Of course the seed for the random processes is
taken the same, such that comparison can be done. This is just an illustrative example, later
on in this report the results will be explained and further elaborated.

Figure 3-1: Low covariance of the process noise.

As can be seen in figure 3-1, the estimation of the system its states are quite nice up till
κ = 5000 mDays. The prediction at time κ = 5000 mDays, the blue line, gives also quite a
sufficient prediction with respect to the real data, the red line. Of course, one could argue if
the prediction is only near the red line, because the prediction is made at quite a late stage.
As will be elaborated in the results of the case study, the reliability of the prediction with
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20 Background knowledge - Time domain for the subsystems

respect to the time it is been made on is also an aspect one has to look at. Now if we amplify
the process noise its covariance with a factor 10, the figure 3-2 is obtained.

Figure 3-2: High covariance of the process noise.

Still the estimations up till time κ = 5000 mDays are very nice. Though the prediction
after κ = 5000 mDays, is already having a much larger off-set from the real obtained trajec-
tory. Of course this is also dependant on the realization of the sequence of the process noise,
but the thing one would observe is that the off-set will become larger if the covariance of
the noise increases. Of course this is logical, but it makes the prediction of the model rather
useless with a too high covariance.

Besides the noise of the covariance matrix on an additional state which describes the behaviour
of certain parameter, the "memory" factor ζ also plays a role in making the predictions. In
the following graphs, the covariance is hold constant, but the ζ is changed from a factor just
beneath 1, to a factor closer to 0 with respect to the value just beneath 1. In the first case the
memory factor is taken as ζ = 0.99, the results can be observed in 3-3. The model is made
quite noisy such that the influence of the memory factor can be clearly observed. The estima-
tions of the model are still very nice up till κ = 5000 mDays. The prediction could be better,
but is still not useless. For the next figure, the memory factor is descreased to ζ = 0.95, with
the same process noise, i.e., the seed and covariance are the same for both cases. The results
are shown in 3-4. What can be observed is that the same noise applied to the case ζ = 0.99 is
blushed out much faster. The overall model therefore becomes significantly less noisy, and as
a result much better predictable. The problem which now occurs, is that the model becomes
too little influenced by the noise. Since the model its data is simulated with these parameters
and covariances as well, this will result in the processes not deviating a lot in the process end
times. Since the goal of this thesis is to update a schedule due to processes of subsystems
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3-3 Modelling of the subsystems 21

Figure 3-3: The memory factor taken ζ = 0.99.

Figure 3-4: The memory factor taken ζ = 0.95.

deviating, this will give the opposite effect. To conclude, a trade-off has to be made; The
noise must not be too high for the system to be predictable, but the memory factor must
not be too close to 0, since the model as a result does not deviate enough to have signicant
differences in the process end times. Of course, a combination of the 2 could also work out,
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22 Background knowledge - Time domain for the subsystems

increase the noise but let the memory factor also be close to 0. The trade-off between this 2
factors, will be elaborated in the case study chapter of this report. The trade-off is rather a
tunable trial-and-error occasion, than a mathematically derived process.

A.J.M. van Heusden Master of Science Thesis



Chapter 4

Case study - Methods

In this chapter, the case study is outlined. The case study, a beer brewery, is provided with
several subsystems. The subsystems are elaborated, as well as the scheduler for the begin-
and endtimes of these subsystems. This chapter is mainly used for the elaborations of the
methods described in previous chapters as an application on the case study. The results are
discussed in the next chapter.

4-1 Scheduling

4-1-1 The basic model

In this scheduling problem only routing and ordering in the scheduling problem is considered.
Synchronization between different batches are not of any importance, and therefore not taken
into account. Each of the processes has process time pi with i ∈ {1, ..., 5} since there are 5
machines. There are 2 machines for mashing, M1 and M2. 2 machines for brewing, M3 and
M4, and 1 machine for the fermentation process, M5. Since there are multiple machines for
the same processes regarding the mashing and brewing process, 4 possible routes through the
machines can be obtained:

• M1 −M3 −M5 for ` = 1

• M1 −M4 −M5 for ` = 2

• M2 −M3 −M5 for ` = 3

• M2 −M4 −M5 for ` = 4

In figure 4-1 the beer brewing factory is schematically illustrated, where the arrows represent
each of the routes which can be followed. As can be seen, each of the routes must go through
machine M5. Therefore, the ordering process is considered in machine M5 such that if in
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Figure 4-1: Schematic diagram of the beer brewing processes.

cycle k the job is very much delayed, the job in cycle k+1 can order itself before the job from
cycle k in machine M5. As can be observed in the model hereafter, the transportation time
between the process tanks is neglected, where the transportation time would be insignificant
compared with the process times of the machines. The machines will start working as soon
as possible. The states zi(k) are the starting times of each of the machines i ∈ {1, ..., 5}.
u(k) represents the time instants a new batch comes in. For the first route the derivations
are made, where for the other routes these derivations follow quite straightforward. The first
route M1 −M3 −M5 will look as follows. For machine M1 to start, the batch u(k) must
be available and the previous batch need to be finished already, i.e. the previous batch its
starting time with addition of the process time. Translated to equations this gives:

z1(k) = max(u(k), z1(k − 1) + p1) (4-1)

Or equivalently;
z1(k) = z1(k − 1)⊗ p1 ⊕ u(k) (4-2)

For the next machine M3 in this specific route, the equations can easily be obtained. It can
only start when the process in the previous machine is done, or when the process of the
previous batch in the same machine is done. Mathematically:

z3(k) = max(z1(k) + p1, z3(k − 1) + p3) (4-3)

Or equivalenty:
z3(k) = z3(k − 1)⊗ p3 ⊕ z1(k)⊗ p1 (4-4)

And at last for machineM5 the same procedure is done. However, since in machine 5 ordering
can occur, such that jobs from different cycles can pass each other the constraint z5(k) ≥
z5(k − 1) + p5 does not hold anymore. Later on, the derivations for the ordering process
are derived. This derivations are just to illustrate how the model is obtained. For now, the
constraint z5(k) ≥ z5(k − 1) + p5 is left out of the constraint equations.

z5(k) = z3(k) + p3 (4-5)
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Or equivalenty:
z5(k) = z3(k)⊗ p3 (4-6)

For the other machines, they will not start but be ready at all times since no job is done on
these machines. Therefore a 0 is assigned in the max-plus matrices for the previous cycle k−1.
In the previous cycle, for the cosntraints with respect to the state z5(k), an ε is assigned.
The matrix with constraints for the previous cycle is mathematically formulated as A1. The
matrix for all maximizations with respect to the current/same cycle is formulated as A0. At
last, the matrix for the maximizations with respect to the input is formulated as B. The
above equations can be written in matrix format for mode 1, the route M1 −→ M3 −→ M5 is
assigned to mode 1, as:

z(k) =


z1(k)
z2(k)
z3(k)
z4(k)
z5(k)

 =


p1 ε ε ε ε
ε 0 ε ε ε
ε ε p3 ε ε
ε ε ε 0 ε
ε ε ε ε ε


︸ ︷︷ ︸

A1(`=1)

⊗


z1(k − 1)
z2(k − 1)
z3(k − 1)
z4(k − 1)
z5(k − 1)

⊕

ε ε ε ε ε
ε ε ε ε ε
p1 ε ε ε ε
ε ε ε ε ε
ε ε p3 ε ε


︸ ︷︷ ︸

A0(`=1)

⊗


z1(k)
z2(k)
z3(k)
z4(k)
z5(k)

⊕


0
ε
ε
ε
ε


︸︷︷︸
B(`=1)

⊗u(k)

(4-7)
Note that in this case, also the matrix A1 is chosen to be in mode 1. This is not necessarily
the case. since in the previous batch k− 1 another mode could be active. Therefore, observe
that mode sequences are necessary to obtain all the matrices. The matrices for the 3 other
modes will be:

A1(` = 2) =


p1 ε ε ε ε
ε 0 ε ε ε
ε ε 0 ε ε
ε ε ε p4 ε
ε ε ε ε ε

 , A0(` = 2) =


ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε
p1 ε ε ε ε
ε ε ε p4 ε

 , B(` = 2) =


0
ε
ε
ε
ε



A1(` = 3) =


0 ε ε ε ε
ε p2 ε ε ε
ε ε p3 ε ε
ε ε ε 0 ε
ε ε ε ε ε

 , A0(` = 3) =


ε ε ε ε ε
ε ε ε ε ε
ε p2 ε ε ε
ε ε ε ε ε
ε ε p3 ε ε

 , B(` = 3) =


ε
0
ε
ε
ε



A1(` = 4) =


0 ε ε ε ε
ε p2 ε ε ε
ε ε 0 ε ε
ε ε ε p4 ε
ε ε ε ε ε

 , A0(` = 4) =


ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε
ε p2 ε ε ε
ε ε ε p4 ε

 , B(` = 4) =


ε
0
ε
ε
ε



(4-8)

By using max-plus binary variables, all the modes can be assigned to a max-plus binary
variable for each individual cycle k being vi(k) = 0 or vi(k) = ∞ for i ∈ {1, ..., 4}, since
there are 4 possible routes. Ultimately the system its routing process evolves according to
greater or equal constraints by making the equality signs with respect to maximization equal
to greater or equal constraints:

z(k) ≥ A1(v(k − 1))⊗ z(k − 1)⊕A0(v(k))⊗ z(k)⊕B(v(k))⊗ u(k) (4-9)
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Note that the matrix A(v(k − 1)) is not dependant on vi(k) but on vi(k − 1) since this is
done in the previous cycle in which a mode is chosen by the binary variables. The max-plus
binary variables are assigned such that if one of the binary variables is equal to 0, the others
will be equal to ε such that only one route per cycle can be chosen. Translating the different
possible routes v(k) to the binary variables is done by:

A1(v(k − 1)) =
⊕4
`=1 v`(k − 1)⊗A1(`(k − 1))

A0(v(k)) =
⊕4
`=1 v`(k)⊗A0(`(k))

B(v(k)) =
⊕4
`=1 v`(k)⊗B(`(k))

(4-10)

The above equations are only focussed on the routing of the scheduler. The ordering of
the scheduler is done also by introducing max-plus binary variables. The starting time for
machine M5 is constrained in the routing process by being greater or equal to the endtime of
the previous process for the same job in cycle k by z5(k) ≥ z3(k) + p3. Now new constraints
for the ordering are added, with respect to all the jobs from cycles k, ..., k+Np. This is done
by assigning a max-plus binary variable for each of the combination of jobs/cycles as:

z5(k + i) ≥ z5(k + j) + p5 + si,j(k + i)

z5(k + i) ≥ z5(k + j)⊗ p5 ⊗ si,j(k + i)
(4-11)

Where i 6= j and si,j(k + 1) = 0 if z5(k + i) is scheduled after z5(k + j) and si,j(k + 1) = ε
if z5(k + i) is scheduler before z5(k + j). As will be later elaborated, a lot of these max-plus
binary variables of different cycles/batches are the conjunct of max-plus binary variables of
other cycles. In other words, if for instance job 1 is scheduled after job 4, then automatically
job 4 is scheduler before job 1. Continuing the step in equation 4-11 for all possible combi-
nations of jobs from different cycles, the constraints are obtained for the ordering process.

By looking closely at the derivations above, only maximizations are obtained. This will
make the states z(k) be chosen above a certain threshold, but not closely to this threshold.
In other words, the states can be chosen arbitrarly above the threshold. Of course, this is
not desired since we want the jobs in every cycle to be finished as fast as possible. This is
done by assigning the constraints to a certain cost function, also described in chapter 2 about
model predictive control. The cost function initially will function to minimize every job as
fast as possible, and maximizing the inputs such that the delivered batches come in as late as
possible but the finished batches are obtained as fast as possible. This is done by assigning
the following cost function.

J(k) =
Np∑
j=0

y(k + j)−
Np∑
j=0

u(k + j) (4-12)

The output of the system y(k) is given by the simple max-plus equation:

y(k) = C ⊗ z(k)

y(k) =
[
ε ε ε ε p5

]
⊗ z(k)

(4-13)
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Essentially this means the cost function will boil down to:

J(k) =
Np∑
j=0

(z5(k + j) + p5)−
Np∑
j=0

u(k + j) (4-14)

In addition, also scaling factors can be implemented in the cost function for the output
and input. This is done when preferable specific input batches or output batches are of
a higher concern than others. For instance, important customers can never have delayed
jobs. The above problem can be considered as the most basic control problem for model
predictive scheduling. However though, the constraints are all defined in max-plus algebra and
more importantly max-plus binary variables. In the next section, we observe how the above
constraint matrices and cost function are translated to a Mixed-Integer Linear Programming
(MILP) framework. Additional constraints are also added in this framework for the sake of
feasibility. In the sections about results, we will also see how the cost function is adapted to
certain results obtained.

4-1-2 Mixed-integer linear programming

Mixed-Integer linear programming(MILP) problems can simply be seen as problems in the
format:

minq̃ cT q

s.t.

Aq = b
Cq ≤ d

lb ≤ q ≤ ub

(4-15)

Where the constraints can be equalities, inequalities and bounds on the objective q, and where
the cost function is a linear function in the vector q. q is a vector containing all variables
contained in the optimization which are integers or just normal numbers. lb and ub are
lower- and upperbounds on the variables in q. Note that an integer with lowerbound 0 and
upperbound 1 can be seen as normal binary variable. In the following paragraphs, it is shown
how the case study of the beer brewery is fitted in this framework with the defined constraints
described in the previous section, and additional constraints. It is also shown how constraints
defined in max-plus algebra are translated to constraints in the MILP-framework. First the
cost function is defined, afterwards the constraints with respect to the state are derived, and
at last additional constraints are elaborated.

Cost function

The minimization is the cost function of the problem. In this case the cost function is described
in 4-12. In this problem, the vector q will consist of all the states, the binary variables for
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the routing, the input variables, and the binary variables for the ordering:

q =



z(k − 1)
z(k)
...

z(k +Np)
v(k − 1)
v(k)
...

v(k +Np)
u(k)
...

u(k +Np)
s0,i(k)

...
sNp,i(k +Np)



(4-16)

Note that for the variables z(k) and v(k) in q, also the variable for cycle k − 1 is considered.
This is done just for possible initialization receiving information from past cycles. In this
study, they are taking into account in the MILP-problem, but will not influence the problem
by taking them equal to 0. Note that each of the states z(k) are vectors of length 5 because
each state has z1(k), ..., z5(k) the states of the 5 machines included. The length of the routing
binary variables v(k) is equal to 4, because each v(k) includes v1(k), ..., v4(k) for each of the
modes/routes per cycle/batch k. The length of the input variables u(k) is 1 for each u(k).
The binary variables with respect to the ordering are a little bit different. As we will see
later on, the binary variables of future cycles are the conjuncts of binary variables in previous
cycles. The length of the vector containing all si,j(k) therefore equals

∑Np
n=1 n. The length of

the total vector therefore equals 5× (Np + 2) + 4× (Np + 2) + (Np + 1) +
∑Np

n=1 n. In this case
study, Np = 7 such that z(k) till z(k + 7) exactly ends at z(8) when starting at k = 1. This
can be visualised by an 8 amount batch order. The length of the vector q in the optimization
therefore equals 117 × 1. To give a better overview of the function and matrices, the cost
function can be divided in 4 separate matrices:

min
q̃
cT q̃ = min

z̃,ṽ,ũ,s̃
cT1 z̃ + cT2 ṽ + cT3 ũ+ cT4 s̃ (4-17)

The cost function from 4-12 can be expressed within the matrix cT by using equation 4-13
such that:

y(k) = C ⊗ z(k) (4-18)
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Such that the cost function will look like:

min
z̃,ṽ,ũ,s̃

[
0 H . . . H|0 . . . 0|κ1 . . . κNp |0 . . . 0

]
︸ ︷︷ ︸

cT



z(k − 1)
z(k)
...

z(k +Np)
v(k − 1)
v(k)
...

v(k +Np)
u(k)
...

u(k +Np)
s0,i(k)

...
sNp,i(k +Np)


︸ ︷︷ ︸

q

+
Np+1∑
n=1

p5

(4-19)

With matrix H as:
H =

[
0 0 0 0 1

]
(4-20)

Such that only z5(k), ..., z5(k+Np) is captured from every state z(k), ..., z(k+Np). The term∑Np+1
n=1 p5 contributes to the value of the cost function, but does not influence the minimization

since it is considered as a constant value or not a value which can be influenced. Therefore it
can be left out. Later on, we will see that also on the variables v(k), ..., v(k+Np) a cost can be
added such they switch only if it is necessary to a certain degree. The optimization variables
z(k−1) and v(k−1) are taken into account as some fixed initial values which can be maximized
on, but will not be taken into account in the case-study, i.e. will be taken as 0. Furthermore,
the parameters κ are taking as potential scaling factors of the input time-instances. However,
as will be later on substantiated, all input time-instances u(k), ..., u(k + Np) will be taken
equal to 0.

Constraints w.r.t. the routing of the scheduler

The cost function is derived in the MILP-framework. Now the constraints need to be converted
to this framework. The equations for z(k +Np) can be boiled down to z(k) and z(k − 1) by
iteratively using the system dynamics. This is fortunately not necessary because the vector q
in the MILP-problem consists of all the states at each event-step k as can be seen in equation
4-16. Next, one derivation is made for the event with respect to its state z(k), where as for
all the other events, these follow directly. For the equations of 4-7 for event-step z(k) the
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following equation can be obtained:

z(k) ≥
4⊕

`(k)=1
(v`(k)⊗A0(`(k)))⊗ z(k)

4⊕
`(k−1)=1

(v`(k − 1)⊗A1(`(k − 1))⊗ z(k − 1)

4⊕
`(k)=1

(v`(k)⊗B(`(k))⊗ u(k)

(4-21)

Ultimately this is the same as constraining all the maximizations in a greater or equal con-
straint with respect to the state z(k). The following derivations for the constraints are only
made for z(k):

z(k) ≥



v1(k)⊗A0(` = 1)⊗ z(k)
v2(k)⊗A0(` = 2)⊗ z(k)
v3(k)⊗A0(` = 3)⊗ z(k)
v4(k)⊗A0(` = 4)⊗ z(k)

v1(k − 1)⊗A1(` = 1)⊗ z(k − 1)
v2(k − 1)⊗A1(` = 2)⊗ z(k − 1)
v3(k − 1)⊗A1(` = 3)⊗ z(k − 1)
v4(k − 1)⊗A1(` = 4)⊗ z(k − 1)

v1(k)⊗B(` = 1)⊗ u(k)
v2(k)⊗B(` = 1)⊗ u(k)
v3(k)⊗B(` = 1)⊗ u(k)
v4(k)⊗B(` = 1)⊗ u(k)



(4-22)

Repeating this step for every state z(k) to z(k + Np) and stacking these into one matrix,
one can obtain a big constraint matrix. Since the binary variables are still defined in max-
plus sense, they need to be translated to normal binary variables for the MILP-solver. The
translation is given in the chapter 2 in equation 2-9. Though in this equation, ε is defined as
infinity. Since computer programmes often do not like to work with infinite numbers, a very
large number β is used instead such that:

β << 0

vβ(k) = β(1− v(k))
(4-23)

With each of the maximizations of 4-22 the following can be obtained:

z(k) ≥ v1,ε(k)⊗


ε ε ε ε ε
ε ε ε ε ε
p1 ε ε ε ε
ε ε ε ε ε
ε ε p3 ε ε

⊗

z1(k)
z2(k)
z3(k)
z4(k)
z5(k)



= v1,ε(k)⊗


ε
ε

p1 + z1(k)
ε

p3 + z3(k)



(4-24)
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Now by replacing the max-plus binary variable v1,ε(k) by a normal binary variable β(1−v1(k)),
and working out the max-plus operators to conventional algebra, as well as replacing the values
for ε by β, the following equation can be obtained.

z(k) ≥


β
β

p1 + z1(k) + β − βv1(k))
β

p3 + z3(k) + β − βv1(k)

 (4-25)

The inequalities can be reformulated as:

z(k) ≥


0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0




z1(k)
z2(k)
z3(k)
z4(k)
z5(k)

 +


0
0
−β
0
−β

 v1(k) +


β
β

p1 + β
β

p3 + β

 (4-26)

Continuing this process for the other modes regarding A0 in the constraint of 4-22, the
following constraints can be added:

z(k) ≥


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 1 0




z1(k)
z2(k)
z3(k)
z4(k)
z5(k)

 +


0
0
0
−β
−β

 v2(k) +


β
β
β

p1 + β
p4 + β



z(k) ≥


0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0




z1(k)
z2(k)
z3(k)
z4(k)
z5(k)

 +


0
0
−β
0
−β

 v3(k) +


β
β

p2 + β
β

p3 + β



z(k) ≥


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 1 0




z1(k)
z2(k)
z3(k)
z4(k)
z5(k)

 +


0
0
0
−β
−β

 v4(k) +


β
β
β

p2 + β
p4 + β



(4-27)

Now the procedure is done again for the second set of inequalities from 4-22. These constrain
the current state with respect to the matrix previous state by the matrix A1. Again the
derivations are shown for only the first state z(k), where the constraints for the other states
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follow directly. The following inequality can be formulated:

z(k) ≥ v1,ε(k − 1)⊗


p1 ε ε ε ε
ε 0 ε ε ε
ε ε p3 ε ε
ε ε ε 0 ε
ε ε ε ε ε

⊗

z1(k − 1)
z2(k − 1)
z3(k − 1)
z4(k − 1)
z5(k − 1)



=


p1 + z1(k − 1) + β − βv1(k − 1)
z2(k − 1) + β − βv1(k − 1)

p3 + z3(k − 1) + β − βv1(k − 1)
z4(k − 1) + β − βv1(k − 1)

β − βv1(k − 1)



(4-28)

Or in another notation:

z(k) ≥


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0




z1(k − 1)
z2(k − 1)
z3(k − 1)
z4(k − 1)
z5(k − 1)

 +


−β
−β
−β
−β
−β

 v1(k − 1) +


p1 + β
β

p3 + β
β
β

 (4-29)

As for the other modes:

z(k) ≥


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0




z1(k − 1)
z2(k − 1)
z3(k − 1)
z4(k − 1)
z5(k − 1)

 +


−β
−β
−β
−β
−β

 v2(k − 1) +


p1 + β
β
β

p4 + β
β



z(k) ≥


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0




z1(k − 1)
z2(k − 1)
z3(k − 1)
z4(k − 1)
z5(k − 1)

 +


−β
−β
−β
−β
−β

 v3(k − 1) +


β

p2 + β
p3 + β
β
β



z(k) ≥


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0




z1(k − 1)
z2(k − 1)
z3(k − 1)
z4(k − 1)
z5(k − 1)

 +


−β
−β
−β
−β
−β

 v4(k − 1) +


β

p2 + β
β

p4 + β
β



(4-30)

For the last part of 4-22, regarding the constraints for z(k) with respect to the input, the
following derivations can be made:

z(k) ≥ v1,ε(k)⊗


0
ε
ε
ε
ε

⊗ u(k) =


u(k) + β − βv1(k)

ε
ε
ε
ε

 (4-31)
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Or in another notation:

z(k) ≥


1
0
0
0
0

u(k) +


−β
0
0
0
0

 v1(k) +


β
β
β
β
β

 (4-32)

Continuing this for the other modes this will give:

z(k) ≥


1
0
0
0
0

u(k) +


−β
0
0
0
0

 v2(k) +


β
β
β
β
β



z(k) ≥


0
1
0
0
0

u(k) +


0
−β
0
0
0

 v3(k) +


β
β
β
β
β



z(k) ≥


0
1
0
0
0

u(k) +


0
−β
0
0
0

 v4(k) +


β
β
β
β
β



(4-33)

By setting up the matrices for each event-step k till k +Np, all states z(k) up till z(k +Np)
will be lower bounded for the routing process, i.e. the states must be higher or equal to this
lowerbound. By minimizing these greater or equal constraints due to the cost function, the
overal behaviour of the state z(k) will behave as the optimal max-plus solution w.r.t. the
routing of the prescribed cost function.

Constraints w.r.t. the ordering of the scheduler

In the ordering process of the scheduler, only machine 5 is considered. Since all jobs need to
go through the process of machine 5, all jobs need to be ordered with respect to each other
accordingly. This is different for instance, when looking at one of the other machines, since
not all routes go through a specific machine, only the cycles in which the routes are chosen
to go through the specific machine need to be ordered accordingly. The ordering is modeled
as follows. To start with the first cycle k until cycle k + Np. The ordering with respect to
the processes in machine 5 of the other cycles can be modelled, as is already mentioned, by
the max-plus binary variables si,j(k). This is done by making a relation of the starting time
of process 5 in machine 5 of cycle k with respect to the other cycles. As an example, we take
cycle k and cycle k + 1. We define the order as:

z5(k) ≥ z5(k + 1)⊗ p5(k + 1)⊗ s0,1(k) (4-34)
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If we choose the job in cycle k + 1 to go before the job in cycle k to go in the process of
machine 5, we choose s0,1(k) = 0, because the equation then becomes:

z5(k) ≥ z5(k + 1)⊗ p5(k + 1) (4-35)

If we choose the job in cycle k + 1 not to go before the job in cycle k to go in machine 5, we
choose s0,1 = ε since the equation then becomes:

z5(k) ≥ z5(k + 1)⊗ p5(k + 1)⊗ ε = ε (4-36)

Which means z5(k) ≥ ε which is always the case. Though, the above equation only mentions
that z5(k + 1) is not before z5(k), not necessarily that z5(k) is before z5(k + 1) by taking
s0,1(k) = ε. However, by making that statement, it is clear that this is the case. This is
modelled by setting the binary variable of the maximization of z5(k + 1) with respect to
z5(k) as the conjunct of the binary variable from the maximization of z5(k) with respect to
z5(k + 1). Mathematically formulated:

z5(k + 1) ≥ z5(k)⊗ p5(k)⊗ s1,0(k + 1) (4-37)

Where s1,0(k + 1) = s̄0,1(k). If we now derive all the maximization of z5(k) with respect to
z5(k + 1), ..., z5(k +Np) we obtain:

z5(k) ≥ z5(k + 1)⊗ p5(k + 1)⊗ s0,1(k)
z5(k) ≥ z5(k + 2)⊗ p5(k + 2)⊗ s0,2(k)

...
z5(k) ≥ z5(k +Np)⊗ p5(k +Np)⊗ s0,Np(k)

(4-38)

The same procedure for z5(k + 1) with respect to z5(k) and z5(k + 2), ..., z5(k +Np):

z5(k + 1) ≥ z5(k)⊗ p5(k)⊗ s1,0(k + 1)
z5(k + 1) ≥ z5(k + 2)⊗ p5(k + 2)⊗ s1,2(k + 1)

...
z5(k + 1) ≥ z5(k +Np)⊗ p5(k +Np)⊗ s1,Np(k +Np)

(4-39)

Or in general:

z5(k + i) ≥ z5(k + j)⊗ p5(k + j)⊗ si,j(k + i) (4-40)

For i 6= j and i, j containing values from 0 to Np. The conjunct of the binary variables is
modelled as:

si,j(k + i) = s̄j,i(k + j) (4-41)
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If we now want to implement the constraint in the MILP-problem, the following can be
concluded. First of all lets have a look at the vector:

q =



z(k − 1)
z(k)
...

z(k +Np)
v(k − 1)
v(k)
...

v(k +Np)
u(k)
...

u(k +Np)
s0,i(k)

...
sNp,i(k +Np)



(4-42)

The length of the bottom part s0,i(k) up till sNp,i is equal to
∑Np

n=1 n instead of N2
p since

for each cycle k + 1 up to k + Np there can be made one more conjunct with respect to the
maximizations of the previous cycles. Therefore it boils down to possible new binary variables
as Np + (Np − 1) + (Np − 2) + ...+ 1 =

∑Np

n=1 n.

To put the constraints in the MILP-framework, we first have to rewrite the constraints.
As an example, lets take equation 4-34. This can be converted to conventional algebra as:

z5(k) ≥ z5(k + 1) + p5(k + 1) + s0,1(k) (4-43)

The max-plus binary variable converted as is done in equation 2-9, followed by rewriting the
equation in the format Fq ≤ b gives the following derivations. The derivations for one of the
constraints for the state z5(k) are given by:

z5(k) ≥ z5(k + 1) + p5(k + 1) + β(1− s0,1(k))

z5(k) ≥ z5(k + 1) + p5(k + 1) + β − βs0,1(k)

−z5(k) + z5(k + 1)− βs0,1(k)︸ ︷︷ ︸
Ford0,1q

≤ −β − p5(k + 1)︸ ︷︷ ︸
bord0,1

(4-44)
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For the constraints for the state z5(k + 1), the first constraint is the conjunct of the binary
variable described in equation 4-44, given by:

z5(k + 1) ≥ z5(k) + p5(k) + β(1− s1,0(k + 1))

z5(k + 1) ≥ z5(k) + p5(k) + β(1− (1− s0,1(k)))

z5(k + 1) ≥ z5(k) + p5(k) + β(s0,1(k))

z5(k)− z5(k + 1) + β(s0,1(k))︸ ︷︷ ︸
Ford1,0q

≤ −p5(k)︸ ︷︷ ︸
bord1,0

(4-45)

Continuing the process of equations 4-38 and 4-39 for all states z5(k) with respect to the
events k, ..., k+Np and replacing the unnecessary binary variables with their conjunct binary
variables from previous cycles as is done in equation 4-45, all constraints with respect to the
ordering process in machine 5 are obtained. Stacking these into one big matrix will give with
appropriate positions with respect to the vector 4-42 gives:



Ford0,1
...

Ford0,Np

Ford1,0
...

FordNp,Np−1


︸ ︷︷ ︸

Ford



z(k − 1)
z(k)
...

z(k +Np)
v(k − 1)
v(k)
...

v(k +Np)
u(k)
...

u(k +Np)
s0,i(k)

...
sNp,i(k +Np)



≤



bord0,1
...

bord0,Np

bord1,0
...

bordNp,Np−1


︸ ︷︷ ︸

bord

(4-46)

Additional constraints w.r.t. inputs and binary variables

Now the constraints for the states are obtained, additional constraints need to be added.
This is to prevent infeasible solutions. The binary variables need to be constrained due to
the fact only one mode per event-step k can be chosen. As well, the input time-instances
need to be constrained, since input time-instances in the future cycles can never be less than
the input time-instance from the present cycle. In our case, the input is taken as 0 for all
cycles, however for a general approach these constraints are still added. All these additional
constraints are given below, to begin with constraining the input:

u(k + j − 1) ≤ u(k + j)

u(k + j − 1)− u(k + j) ≤ 0
(4-47)
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Such that a inequality matrix can be made:


0 . . . 0|0 . . . 0|1 −1 0 . . . 0|0 . . . 0
0 0|0 . . . 0|0 1 −1 . . . 0|0 . . . 0
...

... . . .
0 . . . 0|0 . . . 0|0 0 . . . 1 −1|0 . . . 0


︸ ︷︷ ︸

Fu



z(k − 1)
z(k)
...

z(k +Np)
v(k − 1)
v(k)
...

v(k +Np)
u(k)
...

u(k +Np)
s0,i(k)

...
sNp,i(k +Np)



≤


0
...

0


︸︷︷︸
bu

(4-48)

Furthermore, the max-plus binary variables need to be constrained, such that only one modes
is chosen per event-step k. Fortunately, by translating the max-plus binary variables to nor-
mal binary variables, constraints in the MILP-framework will work as well for constraining
the normal binary variables. Constraining the binary variables with lowerbound 0 and up-
perbound 1, makes them in the MILP-framework behave like binary variables. Thereafter
contraining them with respect to each other as:

v1(k) + v2(k) + v3(k) + v4(k) = 1 (4-49)

Now only one mode per event step can be chosen. Continuing this step for alle cycles k will
make the following constraints:

T =
[
1 1 1 1

]


0 . . . 0|T 0 . . . 0|0 . . . 0|0 . . . 0
0 0|0 T 0 . . . 0|0 . . . 0|0 . . . 0

... . . .
0 . . . 0|0 . . . 0 T |0 . . . 0|0 . . . 0


︸ ︷︷ ︸

Veq



z(k − 1)
z(k)
...

z(k +Np)
v(k − 1)
v(k)
...

v(k +Np)
u(k)
...

u(k +Np)
s0,i(k)

...
sNp,i(k +Np)



=


1
...

1


︸︷︷︸
beq

(4-50)
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Finally note that this last constraint matrix is an equality constraint matrix instead of an
inequality constraint matrix, as is done for the constraint matrices before.

4-1-3 Model predictive scheduling

Statical Scheduler

The statical scheduler can be obtained by just minimizing the initial cost function subjected
to the constraint described in the above paragraphs. With the process times pi for i = 1, .., 5
fixed for all cycles k, the outcome will be a sequence of modes which is already determined at
the initial optimization. In other words, no additive information is given to the system, and
all information is already fixed when optimizing.

One thing to notice however, is the sake of a unique solution. Since the system is rather
simple, multiple solutions can come out of the optimization which are all optimal for the
statical scheduler. For the statical scheduler this is not a problem since the schedule is fixed
at the initial time-instance, however for the model predictive scheduler, it is not wanted the
adaptive scheduler switches arbitrarily between optimal sequences of modes, still it needs
to if the benefits are sufficiently high. To avoid the unnecessary switching between optimal
modes, in the cost function the inner product is added between the previous and currently to
be chosen modes:

min
z̃,ṽ,ũ,s̃

[
0 H . . . H| − av(k − 1) . . . −av(k +Np)|κ1 . . . κNp |0 . . . 0

]
︸ ︷︷ ︸

cT



z(k − 1)
z(k)
...

z(k +Np)
v(k − 1)
v(k)
...

v(k +Np)
u(k)
...

u(k +Np)
s0,i(k)

...
sNp,i(k +Np)


︸ ︷︷ ︸

q

+
Np+1∑
n=1

p5

(4-51)

Where H =
[
0 0 0 0 1

]
and a is a small number just above 0. The parameter a is

chosen sufficiently small such that it does not have an influence to the overal cost function,
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but has an influence on unnecessary switching between optimal sequences of modes. Now the
updated scheduler will multiply the previous modes with the modes it tries to find for the new
situation. If the modes are the same, it will have a negative impact on the minimization in
the cost function, and therefore if there are multiple optimal mode sequences, it will remain
with the previous mode sequence. Only when it has a beneficial impact on the cost function,
bigger than the beneficial impact of remaining in the same modes, it changes from mode
sequences.

As can be concluded, the statical scheduler can already give a lot of insight information
about the system, and can be handled as an initial schedule for the dynamical schedulers.
Furthermore, the statical scheduler need to be obtained to compare results with the dynamical
schedulers. All the results will not be discussed in this chapter, but in the next chapter.

Event-based update cycle k

The dynamical scheduler is a schedule which updates by getting new information about some
of its processes. This new information is obtained by receiving the expected ending times of
the extended Kalman filters. In the event-based update, these ending times can be considered
per cycle k. In other words, at each cycle k, the optimization is executed, where the model
predictive scheduler fills in the necessary solutions and continues to the next cycle k + 1,
where new information about the process times pi(k + 1) is obtained.

The information the system receives, can be constructed in the vector pi(k), such that the
process times become variable within every cycle k. Simply reconstructing the constraint
matrices with variable pi(k) in each of the cycles and updating the scheduler will give the
solution. Since the process times only occur in the matrices A0 and A1, the reconstruction
with variable process times per cycle can be translated to these matrices as:

A0(`(k)) = A0(`(k), pi(k))

A1(`(k − 1)) = A1(`(k − 1), pi(k − 1))
(4-52)

For all k, ..., k+Np and possible modes `(k). Reconstructing these into the MILP framework
will put the processing times on the side with all the constants. Taking 4-26 as an example,
the constraint matrices become:

z(k) ≥


0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0


︸ ︷︷ ︸

F (`=1)


z1(k)
z2(k)
z3(k)
z4(k)
z5(k)

 +


0
0
−β
0
−β


︸ ︷︷ ︸
G(`=1)

v1(k) +


β
β
β
β
β


︸︷︷︸
φ

+


0
0

p1(k)
0

p3(k)


︸ ︷︷ ︸
θ(k),`=1

(4-53)

And so on for the rest of the constraint matrices. Now the variable processing times are
implemented, one has to look at how the scheduler is updated when continuing to a next
cycle. In other words, how does the scheduler fix values or choices which are already in the
passed cycles k − 1, ..., k − µmax The solution lies in the equality constraints of the MILP-
solver. Of course the MILP-vector q from equation 4-42 contains the vectors for the modes
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vi(k). When continuing to the cycle k+1, all cycles up till k are already chosen and therefore
fixed. For example, if we are in cycle k + 1 and in cycle k the mode ` = 1 is chosen, the
equality constraints can be updated by addition of:

[
0 . . . 0|0 Fk 0 . . . 0|0 . . . 0

]


z̃

v(k − 1)
v(k)
...

v(k +Np)
ũ
s̃


= bk (4-54)

With Fk and bk chosen accordingly, since mode 1 is chosen in cycle k:

Fk =
[
1 0 0 0

]
, bk = 1 (4-55)

Subsequently, continuing this step for the next cycle k+1 by optimizing the cost function over
the cycles k+ 1 up till k+Np gives a new mode sequence, where the mode for cycle k is fixed
as `(k) = 1 and therefore v(k) =

[
1 0 0 0

]T
.By receiving the next optimal mode sequence

and constructing the new equality constraint with matrices Fk+1 and bk+1 fixes the modes
up till k + 1. Now continuing this step for cycles k + 2 up till k +Np, and so on. As we will
see in the next chapter, problems will arise when updating the scheduler with an event-based
update. In the event-based updated scheduler, the information is received from the previous
cycle when entering the current cycle. In other words, for instance when machine 1 in cycle k
happens to have a much larger process time, this information is received in cycle k + 1, such
that the schedule can adapt to this deviation in process time from the previous cycle.

Time-based update discrete time-instant κ

In the previous paragraph, the model predictive scheduler is updated in the event-based
domain. In this paragraph, the scheduler is assumed to update in the time-based domain. Of
course, this is much harder since the scheduler itself is constructed in the event-based domain.
The translation from the time-domain to the event-domain and vice versa is explained in the
next content. First of all the matrices with respect to the discrete time-index κ can be changed
as:

A0(`(k)) = A0(`(k), pi(k, κ))

A1(`(k − 1)) = A1(`(k − 1), pi(k − 1, κ))
(4-56)

Such that the processing times in cycle k are not only dependant on cycle k but also on the
discrete time-counter κ. An illustrative example, such that the meaning of p(k, κ) becomes
a little bit more clear. For instance, when in the current cycle k, the mode is chosen to be
`(k) = 1. The initial optimization now finds the starting times for the processes in cycle
k. Since the mode is equal to 1, the machine order will be M1 −→ M3 −→ M5. Suppose the
starting time of machine M1 in cycle k is equal to 0, i.e. z1(k) = 0 and the initial processing
time is equal to 7 time-units. The estimated end time p1(k, 0) is of course 7 when considering
κ = 0. By updating the time-step with 1, such that we are at κ = 1 the process p1(k, 1)
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is probably still busy since it is very unlikely it has already finished its job with the initial
process time of p1(k, 0) = 7. Though, after 1 time-step, new information comes in from the
measurements such that the extended Kalman filter can make a new prediction of the end-
time. Suppose this new end-time is way faster than the 7 time-units, or way slower than the
initial 7 time-units, one could adapt the routing of all the jobs for a faster end time of the
overal cost function for the scheduler.

Another problem which arises, is that a certain mode can change inside the cycle. In the
event-based scheduler which updated with respect to the cycle k, discussed in the previous
paragraph, the updated schedule gives an updated mode change for the whole cycle, such
that per cycle a new mode or the same mode is chosen, and so on to the next cycle. The
mode in the previous cycle is then fixed and can not be changed anymore. In the time-based
update however, it could happen that a certain mode which is already started, could still be
changed in the cycle itself. To visualize this, an example is given. If again in cycle k , mode
`(k) = 1 is chosen, and the starting time of machine 1 will be z1(k) = 0 with processing time
p1(k, 0) = 7. Now at the next time-instant κ = 1, machine 1 is already active, such that
machine 1 must be contained in the mode for cycle k. Though, machine 3, is not yet started
since it has a starting time z3(k) ≥ z1(k) + p1(k, 0). If time continues to κ = 1, 2, ... it could
happen that the process time of machine 1 in cycle k is much less or much more. The route
is not yet fixed for machine 3, therefore in cycle k the modes can be adjusted with respect to
the machines 3 and 4, namely M1 −→M3 −→M5 or M1 −→M4 −→M5.

The way this is modelled in the model predictive scheduler is as follows. From the initial
schedule the starting times are obtained(κ = 0), as well as the modes chosen for each of the
cycles. These starting-times and modes are given as input for the next time-instant κ = 1.
If the time-instant is larger than the starting time of a specific process, the process is irre-
versible and considered fixed. To model this, actually the opposite of the approach in the
cyclic update is proposed. Namely, if z1(k) already started due to the fact the time-counter
κ is passed the starting time of z1(k), one can not conclude a specific mode has been chosen
yet. What can be concluded, is that specific modes are not chosen. In case of z1(k) is started,
it can be concluded that modes 3 and 4 can not be chosen anymore, because mode 3 and 4
start in machine z2(k). Mathematically this can be done by adding equality constraints such
that mode 3 and 4 can not be chosen for cycle k:

[
0 . . . 0|0 Fk 0 . . . 0|0 . . . 0

]


z̃

v(k − 1)
v(k)
...

v(k +Np)
ũ
s̃


= bk (4-57)

With the zero-values represent appropriate size zero-matrices. Now if we take the the matrices
Fk and bk as:

Fk =
[
0 0 1 0
0 0 0 1

]
, bk =

[
0
0

]
(4-58)
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This mean the binary vector v(k) can only, but also must at least and at most, have values 1
for either the position where v1(k) = 1 or v2(k) = 1. This is concluded for the reason of the
equality constraint already mentioned previously:

v1(k) + v2(k) + v3(k) + v4(k) = 1 (4-59)

With this framework continued when machine 3 and 4 are started, namely fixing the modes
which can not be chosen anymore when machine 3 and 4 are started, it automatically chooses
one of the modes per cycle when the machine is done in all machines for a specific cycle.

4-2 Subsystems

In this model, a beer brewing factory is taken as case study. The whole process of beer
brewing is strongly simplified. Essentially, beer brewing consists of a lot of steps, from
filtering or clarification in intermediate steps, to the milling of the grist to starch before the
mashing etc. In this case study, the process is simplified to only 3 processes; Mashing, brewing
and fermentation. The factory features 2 mashing tanks, 2 brewing tanks and 1 fermentation
tank. Each batch need to undergo all 3 processes in consecutive order. State-space models
are obtained, where simulations are made to obtain realizations and data of the processes.
The fictitious different mashing and brewing tanks will also vary in processing times, this
will let the system vary in processing times per route such that optimality can be obtained.
General information about the brewing process of beer can be found in [19]. In the following
subsystems, the discrete time-domain is featured for the state-spaces. Since k is already used
for the event domain, and to avoid confusion, κ is used as the discrete time-counter.

4-2-1 Mashing

Mashing is one of the key processes in the beer brewing process. It takes care of the larger
sugar molecules to boil down to smaller fermentable sugar molecules such that in the later
stage, fermentation can start. Modern day, the process of mashing often decides how strong
the beer will get with respect to the alcohol percentage due to the sugars obtained in the
mashing stage. These fermentable sugars are obtained by enzyms, mostly α- and β-amylases.
The process itself is quite complex, due to the fact different enzyms work optimal at different
temperatures, as well that these different enzyms produce different smaller sugars. Also the
enzyms are not controllable, in the sense one can not add or remove the enzyms since the
enzyms themselves are already contained in the malted barley. Moreover, the size and dis-
tribution of the larger sugar moleculs are dependant on the type of malted barley; In other
words, every new batch of malted barley could have different characteristics with respect to
mashing process. The conclusion is that model-predictive methods on the end-time of the
mashing-process are rather complex and often explained by experimental measures. For that
reason, a lot of simplifications and assumptions are made, such that a model is obtained
which is reasonable enough to represent the process of mashing, but still not to complex or
influenced such that predictions are not possible. The information in this paragraph is mainly
discussed in [3].
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The first step in mashing is the gelatinisation of the larger starch molecules. The origi-
nal starch molecules are too large for the enzyms to break them down to smaller fermentable
sugars. Thus, gelatinisation is necessary, which means the larger starch molecules by means
of temperature are breaking down to still large but smaller sugar molecules, this is called
the gelatinisation of the starch. This process is described by a simple first order differential
equation:

dSg(t)
dt

= kge
− Eg

RT Ss(t) (4-60)

Where Ss(t) is the amount of total starch, Eg the activation energy, R the gas constant, T
the temperature and kg a pre-exponential factor. In this thesis, the gelatinisation is assumed
to already have happened, such that the modelling is not of any importance.

In the second stage. The gelatinised starch is respectively transformed into dextrins, maltose,
glucose and maltotriose. Thereafter, dextrins can be transformed into maltose, glucose and
maltotriose. Maltose, glucose and maltotriose are considered to be fermentable sugars. The
step from gelatinised starch and dextrins to maltose can be done by both α- and β-amylases
where all the other steps can only be done by α-amylase. In this thesis for the sake of sim-
plicity, it is considered only the process from gelatinised starch to maltose takes place, done
by only α-amylase. The process can be mathematically described as:

dSmal(t)
dt

= rmal,α (4-61)

With:
rmal,α = kmalaαSg(t) (4-62)

Where kmal is kinetic factor for the maltose production, aα is the global activity for the enzym
and Sg(t) the gelatinised starch concentration. Considering the process of gelanitisation is
already done beforehand, we can consider the state-space model as:[

Ṡg(t)
Ṡmal(t)

]
=

[
−rmal,α
rmal,α

]
(4-63)

Replacing Sg(t) and Smal(t) by x1(t) and x2(t) we can get the following state-space model.[
ẋ1(t)
ẋ2(t)

]
=

[
−kmalaαx1(t)
kmalaαx1(t)

]
(4-64)

To make the model more realistic, noise terms are added in the parameter kmal. This is done
by assigning an additional state x3(t) to the behaviour of the parameter as kmal = k0 +x3(t).
This will result in kmal floating around some value k0. The state space description with noise
can be described as: ẋ1(t)

ẋ2(t)
ẋ3(t)

 =

−aα(k0 + x3(t))x1(t)
aα(k0 + x3(t))x1(t)

(ζ−1)
Ts

x3(t)

 +

0
0
1

w(t) (4-65)

Such that w(t) is a zero-mean white noise signal with covariance Q(t), ζ is an damping
coefficient which will be just beneath 1 such that ζ ≈ 1 and Ts is the sampling time for
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the discretization of the model. The model is not highly non-linear and therefore a simple
Euler discretization can be used to get a well approximation. With the sample time Ts as the
discrete time-step, the model can be made discrete:x1(κ+ 1)

x2(κ+ 2)
x3(κ+ 3)

 =

x1(κ)− Ts(aα(k0 + x3(κ))x1(κ))
x2(κ) + Ts(aα(k0 + x3(κ))x1(κ))

ζx3(κ)

 +

 0
0
Ts

w(κ) (4-66)

To give more insight to the system w.r.t. the linearizations which need to be done for the
estimations, the following state-space description is obtained:x1(κ+ 1)

x2(κ+ 2)
x3(κ+ 3)

 =

x1(κ)− Tsaαk0x1(κ)− Tsaαx3(κ)x1(κ)
x2(κ) + Tsaαk0x1(κ) + Tsaαx3(κ)x1(κ)

ζx3(κ)

 +

 0
0
Ts

w(κ) (4-67)

The data received from the measurements, can be described by:

y(κ) =
[
1 0 0

] x1(κ)
x2(κ)
x3(κ)

 + v(κ) (4-68)

4-2-2 Brewing

Brewing is one of the key processes which gives the beer a bitter taste. The bitter taste
is mainly caused by the hops "Humulus Lupus" which are added. The value of the hops is
mostly determined by the alpha-acids, essential hop oils and polyphenols[11]. In this thesis,
the focus will be on the forming of these alpha-acids, since it is considered they take the most
part in the bitter flavour. Also, the model does not need to be very complex, since the use
of it in the scheduler is more important than the realistic behaviour of the model itself, as is
suggested for all the processes in the subsystems. For this reason, the degredation of iso-acids
is not taken into account. The brewing can be described by a simple first-order differential
equation:

dCalpha-acid(t)
dt = −bbrewCalpha-acids(t)

dCiso-alpha-acid(t)
dt = bbrewCalpha-acids(t)

(4-69)

Where the first terms before the equality sign are the rates in which the concentrations of the
alpha-acids and iso-alpha-acids decrease or increase, bbrew is a reaction rate parameter which
is obtained by taking the Arrhenius equation but considered to be constant, and Calpha-acids

the concentration of the alpha-acids at time t. By implementing the same procedure as done
in the mashing tank, an additional state is constructed in which noise is added. By replacing
the rate in which the alpha-acids and iso-alpha-acids increase or decrease by x1 and x2, and
the parameter bbrew to be chosen as bbrew = b0 + x3(t) the following state-space construction
can be obtained: ẋ1(t)

ẋ2(t)
ẋ3(t)

 =

−(b0 + x3(t))x1(t)
(b0 + x3(t))x1(t)

(ζ−1)
Ts

x3(t)

 +

0
0
1

w(t) (4-70)
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Where w(t) is a zero-mean white noise signal, Ts the sampling time, and ζ a factor close to
1 but just beneath it. Now following the same step in the mashing process by taking the
discretizations, one can obtain:x1(κ+ 1)

x2(κ+ 1)
x3(κ+ 1)

 =

x1(κ)− Tsb0x1(κ)− Tsx3(κ)x1(κ)
x2(κ) + Tsb0x1(κ) + Tsx3(κ)x1(κ)

ζx3(κ)

 +

 0
0
Ts

w(κ) (4-71)

Where the output signal is considered to be the level of alpha-acids with the addition of
measurement noise:

y(κ) =
[
1 0 0

] x1(κ)
x2(κ)
x3(κ)

 + v(κ) (4-72)

4-2-3 Fermentation

The fermentation process is mainly derived from [5], but as for all the other processes of the
subsystems, stronly simplified. Essentially the process of fermentation consists of the sugar
molecules which are already been broken down by the previous processes, are transformed
into ethanol as a result of yeast cells. The paper referred to described 5 responses in the
process of fermentation; biomass response, sugar level response, ethanol level response, di-
acetyl response and ethyl acetate. The 2 latter ones will not be discussed in this thesis, since
they do not influence the response of the first 3, and are just an extra interest in the process
of fermentation. The process of fermentation will not be taken into account in the updated
scheduler, since it is presented as the last process and each of the jobs need to undergo this
process tank. However, it is briefly outlined such that for further research a model for the
fermentation can be used if for instance 2 fermentation tanks are available.

The biomass response, sugar level response and ethanol level response are briefly discussed,
but also in these processes simplifications are made. As has been already mentioned, this
is done because the aim of this thesis will not be the realistic behaviour of the subsystems,
but rather their influence with variable processing times on the scheduler. In the referred
paper the biomass is considered from the inoculum(the initial substrate) which is soluted into
the wort. The inoculum consists of 3 type of yeast cells; Dead yeast cells, active yeast cells
and lag cells. Normally in the process of fermentation, 2 phases are provided. In the first
phase, just after the inoculum is soluted into the wort, the dead yeast cells boil down and
get removed from the solution, as well as the lag yeast cells become active yeast cells with a
specific rate µL. In the second phase the dead cells still boil down to get removed, the lag
cells still become active, but in this phase the active cells take place. These active cells in
the second phase can grow, or oppositely die. In this thesis only the second phase is taken
into account. The amount of active cells is taken as a first state with the following dynamics.
The lag cells are taken into account as well as a second state:

dXact(t)
dt = µxXact(t)− µDTXact(t) + µLXlag(t)

dXlag(t)
dt = −µLXlag(t)

(4-73)
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The yeast cells thereafter, will consume the sugar molecules to produce the ethanol in the
beer. This is obtained by the following relation with the yeast cells:

dCs(t)
dt

= −µsXact(t) (4-74)

And where the forming of ethanol with respect to the yeast cells is contained in the relation:
dCe(t)
dt

= µeXact(t) (4-75)

Normally the rate in which ethanol is created is decreasing with time. This can be modelled
by the addition of an inhibition term. Though, in this thesis, to let the system remain simple,
the inhibition term is neglected. The terms µx, µDT , µL, µs and µe are described by the
following relations. Some of the values are taken from the referred report, since they are
obtained by experimental data.

µx = µx0Cs(t)
kx+Ce(t) , µDT = e(130.16− 38313

T
)

µL = e(30.72− 9501.54
T

), µs = µs0Cs(t)
ks+Cs(t)

µe = µe0Cs(t)
ke+Cs(t)

(4-76)

The temperature is taken constant at T = 283K such that the values for µDT and µL become
constant. The values for µx0 , kx, µs0 , ks, µe0 and ke are also constant with respect to the
constant temperature:

µDT = 0.0054, µL = 0.0576

µx0 = 0.108, kx = 1

µs0 = 0.4783, ks = 1

µe0 = 0.2988, ke = 3.4281

(4-77)

Now the state-space model can be obtained. By assigning the variables x1, x2 and x3 and x4
to the the states Xact, Xlag, Cs and Ce the model can be expressed in x as:

ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)

 =


0.108x3(t)
1+x4(t) x1(t)− 0.0054x1(t) + 0.0576x2(t)

−0.0576x2(t)
−0.4783x3(t)

1+x3(t) x1(t)
0.2988x3(t)

3.4281+x3(t)x1(t)

 (4-78)

Since dead yeast cells can be considered dead while they are actually lag cells, zero-mean
white process noise w(t) is added to x2. For the rest of the model, it is assumed that it
behaves without noise. Since yeast is not very nice measurable, the sugar levels are taken as
measurements with zero-mean white measurements noise v(k). This all can be elaborated in
the following state equations:

ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)

 =


0.108x3(t)
1+x4(t) x1(t)− 0.0054x1(t) + 0.0576x2(t)

−0.0576x2(t)
−0.4783x3(t)

1+x3(t) x1(t)
0.2988x3(t)

3.4281+x3(t)x1(t)

 +


0
1
0
0

w(t) (4-79)
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Such that the discrete state space consists of:


x1(κ+ 1)
x2(κ+ 1)
x3(κ+ 1)
x4(κ+ 1)

 =


x1(κ) + Ts(0.108x3(κ)

1+x4(κ) x1(κ)− 0.0054x1(κ) + 0.0576x2(κ))
x2(κ)− Ts(0.0576x2(κ))

x3(κ)− Ts(0.4783x3(κ)
1+x3(κ) x1(κ))

x4(κ) + Ts( 0.2988x3(κ)
3.4281+x3(κ)x1(κ))

 +


0
Ts
0
0

w(κ)

(4-80)
With the measurements as:

y(κ) =
[
0 0 1 0

] 
x1(κ)
x2(κ)
x3(κ)
x4(κ)

 + v(κ) (4-81)

4-3 State estimation of the subsystems

In this paragraph the description of the estimations is done by the use of the state=space
description from the previous section. Essentially, it is quite straightforward using the infor-
mation about the extended Kalman Filter from chapter 3. The realizations of the estimations
will be put into the results paragraph.

4-3-1 Mashing

As is already mentioned before, estimations need to be made from the measured data and
system dynamics, such that processing times can be implemented beforehand. This will lead
to a plausible better dynamical schedule. The discrete time state-space description can be
formulated as:x1(κ+ 1)

x2(κ+ 2)
x3(κ+ 3)


︸ ︷︷ ︸

x(κ+1)

=

x1(κ)− Tsaαk0x1(κ)− Tsaαx3(κ)x1(κ)
x2(κ) + Tsaαk0x1(κ) + Tsaαx3(κ)x1(κ)

ζx3(κ)


︸ ︷︷ ︸

f(x(κ))

+

 0
0
Ts


︸ ︷︷ ︸
H(x(κ))

w(κ) (4-82)

The data received from the measurements, can be described by:

y(κ) =
[
1 0 0

]
︸ ︷︷ ︸

C

x1(κ)
x2(κ)
x3(κ)


︸ ︷︷ ︸

x(κ)

+v(κ) (4-83)

Where w(κ) and v(κ) are zero-mean white noise signals respectively with covariancesQ(κ) and
R(κ). For the extended Kalman filter algorithm described in the preliminaries, the following
matrices can be obtained:

∂f(x̂(κ− 1))
∂x(κ− 1) =

1− Tsaαk0 − Tsaαx̂3(κ− 1) 0 −Tsaαx̂1(κ− 1)
Tsaαk0 + Tsaαx̂3(κ− 1) 1 Tsaαx̂1(κ− 1)

0 0 ζ

 (4-84)
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H(x̂(κ− 1|κ− 1)) = H =

 0
0
Ts

 (4-85)

∂g(x̂(κ|κ− 1))
x(κ) = C =

[
1 0 0

]
(4-86)

g(x̂(κ|κ− 1)) = Cx̂(κ|κ− 1) (4-87)
Filling these values into the extended Kalman filter algorithm described in the preliminaries
preliminaries with initial conditions:

P (0|0) =

1 0 0
0 1 0
0 0 1

 , x̂(0) = E[x0] =

100
0
0

 (4-88)

4-3-2 Brewing

For the brewing process, the same procedure is done as in the previous paragragh for the esti-
mation of the mashing process. No further elaboration is necessary such that the estimations
can be done by assigning the following equations.x1(κ+ 1)

x2(κ+ 2)
x3(κ+ 3)


︸ ︷︷ ︸

x(κ+1)

=

x1(κ)− Tsb0x1(κ)− Tsx3(κ)x1(κ)
x2(κ) + Tsb0x1(κ) + Tsx3(κ)x1(κ)

ζx3(κ)


︸ ︷︷ ︸

f(x(κ))

+

 0
0
Ts


︸ ︷︷ ︸
H(x(κ)

w(κ) (4-89)

With the measurement equation:

y(κ)=
[
1 0 0

]
︸ ︷︷ ︸

C

x1(κ)
x2(κ)
x3(κ)


︸ ︷︷ ︸

x(κ)

+v(κ) (4-90)

And with the rest of the necessary terms for the extended Kalman filter as:

∂f(x̂(κ− 1))
∂x(κ− 1) =

1− Tsb0 − Tsx̂3(κ− 1) 0 −Tsx̂1(κ− 1)
Tsb0 + Tsx̂3(κ− 1) 1 Tsx̂1(κ− 1)

0 0 ζ

 (4-91)

H(x̂(κ− 1|κ− 1)) = H =

 0
0
Ts

 (4-92)

∂g(x̂(κ|κ− 1))
x(κ) = C =

[
1 0 0

]
(4-93)

g(x̂(κ|κ− 1)) = Cx̂(κ|κ− 1) (4-94)
Filling these values into the extended Kalman filter algorithm described in the preliminaries
preliminaries with initial conditions:

P (0|0) =

1 0 0
0 1 0
0 0 1

 , x̂(0) = E[x0] =

100
0
0

 (4-95)
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4-3-3 Fermentation

The fermentation process has a slightly different behaviour than the 2 processes before. This
is caused by the growth of the yeast which is the producer of the ethanol molecules. Lets
consider the already obtained discrete time system:


x1(κ+ 1)
x2(κ+ 1)
x3(κ+ 1)
x4(κ+ 1)

 =


x1(κ) + Ts(0.108x3(κ)

1+x4(κ) x1(κ)− 0.0054x1(κ) + 0.0576x2(κ))
x2(κ)− Ts(0.0576x2(κ))

x3(κ)− Ts(0.4783x3(κ)
1+x3(κ) x1(κ))

x4(κ) + Ts( 0.2988x3(κ)
3.4281+x3(κ)x1(κ))

 +


0
Ts
0
0

w(κ)

(4-96)
With the measurements as:

y(κ) =
[
0 0 1 0

] 
x1(κ)
x2(κ)
x3(κ)
x4(κ)

 + v(κ) (4-97)

Now by continouing the same procedure one can obtain the matrices:

∂f(x̂(κ− 1))
∂x(κ− 1) =

(1− 0.0054Ts) + Ts
0.108x̂3(κ−1)
1+x̂4(κ−1) 0.0576Ts Ts

0.108x̂1(κ−1)
1+ ˆx4(κ−1)

−Ts 0.108x̂3(κ−1)x̂1(κ−1)
1+x̂4(κ−1)2

0 1− 0.0576Ts 0 0
−Ts 0.4783x̂3(κ−1)

1+x̂3(κ−1) 0 1− Ts 0.4783x̂1(κ−1)
1+x̂3(κ−1)2 0

Ts
0.2988x̂3(κ−1)

3.4281+x̂3(κ−1) 0 Ts
0.2988x̂1(κ−1)

3.4281+x̂3(κ−1)2 1


(4-98)

And:

H(x̂(κ− 1|κ− 1)) = H =


0
Ts
0
0

 (4-99)

∂g(x̂(κ|κ− 1))
x(κ) = C =

[
0 0 1 0

]
(4-100)

g(x̂(κ|κ− 1)) = Cx̂(κ|κ− 1) (4-101)

However, in this case study, since the fermentation process is the last process of the simple
system illustrated in 4-1, all jobs need to go through the fermentation process. Since mini-
mizing the cost function over y(k+ j) = x5(k+ j) +p5(k+ j) for j = 0, ..., Np, it is essentially
minimizing over x(k + j) since there can nothing be controlled in the process time p(k + j).
For this reason, the minimization of the cost function does not depend on the variable pro-
cess time in machine 5. For this reason, the whole process and variable end time of the
fermentation tank is not taken into account, and the process is considered to have a constant
process time of p5(k + j) = 1 for j = 0, ..., Np. The elaboration of the state-space, as well
as the elaboration of the use of the extended Kalman filter, are mainly proposed for future
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research in which there are multiple fermentation tanks, and therefore multiple outputs of the
batches. Also note the chosen value for the process noise is arbitrarly, this can be changed
into a parameter varying additional state as is done for the mashing and brewing. However,
in this case study this additional features are not discussed.
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Chapter 5

Case study - Results

In this chapter, the methods discussed in the previous chapter are realized with determined
parameters. The processing times per machine are assigned, and the translation from the
process times of the machines to the state-space descriptions of the subsystems are outlined.
Furthermore, estimations are obtained, in which the predictions subsequently follow. Reli-
ability of the predictions is discussed as well, where afterwards the results for the statical
scheduler, the dynamical updated scheduler with respect to the event-counter k, and the
dynamical updated scheduler with respect to the time-counter κ are shown.

5-1 General assumptions and explanations

For the realizations of the subsystems, as well as to conclude anything about the whole model,
several assumptions need to be made, and explanations need to be given beforehand. These
assumptions can lead to the system not behaving according to reality, but since this is a
fictitious case study and the focus is lied more upon the behaviour of the scheduler with
updating processing times rather than the subsystems behave like realistic subsystems, this is
taken for granted. The first assumption which is made regarding the subsystems, has already
been mentioned in previous paragraphs. Namely, the last process of fermentation, will be
neglected with respect to its model dynamics. This is done because in our case study, only
one fermentation tank is included, where all jobs need to go through this specific fermenta-
tion tank. Minimizing the overal cost over the endtimes of the jobs is essentially the same as
minimizing over the starting times of this last machine. Deviating processing times of this
machine will therefore not influence the mode switching. In extension, too long processing
time of this last machine will lead to a loss of beneficial mode changes in previous machines.
To conclude, a low and constant value for the process time of machine 5 is chosen p5 = 1.
The other processing times are summarized in table 5-1.

The values of processing times of the other processes are taken such that the processing
times of the first 2 machines for mashing, have a higher overal processing times than for the

Master of Science Thesis A.J.M. van Heusden



52 Case study - Results

Machine Process time(Days or "Time-units")
M1 7
M2 8
M3 6
M4 5
M5 1

Table 5-1: Nominal process times of the processes per machine.

second pair of machines for brewing. This is done such that at the beginning of the jobs, no
machine would become idle, due to the machines 3 and 4 are taking too long. In other words,
optimality is hard to conclude when machines 3 and 4 are working constantly due to longer
processing times than machines 1 and 2. Therefore, the opposite is chosen, machine 1 and 2
take longer, such that deviations in the processing times of machine 1 and 2, could result in
fluctuations of routes in machine 3 and 4. Furthermore, the same processes deviate only 1
time-unit from one another to observe more clearly when mode changes are logical. In other
words, when processing times deviate, it does not take too much to deviate to change the
most optimal path in the perspective of one job, or the consecutive job.

Above all, comparisons need to be done to conclude anything about the beneficial effects
of the updated scheduler. This is rather harder than it seems to be. Namely, processing times
will deviate, but how to differ the benefits or delays from the realizations of the subsystem
its process times instead of the updated scheduler actually being better or worse. To do this,
the sum of differences with the nominal processing times is calculated for both the initial
scheduler and the ultimate updated scheduler at the end of the process. By observing the
processes who became "active" according to the modes of both the initial scheduler and ulti-
mate updated scheduler, the sum can be obtained of the total differences with the nominal
processing times for both the schedulers. Finally the differences are compared, and extracted
from one another to obtain the difference from the schedulers with respect to each other. This
is than substracted or added to the cost function of the initial scheduler such that comparison
can be done. This is elaborated a lot more in the results paragraph which are coming up by
the tables where the active processes are given in bold for both the schedulers. It could occur,
the initial scheduler becomes active in a machine or process, where no realization is obtained
for. For instance, when the initial scheduler for job 3 goes through machine 4, but the up-
dated scheduler decided job 3 goes through machine 3 instead of machine 4, no realization is
obtained for job 3 initially going through machine 4, since this process never happened. Just
come up with another realization would make the comparison even more dubious, since the
overal comparison becomes a comparison between sort of random realizations. Therefore, if
the processes for the initial scheduler do not become active, it is assumed they have the same
process time as the nominal process time, such that the difference with the nominal process
times also equals 0.

To continue with the above information, another problem pops up. Namely, it could oc-
cur, the system changes modes from information about the processes of specific machine in
machine 1 and 2, therefore switch the routes. However, it subsequently occurs the switching
choice was a bad decision, due to the fact the realization in the machine 3 and 4, seem to be
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very unreliable. In other words, when the nominal times would have occured in machines 3 and
4, it would be the best mode switching, but the realizations turn out to be very non-beneficial
for the updated scheduler. A sort of random realization, followed up by another random re-
alization could therefore become very hard to optimize over. Although the realizations are
not completely random of course, and information is known beforehand, this is still a possible
outcome. To conclude anything about this, in the following paragraphs about the results of
the updated scheduler, 3 approaches are used for each of the dynamical schedulers obtianed.
In the first approach, only the first 2 machines will be subjected to deviating processing times,
in the second approach only the third and fourth machines will be subjected to deviating pro-
cessing times, and in the last approach all machines except for machine 5, will be subjected to
deviating processing times. Hopefully, something can be concluded about the above concerns.

Ultimately, for the comparison to be complete, it is assumed the input time-instances are
all equal to 0, i.e. u(k) = 0 for ∀k. This is already mentioned in previous paragraphs as
well. This is done, such that a beneficial effect of the scheduler can not be ruined by an
input time-instant being too late. Every beneficial effect can subsequently be concluded to
the effect of the updated scheduler.

5-2 Subsystems

5-2-1 Simulations

In this paragraph, the translation from the assigned processing times to the specific processes
is discussed. Essentially, it comes down to tuning parameters in the state-space model such
that the noiseless case behaves exactly as the prescribed processing times from table 5-1.

To begin, and actually also to explain, we take the first mashing tank, machine 1, as an
example. The elaboration for the other processes will follow quite straightforward. By im-
plementing the state-space description of 4-66 without additive noise in MATLAB, and con-
structing a simulation for x2(κ) of the state-space model with step size Ts = 0.01, simulation
time κ = 20 days and distinct values for the parameter k0, figure 5-1 is obtained. The state
x2(κ) represents the amount of smaller sugar molecules made from the larger sugar molecules.
The initial state for both the mashing tanks is x(0) =

[
100 0 0

]T
. The initial states x1(κ)

and x2(κ) can also be considered as starting amounts of the molecules, but since they are
converted in one another, it can be seen as a percentage more or less, such that x1(0) is 100
means it starts with 100% of its amount. x2(0) = 0 means from the 100% of x1(0) still 0%
is converted into the smaller sugar molecules. More or less, since the measurement noise can
influence the data a bit, such that they are not fully converted in one another, The x-axis
is counted in mDays or actually m(’Time-units’), such that the end time of 20000 ’m(Time-
units)’, means κ = 20 in the overal model. The goal is to design a certain threshold where
the process is considered to be finished. As can be observed, the behaviour of the process is
kind of asymptotically to the amount of 100. Taking a large value for k0 brings the system
faster to the asymptotic line of 100%, taking a smaller value for k0 brings the system slower
to the asymptotic value of 100%.
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Figure 5-1: Simulation of x2(κ) in the mashing process with no noise and different values k0.

Since the parameter k0 in the real model is subjected to noise variables, and it can already
be observed in figure 5-1 that small deviations in the value of k0 already lead to a large
difference taking 100% as a threshold, a more reliable threshold is chosen. Note that the k0
values in figure 5-1 are taking constantly different, i.e. k0(κ) = k0 for ∀κ, where in the case
noise is applied, k0(κ) will vary around the value of the initial k0, but changes over time. Still
though, another threshold than 100% need to be chosen such that the deviations in the time
the threshold is reached do not deviate thoroughly. For that reason, 80% as a more reason-
able threshold is chosen. In this threshold still the non-linearity of the system its dynamics is
taken into account(the system behaves more or less linear when having the threshold closer
to 0%), but also the times for reaching the threshold do not deviate too extreme when the
value of k0(k) deviates.

By taking the threshold as 80%, the job is now to tune the parameter such that the threshold
without noise is exactly met at the processing time from table 5-1. For instance, if we take
the processing time of the first mashing tank p1 = 7, the goal is to design k0 such that with
the ’no-noise’ case it comes approximately at 80% at κ = 7000mDays which is of course, since
the axis is in ’milli’ equal to κ = 7. For the mashing tank 1, this is reached at the value
of k0 = 0.011497, as is already illustrated in figure 5-1. For the other processes, the same
method can be applied quite straightforward to come up with appropriate values of k0 or in
case of the brewing b0.

Now the process times of the initial scheduler are translated to the nominal trajectories of the
state-space models of the processes by tuning the parameter k0 or b0. Next the process noise

A.J.M. van Heusden Master of Science Thesis



5-2 Subsystems 55

need to be applied to make the system behave slightly different. The process noise is consid-
ered to be zero-mean white noise with covariance Q. An additional interest could be to apply
non-gaussian or coloured noise, but this will not be in the scope of this thesis. The results
are shown in figure 5-2. It can be observed that a too high covariance of the process noise,

Figure 5-2: Simulation of x2(κ) in the mashing process with constant k0 = 0.011497, ζ = 0.99
and different covariance values for Q.

will not only let the system deviate from the simulation with no noise in figure 5-1, but could
also completely overrule the system dynamics when for example looking at the trajectory for
Q = 0.5. Note that due to the too high noise sequence, also solution come up which are
infeasible looking at the negative percentages of the sugars converted. Also note that for the
3 realizations with different values for the covariance, the same seed is used for the sequences
of white noise signals. Thereafter, they are multiplied by the square root of the covariance,
such that the same noise sequences can be compared with different covariances. Besides the
fact the system its behaviour is completely overruled when taking the value of the covariance
Q too high, also the times the trajectories arrive at the threshold is significantly different. In
this particular cases the time-instances the threshold of 80% is reached are shown in table
5-2. Of course the latter case in which Q = 0.5 is useless for the simulation since the model
totally not behaves as the dynamics. Therefore an appropriate value of Q is wanted such
that the system could deviate from the nominal trajectory without noise, but still follows the
dynamics sufficiently well. As can be seen, the value of ζ = 0.99 is taken constant. Though,
this parameter can also be tuned. To conclude anything about the influence of this parameter
ζ, also called the memory factor, the following situations with ’worse case scenario’ of Q = 0.5
is picked to illustrate. What can be clearly observed in figure 5-3 is that the memory factor
blushes out the strong covariance of the noise. Of course this is logical when looking at the
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Q Time(mDays)
0.005 7481
0.05 9703
0.5 12241

Table 5-2: Threshold(>80%) arrival times with distinct covariance Q.

Figure 5-3: Simulation of x2(κ) in the mashing process with constant k0 = 0.011497, Q = 0.5
and different values for ζ.

state-space equation for x3(κ) in 4-66. Since the dynamics evolve according to:

x3(κ+ 1) = ζx3(κ) + w(κ) (5-1)

When taking ζ closer to 0, the influence of the noise term becomes less and less important,
since it is canceled out by the larger decrease to zero because of the ζ-term. Constructing
the times where the trajectories of 5-3 reach the threshold of 80%, the table 5-3 is obtained.
Of course, this results in the processing time for the specific realizations becoming closer to
the nominal processing time. The trade-off which need to be made is, in which way we want
to simulate the influence of the covariance of the process noise, with the influence of the
memory factor ζ, with as a goal it deviates from the prescribed processing times, but can still
be predicted quite well. Therefore, the trajectories need to be most familiar with the nominal
trajectory, to make accurate predictions, but deviations with respect to the nominal time. In
the section about predictions, this is much more elaborated.

To come up with the appropriate values for k0/b0 and ζ for the simulation of the subsys-
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ζ Time(mDays)
0.99 12241
0.97 9702
0.95 7889
0.90 7460

Table 5-3: Threshold(>80%) arrival times with distinct memory factor ζ.

tems, one more condition need to be added. Namely, the values of the k0/b0 can physically
never be less than zero. If we look at the case where Q = 0.05. The values for the parameter
with noise are equal to k0 + x3(κ), as they can be observed in figure 5-4. It can be clearly

Figure 5-4: Simulation of k0 + x3(κ) for Q = 0.05 and ζ = 0.99.

noticed that the values of k0 are often lower than 0, which is physically not feasible. To
come up with a boundary of the covariance such that k0 will always have realistic values, we
take the covariance such that its standard deviation multiplied by 3 is never greater than the
value of k0, such that the probability is practically 0 that one of the values of w(κ) is larger
than k0. There is still a very small probability that it occurs one of the values could become
larger than k0, but in this model we take that for granted, since the influence will be negligible.

The solution becomes to have the largest possible value for the covariance Q, such that
k0 remains more or less realistic and feasible, but thereafter tune the memory factor ζ such
that the system still deviates in processing time, but is still quite nicely predictable. For the
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mashing tank 1, this is done by setting the covariance to:

σ = k0
3 , σ2 = Q (5-2)

Tuning the variable ζ the same as in figure 5-3, gives the value for ζ = 0.9999. To give
an insight, 100 realizations are obtained ofr mashing tank 1 and put in figure 5-5. As can

Figure 5-5: Monte-carlosimulations with n = 100 for state x2(κ)of mashing tank 1 with Q = k0
3

and ζ = 0.9999. The dotted lines are the most extreme realizations where the threshold of 80%
is reached.

be observed, the realizations have a very nice clear behaviour in a smooth line without dis-
ruptions, but deviate in processing time with respect to the threshold value of 80%. For
the sharp eye, the process times to reach the threshold > 80% deviate from approximately
κ = 5000− 9000mDays, read κ = 5− 9 with one outlier to approximately κ = 12000mDays,
read κ = 12. The same procedure is continued for the processes of the second mashing tank,
and both the brewing tanks. For now, to conclude this paragraph, the parameters with re-
spect to processing times for the process of mashing and brewing are summarized in table 5-4.
Of course, the question arises if the behaviour of the brewing dynamics is not much different

Machine Processing times k0/b0 Q ζ

M1 7 0.011497 1.469·10−5 0.99990
M2 8 0.01006 8.884·10−6 0.99970
M3 6 0.026829 7.998·10−5 0.99991
M4 5 0.032194 1.152·10−4 0.99992
M5 1 - - -

Table 5-4: Parameters for the mashing and brewing process with distinct processing times per
machine.
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than the one from the mashing and therefore the behavioural aspects of the dynamics with
respect to the noise and memory factor is different. Fortunately, the behaviour is more or
less the same, such that the same procedure can be done as described for the mashing tank
above. As is already mentioned at the beginning of this chapter, the fermentation process is
considered to be constant, due to the fact minimizing the fastest outcome of the product of
machine 5, is the same as minimizing the starting time of machine 5.

Since the measurements do not influence the real obtained data, the simulations of the mea-
surements are not taken into account in this section. In the next section, realizations are
made for the measurements, since they are primarily needed for the estimations. The choice
for the covariance of the measurement noise R is also substantiated in the next section.

5-2-2 Estimations

In the previous section, the simulations of the subsystem are explained such that ’real’ simu-
lated data is gathered. In this section, the results are shown for the estimation for the specific
states using the system dynamics and measurements from the obtained simulated data. The
measurements are also contained with measurement noise. An extended Kalman filter is used
as is already explained in the previous chapter.

For each of the processes, the results are shown with respect to the difference of the real
process and the estimation. Especially important is the threshold point, where the estimated
state must be very close to the real state, such that if we know the estimations are passed
the threshold, the real systems will be more or less passed the threshold as well.

For the estimations, it is not only important what the process noise does to the system,
but also how pure the measurements are. In other words, what influence the measurement
noise contributes to the pureness of the estimations. In this paragraph, the same conclusions
can be drawn from 1 mashing tank to the other mashing and brewing tanks with respect to
the quality of the estimations, as the state-spaces of the mashing and brewing tank behave,
within a certain degree, the same. In chapter 3, the method for the extended Kalman filter
is discussed, where in the previous chapter the matrices are already obtained. Now by just
filling the values into the algorithm and updating per prediction and correction step receiving
the data y(κ) from each of the subsystems, the estimations are derived.

First a general result is given from all the 3 states for mashing tank 1 when applying a
certain process noise and measurement noise over the system. To begin, a deviation is made
regarding the process noise where 3 cases are proposed, taken into account equation 5-2 and
taking a seed such that the noise sequences behave the same. For all three cases the value
ζ = 0.99 is chosen, and the measurement noise covariance has the value R = 0.1. For the
process noise:

Q = 0.005, Q = 0.05 Q = 0.5 (5-3)

In the next figures respectively the estimations and real data of the simulations of the 3 states
of the mashing process are shown. For all the 3 values of the covariance of the process noise,
the estimations are working very well. The trajectories are almost perfectly aligned with the
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Figure 5-6: Estimations compared with the real data of the state x1(κ) with deviating process
noise covariance Q.

trajectories of the real data such that they are barely recognizable in the figures. Note that
the time-axis of each of the three figures 5-6, 5-7 and 5-8 are different. Now looking at the
last state x3(κ) containing all the noise in figure 5-8, it can be observed that the estimations
for the 3 cases work quite well, but get a larger off-set when the time increases. A possible
explanation for this behaviour is that the system its response from the process noise encoun-
tered is negligible when the time increases. This is caused by the state x1(κ) becoming almost
or approximately 0. Therefore the term in equation 4-66, (Tsaαx3(κ)x1(κ)), also becomes 0.
By taking only the measurements from x1(k) it becomes impossible to estimate x3(κ) from
the term (Tsaαx3(κ)x1(κ)), since this last term is 0 and the influence of x3(κ) to this term is
therefore nihil. Therefore taking the process noise either 0, or some other value close to 0, will
not give a deviation in the measurements such that the process noise in x3(κ) can be certified.

In the above conclusion about the inability of estimating the state x3(κ) when time increases,
a link can be made to one of the key features for the estimations, the measurements. The
measurements are only taken from state x1(κ) in the defined state-spaces. Of interest is of
course to see the response and estimation of the extended Kalman filter when making the
measurements less pure. In other words, apply measurement noise with a higher covariance
R. Taking the value of the process noise constant at the largest noise case Q = 0.5, the
measurement noise is deviated with the following values:

R = 0.1, R = 1, R = 10; (5-4)
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Figure 5-7: Estimations compared with the real data of the state x2(κ) with deviating process
noise covariance Q.

The next figures show the estimation of the threshold state x2(κ) and the measurements y(κ)
of the three specific covariance for the measurement noise. The figures are shown in figures
5-9 and 5-10. As always for the comparison, the noise sequences are seeded. Obviously
the measurements become very noisy with an increasing covariance R, as can be observed
in figure 5-9. However, the estimations in figure 5-10 are not influenced by it that much,
and still follow the real simulated data quite nice. Of course if you zoom in, the differences
become significant, but the overal estimations still follow the real simulated data remarkably
nice.

Thereafter, it is nice to observe what the system does with the assigned values of the co-
variance of the process noise and memory factor to the subsystems described in the previous
section about simulations. The same procedure is done, only this time the difference from
the real obtained datapoint for the threshold >80% is compared. Since the estimations in a
figure are very hard to tell apart, the difference of the estimation with respect to the threshold
point is given in table 5-5. As can be concluded, the value of the threshold point reached for

R = 0.1 R = 1 R=10
x2(κ)real 7051 7051 7051
x2(κ)est 7053 7069 7110

Table 5-5: Comparison of the theshold point >80% reached in mDays for the real simulated
data and the estimations.
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Figure 5-8: Estimations of the state x3(κ) compared with the real data with deviating process
noise covariance Q. In consecutive order from Q = 0.005, to the second image Q = 0.05, to the
third image Q = 0.5.

the estimations floats away as the measurements become less pure. Of course, that is logical,
since the estimations of the processes become less accurate when the measurements become
more noisy, as is already shown in figure 5-10. Since the estimated threshold point are the
only data known in a realistic situation, the measurement noise is chosen to be very small,
such that the sensors are very reliable. A more commonly used value for the covariance of the
measurement noise is R = 0.1 as this value will also be used in this thesis for the covariance
of the measurement noise.

To ultimately finish the estimation process, one more thing has to be noticed. For the pre-
diction in the next section, accurate estimation are needed for all the 3 states. For the first
2 states, the estimations are very nice, for the third state however, estimations become less
and less accurate when the measurements are too noisy. The estimation still follow the trend
of the real simulated value of x3(κ) up to a certain time. The off-set can also be seen when
time increases and is prabably caused by the reason already mentioned above. Namely, the
value of x1(κ) coming closer and closer to 0, makes it harder to estimate the correct value
since the influence of the state x3(κ) to the measurable state x1(κ) becomes lesser. However,
even in the beginning, the estimations are not so pure. Taking almost perfect measurements
such that the value of R = 0.0001, the figure 5-12 is obtained. It can be observed that the
estimation in figure 5-12 is much better and has a much lesser off-set than the estimation in
figure 5-11, also when time increases. The point to be made by showing these 2 figures, is the
reliability of the predictions in the next section, with the chosen value for R as the covariance
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Figure 5-9: Influence of increasing covariance of the measurement noise R on the measurements
y(κ) of x1(κ) with covariance of the process noise as Q = 0.5. The first image R = 0.1, the
second image R = 1 and the third image R = 10.

of the measurement noise. The purer the measurements, i.e. the smaller value for R, the
better all the states including x3(κ) get better estimates. As a result, the predictions with
these better estimated states become more reliable. The question which will be answered in
the next section is how reliable the predictions are when taking the values for the covariance
of the process and measurement noise as in table 5-4 and R = 0.1.

5-2-3 Predictions

In the previous chapter is explained that the estimations do not deviate too much from the
real system, and thus the estimated threshold point can be considered as the real threshold
point. Of course, there is no other choice, since the only data we can obtain from x2(κ) is
from the virtual sensor of x2(κ), i.e. the estimated values of x2(κ). In this section, the results
for the predictions of some realizations are given to make conclusions about the reliability
and behaviour of the predictions.

The problem encountered will be if the predictions are reliable enough, and more specific,
convert to the real end time of the process. In other words, the scheduler can not do anything
with a prediction which is chattering around the prescribed process end-time. For instance,
when having mashing tank 1, with a process time of p1 = 7, predictions are not very useful
if they are chattering largely around the value of κ = 7. If the predicted value at κ = 3 is
p1 = 8.5 but a moment later at κ = 4 the predicted value becomes p1 = 6, the scheduler can
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Figure 5-10: Influence of increasing covariance of the measurement noise R on the estimations
of x2(κ) with covariance of the process noise as Q = 0.5. The first image R = 0.1, the second
image R = 1 and the third image R = 10.

Figure 5-11: Comparison of the estimation and real simulated data of x3(κ). The real model
parameters are used with covariance of the measurement noise as R = 0.1.
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Figure 5-12: Comparison of the estimation and real simulated data of x3(κ). The real model
parameters are used with covariance of the measurement noise as R = 0.0001.

not make a useful logical update. A preferable situation will be if the predictions become
more certain when time increases, and convert to the endtime.

First the results of the general approach are shown. Essentially, it comes down to esti-
mating the 3 states of the subsystems, and continue filling in the value in the state space of
this estimated 3 states without the noise. Or, with the expectation of the noise, but since
the noise is considered to be zero-mean white noise, the expectation equals 0 such that the
noise can be left out of the state-space when predicting the system. Hopefully, predicting
the states at κ = 1, gives a less accurate prediction, than predicting the states at κ = 4 for
instance, since less of the estimated data is known at the earlier time-instances. In figures
5-13 and 5-14, the approach is nicely illustrated. First of all, it can be concluded again,
the estimations work almost perfectly since the red and the green line are perfectly aligned
on each other. The red line is considered as the estimations of the real data up till the time
the data is known. Afterwards, the prediction in blue ’takes over’ the red line. For the sharp
eye it can be observed that the blue line comes closer to the green line when time increases
comparing the figures 5-13 and 5-14. Specifically looking at the threshold point of >80%,
it also becomes closer. Since it is a little bit hard to observe if from the graph, the next
table 5-6 will show the results in a more organized way. The behaviour in table 5-6 is a nice

κ = 1 κ = 2 κ = 3 κ = 4 κ = 5 κ = 6 κ = 7 κ = 8
Prediction reaches threshold point 6.80 5.69 6.56 6.33 6.11 6.01 6.01 6.01
Real data reaches threshold point 6.01 6.01 6.01 6.01 6.01 6.01 6.01 6.01

Table 5-6: Comparison of the predicted threshold time reached with the real threshold time
reached for increasing κ.
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Figure 5-13: Prediction at time κ = 1(κ = 1000mDays) for mashing tank 1. In red the estimation
up till time κ = 1, in green the real simulated data of the system, in blue the prediction upward
from κ = 1.

Figure 5-14: Prediction at time κ = 4(κ = 4000mDays) for mashing tank 1. In red the estimation
up till time κ = 4, in yellow the real simulated data of the system, in blue the prediction upward
of κ = 4.
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result. As can be seen the prediction its trend is already at the beginning going down with
respect to the prescribed process time of p1 = 7, and converts after the time goes passed
to the time-instance where the real data meats the threshold point. After the time-index
reaches the process time, of course the predicted time will be equal to the estimated time
of the threshold point, since the data up till the end-time of the process is received. This is
only one realization, thus any hard conclusions can not be drawn. Therefore a montecarlo
simulation with n = 10 is done for each of the individual subsystems for a trend be observed.

In the following tables each of the processes is ran 10 times, where the predictions from
discrete time-instant κ = 0 are given up till κ = 12. With the process times and uncertainties
somehow known, it is not most likely one of the process times reaches above the κ = 12. The
prediction are rounded up to 1 decimal, also for the realization in the schedule. These round-
ings are made such that the process times not become to cluttered. In tables 5-7. 5-8, 5-9 and
5-10 the 10 realizations are shown for the 4 machines with deviating processing times. For
κ = 0, the initial point, of course the processing times are all equal to the nominal processing
times. As can be observed, almost all realizations convert with the predictions to the real

Realization Ultimate p1 κ = 0 κ = 1 κ = 2 κ = 3 κ = 4 κ = 5 κ = 6 κ = 7 κ = 8 κ = 9 κ = 10 κ = 11 κ = 12
1 6.60 7.00 6.50 6.60 6.50 6.50 6.80 6.70 6.60 6.60 6.60 6.60 6.60 6.60
2 9.20 7.00 8.30 8.90 8.70 8.50 8.40 9.20 9.40 9.30 9.10 9.20 9.20 9.20
3 7.40 7.00 7.00 7.20 7.30 7.70 7.90 7.40 7.40 7.40 7.40 7.40 7.40 7.40
4 6.30 7.00 6.60 6.30 6.20 6.60 6.40 6.30 6.30 6.30 6.30 6.30 6.30 6.30
5 7.50 7.00 7.00 6.90 6.60 6.70 7.20 7.40 7.50 7.50 7.50 7.50 7.50 7.50
6 7.70 7.00 6.80 6.50 6.90 7.30 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70
7 6.10 7.00 6.40 6.40 6.00 6.00 6.00 6.00 6.10 6.10 6.10 6.10 6.10 6.10
8 7.70 7.00 8.00 7.50 7.80 8.30 7.90 7.90 7.60 7.70 7.70 7.70 7.70 7.70
9 9.70 7.00 7.50 7.60 8.00 8.30 8.50 9.60 10.20 10.00 9.80 9.70 9.70 9.70
10 5.80 7.00 6.40 6.40 6.10 5.90 5.90 5.80 5.80 5.80 5.80 5.80 5.80 5.80

Table 5-7: 10 realizations of predictions made per discrete time-instance κ for the process in
machine 1.

Realization Ultimate p2 κ = 0 κ = 1 κ = 2 κ = 3 κ = 4 κ = 5 κ = 6 κ = 7 κ = 8 κ = 9 κ = 10 κ = 11 κ = 12
1 8.50 8.00 7.90 8.10 8.20 8.10 8.50 8.60 8.60 8.60 8.50 8.50 8.50 8.50
2 9.50 8.00 8.10 8.00 8.40 8.30 8.70 9.00 9.30 9.40 9.50 9.50 9.50 9.50
3 6.90 8.00 8.20 8.40 7.80 7.20 7.20 7.00 6.90 6.90 6.90 6.90 6.90 6.90
4 7.90 8.00 8.30 8.10 8.30 8.20 8.00 8.00 7.90 7.90 7.90 7.90 7.90 7.90
5 10.90 8.00 8.20 8.70 8.90 9.00 9.60 9.70 9.80 10.50 10.40 10.80 10.90 10.90
6 7.40 8.00 7.80 7.80 7.80 7.60 7.50 7.40 7.40 7.40 7.40 7.40 7.40 7.40
7 8.20 8.00 8.00 7.90 8.40 8.20 8.10 8.30 8.20 8.20 8.20 8.20 8.20 8.20
8 8.80 8.00 8.10 8.10 8.70 8.70 8.90 8.60 8.70 8.70 8.80 8.80 8.80 8.80
9 7.40 8.00 7.80 7.50 7.80 7.60 7.60 7.50 7.50 7.40 7.40 7.40 7.40 7.40
10 7.30 8.00 7.70 7.50 7.20 7.40 7.20 7.30 7.20 7.30 7.30 7.30 7.30 7.30

Table 5-8: 10 realizations of predictions made per discrete time-instance κ for the process in
machine 2.

ultimate value of the processing time realization. Some realizations have some chattering in
between but 2-3 time-units before the ultimate value of the process time, it already is very
near to the ultimate process time. In other words, when coming closer to the real endtime of
the process with respect to the discrete-time counter κ, the system becomes closer and closer
to the real ultimate value. Furthermore, it is nice to observe the processing times where the
ultimate value has a high difference from the nominal value, this can be recognized relatively
quite fast. For instance, when looking at realization 5 in 5-8, the processing time becomes
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Realization Ultimate p3 κ = 0 κ = 1 κ = 2 κ = 3 κ = 4 κ = 5 κ = 6 κ = 7 κ = 8 κ = 9 κ = 10 κ = 11 κ = 12
1 5.30 6.00 6.80 6.10 5.60 5.50 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30
2 7.50 6.00 6.50 7.40 8.00 7.30 7.90 7.80 7.50 7.50 7.50 7.50 7.50 7.50
3 5.60 6.00 5.80 5.80 5.70 5.70 5.60 5.60 5.60 5.60 5.60 5.60 5.60 5.60
4 6.10 6.00 6.20 6.30 6.50 6.30 6.20 6.10 6.10 6.10 6.10 6.10 6.10 6.10
5 5.30 6.00 6.00 5.70 5.40 5.30 5.40 5.30 5.30 5.30 5.30 5.30 5.30 5.30
6 5.20 6.00 5.80 5.90 5.40 5.20 5.20 5.20 5.20 5.20 5.20 5.20 5.20 5.20
7 8.60 6.00 6.70 7.50 8.90 8.60 8.40 8.40 8.50 8.70 8.60 8.60 8.60 8.60
8 5.70 6.00 5.60 5.70 5.60 5.50 5.60 5.70 5.70 5.70 5.70 5.70 5.70 5.70
9 4.90 6.00 5.50 5.10 4.80 4.90 4.90 4.90 4.90 4.90 4.90 4.90 4.90 4.90
10 6.30 6.00 6.00 5.80 6.20 6.30 6.30 6.30 6.30 6.30 6.30 6.30 6.30 6.30

Table 5-9: 10 realizations of predictions made per discrete time-instance κ for the process in
machine 3.

Realization Ultimate p4 κ = 0 κ = 1 κ = 2 κ = 3 κ = 4 κ = 5 κ = 6 κ = 7 κ = 8 κ = 9 κ = 10 κ = 11 κ = 12
1 4.30 5.00 4.60 4.30 4.30 4.30 4.30 4.30 4.30 4.30 4.30 4.30 4.30 4.30
2 3.80 5.00 4.40 3.80 3.90 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80
3 6.50 5.00 5.60 6.30 6.10 6.40 6.40 6.60 6.50 6.50 6.50 6.50 6.50 6.50
4 5.40 5.00 5.10 5.10 4.90 5.20 5.40 5.40 5.40 5.40 5.40 5.40 5.40 5.40
5 6.50 5.00 5.70 6.00 6.50 5.90 6.40 6.50 6.50 6.50 6.50 6.50 6.50 6.50
6 4.30 5.00 5.00 4.60 4.40 4.30 4.30 4.30 4.30 4.30 4.30 4.30 4.30 4.30
7 5.80 5.00 5.20 5.70 5.70 5.70 5.80 5.80 5.80 5.80 5.80 5.80 5.80 5.80
8 4.70 5.00 4.40 4.70 5.00 4.80 4.70 4.70 4.70 4.70 4.70 4.70 4.70 4.70
9 5.20 5.00 5.20 5.50 5.20 5.20 5.30 5.20 5.20 5.20 5.20 5.20 5.20 5.20
10 4.30 5.00 4.60 4.20 4.20 4.30 4.30 4.30 4.30 4.30 4.30 4.30 4.30 4.30

Table 5-10: 10 realizations of predictions made per discrete time-instance κ for the process in
machine 4.

10.90. It can already be observed at discrete time-instant κ = 5 this value becomes closer to
10. Of course this is useful for the scheduler, since it will most likely update when processing
times have largely deviating values from the nominal processing times.

The above predictions are used in various ways for the upcoming schedulers. Since there
will be 2 schedulers discussed with updating processing times, it will be shortly explained
how the same kind of method is used in the updated schedulers. For the cyclic update be-
haviour per cycle k, the time-updates per discrete time-counter κ are not available. Therefore
per cycle, the values in the column for "Ultimate pi" for i = 1, .., 4 are used in the tables.
For the time-updated scheduler, the values are used from κ = 0 up till the ceiled value of the
ultimate processing times. In other words, when for example in machine 1 the processing time
is p1 = 6.60 the values are used up till κ = 7 since at κ = 7, all data became available such
that the most accurate prediction is made, i.e. the estimation. Note that all the prediction
are now done perfectly timed in an integer range where time-step κ is done per time-unit, but
in the real system this is not necessarily the case. For instance, when taking route/mode 1
through machines 1 and 3. If machine 1 takes as an example p1 = 6.60 to finish the process,
the process in machine 3 starts at κ = 6.60. When arriving at the discrete time-counter
κ = 7, the prediction became an estimation for the process in machine 1, but for the process
in machine 3, a prediction can be made with the measurements up till κ = 7. Since the
process started at κ = 6.60, over the time passed δκ = 0.4 measurements are obtained and a
prediction can be made.
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5-3 Scheduler

In the sections above, the simulations, estimations and predictions are made for the system.
In this part of the report, the results for the scheduler are shown. The section is divided
into 3 subsections. The statical scheduler, in which the initial optimization is discussed.
The dynamical scheduler with respect to the cycle/job k, where the schedule is updated per
cycle/job k. And at last the dynamical scheduler with respect to the discrete time-counter κ,
in which the scheduler is optimized every time step.

5-3-1 Statical case

In the statical case, the scheduler is optimized with respect to all the initial values. First
the scheduler is considered in which only routing takes place. Afterwards the scheduler is
obtained in which routing and ordering take place to observe possible differences. The stat-
ical scheduler is also obtained for the comparison with the cases discussed below, though
then with the implemented adjusted times of the subsystems. The input u(k) for all the
schedulers in this thesis, also the dynamical ones, is taken as 0 for all k. In the cost function
therefore from 4-12, it can be left out. The first reason to leave out the input, is to make
sure differences in the schedule are not related to a too late incoming input batch, when the
input is given beforehand. The second reason, is that if the input is made as a variable as
well, the algorithm becomes computationally too complicated, where as a results, the opti-
mizations take too long. The input is then considered as a non-binary variable namely. As a
third reason, in a realistic way, input time-instances are not very likely to be chosen or tuned
precisely, more to be filled in according to deliveries of other parties which in general can not
be chosen exactly beforehand. In other words, one chooses a delivery of specific resource, but
the delivery can only be chosen to a specific time-span, such that it is not freely tunable.

In the routing case, the cycles need to be scheduled after one another for all jobs. This
means the jobs in machine 5, since they all need to undergo machine 5, will be processed in
consecutive order in which they started at the beginning of the process. Note that the mod-
elling of this kind of schedulers is not preferable, since if job 1 has a very significant delay, all
jobs need to wait for job 1 to come to machine 5. The schedule is shown in figure 5-15. As
can be observed nicely, all the jobs start as soon as the previous process in the specific job
is finised. In other words, all the individual jobs, each coloured block, starts in the distinct
machine precisely after the same coloured block in another machine is done. It can also be
observed that the machines 1 and 2 are constantly working. The modes/routes and endtimes
of each of the jobs is summarized in table 5-11. The sum of the end-times, i.e. the value of
the cost function, is equal to FVAL = 202.

Cycle/job 1 2 3 4 5 6 7 8
Modes/routes 2 3 1 4 1 4 1 4

Endtime 13.00 15.00 21.00 22.00 28.00 30.00 35.00 38.00

Table 5-11: Table of the routes chosen per job and the endtime per job for the statical scheduler
when only routing is allowed.

Master of Science Thesis A.J.M. van Heusden



70 Case study - Results

Figure 5-15: GANTT chart for the scheduler when only routing of the jobs is considered. On
the y-axis the bottom level machine M1 to the top level machine M5.

For the next figure, the statical scheduler is shown with ordering involved. Essentially order-
ing in a statical way will not influence the outcome that much, since the routing already took
care of the minimal outcome of the jobs after one another and therefore still needs to assign
the jobs to a specific cycle. In other words, it could assign job 3 to go route 3, and job 4 to
go route 4, but also job 3 to go route 4 and job 4 to go route 3, such that ordering already
occurs a little bit in the routing scheduler. The only thing the ordering process could add, is
that job 3 is chosen to have route 3, job 4 chosen to have route 4, but the process in machine
5 in job 4 goes before the process in machine 5 of jobs 3. The results for the GANTT-chart
of the statical scheduler with the ordering in machine 5 involved is shown in figure 5-16. The
modes and endtimes for the case of the statical scheduler with ordering involved are shown
in table 5-12. It can be observed ordering takes place in a lot of jobs since the endtimes of

Cycle/job 1 2 3 4 5 6 7 8
Modes/routes 3 3 2 3 2 2 3 2

Endtime 15.00 23.00 13.00 31.00 20.00 27.00 39.00 34.00

Table 5-12: Table of the routes chosen per job and the endtime per job for the statical scheduler
when routing and ordering is allowed.

jobs in future cycles are before the endtimes of jobs in previous cycles, this could never be
the case in the routing example. The sum of the endtimes however is equal to

∑
end = 202

and exactly the same as the routing case. This is reasonable, since the routing process can
order its processes at the beginning of the optimizations since the routes are not yet assigned
to each of the jobs. Though, note that this also means not a unique solution exists to the
most optimal initial schedule.

The optimality or benefits from the statical scheduler can be discussed by assigning ran-
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Figure 5-16: GANTT chart for the scheduler routing and ordering of the jobs is considered. On
the y-axis the bottom level machine M1 to the top level machine 5 M5.

dom modes to the statical scheduler, and let it simulate itself with the constraints discussed
in the methods section. The results of a montecarlo-simulation with n = 100 for the value of
the cost-function are shown in figure 5-17. As can be observed the results are much higher

Figure 5-17: Monte-carlosimulation for n=100 of random modes assigned to the optimization
algorithm.

than the sum of the optimized schedule, no matter the routing or ordering case, where the sum
of the endtimes was equal to

∑
end = 202. To mathematically substantiate this conclusion,

the mean and standard deviation of the randomly assigned route variables are calculated of
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figure 5-17. These are equal to µ(
∑total
end ) = 249.71 and σ(

∑total
end ) = 28.5. Of course we can

repeat the process for a larger number of simulations, but as we will see, this gives the same
results of a large difference from the optimal value of the schedule

∑
end = 202. For the next

paragraphs, the statical scheduler is taken as a comparison for the dynamical cases to observe
the improvements and benefits.

5-3-2 Dynamical case - Event-based update k

The dynamical case with respect to the cycle k will update the schedule by receiving new infor-
mation every cycle it increases. The cases discussed are of disruption, certain cycle-instances
where the process time of one of the processes increases dramatically, and disturbances, the
process times are updated by the adjusted process time due to the uncertainties of noise as
is discussed in the chapter about the subsystems. For better conclusions to make, the distur-
bance cases are subdivided into 3 approaches. In the first approach, only machine 1 and 2 are
subjected to deviating processing times. In the second approach, only machine 3 and 4 are
subjected to deviating processing times. At last, all machines except machine 5 are subjected
to deviating processing times.

Disruptions

In this case, a certain mode is chosen, whereafter it happens that in this specific route, one
of the machines encounters problems where the process time increases dramatically. The
point of this case, is to show how the scheduler can adapt to certain drastical changes in the
process time. For the first scenario, machine 4 is chosen to have process times p4(k) = 35 for
k = 1, 2. The scheduler receives this new information, when the route is already chosen for
this mode. In other words, if p4(k) = 35 for k = 1 the scheduler receives this information at
cycle-instant k = 2. In figure 5-18 the GANTT-chart is shown for the optimal schedule where
the optimization is done at cycle-instant k = 1. Now if we go one step further in the process,
at k = 2, the scheduler gets information about the process time in machine 4 being p4(1) = 35
for cycle k = 1. Of course, the scheduler changes the routes of the upcoming jobs to not go
through machine 4 anymore, since the starting time has to be larger than the endtime of
the job 1 in machine 4, which has a process time of 35. For that reason the process time of
p4(2) = 35 is not encountered in the model since the second job, job 2, will not be routed on
a route through machine 4. As can be observed brilliantly in figure 5-19 the schedule adapts
to the sake of the process time of machine 54 being p4(1) = 35. If you look at job 1, clearly
it has a much larger stroke in the machine 4 in figure 5-19. The result is that the total jobs
taking place in machine 4 decreased from 5 to 2, and the total jobs take place in machine
3 increased from 3 to 6. Furthermore if we look at the starting time of job 1 in machine 5,
we see in figure 5-18 there are no jobs before job 1, while in figure 5-19 we can observe 5
jobs in front of job 1 in machine 5, where it can be concluded the adaptive behaviour of the
scheduler does function, also with respect to the ordering. To compare the results in terms
of the cost function, the sum of the end-times is calculated, for the adjusted case with the
updated process times, and the case where the schedule is following the initial routing and
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Figure 5-18: GANTT-chart of the initial schedule, where the scheduler does not yet know
p4(1) = 35. The initial schedule is based on the optimization when the scheduler is in cycle
k = 1.

Figure 5-19: GANTT-chart of the updated schedule at cycle-instant k = 2 with updated infor-
mation of process time p4(1) = 35

ordering with the updated process times:

Situation 1 for initial schedule with updated process times
∑Np

j=0 y(k + j) = 372

Situation 2 for updated schedule with updated process times
∑Np

j=0 y(k + j) = 230
(5-5)

In the results above it is nicely observed how the schedule can adapt with the benefit of the
model becoming less late when minimizing over the cost function, i.e. all jobs need to be
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finished as soon as possible.

To conclude this paragraph, one more example is shown to observe one of the disadvan-
tages of the approach of updating the scheduler with respect to cycle k. In figure 5-20, the
initial schedule is shown again. Now, we apply a drastical change in process time of p1(k) = 35
for cycle k = 6. Of course the schedule wants to update and avoid loss of time due to the
drastically changed process time of machine 1. However, the information about this drasti-

Figure 5-20: GANTT chart of the initial schedule where it is not yet known p4(10) = 35.

Figure 5-21: GANTT chart of the addaptive schedule where p4(10) = 35 is known.

cally changed process time, comes in after the nominal endtime of the original process. When
looking at job 6 the green block in machine 1 in figure 5-20, the nominal endtime(the end
of the green block in machine 1) is at κ = 28. At κ = 28 we know that the process takes a
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lot longer, such that we can adapt the schedule. If we now look at job 7 the purple block in
5-20, it starts at κ = 25 in machine 2, thus it is already started before job 6 the green block
in machine 1 is nominally finished. If we now look at the updated schedule in 5-21, we can
observe the starting time of job 7 the purple block in machine 2, has been shifted to the left
where it starts at κ = 24. This is however never realistically possible, since it has already
been started at κ = 25 before the nominal endtime of job 6 in machine 1 at κ = 33. The
schedule has updated itself in the past. For that reason, cyclic updated behaviour is often not
realistic, due to processes within the cycle have been already started with respect to time,
and are therefore fixed. This conclusion opens way for the time-updated schedule, in which
processes in each cycle are fixed with respect to time, instead of all processes are fixed with
respect to the cycle they are in.

Disturbances - Machine M1 and M2

This is the first approach when having disturbances into the system. In the next cases, In
figures 5-22 and 5-23 the results are shown. In figure 5-22 the results are shown for the initial
scheduler with fixed order and routing but with updated processing times. This looks rather
weird, for instance, when looking at the empty space in machine 5 for job 6, the green block,
when noting that this job has already finished in machine 4. This is the reason why the
updated scheduler can have a beneficial effect. It can be observed clearly, job 7, the job in

Figure 5-22: GANTT chart of the initial schedule with fixed routing and ordering but updated
process times.

light blue, is having a tough time in machine 2. The bar in machine 2 is much longer than
the other bars. However, in figure 5-22 it can be observed that the green block, job 6, is
initially ordered after the light blue block, job 7, in machine 5. Therefore it has to wait for
job 7 to be finished in machine 5. Furthermore, job 8, the purple block, is scheduled after
job 7 in machine 2 as can be also observed in 5-22, while it could already start in machine 1.
The ordering between job 6 and 7 in machine 5, as well as the routing of job 8 to machine
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Figure 5-23: Final schedule for the first approach with respect to the cyclic updated scheduler
in which only machine 1 and 2 have deviating proccessing times.

1 instead of machine 2, can be observed in the updated schedule. The updates of the modes
can be observed in table 5-13. Furthermore, the realization of the ultimate process times per
cycle/job k are given in table 5-14. In the beginning of this chapter, it is briefly discussed

`(1) `(2) `(3) `(4) `(5) `(6) `(7) `(8)
Routes at initial schedule k = 1 2 3 4 1 2 2 3 4

Routes at updated schedule k = 8 2 3 2 3 2 2 3 2

Table 5-13: Initial routes chosen by the scheduler versus the final routes chosen by the scheduler.

p1(k) p2(k)
6.20 8.00
7.00 7.90
7.90 8.00
7.00 7.40
7.90 8.00
6.40 8.00
7.00 13.80
7.00 8.00

Table 5-14: Updated process times for the processes of machine 1 and 2.

how the scheduler should be compared. Now, the comparison is a lot more elaborated by
the sake of some tables. In table 5-15 the differences between the updated process times
and nominal process times are given. The updated processing times are only given for the
routes the updated scheduler has been through, because it only starts a realization when the
job/cycle is started in a specific machine and the scheduler is already passed it in its cyclic
update. The numbers in bold given in table 5-15 are the ones the machines go through with
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p1(k)− p1 p2(k)− p2
-0.80 0
0 -0.10

0.90 0
0 -0.60

0.90 0
-0.60 0
0 5.80
0 0∑

+0.40 +5.10

Table 5-15: Differences between the updated ultimate process times with respect to the nominal
process times. The routes taken by the final scheduler in bold.

the routing of the final schedule. Note that machines 3 and 4 are not obtained in this table
since they do not deviate in process times in the first approach. Also, the last machine does
not have an update, since at k = 8 the schedule is already fixed and it would not have a better
outcome to the adaptive behaviour of the scheduler when also updating with respect to k = 9
since the schedule is already fixed at k = 8. Now we want to compare the results above with
the routes taken by the initial schedule such that we can quantify what gains/losses the final
scheduled got with the updated schedule with respect to the process times. In table 5-16 the
numbers in bold are the routes taken by the initial scheduler. Note that the routes which are
taken by the initial schedule but not by the updated schedule, are given with the nominal
process times. Comparing the gains losses of the final schedule with the initial schedule now

p1(k)− p1 p2(k)− p2
-0.80 0
0 -0.10

0.90 0
0 -0.60

0.90 0
-0.60 0
0 5.80
0 0∑

-0.50 +5.70

Table 5-16: Differences between the updated ultimate process times with respect to the nominal
process times. The routes taken by the initial scheduler in bold.

is just simply adding up the sums of the deviations of processing times with respect to the
nominal processing times. For the initial schedule this is

∑
total = −0.50 + 5.70 = +5.20 and

for the final schedule this is
∑
total = +0.40 + 5.10 = +5.50. It can now be concluded that

only due to the process times, the final scheduler will take
∑
dif = +5.50 − 5.20 = +0.30

longer. If we now look at the value of the cost function, the sum of the endtimes of all jobs,
the final schedule even with longer sums of process times, does descrease the sum of endtimes
of all jobs, as can be shown in table 5-17.
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FVAL
∑
dif FVALnew

Initial schedule 206.90 +0.30 207.20
Updated schedule 201.50 +0.30 201.50

Table 5-17: Value of the cost function, the sum of endtimes of all jobs, for the initial schedule
and the final schedule.

FVAL
∑
dif FVALnew

Initial schedule(1) 206.40 +2.90 209.30
Updated schedule(1) 203.80 +2.90 203.80
Initial schedule(2) 189.60 -1.50 188.10

Updated schedule(2) 187.80 -1.50 187.80
Initial schedule(3) 199.70 +0.80 200.50

Updated schedule(3) 197.00 +0.80 197.00
Initial schedule(4) 195.30 +1.70 197.00

Updated schedule(4) 194.30 +1.70 194.30
Initial schedule(5) 188.60 -0.40 188.20

Updated schedule(5) 188.30 -0.40 188.30
Initial schedule(6) 192.30 -3.00 189.30

Updated schedule(6) 184.10 -3.09 184.10

Table 5-18: 6 realizations of the updated scheduler with machine 1 and 2 deviating and the cost
function for the initial schedule versus the final schedule shown.

By repeating the steps for 6 realizations, we can observe what is the trend or effect from
the updated scheduler. The results are shown in table 5-18. What we carefully observe, is
that the updated schedule has a beneficial effect for the cyclic updated scheduler when only
machines 1 and 2 are obtained to deviating processing times, but just for only a few time-
units. However, in realization 5, it can be observed the initial schedule has a better outcome
than the final schedule. The most suitable explanation, is that it could occur when a system
switches to another route for a specific job, afterwards the realization is made and turned
out to be better for the non-updated schedule. The updated schedule can not switch back
anymore, and therefore has a higher cost.

Disturbances - Machine M3 and M4

To continue the cyclic updated behaviour, the second approach is discussed, where only ma-
chines 3 and 4 are subjected to deviating processing times. The approach for the analysis
of this approach is quite the same as for the first approach where machines 1 and 2 have
deviating processing times.

In figure 5-24 and 5-25 the results are shown for the initial scheduler with updated process
time, and the updated schedule with updates per cycle k. It can be observed, the scheduler
updated with respect to its routes for each of the jobs. It seems the scheduler rescheduled
when observing job 2, the gray block is taking a little bit longer than expected in machine 3.
This is caused due to the fact in figure 5-24 the orange block, job 4, after the gray block, job
2, in machine 3 will cause the orange block in machine 5 to be delayed. If the orange block
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in machine 5 is delayed, it can be observed in figure 5-24 the red block, job 3, need to wait
in machine 5 while it is already finished in machine 4, this means timeloss. It is solved by
replacing job 4, the orange block in machine 3 by job 3 the red block as can be observed in
5-25. To do this, job 5, the yellow block, is rescheduled in front of job 3, the red block, in
machine 4 as can be concluded when comparing 5-24 and 5-25. Note that the yellow block,
job 5, can be seen as shifting itself in front of the red and orange block, respectively job 3 and
4, when comparing the figures. However, one could ask themselves, why not make the yellow
block in figure 5-25 the orange block, since the update is made at k = 2 as can be observed
since job 3, the red block is changed from its route. This is only possible when the job is not
yet passed, i.e. the mode changed at k = 2. This is simply explained that for the optimization
it does not matter at a specific cycle-instant k since the value of the cost function will be
the same. Though, it is preferable to have the jobs in a chronological order, since they are
updated in consecutive order. This is something to look at in further research. To compare

Figure 5-24: GANTT chart of the initial schedule with fixed routing and ordering but updated
process times.

`(1) `(2) `(3) `(4) `(5) `(6) `(7) `(8)
Routes at initial schedule k = 1 2 3 4 1 2 2 3 4

Routes at updated schedule k = 8 2 3 3 3 2 2 2 4

Table 5-19: Initial routes chosen by the scheduler versus the final routes chosen by the scheduler.

the results, the same procedure is done as in the approach previously described for deviating
process times with respect to machine 1 and 2. The mode changes are given in table 5-19.
In tables 5-20 and 5-21 the values for the updated process times and the differences of the
updated process times with the nominal process times are given. To compare one another,
we make the same approach as previously done for the previous approach. If we repeat the
same procedure we can come up with

∑
total = −0.50 − 1.80 = −2.30 for the final scheduler

compared with
∑
total = +0.80 − 1.10 = −0.30 for the initial schedule such that only due to

the process times
∑
dif = −2.30− (−0.30) = −2.00 the final schedule is already 2 time-units
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Figure 5-25: Final schedule for the second approach with respect to the cyclic updated scheduler
in which only machine 3 and 4 have deviating processing times.

p3(k) p4(k)
6.00 5.30
7.10 5.00
4.70 5.00
5.70 5.00
6.00 4.40
6.00 4.20
6.00 4.30
6.00 5.00

Table 5-20: Updated process times for the processes of machine 3 and 4.

p3(k)− p3 p4(k)− p4
0 0.30

1.10 0
-1.30 0
-0.30 0
0 -0.60
0 -0.80
0 -0.70
0 0∑

-0.50 -1.80

Table 5-21: Differences between the updated ultimate process times with respect to the nominal
process times. The routes taken by the final scheduler in bold.

faster. Summarizing the results in table 5-23. We can now retrieve that the updated sched-
ule with respect to the initial schedule gaines 2 time-units when looking at the sum of the
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p3(k)− p3 p4(k)− p4
0 0.30

1.10 0
-1.30 0
-0.30 0
0 -0.60
0 -0.80
0 -0.70
0 0∑

+0.80 -1.10

Table 5-22: Differences between the updated ultimate process times with respect to the nominal
process times. The routes taken by the initial schedule in bold.

FVAL
∑
dif FVALnew

Initial schedule 194.50 -2.00 192.50
Updated schedule 190.80 -2.00 190.80

Table 5-23: Value of the cost function, the sum of endtimes of all jobs, for the initial schedule
and the final schedule.

end-times of all jobs when only deviating the process times of machine 3 and 4. If we repeat
this procedure for 6 realizations we get the values presented in table 5-24. When looking at

FVAL
∑
dif FVALnew

Initial schedule(1) 197.00 +2.10 199.10
Updated schedule(1) 195.40 +2.10 195.40
Initial schedule(2) 197.10 +0.80 197.90

Updated schedule(2) 195.60 +0.80 195.60
Initial schedule(3) 211.70 +1.60 213.30

Updated schedule(3) 202.10 +1.60 202.10
Initial schedule(4) 194.50 -1.10 194.50

Updated schedule(4) 192.70 -1.10 192.70
Initial schedule(5) 197.10 +1.00 198.10

Updated schedule(5) 195.50 +1.00 195.50
Initial schedule(6) 194.30 -0.70 193.60

Updated schedule(6) 193.20 -0.70 193.20

Table 5-24: 6 realizations of the updated scheduler with machine 3 and 4 deviating and the cost
function for the initial schedule versus the final schedule shown.

the results, it can be observed that some of the cases are well improved with the updated
schedules. For the sharp eye, it looks a little bit like the major improvements, can be found in
the realizations where FVAL is high. This can be explained by the fact, if FVAL is high, a lot
of processing times are delayed. By looking at

∑
dif being not so great, it can be concluded

the initial schedule takes the same machines as the final schedule where the process times
are much delayed. Ultimately, the adaptive scheduler adapts to this large process times by
reordering in machine 5, while the initial schedule need to follow its fixed order. This is a
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possible explanation for the improvements of FVAL when having a high FVAL to begin with,
and not a too high or low

∑
dif .

Disturbances - All machines

For the last approach, all machines are having deviating process times except for machine 5.
Machine 1 and 2 for the mashing processes, machine 3 and 4, for the brewing processes. One
realization is illustrated whereafter again 6 realizations are compared with the cost function.
In figures 5-26 and 5-27 the GANTT-charts are given for the initial schedule with updated
process time but fixed routing and order, and the final schedule with updated process time.
Note that the horizontal axis in both figures has a different scale, where it looks like the
end-times of the processes from the final schedule arrive later in machine 5 than the processes
in the initial schedule where this is not the case. Also the blocks might seem longer than one
another, while they have the same duration but in a different scale. As can be observed

Figure 5-26: GANTT chart of the initial schedule with fixed routing and ordering but updated
process times.

brilliantly the red block in figure 5-26 is losing a lot of time when looking at the end times
in machine 4 and the starting time in machine 5. Since it is the initial ordering, it needs to
stay behind the orange block, block 4. The updated behaviour of the routes is summarized
in table 5-25 and also observed in figure 5-27. As can be seen the red block is ordered in
front of the orange block. Note that the update for the red block is before the update of the
orange block, the red block namely is job k = 3 where the orange block is job k = 4, such
that at the update of job/cycle k = 3, the system did not yet know the orange block was
going to take such a long time. To conclude, the red block is not shifted in front of the orange
block, due to the process times of the orange block. The red block is placed in front however
due to the processing times of the gray and black block in machines 1 and 2, respectively job
1 and 2. Furthermore, when the orange block did experience such long processing times in
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Figure 5-27: Final schedule for the third approach with respect to the cyclic updated scheduler
in which all machines have deviating processing times.

machine 3, the yellow and green block, respectively job 5 and 6, are placed in front of the
orange block due to the adapted behaviour of the scheduler. To continue the same procedure,

`(1) `(2) `(3) `(4) `(5) `(6) `(7) `(8)
Routes at initial schedule k = 1 2 3 4 1 2 2 3 4

Routes at updated schedule k = 8 2 3 3 3 2 2 4 1

Table 5-25: Initial routes chosen by the scheduler versus the final routes chosen by the scheduler.

we will now look at the updated processing times as have been shown in table 5-26. And

p1(k) p2(k) p3(k) p4(k)
8.80 8.00 6.00 4.60
7.00 8.60 5.50 5.00
7.00 6.90 6.50 5.00
7.00 6.20 8.80 5.00
8.80 8.00 6.00 4.50
6.20 8.00 6.00 4.70
7.00 7.10 6.00 5.00
7.00 8.00 6.00 5.00

Table 5-26: Updated process times for the processes of machine 1, 2, 3 and 4.

applying the same method for the sum of the deviation with respect to the nominal process
times. Such that for the final scheduler

∑
total = +2.80− 3.20 + 2.80− 1.20 = +1.20 and for

the initial scheduler
∑
total = +2.80 − 1.40 + 2.30 − 1.20 = +2.50 such that the difference is∑

dif = +1.20− 2.50 = −1.30. The final scheduler by means of the updated process times in
general is therefore 1.30 time-units faster. Repeating the same procedure, the result is shown
in table 5-29. Repeating this step for 6 realizations gives the following table 5-30. As can
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p1(k)− p1 p2(k)− p2 p3(k)− p3 p4(k)− p4
1.80 0 0 -0.40
0 0.60 -0.50 0
0 -1.10 0.50 0
0 -1.80 2.80 0

1.80 0 0 -0.50
-0.80 0 0 -0.30
0 -0.90 0 0
0 0 0 0∑

+2.80 -3.20 +2.80 -1.20

Table 5-27: Differences between the updated ultimate process times with respect to the nomi-
nalprocess times. The routes taken by the final scheduler in bold.

p1(k)− p1 p2(k)− p2 p3(k)− p3 p4(k)− p4
1.80 0 0 -0.40
0 0.60 -0.50 0
0 -1.10 0.50 0
0 -1.80 2.80 0

1.80 0 0 -0.50
-0.80 0 0 -0.30
0 -0.90 0 0
0 0 0 0∑

+2.80 -1.40 +2.30 -1.20

Table 5-28: Differences between the updated ultimate process times with respect to the nomi-
nalprocess times. The routes taken by the initial schedule in bold

FVAL
∑
dif FVALnew

Initial schedule 213.90 -1.30 212.60
Updated schedule 202.60 -1.30 202.60

Table 5-29: Value of the cost function, the sum of endtimes of all jobs, for the initial scheduleand
the final schedule.

be observed. Almost all schedulers have a beneficial effect on the total endtimes of the jobs
when adapting. Some remarkable things can be observed. To begin with the cases where∑
dif = +0.00. This could mean the schedule is exactly the same as the initial schedule but

has a different order in machine 5 due to the changing processing times. It could also be a
coincidence when the machine have taking other processes who eventually deviate, but where
the sum of the deviations equals 0. The case where

∑
dif = +7.90, it can be nicely observed

that even when the routes chosen have a total difference of +7.90 in total processing times
compared with the initial schedule, the final schedule still remains close to the initial schedule
when comparing the FVAL 231.80 and 233.60. The overal outcome can be observed as that
the scheduler which updates when all machines have deviating processing times, will have a
beneficial effect on the sum of endtimes of all jobs. A montecarlo simulation can be done
to substantiate this for a very large number of simulations. The results are shown in table
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FVAL
∑
dif FVALnew

Initial schedule(1) 218.40 -2.00 216.40
Updated schedule(1) 206.40 -2.00 206.40
Initial schedule(2) 201.90 +2.40 204.30

Updated schedule(2) 204.80 +2.40 204.80
Initial schedule(3) 188.90 +0.00 188.90

Updated schedule(3) 185.50 +0.00 185.50
Initial schedule(4) 206.10 -1.10 205.00

Updated schedule(4) 200.60 -1.10 200.60
Initial schedule(5) 231.80 +7.90 239.70

Updated schedule(5) 233.60 +7.90 233.60
Initial schedule(6) 220.90 +1.30 222.20

Updated schedule(6) 212.00 +1.30 212.00

Table 5-30: 6 realizations of the updated scheduler with all machines deviating and the cost
function for the initial schedule versus the final schedule shown.

5-31. In the table, the averages of respecectively the value of the cost for the final schedule,

FVALnew − FinalScheduler FVALnew − Initialscheduler
∑
dif Decrease in cost(%)

199.97 203.00 +0.71 -1.21%

Table 5-31: Montecarlo simulation of the cycle-based updated scheduler with n = 100 with
average value of the final scheduler its cost, average value of the initial scheduler its cost, average∑

dif and average decrease in total endtime with respect to the initial schedule in %.

the value of the cost for the initial schedule, the
∑
dif and the decrease in % with respect to

the initial schedule its cost. To conclude, from the montecarlo simulation a decrease can be
observed. However, the decrease is marginal.
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5-3-3 Dynamical case - Discrete time-based update κ

As was concluded in the previous paragraph. The cyclic updated scheduler does not always
work realistically. This is caused by the cylic updated behaviour where per cycle the sched-
uler is updated, while time could already be passed future cycle processes. To solve this, a
time-based updated scheduler is obtained. In the following paragraphs first the time based
scheduler is subjected to disruptions. Afterwards, the timed-based scheduler is subjected to
the disturbances of the processes where the same cases are obtained as in the cyclic-updated
scheduler analysis. First machine 1 and 2 are subjected to disturbances, afterwards machine 3
and 4, and ultimately all machines with exception of machine 5 are subjected to disturbances.

Disruptions

The main difference for the disrupted case in the time-updated scheduler, is that the mode
is not fixed when time increases. Only processes are fixed when the time passed the starting
time. This means for instance when mode `(k) = 1 is chosen, and the time passed the starting
time for process 1, but not for process 3, the system can still change its route from `(k) = 1
to `(k) = 2. This can be observed brilliantly with the next case, where a disruption takes
place at machine 1 and 2 as p1(k) = 35 and p2(k) = 35 for k = 1. In figures 5-28 and 5-29,
the 2 cases where the initial schedule with initial order and routes is used with the updated
processing times, and the second case where the updated order and routes are obtained.

Figure 5-28: Initial schedule with fixed order and routes but updated process time p1(k = 1) =
35.

Some interesting things can be observed in the figures. First of all, note that the at time
instant κ = 1. already some processes are fixed, but not necessarily modes. In other words, if
we look at both figures, job 1 and job 2, are already fixed for machine 1 and machine 2 since
the starting time is at κ = 0 which is less than κ = 1. However, when looking at the black
block of job 1, it can be observed that in figure 5-28 it follows mode/route 2, where in figure
5-29, it follows mode/route 1. This if of course caused by the sake that machine 4 has a lower
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Figure 5-29: Updated schedule with process time p1(k = 1) = 35.

processing time, than machine 3, i.e. p3(k) = 6 and p4(k) = 5. By changing from mode 2 to
mode 1 for job 1, it allows the other jobs to go through machine 4 instead of machine 3. Note
that this is exactly what is not possible in the cycle-based updated scheduler since the mode
would be fixed such that job 1 processed in machine 4 is also fixed.

Another interesting observation, is of course the total amount of jobs which go through
machine 1, and the total amount of jobs which go through machine 2. This is decreased from
the initial schedule with respect to the final schedule, with a amount of 4 to 2 in machine 1.
The amount of jobs in machine 2 increased from 4 to 6. This is of course logical, since the
process time of job 1 increased drastically. The mode changes are summarized in table 5-32.
In the table it can be better observed, the mode/route for job 1, `(1) changes from 2 to 1,

`(1) `(2) `(3) `(4) `(5) `(6) `(7) `(8)
Routes at initial schedule κ = 0 2 3 1 1 1 4 4 4

Routes at updated schedule κ = κfinal 1 4 4 4 4 4 1 4

Table 5-32: Modes changes of the initial schedule with respect to the final schedule.

while the time is already passed the starting time from the mode/route. In the cyclic update
case, this would not be possible. The mode would be fixed because the update is regarding
to the cycle k. The update value of the sum of the endtimes, the cost function, decreased
drastically if the intial schedule and order with updated process times, is compared with the
updated schedule and order with updated process times. The values of the sum of the end
times are

∑
end = 414 and

∑
end = 287 for respectively the initial schedule and the final

schedule. It can be concluced therefore, that the update with respect to certain disruption is
very beneficial, but this is of course logical since at the initial schedule all jobs are ordered
behind job 1, such that if job 1 has a very large delay all jobs need to wait for job 1 instead
of reorder. This could also be observed in the cyclic-updated scheduler.
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Disturbances - Machine M1 and M2

For the second approach only machine 1 and 2 deviate in processing times. One example
of a realization is given, in which several characteristic behaviours of the adapted scheduler
are outlined. To do this, a lot of tables are shown for the sake of understanding what is
happening inside the scheduler. One could imagine, when the last job is finished at time-
instant κ = 50 and taking a time-step of κ = 1, 49 time steps are obtained with all updates
of process times and modes. It is rather hard to show this whole process, since the report
would become massive and cluttered. Still it is very worthy to look at some of the values in
the tables. Afterwards, several other realizations are obtained, such that the overal behaviour
of the updated scheduler can be judged.

First of all in tables 5-33 and 5-34 it can be brilliantly observed what the predictions

κ = 0 κ = 1 κ = 2 κ = 3 κ = 4 κ = 5 κ = 6 κ = 7 κ = 8 κ = 9 κ = 10 κ = 11 κ = 12 κ = 13
p1(k = 1) 7.00 7.60 6.90 6.50 6.70 6.70 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.60
p1(k = 2) 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
p1(k = 3) 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
p1(k = 4) 7.00 7.00 7.00 7.00 7.00 7.00 7.00 6.70 6.60 6.80 6.60 6.50 6.30 6.20
p1(k = 5) 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.10
p1(k = 6) 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
p1(k = 7) 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
p1(k = 8) 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00

Table 5-33: Updated process times for machine 1 per discrete time-instant κ when only machine
1 and 2 have deviating processing times.

κ = 0 κ = 1 κ = 2 κ = 3 κ = 4 κ = 5 κ = 6 κ = 7 κ = 8 κ = 9 κ = 10 κ = 11 κ = 12 κ = 13
p2(k = 1) 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
p2(k = 2) 8.00 8.00 8.40 8.50 8.90 8.70 9.30 9.60 9.50 9.60 9.50 9.50 9.50 9.50
p2(k = 3) 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.30 8.80 9.10 9.90
p2(k = 4) 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
p2(k = 5) 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
p2(k = 6) 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
p2(k = 7) 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
p2(k = 8) 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00

Table 5-34: Updated process times for machine 2 per discrete time-instant κ when only machine
1 and 2 have deviating processing times.

are doing. The numbers in bold are active machines where the predictions can be considered
"online" per discrete time-step κ. When a specific job has not yet been started at discrete
time-instant κ, the estimated end-time is of course equal to the nominal end-time which for
machine 1 is equal to p1 = 7 and for machine 2 equal to p2 = 8. This can be noticed when
looking at column κ = 1 in both tables where only job k = 1 and k = 2 are started and
therefore the expected end-time for other jobs if the routes choose to go through machine
1 or 2, are equal to p1 = 7 and p2 = 8. If we now take for instance job 1, which is taking
route 2(through machine 1) as can be observed in table 5-35, we can see the prediction of the
end-time is getting more accurate when time increases, these are the numbers in bold of row
1 in table 5-33. When the discrete time-instant κ = 7, we can observe in the specific column
of κ = 7, process 1 for job 1 is finished after p1(k = 1) = 6.60 and job 4 starts in machine 1
as can be observed by the sequence of bold numbers in the column of κ = 7 in 5-33. After
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discrete time-instant κ = 7, process 1 in machine 1 for job 1 is finished, and therefore the
end-time of process 1 of job 1 in machine 1 is fixed and therefore equal to p1(1) = 6.60 for
all future discrete time-instants κ = 7, ..., κfinal. Note that κ = 13 is not the final discrete
time-step for the whole simulation, but is taken as a final discrete time-step for the table to
substantiate and explain specific behavioural aspects of the dynamical scheduler. If we now

`(k = 1) `(k = 2) `(k = 3) `(k = 4) `(k = 5) `(k = 6) `(k = 7) `(k = 8)
κ = 0 2 3 1 1 1 4 4 4
κ = 1 2 3 2 2 3 3 2 3
κ = 2 2 3 2 3 2 3 2 4
κ = 3 2 3 3 2 2 3 2 4
κ = 4 2 3 3 2 2 3 2 4
κ = 5 2 3 3 2 2 3 2 4
κ = 6 2 3 3 2 2 3 2 4
κ = 7 2 3 3 2 2 3 2 4
κ = 8 2 3 3 2 2 3 2 4
κ = 9 2 3 3 2 2 3 2 4
κ = 10 2 3 3 2 2 4 1 4
κ = 11 2 3 3 2 2 4 1 2
κ = 12 2 3 3 2 2 4 1 2
κ = 13 2 3 3 2 2 3 2 2

...
...

...
κ = κfinal 2 3 3 2 2 4 1 2

Table 5-35: Updated modes/routes for all jobs k, .., k + Np per discrete time-instant κ when
machines 1 and 2 have deviating processing times.

look at the updated modes per discrete time-instant κ in table 5-35, we can observe something
remarkable. If you look closer to the modes chosen per discrete time-step κ, you can observe
the modes chosen are always equally assigned to machine 1 and machine 2, such that for 8
jobs, 4 jobs will go through machine 1 and 4 jobs will go through machine 2. For instance at
κ = 0, route 1 is chosen 3 times, route 2 is chosen once, route 3 is chosen once and route 4 is
chosen 3 times. Since routes 1 and 2 go through machine 1, and routes 3 and 4 go through
machine 2, an easy calculation of the sums gives that 4 routes go through machine 1 and 4
jobs go through machine 2. This is logical if you make a simple calculation of the end-times of
the processes in respectively machine 1 and 2, when taking the nominal process times p1 = 7
and p2 = 8. If they follow each other directly namely, the endtimes in machine 1 will equal
7, 14, 21, 28 and in machine 2 will equal 8, 16, 24, 32. Now if we sum up these endtimes and
compare these results with 5 jobs going through either machine 1 or 2, and 3 through either
machine 1 or 2, we get:

Case 1 = (7 + 14 + 21 + 28) + (8 + 16 + 24 + 32) = 150

Case 2 = (7 + 14 + 21) + (8 + 16 + 24 + 32 + 40) = 162

Case 3 = (7 + 14 + 21 + 28 + 35) + (8 + 16 + 24) = 153

(5-6)

Where it follows directly, with nominal process times, case 1 must be chosen. However if we
go back to table 5-35, and observe the rows for discrete-time instants κ = 10 and κ = 11, we
can see that the total amount of jobs going through machine 1 and machine 2 for κ = 10 is
respectively 4 and 4, while the total amount of jobs going through machine 1 and machine 2
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for κ = 11 is respectively 5 and 3. This is caused by the last job which switches from route
4 to route 2. This can be substantiated when looking at the predicted or passed process
times from tables 5-33 and 5-34. If we make the same calculation as in 5-6 namely with
updated/predicted process times for machine 1 and 2 up till discrete time-instant κ = 11 and
take nominal process times for the processes in machine 1 and 2 which start in future discrete
time-instances, we get:

Case 1 = (6.60 + (6.60 + 6.50) + (6.60 + 6.50 + 7) + (6.60 + 6.50 + 7 + 7))︸ ︷︷ ︸
4 jobs through machine 1

+ (9.50 + (9.50 + 8.80) + (9.50 + 8.80 + 8) + (9.50 + 8.80 + 8 + 8)︸ ︷︷ ︸
4 jobs through machine 2

= 155.30

Case 2 = (6.60 + (6.60 + 6.50) + (6.60 + 6.50 + 7)
+(6.60 + 6.50 + 7 + 7) + (6.60 + 6.50 + 7 + 7 + 7))︸ ︷︷ ︸

5 jobs through machine 1

+ (9.50 + (9.50 + 8.80) + (9.50 + 8.80 + 8))︸ ︷︷ ︸
3 jobs through machine 2

= 155.10

(5-7)

What can be observed is that the case 1 where we take 4 jobs through machine 1 and 4 jobs
through machine 2 has a higher sum of endtimes than when taking 5 jobs through machine 1
and 3 jobs through machine 2. This is the reason why the scheduler at the particular time-
instant switches the modes. This can be better observed in a GANTT-chart as is shown in
figure 5-30 and 5-31. It can be brilliantly observed that job 8, the purple block, switches from

Figure 5-30: GANTT-chart of the schedule at κ = 10 with the updated processing times up till
κ = 10.

mode 4 to mode 2 by changing the initial process from machine 2 to machine 1. Furthermore,
it can be shown that job 3 and 5, the red and yellow blocks are closer together in machine 5,
due to the fact the prediction of job 3 in machine 2 increased from p1(3) = 8.30 at discrete
time-instant κ = 10 to p1(3) = 8.80 at discrete time-instant κ = 11. This can also be ob-
served when looking at job 6 and 7, the green and lightblue blocks, which are closer together
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Figure 5-31: GANTT-chart of the schedule at κ = 11 with the updated processing times up till
κ = 11.

in machine 5, due to the fact job 6, the green block, needs to wait at job 3, the red block, in
machine 2. The value of the cost function decreased by this decision from FVAL = 199.70 to
FVAL = 198.30.

When we now go a few discrete time-instances further, at κ = 19, the process-time of p2(k = 3)
became even larger, p2(k = 3) = 10. The result is that job 3, the red block, is probably caus-
ing a delay for job 5, the yellow block in machine 5, as can already be concluded in figure 5-31
that they are precisely merged together. In the next GANTT-chart 5-32, it can be observed
the update at κ = 19 the order of the yellow block, job 5, is placed in front of the red block,
job 3. Moreover, the red block is taking so long, the green and lightblue block, respectively
job 6 and 7, not only changed routes, but also the order in machine 5 as can be observed when
comparing 5-31 and 5-32. These given GANTT-charts as well as the tables give a nice insight
in the adaptive behaviour of the scheduler, where it updates every discrete time-instant κ.

Ultimately, the initial schedule with fixed order and routes but updated process times is
compared with the final scheduler with updated order, routes and process times. First the
results for the ultimate process times are given, where after the results are compared via
the active machines. This is done the same as for the approaches in the cycle-updated
cases. The results are shown in tables 5-36, 5-37 and 5-38. Now if we have the same
procedure already done in the previous paragraphs

∑
total = −3.50 + 2.90 = −0.60 and∑

total = −1.80 + 0.90 = −0.90 for respectively the final schedule and the initial schedule
we can obtain

∑
dif = −0.60 − (−0.90) = +0.30. Filling in these values in the cost function

values, the results are shown in 5-39. Where a beneficial value of the cost function is obtained
by updating the schedule every discrete time-instance κ. Now repeating this step for 6 re-
alizations will give the results shown in table 5-40. The results are fine, but still marginal.
A decrease can observed when looking in the FVALnew column. Extending this to a monte-
carlo simulation with n = 100 gives the result that a certain decrease can be observed. It is
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Figure 5-32: GANTT-chart of the schedule at κ = 19 with the updated processing times up till
κ = 19.

p1(k) p2(k)
6.60 8.00
7.00 9.50
7.00 10.00
6.20 8.00
6.40 8.00
7.00 7.40
6.70 8.00
5.60 8.00

Table 5-36: Ultimate updated process times for the processes for 1 and 2 where only machine 1
and 2 are subjected to deviations with respect to the discrete time-counter κ.

p1(k)− p1 p2(k)− p2
k = 1 -0.40 0
k = 2 0 1.50
k = 3 0 2.00
k = 4 -0.80 0
k = 5 -0.60 0
k = 6 0 -0.60
k = 7 -0.30 0
k = 8 -1.40 0∑

-3.50 +2.90

Table 5-37: Differences between the updated ultimate process times with respect to the nominal
process times. In bold the processes taken by the final scheduler.
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p1(k)− p1 p2(k)− p2
k = 1 -0.40 0
k = 2 0 1.50
k = 3 0 2.00
k = 4 -0.80 0
k = 5 -0.60 0
k = 6 0 -0.60
k = 7 -0.30 0
k = 8 -1.40 0∑

-1.80 +0.90

Table 5-38: Differences between the updated ultimate process times with respect to the nominal
process times. In bold the processes taken by the initial scheduler.

FVAL
∑
dif FVALnew

Initial schedule 199.90 +0.30 200.20
Updated schedule 194.20 +0.30 194.20

Table 5-39: Comparison of the shown realization of the sum of the endtimes between the initial
schedule with fixed route and order and updated process times, and the final schedule with updated
schedule.

FVAL
∑

FVALnew
Initial schedule(1) 209.90 -1.10 208.80

Updated schedule(1) 204.50 -1.10 204.50
Initial schedule(2) 198.90 -1.10 197.80

Updated schedule(2) 196.50 -1.10 196.50
Initial schedule(3) 209.10 +0.20 209.30

Updated schedule(3) 203.10 +0.20 203.10
Initial schedule(4) 198.00 -0.40 197.60

Updated schedule(4) 191.20 -0.40 191.20
Initial schedule(5) 203.10 +0.00 203.10

Updated schedule(5) 199.90 +0.00 199.90
Initial schedule(6) 196.90 -1.00 195.90

Updated schedule(6) 191.40 -1.00 191.40

Table 5-40: Comparison of 6 realizations of the sum of the endtimes between the schedule with
fixed route and order but updated process times, and the final schedule with updated process
times.

marginal but it can be observed a decrease of −1.93% can be obtained in table 5-41.
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FVALnew − FinalScheduler FVALnew − Initialscheduler
∑
dif Decrease in cost(%)

193.13 197.36 -0.20 -1.93%

Table 5-41: Montecarlo simulation of the time-based updated with n = 100 with average value
of the final scheduler its cost, average value of the initial scheduler its cost, average

∑
dif and

average decrease in total endtime with respect to the initial schedule in % for deviating machines
1 and 2.

Disturbances - Machine M3 and M4

In this paragraph an approach is used where the processing times for machine 3 and 4 are
subjected to deviations. First an illustrative realization is outlined, where characteristics and
behavioural aspects of the adaptive scheduler can be analyzed using several tables and fig-
ures. Whereafter multiple realizations are obtained, to see the beneficial value of the adaptive
scheduler.

First of all an example realization is obtained, where certain switches can be discussed, or
concluded by the means of varying processing times. To begin, it is nice to see the tables
where it can be seen, live updated prediction are obtained. Since the processing times for
machine 1 and 2 are assumed to be constant p1 = 7 and p2 = 8, the deviating processes p3
and p4 start the fastest after respectively 7 or 8. Therefore in the following tables for the
first jobs, the discrete time range is taken from κ = 7 up till κ = 20. As can be concluded,

κ = 7 κ = 8 κ = 9 κ = 10 κ = 11 κ = 12 κ = 13 κ = 14 κ = 15 κ = 16 κ = 17 κ = 18 κ = 19 κ = 20
p3(k = 1) 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
p3(k = 2) 6.00 6.00 6.70 7.20 7.80 8.40 8.90 8.50 8.40 8.20 8.20 8.20 8.20 8.20
p3(k = 3) 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
p3(k = 4) 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
p3(k = 5) 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
p3(k = 6) 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
p3(k = 7) 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
p3(k = 8) 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

Table 5-42: Updated process times for machine 3 per discrete time-instant κ when only machine
3 and 4 have deviating processing times.

κ = 7 κ = 8 κ = 9 κ = 10 κ = 11 κ = 12 κ = 13 κ = 14 κ = 15 κ = 16 κ = 17 κ = 18 κ = 19 κ = 20
p4(k = 1) 5.00 5.40 6.30 6.60 6.50 6.40 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50
p4(k = 2) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
p4(k = 3) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 4.50 4.30 4.30 4.10 4.10 4.10
p4(k = 4) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 4.80 4.60
p4(k = 5) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
p4(k = 6) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
p4(k = 7) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
p4(k = 8) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

Table 5-43: Updated process times for machine 4 per discrete time-instant κ when only machine
3 and 4 have deviating processing times.

the machines can become idle. Looking at table 5-42 for example after discrete time-instant
κ = 17, the machine does not work for a while. This is logical, since the first 2 processes in
machine 1 and machine 2 have longer nominal processing times than the processes in machine
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3 and machine 4. Since the processes in machine 3 and 4 therefore have to wait, certain gaps
can occur, where machines 3 and 4 become idle. This can be better observed when looking
at figure 5-33, where spaces between the jobs in machine 3 and 4 occur. One could ask them-
selves, if the machines are already idle, which beneficial effect could occur. Well, not only the
machines could take longer or shorter in machines 3 and 4, with machines 1 and 2 delivering
constant processing times, ordering in machine 5 could also occur with a result of deviating
processing times in machine 3 and 4. Also machines 3 and 4 could take longer or shorter,
where they both become idle, and the machine with the shortest amount of processing time,
can do one extra job, in this case machine 4, since it has the lowest processing time. This
can be better observed by the mode changing of the realization described already a little bit
in tables 5-42 and 5-43, but is summarized in table 5-44. The mode change sequences in bold

`(k = 1) `(k = 2) `(k = 3) `(k = 4) `(k = 5) `(k = 6) `(k = 7) `(k = 8)
κ = 7 2 3 1 4 1 4 4 1
κ = 8 2 3 1 4 1 4 4 1
κ = 9 2 3 2 3 2 3 2 3
κ = 10 2 3 2 3 2 3 2 4
κ = 11 2 3 1 4 2 3 2 4
κ = 12 2 3 2 4 1 4 1 4
κ = 13 2 3 2 4 1 4 1 4
κ = 14 2 3 2 4 1 4 1 4
κ = 15 2 3 2 4 1 4 1 4
κ = 16 2 3 2 4 1 4 1 4
κ = 17 2 3 2 4 1 4 1 4
κ = 18 2 3 2 4 1 4 1 4
κ = 19 2 3 2 4 1 4 1 4
κ = 20 2 3 2 4 1 4 1 4

...
...

...
κ = κfinal 2 3 2 4 1 4 1 4

Table 5-44: Updated modes/routes for all jobs k, .., k + Np per discrete time-instant κ when
machines 3 and 4 have deviating processing times.

for discrete time-instances κ = 9 and κ = 10 have 1 remarkable difference. Not to directly
see on the eye, but when looking close, it can be observed the modes changed from equally
4 jobs in both machine 3 and machine 4 individually, to 3 jobs in machine 3 and 5 jobs in
machine 4. To conclude, the GANTT-charts are shown with processing times according to
the process times per discrete time-instance κ = 9 and κ = 10. It can be concluded only the
purple block is shifted from machine 3 at discrete time-instant κ = 9 to machine 4 at discrete
time-instant κ = 10. For now it has no reason to do so, since the processes in machine 1 and
2 are fixed, and the processes in machine 3 and 4 have open spaces inbetween them, which
means they are idle and can be used. However, one could imagine if job 7, the lightblue block,
would finish its job faster in machine 4, such that the end of job 8 in machine 2, the purple
block, would align perfectly with the light blue block in machine 4, it could take machine 4.
Since machine 4 has nominal process time p4 = 5 which is lesser than p3 = 6, all jobs would
take machine 4 instead of machine 3 if possible. The same could be said when for instance
job 8, the purple block, would have a very large delay in machine 2, such that both machines
3 and 4 are idle by the end of job 8 in machine 2. In the initial schedule it would still use
machine 3, however when this situation occurs it could take machine 4 as well since it became
idle, with a beneficial time gain of 1 time-unit.
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Figure 5-33: GANTT-chart of the jobs of the schedule at κ = 9.

Figure 5-34: GANTT-chart of the jobs of the schedule at kappa = 10.

For now to conclude, machine 3 and 4 could have a beneficial effect when both machines
become idle due to processing times in machine 1 and 2 take longer, or processes in machine
3 or 4 take shorter or longer, but can also contribute to the order of processes in machine 5.
The results of the above mode switching and GANTT-charts can be observed by the updated
modes at κfinal in table 5-44. It can be seen at last, 5 jobs go through machine 4, where 3
jobs go through amchine 3. The beneficial effects are summarized in tables 5-44, 5-46, 5-47
and 5-48.

Now by repeating the steps already done a few times now, we can come up with
∑
total =

+3.20 + 0.30 = +3.50 and
∑
total = +1.90 + 1.20 = +3.10 such that the difference becomes∑

dif = +3.50 − 3.10 = +0.40. It is shown in 5-48 the adjusted scheduling has a beneficial
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p3(k) p4(k)
6.00 6.50
8.20 5.00
6.00 4.10
6.00 4.40
5.70 5.00
6.00 5.00
7.30 5.00
6.00 5.30

Table 5-45: Ultimate updated process times for the processes for 3 and 4 where only machine 3
and 4 are subjected to deviations with respect to the discrete time-counter κ.

p3(k)− p3 p4(k)− p4
k = 1 0 1.50
k = 2 2.20 0
k = 3 0 -0.90
k = 4 0 --0.60
k = 5 -0.30 0
k = 6 0 0
k = 7 1.30 0
k = 8 0 0.30∑

+3.20 +0.30

Table 5-46: Differences between the updated ultimate process times with respect to the nominal
process times. In bold the processes taken by the final scheduler.

p3(k)− p3 p4(k)− p4
k = 1 0 1.50
k = 2 2.20 0
k = 3 0 -0.90
k = 4 0 --0.60
k = 5 -0.30 0
k = 6 0 0
k = 7 1.30 0
k = 8 0 0.30∑

+1.90 +0.90

Table 5-47: Differences between the updated ultimate process times with respect to the nominal
process times. In bold the processes taken by the initial scheduler.

effect on the specific realization with almost 6 time-units. Of course, the above steps are
just to illustrate certain behavioural aspect of the switching. Again, to conclude carefully,
6 realizations are obtained. In the following realizations in table 5-49, the same procedure
is done to compare the initial and final schedule with respect to the routing and ordering
with updated processing times. As can be concluded, the change of modes or orders has
some beneficial effect on the value of the cost function, the sum of the end times of the jobs.
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FVAL
∑
dif FVALnew

Initial schedule 203.70 +0.40 204.10
Updated schedule 198.60 +0.70 198.60

Table 5-48: Comparison of the shown realization of the sum of the endtimes between the initial
schedule with fixed route and order but updated process times, and the final schedule with updated
schedule.

FVAL
∑
dif FVALnew

Initial schedule(1) 198.00 -0.20 197.80
Updated schedule(1) 195.50 -0.20 195.50
Initial schedule(2) 200.00 +2.10 200.00

Updated schedule(2) 196.30 +2.10 196.30
Initial schedule(3) 195.70 -1.20 194.50

Updated schedule(3) 193.40 -1.20 193.40
Initial schedule(4) 198.90 -2.00 196.90

Updated schedule(4) 192.50 -2.00 192.50
Initial schedule(5) 201.70 +1.70 201.70

Updated schedule(5) 194.60 +1.70 194.60
Initial schedule(6) 199.30 +3.80 203.10

Updated schedule(6) 201.00 +3.80 201.00

Table 5-49: Comparison of 6 realizations of the sum of the endtimes between the schedule with
fixed route and order but updated process times, and the final schedule with updated process
times.

Therefore a small, but significant beneficial effect can be obtained by the updated schedule
with respect to the deviating processing times of machine 3 and 4. Extending this to a
montecarlo simulation of n = 100 substantiates this in table 5-50.

FVALnew − FinalScheduler FVALnew − Initialscheduler
∑
dif Decrease in cost(%)

195.09 196.96 +0.35 -0.80%

Table 5-50: Montecarlo simulation of the time-based updated with n = 100 with average value
of the final scheduler its cost, average value of the initial scheduler its cost, average

∑
dif and

average decrease in total endtime with respect to the initial schedule in % for deviating processing
times of machines 3 and 4.
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Disturbances - All machines

In this last paragraph, all things come together. The updated scheduler with respect to each
discrete time-instant κ with all machines having updated processing times. It is however, very
hard to illustrate or conclude something by mean of behaviour of the switching modes, since
all process times deviate all the time. Therefore, first some tables and figures are obtained to
show the adaptive behaviour of the discrete time updated scheduler, whereafter the results
are more shown in a numerical way with respect to the value of the cost function.

First the live predictions are shown with respect to the constantly updating processing times
for all the machinens with respect to each discrete time-couner κ. It is nicely illustrated in the
tables 5-51, 5-52, 5-53, 5-54 and 5-55. The numbers in black bold are for job 1, the numbers
in gray bold are for job 2, the number in red bold are for job 3 and the numbers in orange
bold are for job 4. First of all it can be very nicely observed how the prediction take care
per discrete time-step κ. The numbers evolve per discrete time-step for a better prediction
and when arriving at discrete time-instant where it is finished, it can be observerd the job
afterwards in that machine starts. At least, for machine 1 and 2 this is the case as can be
shown in 5-51 and 5-52 where the red bold numbers follow up the black bold numbers at
κ = 10 and the orange bold numbers follow up the gray bold numbers at κ = 8. Furthermore,
the process after process 1 or 2 in machine 1 or 2 is also nicely shown. At κ = 10 in table 5-51
it can be observed in 5-53 the process in machine 3 starts at κ = 10 and already a prediction
is given. The same can be told for the gray bold number with respect to tables 5-52 and 5-54
at time-instant κ = 8.

κ = 0 κ = 1 κ = 2 κ = 3 κ = 4 κ = 5 κ = 6 κ = 7 κ = 8 κ = 9 κ = 10 κ = 11 κ = 12 κ = 13
p1(k = 1) 7.00 7.40 6.90 7.70 8.90 9.10 8.90 8.90 9.30 9.30 9.30 9.30 9.30 9.30
p1(k = 2) 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
p1(k = 3) 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.60 7.50 7.90 8.20
p1(k = 4) 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
p1(k = 5) 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
p1(k = 6) 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
p1(k = 7) 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
p1(k = 8) 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00

Table 5-51: Updated process times for machine 1 per discrete time-instant κ when all machines
have deviating processing times. The different jobs k are coloured in different colours.

κ = 0 κ = 1 κ = 2 κ = 3 κ = 4 κ = 5 κ = 6 κ = 7 κ = 8 κ = 9 κ = 10 κ = 11 κ = 12 κ = 13
p2(k = 1) 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
p2(k = 2) 8.00 7.50 7.80 8.10 8.00 7.70 7.50 7.50 7.40 7.40 7.40 7.40 7.40 7.40
p2(k = 3) 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
p2(k = 4) 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 7.80 7.80 8.00 7.90 8.20 8.10
p2(k = 5) 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
p2(k = 6) 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
p2(k = 7) 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
p2(k = 8) 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00

Table 5-52: Updated process times for machine 2 per discrete time-instant κ when all machines
have deviating processing times. The different jobs k are coloured in different colours.

When we now look closer to 5-55, we can observe some special things. First of all it can be
observed the modes for `(k = 1) and `(k = 2) change while the starting time of the first pro-
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κ = 0 κ = 1 κ = 2 κ = 3 κ = 4 κ = 5 κ = 6 κ = 7 κ = 8 κ = 9 κ = 10 κ = 11 κ = 12 κ = 13
p3(k = 1) 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.20 6.60 7.50 6.50
p3(k = 2) 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
p3(k = 3) 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
p3(k = 4) 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
p3(k = 5) 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
p3(k = 6) 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
p3(k = 7) 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
p3(k = 8) 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

Table 5-53: Updated process times for machine 3 per discrete time-instant κ when all machines
have deviating processing times. The different jobs k are coloured in different colours.

κ = 0 κ = 1 κ = 2 κ = 3 κ = 4 κ = 5 κ = 6 κ = 7 κ = 8 κ = 9 κ = 10 κ = 11 κ = 12 κ = 13
p4(k = 1) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
p4(k = 2) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.80 6.60 7.50 6.90 6.60 6.60
p4(k = 3) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
p4(k = 4) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
p4(k = 5) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
p4(k = 6) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
p4(k = 7) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
p4(k = 8) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

Table 5-54: Updated process times for machine 4 per discrete time-instant κ when all machines
have deviating processing times. The different jobs k are coloured in different colours.

`(k = 1) `(k = 2) `(k = 3) `(k = 4) `(k = 5) `(k = 6) `(k = 7) `(k = 8)
κ = 0 2 3 2 3 2 3 3 2
κ = 1 2 3 2 3 2 3 3 2
κ = 2 2 3 2 3 2 3 3 2
κ = 3 2 3 2 3 2 3 3 2
κ = 4 1 4 2 3 2 3 3 2
κ = 5 1 4 4 1 2 3 3 2
κ = 6 1 4 1 4 2 3 3 2
κ = 7 1 4 1 4 2 3 2 3
κ = 8 1 4 1 4 2 3 2 3
κ = 9 1 4 1 4 1 4 2 3
κ = 10 1 4 1 4 4 1 2 3
κ = 11 1 4 1 4 4 1 2 3
κ = 12 1 4 1 4 4 1 2 3
κ = 13 1 4 1 4 4 1 2 3

...
...

...
κ = κfinal 1 4 1 4 4 1 1 4

Table 5-55: Updated modes/routes for all jobs k, .., k + Np per discrete time-instant κ when
machines 1,2,3 and 4 have deviating processing times.

cesses of these specific jobs already started, i.e. they both start at κ = 0 as can be observed
in 5-51 and 5-52. This is however possible since the changes are from mode 2 −→ 1 and 3 −→ 4.
These changes are only changing the routes regarding machine 3 and 4, and not regarding
machine 1 and 2, which is not possible since these processes already started. Note that this
is one of the major differences with respect to the cylic updated case, where very cycle in the
future, the modes for the cycles in the passed are fixed. However, if we now look at the mode
changes for `(k = 3) and `(k = 4) at discrete time-instances κ = 4 and κ = 5, we can observe
the modes change from 2 −→ 4 and 3 −→ 1. These changes are in fact regarding machine 1 and
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2. However, as can be observed in tables 5-51 and 5-52, the endtime of these processes from
the previous jobs are at κ = 10 and κ = 8 where κ = 4 and κ = 5 are time-instances before
the endtime of the processes from the previous jobs. This makes it possible to make the
specific mode change. When going further into the future, i.e. κ increases, it can be observed
more modes get fixed in table 5-55, or can only make changes from 1 −→ 2 and 3 −→ 4 or vice
versa, since these mode changes take place in machine 3 and 4 where the processes may not
have been started yet.

Figure 5-35: GANTT-chart of the initial schedule with fixed order and route but updated pro-
cessing times.

Figure 5-36: GANTT-chart of the final updated schedule with updated process times.

The GANTT-charts in 5-35 and 5-36 show nicely how the initial schedule with fixed order
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and routes but updated process times deviate from the final schedule with updated process
times. First of all the black block, job 1, takes a lot longer than the nominal time p1 = 7 as
can also be concluded when following the predictions in 5-51. The gray block however, job 2,
has a small decrease from its nominal process time p2 = 8. What can be observed is that the
predictions the system gets at κ = 3 in tables 5-51 and 5-52 give enough reason to change
the modes as can be observed in rows κ = 3 and κ = 4 in table 5-55. This is for the benefit
of job 2 being ordered in front of job 1 in machine 5, and therefore decreases the value of the
cost function, the sum of end-times of all the jobs.

To conclude anything about the benefits of these mode changes, the initial schedule is com-
pared with the final schedule, as is already done is all the paragraphs. The next tables 5-56,
5-57, 5-58 and 5-59 are meant to illustrate this. Now the following conclusions can be

p1(k) p2(k) p3(k) p4(k)
9.30 8.00 6.50 5.00
7.00 7.40 6.00 6.60
9.40 8.00 6.00 5.00
7.00 7.90 6.00 4.50
7.00 8.50 6.00 7.10
6.70 8.00 6.70 5.00
6.20 8.00 5.10 5.00
7.00 7.70 6.00 4.70

Table 5-56: Ultimate updated process times for the processes for machines 1,2,3 and 4 where
all machines are subjected to deviations with respect to the discrete time-counter κ.

p1(k)− p1 p2(k)− p2 p3(k)− p3 p4(k)− p4
k = 1 2.30 0 0.50 0
k = 2 0 -0.60 0 1.60
k = 3 2.40 0 0 0
k = 4 0 -0.10 0 -0.50
k = 5 0 0.50 0 2.10
k = 6 -0.30 0 0.70 0
k = 7 -0.80 0 -0.90 0
k = 8 0 -0.30 0 -0.30∑

+3.60 -0.50 +0.30 +2.90

Table 5-57: Differences between the updated ultimate process times with respect to the nominal
process times. In bold the processes taken by the final scheduler.

drawn about the above made realizations.
∑
total = +3.60− 0.50 + 0.30 + 2.90 = +6.30 and∑

total = +4.70− 0.70− 0.20 + 1.80 = +5.60 for respectively the final schedule and the initial
schedule. Subsequently it can told that

∑
dif = +6.30 − 5.60 = +0.70. The results for the

realization is shown in 5-59, it can be observed it has a significant beneficial effect with almost
a spare of 10 time-units.

Repeating this for 6 realizations gives the results shown in table 5-60. For the system with all
machines deviating, a montecarlo simulation is done with n = 100. The comparison is done
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p1(k)− p1 p2(k)− p2 p3(k)− p3 p4(k)− p4
k = 1 2.30 0 0.50 0
k = 2 0 -0.60 0 1.60
k = 3 2.40 0 0 0
k = 4 0 -0.10 0 -0.50
k = 5 0 0.50 0 2.10
k = 6 -0.30 0 0.70 0
k = 7 -0.80 0 -0.90 0
k = 8 0 -0.30 0 -0.30∑

+4.70 -0.70 -0.20 +1.80

Table 5-58: Differences between the updated ultimate process times with respect to the nominal
process times. In bold the processes taken by the initial scheduler.

FVAL
∑
dif FVALnew

Initial schedule 220.60 +0.70 221.30
Updated schedule 210.70 +0.70 210.70

Table 5-59: Comparison of the shown realization of the sum of the endtimes between the initial
schedule with fixed route and order and updated process times, and the final schedule with updated
schedule.

FVAL
∑
dif FVALnew

Initial schedule(1) 216.60 +0.60 217.20
Updated schedule(1) 212.10 +0.60 212.70
Initial schedule(2) 203.70 +4.00 203.70

Updated schedule(2) 203.70 +4.00 203.70
Initial schedule(3) 193.40 -0.50 192.90

Updated schedule(3) 189.60 -0.50 189.60
Initial schedule(4) 204.40 -2.10 202.30

Updated schedule(4) 187.90 -2.10 187.90
Initial schedule(5) 207.30 +1.50 208.70

Updated schedule(5) 204.00 +1.50 204.00
Initial schedule(6) 196.30 +1.30 197.60

Updated schedule(6) 195.30 +1.30 195.30

Table 5-60: Comparison of 6 realizations of the sum of the endtimes between the schedule with
fixed route and order but updated process times, and the final schedule with updated process
times.

the same as in table 5-60 with the values for FVALnew. One example for the first realization
in table 5-60. The FVALnew is 217.20 for the case where the initial schedule is obtained, and
212.70 where the schedule is adapted. Now the time gained is done by a percentage as:

212.20− 217.20
217.20 = −2.30% (5-8)

Such that it can be concluded the adaptive scheduler took care of a decrease of 2.30% in time-
units. The montecarlo simulation had as a result the shown table in 5-61. The results are
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FVALnew − FinalScheduler FVALnew − Initialscheduler
∑
dif Decrease in cost(%)

196.67 202.02 +0.97 -2.11%

Table 5-61: Montecarlo simulation of the time-based updated with n = 100 with average value
of the final scheduler its cost, average value of the initial scheduler its cost, average

∑
dif and

average decrease in total endtime with respect to the initial schedule in %.

nice, but somehow very marginal. There is an expected decrease in the total time of the sum
of the endstimes of the jobs. However it is not very large. A possible explanation could be
the system is quite simplistic. Not a lot of different routes or ordering can be adjusted where
it becomes difficult for the system to adapt the schedule to certain disturbances. Another
reason could be the system is too random, where the times deviate so randomly, the system
can not make a logical update. In other words, the reasoning of adjusting a route is based
on the expectation of the consecutive routes being the nominal process times. Though, if
each of the routes deviate too much, it is not reasonable to change the route, because the
next process could also be randomly shorter or longer. Still, the result is a lot better than
the 1.21% for the montecarlo simulation of the cyclic updated system. This could be due to
the fact in the cyclic updated behaviour, a whole cycle is fixed in which for instance both
processes in machine 1 or 2 and machine 3 or 4, will be delayed or forwarded, where in the
time-updated scheduler, one could still adapt to the situation when knowing machine 1 or 2
is taking longer.
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Chapter 6

Conclusions and discussion

6-1 Conclusion

First of all the simulations, estimations and predictions are concluded. The simulations are
made quite straigthforward and tuned with the parameters k0 and b0 to the assigned process-
ing times. Research is done for the addition of process and measurements noise, as well as
tuning the memory factor ζ. It can be concluded a too high covariances of the process nosie,
will let the system deviate so much, the system its dynamics are almost neglible. Where a
choice of the memory factor, will lead to almost no influence of the process noise when tuning
it too close to 0, but will lead to almost no influence to the process noise when tuning it
too close to 1. The trade-off is made between the choice of the value of the covariance of
the process noise and the value of the memory factor, to obtain deviating processes which
are still to a certain point predictable. Afterwards the estimations are made by the use of
an extended Kalman filter, which as is shown in various figures and tables gives a very nice
estimate of the states of the subsystems. Varying the measurement noise however, will lead
to less accurate estimations, but nevertheless still sufficiently well estimations. However, the
estimation of the last state x3(κ) becomes less and less accurate when increasing the mea-
surement noise. An off-set can be observed and after a while the whole estimation is off. The
off-set is mainly caused by the insufficiently well accurate measurements of the system, where
the whole estimation being off, is caused by the term influenced by the noise becoming closer
to 0, where as a result the noise can not be recognized anymore since the influence is nihil.
The thereby followed predictions are made for the simulations and estimations with assigned
covariance matrices and value for the memory factor. The predictions are concluded to be
suitable, and convert to the real process time when κ increases. However, in some cases, the
prediction give a less suitable prediction at the early stages of the predictions as can be con-
cluded in the tables shown for 10 realizations per process for the prediction per discrete time κ.

The scheduler obtained gives by means of a switching max-plus approach optimal schedules.
Initially, the optimal schedule obtained is the statical scheduler, which in comparison with
randomly modes picking, gives a nice result as can be concluded by a montecarlo simulation.
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Afterwards, the scheduler is updated with respect to a cyclic based update, and a time-based
update. 4 approaches per update are discussed, namely approach 1 where a disruption takes
place, approach 2 where machines 1 and 2 deviate in processing times, approach 3 where
machines 3 and 4 deviate in processing times, and approach 3 where all machines deviate in
processing times. A part from the results, quite nice insights in the systems its behaviour can
be observed when looking at several GANTT-charts with respect to all the approaches.

Both the systems respond well to the disruption case, where the time-based schedule can
change itself within the mode to machine 3 or 4 where the lowest processing time takes place,
and where the cyclic based schedule is not able to do that because of the fact the modes
are fixed per cycle. Nevertheless both schedulers in the disruptions cases make a very nice
improvement of the cost function. Important as well, is the note of the disadvantage of the
cyclic updated behaviour. Namely, it is shown how the scheduler adapts itself with changing
modes in the past, which in reality is not possible. As a conclusion a time-based approach
for the event driven scheduler is preferred.

For the second, third and fourth approach, conclusions can be made in all approaches the
updated schedule takes care of an improvement of the cost in a lot of cases, however these
improvements are small. In a minor amount of the cases the updated schedule is concluded to
have a worsening of the cost. A possible explanation is given as the modes switch to certain
other modes for an improvement of the costs, but when realizing the processes in these other
modes, the realizations turn out to take much longer than the expected nominal processing
times such that the mode change was in hindsight a bad choice.

Finally, a montecarlo simulation is done for both the cylic- and time-based updates where
all machines are subjected to deviating processing times. As can be concluded by the re-
sults shown in the tables for the realizations of the updated schedulers versus the initial
schedulers, the updated schedulers will gain some negative cost when updating the schedule.
The results for the montecarlo simulation when looking at the cyclic-updated behaviour and
time-updated behaviour both do not have a significant difference. For the cyclic updated
scheduler, the average decrease was -1.21% for the cost and for the time based updated the
average decrease was -2.11%. It still is a decrease, such that compared with the overal cost
it gives some negative cost. However, a possible explanation could be given the decrease is
not major due to the fact the system does not have a lot of rerouting and reordering decision
variables to its property, since there are only 4 routes to take and ordering takes place only
in the last machine.

6-2 Discussion and further research

6-2-1 Discussion

The discussion is mainly focussed on the weak spots of this thesis research. All the discussion
points are separated in different paragraphs to remain having oversight of the points. Further
research thereafter, will be more focussed on the extensions of this research, instead of the
weak spots of this research. Of course, the weak spots could lead to further research.
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To begin, this thesis is essentially focussed on the idea of updating with respect to the itera-
tive communication of information between a scheduler and its subsystems. The results and
conclusions are provided by the means of a simple toy example of a beer brewery. However,
the case study provided, is quite simplistic. Only 4 routes can be chosen accordingly, where
as an addition of the simplicity, only ordering can occur in the last machine. This will lead to
a system which can only vary on a minimal amount of routes and ordering variables, which
as a result becomes stuck in its own system quite fast. To elaborate that last sentence a
little bit more, if a certain job can only adjust its route on 3 other routes, and the ordering
only in the last machine, it is not most likely the results of improvements will be very major.
The simplicity of the case study provided makes therefore room for the question if any right
conclusion with respect to the extent of improvements can be drawn from such a simplistic
system. If the system would have for instance 3 mashing tanks, 3 brewing tanks and 2 fer-
mentation tanks, or ordering in not only the last machine, but also in the machines where
the brewing occurs would have been, the overal updated scheduler could have a much greater
amount of choices, and therefore maybe a lot more improvement than shown in this case study.

Furthermore, the thesis itself is basically a simulation. Realizations are obtained of certain
subsystems, which are afterwards encountered in an updated schedule. They are encountered
in the updated schedule by means of the predictions. The behaviour of these predictions is
shortly discussed as they convert to the real process time when time increases. However the
reliability in this thesis is not derived in statistical properties, such that it can be concluded
for instance a certain prediction can be considered fixed within a certain time-span when
being for example 3 time-units before the predicted endtime. Not only the reliability of the
predictions must be encountered into certain numerical statements, with respect to for ex-
ample statistical properties, but also need to be compared with real systems. If the system
does get nice results with the prediction of the simulation, this does not necessarily conclude
directly the system does get nice results when applying the same methods to real systems. In
other words, the prediction of real systems could be much less reliable, and the question could
be asked if the conclusions drawn in this thesis are robust for systems where the predictions
would be less reliable.

To continue, conclusions are drawn about the optimality of an iterative method which up-
dates every time-step κ in comparison with an initial optimal schedule. However, one of
the problems discussed in the introduction, is that an continuously updated model can be
computationally hard. In this thesis research, the iterative method is not compared with a
continuously updating model. Nothing can be concluded about the optimality of the itera-
tive scheduler with respect to a continuously updating scheduler, while this is an important
point of interest. The beneficial effect of the iterative scheduler would pale in comparison, if
it turns out continuously updating the schedule would improve the system its cost function
with a scale of 10 for instance. To extend this paragraph about comparisons, one could also
ask questions about the manner which is used to compare the initial schedule with the final
schedule. Namely the differences in nominal processing times are summed up, and afterwards
the difference between these sums of respectively the initial schedule and the final schedule
are calculated to state the time already gained or lost with shorter or longer processing times
only by the processes rather than the scheduling. Another approach could be to scale the
processes which the initial schedule does take as nominal processing time with the same value
as the scale the value of the processing time in the updated scheduler is increased or de-
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screased. A third approach could be to seed the noise sequences the same for machines of the
same processes, such that if the initial schedule does not take the same machines as the final
schedule per cycle k, it still undergoes the same noise sequence.

Ultimately, a lot of assumptions and choices have been made for simplicity, such as ne-
glecting the transportation times between the processes, or the simplications made regarding
the system dynamics of the processes. Of course, this is more a toy example and very specific
and precise model properties are not necessary. However, if one want to obtain very accurate
results of the beneficial effect of the updated scheduler, these things could be improved. A
part from implementing transportation times, elaborate subsystems a lot more precisely, also
the noise sequences chosen for the simulation and estimation are quite simplistic. Zero-mean
white noise signals could be replaced by noise sequences who are not very ’clean’. Also the
noise is assumed to be additive, but integrated noise would also be worthy to look at for the
results and conclusions to become a little bit wider and more robust.

6-2-2 Further research

In the discussion section, already a lot of points are made where it opens way for further
research. In this section some points of the discussion section are elaborated for further re-
search, as well as new problems will be given for interest in further research. The same as
done in the previous section, the further research point will be discussed per paragraph.

As is already mentioned in the above discussion, the iteratively updated scheduler is only
compared with the initial optimal scheduler and not with a continuously updated scheduler.
This can be done in future research by making the discrete time-step κ smaller and smaller,
and observe the beneficial effect of the updated scheduler versus the computational power and
time it needs for the solution. Essentially a continuously updating scheduler is the same as
making the discrete time-counter κ infinitely small, such that it updates every time-counter
κ, which when κ is almost equal to zero, can be seen as continuously updating the scheduler.

As an extension on the previous paragraph, prediction can also be discussed within this
discrete time-counter κ. Further research could be scoped upon the prediction of these sub-
systems when not using additive zero-mean white noise signals, but for instance integrated
coloured noise. It will rise the question what the change of noise will do to the extended
Kalman filter and therefore also to the predictions. Moreover, as can already be observed in
the tables with results of the predictions, the predictions are often not very accurate when
being in an early stage of the prediction. In further research, an interest could be to put a
weight on the prediction when increasing in time such that the schedule does not switch too
fast when having a very unreliable prediction of an early stage process. To extend in the
field of predictions, one could ask themselves if prediction of delays or forwards can not be
reframed into nominal processing times with the use of control. This is a very worthy to look
at point of interest. If a process is delayed, control can be used to let the system still float
to the nominal process time, such that rescheduling is unnecessary. If the control law can
not be fulfilled anymore, rescheduling can be done with respect to minimizing the costs. For
instance, you would rather like having a train driving faster to arrive on time, than the train
remaining its path but rescheduling the whole timetable due to this train.

A.J.M. van Heusden Master of Science Thesis



6-2 Discussion and further research 109

Also mentioned in the discussion paragraph is the simplicity of the provided case study.
Further research could want to extend the methods discussed in this thesis to systems which
are much more complex, and observe if the same improvements can be made with respect
to the cost, or even better improvements. One could imagine a system as a railway network
with 100 different train has much more other route- and order-decision which can be made
than a 4 route and 1 order beer brewing case study.
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Appendix A

Routing and ordering constraints

A-1 Constraint matrices routing

The first constraint:


z1(k)
z2(k)
z3(k)
z4(k)
z5(k)

 ≥ v1(k)⊗


ε
ε

p1 + z1(k)
ε

p3 + z3(k)

 =


β
β

p1 + z1(k) + β − βv1(k)
β

p3 + z3(k) + β − βv1(k)

 (A-1)

Rearranging the equation:


−z1(k)
−z2(k)

z1(k)− z3(k)− βv1(k)
−z4(k)

z3(k)− z5(k)− βv1(k)

 ≤

−β
−β

−p1 − β
−β

−p3 − β

 (A-2)

This is equal to:


−1 0 0 0 0
0 −1 0 0 0
1 0 −1 0 0
0 0 0 −1 0
0 0 1 0 −1


︸ ︷︷ ︸

A0(l=1)

z(k) +


0 0 0 0
0 0 0 0
−β 0 0 0
0 0 0 0
−β 0 0 0


︸ ︷︷ ︸

V0(l=1)

v(k) ≤


−β
−β

−p1 − β
−β

−p3 − β


︸ ︷︷ ︸

b0(l=1)

(A-3)
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Continuing making this for each mode gives:



0 A0(l = 1) 0 . . . 0 0 V0(l = 1) 0 . . . 0

0
... 0 . . . 0 0

... 0 . . . 0

0 A0(l = 4) 0 . . . 0 0 V0(l = 4) 0 . . . 0
0 0 A0(l = 1) 0 . . . 0 0 V0(l = 1) . . . 0

0 0
... 0 . . . 0 0

... . . . 0

0 0 A0(l = 4) 0 . . . 0 0 V0(l = 4) . . . 0
... . . . . . . ...
0 . . . 0 0 A0(l = 1) 0 . . . 0 V0(l = 1) 0

0 . . . 0 0
... 0 . . . 0

... 0

0 . . . 0 0 A0(l = 4) 0 . . . 0 V0(l = 4) 0


︸ ︷︷ ︸

F1

q ≤



b0(l = 1)
...

b0(l = 4)
b0(l = 1)

...

b0(l = 4)
...

b0(l = 1)
...

b0(l = 4)


︸ ︷︷ ︸

p1

(A-4)
With all the zeros in the matrix of appropriate size. Having the same procedure with the
next constraints involving z(k − 1) and u(k), it becomes:


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


︸ ︷︷ ︸

A1(l=1)

z(k−1)+


−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1


︸ ︷︷ ︸

A1,0(l=1)

z(k)+


−β 0 0 0
−β 0 0 0
−β 0 0 0
−β 0 0 0
−β 0 0 0


︸ ︷︷ ︸

V1(l=1)

v(k−1) ≤


−p1 − β
−β

−p3 − β
β

−p5 − β


︸ ︷︷ ︸

b1(l=1)
(A-5)

Put the above matrices in appropriate places with respect to the vector z until event-step
k + Np and one will get a similar matrix as F1 such that a big matrix can be obtained, also
taking the different modes into account:

F2q ≤ p2 (A-6)

And finally the same procedure for the constraint with respect to the input:


−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

 z(k) +


−β
0
0
0
0

 v(k) +


1
0
0
0
0

u(k) ≤


−β
−β
−β
−β
−β

 (A-7)
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A-2 Constraint matrices ordering

Ordering 1: 

−z5(k) + z5(k + 1)− βs0,1(k)
−z5(k) + z5(k + 2)− βs0,2(k)
−z5(k) + z5(k + 3)− βs0,3(k)
−z5(k) + z5(k + 4)− βs0,4(k)
−z5(k) + z5(k + 5)− βs0,5(k)
−z5(k) + z5(k + 6)− βs0,6(k)
−z5(k) + z5(k + 7)− βs0,7(k)


≤



−β − p5
−β − p5
−β − p5
−β − p5
−β − p5
−β − p5
−β − p5


(A-8)

Ordering 2: 

−z5(k + 1) + z5(k)− βs0,1(k)
−z5(k + 1) + z5(k + 2)− βs1,2(k + 1)
−z5(k + 1) + z5(k + 2)− βs1,3(k + 1)
−z5(k + 1) + z5(k + 2)− βs1,4(k + 1)
−z5(k + 1) + z5(k + 2)− βs1,5(k + 1)
−z5(k + 1) + z5(k + 2)− βs1,6(k + 1)
−z5(k + 1) + z5(k + 2)− βs1,7(k + 1)


≤



−p5
−β − p5
−β − p5
−β − p5
−β − p5
−β − p5
−β − p5


(A-9)

Ordering 3: 

−z5(k + 2) + z5(k)− βs0,2(k)
−z5(k + 2) + z5(k + 1)− βs1,2(k + 1)
−z5(k + 2) + z5(k + 3)− βs2,3(k + 2)
−z5(k + 2) + z5(k + 4)− βs2,4(k + 2)
−z5(k + 2) + z5(k + 5)− βs2,5(k + 2)
−z5(k + 2) + z5(k + 6)− βs2,6(k + 2)
−z5(k + 2) + z5(k + 7)− βs2,7(k + 2)


≤



−p5
−p5
−β − p5
−β − p5
−β − p5
−β − p5
−β − p5


(A-10)

Ordering 4: 

−z5(k + 3) + z5(k)− βs0,3(k)
−z5(k + 3) + z5(k + 1)− βs1,3(k + 1)
−z5(k + 3) + z5(k + 2)− βs2,3(k + 2)
−z5(k + 3) + z5(k + 4)− βs3,4(k + 3)
−z5(k + 3) + z5(k + 5)− βs3,5(k + 3)
−z5(k + 3) + z5(k + 6)− βs3,6(k + 3)
−z5(k + 3) + z5(k + 7)− βs3,7(k + 3)


≤



−p5
−p5
−p5
−β − p5
−β − p5
−β − p5
−β − p5


(A-11)

Ordering 5: 

−z5(k + 4) + z5(k)− βs0,4(k)
−z5(k + 4) + z5(k + 1)− βs1,4(k + 1)
−z5(k + 4) + z5(k + 2)− βs2,4(k + 2)
−z5(k + 4) + z5(k + 3)− βs3,4(k + 3)
−z5(k + 4) + z5(k + 5)− βs4,5(k + 4)
−z5(k + 4) + z5(k + 6)− βs4,6(k + 4)
−z5(k + 4) + x5(k + 7)− βs4,7(k + 4)


≤



−p5
−p5
−p5
−p5
−β − p5
−β − p5
−β − p5


(A-12)
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Ordering 6: 

−z5(k + 5) + z5(k)− βs0,5(k)
−z5(k + 5) + z5(k + 1)− βs1,5(k + 1)
−z5(k + 5) + z5(k + 2)− βs2,5(k + 2)
−z5(k + 5) + z5(k + 3)− βs3,5(k + 3)
−z5(k + 5) + z5(k + 4)− βs4,5(k + 3)
−z5(k + 5) + z5(k + 6)− βs5,6(k + 5)
−z5(k + 5) + z5(k + 7)− βs5,7(k + 5)


≤



−p5
−p5
−p5
−p5
−p5
−β − p5
−β − p5


(A-13)

Ordering 7: 

−z5(k + 6) + z5(k)− βs0,6(k)
−z5(k + 6) + z5(k + 1)− βs1,6(k + 1)
−z5(k + 6) + z5(k + 2)− βs2,6(k + 2)
−z5(k + 6) + z5(k + 3)− βs3,6(k + 3)
−z5(k + 6) + z5(k + 4)− βs4,6(k + 4)
−z5(k + 6) + z5(k + 5)− βs5,6(k + 5)
−z5(k + 6) + z5(k + 7)− βs6,7(k + 6)


≤



−p5
−p5
−p5
−p5
−p5
−p5
−β − p5


(A-14)

Ordering 8: 

−z5(k + 7) + z5(k)− βs0,7(k)
−z5(k + 7) + z5(k + 1)− βs1,7(k + 1)
−z5(k + 7) + z5(k + 2)− βs2,7(k + 2)
−z5(k + 7) + z5(k + 3)− βs3,7(k + 3)
−z5(k + 7) + z5(k + 4)− βs4,7(k + 4)
−z5(k + 7) + z5(k + 5)− βs5,7(k + 5)
−z5(k + 7) + z5(k + 6)− βs6,7(k + 6)


≤



−p5
−p5
−p5
−p5
−p5
−p5
−p5


(A-15)

A.J.M. van Heusden Master of Science Thesis



Appendix B

MATLAB-files

B-1 Scheduler MATLAB-files

B-1-1 Scheduler main file

1 %% Begin f i l e
2 f o r z = 1:100
3
4
5 clearvars −except Montecarlo z
6 c l c
7 addpath Mashing
8 addpath Brewing
9 %% Parameters and matr i ce s

10 beta = −30000;
11 Np = 7 ;
12 l ength = 5∗(Np+2)+4∗(Np+2)+(Np+1)+sum ( 1 : Np ) ;
13 Zvec = zero s (1 , 4∗ ( Np+1) ) ;
14
15 p1 = ones (Np+1 ,1) ∗7 ; % Proces s ing t imes per machine
16 p2 = ones (Np+1 ,1) ∗8 ;
17 p3 = ones (Np+1 ,1) ∗6 ;
18 p4 = ones (Np+1 ,1) ∗5 ;
19 p5 = ones (Np+1 ,1) ∗1 ;
20
21 seed1 = randi (10000 , Np+1 ,1) ; % Seeds f o r the random pro c e s s e s
22 seed2 = randi (10000 , Np+1 ,1) ;
23 seed3 = randi (10000 , Np+1 ,1) ;
24 seed4 = randi (10000 , Np+1 ,1) ;
25
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26 %% I n i t i a l i z i n g f o r t=0, the s t a t i c a l s chedu l e r
27 Ysimend = 0 ;
28 Ystart = 0 ;
29 t = 0 ;
30

31 [ Y , modes , Ysimend , Ystart , FVAL , p1 , p2 , p3 , p4 , p5 , Z , X ] =
dynScheduleTimedriven (p1 , p2 , p3 , p4 , p5 , [ ] , [ ] , [ ] , [ ] , [ ] ,
[ ] , [ ] , [ ] , Ysimend , Ystart , Np , l ength , t , modes , beta , Zvec ,
seed1 , seed2 , seed3 , seed4 ) ;

32 % Function f i l e f o r the i n i t i a l s chedu le
33

34 Veq5 = zero s ( ( Np+1)∗2 , l ength ) ; % Prebui ld matr i ce s f o r the mode
c on s t r a i n t s when time counter i s passed s t a r t i n g time

35 beq5 = zero s ( ( Np+1) ∗2 ,1) ;
36

37 Veq6 = zero s ( ( Np+1)∗2 , l ength ) ; % Prebui ld matr i ce s f o r the mode
c on s t r a i n t s when time counter i s passed s t a r t i n g time

38 beq6 = zero s ( ( Np+1) ∗2 ,1) ;
39

40 Veq7 = zero s ( ( Np+1)∗2 , l ength ) ; % Prebui ld matr i ce s f o r the mode
c on s t r a i n t s when time counter i s passed s t a r t i n g time

41 beq7 = zero s ( ( Np+1) ∗2 ,1) ;
42

43 Veq8 = zero s ( ( Np+1)∗2 , l ength ) ; % Prebui ld matr i ce s f o r the mode
c on s t r a i n t s when time counter i s passed s t a r t i n g time

44 beq8 = zero s ( ( Np+1) ∗2 ,1) ;
45

46 Modes = modes ; % I n i t i a l modes
47 Zvec = Z ( : ) ’ ; % Vector f o r prev ious modes , such that innerproduct

br ing s negat ive co s t and modes stay the same
48 Xtotal = X ; % Value o f the opt imiza t i on vec to r
49 Ystarttotal = Ystart ; % Sta r t i ng t imes o f the jobs
50 Ysimendtotal = Ysimend ; % End times o f the jobs
51

52 p1check = p1 ;
53 p2check = p2 ;
54 p3check = p3 ;
55 p4check = p4 ;
56 p5check = p5 ;
57

58 %% Scheduler update with r e sp e c t to o rde r ing and rout ing
59

60 f o r t = 1:50
61

62 [ Y , modes , Ysimend , Ystart , FVAL , p1 , p2 , p3 , p4 , p5 , Z , X ] =
dynScheduleTimedriven (p1 , p2 , p3 , p4 , p5 , Veq5 , beq5 , Veq6 , beq6
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, Veq7 , beq7 , Veq8 , beq8 , Ysimend , Ystart , Np , l ength , t , modes
, beta , Zvec , seed1 , seed2 , seed3 , seed4 ) ;

63 % Optimizat ion a lgor i thm per d i s c r e t e time counter t
64

65 p1check ( 1 : ( Np+1) , t+1) = p1 ; % Updated proce s s t imes M1 per
d i s c r e t e time counter t

66 p2check ( 1 : ( Np+1) , t+1) = p2 ; % Updated proce s s t imes M2 per
d i s c r e t e time counter t

67 p3check ( 1 : ( Np+1) , t+1) = p3 ; % Updated proce s s t imes M3 per
d i s c r e t e time counter t

68 p4check ( 1 : ( Np+1) , t+1) = p4 ; % Updated proce s s t imes M4 per
d i s c r e t e time counter t

69 p5check ( 1 : ( Np+1) , t+1) = p5 ; % Updated proce s s t imes M5 per
d i s c r e t e time counter t ( u s e l e s s )

70

71

72 Ystarttotal ((1+5∗t ) : ( 5∗ t+5) , 1 : Np+1) = Ystart ; % Total matrix f o r
s t a r t i n g t imes per t

73 Ysimendtotal ((1+5∗t ) : ( 5∗ t+5) , 1 : Np+1) = Ysimend ; % Total matrix f o r
end times per t

74 Xtotal ( 1 : length , t+1) = X ; % Total matrix f o r opt imiza t i on vec to r X
per t

75 Modes (t+1 , :) = modes ; % Total matrix f o r modes vec to r per t
76 FcheckVAL (t ) = FVAL ; % Value o f the co s t func t i on per t
77

78 Zvec = Z ( : ) ’ ; % Previous modes f o r inner product o f the modes
79 end
80 %% Simulat ion o f the i n i t i a l s chedu le and order with updated

proce s s t imes f o r comparison
81 % fo r t = 1:50
82 X1 = Xtotal ( : , 1 ) ;
83 modesX1 = Modes ( 1 , : ) ;
84 cycle = 0 ;
85 Zvec = Zvec ’ ;
86

87 [ YstartX1 , YsimendX1 , modesX1 , ZX1 , checkFVAL , p1 , p2 , p3 , p4 , p5 ]
= dynScheduleSim (p1 , p2 , p3 , p4 , p5 , Np , l ength , cycle , modesX1 ,
beta , Zvec , X1 ) ;

88

89 %
90 p1abs = p1 ( : , 1 ) −7; % D i f f e r e n c e vec to r p1 with nominal p roce s s

t imes p1
91 p2abs = p2 ( : , 1 ) −8; % D i f f e r e n c e vec to r p2 with nominal p roce s s

t imes p2
92 p3abs = p3 ( : , 1 ) −6; % D i f f e r e n c e vec to r p3 with nominal p roce s s

t imes p3
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93 p4abs = p4 ( : , 1 ) −5; % D i f f e r e n c e vec to r p4 with nominal p roce s s
t imes p4

94
95 pdif = sum( p1abs )+sum( p2abs )+sum( p3abs )+sum( p4abs ) % Sum of the

d i f f e r e n c e s
96
97 P = [ p1abs p2abs p3abs p4abs ] ;
98
99 f o r k=1:8

100 modes = Modes ( 1 , : ) ;
101
102 i f modes (k ) == 1
103 p2abs (k ) = 0 ;
104 p4abs (k ) = 0 ;
105
106 e l s e i f modes (k ) ==2
107 p2abs (k ) = 0 ;
108 p3abs (k ) = 0 ;
109
110 e l s e i f modes (k ) == 3
111 p1abs (k ) = 0 ;
112 p4abs (k ) = 0 ;
113
114 e l s e i f modes (k ) == 4
115 p1abs (k ) = 0 ;
116 p3abs (k ) = 0 ;
117 end
118 end
119 pdifnew = sum( p1abs )+sum( p2abs ) +sum( p3abs )+sum( p4abs )
120 sigma = pdif − pdifnew
121 FVAL
122 checkFVAL
123 % %% GANTT chart
124 % GANTT(YstartX1 , YsimendX1 , modesX1 , Np, p1 , p2 , p3 , p4 , p5 )
125
126 Montecarlo (z , 1 : 5 ) = [ FVAL sigma pdif pdifnew checkFVAL ] ;
127 end

B-1-2 Scheduler function file

1 f unc t i on [ Y , modes , Ysimend , Ystart , FVAL , p1 , p2 , p3 , p4 , p5 , Z , X ]
= dynScheduleTimedriven (p1 , p2 , p3 , p4 , p5 , Veq5 , beq5 , Veq6 ,

beq6 , Veq7 , beq7 , Veq8 , beq8 , Ysimend , Ystart , Np , l ength , t ,
modes , beta , Zvec , seed1 , seed2 , seed3 , seed4 )

2 p1real = p1 ; % Disrupt ion case
3 p2real = p2 ; % Disrupt ion case
4 p3real = p3 ; % Disrupt ion case
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5 p4real = p4 ; % Disrupt ion case
6
7
8 %% Updating the p ro c e s s i ng t imes
9 i f t > 0

10
11 f o r k = 1 : Np+1
12 i f modes (k ) < 3 && t>Ystart (1 , k )
13 Veq5 ( (2∗ k−1) : ( 2∗ k ) , (48+4∗k ) :(49+4∗k ) ) = eye (2 ) ; % El iminate

modes which can not be chosen anymore due to p r o c e s s e s which
have been s t a r t ed

14 beq5 ( (2∗ k−1) : ( 2∗ k ) , 1) = ze ro s (2 , 1 ) ;
15 p1 (k , 1 ) = p1real (k ) ;%mashing1 ( c e i l ( t−Ystart (1 , k ) ) , seed1 (k ) ) ; %

Update proce s s t imes machine 1
16
17 e l s e i f modes (k ) > 2 && t>Ystart (2 , k )
18 Veq6 ( (2∗ k−1) : ( 2∗ k ) , (46+4∗k ) :(47+4∗k ) ) = eye (2 ) ; %

El iminate modes which can not be chosen anymore due
to p r o c e s s e s which have been s t a r t ed

19 beq6 ( (2∗ k−1) : ( 2∗ k ) , 1) = ze ro s (2 , 1 ) ;
20 p2 (k , 1 ) = p2real (k ) ;%mashing2 ( c e i l ( t−Ystart (2 , k ) ) ,

seed2 (k ) ) ;
21 end
22
23
24 i f ( ( modes (k ) == 1 | | modes (k )==3) && t>Ystart (3 , k ) )
25 Veq7 (2∗k−1,47+4∗k ) = 1 ; % El iminate modes which can not be

chosen anymore due to p r o c e s s e s which have been s t a r t ed
26 Veq7 (2∗k , 49+4∗k )= 1 ;
27 beq7 ( (2∗ k−1) : ( 2∗ k ) , 1) = ze ro s (2 , 1 ) ;
28 p3 (k , 1 ) = brewing1 ( c e i l (t−Ystart (3 , k ) ) , seed3 (k ) ) ;
29
30 e l s e i f ( ( modes (k ) == 2 | | modes (k )==4) && t>Ystart (4 , k ) )
31 Veq8 (2∗k−1,46+4∗k ) = 1 ; % El iminate modes which can not be

chosen anymore due to p r o c e s s e s which have been s t a r t ed
32 Veq8 (2∗k , 48+4∗k )= 1 ;
33 beq8 ( (2∗ k−1) : ( 2∗ k ) , 1) = ze ro s (2 , 1 ) ;
34 p4 (k , 1 ) = brewing2 ( c e i l (t−Ystart (4 , k ) ) , seed4 (k ) ) ;
35 end
36 end
37
38 end
39
40
41 %% Matr ices A0 f o r mode l=1 cyc l e k
42 A0_L1 = [0 0 0 0 0 ;0 0 0 0 0 ; 1 0 0 0 0 ;0 0 0 0 0 ; 0 0 1 0 0 ] ;
43 A0_L1 = A0_L1−eye (5 ) ;
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44 V0_L1 = ze ro s (5 , 4 ) ;
45 V0_L1 ( : , 1 ) = [ 0 0 −beta 0 −beta ] ’ ;
46
47 F0_L1 = ze ro s ( ( ( Np+1)∗5) , l ength ) ;
48
49 f o r k = 1 : Np+1
50
51 F0_L1 ((1+5∗k−5) : ( 5∗ k ) , (6+5∗k−5) :(5+5∗k ) ) = A0_L1 ;
52 F0_L1 ((1+5∗k−5) : ( 5∗ k ) , ( ( 5∗ ( Np+2)+1)+4∗k ) : ( ( 5 ∗ ( Np+2)+4)+4∗k ) )=

V0_L1 ;
53
54 b0_L1 ((1+5∗k−5) : ( 5∗ k ) , : ) = [−beta −beta −beta−p1 (k , : ) −beta −beta−

p3 (k , : ) ] ’ ;
55 end
56 %% Matr ices A0 f o r mode l=2 cyc l e k
57 A0_L2 = [0 0 0 0 0 ;0 0 0 0 0 ; 0 0 0 0 0 ;1 0 0 0 0 ; 0 0 0 1 0 ] ;
58 A0_L2 = A0_L2−eye (5 ) ;
59 V0_L2 = ze ro s (5 , 4 ) ;
60 V0_L2 ( : , 2 ) = [ 0 0 0 −beta −beta ] ’ ;
61
62 F0_L2 = ze ro s ( ( ( Np+1)∗5) , l ength ) ;
63
64 f o r k = 1 : Np+1
65
66 F0_L2 ((1+5∗k−5) : ( 5∗ k ) , (6+5∗k−5) :(5+5∗k ) ) = A0_L2 ;
67 F0_L2 ((1+5∗k−5) : ( 5∗ k ) , ( ( 5∗ ( Np+2)+1)+4∗k ) : ( ( 5 ∗ ( Np+2)+4)+4∗k ) )=

V0_L2 ;
68
69 b0_L2 ((1+5∗k−5) : ( 5∗ k ) , : ) = [−beta −beta −beta −beta−p1 (k , : ) −beta−

p4 (k , : ) ] ’ ;
70 end
71 %% Matr ices A0 f o r mode l=3 cyc l e k
72 A0_L3 = [0 0 0 0 0 ;0 0 0 0 0 ;0 1 0 0 0 ;0 0 0 0 0 ; 0 0 1 0 0 ] ;
73 A0_L3 = A0_L3−eye (5 ) ;
74 V0_L3 = ze ro s (5 , 4 ) ;
75 V0_L3 ( : , 3 ) = [ 0 0 −beta 0 −beta ] ’ ;
76
77 F0_L3 = ze ro s ( ( ( Np+1)∗5) , l ength ) ;
78
79 f o r k = 1 : Np+1
80
81 F0_L3 ((1+5∗k−5) : ( 5∗ k ) , (6+5∗k−5) :(5+5∗k ) ) = A0_L3 ;
82 F0_L3 ((1+5∗k−5) : ( 5∗ k ) , ( ( 5∗ ( Np+2)+1)+4∗k ) : ( ( 5 ∗ ( Np+2)+4)+4∗k ) )=

V0_L3 ;
83
84 b0_L3 ((1+5∗k−5) : ( 5∗ k ) , : ) = [−beta −beta −beta−p2 (k , : ) −beta −beta−

p3 (k , : ) ] ’ ;
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85 end
86 %% Matr ices A0 f o r mode l=4 cyc l e k
87 A0_L4 = [0 0 0 0 0 ;0 0 0 0 0 ; 0 0 0 0 0 ;0 1 0 0 0 ; 0 0 0 1 0 ] ;
88 A0_L4 = A0_L4−eye (5 ) ;
89 V0_L4 = ze ro s (5 , 4 ) ;
90 V0_L4 ( : , 4 ) = [ 0 0 0 −beta −beta ] ’ ;
91
92 F0_L4 = ze ro s ( ( ( Np+1)∗5) , l ength ) ;
93
94 f o r k = 1 : Np+1
95
96 F0_L4 ((1+5∗k−5) : ( 5∗ k ) , (6+5∗k−5) :(5+5∗k ) ) = A0_L4 ;
97 F0_L4 ((1+5∗k−5) : ( 5∗ k ) , ( ( 5∗ ( Np+2)+1)+4∗k ) : ( ( 5 ∗ ( Np+2)+4)+4∗k ) )=

V0_L4 ;
98
99 b0_L4 ((1+5∗k−5) : ( 5∗ k ) , : ) = [−beta −beta −beta −beta−p2 (k , : ) −beta−

p4 (k , : ) ] ’ ;
100 end
101
102 %% Total c on s t r a i n t matr i ce s f o r a l l the modes cy c l e k
103 F0 = [ F0_L1 ; F0_L2 ; F0_L3 ; F0_L4 ] ;
104
105 b0_0 = [ b0_L1 ; b0_L2 ; b0_L3 ; b0_L4 ] ;
106
107
108 %% Matr ices A1 f o r mode l=1 cyc l e k
109 A1_L1 = [ eye (5 ) −eye (5 ) ] ;
110 A1_L1 ( 5 , : ) = 0 ;
111 V1_L1 = ze ro s (5 , 4 ) ;
112 V1_L1 ( : , 1 ) = −ones ( 5 , 1 ) ∗beta ;
113
114 F1_L1 = ze ro s ( ( Np+1)∗5 , l ength ) ;
115 b1_L1 = ze ro s ( ( Np+1)∗5 , 1) ;
116 f o r k = 1 : Np
117
118 F1_L1 ((1+5∗k−5) : ( 5∗ k ) , (6+5∗k−5) :(10+5∗k ) ) = A1_L1 ;
119 F1_L1 ((1+5∗k−5) : ( 5∗ k ) , ( ( 5∗ ( Np+2)+1)+4∗k ) : ( ( 5 ∗ ( Np+2)+4)+4∗k ) ) =

V1_L1 ;
120
121 b1_L1 ((1+5∗k−5) : ( 5∗ k ) , : ) = [−beta−p1 (k , : ) −beta −beta−p3 (k , : ) −

beta −beta ] ’ ;
122 end
123
124 %% Matr ices f o r A1 f o r mode l=2 cy c l e k
125
126 A1_L2 = [ eye (5 ) −eye (5 ) ] ;
127 A1_L2 ( 5 , : ) = 0 ;
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128 V1_L2 = ze ro s (5 , 4 ) ;
129 V1_L2 ( : , 2 ) = −ones ( 5 , 1 ) ∗beta ;
130

131 F1_L2 = ze ro s ( ( Np+1)∗5 , l ength ) ;
132 b1_L2 = ze ro s ( ( Np+1)∗5 , 1) ;
133 f o r k = 1 : Np
134

135 F1_L2 ((1+5∗k−5) : ( 5∗ k ) , (6+5∗k−5) :(10+5∗k ) ) = A1_L2 ;
136 F1_L2 ((1+5∗k−5) : ( 5∗ k ) , ( ( 5∗ ( Np+2)+1)+4∗k ) : ( ( 5 ∗ ( Np+2)+4)+4∗k ) ) =

V1_L2 ;
137

138 b1_L2 ((1+5∗k−5) : ( 5∗ k ) , : ) = [−beta−p1 (k , : ) −beta −beta −beta−p4 (k
, : ) −beta ] ’ ;

139 end
140

141 %% Matr ices f o r A1 f o r mode l=3 cy c l e k
142

143 A1_L3 = [ eye (5 ) −eye (5 ) ] ;
144 A1_L3 ( 5 , : ) = 0 ;
145 V1_L3 = ze ro s (5 , 4 ) ;
146 V1_L3 ( : , 3 ) = −ones ( 5 , 1 ) ∗beta ;
147

148 F1_L3 = ze ro s ( ( Np+1)∗5 , l ength ) ;
149 b1_L3 = ze ro s ( ( Np+1)∗5 , 1) ;
150 f o r k = 1 : Np
151

152 F1_L3 ((1+5∗k−5) : ( 5∗ k ) , (6+5∗k−5) :(10+5∗k ) ) = A1_L3 ;
153 F1_L3 ((1+5∗k−5) : ( 5∗ k ) , ( ( 5∗ ( Np+2)+1)+4∗k ) : ( ( 5 ∗ ( Np+2)+4)+4∗k ) ) =

V1_L3 ;
154

155 b1_L3 ((1+5∗k−5) : 5∗ k , : ) = [−beta −beta−p2 (k , : ) −beta−p3 (k , : ) −beta
−beta ] ’ ;

156 end
157

158 %% Matr ices f o r A1 f o r mode l=4 cy c l e k
159

160 A1_L4 = [ eye (5 ) −eye (5 ) ] ;
161 A1_L4 ( 5 , : ) = 0 ;
162 V1_L4 = ze ro s (5 , 4 ) ;
163 V1_L4 ( : , 4 ) = −ones ( 5 , 1 ) ∗beta ;
164

165 F1_L4 = ze ro s ( ( Np+1)∗5 , l ength ) ;
166 b1_L4 = ze ro s ( ( Np+1)∗5 , 1) ;
167 f o r k = 1 : Np
168

169 F1_L4 ((1+5∗k−5) : ( 5∗ k ) , (6+5∗k−5) :(10+5∗k ) ) = A1_L4 ;
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170 F1_L4 ((1+5∗k−5) : ( 5∗ k ) , ( ( 5∗ ( Np+2)+1)+4∗k ) : ( ( 5 ∗ ( Np+2)+4)+4∗k ) ) =
V1_L4 ;

171
172 b1_L4 ((1+5∗k−5) : 5∗ k , : ) = [−beta −beta−p2 (k , : ) −beta −beta−p4 (k , : )

−beta ] ’ ;
173 end
174
175 %% Total c on s t r a i n t matr i ce s f o r a l l the modes cy c l e k−1
176 F1 = [ F1_L1 ; F1_L2 ; F1_L3 ; F1_L4 ] ;
177
178 b1_1 = [ b1_L1 ; b1_L2 ; b1_L3 ; b1_L4 ] ;
179
180 %% Const ra in t s f o r the input mode l=1
181 AU_L1 = −eye (5 ) ;
182 VU_L1 = ze ro s (5 , 4 ) ;
183 VU_L1 ( : , 1 ) = [−beta 0 0 0 0 ] ’ ;
184 U_L1 = [1 0 0 0 0 ] ’ ;
185
186 FU_L1 = ze ro s ( ( Np+1)∗5 , l ength ) ;
187
188 f o r k = 1 : ( Np+1)
189 FU_L1 ((1+5∗k−5) : ( 5∗ k ) , (6+5∗k−5) :(5+5∗k ) ) = AU_L1 ;
190 FU_L1 ((1+5∗k−5) : ( 5∗ k ) , (5∗ ( Np+2)+1+4∗k ) : ( 5 ∗ ( Np+2)+4+4∗k ) ) = VU_L1 ;
191 FU_L1 ((1+5∗k−5) : ( 5∗ k ) , (5∗ ( Np+2)+4∗(Np+2)+k ) ) = U_L1 ;
192
193 bU_L1 ((1+5∗k−5) : ( 5∗ k ) , 1) = −ones ( 5 , 1 ) ∗beta ;
194 end
195
196 %% Constra int f o r the input mode l=2
197 AU_L2 = −eye (5 ) ;
198 VU_L2 = ze ro s (5 , 4 ) ;
199 VU_L2 ( : , 2 ) = [−beta 0 0 0 0 ] ’ ;
200 U_L2 = [1 0 0 0 0 ] ’ ;
201
202 FU_L2 = ze ro s ( ( Np+1)∗5 , l ength ) ;
203
204 f o r k = 1 : ( Np+1)
205 FU_L2 ((1+5∗k−5) : ( 5∗ k ) , (6+5∗k−5) :(5+5∗k ) ) = AU_L2 ;
206 FU_L2 ((1+5∗k−5) : ( 5∗ k ) , (5∗ ( Np+2)+1+4∗k ) : ( 5 ∗ ( Np+2)+4+4∗k ) ) = VU_L2 ;
207 FU_L2 ((1+5∗k−5) : ( 5∗ k ) , (5∗ ( Np+2)+4∗(Np+2)+k ) ) = U_L2 ;
208
209 bU_L2 ((1+5∗k−5) : ( 5∗ k ) , 1) = −ones ( 5 , 1 ) ∗beta ;
210 end
211
212 %% Const ra in t s f o r the input mode l=3
213 AU_L3 = −eye (5 ) ;
214 VU_L3 = ze ro s (5 , 4 ) ;
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215 VU_L3 ( : , 3 ) = [ 0 −beta 0 0 0 ] ’ ;
216 U_L3 = [0 1 0 0 0 ] ’ ;
217

218 FU_L3 = ze ro s ( ( Np+1)∗5 , l ength ) ;
219

220 f o r k = 1 : ( Np+1)
221 FU_L3 ((1+5∗k−5) : ( 5∗ k ) , (6+5∗k−5) :(5+5∗k ) ) = AU_L3 ;
222 FU_L3 ((1+5∗k−5) : ( 5∗ k ) , (5∗ ( Np+2)+1+4∗k ) : ( 5 ∗ ( Np+2)+4+4∗k ) ) = VU_L3 ;
223 FU_L3 ((1+5∗k−5) : ( 5∗ k ) , (5∗ ( Np+2)+4∗(Np+2)+k ) ) = U_L3 ;
224

225 bU_L3 ((1+5∗k−5) : ( 5∗ k ) , 1) = −ones ( 5 , 1 ) ∗beta ;
226 end
227

228

229 %% Const ra in t s f o r the input mode l=4
230

231 AU_L4 = −eye (5 ) ;
232 VU_L4 = ze ro s (5 , 4 ) ;
233 VU_L4 ( : , 4 ) = [ 0 −beta 0 0 0 ] ’ ;
234 U_L4 = [0 1 0 0 0 ] ’ ;
235

236 FU_L4 = ze ro s ( ( Np+1)∗5 , l ength ) ;
237

238 f o r k = 1 : ( Np+1)
239 FU_L4 ((1+5∗k−5) : ( 5∗ k ) , (6+5∗k−5) :(5+5∗k ) ) = AU_L4 ;
240 FU_L4 ((1+5∗k−5) : ( 5∗ k ) , (5∗ ( Np+2)+1+4∗k ) : ( 5 ∗ ( Np+2)+4+4∗k ) ) = VU_L4 ;
241 FU_L4 ((1+5∗k−5) : ( 5∗ k ) , (5∗ ( Np+2)+4∗(Np+2)+k ) ) = U_L4 ;
242

243 bU_L4 ((1+5∗k−5) : ( 5∗ k ) , 1) = −ones ( 5 , 1 ) ∗beta ;
244 end
245

246 %% Total c on s t r a i n t matr i ce s f o r a l l input modes at cy c l e k
247 FU = [ FU_L1 ; FU_L2 ; FU_L3 ; FU_L4 ] ;
248

249 bU = [ bU_L1 ; bU_L2 ; bU_L3 ; bU_L4 ] ;
250

251 %% Order ings c on s t r a i n t f o r the proce s s o f machine 5 normal binary
var

252 Aordk = ze ro s (Np , l ength ) ;
253 Aordk1 = ze ro s (Np−1, l ength ) ;
254 Aordk2 = ze ro s (Np−2, l ength ) ;
255 Aordk3 = ze ro s (Np−3, l ength ) ;
256 Aordk4 = ze ro s (Np−4, l ength ) ;
257 Aordk5 = ze ro s (Np−5, l ength ) ;
258 Aordk6 = ze ro s (Np−6, l ength ) ;
259
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260 f o r k = 1 : Np % Matr ices f o r the non−
conjunct ca s e s o f the binary v a r i a b l e s

261 Aordk (k , 10+5∗k ) = 1 ;
262 Aordk ( : , 1 0 ) = −1;
263 Aordk (k , l ength−sum ( 1 : Np )+k ) = −beta ;
264 bordk (k , 1 ) = −beta−p5 (k ) ;
265 end
266
267 f o r k = 2 : Np
268 Aordk1 (k−1,10+5∗k ) = 1 ;
269 Aordk1 ( : , 1 5 ) = −1;
270 Aordk1 (k−1, length−sum ( 1 : Np )+Np+(k−1) ) = −beta ;
271 bordk1 (k−1 ,1) =−beta−p5 (k ) ;
272 end
273
274 f o r k = 3 : Np
275 Aordk2 (k−2,10+5∗k ) = 1 ;
276 Aordk2 ( : , 2 0 ) = −1;
277 Aordk2 (k−2, length−sum ( 1 : Np )+Np+(Np−1)+(k−2) ) = −beta ;
278 bordk2 (k−2 ,1) =−beta−p5 (k ) ;
279 end
280
281 f o r k = 4 : Np
282 Aordk3 (k−3,10+5∗k ) = 1 ;
283 Aordk3 ( : , 2 5 ) = −1;
284 Aordk3 (k−3, length−sum ( 1 : Np )+Np+(Np−1)+(Np−2)+(k−3) ) = −beta ;
285 bordk3 (k−3 ,1) =−beta−p5 (k ) ;
286 end
287
288 f o r k = 5 : Np
289 Aordk4 (k−4,10+5∗k ) = 1 ;
290 Aordk4 ( : , 3 0 ) = −1;
291 Aordk4 (k−4, length−sum ( 1 : Np )+Np+(Np−1)+(Np−2)+(Np−3)+(k−4) ) = −beta

;
292 bordk4 (k−4 ,1) =−beta−p5 (k ) ;
293 end
294
295 f o r k = 6 : Np
296 Aordk5 (k−5,10+5∗k ) = 1 ;
297 Aordk5 ( : , 3 5 ) = −1;
298 Aordk5 (k−5, length−sum ( 1 : Np )+Np+(Np−1)+(Np−2)+(Np−3)+(Np−4)+(k−5) )

= −beta ;
299 bordk5 (k−5 ,1) =−beta−p5 (k ) ;
300 end
301
302 f o r k = 7 : Np
303 Aordk6 (k−6,10+5∗k ) = 1 ;
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304 Aordk6 ( : , 4 0 ) = −1;
305 Aordk6 (k−6, length−sum ( 1 : Np )+Np+(Np−1)+(Np−2)+(Np−3)+(Np−4)+(Np−5)

+(k−6) ) = −beta ;
306 bordk6 (k−6 ,1) =−beta−p5 (k ) ;
307 end
308
309 Fordtot = [ Aordk ; Aordk1 ; Aordk2 ; Aordk3 ; Aordk4 ; Aordk5 ; Aordk6 ] ;
310 bordtot = [ bordk ; bordk1 ; bordk2 ; bordk3 ; bordk4 ; bordk5 ; bordk6 ] ;
311
312 %% Order ings c on s t r a i n t f o r the proce s s o f machine 5 normal binary

var
313 Aordinv = ze ro s (1 , l ength ) ;
314 Aordinv1 = ze ro s (2 , l ength ) ;
315 Aordinv2 = ze ro s (3 , l ength ) ;
316 Aordinv3 = ze ro s (4 , l ength ) ;
317 Aordinv4 = ze ro s (5 , l ength ) ;
318 Aordinv5 = ze ro s (6 , l ength ) ;
319
320 f o r k = 1 % Matr ices f o r the conjunct binary va r i ab l e ca s e s
321 Aordinv (1 ,10+5∗k ) = −1;
322 Aordinv (1 ,5+5∗k ) = 1 ;
323 Aordinv (1 , 90 ) = beta ;
324 bordinv = −p5 (k ) ;
325 end
326
327 f o r k = 1:2
328 Aordinv1 ( : , 2 0 ) = −1;
329 Aordinv1 (k ,5+5∗k ) = 1 ;
330 Aordinv1 (1 ,90+1) = beta ;
331 Aordinv1 (2 ,90+1+(Np−1) ) = beta ;
332 bordinv1 (k , 1 ) = −p5 (k ) ;
333 end
334
335 f o r k = 1:3
336 Aordinv2 ( : , 2 5 ) = −1;
337 Aordinv2 (k ,5+5∗k ) = 1 ;
338 Aordinv2 (1 ,90+2) = beta ;
339 Aordinv2 (2 ,90+2+(Np−1) ) = beta ;
340 Aordinv2 (3 ,90+2+(Np−1)+(Np−2) ) = beta ;
341 bordinv2 (k , 1 ) = −p5 (k ) ;
342 end
343
344 f o r k = 1:4
345 Aordinv3 ( : , 3 0 ) = −1;
346 Aordinv3 (k ,5+5∗k ) = 1 ;
347 Aordinv3 (1 ,90+3) = beta ;
348 Aordinv3 (2 ,90+3+(Np−1) ) = beta ;
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349 Aordinv3 (3 ,90+3+(Np−1)+(Np−2) ) = beta ;
350 Aordinv3 (4 ,90+3+(Np−1)+(Np−2)+(Np−3) ) = beta ;
351 bordinv3 (k , 1 ) = −p5 (k ) ;
352 end
353
354 f o r k = 1:5
355 Aordinv4 ( : , 3 5 ) = −1;
356 Aordinv4 (k ,5+5∗k ) = 1 ;
357 Aordinv4 (1 ,90+4) = beta ;
358 Aordinv4 (2 ,90+4+(Np−1) ) = beta ;
359 Aordinv4 (3 ,90+4+(Np−1)+(Np−2) ) = beta ;
360 Aordinv4 (4 ,90+4+(Np−1)+(Np−2)+(Np−3) ) = beta ;
361 Aordinv4 (5 ,90+4+(Np−1)+(Np−2)+(Np−3)+(Np−4) ) = beta ;
362 bordinv4 (k , 1 ) = −p5 (k ) ;
363 end
364
365 f o r k = 1:6
366 Aordinv5 ( : , 4 0 ) = −1;
367 Aordinv5 (k ,5+5∗k ) = 1 ;
368 Aordinv5 (1 ,90+5) = beta ;
369 Aordinv5 (2 ,90+5+(Np−1) ) = beta ;
370 Aordinv5 (3 ,90+5+(Np−1)+(Np−2) ) = beta ;
371 Aordinv5 (4 ,90+5+(Np−1)+(Np−2)+(Np−3) ) = beta ;
372 Aordinv5 (5 ,90+5+(Np−1)+(Np−2)+(Np−3)+(Np−4) ) = beta ;
373 Aordinv5 (6 ,90+5+(Np−1)+(Np−2)+(Np−3)+(Np−4)+(Np−5) ) = beta ;
374 bordinv5 (k , 1 ) = −p5 (k ) ;
375 end
376
377 f o r k = 1:7
378 Aordinv6 ( : , 4 5 ) = −1;
379 Aordinv6 (k ,5+5∗k ) = 1 ;
380 Aordinv6 (1 ,90+6) = beta ;
381 Aordinv6 (2 ,90+6+(Np−1) ) = beta ;
382 Aordinv6 (3 ,90+6+(Np−1)+(Np−2) ) = beta ;
383 Aordinv6 (4 ,90+6+(Np−1)+(Np−2)+(Np−3) ) = beta ;
384 Aordinv6 (5 ,90+6+(Np−1)+(Np−2)+(Np−3)+(Np−4) ) = beta ;
385 Aordinv6 (6 ,90+6+(Np−1)+(Np−2)+(Np−3)+(Np−4)+(Np−5) ) = beta ;
386 Aordinv6 (7 ,90+6+(Np−1)+(Np−2)+(Np−3)+(Np−4)+(Np−5)+(Np−6) ) = beta ;
387 bordinv6 (k , 1 ) = −p5 (k ) ;
388 end
389
390 Fordtotinv = [ Aordinv ; Aordinv1 ; Aordinv2 ; Aordinv3 ; Aordinv4 ;

Aordinv5 ; Aordinv6 ] ;
391 bordtotinv = [ bordinv ; bordinv1 ; bordinv2 ; bordinv3 ; bordinv4 ;

bordinv5 ; bordinv6 ] ;
392
393 %% Equal i ty c on s t r a i n t s w. r . t . the binary v a r i a b l e s
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394 Vcon = [1 1 1 1 ] ;
395
396 Veq1 = zero s (Np+1, l ength ) ;
397 beq1 = ones (Np+1, 1) ;
398
399 f o r k = 1 : ( Np+1)
400 Veq1 (k , (46+4∗k ) :(49+4∗k ) ) = Vcon ; % Constra int one binary

va r i ab l e per cy c l e i s chosen
401 end
402
403 Veq2 = zero s (5 , l ength ) ; % I n i t i a l i z e z (k−1)
404 Veq2 ( 1 : 5 , 1 : 5 ) = eye (5 ) ;
405 beq2 = zero s (5 , 1 ) ;
406
407 Veq3 = zero s (4 , l ength ) ; % I n i t i a l i z e v (k−1)
408 Veq3 ( 1 : 4 , 46 : 49 ) = eye (4 ) ;
409 beq3 = ze ro s (4 , 1 ) ;
410
411 Veq4 = ze ro s (Np+1, l ength ) ; % I n i t i a l i z e a l l inputs equal to 0
412 Veq4 ( 1 : ( Np+1) , (5∗ ( Np+2)+4∗(Np+2)+1) : ( length−sum ( 1 : Np ) ) ) = eye (Np

+1) ;
413 beq4 = ze ro s (Np+1, 1) ;
414
415
416 i f t == 0 % I n i t i a l i z e modes f o r i n i t i a l s chedu l e r
417 Veq9 = ze ro s (4 , l ength ) ;
418 f o r k = 1:4
419 Veq9 (k ,46+4∗k−1+modes (k ) ) = 1 ;
420 beq9 = ones ( 4 , 1 ) ;
421 end
422 end
423
424 %% Bui ld ing the c o s t f un c t i on
425 C1 = ze ro s (1 , 5∗ ( Np+2) ) ; % Cost func t i on f o r endtimes o f a l l j obs
426 C1 (1 , 5∗ ( Np+2) ) = 1 ;
427 C1 (1 , 5∗ ( Np+2)−5) = 1 ;
428 C1 (1 , 5∗ ( Np+2)−10) = 1 ;
429 C1 (1 , 5∗ ( Np+2)−15) = 1 ;
430 C1 (1 , 5∗ ( Np+2)−20) = 1 ;
431 C1 (1 , 5∗ ( Np+2)−25) = 1 ;
432 C1 (1 , 5∗ ( Np+2)−30) = 1 ;
433 C1 (1 , 5∗ ( Np+2)−35) = 1 ;
434 C1 (1 , 5∗ ( Np+2)−40) = 1 ;
435
436 C2 = [ ze ro s (1 , 4 ) −0.01∗Zvec ] ; % Cost func t i on f o r unnecessary mode

swi tch ing
437
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438 C3 = −ones (1 , Np+1) ∗0 . 0 1 ; % Pos s i b l e co s t func t i on f o r input weight
439
440 C4 = zero s (1 , sum ( 1 : Np ) ) ; % Cost func t i on f o r o rde r ing binary

v a r i a b l e s
441
442 C = [ C1 C2 C3 C4 ] ;
443
444 %% Making the c on s t r a i n t matr i ce s
445 F = [ F0 ; F1 ; FU ; Fordtot ; Fordtotinv ] ; % In equa l i t y c on s t r a i n t s
446 b = [ b0_0 ; b1_1 ; bU ; bordtot ; bordtotinv ] ;
447
448 i f t>=1 % Equal i ty c on s t r a i n t s
449 Veq = [ Veq1 ; Veq2 ; Veq3 ; Veq4 ; Veq5 ; Veq6 ; Veq7 ; Veq8 ] ;
450 beq = [ beq1 ; beq2 ; beq3 ; beq4 ; beq5 ; beq6 ; beq7 ; beq8 ] ;
451
452 e l s e
453 Veq = [ Veq1 ; Veq2 ; Veq3 ; Veq4 ; Veq9 ] ;
454 beq = [ beq1 ; beq2 ; beq3 ; beq4 ; beq9 ] ;
455 end
456
457 %% Mixed−i n t e g e r l i n e a r programming
458 lb = ze ro s ( length , 1 ) ;
459 ub = [ ones (5∗ ( Np+2) ,1 ) ∗ I n f ; ones (4∗ ( Np+2) ,1 ) ; ones ( ( Np+1) ,1 ) ∗ I n f ;

ones (sum ( 1 : Np ) , 1) ] ;
460 intcon = [46 : 8 1 , 90 : l ength ] ;
461
462 [ X , FVAL , EXITFLAG ] = intlinprog (C ’ , intcon , F , b , Veq , beq , lb , ub

) ;
463 X ( intcon ) = round (X ( intcon ) ) ;
464
465 %% Making the vec to r Y with a l l nece s sa ry in fo rmat ion
466 Y = ze ro s (10 , Np+1) ;
467
468 f o r k = 1 : ( Np+1)
469 Y ( 1 : 5 , k ) = X((6+5∗k−5) :(5+5∗k ) , : ) ;
470 Y ( 6 : 9 , k ) = X ((46+4∗k ) :(49+4∗k ) , : ) ;
471 Y (10 , k ) = X(81+k , : ) ;
472 end
473
474
475 %% Plo t t i ng
476 x = (1 : Np+1) ;
477
478 Z = Y ( 6 : 9 , : ) ;
479
480
481 f o r i = 1 : ( Np+1)
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482 modes (1 , i ) = f i nd (Z ( : , i ) >0.1) ;
483 end
484
485 % f i g u r e
486 % plo t (x , Y( 1 : 5 , : ) )
487 % legend ( ’ x1 (k ) ’ , ’ x2 (k ) ’ , ’ x3 (k ) ’ , ’ x4 (k ) ’ , ’ x5 (k ) ’ )
488 % t i t l e ( ’ S t a r t i ng t imes o f p r o c e s s e s per machine ’ )
489 % x lab e l ( ’ Batch (k ) ’ )
490 % y lab e l ( ’ S t a r t i ng time ( s ) ’ )
491 %
492 %
493 % f i g u r e
494 % plo t (x ,Y( 6 , : ) , ’ s ’ , x ,Y( 7 , : ) , ’∗ ’ , x ,Y( 8 , : ) , ’ o ’ , x ,Y( 9 , : ) , ’d ’ )
495 % legend ( ’Mode 1 ’ , ’Mode 2 ’ , ’Mode 3 ’ , ’Mode 4 ’ )
496 % t i t l e ( ’ Optimal sequence o f modes ’ )
497 % x lab e l ( ’Modes ’ )
498 % y lab e l ( ’ Act ive or i na c t i v e ’ )
499
500 % f i g u r e
501 % plo t (x , Y( 1 0 , : ) , ’ o ’ )
502 % legend ( ’ u (k ) ’ )
503 % t i t l e ( ’ Times o f incoming batches to process ’ )
504 % x lab e l ( ’ Batch (k ) ’ )
505 % y lab e l ( ’ Incoming time ( s ) ’ )
506
507 %% Simulat ion o f begin and endtimes from the opt imiza t i on
508
509 [ Ysimend , Ystart ] = dynSimulation ( modes , p1 , p2 , p3 , p4 , p5 , Y , Np )

;
510
511 end

B-1-3 Scheduler simulation file updating Ystart and Yend

1 f unc t i on [ Ysimend , Ystart ] = dynSimulation ( modes , p1inp , p2inp ,
p3inp , p4inp , p5inp , Y , Np )

2 %%
3 Endtimematrix = ze ro s ( 5 , ( Np+1) ) ;
4 Y = Y ( 1 : 5 , : ) ;
5 f o r k = 1 : Np+1
6 i f modes (k ) == 1
7 Y (2 , k ) = 0 ;
8 Y (4 , k ) = 0 ;
9

10 e l s e i f modes (k ) == 2
11 Y (2 , k ) = 0 ;
12 Y (3 , k ) = 0 ;
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13
14 e l s e i f modes (k ) == 3
15 Y (1 , k ) = 0 ;
16 Y (4 , k ) = 0 ;
17
18 e l s e i f modes (k ) == 4
19 Y (1 , k ) = 0 ;
20 Y (3 , k ) = 0 ;
21 end
22
23 i f modes (k ) == 1
24 Endtimesmatrix (1 , k ) = Y (1 , k )+p1inp (k ) ;
25 Endtimesmatrix (3 , k ) = Y (3 , k )+p3inp (k ) ;
26 Endtimesmatrix (5 , k ) = Y (5 , k )+p5inp (k ) ;
27
28 e l s e i f modes (k ) == 2
29 Endtimesmatrix (1 , k ) = Y (1 , k )+p1inp (k ) ;
30 Endtimesmatrix (4 , k ) = Y (4 , k )+p4inp (k ) ;
31 Endtimesmatrix (5 , k ) = Y (5 , k )+p5inp (k ) ;
32
33 e l s e i f modes (k ) == 3
34 Endtimesmatrix (2 , k ) = Y (2 , k )+p2inp (k ) ;
35 Endtimesmatrix (3 , k ) = Y (3 , k )+p3inp (k ) ;
36 Endtimesmatrix (5 , k ) = Y (5 , k )+p5inp (k ) ;
37
38 e l s e i f modes (k ) == 4
39 Endtimesmatrix (2 , k ) = Y (2 , k )+p2inp (

k ) ;
40 Endtimesmatrix (4 , k ) = Y (4 , k )+p4inp (

k ) ;
41 Endtimesmatrix (5 , k ) = Y (5 , k )+p5inp (

k ) ;
42 end
43 end
44 Ysimend = Endtimesmatrix ;
45 Ystart = Y ;
46 end

B-1-4 Scheduler simulation file comparison fixed initial scheduler

1 f unc t i on [ Ystart , Ysimend , modes , Z , checkFVAL , p1 , p2 , p3 , p4 , p5 ]
= dynScheduleSim (p1 , p2 , p3 , p4 , p5 , Np , l ength , cycle , modes ,
beta , Zvec , X1 )

2
3 %% Matr ices A0 f o r mode l=1 cyc l e k
4 A0_L1 = [0 0 0 0 0 ;0 0 0 0 0 ;1 0 0 0 0 ;0 0 0 0 0 ; 0 0 1 0 0 ] ;
5 A0_L1 = A0_L1−eye (5 ) ;
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6 V0_L1 = ze ro s (5 , 4 ) ;
7 V0_L1 ( : , 1 ) = [ 0 0 −beta 0 −beta ] ’ ;
8
9 F0_L1 = ze ro s ( ( ( Np+1)∗5) , l ength ) ;

10
11 f o r k = 1 : Np+1
12
13 F0_L1 ((1+5∗k−5) : ( 5∗ k ) , (6+5∗k−5) :(5+5∗k ) ) = A0_L1 ;
14 F0_L1 ((1+5∗k−5) : ( 5∗ k ) , ( ( 5∗ ( Np+2)+1)+4∗k ) : ( ( 5 ∗ ( Np+2)+4)+4∗k ) )=

V0_L1 ;
15
16 b0_L1 ((1+5∗k−5) : ( 5∗ k ) , : ) = [−beta −beta −beta−p1 (k , : ) −beta −beta−

p3 (k , : ) ] ’ ;
17 end
18 %% Matr ices A0 f o r mode l=2 cyc l e k
19 A0_L2 = [0 0 0 0 0 ;0 0 0 0 0 ; 0 0 0 0 0 ;1 0 0 0 0 ; 0 0 0 1 0 ] ;
20 A0_L2 = A0_L2−eye (5 ) ;
21 V0_L2 = ze ro s (5 , 4 ) ;
22 V0_L2 ( : , 2 ) = [ 0 0 0 −beta −beta ] ’ ;
23
24 F0_L2 = ze ro s ( ( ( Np+1)∗5) , l ength ) ;
25
26 f o r k = 1 : Np+1
27
28 F0_L2 ((1+5∗k−5) : ( 5∗ k ) , (6+5∗k−5) :(5+5∗k ) ) = A0_L2 ;
29 F0_L2 ((1+5∗k−5) : ( 5∗ k ) , ( ( 5∗ ( Np+2)+1)+4∗k ) : ( ( 5 ∗ ( Np+2)+4)+4∗k ) )=

V0_L2 ;
30
31 b0_L2 ((1+5∗k−5) : ( 5∗ k ) , : ) = [−beta −beta −beta −beta−p1 (k , : ) −beta−

p4 (k , : ) ] ’ ;
32 end
33 %% Matr ices A0 f o r mode l=3 cyc l e k
34 A0_L3 = [0 0 0 0 0 ;0 0 0 0 0 ;0 1 0 0 0 ;0 0 0 0 0 ; 0 0 1 0 0 ] ;
35 A0_L3 = A0_L3−eye (5 ) ;
36 V0_L3 = ze ro s (5 , 4 ) ;
37 V0_L3 ( : , 3 ) = [ 0 0 −beta 0 −beta ] ’ ;
38
39 F0_L3 = ze ro s ( ( ( Np+1)∗5) , l ength ) ;
40
41 f o r k = 1 : Np+1
42
43 F0_L3 ((1+5∗k−5) : ( 5∗ k ) , (6+5∗k−5) :(5+5∗k ) ) = A0_L3 ;
44 F0_L3 ((1+5∗k−5) : ( 5∗ k ) , ( ( 5∗ ( Np+2)+1)+4∗k ) : ( ( 5 ∗ ( Np+2)+4)+4∗k ) )=

V0_L3 ;
45
46 b0_L3 ((1+5∗k−5) : ( 5∗ k ) , : ) = [−beta −beta −beta−p2 (k , : ) −beta −beta−

p3 (k , : ) ] ’ ;
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47 end
48 %% Matr ices A0 f o r mode l=4 cyc l e k
49 A0_L4 = [0 0 0 0 0 ;0 0 0 0 0 ; 0 0 0 0 0 ;0 1 0 0 0 ; 0 0 0 1 0 ] ;
50 A0_L4 = A0_L4−eye (5 ) ;
51 V0_L4 = ze ro s (5 , 4 ) ;
52 V0_L4 ( : , 4 ) = [ 0 0 0 −beta −beta ] ’ ;
53
54 F0_L4 = ze ro s ( ( ( Np+1)∗5) , l ength ) ;
55
56 f o r k = 1 : Np+1
57
58 F0_L4 ((1+5∗k−5) : ( 5∗ k ) , (6+5∗k−5) :(5+5∗k ) ) = A0_L4 ;
59 F0_L4 ((1+5∗k−5) : ( 5∗ k ) , ( ( 5∗ ( Np+2)+1)+4∗k ) : ( ( 5 ∗ ( Np+2)+4)+4∗k ) )=

V0_L4 ;
60
61 b0_L4 ((1+5∗k−5) : ( 5∗ k ) , : ) = [−beta −beta −beta −beta−p2 (k , : ) −beta−

p4 (k , : ) ] ’ ;
62 end
63
64 %% Total c on s t r a i n t matr i ce s f o r a l l the modes cy c l e k
65 F0 = [ F0_L1 ; F0_L2 ; F0_L3 ; F0_L4 ] ;
66
67 b0_0 = [ b0_L1 ; b0_L2 ; b0_L3 ; b0_L4 ] ;
68
69 %% Matr ices A1 f o r mode l=1 cyc l e k
70 A1_L1 = [ eye (5 ) −eye (5 ) ] ;
71 A1_L1 ( 5 , : ) = 0 ;
72 V1_L1 = ze ro s (5 , 4 ) ;
73 V1_L1 ( : , 1 ) = −ones ( 5 , 1 ) ∗beta ;
74
75 F1_L1 = ze ro s ( ( Np+1)∗5 , l ength ) ;
76 b1_L1 = ze ro s ( ( Np+1)∗5 , 1) ;
77 f o r k = 1 : Np
78
79 F1_L1 ((1+5∗k−5) : ( 5∗ k ) , (6+5∗k−5) :(10+5∗k ) ) = A1_L1 ;
80 F1_L1 ((1+5∗k−5) : ( 5∗ k ) , ( ( 5∗ ( Np+2)+1)+4∗k ) : ( ( 5 ∗ ( Np+2)+4)+4∗k ) ) =

V1_L1 ;
81
82 b1_L1 ((1+5∗k−5) : ( 5∗ k ) , : ) = [−beta−p1 (k , : ) −beta −beta−p3 (k , : ) −

beta −beta ] ’ ;
83 end
84
85 %% Matr ices f o r A1 f o r mode l=2 cy c l e k
86
87 A1_L2 = [ eye (5 ) −eye (5 ) ] ;
88 A1_L2 ( 5 , : ) = 0 ;
89 V1_L2 = ze ro s (5 , 4 ) ;
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90 V1_L2 ( : , 2 ) = −ones ( 5 , 1 ) ∗beta ;
91
92 F1_L2 = ze ro s ( ( Np+1)∗5 , l ength ) ;
93 b1_L2 = ze ro s ( ( Np+1)∗5 , 1) ;
94 f o r k = 1 : Np
95
96 F1_L2 ((1+5∗k−5) : ( 5∗ k ) , (6+5∗k−5) :(10+5∗k ) ) = A1_L2 ;
97 F1_L2 ((1+5∗k−5) : ( 5∗ k ) , ( ( 5∗ ( Np+2)+1)+4∗k ) : ( ( 5 ∗ ( Np+2)+4)+4∗k ) ) =

V1_L2 ;
98
99 b1_L2 ((1+5∗k−5) : ( 5∗ k ) , : ) = [−beta−p1 (k , : ) −beta −beta −beta−p4 (k

, : ) −beta ] ’ ;
100 end
101
102 %% Matr ices f o r A1 f o r mode l=3 cy c l e k
103
104 A1_L3 = [ eye (5 ) −eye (5 ) ] ;
105 A1_L3 ( 5 , : ) = 0 ;
106 V1_L3 = ze ro s (5 , 4 ) ;
107 V1_L3 ( : , 3 ) = −ones ( 5 , 1 ) ∗beta ;
108
109 F1_L3 = ze ro s ( ( Np+1)∗5 , l ength ) ;
110 b1_L3 = ze ro s ( ( Np+1)∗5 , 1) ;
111 f o r k = 1 : Np
112
113 F1_L3 ((1+5∗k−5) : ( 5∗ k ) , (6+5∗k−5) :(10+5∗k ) ) = A1_L3 ;
114 F1_L3 ((1+5∗k−5) : ( 5∗ k ) , ( ( 5∗ ( Np+2)+1)+4∗k ) : ( ( 5 ∗ ( Np+2)+4)+4∗k ) ) =

V1_L3 ;
115
116 b1_L3 ((1+5∗k−5) : 5∗ k , : ) = [−beta −beta−p2 (k , : ) −beta−p3 (k , : ) −beta

−beta ] ’ ;
117 end
118
119 %% Matr ices f o r A1 f o r mode l=4 cy c l e k
120
121 A1_L4 = [ eye (5 ) −eye (5 ) ] ;
122 A1_L4 ( 5 , : ) = 0 ;
123 V1_L4 = ze ro s (5 , 4 ) ;
124 V1_L4 ( : , 4 ) = −ones ( 5 , 1 ) ∗beta ;
125
126 F1_L4 = ze ro s ( ( Np+1)∗5 , l ength ) ;
127 b1_L4 = ze ro s ( ( Np+1)∗5 , 1) ;
128 f o r k = 1 : Np
129
130 F1_L4 ((1+5∗k−5) : ( 5∗ k ) , (6+5∗k−5) :(10+5∗k ) ) = A1_L4 ;
131 F1_L4 ((1+5∗k−5) : ( 5∗ k ) , ( ( 5∗ ( Np+2)+1)+4∗k ) : ( ( 5 ∗ ( Np+2)+4)+4∗k ) ) =

V1_L4 ;
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132
133 b1_L4 ((1+5∗k−5) : 5∗ k , : ) = [−beta −beta−p2 (k , : ) −beta −beta−p4 (k , : )

−beta ] ’ ;
134 end
135
136 %% Total c on s t r a i n t matr i ce s f o r a l l the modes cy c l e k−1
137 F1 = [ F1_L1 ; F1_L2 ; F1_L3 ; F1_L4 ] ;
138
139 b1_1 = [ b1_L1 ; b1_L2 ; b1_L3 ; b1_L4 ] ;
140 %% Const ra in t s f o r the input mode l=1
141 AU_L1 = −eye (5 ) ;
142 VU_L1 = ze ro s (5 , 4 ) ;
143 VU_L1 ( : , 1 ) = [−beta 0 0 0 0 ] ’ ;
144 U_L1 = [1 0 0 0 0 ] ’ ;
145
146 FU_L1 = ze ro s ( ( Np+1)∗5 , l ength ) ;
147
148 f o r k = 1 : ( Np+1)
149 FU_L1 ((1+5∗k−5) : ( 5∗ k ) , (6+5∗k−5) :(5+5∗k ) ) = AU_L1 ;
150 FU_L1 ((1+5∗k−5) : ( 5∗ k ) , (5∗ ( Np+2)+1+4∗k ) : ( 5 ∗ ( Np+2)+4+4∗k ) ) = VU_L1 ;
151 FU_L1 ((1+5∗k−5) : ( 5∗ k ) , (5∗ ( Np+2)+4∗(Np+2)+k ) ) = U_L1 ;
152
153 bU_L1 ((1+5∗k−5) : ( 5∗ k ) , 1) = −ones ( 5 , 1 ) ∗beta ;
154 end
155
156 %% Constra int f o r the input mode l=2
157 AU_L2 = −eye (5 ) ;
158 VU_L2 = ze ro s (5 , 4 ) ;
159 VU_L2 ( : , 2 ) = [−beta 0 0 0 0 ] ’ ;
160 U_L2 = [1 0 0 0 0 ] ’ ;
161
162 FU_L2 = ze ro s ( ( Np+1)∗5 , l ength ) ;
163
164 f o r k = 1 : ( Np+1)
165 FU_L2 ((1+5∗k−5) : ( 5∗ k ) , (6+5∗k−5) :(5+5∗k ) ) = AU_L2 ;
166 FU_L2 ((1+5∗k−5) : ( 5∗ k ) , (5∗ ( Np+2)+1+4∗k ) : ( 5 ∗ ( Np+2)+4+4∗k ) ) = VU_L2 ;
167 FU_L2 ((1+5∗k−5) : ( 5∗ k ) , (5∗ ( Np+2)+4∗(Np+2)+k ) ) = U_L2 ;
168
169 bU_L2 ((1+5∗k−5) : ( 5∗ k ) , 1) = −ones ( 5 , 1 ) ∗beta ;
170 end
171
172 %% Const ra in t s f o r the input mode l=3
173 AU_L3 = −eye (5 ) ;
174 VU_L3 = ze ro s (5 , 4 ) ;
175 VU_L3 ( : , 3 ) = [ 0 −beta 0 0 0 ] ’ ;
176 U_L3 = [0 1 0 0 0 ] ’ ;
177
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178 FU_L3 = ze ro s ( ( Np+1)∗5 , l ength ) ;
179
180 f o r k = 1 : ( Np+1)
181 FU_L3 ((1+5∗k−5) : ( 5∗ k ) , (6+5∗k−5) :(5+5∗k ) ) = AU_L3 ;
182 FU_L3 ((1+5∗k−5) : ( 5∗ k ) , (5∗ ( Np+2)+1+4∗k ) : ( 5 ∗ ( Np+2)+4+4∗k ) ) = VU_L3 ;
183 FU_L3 ((1+5∗k−5) : ( 5∗ k ) , (5∗ ( Np+2)+4∗(Np+2)+k ) ) = U_L3 ;
184
185 bU_L3 ((1+5∗k−5) : ( 5∗ k ) , 1) = −ones ( 5 , 1 ) ∗beta ;
186 end
187
188
189 %% Const ra in t s f o r the input mode l=4
190
191 AU_L4 = −eye (5 ) ;
192 VU_L4 = ze ro s (5 , 4 ) ;
193 VU_L4 ( : , 4 ) = [ 0 −beta 0 0 0 ] ’ ;
194 U_L4 = [0 1 0 0 0 ] ’ ;
195
196 FU_L4 = ze ro s ( ( Np+1)∗5 , l ength ) ;
197
198 f o r k = 1 : ( Np+1)
199 FU_L4 ((1+5∗k−5) : ( 5∗ k ) , (6+5∗k−5) :(5+5∗k ) ) = AU_L4 ;
200 FU_L4 ((1+5∗k−5) : ( 5∗ k ) , (5∗ ( Np+2)+1+4∗k ) : ( 5 ∗ ( Np+2)+4+4∗k ) ) = VU_L4 ;
201 FU_L4 ((1+5∗k−5) : ( 5∗ k ) , (5∗ ( Np+2)+4∗(Np+2)+k ) ) = U_L4 ;
202
203 bU_L4 ((1+5∗k−5) : ( 5∗ k ) , 1) = −ones ( 5 , 1 ) ∗beta ;
204 end
205
206
207 %% Total c on s t r a i n t matr i ce s f o r a l l input modes at cy c l e k
208 FU = [ FU_L1 ; FU_L2 ; FU_L3 ; FU_L4 ] ;
209
210 bU = [ bU_L1 ; bU_L2 ; bU_L3 ; bU_L4 ] ;
211
212 %% Order ings c on s t r a i n t f o r the proce s s o f machine 5 normal binary

var
213 Aordk = ze ro s (Np , l ength ) ;
214 Aordk1 = ze ro s (Np−1, l ength ) ;
215 Aordk2 = ze ro s (Np−2, l ength ) ;
216 Aordk3 = ze ro s (Np−3, l ength ) ;
217 Aordk4 = ze ro s (Np−4, l ength ) ;
218 Aordk5 = ze ro s (Np−5, l ength ) ;
219 Aordk6 = ze ro s (Np−6, l ength ) ;
220
221 f o r k = 1 : Np % Matr ices f o r the non−

conjunct ca s e s o f the binary v a r i a b l e s
222 Aordk (k , 10+5∗k ) = 1 ;
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223 Aordk ( : , 1 0 ) = −1;
224 Aordk (k , l ength−sum ( 1 : Np )+k ) = −beta ;
225 bordk (k , 1 ) = −beta−p5 (k ) ;
226 end
227
228 f o r k = 2 : Np
229 Aordk1 (k−1,10+5∗k ) = 1 ;
230 Aordk1 ( : , 1 5 ) = −1;
231 Aordk1 (k−1, length−sum ( 1 : Np )+Np+(k−1) ) = −beta ;
232 bordk1 (k−1 ,1) =−beta−p5 (k ) ;
233 end
234
235 f o r k = 3 : Np
236 Aordk2 (k−2,10+5∗k ) = 1 ;
237 Aordk2 ( : , 2 0 ) = −1;
238 Aordk2 (k−2, length−sum ( 1 : Np )+Np+(Np−1)+(k−2) ) = −beta ;
239 bordk2 (k−2 ,1) =−beta−p5 (k ) ;
240 end
241
242 f o r k = 4 : Np
243 Aordk3 (k−3,10+5∗k ) = 1 ;
244 Aordk3 ( : , 2 5 ) = −1;
245 Aordk3 (k−3, length−sum ( 1 : Np )+Np+(Np−1)+(Np−2)+(k−3) ) = −beta ;
246 bordk3 (k−3 ,1) =−beta−p5 (k ) ;
247 end
248
249 f o r k = 5 : Np
250 Aordk4 (k−4,10+5∗k ) = 1 ;
251 Aordk4 ( : , 3 0 ) = −1;
252 Aordk4 (k−4, length−sum ( 1 : Np )+Np+(Np−1)+(Np−2)+(Np−3)+(k−4) ) = −beta

;
253 bordk4 (k−4 ,1) =−beta−p5 (k ) ;
254 end
255
256 f o r k = 6 : Np
257 Aordk5 (k−5,10+5∗k ) = 1 ;
258 Aordk5 ( : , 3 5 ) = −1;
259 Aordk5 (k−5, length−sum ( 1 : Np )+Np+(Np−1)+(Np−2)+(Np−3)+(Np−4)+(k−5) )

= −beta ;
260 bordk5 (k−5 ,1) =−beta−p5 (k ) ;
261 end
262
263 f o r k = 7 : Np
264 Aordk6 (k−6,10+5∗k ) = 1 ;
265 Aordk6 ( : , 4 0 ) = −1;
266 Aordk6 (k−6, length−sum ( 1 : Np )+Np+(Np−1)+(Np−2)+(Np−3)+(Np−4)+(Np−5)

+(k−6) ) = −beta ;

Master of Science Thesis A.J.M. van Heusden



138 MATLAB-files

267 bordk6 (k−6 ,1) =−beta−p5 (k ) ;
268 end
269
270 Fordtot = [ Aordk ; Aordk1 ; Aordk2 ; Aordk3 ; Aordk4 ; Aordk5 ; Aordk6 ] ;
271 bordtot = [ bordk ; bordk1 ; bordk2 ; bordk3 ; bordk4 ; bordk5 ; bordk6 ] ;
272 %%
273 Aordinv = ze ro s (1 , l ength ) ;
274 Aordinv1 = ze ro s (2 , l ength ) ;
275 Aordinv2 = ze ro s (3 , l ength ) ;
276 Aordinv3 = ze ro s (4 , l ength ) ;
277 Aordinv4 = ze ro s (5 , l ength ) ;
278 Aordinv5 = ze ro s (6 , l ength ) ;
279
280 f o r k = 1
281 Aordinv (1 ,10+5∗k ) = −1;
282 Aordinv (1 ,5+5∗k ) = 1 ;
283 Aordinv (1 , 90 ) = beta ;
284 bordinv = −p5 (k ) ;
285 end
286
287 f o r k = 1:2
288 Aordinv1 ( : , 2 0 ) = −1;
289 Aordinv1 (k ,5+5∗k ) = 1 ;
290 Aordinv1 (1 ,90+1) = beta ;
291 Aordinv1 (2 ,90+1+(Np−1) ) = beta ;
292 bordinv1 (k , 1 ) = −p5 (k ) ;
293 end
294
295 f o r k = 1:3
296 Aordinv2 ( : , 2 5 ) = −1;
297 Aordinv2 (k ,5+5∗k ) = 1 ;
298 Aordinv2 (1 ,90+2) = beta ;
299 Aordinv2 (2 ,90+2+(Np−1) ) = beta ;
300 Aordinv2 (3 ,90+2+(Np−1)+(Np−2) ) = beta ;
301 bordinv2 (k , 1 ) = −p5 (k ) ;
302 end
303
304 f o r k = 1:4
305 Aordinv3 ( : , 3 0 ) = −1;
306 Aordinv3 (k ,5+5∗k ) = 1 ;
307 Aordinv3 (1 ,90+3) = beta ;
308 Aordinv3 (2 ,90+3+(Np−1) ) = beta ;
309 Aordinv3 (3 ,90+3+(Np−1)+(Np−2) ) = beta ;
310 Aordinv3 (4 ,90+3+(Np−1)+(Np−2)+(Np−3) ) = beta ;
311 bordinv3 (k , 1 ) = −p5 (k ) ;
312 end
313
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314 f o r k = 1:5
315 Aordinv4 ( : , 3 5 ) = −1;
316 Aordinv4 (k ,5+5∗k ) = 1 ;
317 Aordinv4 (1 ,90+4) = beta ;
318 Aordinv4 (2 ,90+4+(Np−1) ) = beta ;
319 Aordinv4 (3 ,90+4+(Np−1)+(Np−2) ) = beta ;
320 Aordinv4 (4 ,90+4+(Np−1)+(Np−2)+(Np−3) ) = beta ;
321 Aordinv4 (5 ,90+4+(Np−1)+(Np−2)+(Np−3)+(Np−4) ) = beta ;
322 bordinv4 (k , 1 ) = −p5 (k ) ;
323 end
324
325 f o r k = 1:6
326 Aordinv5 ( : , 4 0 ) = −1;
327 Aordinv5 (k ,5+5∗k ) = 1 ;
328 Aordinv5 (1 ,90+5) = beta ;
329 Aordinv5 (2 ,90+5+(Np−1) ) = beta ;
330 Aordinv5 (3 ,90+5+(Np−1)+(Np−2) ) = beta ;
331 Aordinv5 (4 ,90+5+(Np−1)+(Np−2)+(Np−3) ) = beta ;
332 Aordinv5 (5 ,90+5+(Np−1)+(Np−2)+(Np−3)+(Np−4) ) = beta ;
333 Aordinv5 (6 ,90+5+(Np−1)+(Np−2)+(Np−3)+(Np−4)+(Np−5) ) = beta ;
334 bordinv5 (k , 1 ) = −p5 (k ) ;
335 end
336
337 f o r k = 1:7
338 Aordinv6 ( : , 4 5 ) = −1;
339 Aordinv6 (k ,5+5∗k ) = 1 ;
340 Aordinv6 (1 ,90+6) = beta ;
341 Aordinv6 (2 ,90+6+(Np−1) ) = beta ;
342 Aordinv6 (3 ,90+6+(Np−1)+(Np−2) ) = beta ;
343 Aordinv6 (4 ,90+6+(Np−1)+(Np−2)+(Np−3) ) = beta ;
344 Aordinv6 (5 ,90+6+(Np−1)+(Np−2)+(Np−3)+(Np−4) ) = beta ;
345 Aordinv6 (6 ,90+6+(Np−1)+(Np−2)+(Np−3)+(Np−4)+(Np−5) ) = beta ;
346 Aordinv6 (7 ,90+6+(Np−1)+(Np−2)+(Np−3)+(Np−4)+(Np−5)+(Np−6) ) = beta ;
347 bordinv6 (k , 1 ) = −p5 (k ) ;
348 end
349
350 Fordtotinv = [ Aordinv ; Aordinv1 ; Aordinv2 ; Aordinv3 ; Aordinv4 ;

Aordinv5 ; Aordinv6 ] ;
351 bordtotinv = [ bordinv ; bordinv1 ; bordinv2 ; bordinv3 ; bordinv4 ;

bordinv5 ; bordinv6 ] ;
352
353 %% Equal i ty c on s t r a i n t s w. r . t . the binary v a r i a b l e s
354 Vcon = [1 1 1 1 ] ;
355
356 Veq1 = zero s (Np+1, l ength ) ;
357 beq1 = ones (Np+1, 1) ;
358
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359 f o r k = 1 : ( Np+1)
360 Veq1 (k , (46+4∗k ) :(49+4∗k ) ) = Vcon ;
361 end
362
363 Veq2 = zero s (5 , l ength ) ;
364 Veq2 ( 1 : 5 , 1 : 5 ) = eye (5 ) ;
365 beq2 = zero s (5 , 1 ) ;
366
367 Veq3 = zero s (4 , l ength ) ;
368 Veq3 ( 1 : 4 , 46 : 49 ) = eye (4 ) ;
369 beq3 = zero s (4 , 1 ) ;
370
371 Veq4 = zero s (Np+1, l ength ) ;
372 Veq4 ( 1 : ( Np+1) , 8 2 : ( length−sum ( 1 : Np ) ) ) = eye (Np+1) ;
373 beq4 = ze ro s (Np+1, 1) ;
374
375 %%
376 Veq5 = ze ro s (4∗ ( Np+2)+sum ( 1 : Np ) , l ength ) ;
377 beq5 = ze ro s (4∗ ( Np+2)+sum ( 1 : Np ) , 1 ) ;
378
379 Veq5 ( 1 : 4∗ ( Np+2) , 46 : 81 ) = eye (36) ;
380 Veq5 (4∗ ( Np+2)+1:(4∗( Np+2)+sum ( 1 : Np ) ) , 90 :117) = eye (28) ;
381
382 beq5 ( 1 : ( 4 ∗ ( Np+2) ) ,1 ) = X1 ( 4 6 : 8 1 ) ;
383 beq5 (4∗ ( Np+2)+1:(4∗( Np+2)+sum ( 1 : Np ) ) , 1 ) = X1 ( 90 : 117 ) ;
384
385 %% Bui ld ing the c o s t f un c t i on
386 C1 = ze ro s (1 , 5∗ ( Np+2) ) ;
387 C1 (1 , 5∗ ( Np+2) ) = 1 ;
388 C1 (1 , 5∗ ( Np+2)−5) = 1 ;
389 C1 (1 , 5∗ ( Np+2)−10) = 1 ;
390 C1 (1 , 5∗ ( Np+2)−15) = 1 ;
391 C1 (1 , 5∗ ( Np+2)−20) = 1 ;
392 C1 (1 , 5∗ ( Np+2)−25) = 1 ;
393 C1 (1 , 5∗ ( Np+2)−30) = 1 ;
394 C1 (1 , 5∗ ( Np+2)−35) = 1 ;
395 C1 (1 , 5∗ ( Np+2)−40) = 1 ;
396
397 C2 = [ ze ro s (1 , 4 ) −0.01∗Zvec ’ ] ;
398
399 C3 = −ones (1 , Np+1) ∗0 . 0 1 ; %Weight matrix o f the input
400 %C3 = ze ro s (1 ,Np+1) ∗0 . 0001 ; %Weight matrix o f the input
401 C4 = ze ro s (1 , sum ( 1 : Np ) ) ;
402
403 C = [ C1 C2 C3 C4 ] ;
404
405 %% Making the c on s t r a i n t matr i ce s
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406 F = [ F0 ; F1 ; FU ; Fordtot ; Fordtotinv ] ;
407 b = [ b0_0 ; b1_1 ; bU ; bordtot ; bordtotinv ] ;
408
409 Veq = [ Veq1 ; Veq2 ; Veq3 ; Veq4 ; Veq5 ] ;
410 beq = [ beq1 ; beq2 ; beq3 ; beq4 ; beq5 ] ;
411
412
413 %% Mixed−i n t e g e r l i n e a r programming
414 lb = zero s ( length , 1 ) ;
415 ub = [ ones (5∗ ( Np+2) ,1 ) ∗ I n f ; ones (4∗ ( Np+2) ,1 ) ; ones ( ( Np+1) ,1 ) ∗ I n f ;

ones (sum ( 1 : Np ) , 1) ] ;
416 intcon = [46 : 8 1 , 90 : l ength ] ;
417
418 [ X , FVAL , EXITFLAG ] = intlinprog (C ’ , intcon , F , b , Veq , beq , lb , ub

) ;
419
420 checkFVAL = FVAL ;
421
422 %% Making the vec to r Y with a l l nece s sa ry in fo rmat ion
423 Y = ze ro s (10 , Np+1) ;
424
425 f o r k = 1 : ( Np+1)
426 Y ( 1 : 5 , k ) = X((6+5∗k−5) :(5+5∗k ) , : ) ;
427 Y ( 6 : 9 , k ) = X ((46+4∗k ) :(49+4∗k ) , : ) ;
428 Y (10 , k ) = X(81+k , : ) ;
429 end
430 %% Plo t t i ng
431 x = (1 : Np+1) ;
432
433 Z = Y ( 6 : 9 , : ) ;
434
435 f o r i = 1 : ( Np+1)
436 modes (1 , i ) = f i nd (Z ( : , i ) >0.1) ;
437 end
438
439 % f i g u r e
440 % plo t (x , Y( 1 : 5 , : ) )
441 % legend ( ’ x1 (k ) ’ , ’ x2 (k ) ’ , ’ x3 (k ) ’ , ’ x4 (k ) ’ , ’ x5 (k ) ’ )
442 % t i t l e ( ’ S t a r t i ng t imes o f p r o c e s s e s per machine ’ )
443 % x lab e l ( ’ Batch (k ) ’ )
444 % y lab e l ( ’ S t a r t i ng time ( s ) ’ )
445 %
446 %
447 % f i g u r e
448 % plo t (x ,Y( 6 , : ) , ’ s ’ , x ,Y( 7 , : ) , ’∗ ’ , x ,Y( 8 , : ) , ’ o ’ , x ,Y( 9 , : ) , ’d ’ )
449 % legend ( ’Mode 1 ’ , ’Mode 2 ’ , ’Mode 3 ’ , ’Mode 4 ’ )
450 % t i t l e ( ’ Optimal sequence o f modes ’ )

Master of Science Thesis A.J.M. van Heusden



142 MATLAB-files

451 % x lab e l ( ’Modes ’ )
452 % y lab e l ( ’ Act ive or i na c t i v e ’ )
453
454 % f i g u r e
455 % plo t (x , Y( 1 0 , : ) , ’ o ’ )
456 % legend ( ’ u (k ) ’ )
457 % t i t l e ( ’ Times o f incoming batches to process ’ )
458 % x lab e l ( ’ Batch (k ) ’ )
459 % y lab e l ( ’ Incoming time ( s ) ’ )
460
461 %% Simulat ion o f the r e a l s t a r t i n g t imes
462 [ Ysimend , Ystart ] = dynSimulation ( modes , p1 , p2 , p3 , p4 , p5 , Y , Np )

;
463 end

B-2 Subsystems MATLAB-files

B-2-1 Mashing main file

1 f unc t i on [ p1 , xlim , xlimest ] = mashing1 ( t_inp , seed )
2 %% Data gather ing f o r mashing tank 1
3
4 Ts = 0 . 0 1 ;
5 a_a = 2 ;
6 k_0 = 0.011497 ;
7 t_0 = 0 ;
8 t_fin = 1000 ;
9 x0 = [ 1 0 0 ; 0 ; 0 ] ;

10 zeta = 0 .99995 ;
11 a = k_0 /3 ;
12 Q = a^2;
13 R = 0 . 1 ;
14
15 [ x1tank1 , x2tank1 , x3tank1 , ymash1 , n , t , w , v ] = datamashing (Ts ,

a_a , k_0 , t_0 , t_fin , x0 , zeta , Q , R , seed ) ;
16
17 %% Estimation f o r mashing tank 1
18 PInit = eye (3 ) ;
19 xInit = [ 1 0 0 ; 0 ; 0 ] ;
20
21 [ xest ] = EKFmashing ( PInit , xInit , ymash1 , Ts , a_a , k_0 , zeta , Q , R ,

t_fin ) ;
22
23 % f i g u r e
24 % plo t ( t (1 :100∗ t_f in ) , xe s t ( : , 1 ) , t (1 : 100∗ t_f in ) , x1tank1 (2 :100∗

t_f in+1) )
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25 % legend ( ’ x1est ’ , ’ x1rea l ’ )
26 %
27 %
28 % f i g u r e
29 % plo t ( t (1 :100∗ t_f in ) , xe s t ( : , 2 ) , t (1 : 100∗ t_f in ) , x2tank1 (2 :100∗

t_f in+1) )
30 % legend ( ’ x2est ’ , ’ x2rea l ’ )
31 %
32 %
33 % f i g u r e
34 % plo t ( t (1 :100∗ t_f in ) , xe s t ( : , 3 ) , t (1 : 100∗ t_f in ) , x3tank1 (2 :100∗

t_f in+1) )
35 % legend ( ’ x3est ’ , ’ x3rea l ’ )
36
37 xlim = f ind ( x2tank1>80) ;
38 xlim = xlim (1 ) ;
39
40 xlimest = f ind ( xest ( : , 2 ) >80) ;
41 xlimest = xlimest (1 ) ;
42
43 %% Pred i c t i on at time t f o r endtime
44 x0 = xest ( t_inp∗1000+1 , : ) ’ ;
45 xpred1 (1 ) = x0 (1 ) ;
46 xpred2 (1 ) = x0 (2 ) ;
47 xpred3 (1 ) = x0 (3 ) ;
48
49 %%
50
51 f o r k = 1 : ( t_fin∗100−(1000∗t_inp ) )
52
53 xpred = f ( xpred1 (k ) , xpred2 (k ) , xpred3 (k ) , Ts , a_a , k_0 , zeta ) ;
54 xpred1 (k+1) = xpred (1 ) ;
55 xpred2 (k+1) = xpred (2 ) ;
56 xpred3 (k+1) = xpred (3 ) ;
57 end
58
59 xnew = [ xest ( 1 : ( 1000∗ t_inp ) +1 ,2) ; xpred2 ( 2 : end ) ’ ] ;
60
61 % f i g u r e
62 % a = s i z e (xnew) ;
63 % a = a (1) ;
64 % plo t ( 1 : a , xnew)
65 % hold on
66 % plo t ( 1 : a , x2tank1 )
67 % x lab e l ( ’Time(mDay) ’ )
68 % y lab e l ( ’ Percentage o f sugars c r ea ted (%) ’ )
69 % legend ( ’ xPred ’ , ’ xReal ’ )

Master of Science Thesis A.J.M. van Heusden



144 MATLAB-files

70

71

72 xpredest = f ind (xnew>80) ;
73 p1 = round ( ( xpredest (1 ) /1000) , 1) ;
74 end

B-2-2 Data gathering mashing function

1 f unc t i on [ x1 , x2 , x3 , y , n , t , w , v ] = datamashing (Ts , a_a , k_0 , t_0
, t_fin , x0 , zeta , Q , R , seed )

2 x1 (1 ) = x0 (1 ) ;
3 x2 (1 ) = x0 (2 ) ;
4 x3 (1 ) = x0 (3 ) ;
5 t (1 ) = 0 ;
6

7 n = ( t_fin−t_0 ) /Ts ;
8 w = sqr t (Q ) ∗wgn (n , 1 , 0 , [ ] , 100∗ seed+1) ;
9 v = sqr t (R ) ∗wgn (n , 1 , 0 , [ ] , seed ) ;

10

11 f o r k = 1 : n
12 x1 (k+1) = x1 (k )−Ts ∗( a_a ∗( k_0+x3 (k ) ) ∗x1 (k ) ) ;
13 x2 (k+1) = x2 (k )+Ts ∗( a_a ∗( k_0+x3 (k ) ) ∗x1 (k ) ) ;
14 x3 (k+1) = zeta∗x3 (k )+ Ts∗w (k ) ;
15

16 t (k+1) = k ;
17 y (k ) = x1 (k )+v (k ) ;
18 end
19 %
20 % f i g u r e
21 % subplot ( 3 , 1 , 1 )
22 % plo t ( t , x1 ) ;
23 % subplot ( 3 , 1 , 2 )
24 % plo t ( t , x2 ) ;
25 % subplot ( 3 , 1 , 3 )
26 % plo t ( t , x3 ) ;
27

28

29 % f i g u r e
30 % subplot ( 2 , 1 , 1 )
31 % plo t ( t , x3 )
32 % subplot ( 2 , 1 , 2 )
33 % plo t ( t ( 1 : l ength ( t )−1) , w)
34 end

B-2-3 EKF mashing
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1 f unc t i on [ xest ] = EKFmashing ( PInit , xInit , y , Ts , a_a , k_0 , zeta , Q
, R , t_fin )

2
3 H = [ 0 ; 0 ; Ts ] ;
4 C = [1 0 0 ] ;
5
6
7 %% I n i t i a l i z a t i o n
8 Pnextnext = PInit ;
9

10 x1 (1 ) = xInit (1 ) ;
11 x2 (1 ) = xInit (2 ) ;
12 x3 (1 ) = xInit (3 ) ;
13
14 %%
15 f o r k = 1 : ( t_fin∗100−1)
16
17 Pnextprev = df (x1 (k ) , x2 (k ) , x3 (k ) , Ts , a_a , k_0 , zeta ) ∗Pnextnext ∗(

df (x1 (k ) , x2 (k ) , x3 (k ) , Ts , a_a , k_0 , zeta ) ’ )+H∗Q∗H ’ ;
18
19 xhat = f (x1 (k ) , x2 (k ) , x3 (k ) , Ts , a_a , k_0 , zeta ) ;
20
21 K = ( Pnextprev∗C ’ ) /(C∗Pnextprev∗C ’+ R ) ;
22
23 Pnextnext = ( eye (3 )− K∗C ) ∗Pnextprev ;
24
25 x = xhat+K ∗(y (k+1)−C∗xhat ) ;
26
27 x1 (k+1) = x (1 ) ;
28 x2 (k+1) = x (2 ) ;
29 x3 (k+1) = x (3 ) ;
30 end
31
32 xest =[x1 ; x2 ; x3 ] ;
33 xest = xest ’ ;
34 end

B-2-4 Function for state-space

1 f unc t i on [ x ] = f (x1 , x2 , x3 , Ts , a_a , k_0 , zeta )
2
3 x = [ x1 − Ts∗a_a∗k_0∗x1−Ts∗a_a∗x3∗x1 ; x2 + Ts∗a_a∗k_0∗x1+Ts∗a_a∗x3∗

x1 ; zeta∗x3 ] ;
4
5 end

B-2-5 Function derivative state-space

Master of Science Thesis A.J.M. van Heusden



146 MATLAB-files

1 f unc t i on [ x ] = df (x1 , x2 , x3 , Ts , a_a , k_0 , zeta )
2
3 x = [1−Ts∗a_a∗k_0−Ts∗a_a∗x3 0 −Ts∗a_a∗x1 ; Ts∗a_a∗k_0+Ts∗a_a∗x3 1 Ts∗

a_a∗x1 ; 0 0 zeta ] ;
4
5 end

B-2-6 Brewing main file

1 f unc t i on [ p3 , xlim , xlimest ] = brewing1 ( t_inp , seed )
2 %% Data gather ing f o r brewing tank 1
3 Ts = 0 . 0 1 ;
4 b_0 = 0.026829 ;
5 t_0 = 0 ;
6 t_fin = 1000 ;
7 x0 = [ 1 0 0 ; 0 ; 0 ] ;
8 zeta = 0 .99996 ;
9 a = b_0 /3 ;

10 Q = a^2;
11 R = 0 . 1 ;
12
13 [ x1brew , x2brew , x3brew , ybrew , n , t , w , v ] = databrewing (Ts , b_0 ,

t_0 , t_fin , x0 , zeta , Q , R , seed ) ;
14
15 %% Estimation f o r brewing tank 1
16 PInit = eye (3 ) ;
17 xInit = [ 1 0 0 ; 0 ; 0 ] ;
18
19 [ xestbrew ] = EKFbrewing ( PInit , xInit , ybrew , Ts , b_0 , zeta , Q , R ,

t_fin ) ;
20 %
21 % f i g u r e
22 % plo t ( t ( 1 : ( end−1) ) , xestbrew ( : , 1 ) , t ( 1 : ( end−1) ) , x1brew ( 2 : end ) )
23 % legend ( ’ xest1 ’ , ’ x1rea l ’ )
24 %
25 %
26 %
27 % f i g u r e
28 % plo t ( t ( 1 : ( end−1) ) , xestbrew ( : , 2 ) , t ( 1 : ( end−1) ) , x2brew ( 2 : end ) )
29 % legend ( ’ xest2 ’ , ’ x2rea l ’ )
30 %
31 %
32 % f i g u r e
33 % plo t ( t ( 1 : ( end−1) ) , xestbrew ( : , 3 ) , t ( 1 : ( end−1) ) , x3brew ( 2 : end ) )
34 % legend ( ’ x3est ’ , ’ x3rea l ’ )
35
36 xlim = f ind ( x2brew>80) ;
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37 xlim = xlim (1 ) ;
38
39 xlimest = f ind ( xestbrew ( : , 2 ) >80) ;
40 xlimest = xlimest (1 ) ;
41 %% Pred i c t i on
42 x0 = xestbrew ( t_inp∗1000+1 , : ) ’ ;
43 xpredbrew1 (1 ) = x0 (1 ) ;
44 xpredbrew2 (1 ) = x0 (2 ) ;
45 xpredbrew3 (1 ) = x0 (3 ) ;
46
47
48 %%
49 f o r k = 1 : ( t_fin∗100−(1000∗t_inp ) )
50
51 xpredbrew = fbrew ( xpredbrew1 (k ) , xpredbrew2 (k ) , xpredbrew3 (k ) ,Ts ,

b_0 , zeta ) ;
52
53 xpredbrew1 (k+1) = xpredbrew (1 ) ;
54 xpredbrew2 (k+1) = xpredbrew (2 ) ;
55 xpredbrew3 (k+1) = xpredbrew (3 ) ;
56 end
57
58 xnewbrew = [ xestbrew ( 1 : ( t_inp ∗1000)+1 ,2) ; xpredbrew2 ( 2 : end ) ’ ] ;
59
60 % f i g u r e
61 % a = s i z e (xnew) ;
62 % a = a (1) ;
63 % plo t ( 1 : a , xnew)
64 % hold on
65 % plo t ( 1 : a , x2tank1 )
66 % x lab e l ( ’Time(mDay) ’ )
67 % y lab e l ( ’ Percentage o f sugars c r ea ted (%) ’ )
68 % legend ( ’ xPred ’ , ’ xReal ’ )
69
70
71 xpredestbrew = f ind ( xnewbrew>80) ;
72 p3 = round ( ( xpredestbrew (1 ) /1000) , 1) ;
73
74 end

B-2-7 Data gathering brewing function file

1 f unc t i on [ x1 , x2 , x3 , y , n , t , w , v ] = databrewing (Ts , b_0 , t_0 ,
t_fin , x0 , zeta , Q , R , seed )

2 x1 (1 ) = x0 (1 ) ;
3 x2 (1 ) = x0 (2 ) ;
4 x3 (1 ) = x0 (3 ) ;
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5 t (1 ) = 0 ;
6
7 n = ( t_fin−t_0 ) /Ts ;
8 w = sqr t (Q ) ∗wgn (n , 1 , 0 , [ ] , 100∗ seed+1) ;
9 v = sqr t (R ) ∗wgn (n , 1 , 0 , [ ] , seed ) ;

10
11 f o r k = 1 : n
12 x1 (k+1) = x1 (k )−Ts∗b_0∗x1 (k )−Ts∗x3 (k ) ∗x1 (k ) ;
13 x2 (k+1) = x2 (k )+Ts∗b_0∗x1 (k )+Ts∗x3 (k ) ∗x1 (k ) ;
14 x3 (k+1) = zeta∗x3 (k )+ Ts∗w (k ) ;
15
16 t (k+1) = k ;
17 y (k ) = x1 (k )+v (k ) ;
18 end
19 % f i g u r e
20 % subplot ( 3 , 1 , 1 )
21 % plo t ( t , x1 ) ;
22 % subplot ( 3 , 1 , 2 )
23 % plo t ( t , x2 ) ;
24 % subplot ( 3 , 1 , 3 )
25 % plo t ( t , x3 ) ;
26
27 % f i g u r e
28 % subplot ( 2 , 1 , 1 )
29 % plo t ( t , x3 )
30 % subplot ( 2 , 1 , 2 )
31 % plo t ( t ( 1 : l ength ( t )−1) , w)
32 end

B-2-8 EKF brewing

1 f unc t i on [ xest ] = EKFbrewing ( PInit , xInit , y , Ts , b_0 , zeta , Q , R ,
t_fin )

2
3 C = [1 0 0 ] ;
4 H = [ 0 ; 0 ; Ts ] ;
5
6 Pnextnext = PInit ;
7
8 x1 (1 ) = xInit (1 ) ;
9 x2 (1 ) = xInit (2 ) ;

10 x3 (1 ) = xInit (3 ) ;
11
12 %%
13
14 f o r k = 1: (100∗ t_fin −1)
15
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16 Pnextprev = dfbrew (x1 (k ) , x2 (k ) , x3 (k ) , Ts , b_0 , zeta ) ∗Pnextnext ∗(
dfbrew (x1 (k ) , x2 (k ) , x3 (k ) , Ts , b_0 , zeta ) ’ )+H∗Q∗H ’ ;

17
18 xhat = fbrew (x1 (k ) , x2 (k ) , x3 (k ) , Ts , b_0 , zeta ) ;
19
20 K = ( Pnextprev∗C ’ ) /(C∗Pnextprev∗C ’+ R ) ;
21
22 Pnextnext = ( eye (3 )− K∗C ) ∗Pnextprev ;
23
24 x = xhat+K ∗(y (k+1)−C∗xhat ) ;
25
26 x1 (k+1) = x (1 ) ;
27 x2 (k+1) = x (2 ) ;
28 x3 (k+1) = x (3 ) ;
29 end
30
31 xest =[x1 ; x2 ; x3 ] ;
32 xest = xest ’ ;
33
34
35
36
37
38 end

B-2-9 Function for state-space

1 f unc t i on [ x ] = fbrew (x1 , x2 , x3 , Ts , b_0 , zeta )
2
3 x = [ x1−Ts∗b_0∗x1−Ts∗x3∗x1 ; x2+Ts∗b_0∗x1+Ts∗x3∗x1 ; zeta∗x3 ] ;
4
5 end

B-2-10 Function derivative state-space

1 f unc t i on [ x ] = dfbrew (x1 , x2 , x3 , Ts , b_0 , zeta )
2
3 x = [1−Ts∗b_0−Ts∗x3 0 −Ts∗x1 ; Ts∗b_0+Ts∗x3 1 Ts∗x1 ; 0 0 zeta ] ;
4
5
6 end

Master of Science Thesis A.J.M. van Heusden



150 MATLAB-files

A.J.M. van Heusden Master of Science Thesis



Bibliography

[1] F. (Francois) Baccelli. Synchronization and linearity : an algebra for discrete event
systems. Wiley, 1992.

[2] Chris A Brackley, David S Broomhead, M Carmen Romano, and Marco Thiel. A max-
plus model of ribosome dynamics during mrna translation. Journal of Theoretical Biology,
303:128–140, 2012.

[3] Cédric Brandam, XM Meyer, J Proth, P Strehaiano, and Hervé Pingaud. An origi-
nal kinetic model for the enzymatic hydrolysis of starch during mashing. Biochemical
Engineering Journal, 13(1):43–52, 2003.

[4] Charles K Chui, Guanrong Chen, et al. Kalman filtering. Springer, 2017.

[5] B de Andrés-Toro, JM Girón-Sierra, JA Lopez-Orozco, C Fernandez-Conde,
José Martínez Peinado, and F Garcıa-Ochoa. A kinetic model for beer production under
industrial operational conditions. Mathematics and Computers in Simulation, 48(1):65–
74, 1998.

[6] Bart De Schutter and Ton Van Den Boom. Model predictive control for max-plus-linear
discrete event systems. Automatica, 37(7):1049–1056, 2001.

[7] Bart De Schutter, Ton van den Boom, Jia Xu, and Samira S Farahani. Analysis and con-
trol of max-plus linear discrete-event systems: An introduction. Discrete Event Dynamic
Systems, 30(1):25–54, 2020.

[8] Bernd F Heidergott. Max-plus linear stochastic systems and perturbation analysis, vol-
ume 15. Springer Science & Business Media, 2006.

[9] Jan Komenda, Sébastien Lahaye, J-L Boimond, and Ton van den Boom. Max-plus
algebra in the history of discrete event systems. Annual Reviews in Control, 45:240–249,
2018.

Master of Science Thesis A.J.M. van Heusden



152 Bibliography

[10] Gabriel AD Lopes, Bart Kersbergen, Bart De Schutter, Ton van den Boom, and Robert
Babuška. Synchronization of a class of cyclic discrete-event systems describing legged
locomotion. Discrete Event Dynamic Systems, 26(2):225–261, 2016.

[11] Mark G Malowicki and Thomas H Shellhammer. Isomerization and degradation kinetics
of hop (humulus lupulus) acids in a model wort-boiling system. Journal of agricultural
and food chemistry, 53(11):4434–4439, 2005.

[12] A Seleim and H ElMaraghy. Max-plus modeling of manufacturing flow lines. Procedia
CIRP, 17:71–75, 2014.

[13] FB Van Boetzelaer, Ton JJ van den Boom, and RR Negenborn. Model predictive schedul-
ing for container terminals. IFAC Proceedings Volumes, 47(3):5091–5096, 2014.

[14] Ton van den Boom and Bart De Schutter. Stabilizing model predictive controllers for ran-
domly switching max-plus-linear systems. In 2007 European Control Conference (ECC),
pages 4952–4959. IEEE, 2007.

[15] Ton JJ van den Boom, Hilco de Bruijn, Bart De Schutter, and Leyla Özkan. The interac-
tion between scheduling and control of semi-cyclic hybrid systems. IFAC-PapersOnLine,
51(7):212–217, 2018.

[16] Ton JJ van den Boom and Bart De Schutter. Modelling and control of discrete event sys-
tems using switching max-plus-linear systems. Control engineering practice, 14(10):1199–
1211, 2006.

[17] Ton JJ van den Boom and Bart De Schutter. Modeling and control of switching max-
plus-linear systems with random and deterministic switching. Discrete Event Dynamic
Systems, 22(3):293–332, 2012.

[18] Ton JJ van den Boom, Marenne van den Muijsenberg, and Bart De Schutter. Model pre-
dictive scheduling of semi-cyclic discrete-event systems using switching max-plus linear
models and dynamic graphs. Discrete Event Dynamic Systems, 30(4):635–669, 2020.

[19] Ronnie Willaert. The beer brewing process: Wort production and beer. Handbook of
food products manufacturing, 2:443, 2007.

A.J.M. van Heusden Master of Science Thesis


	Front Matter
	Cover Page
	Title Page
	Table of Contents

	Main Matter
	Introduction
	Background knowledge - Event domain for the scheduler
	Max-plus algebra
	Max-plus algebra
	Max-plus linear systems
	Switching max-plus linear systems

	Model predictive control
	Scheduling with max-plus algebra
	Routing
	Ordering
	Synchronization
	Overal scheduler
	Optimization of the case study


	Background knowledge - Time domain for the subsystems
	Euler Method
	Extended Kalman Filtering
	Modelling of the subsystems
	Data gathering and estimations
	Predictions


	Case study - Methods
	Scheduling
	The basic model
	Mixed-integer linear programming
	Model predictive scheduling

	Subsystems
	Mashing
	Brewing
	Fermentation

	State estimation of the subsystems
	Mashing
	Brewing
	Fermentation


	Case study - Results
	General assumptions and explanations
	Subsystems
	Simulations
	Estimations
	Predictions

	Scheduler
	Statical case
	Dynamical case - Event-based update k
	Dynamical case - Discrete time-based update 


	Conclusions and discussion
	Conclusion
	Discussion and further research
	Discussion
	Further research



	Appendices
	Routing and ordering constraints
	Constraint matrices routing
	Constraint matrices ordering

	MATLAB-files
	Scheduler MATLAB-files
	Scheduler main file
	Scheduler function file
	Scheduler simulation file updating Ystart and Yend
	Scheduler simulation file comparison fixed initial scheduler

	Subsystems MATLAB-files
	Mashing main file
	Data gathering mashing function
	EKF mashing
	Function for state-space
	Function derivative state-space
	Brewing main file
	Data gathering brewing function file
	EKF brewing
	Function for state-space
	Function derivative state-space



	Back Matter
	Bibliography


