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1 Introduction

Land subsidence is referred to as either the sudden sinking or gradual downward settling of
discrete segments of ground surfaces with little or no horizontal motion (Deng et al., 2017; Ilia
and Loupasakis, 2018). Land subsidence has long been a known issue in many countries, and
more specifically in the Netherlands. The implications of the subsidence are damage to infras-
tructure, the serviceability failure of transportation networks, as well as more susceptibility to
the flood (Du et al., 2018).

The phenomenon occurs due to a combination of natural and anthropogenic mechanisms.
The problem is quite complex in terms of determining the influential mechanisms, their in-
teractions, and their spatial and temporal variations. Land subsidence types are categorized
based on the geological processes (i.e. mainly tectonics, isostasy and sediment compaction)
and man-induced causes (i.e. withdrawal of hydrocarbons and groundwater, loading of soft
soils, and shallow groundwater table lowering) (van Asselen et al., 2018).

Zeitoun and Wakshal (2013) explains the phenomenon in urban environments: ”cities built
on unconsolidated sediments consisting of clay, silt, peat, and sand are quite susceptible to
land subsidence” namely, because the area is primarily drained to be suitable for urban con-
structions which in turn lead to an increase in load due to the weight of buildings and roads.
Hence, the spatial and temporal monitoring and analysis of ground deformation are necessary
for sustainable development of cities.

More specifically, in the Netherlands, while the northern part of the country suffers from sub-
sidence induced partly by the extraction of gas and the consequent compression of gas reser-
voirs layers up to 24 cm (Ketelaar, 2009), the whole country undergoes subsidence due to soft
soil compression (Hoogland et al., 2012; Nieuwenhuis and Schokking, 1997; Schothorst, 1977;
van Asselen et al., 2018; Van Der Meij and Minnema, 1999). Soft soil compression can cause
subsidence up to 12 mm/year (Koster et al., 2018a).

In this research, we limit the scope of the study to land subsidence due to the soft soil. Soft
soil can be considered as geologically young clay soil, silty clay soil, and peat which comes to
an equilibrium by its own weight but has not notably experienced secondary or delayed con-
solidation after its formation (Kempfert and Gebreselassie, 2006; Vermeer and Neher, 1999).
The characteristics of soft soils are high natural water content, high sensitivity, high compre-
hensibility, low permeability and low shear strength to the point that it can only bear its own
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weight and any additional load leads to relatively significant deformation (Isaac et al., 2019;
Kempfert and Gebreselassie, 2006). With such characteristics, soft soils are tricky to deal with,
especially in terms of predicting their response to loading during design, construction, and
maintenance of buildings, roads, and other urban infrastructures.

1.1 Scientific Relevance

Although many experts with various domain knowledge have attempted to study land subsi-
dence on different case studies, rarely one can find multi-disciplinary researches in this field.
This is mainly because each research is either aimed at modeling and predicting the physics
of subsidence based on influential parameters with all its complexity or monitor the process
through time. The problem with the former is that the models are empirical and too specific
to a case study while the latter only presents the observed pattern of the phenomenon. The
idea in this research is that if a relationship between influential parameters and the observed
pattern can be established, one should be able to predict the pattern for locations where the
influential parameters are measured but there is no observed pattern.

2 Theoretical Background

2.1 CPT measurements

Cone Penetration Test (CPT) is a geotechnical measurement technique in which a cone on the
end of a series of rods is pushed into the ground at a constant rate to measure some properties
of the soil (Meigh, 2013). The standard rate of measurement is 20 mm/s ± 5 mm/s (Lunne
et al., 2014). The measurements are made of the resistance to penetration of the cone and outer
surface of the rods (Meigh, 2013).

Cone resistance qc is defined as the total force acting on the cone, Qc, divided by the projected
area of the cone, Ac. Sleeve friction fs refers to the total force acting on friction sleeve divided
by the surface area of the friction sleeve As (Lunne et al., 2014). R f is simply the ratio of fs
to qc presented in percentage. The CPT diagram consists of measurements of qc, fs and/or R f
with respect to depth (See Figure 1).

A Piezocone penetrometer enables measurement of porewater pressure at one, two or three
locations: on the cone (u1), behind the cone(u2) and behind the sleeve friction (u3) (Lunne
et al., 2014). These measurements might also be available depending on the Piezocone pen-
etrometer.

The measurements serve three main applications: to determine the profile of subsurface strata,
to determine groundwater conditions, to assess the engineering parameters of the soils and to
evaluate bearing capacity and settlement (Lunne et al., 2014; Meigh, 2013).

Although there are many CPT measurements conducted frequently, they neither have well-
distributed spatial coverage nor are provided periodically on the same position. In the case
of roads, the measurements are only carried out as a preliminary soil survey before the road
construction or during road maintenance.
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Figure 1: An example of a CPT profile

2.2 Interferometric Synthetic Aperture Radar (InSAR)

Synthetic Aperture Radar (SAR) system is a coherent radar system, meaning that both ampli-
tude and the phase of the signal are measured (Rees and Pellika, 2010). Amplitude represents
the strength of the radar response and the phase represents the fraction of one complete sine
wave cycle (Rees and Pellika, 2010).

Disregarding atmospheric propagation delay, the phase observation is the combination of the
phase proportional to distance and the phase of the elementary scattered waves within the
resolution cell (Hanssen, 2001). The phase observation is a deterministic quantity, meaning
that repeating the measurement under exactly the same conditions should give the same result
which is known as coherent imaging (Hanssen, 2001). The degree of coherence provides a di-
rect similarity measure between the two observations. In reality, coherence can be diminished
due to various sources of decorrelation (e.g. temporal decorrelation, and volume decorrela-
tion) (Hanssen, 2001).

In the interferometric configuration, points are imaged from slightly different geometry ei-
ther by two sensors or by exploiting repeated orbits of the same satellite at different times
(Hanssen, 2001). Having two SAR imageries, an interferogram can be formed by the complex
multiplication of the image phasors (Hanssen, 2001). Assuming that the scattering character-
istics are the same during both acquisitions, any possible phase contribution by the scatterers
will cancel out in the interferometric phase (Hanssen, 2001). As such, the interferometric
phase variation can be split into two contributions (Ferrettia, 2007): 1. The phase variation
due to the altitude difference of the point targets 2. The phase variation proportional to the
slant range displacement of the point targets. In interferogram flattening, the second contri-
bution is computed and subtracted from the interferometric phase.

After interferogram flattening, the phase variation between two points represents the actual
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altitude variation provided that the phase ambiguity (an integer number of 2π phase cycles)
is added to the interferometric fringes (Ferrettia, 2007). This process is called phase unwrap-
ping which provides an elevation map in SAR coordinates (Ferrettia, 2007). Assuming that
the point scatterers on the ground are moving (e.g. due to subsidence), another term is con-
tributing to the interferometric phase due to the motion (Ferrettia, 2007). If a Digital Elevation
Model of the area in SAR coordinate is available, the altitude contribution can be subtracted
from the interferometric phase and the terrain motion component can be measured (Ferrettia,
2007). This technique is called DInSAR and is well-suited for measuring the land deformation
on millimeter-scale.

SAR data has currently sufficient temporal resolution and by applying InSAR techniques, land
subsidence can be monitored on the order of millimeters but the technique only observes and
monitors the phenomena rather than having predictive capabilities. For monitoring highways,
in addition to the general limitations of InSAR (such as different sources of decorrelation),
some parts are not visible to SAR satellites since they are occluded by other objects. For in-
stance, the road is passing through tunnels, or lower parts of the highway are being occluded
by the upper parts in complex highway junctions.

Another limitation is that because of a few meters spatial resolution, there are always backscat-
tering from undesirable objects (vegetation, buildings, etc.) since each pixel in a SAR image
gives a complex number that carries amplitude and phase information of all the scatters within
the resolution cell. Therefore, investigation of a specific target land use should be carried out
with consideration. In the case of roads, the width of the highway should be large enough that
backscatterings from other objects are minimized.

2.3 Machine Learning

Machine learning is automatic computer procedures aiming at solving a practical problem by
gathering a dataset and training a general-purpose machine to predict the outcome (Spiegel-
halter et al., 1994). In the conventional engineering design flow, in-depth analysis of the prob-
lem domain and capturing the key features of the problem is necessary for the definition of the
mathematical model and hence the procedure is ”typically the result of the work of a number
of experts” (Simeone, 2018).

Machine learning is an alternative that, rather than relying on domain knowledge and a de-
sign optimized for the problem at hand, relies on a large amount of data to dictate algorithms
and solutions (Simeone, 2018). Machine learning can be a time and cost efficient approach,
especially for too complex problems (Simeone, 2018). The caveats are that firstly, it might hin-
der interpretability of the solution and secondly, could be applied to a limited set of problems
(Simeone, 2018).

In this research, we are most interested in supervised learning in which the dataset is repre-
sented as

S = {xn, yn}N
n=1 (1)

where each element xn among N is called a feature vector and yn is the corresponding label or
target (Burkov, 2019). A feature vector is a vector of dimension d . In a feature vector, each
dimension j = 1, ..., d contains a value that describes the target. That value is called a feature
and is denoted as xj. The goal of supervised learning is to predict the value of target y for an
input x that is not in the training set (Burkov, 2019).
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3 Related work

As land subsidence is a quite complicated process, a lot of research has been devoted to un-
derstanding, monitoring, and predicting the phenomena. van Asselen et al. (2018) assessed
subsidence due to peat compaction and oxidation in the built environments in the Nether-
lands, using lithological borehole data and measurements of dry bulk density, organic matter,
and CO2 respiration.

Du et al. (2018) used DInSAR techniques for monitoring the amount of subsidence and optical
remote sensing for the classification of land use in three scales (regional, patchy and village).
They further tried to correlated the land use with the subsidence pattern. Minderhoud et al.
(2018) studied the relationship between the current rates of land subsidence and the land use
changes over the past 20 years.

Other authors exploited machine learning techniques as a tool that allows the incorporation
of different factors for land subsidence susceptibility mapping. Tien Bui et al. (2018) tested
different machine learning algorithms such as Bayesian Logistic Regression, Support Vector
Machine, Logistic Model Tree, and Alternate Decision Tree and assessed the accuracy of each
of the techniques, and they concluded that Bayesian Logistic Regression provides better accu-
racy. In a similar study, Ghorbanzadeh et al. (2018) used the adaptive neuro-fuzzy inference
system with different membership functions and observed 84 percent accuracy with Gaus-
sian membership function. Ilia and Loupasakis (2018) investigated the relationship between
the rate of the deformation due to groundwater withdrawal and three other variables i.e. the
thickness of loose deposits, Sen’s slope, and compression index.

Many studies are dedicated to different advanced InSAR methods for monitoring land de-
formation. Stramondo et al. (2008) applied Interferometric Point Target Analysis in order to
handle the low coherence regions. Ketelaar (2009) provides an extensive research on Persis-
tent Scatterer Interferometry (PSI) for land subsidence purposes, and its corresponding quality
control and validation. Another study used InSAR Small Baseline Subset (SBAS) technique to
deal with spatial decorrelation for monitoring land deformation and the consequent suscepti-
bility to the flood (Aditiya et al., 2017). North et al. (2017) combined PSI data with soil types,
transport infrastructure data and climate classes to monitor the response of roads and railways
to ground deformation.

A new research investigated the potential of CPT for calculating void ratio and compressibility
of the peat layer due to the increase in vertical effective stress which can be used for mapping
the subsidence potential (Koster et al., 2018a). Based on the functions for peat compression
and oxidation that were derived in their previous studies, together with using 3D geologi-
cal subsurface voxel-model, modeled phreatic groundwater levels and a subsidence model,
Koster et al. (2018b) achieved to study the potential susceptibility of Rotterdam and Amster-
dam to future subsidence.

While these investigations attempted to model and monitor subsidence, no research has been
dedicated to combining the CPT data with deformation measurements acquired by DInSAR
techniques and the relationship between the CPT measurements and the rate of subsidence
acquired from InSAR has not yet investigated.
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4 Research questions

With the background and related work introduced above, in this research, the aim is to estab-
lish a relationship between the rate of subsidence and CPT measurements conducted before
the highway construction. As such, the created model would be able to predict the rate of
subsidence on a road or part of the road that is not visible to SAR satellites. Hence, the main
research question is:

Using machine learning techniques, is it possible to establish an accurate spatio-temporal relationship
between InSAR deformation data and CPT measurements on roads?

To answer this, the following sub-questions are to be covered:

• What parameters should be included in the data inventory?

• What pre-processing steps are needed for each data sources?

• How to deal with different qualities of the data sources and their integration?

• What machine learning algorithm(s) are more suitable in establishing the relationship?

• What is the accuracy of the chosen machine learning technique and is it satisfactory?

• Based on the machine learning model, is it possible to monitor and predict the susceptibility to
land subsidence?

4.1 Scope of research

The thesis will focus on finding a relationship from CPT measurements and the rate of subsi-
dence on roads and it is mainly a proof of concept. If the results of the proposed methodology
are satisfactory, the inverse relationship (the relationship between the rate of subsidence and
the CPT measurements) will be investigated. The main case study is the A4 highway in the
Netherlands. As such, the main driving mechanism of the subsidence is the load on the be-
neath soft soil due to the weight of the road layers (surface, base, sub-base and sub-grade) and
the traffic on the road.

One of the limitations of the research is that the rate of subsidence is assumed to be linear.
In reality, this assumption is not completely valid because the subsidence of soft soil shows
a more complicated exponential behavior for a long period of time (more than 100 years).
However, the dataset for this research includes at most 10 years, and therefore, the rate can be
considered linear for this short period.

5 Methodology

The main incentives behind using machine learning techniques stem from the following rea-
sons:

1. The complexity of the relationship between soil and subsidence phenomena which makes
it difficult to study the phenomena in its full generality.

2. Although in the field of geotechnical engineering, there are some empirical models that
predict the susceptibility to subsidence based on the CPT measurements of the soil, they
involve estimation of some parameters based on certain assumptions making them too
specific to certain areas. A data-driven approach is more objective and general in this
sense.
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In this section, the proposed methodology for using machine learning for predicting the rate
of land subsidence based on CPT measurements is discussed. Figure 2 shows the pipeline of
the proposed methodology.

Figure 2: The proposed methodology

5.1 Dataset

The most important step is gathering the relevant data, understanding each of the data sources,
their qualities, and limitations. These aspects help in understanding the pre-processing steps,
selection of the methodology and interpretation of the results.

The CPT measurements are made freely available by the Geological Survey of the Nether-
lands, available at www.dinoloket.nl. The measurements are in Geotechnical Exchange For-
mat (GEF) and metadata of the measurements is in Extensible Markup Language (XML) for-
mat. In this research, for each CPT measurement at a certain location, both files need to be read
and relevant information should be extracted. The basic measurement in GEF files is only the
cone resistance (qc), but the files mostly involve the measurements of sleeve friction ( fs) and
friction ratio (R f ). One important aspect of the CPT measurements is the quality and confi-
dence of the data which should be considered in the methodology. As illustrated in Dinoloket
(2019), quality and confidence depend on:

• The standard based on which the test was performed (NEN3680,NEN5140, ISO 22476-
12:2009),

• The method and the device of measurement: the mechanical devices measure force while
the electrical devices measure pressure directly,

• The date of the test: data files older than 1982 tend to be less accurate,

• Digitizing on paper measurements and distortions introduced as the result,
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• The number of parameters that are measured and the depth of the measurements: vari-
ations in both of these factors need to be dealt with in the following steps of the method-
ology.

The SAR images are processed by SkyGeo. This process involves combining a sequence of
radar images over the last 10 years to measure the ground deformation using DInSAR. Based
on the documentation (SkyGeo, 2018), it can be assumed that the end product represents de-
formation under coherent conditions since roads show consistent reflections throughout time.
The satellite from which the SAR images are taken is Terrasar-X with the spatial resolution of
3.00m x 2.80m and revisit period of 11 days. The images are in X-band with the wavelength of
3.1 cm.

The end product is delivered in two formats: 1. The primary result is the time series repre-
senting the amount of deformation with respect to the first acquisition as depicted in Figure 3.
2. A Deformation map which presents the deformation behavior of points in certain positions
with a color scale indicating average linear deformation rate (mm/year).

Figure 3: An example of a deformation time series

There are several points to be considered in interpreting the InSAR products (SkyGeo, 2018):

1. The deformation measurement is relative with respect to a stable reference point that
does not move in the vertical direction. The reason is that the phase ambiguity cannot
be solved accurately. So, the absolute SAR distance measurement is uncertain meaning
less accurate absolute height. If the reference point is not stable and is subsiding itself,
then the actual stable points seem to be going up.

2. The deformation measurement at each point in the time series is with respect to the first
acquisition.

3. The deformation measurements are in the viewing direction of the satellite with the in-
cidence angle of (15-45 degrees). The consequence is that the measurements reflect both
horizontal and vertical deformations. As we assume that the deformation is mainly in
the vertical direction, the measurements are projected in the vertical direction.

4. The absolute position (X, Y, Z) of the measurements is less certain due to many sources
of uncertainty. The estimation of the absolute height has a standard deviation of about
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1 meter due to the reason mentioned in 1. The uncertainty in the horizontal direction
is caused by multiple factors including deviation in height estimation, uncertainties in
the orbit of the satellite, and part of the atmospheric delays that could not be modeled.
Hence, the accuracy of the horizontal position can be several meters. Here, it should be
noted that due to the nature of the DInSAR techniques in which the deformation is cal-
culated with two images registered relative to each other accurately, these uncertainties
are not involved in the deformation time series itself.

5. The reliability of the measurements depends on the how accurately the phase ambiguity
has been solved. The dataset at hand contains points where the estimation of the phase
ambiguity is carried out with 99 percent certainty.

6. The precision of the deformation measurements depends on the signal to noise ratio of
the reflection and atmospheric influence. The former refers to the consistency in reflec-
tion or coherence within a resolution cell and it is a measure of the strength of coherence:
generally the higher the coherence, the more reliable the deformation measurements.
The latter can be modeled and eliminated when a large number of images are used for
calculating the deformation because the atmospheric delay is random in time but corre-
lated in space.

To demarcate the highway boundary and obtain some additional attributes, some topographic
maps such as TOP10NL (1:5,000) and BGT (1:1,000) are freely available.

5.2 Pre-processing

The pre-processing step involves mostly cleaning and filtering the data such that it is repre-
sentative of the reality of the problem.

1. The road layer should be cleaned such that it only contains the study area.

2. Only CPT measurements that contain the information on the key parameters which are
depth, qc, and fs should be included.

3. Whether or not the R f is present in CPT files is not problematic since it can be calculated
from qc, and fs.

4. The CPT measurements should be representative of the sub-surface soil. Therefore, CPT
files that contain too many missing values of key parameters or shallow measurements
in depth should be excluded.

5. The CPT measurements may contain null values. The investigation of the CPT files
shows that null values are mostly available at the end rows of the file and rarely might
happen in between. The solution here is to exclude the null values at the end with the
knowledge that we are losing the data. For the few missing values that are in between,
interpolation based on previous and the next record can be a good solution because of
the continuous transitions in the soil.

6. InSAR measurements on bridges and overpasses should be disregarded since these parts
have a stronger foundation which controls the subsidence and therefore distorts the
model.
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5.3 Structuring the dataset

In order to create the dataset for machine learning, we need to define our feature vector and
the target. In this research, we assume that the subsidence is merely due to soft layers of the
soil. Therefore, the characteristics of the soil are the features that predict the target which is
the rate of subsidence. As such, from the CPT measurements, we need to extract features and
create feature vectors. These features should be informative i.e. the model that is trained with
this dataset should have high predictive power and low bias.

To the best of our knowledge, there is no literature on feature extraction from CPT measure-
ments for predicting land subsidence. So, we came up with two ideas to look at the CPT
measurements:

1. It is possible to model the physics of the problem by taking into account the topogra-
phy. Considering the elevation of the measurements, the feature vector can be formed
from the maximum elevation in the data points. For the CPT measurements below that
elevation, the value of zero is added to the feature vector to fill the gap due to elevation
difference which can be up to 10 meters even in the flat parts of the road.

Here, we need to deal with the different depth of the CPT measurements (see Figure
4.a). One way to tackle this issue is to truncate each of the CPT measurements after a
depth such that all feature vectors becomes of the equal length. That certain depth dif-
fers for different CPT measurements depending on the elevation of the measurements.
The drawback is that the chance of information loss of the soft soil layers is higher (the
measurements on the red part are eliminated).

Another, way to tackle this problem without loss of information is to use data imputa-
tion techniques (Burkov, 2019). For the CPT measurements with fewer data points at the
end (right column in Figure 4.b), the missing data points are filled by a value outside the
normal range of values or by a value in the middle of the range (the pink part in Figure
4.b) (Burkov, 2019). In the former, the learning algorithm will learn what is best to do
when the feature has a value significantly different from regular values (Burkov, 2019).
In the latter, the idea is that the prediction will not be significantly affected by the value
in the middle range (Burkov, 2019). Also, another binary feature vector can be added at
the end that indicates which of the values is real and which one is filled with an out of
range value (Burkov, 2019). The only caveat is the increase in dimensions of the feature
space.

2. The other alternative for modeling the problem in a physically meaningful approach
is to cluster the CPT measurements and extract statistical summaries and metrics from
the clusters. The important point here is that the clustering and the features should be
representative of the soil types. The advantage of this approach is that the dimensions
of the feature space can be reduced which facilitates the visual inspection of the feature
space.

Ideally, it would be intriguing to investigate both of them. However, given the time limit, we
first investigate the first option and tackle the missing values with data imputation techniques.
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Figure 4: a) Truncating the data b) Using data imputation

After feature extraction from CPT measurements, we need to know the target value for each
feature vector. The deformation measurements are discrete points on the surface of the road
each having a linear rate of subsidence. One approach is to assign the nearest deformation
measurement to the CPT measurement. As mentioned in the previous section, the uncertainty
in the horizontal position of the points can be up to several meters, and it is important to
investigate the type of error. If the error is random, interpolating the discrete deformation
measurements can reduce the noise. However, if this error is systematic and in a certain direc-
tion, interpolation increases the inaccuracy.

5.4 Selection of the machine learning algorithm

This selection primarily depends on how we are going to approach the research question. The
problem can be viewed as a classification in which soil features are related to the different
classes of susceptibility based on labeling the rate of subsidence with ordinal values of very
high, high, moderate, low, and very low. As such the accuracy assessment can be carried out
through confusion matrix and indices such as Kappa index. It can also be considered as a
regression problem in which the target values (the rate of subsidence) remains in ratio scale
and the task of the machine learning algorithm is to estimate a real value corresponding to the
rate of subsidence. Both perspectives are interesting to investigate, however, in this research,
a regression problem seems to be more relevant and the accuracy assessment can be carried
out with more statistical metrics helping better interpretation of the results.

The second criterion for the selection of the machine learning algorithm is the general char-
acteristics of the algorithm and the dimensions of the feature space. The general criteria are
linearity or non-linearity of the decision boundaries in the feature space, the need for transfor-
mation of the feature space, dependencies and correlations between features, the susceptibility
of the algorithm to over-fitting, the sensitivity of the algorithm to standardization of the data,
handling the missing values, the ability of the algorithm in determining the significance of the
features, number of model hyper-parameters and their tuning, and visual interpretation.

Based on the aforementioned points, at first glance, Random Forest and Linear Regression are
reasonable choices for the research each because of their merits and drawbacks. Random For-
est uses many random subsets of the training dataset and generates a decision tree for each
subset by reducing the entropy (maximizing the gain) (Shalev-Shwartz and Ben-David, 2014).
In the case of regression, the average value over the predictions of the individual trees is con-
sidered as the prediction (Breiman, 2001).

The advantages of the algorithm are that it handles correlations between features, works
well with feature vectors of non-standardized values and usually provides good accuracy
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(Breiman, 2001). It is not prone to over-fitting and provides information about the importance
of the features (Breiman, 2001). Of course, the drawback is that due to the black box nature of
the algorithm, the interpretation of the results is more tricky.

Linear regression assumes a linear relationship between the features and the target. This as-
sumption might be too simplistic in our research which can affect the accuracy of the predic-
tions. However, due to the solid mathematical foundation, interpreting the results is facili-
tated. It should be noted that these two models are not necessarily the best models, they are
just the start point.

5.5 Training the machine learning model

In practice, data analysts shuffle and divide the dataset to 3 subsets: the training set, the
validation set and the test set. The train set is the largest set (conventionally 70% of the dataset)
and it is used to train the model (Burkov, 2019). The remaining part is equally divided into
the validation set and the test set. These two sets are not used in training the model. The
validation set is used to tune the hyper-parameters of the model (Burkov, 2019). The purpose
of the test set is to assess the accuracy of the model. The model learns through the train set
and therefore can predict the target values for this set with good accuracy, however, since the
test set has been held out from the model, the capability of the model in predicting the target
values is the indication of the accuracy of the model.

5.6 Accuracy assessment

The last step involves assessing the accuracy of the machine learning technique. The typical
accuracy metrics of a regression problem are the mean absolute error, the mean squared er-
ror, the median absolute error, the root mean squared error, the coefficient of determination
(R2), the mean absolute percentage error, and the median absolute percentage error. Although
these metrics give an indication of the accuracy of the prediction, a better interpretation of the
results is also possible through spatial visualization of the test set with respect to deformation
measurements.

5.7 Modifying sample

Due to the numerical and heuristic nature of the study, there is no perfect approach to mod-
eling the problem and trial and error can help in obtaining more insight. Therefore, the best
approach can only be chosen by testing the methodology with different ways of looking at
and modeling of the problem, and interpretation of the results and assessment of the accuracy.
Hence, this step might be repeated a couple of times with different structuring of the training
sample and understanding the pitfalls of each of modeling approaches.

5.8 Validation

The final results of the model should be interpreted and assessed by comparison to reality. For
instance, an interesting question that should be investigated in the model is that which range
of feature values are important in predicting the rate of subsidence and does these values cor-
respond to soft soil?

Of course, the accuracy of the prediction can further be solidified by validation of the method-
ology over another data set of another highway (but with more or less the same geological
setting).
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6 Time planning

6.1 Activities

In accordance with the graduation project deadlines, the chart below illustrates the expected
timeline of the research progress.

2018 2019

11 12 1 2 3 4 5 6

Data collection and literature review

Data integration

Defining relevant features

Primary implementation

Result Analysis

Methodology refinement

Secondary implementation

Result analysis

Finalizing research product

Final Reporting

6.2 Meetings

Weekly or monthly meetings will be held with the daily supervisor Dr.ir. Mathias Lemmens
when necessary. Additional guidance and feedback will be provided by the graduation pro-
fessor Prof.dr.ir. R.F. (Ramon) Hanssen. The co-reader is yet to be decided.

7 Tools and datasets used

The required software packages are FME and QGIS. The programming languages and tools
are Python (with libraries such as NumPy, Pandas, Scipy, Scikit-learn, Keras and etc.), for
visualization and machine learning implementation. The dataset requirements are elaborated
on the Methodology section.
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