
Proceedings of the International Association for
Shell and Spatial Structures (IASS) Symposium 2013

„BEYOND THE LIMITS OF MAN”
23-27 September, Wroclaw University of Technology, Poland

J.B. Obrębski and R. Tarczewski (eds.)

1

Discrete design optimization accounting for practical constraints

Mattias Schevenels1, Sean McGinn3, Anke Rolvink2,3, Jeroen Coenders2,3

1Department of Architecture, KU Leuven, Belgium, mattias.schevenels@asro.kuleuven.be
2BEMNext Lab, Delft University of Technology, Netherlands {a.rolvink, j.l.coenders}@tudelft.nl

3Arup Amsterdam, Netherlands {sean.mcginn, anke.rolvink, jeroen.coenders}@arup.com

Summary: This paper presents a heuristic algorithm for discrete design optimization, based on the optimality criteria method. Practical applicability
is the first concern; special attention is therefore paid to the implementation of technological constraints. The method is generally applicable, but in
order to clarify the idea, it is used in this paper for the optimal design of a Warren type truss composed of steel CHS members with welded joints. For
each member, the optimal section is chosen from a given steel catalog. Following Eurocode 3 and the CIDECT design guidelines, restrictions are
imposed on the deflections, the member forces, the layout of the joints, and the joint forces. The buildability of the design is ensured by requiring all
top chord members and all bottom chord members to have the same outer diameter. The algorithm is successfully applied to a simple test case as well
as the example truss design optimization problem. In terms of computational cost, the algorithm is comparable to a continuous optimization scheme
based on finite differences, and much faster than an evolutionary algorithm.

Keywords: structural design optimization, discrete design optimization, optimality criteria method, buildability constraints

1. INTRODUCTION

The optimal design of structures has been an active research area over
the past half century. However, practicing structural engineers seem to
hesitate to adopt optimization as a daily design tool [8], even for
relatively simple and tedious tasks such as the sizing of the members of
a steel structure. One of the reasons for this apparent reluctance is the
fact that it is very difficult to take into account the appropriate
technological constraints so as to ensure the buildability of the optimized
design.

In this paper we present a method to account for technological
constraints in design optimization. The method is applicable to any
design optimization problem, but in order to explain the idea we apply it
here to a simple (but realistic) example problem: the size and shape
optimization of a Warren type truss under static loading. The truss is
composed of steel Circular Hollow Section (CHS) members. The
objective is to minimize the weight of the truss. The usual displacement,
member force, and buckling constraints as formulated in part 1-1 of
Eurocode 3 [4] are imposed. In addition, the joints must satisfy the
(geometrical and mechanical) rules specified in the CIDECT design
guide for CHS joints [11], the member sections must be chosen from a
given section catalog, all top chord members must have the same
external size, and all bottom chord members must have the same
external size.

The example problem has the following properties, which are typical for
a design optimization problem that takes into account practical
constraints: (1) not all constraints are physically motivated and
mathematically well-behaved (this is particularly true for the CIDECT
design rules), (2) it is a mixed discrete-continuous optimization problem
(section diameters and wall thicknesses are discrete, truss dimensions
are continuous), and (3) some of the optimization parameters are linked
(section diameters and wall thicknesses are linked via a table of
available sections, and the diameters of the chord members are required
to be identical).

Several optimization methods have been proposed in the literature to
handle problems with one or more of these properties. Practically all
recent methods are based on evolutionary computing. Evolutionary
computing methods are attractive as they are conceptually simple and
easy to implement, but unfortunately their convergence is extremely
slow, making them less ideal for use in engineering practice. Moreover,
algorithms that can handle linked optimization parameters are often
restricted to parameters that are linked through a one-to-one relationship.
They cannot handle the example optimization problem where a CHS
profile with a given diameter can have multiple wall thicknesses. In
conclusion, there is still a need for an optimization scheme that is fast,
easy to use, and capable of handling all types of practical constraints.

In this paper we present a new optimization scheme for discrete design
optimization based on the optimality criteria method [10]. The
optimality criteria method is only applicable to continuous optimization
problems. We propose an alternative method based on the same
principles for problems with discrete optimization parameters that may
or may not be linked.

The remainder of this paper is organized as follows. Section 2 introduces
a framework to cope with the discrete and linked nature of the
optimization parameters. Section 3 describes the actual optimization
scheme. In section 4, this scheme is used for a simple test case with two
optimization parameters in order to illustrate the principle. Finally,
section 5 addresses a realistic design optimization problem – the truss
design problem introduced before.

2. OPTIMIZATION FRAMEWORK

Before outlining the actual optimization scheme, we first set up a
framework to cope with the discrete nature of the optimization
parameters. In the terminology of Arora and Huang [2], we adopt a
hybrid single - multiple variable approach, using a single variable (the
design entity) to identify the design state, and multiple variables (the
parameters) to select the best design update in each iteration of the
optimization process. We also propose a scheme to ensure that all links
between optimization parameters remain satisfied when performing a
design update.

2.1. Design entities

The primary element of the optimization framework is the design entity.
Each design entity represents one of the unknowns in the optimization
problem. Design entities can be scalar variables such as the dimensions
of a structure, or more complex variables such as a section profile to be
chosen from a steel catalog. We assume that all unknowns are discrete,
so that we can construct a table containing all possible values for each
design entity. In a practical design optimization problem, continuous
variables can always be made discrete using an appropriate
discretization step.

In the example problem, the height of the truss is a scalar design entity –
possible values are given in table 1. The member sections must be
chosen from a catalog of CHS profiles – this catalog is given in table 2.
The catalog contains 119 sections defined by the European standard EN
10210-2 [5]. For each section, an index and a name are specified, as well
as the outer diameter d, the wall thickness t, the section area A, and the
moment of inertia I.

The state of each design entity e is represented by an index ie. These
indices are collected in a vector i representing the state of the entire
design.

2

Table 1: Possible truss height values.

Index Height
[m]

1 1.8

2 2.0

3 2.2

4 2.4

Table 2: CHS profile catalog.

 Outer Wall Section Moment
Index Name diameter thickness area of inertia

 [mm] [mm] [cm2] [cm4]

1 CHS 21×3.2 21.3 3.2 1.82 0.77

2 CHS 26×3.2 26.9 3.2 2.38 1.70

3 CHS 33×2.6 33.7 2.6 2.54 3.09

4 CHS 33×3.2 33.7 3.2 3.07 3.60
5 CHS 33×4.0 33.7 4.0 3.73 4.19

6 CHS 42×2.6 42.4 2.6 3.25 6.46

7 CHS 42×3.2 42.4 3.2 3.94 7.62

8 CHS 42×4.0 42.4 4.0 4.83 8.99
9 CHS 48×3.2 48.3 3.2 4.53 11.59

10 CHS 48×4.0 48.3 4.0 5.57 13.77

11 CHS 48×5.0 48.3 5.0 6.80 16.15
⁞ ⁞ ⁞ ⁞ ⁞ ⁞

119 CHS 660×50 660 50 958 448670

2.2. Parameters

In each iteration of the optimization process, we will modify the design
state in order to move in the direction of the optimum. To this end, we
have to make a well-considered design update: the update must have a
beneficial impact on the objective function and/or the critical constraint.
Complex constraints make it very difficult to predict the effect of a
design update. It is therefore important to consider an appropriate set of
candidate states in order to select the best update.

Assessing the influence of increasing or decreasing a single property of
a design entity, which would typically be the section area, is not
sufficient. As an example, assume that one of the chord members in the
truss design problem has been assigned section 5 from table 2, and that
the joint between this member and one of the braces is susceptible to
chord face failure. In an attempt to improve the joint capacity, we take
the section with the next larger area – section 7. However, this section
has a smaller wall thickness, which is one of the determining factors for
chord face failure. As a consequence, the design update does not have a
beneficial effect at all on the critical constraint; on the contrary, the
problem becomes worse.

This issue is solved by combining the single variable approach (to
identify the state of a design entity) with a multiple variable approach (to
determine the set of candidate states for the next design update). To this
end, we declare certain properties of the design entities as optimization
parameters. These parameters are decreased and increased one after
another in order to find all neighboring design states. The states thus
obtained constitute the set of candidate states.

The choice of which design entity properties are considered as
parameters must be based on their expected effect on the objective
function and the constraints. In the case of the example problem, we
choose the values of the scalar design entities as optimization
parameters, as well as the outer diameter d and the wall thickness t of
the CHS profiles. The section area A and the moment of inertia I are also
relevant for the objective function and some of the constraints, but since

they depend directly on the diameter d and the thickness t, there is no
need to consider them as separate optimization parameters.

For each design entity e, all possible parameter values are collected in a
matrix Pe. For the scalar design entity representing the height of the
truss, Pe is a column vector containing the values in table 1. In design
state i, the value of the design entity is equal to

e

e
iP . For the design

entities representing a CHS profile, Pe is a 119 × 2 matrix containing the
diameters d (in the first column) and the thicknesses t (in the second
column) specified in table 2. In design state i, the diameter d and the
thickness t of the CHS profile represented by design entity e are given
by 1

e

e
id P= and 2

e

e
it P= .

2.3. Links

Due to the existence of links, it is not always possible to find a
neighboring state by simply changing a single parameter. As an
example, assume that one of the CHS profiles has section 8 from table 2.
If we want to increase the wall thickness t of this profile, we have to
modify its outer diameter d as well. Similarly, if we want to modify the
outer diameter of one of the top chord members of the example truss, we
have to modify the other top chord member sections accordingly.

The neighboring design state in the direction of a certain parameter is
therefore defined as the closest state to the current design state for which
(1) all links are satisfied and (2) the target parameter moves in the
desired direction. The distance between the current design state i and a
candidate neighboring design state j is measured by means of the
function d (i, j):

 ()
2

1 1

,
ˆ

e
e e

e

e eNM
j k i k

e
e k i k

P P
d

P= =

 −
 =
 
 

∑∑i j (1)

where M is the number of design entities and Ne is the number of
parameters associated with design entity e. Different parameters may
have different dimensions or magnitudes; all terms in the distance

function (1) are therefore divided by a reference value ˆe
ikP in order to

make them dimensionless. In the examples considered in the present

paper, the reference value ˆe
ikP is chosen as follows: for parameters that

can only assume strictly positive values (such as the dimensions of a

section), the current value eikP is used; for parameters that may assume

zero or negative values, the reference value is computed as the distance
between the minimum and the maximum value:

e
jkif P 0 j

ˆ
max min otherwise

e
ike

e eik
jk jkjj

P
P

P P

 > ∀=  −


 (2)

Finding the design state that minimizes the distance function d (i, j) and
simultaneously complies with the aforementioned constraints (to satisfy
the links and to move in the desired direction) is a combinatorial
problem that has the same dimensions as the original discrete design
optimization problem. Solving this problem by means of enumeration
would involve a very high computational effort. In order to reduce the
dimensions of the problem, only the design entities that have an actual
(direct or indirect) link with the target design entity are considered. The
other design entities do not need to be updated; they simply preserve
their current state. A branch-and-bound-like algorithm is then used to
find the neighboring state: all terms in the distance function (1) are
positive; as a consequence, we can terminate the summation operation as
soon as the value corresponding to the best candidate state yet is
exceeded. In this way, large numbers of combinations can be discarded,
and the computational cost is somewhat reduced. As long as the number
of linked parameters remains limited, this approach has proven to be
viable.

3

3. OPTIMIZATION SCHEME

The optimality criteria method is an algorithm for continuous design
optimization that has been developed around 1970 (see e.g. reference
[9]). It has been conceived as an efficient alternative to mathematical
programming methods, allowing for the solution of optimization
problems with much larger numbers of parameters. The method is based
on the formulation of the optimality conditions for the problem at hand
and the derivation of an iterative updating scheme from these conditions.
Originally, the iterative updating scheme was derived for each individual
type of problem, based on a physical interpretation of the optimality
conditions. Two decades later, Venkayya [10] presented a generalization
of the method, making it directly applicable to any type of design
optimization problem. For a detailed description of the generalized
optimality criteria method, the reader is referred to the book of Haftka
and Gürdal [6].

The optimality criteria method is not directly applicable to discrete
design optimization problems. An alternative algorithm has therefore
been developed, based on the same principles as the optimality criteria
method, but within the framework set up in section 2.

3.1. Optimality criteria method for discrete problems

The discrete design optimization problem is formulated as follows:

a

min : ()

subject to : () 1

f

g

i

≤
∈

i
i

i

I

 (3)

where i is the design state as defined in section 4, ()f i is the objective
function, () 1g ≤i is the constraint, and aI is a set collecting all
admissible design states, i.e. the design states for which the parameter
links are satisfied.

This optimization problem is solved in an iterative way. Given a certain
design state iold, all candidate new design states j in the neighborhood of
state iold are identified as explained in subsections 2.2 and 2.3. These
states are collected in a set cI . For each candidate state c∈j I , the
objective and constraint functions ()f j and ()g j are evaluated and the
differences old() () ()f f f∆ = −j j i and old() () ()g g g∆ = −j j i are
calculated.

If the current design state iold is infeasible, i.e. if old() 1g >i , the next
state inew is determined by means of the following updating rule:

new

c

()
arg max :

()

 subject to : () 0

if () 0 then () 0

f

g

g

g f

ε
∆=

∆ −
∆ ≤

∆ = ∆ <
∈

j

j
i

j

j

j j

j I

 (4)

where ε is a very small positive number introduced in order to ensure
that the denominator does not become zero.

If the current design state iold is feasible, i.e. if old() 1g ≤i , the following
updating rule is used:

new

c

()
arg max :

()

 subject to : () 0

if () 0 then () 0

g

f

f

f g

ε
∆=

∆ −
∆ ≤

∆ = ∆ <
∈

j

j
i

j

j

j j

j I

 (5)

It is possible that none of the neighboring design states satisfies the
restrictions specified by the updating rule; in such cases, the
optimization scheme terminates. It is also possible that the updating rule
has multiple solutions; if this occurs, the next design state inew is selected
arbitrarily among these solutions.

The selection of the next design state according to equations (4) and (5)
is visualized in figure 1. It can be explained as follows: if the current
design state is infeasible, the next state is chosen so that the constraint

function decreases maximally while the objective function increases
minimally. If the current design state is feasible, the next state is chosen
so that the objective function decreases maximally while the constraint
function increases minimally. In some rare cases, it might be possible to
change the design such that both the constraint function and the
objective function decrease; if this occurs, these changes are obviously
highly preferable. Conversely, design changes for which both functions
increase might also be possible; these changes will never be selected.

Iterative application of this procedure leads to a path in the parameter
space that can generally be subdivided into two parts. In the first part of
the optimization path, the design will move towards the boundary of the
feasible domain, either from the feasible or from the infeasible side
(depending on the starting point). This part is similar to the relative
difference quotient algorithm for discrete optimization proposed by Chai
and Sun [3]. In the classical optimality criteria method (for continuous
optimization problems), this part does not exist, as a scaling operation
ensures that the constraint is active throughout the entire optimization
run. In the second part of the optimization path, the design will stay
close to the boundary of the feasible domain and gradually move in the
direction of the optimum. This part is similar to the classical optimality
criteria method, in the sense that the design is improved by reducing the
investment in the least cost-effective parameters in order to increase the
investment in the most cost-effective parameters. The main difference
with the continuous scheme is that only a single parameter (or a single
family of linked parameters) is changed in each optimization step,
resulting in an optimization path that continuously crosses the boundary
of the feasible domain instead of exactly following it. Eventually, all
parameters become equally cost-effective, which means that the
optimality criteria are satisfied – the optimum is reached. At this point it
is no longer possible to improve the design by saving on one parameter
in order to invest in another. As a consequence, the algorithm will enter
a loop. Once a loop has been detected, or once none of the neighboring
design states satisfies the restrictions specified by the updating rule, the
algorithm is terminated, and the optimum is identified as the design on
the optimization path for which the lowest objective function value is
reached while the constraint is satisfied.

3.2. Multiple constraints

The optimization scheme outlined in the previous subsection is only
usable for optimization problems with a single constraint. Practical
design optimization problems are usually characterized by a large
number of constraints. In this subsection, a method is proposed to
combine a large number of constraints of the type 1kg ≤ into a single
constraint 1g ≤ .

The most obvious method of combining constraint functions is to take
the maximum:

 max k
k

g g= (6)

Fig. 1. These graphs illustrate how the next design state is chosen (a) if
the current state is infeasible and (b) if the current state is feasible. For
each candidate state, the impact on the objective function and the
constraint function can be represented by a vector { (); ()}f g∆ ∆j j . A state
for which the vector { (); ()}f g∆ ∆j j points in the direction of a dark-
colored arrow is preferred over a state for which it points in the direction
of a light-colored arrow. States corresponding to vectors { (); ()}f g∆ ∆j j
located in the hatched area are not allowed.

4

However, this approach would cause the optimization scheme to fail, as
can be shown by means of the following simple example. Consider the
structure shown in figure 2: two vertical cable segments with lengths l1
and l2 and sections A1 and A2 carry a vertical point load F. The aim is to
determine the optimal cable sections A1 and A2. The objective function is
defined as follows:

 1 1 2 2A Af l l= + (7)

Two stress constraints are formulated:

 1
1

y

/
1

F A
g

f
= ≤ (8)

 2
2

y

/
1

F A
g

f
= ≤ (9)

where yf is the yield strength of the material. Both constraint functions

g1 and g2 are combined into a single constraint function g according to
equation (6).

Suppose that the design is in the infeasible domain because both A1 and
A2 are too small. Iterative application of the updating rule given by
equation (4) will first cause the smallest section to increase until both
values A1 and A2 are equal. At that point, neither A1 nor A2 will increase
further, as this does not affect the combined constraint function g, while
it leads to an increase of the objective function f . Such modifications are
not allowed by the updating rule. As a consequence, the optimization
scheme is stuck.

Now suppose that the design is in the feasible domain: both A1 and A2
are larger than necessary. Iterative application of the updating rule given
by equation (5) will cause the largest section to decrease until A1 and A2
are equal. At that point, either A1 or A2 will be arbitrarily selected for
further reduction, as both lead to the same decrease of the objective
function f and increase of the combined constraint function g. In the next
step, the other section will be reduced, so that A1 and A2 become equal
again. These two operations will be repeated until the infeasible domain
is reached.

From this simple example, we can conclude that combining constraint
functions by taking the maximum value is a suitable approach as long as
all constraints are satisfied. If one or more constraints are not satisfied, it
may cause the optimization scheme to fail.

An alternative approach to combine multiple constraint functions has
been proposed by Kreisselmeier and Steinhauser [7]:

 ()1
log exp k

k

g gρ
ρ

 
 =
  
 
∑ (10)

The Kreisselmeier-Steinhauser (KS) function is a smooth approximation
of the maximum operator. The parameter 0ρ > determines the accuracy
and the smoothness of the approximation – for small values of ρ, the
approximation is very inaccurate but smooth; for high values of ρ, the
accuracy increases and the smoothness reduces; for ρ tending to infinity,
the KS function becomes equal to the maximum operator.

The KS function is frequently used in continuous optimization: by virtue
of its smoothness, it allows for the use of a gradient-based optimization

scheme. In the frame of the discrete optimization scheme proposed in
this paper, the smoothness of the function is less important. What
matters here is that the KS function does not only depend on the
constraint that is most strongly violated; all constraints are taken into
account. As a consequence, the optimization scheme will no longer get
stuck in the situation outlined above: when the KS function is used,
increasing A1 or A2 will have a beneficial impact on the combined
constraint function g; hence, this will be allowed by the updating rule.
The KS function will always yield an overestimation of the maximum
operator – using this function in order to combine constraints of the type

1kg ≤ is therefore a conservative approach. However, it may lead to a
design that is not truly optimal. In order to avoid this, we modify the KS
function by using a variable smoothness parameter ρ:

1

max max ,1 1k
k

g

ρ =
  − 
 

 (11)

As the design approaches the feasible domain, the parameter ρ will
approach infinity, and the modified KS function will become identical to
the maximum operator.

4. TEST CASE

In this section, the discrete optimization scheme is illustrated for a
simple test case. The aim is to design a v-shaped cable structure as
shown in figure 3 that carries a vertical point load F = 20 kN. The
structure spans a distance 2a = 12 m.

Two design entities are considered: the sag of the cable and the cable
section. Possible values for both design entities are given in tables 3
and 4. The cable sag s and the section diameter d are used as
optimization parameters.

Table 3: Possible values for the cable sag s.

Index Sag

 [m]

1 0

2 1

3 2
⁞ ⁞

31 30

Table 4: Possible cable sections.

Index Diameter Section area

 [mm] [mm2]

1 1.0 0.79

2 1.5 1.77

3 2.0 3.14
⁞ ⁞ ⁞

99 50.0 1963.50

Fig. 3. Vertical cable consisting of two segments with lengths l1 and l2

and sections A1 and A2 carrying a vertical point load F.

Fig. 2. Cable structure with span 2a, sag s, and section A carrying a
vertical point load F.

5

The aim is to minimize the structural weight; the objective function f (i)
is therefore defined as:

 2 2() 2f A a sρ= +i (12)

where A is the section area and 37850 kg/mρ = is the density of the
material. A single stress constraint is formulated:

2

2

y

1

()
2

a
F

sg
Af

+
=i (13)

where 2
y N00 m7 /mf = is the yield strength of the material. The

constraint function g(i) represents the ratio of the actual stress to the
maximum allowable stress and can therefore be considered as a
utilization ratio.

Figure 4 shows a graphical representation of the optimization path in
terms of the parameters s and d and in terms of the objective and
constraint functions f and g. In the initial design state, the sag s is 20 m
and the cable diameter d is 10 mm. In the optimized state, the sag s is 7
m and the diameter d is 15.5 mm. The corresponding structural weight f
is 27.31 kg and the utilization ratio g is 0.997. It can be verified by
enumeration that this is indeed the optimum.

The optimization path in figure 4 clearly consists of two parts; a first
part where the design moves in the direction of the feasible domain, and
a second part where it follows the boundary of the feasible domain until
it reaches the optimum.

Figure 4b clearly visualizes the updating mechanism: if the design
infeasible, we increase the investment in the most cost-effective

parameter: the steepest step downwards is selected. If the design is
feasible, we reduce the investment in the least cost-effective parameter:
the flattest step leftwards is selected. Eventually, all steps become
parallel. At this point, all parameters are equally cost-effective – the
optimality criteria are satisfied; the optimum is reached.

5. TRUSS DESIGN PROBLEM

In this section, the example optimization problem described in the
introduction is addressed. The aim is to minimize the self weight of a
Warren type truss consisting of CHS members with welded joints. The
layout of the truss as well as the loads and the boundary conditions are
shown in figure 5. The truss must be designed in accordance with the
displacement, member force, and buckling constraints specified in part
1-1 of Eurocode 3 [4]. In addition, the rules in the CIDECT design guide
for CHS joints must be followed [11]. The truss dimensions, steel grade,
and load level are inspired by one of the worked-out design examples in
the CIDECT guide: the span is l = 36 m and the height at mid-span is
h1 = 2.4 m. S355 steel is used for the chords and S275 steel for the
braces. The loading consists of the purlin loads F and the self weight of
the truss. The unfactored value of the purlin loads is F = 68 kN; the
factored value is F = 100 kN. The safety factor for the self weight is
1.35. Factored load values are used for the analysis of the ultimate limit
state (to check the capacities of members and joints), unfactored values
for the serviceability limit state (to check the deflections).

The optimization problem is formulated in terms of 15 design entities:
the height h2 of the truss at end-span, 3 top chord sections (we aim for a
symmetric structure), 4 bottom chord sections, and 7 brace sections. The
height h2 must take one of the values in table 1; the sections must be
chosen from the catalog in table 2. In order to ensure that the optimized
design is buildable, the top chord members must all have the same outer

Fig. 4. (a) Sag and diameter and (b) utilization ratio and structural weight for the designs evaluated in the optimization of the v-shaped cable
structure. The dot marked by a plus sign corresponds to the initial design, the dots encircled in black represent the designs that are selected in the
optimization, and the dot marked by an x-sign corresponds to the optimized design. The shading reflects the objective function; lighter is better. The
hatched area is the infeasible domain.

Fig. 5. Simply supported Warren type truss with a span l and a height varying from h1 at mid-span to h2 at the ends, subjected to 7 vertical point loads
F and F/2.

6

diameter, and the bottom chord members must all have the same outer
diameter.

First, the initial design state is chosen. In an attempt to choose realistic
values, the height h2 at end-span is set to 2 m, and CHS 193×5.0 profiles
are selected for all members. The corresponding structural weight f is
2797 kg, and the overall utilization ratio g is 6.403.

Next, the discrete optimality criteria based algorithm is used to optimize
the design. Figure 6 shows the structural weight and the utilization ratio
for all designs evaluated in the optimization process. After 65 iterations,
a loop is detected, and the optimization scheme is terminated. At this
point, a total number of 2815 designs has been evaluated. This is
comparable with the number of design evaluations required for
continuous design optimization problems where the gradients of the
objective function and the constraints are computed with finite
differences [1]. It is at least two orders of magnitude lower than the
number of design evaluations required for similar optimization problems
solved with an evolutionary algorithm [1].

In the optimized state, the height h2 is equal to 2 m. The section profiles
for all members are shown in figure 7. The top chord members all have
the same outer diameter, as requested. Their wall thickness increases
towards mid-span – where the bending moment in the equivalent beam
reaches a maximum. The bottom chord members have a smaller
diameter than the top chord members – they do not need buckling
resistance. The wall thickness also increases towards mid-span, but the
leftmost member has a larger thickness than its neighbor – this is
explained by the increased risk for chord face failure of the leftmost
bottom joint due to a strong lateral compression of the chord caused by
the reaction force. The brace members have varying diameters. The
braces in compression have a larger section than the braces in tension
due to the risk of buckling. Sections increase towards end-span, where
the shear force in the equivalent beam reaches a maximum. The
structural weight f of the optimized design is equal to 2868 kg. The
overall utilization ratio g is exactly equal to 1 due to the fact that the
diameter of some of the braces is equal to the diameter of the bottom

chord – as specified by the CIDECT rules, this is the largest allowable
brace diameter.

6. CONCLUSION

This paper presents a new algorithm for discrete design optimization
under buildability constraints. The algorithm is based on the optimality
criteria method. It proceeds as follows: given a certain design state, all
neighboring design states that satisfy the links between optimization
parameters are identified. For each of these neighboring states, the
change in cost and the change in performance with respect to the current
state are evaluated. If the current state is infeasible, the next state is
chosen so that performance increases maximally while cost increases
minimally. If the current state is feasible, the next state is chosen so that
cost decreases maximally while performance decreases minimally. This
operation is applied iteratively until it gets trapped in a loop; at this
point, the optimum is found. The new algorithm is successfully applied
to a simple test case, as well as a realistic optimization problem
involving the design of a Warren type truss composed of steel CHS
members with welded joints. In terms of numerical efficiency (the
number of design evaluations), the new algorithm is comparable with
continuous optimization schemes based on finite differences and much
more efficient than evolutionary algorithms.

ACKNOWLEDGEMENTS

This paper is the product of a research stay of the first author at the Arup
office in Amsterdam. The research stay has been financially supported
by the Research Foundation – Flanders. The first author is a member of
OPTEC – the KU Leuven Optimization in Engineering Center
(KU Leuven-BOF PFV/10/002).

REFERENCES

[1] Optimization of shell and truss structures based on size and shape
parameterization. PhD thesis, Department of Civil Engineering,
KU Leuven, 2012.

[2] J.S. Arora and M.W. Huang. Discrete structural optimization with
commercially available sections. Structural
Engineering/Earthquake Engineering, 13(2):105–122, 1996.

[3] S. Chai and H.C. Sun. A relative difference quotient algorithm for
discrete optimization. Structural Optimization, 12(1):46–56, 1996.

[4] European Committee for Standardization. Eurocode 3: Design of
steel structures - Part 1-1: General rules and rules for buildings,
2005.

[5] European Committee for Standardization. European standard EN
10210-2: Hot finished structural hollow sections of non-alloy and
fine grain steels - Part 2: Tolerances, dimensions and sectional
properties, 2006.

[6] R.T. Haftka and Z. Gürdal. Elements of structural optimization.
Kluwer Academic Publishers, Dordrecht, The Netherlands, 3rd
edition, 1992.

[7] G. Kreisselmeier and R. Steinhauser. Application of vector
performance optimization to a robust-control loop design for a
fighter aircraft. International Journal of Control, 37(2):251–284,
1983.

[8] G.N. Vanderplaats. Structural optimization for statics, dynamics
and beyond. Journal of the Brazilian Society of Mechanical
Sciences and Engineering, 28(3):316–322, 2006.

[9] V.B. Venkayya. Design of optimum structures. Computers &
Structures, 1(1):265–309, 1971.

[10] V.B. Venkayya. Optimality criteria: a basis for multidisciplinary
design optimization. Computational Mechanics, 5(1):1–21, 1989.

[11] J. Wardenier, Y. Kurobane, J.A. Packer, D. Dutta, and N.
Yeomans. Design guide for circular hollow section (CHS) joints
under predominantly static loading. CIDECT and Verlag TÜV
Rheinland GmbH, 1992.

Fig. 6. Utilization ratio versus structural weight for the designs
evaluated in the optimization of a Warren type truss.

Fig. 7. Optimized member sections obtained with the optimality criteria
based algorithm.

