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Summary: This paper presents a heuristic algorithm for discrete design optimization, based on the optimality criteria method. Practical applicability 
is the first concern; special attention is therefore paid to the implementation of technological constraints. The method is generally applicable, but in 
order to clarify the idea, it is used in this paper for the optimal design of a Warren type truss composed of steel CHS members with welded joints. For 
each member, the optimal section is chosen from a given steel catalog. Following Eurocode 3 and the CIDECT design guidelines, restrictions are 
imposed on the deflections, the member forces, the layout of the joints, and the joint forces. The buildability of the design is ensured by requiring all 
top chord members and all bottom chord members to have the same outer diameter. The algorithm is successfully applied to a simple test case as well 
as the example truss design optimization problem.  In terms of computational cost, the algorithm is comparable to a continuous optimization scheme 
based on finite differences, and much faster than an evolutionary algorithm. 
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1. INTRODUCTION 

The optimal design of structures has been an active research area over 
the past half century. However, practicing structural engineers seem to 
hesitate to adopt optimization as a daily design tool [8], even for 
relatively simple and tedious tasks such as the sizing of the members of 
a steel structure. One of the reasons for this apparent reluctance is the 
fact that it is very difficult to take into account the appropriate 
technological constraints so as to ensure the buildability of the optimized 
design. 

In this paper we present a method to account for technological 
constraints in design optimization. The method is applicable to any 
design optimization problem, but in order to explain the idea we apply it 
here to a simple (but realistic) example problem: the size and shape 
optimization of a Warren type truss under static loading. The truss is 
composed of steel Circular Hollow Section (CHS) members. The 
objective is to minimize the weight of the truss. The usual displacement, 
member force, and buckling constraints as formulated in part 1-1 of 
Eurocode 3 [4] are imposed. In addition, the joints must satisfy the 
(geometrical and mechanical) rules specified in the CIDECT design 
guide for CHS joints [11], the member sections must be chosen from a 
given section catalog, all top chord members must have the same 
external size, and all bottom chord members must have the same 
external size. 

The example problem has the following properties, which are typical for 
a design optimization problem that takes into account practical 
constraints: (1) not all constraints are physically motivated and 
mathematically well-behaved (this is particularly true for the CIDECT 
design rules), (2) it is a mixed discrete-continuous optimization problem 
(section diameters and wall thicknesses are discrete, truss dimensions 
are continuous), and (3) some of the optimization parameters are linked 
(section diameters and wall thicknesses are linked via a table of 
available sections, and the diameters of the chord members are required 
to be identical). 

Several optimization methods have been proposed in the literature to 
handle problems with one or more of these properties. Practically all 
recent methods are based on evolutionary computing. Evolutionary 
computing methods are attractive as they are conceptually simple and 
easy to implement, but unfortunately their convergence is extremely 
slow, making them less ideal for use in engineering practice. Moreover, 
algorithms that can handle linked optimization parameters are often 
restricted to parameters that are linked through a one-to-one relationship. 
They cannot handle the example optimization problem where a CHS 
profile with a given diameter can have multiple wall thicknesses. In 
conclusion, there is still a need for an optimization scheme that is fast, 
easy to use, and capable of handling all types of practical constraints. 

 

In this paper we present a new optimization scheme for discrete design 
optimization based on the optimality criteria method [10]. The 
optimality criteria method is only applicable to continuous optimization 
problems. We propose an alternative method based on the same 
principles for problems with discrete optimization parameters that may 
or may not be linked. 

The remainder of this paper is organized as follows. Section 2 introduces 
a framework to cope with the discrete and linked nature of the 
optimization parameters. Section 3 describes the actual optimization 
scheme. In section 4, this scheme is used for a simple test case with two 
optimization parameters in order to illustrate the principle. Finally, 
section 5 addresses a realistic design optimization problem – the truss 
design problem introduced before. 

2. OPTIMIZATION FRAMEWORK 

Before outlining the actual optimization scheme, we first set up a 
framework to cope with the discrete nature of the optimization 
parameters. In the terminology of Arora and Huang [2], we adopt a 
hybrid single - multiple variable approach, using a single variable (the 
design entity) to identify the design state, and multiple variables (the 
parameters) to select the best design update in each iteration of the 
optimization process. We also propose a scheme to ensure that all links 
between optimization parameters remain satisfied when performing a 
design update. 

2.1. Design entities 

The primary element of the optimization framework is the design entity. 
Each design entity represents one of the unknowns in the optimization 
problem. Design entities can be scalar variables such as the dimensions 
of a structure, or more complex variables such as a section profile to be 
chosen from a steel catalog. We assume that all unknowns are discrete, 
so that we can construct a table containing all possible values for each 
design entity. In a practical design optimization problem, continuous 
variables can always be made discrete using an appropriate 
discretization step. 

In the example problem, the height of the truss is a scalar design entity – 
possible values are given in table 1. The member sections must be 
chosen from a catalog of CHS profiles – this catalog is given in table 2. 
The catalog contains 119 sections defined by the European standard EN 
10210-2 [5]. For each section, an index and a name are specified, as well 
as the outer diameter d, the wall thickness t, the section area A, and the 
moment of inertia I. 

The state of each design entity e is represented by an index ie. These 
indices are collected in a vector i representing the state of the entire 
design. 
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Table 1: Possible truss height values. 

Index Height 
[m] 

1 1.8 

2 2.0 

3 2.2 

4 2.4 

 

Table 2: CHS profile catalog. 

    Outer Wall Section Moment 
Index Name diameter thickness area of inertia 

    [mm] [mm] [cm2] [cm4] 

1 CHS 21×3.2 21.3 3.2 1.82 0.77 

2 CHS 26×3.2 26.9 3.2 2.38 1.70 

3 CHS 33×2.6 33.7 2.6 2.54 3.09 

4 CHS 33×3.2 33.7 3.2 3.07 3.60 
5 CHS 33×4.0 33.7 4.0 3.73 4.19 

6 CHS 42×2.6 42.4 2.6 3.25 6.46 

7 CHS 42×3.2 42.4 3.2 3.94 7.62 

8 CHS 42×4.0 42.4 4.0 4.83 8.99 
9 CHS 48×3.2 48.3 3.2 4.53 11.59 

10 CHS 48×4.0 48.3 4.0 5.57 13.77 

11 CHS 48×5.0 48.3 5.0 6.80 16.15 
⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

119 CHS 660×50 660 50 958 448670 

2.2. Parameters 

In each iteration of the optimization process, we will modify the design 
state in order to move in the direction of the optimum. To this end, we 
have to make a well-considered design update: the update must have a 
beneficial impact on the objective function and/or the critical constraint. 
Complex constraints make it very difficult to predict the effect of a 
design update. It is therefore important to consider an appropriate set of 
candidate states in order to select the best update. 

Assessing the influence of increasing or decreasing a single property of 
a design entity, which would typically be the section area, is not 
sufficient. As an example, assume that one of the chord members in the 
truss design problem has been assigned section 5 from table 2, and that 
the joint between this member and one of the braces is susceptible to 
chord face failure. In an attempt to improve the joint capacity, we take 
the section with the next larger area – section 7. However, this section 
has a smaller wall thickness, which is one of the determining factors for 
chord face failure. As a consequence, the design update does not have a 
beneficial effect at all on the critical constraint; on the contrary, the 
problem becomes worse. 

This issue is solved by combining the single variable approach (to 
identify the state of a design entity) with a multiple variable approach (to 
determine the set of candidate states for the next design update). To this 
end, we declare certain properties of the design entities as optimization 
parameters. These parameters are decreased and increased one after 
another in order to find all neighboring design states. The states thus 
obtained constitute the set of candidate states. 

The choice of which design entity properties are considered as 
parameters must be based on their expected effect on the objective 
function and the constraints. In the case of the example problem, we 
choose the values of the scalar design entities as optimization 
parameters, as well as the outer diameter d and the wall thickness t of 
the CHS profiles. The section area A and the moment of inertia I are also 
relevant for the objective function and some of the constraints, but since 

they depend directly on the diameter d and the thickness t, there is no 
need to consider them as separate optimization parameters.  

For each design entity e, all possible parameter values are collected in a 
matrix Pe. For the scalar design entity representing the height of the 
truss, Pe is a column vector containing the values in table 1. In design 
state i, the value of the design entity is equal to 

e

e
iP . For the design 

entities representing a CHS profile, Pe is a 119 × 2 matrix containing the 
diameters d (in the first column) and the thicknesses t (in the second 
column) specified in table 2. In design state i, the diameter d and the 
thickness t of the CHS profile represented by design entity e are given 
by 1  

e

e
id P=  and 2  

e

e
it P= . 

2.3. Links 

Due to the existence of links, it is not always possible to find a 
neighboring state by simply changing a single parameter. As an 
example, assume that one of the CHS profiles has section 8 from table 2. 
If we want to increase the wall thickness t of this profile, we have to 
modify its outer diameter d as well. Similarly, if we want to modify the 
outer diameter of one of the top chord members of the example truss, we 
have to modify the other top chord member sections accordingly.  

The neighboring design state in the direction of a certain parameter is 
therefore defined as the closest state to the current design state for which 
(1) all links are satisfied and (2) the target parameter moves in the 
desired direction. The distance between the current design state i and a 
candidate neighboring design state j is measured by means of the 
function d (i, j):  

 ( )
2
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ˆ

e
e e

e

e eNM
j k i k

e
e k i k
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d

P= =
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 

∑∑i j   (1) 

where M is the number of design entities and Ne is the number of 
parameters associated with design entity e. Different parameters may 
have different dimensions or magnitudes; all terms in the distance 

function (1) are therefore divided by a reference value ˆe
ikP  in order to 

make them dimensionless. In the examples considered in the present 

paper, the reference value ˆe
ikP  is chosen as follows: for parameters that 

can only assume strictly positive values (such as the dimensions of a 

section), the current value eikP  is used; for parameters that may assume 

zero or negative values, the reference value is computed as the distance 
between the minimum and the maximum value: 
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  (2) 

Finding the design state that minimizes the distance function d (i, j) and 
simultaneously complies with the aforementioned constraints (to satisfy 
the links and to move in the desired direction) is a combinatorial 
problem that has the same dimensions as the original discrete design 
optimization problem. Solving this problem by means of enumeration 
would involve a very high computational effort. In order to reduce the 
dimensions of the problem, only the design entities that have an actual 
(direct or indirect) link with the target design entity are considered. The 
other design entities do not need to be updated; they simply preserve 
their current state. A branch-and-bound-like algorithm is then used to 
find the neighboring state: all terms in the distance function (1) are 
positive; as a consequence, we can terminate the summation operation as 
soon as the value corresponding to the best candidate state yet is 
exceeded. In this way, large numbers of combinations can be discarded, 
and the computational cost is somewhat reduced. As long as the number 
of linked parameters remains limited, this approach has proven to be 
viable. 
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3. OPTIMIZATION SCHEME 

The optimality criteria method is an algorithm for continuous design 
optimization that has been developed around 1970 (see e.g. reference 
[9]). It has been conceived as an efficient alternative to mathematical 
programming methods, allowing for the solution of optimization 
problems with much larger numbers of parameters. The method is based 
on the formulation of the optimality conditions for the problem at hand 
and the derivation of an iterative updating scheme from these conditions. 
Originally, the iterative updating scheme was derived for each individual 
type of problem, based on a physical interpretation of the optimality 
conditions. Two decades later, Venkayya [10] presented a generalization 
of the method, making it directly applicable to any type of design 
optimization problem. For a detailed description of the generalized 
optimality criteria method, the reader is referred to the book of Haftka 
and Gürdal [6]. 

The optimality criteria method is not directly applicable to discrete 
design optimization problems. An alternative algorithm has therefore 
been developed, based on the same principles as the optimality criteria 
method, but within the framework set up in section 2. 

3.1. Optimality criteria method for discrete problems 

The discrete design optimization problem is formulated as follows: 

 

a

min : ( )

subject to : ( ) 1

f

g

i

≤
∈

i
i

i

I

  (3) 

where i is the design state as defined in section 4, ( )f i  is the objective 
function, ( ) 1g ≤i  is the constraint, and aI  is a set collecting all 
admissible design states, i.e. the design states for which the parameter 
links are satisfied. 

This optimization problem is solved in an iterative way. Given a certain 
design state iold, all candidate new design states j in the neighborhood of 
state iold are identified as explained in subsections 2.2 and 2.3. These 
states are collected in a set cI . For each candidate state c∈j I , the 
objective and constraint functions ( )f j  and ( )g j  are evaluated and the 
differences old( ) ( ) ( )f f f∆ = −j j i  and old( ) ( ) ( )g g g∆ = −j j i  are 
calculated.   

If the current design state iold is infeasible, i.e. if old( ) 1g >i , the next 
state inew is determined by means of the following updating rule: 
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where ε  is a very small positive number introduced in order to ensure 
that the denominator does not become zero. 

If the current design state iold is feasible, i.e. if old( ) 1g ≤i , the following 
updating rule is used: 
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  (5) 

It is possible that none of the neighboring design states satisfies the 
restrictions specified by the updating rule; in such cases, the 
optimization scheme terminates. It is also possible that the updating rule 
has multiple solutions; if this occurs, the next design state inew is selected 
arbitrarily among these solutions. 

The selection of the next design state according to equations (4) and (5) 
is visualized in figure 1. It can be explained as follows: if the current 
design state is infeasible, the next state is chosen so that the constraint 

function decreases maximally while the objective function increases 
minimally. If the current design state is feasible, the next state is chosen 
so that the objective function decreases maximally while the constraint 
function increases minimally. In some rare cases, it might be possible to 
change the design such that both the constraint function and the 
objective function decrease; if this occurs, these changes are obviously 
highly preferable. Conversely, design changes for which both functions 
increase might also be possible; these changes will never be selected.  

Iterative application of this procedure leads to a path in the parameter 
space that can generally be subdivided into two parts. In the first part of 
the optimization path, the design will move towards the boundary of the 
feasible domain, either from the feasible or from the infeasible side 
(depending on the starting point). This part is similar to the relative 
difference quotient algorithm for discrete optimization proposed by Chai 
and Sun [3]. In the classical optimality criteria method (for continuous 
optimization problems), this part does not exist, as a scaling operation 
ensures that the constraint is active throughout the entire optimization 
run. In the second part of the optimization path, the design will stay 
close to the boundary of the feasible domain and gradually move in the 
direction of the optimum. This part is similar to the classical optimality 
criteria method, in the sense that the design is improved by reducing the 
investment in the least cost-effective parameters in order to increase the 
investment in the most cost-effective parameters. The main difference 
with the continuous scheme is that only a single parameter (or a single 
family of linked parameters) is changed in each optimization step, 
resulting in an optimization path that continuously crosses the boundary 
of the feasible domain instead of exactly following it. Eventually, all 
parameters become equally cost-effective, which means that the 
optimality criteria are satisfied – the optimum is reached. At this point it 
is no longer possible to improve the design by saving on one parameter 
in order to invest in another. As a consequence, the algorithm will enter 
a loop. Once a loop has been detected, or once none of the neighboring 
design states satisfies the restrictions specified by the updating rule, the 
algorithm is terminated, and the optimum is identified as the design on 
the optimization path for which the lowest objective function value is 
reached while the constraint is satisfied. 

3.2. Multiple constraints 

The optimization scheme outlined in the previous subsection is only 
usable for optimization problems with a single constraint. Practical 
design optimization problems are usually characterized by a large 
number of constraints. In this subsection, a method is proposed to 
combine a large number of constraints of the type 1kg ≤  into a single 
constraint 1g ≤ .  

The most obvious method of combining constraint functions is to take 
the maximum: 

 max k
k

g g=   (6) 

Fig. 1. These graphs illustrate how the next design state is chosen (a) if 
the current state is infeasible and (b) if the current state is feasible. For 
each candidate state, the impact on the objective function and the 
constraint function can be represented by a vector { ( ); ( )}f g∆ ∆j j . A state 
for which the vector { ( ); ( )}f g∆ ∆j j  points in the direction of a dark-
colored arrow is preferred over a state for which it points in the direction
of a light-colored arrow. States corresponding to vectors { ( ); ( )}f g∆ ∆j j
located in the hatched area are not allowed. 
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However, this approach would cause the optimization scheme to fail, as 
can be shown by means of the following simple example. Consider the 
structure shown in figure 2: two vertical cable segments with lengths l1 
and l2 and sections A1 and A2 carry a vertical point load F. The aim is to 
determine the optimal cable sections A1 and A2. The objective function is 
defined as follows: 

 1 1 2 2A Af l l= +   (7) 

Two stress constraints are formulated: 

 1
1

y

/
1

F A
g

f
= ≤   (8) 

 2
2

y

/
1

F A
g

f
= ≤   (9) 

where yf  is the yield strength of the material. Both constraint functions 

g1 and g2 are combined into a single constraint function g according to 
equation (6). 

Suppose that the design is in the infeasible domain because both A1 and 
A2 are too small. Iterative application of the updating rule given by 
equation (4) will first cause the smallest section to increase until both 
values A1 and A2 are equal. At that point, neither A1 nor A2 will increase 
further, as this does not affect the combined constraint function g, while 
it leads to an increase of the objective function f . Such modifications are 
not allowed by the updating rule. As a consequence, the optimization 
scheme is stuck. 

Now suppose that the design is in the feasible domain: both A1 and A2 
are larger than necessary. Iterative application of the updating rule given 
by equation (5) will cause the largest section to decrease until A1 and A2 
are equal. At that point, either A1 or A2 will be arbitrarily selected for 
further reduction, as both lead to the same decrease of the objective 
function f and increase of the combined constraint function g. In the next 
step, the other section will be reduced, so that A1 and A2 become equal 
again. These two operations will be repeated until the infeasible domain 
is reached. 

From this simple example, we can conclude that combining constraint 
functions by taking the maximum value is a suitable approach as long as 
all constraints are satisfied. If one or more constraints are not satisfied, it 
may cause the optimization scheme to fail.  

An alternative approach to combine multiple constraint functions has 
been proposed by Kreisselmeier and Steinhauser [7]: 

 ( )1
log exp k

k

g gρ
ρ

 
 =
  
 
∑   (10) 

The Kreisselmeier-Steinhauser (KS) function is a smooth approximation 
of the maximum operator. The parameter 0ρ >  determines the accuracy 
and the smoothness of the approximation – for small values of ρ, the 
approximation is very inaccurate but smooth; for high values of ρ, the 
accuracy increases and the smoothness reduces; for ρ tending to infinity, 
the KS function becomes equal to the maximum operator. 

The KS function is frequently used in continuous optimization: by virtue 
of its smoothness, it allows for the use of a gradient-based optimization 

scheme. In the frame of the discrete optimization scheme proposed in 
this paper, the smoothness of the function is less important. What 
matters here is that the KS function does not only depend on the 
constraint that is most strongly violated; all constraints are taken into 
account. As a consequence, the optimization scheme will no longer get 
stuck in the situation outlined above: when the KS function is used, 
increasing A1 or A2 will have a beneficial impact on the combined 
constraint function g; hence, this will be allowed by the updating rule. 
The KS function will always yield an overestimation of the maximum 
operator – using this function in order to combine constraints of the type 

1kg ≤  is therefore a conservative approach. However, it may lead to a 
design that is not truly optimal. In order to avoid this, we modify the KS 
function by using a variable smoothness parameter ρ: 

 
1

max max ,1 1k
k

g

ρ =
  − 
 

  (11) 

As the design approaches the feasible domain, the parameter ρ will 
approach infinity, and the modified KS function will become identical to 
the maximum operator. 

4. TEST CASE 

In this section, the discrete optimization scheme is illustrated for a 
simple test case. The aim is to design a v-shaped cable structure as 
shown in figure 3 that carries a vertical point load F = 20 kN. The 
structure spans a distance 2a = 12 m. 

Two design entities are considered: the sag of the cable and the cable 
section. Possible values for both design entities are given in tables 3  
and 4. The cable sag s and the section diameter d are used as 
optimization parameters. 

 

Table 3: Possible values for the cable sag s. 

Index Sag 

  [m] 

1 0 

2 1 

3 2 
⁞ ⁞ 

31 30 

 

Table 4: Possible cable sections. 

Index  Diameter Section area 

       [mm] [mm2] 

1 1.0 0.79 

2 1.5 1.77 

3 2.0 3.14 
⁞ ⁞ ⁞ 

99 50.0 1963.50 

Fig. 3. Vertical cable consisting of two segments with lengths l1 and l2

and sections A1 and A2 carrying a vertical point load F. 

Fig. 2. Cable structure with span 2a, sag s, and section A carrying a 
vertical point load F. 
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The aim is to minimize the structural weight; the objective function f (i) 
is therefore defined as: 

 2 2( ) 2f A a sρ= +i   (12) 

where A is the section area and 37850 kg/mρ =  is the density of the 
material. A single stress constraint is formulated: 

 

2

2

y

1

( )
2

a
F

sg
Af

+
=i   (13) 

where 2
y  N00 m7 /mf =  is the yield strength of the material. The 

constraint function g(i) represents the ratio of the actual stress to the 
maximum allowable stress and can therefore be considered as a 
utilization ratio. 

Figure 4 shows a graphical representation of the optimization path in 
terms of the parameters s and d and in terms of the objective and 
constraint functions f and g. In the initial design state, the sag s is 20 m 
and the cable diameter d is 10 mm. In the optimized state, the sag s is 7 
m and the diameter d is 15.5 mm. The corresponding structural weight f 
is 27.31 kg and the utilization ratio g is 0.997. It can be verified by 
enumeration that this is indeed the optimum. 

The optimization path in figure 4 clearly consists of two parts; a first 
part where the design moves in the direction of the feasible domain, and 
a second part where it follows the boundary of the feasible domain until 
it reaches the optimum. 

Figure 4b clearly visualizes the updating mechanism: if the design 
infeasible, we increase the investment in the most cost-effective 

parameter: the steepest step downwards is selected. If the design is 
feasible, we reduce the investment in the least cost-effective parameter: 
the flattest step leftwards is selected. Eventually, all steps become 
parallel. At this point, all parameters are equally cost-effective – the 
optimality criteria are satisfied; the optimum is reached. 

5. TRUSS DESIGN PROBLEM 

In this section, the example optimization problem described in the 
introduction is addressed. The aim is to minimize the self weight of a 
Warren type truss consisting of CHS members with welded joints. The 
layout of the truss as well as the loads and the boundary conditions are 
shown in figure 5. The truss must be designed in accordance with the 
displacement, member force, and buckling constraints specified in part 
1-1 of Eurocode 3 [4]. In addition, the rules in the CIDECT design guide 
for CHS joints must be followed [11]. The truss dimensions, steel grade, 
and load level are inspired by one of the worked-out design examples in 
the CIDECT guide: the span is l = 36 m and the height at mid-span is  
h1 = 2.4 m. S355 steel is used for the chords and S275 steel for the 
braces. The loading consists of the purlin loads F and the self weight of 
the truss. The unfactored value of the purlin loads is F = 68 kN; the 
factored value is F = 100 kN. The safety factor for the self weight is 
1.35. Factored load values are used for the analysis of the ultimate limit 
state (to check the capacities of members and joints), unfactored values 
for the serviceability limit state (to check the deflections). 

The optimization problem is formulated in terms of 15 design entities: 
the height h2 of the truss at end-span, 3 top chord sections (we aim for a 
symmetric structure), 4 bottom chord sections, and 7 brace sections. The 
height h2 must take one of the values in table 1; the sections must be 
chosen from the catalog in table 2. In order to ensure that the optimized 
design is buildable, the top chord members must all have the same outer 

Fig. 4. (a) Sag and diameter and (b) utilization ratio and structural weight for the designs evaluated in the optimization of the v-shaped cable
structure. The dot marked by a plus sign corresponds to the initial design, the dots encircled in black represent the designs that are selected in the 
optimization, and the dot marked by an x-sign corresponds to the optimized design. The shading reflects the objective function; lighter is better. The
hatched area is the infeasible domain. 

Fig. 5. Simply supported Warren type truss with a span l and a height varying from h1 at mid-span to h2 at the ends, subjected to 7 vertical point loads 
F and F/2. 
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diameter, and the bottom chord members must all have the same outer 
diameter. 

First, the initial design state is chosen. In an attempt to choose realistic 
values, the height h2 at end-span is set to 2 m, and CHS 193×5.0 profiles 
are selected for all members. The corresponding structural weight f is 
2797 kg, and the overall utilization ratio g is 6.403. 

Next, the discrete optimality criteria based algorithm is used to optimize 
the design. Figure 6 shows the structural weight and the utilization ratio 
for all designs evaluated in the optimization process. After 65 iterations, 
a loop is detected, and the optimization scheme is terminated. At this 
point, a total number of 2815 designs has been evaluated. This is 
comparable with the number of design evaluations required for 
continuous design optimization problems where the gradients of the 
objective function and the constraints are computed with finite 
differences [1]. It is at least two orders of magnitude lower than the 
number of design evaluations required for similar optimization problems 
solved with an evolutionary algorithm [1]. 

In the optimized state, the height h2 is equal to 2 m. The section profiles 
for all members are shown in figure 7. The top chord members all have 
the same outer diameter, as requested. Their wall thickness increases 
towards mid-span – where the bending moment in the equivalent beam 
reaches a maximum. The bottom chord members have a smaller 
diameter than the top chord members – they do not need buckling 
resistance. The wall thickness also increases towards mid-span, but the 
leftmost member has a larger thickness than its neighbor – this is 
explained by the increased risk for chord face failure of the leftmost 
bottom joint due to a strong lateral compression of the chord caused by 
the reaction force. The brace members have varying diameters. The 
braces in compression have a larger section than the braces in tension 
due to the risk of buckling. Sections increase towards end-span, where 
the shear force in the equivalent beam reaches a maximum. The 
structural weight f of the optimized design is equal to 2868 kg. The 
overall utilization ratio g is exactly equal to 1 due to the fact that the 
diameter of some of the braces is equal to the diameter of the bottom 

chord – as specified by the CIDECT rules, this is the largest allowable 
brace diameter. 

6. CONCLUSION 

This paper presents a new algorithm for discrete design optimization 
under buildability constraints. The algorithm is based on the optimality 
criteria method. It proceeds as follows: given a certain design state, all 
neighboring design states that satisfy the links between optimization 
parameters are identified. For each of these neighboring states, the 
change in cost and the change in performance with respect to the current 
state are evaluated. If the current state is infeasible, the next state is 
chosen so that performance increases maximally while cost increases 
minimally. If the current state is feasible, the next state is chosen so that 
cost decreases maximally while performance decreases minimally. This 
operation is applied iteratively until it gets trapped in a loop; at this 
point, the optimum is found. The new algorithm is successfully applied 
to a simple test case, as well as a realistic optimization problem 
involving the design of a Warren type truss composed of steel CHS 
members with welded joints. In terms of numerical efficiency (the 
number of design evaluations), the new algorithm is comparable with 
continuous optimization schemes based on finite differences and much 
more efficient than evolutionary algorithms. 
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Fig. 6. Utilization ratio versus structural weight for the designs 
evaluated in the optimization of a Warren type truss. 

Fig. 7. Optimized member sections obtained with the optimality criteria 
based algorithm. 


