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Summary: This paper presents a heuristic algorithm formigcdesign optimization, based on the optimalitteda method. Practical applicability

is the first concern; special attention is therefpaid to the implementation of technological caists. The method is generally applicable, but in
order to clarify the idea, it is used in this pafuerthe optimal design of a Warren type truss cosepl of steel CHS members with welded joints. For
each member, the optimal section is chosen fronvengsteel catalog. Following Eurocode 3 and thBEIIT design guidelines, restrictions are
imposed on the deflections, the member forceslaymut of the joints, and the joint forces. Theldability of the design is ensured by requiring all

top chord members and all bottom chord membersite the same outer diameter. The algorithm is ss@aky applied to a simple test case as well
as the example truss design optimization problémterms of computational cost, the algorithm isnparable to a continuous optimization scheme

based on finite differences, and much faster timevalutionary algorithm.
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1. INTRODUCTION

The optimal design of structures has been an aaotisearch area over
the past half century. However, practicing struat@ngineers seem to
hesitate to adopt optimization as a daily desigol {8], even for
relatively simple and tedious tasks such as thagsiaf the members of
a steel structure. One of the reasons for thisrappaeluctance is the
fact that it is very difficult to take into accourthe appropriate
technological constraints so as to ensure the doility of the optimized
design.

In this paper we present a method to account fehnmlogical

constraints in design optimization. The method ppliaable to any

design optimization problem, but in order to expltie idea we apply it
here to a simple (but realistic) example problehe size and shape
optimization of a Warren type truss under statmdiag. The truss is
composed of steel Circular Hollow Section (CHS) rbers. The

objective is to minimize the weight of the trusbeTusual displacement,
member force, and buckling constraints as formdlate part 1-1 of

Eurocode 3 [4] are imposed. In addition, the joimast satisfy the
(geometrical and mechanical) rules specified in GIBDECT design

guide for CHS joints [11], the member sections nhesthosen from a
given section catalog, all top chord members mustehthe same
external size, and all bottom chord members musk hthe same
external size.

The example problem has the following propertidsictv are typical for
a design optimization problem that takes into aotopractical
constraints: (1) not all constraints are physicathyotivated and
mathematically well-behaved (this is particulanye for the CIDECT
design rules), (2) it is a mixed discrete-contirsioptimization problem
(section diameters and wall thicknesses are discteiss dimensions
are continuous), and (3) some of the optimizatiarameters are linked
(section diameters and wall thicknesses are linkied a table of
available sections, and the diameters of the chwrthbers are required
to be identical).

Several optimization methods have been proposetthaniterature to

handle problems with one or more of these propertRractically all

recent methods are based on evolutionary computivplutionary

computing methods are attractive as they are canaly simple and

easy to implement, but unfortunately their conveogeis extremely
slow, making them less ideal for use in engineepragtice. Moreover,

algorithms that can handle linked optimization pagters are often
restricted to parameters that are linked througheato-one relationship.
They cannot handle the example optimization problenere a CHS
profile with a given diameter can have multiple milicknesses. In
conclusion, there is still a need for an optimi@atscheme that is fast,
easy to use, and capable of handling all typesasftizal constraints.

In this paper we present a new optimization schiemeiscrete design
optimization based on the optimality criteria meth§l0]. The
optimality criteria method is only applicable tontiouous optimization
problems. We propose an alternative method basedthensame
principles for problems with discrete optimizatiparameters that may
or may hot be linked.

The remainder of this paper is organized as foll&estion 2 introduces
a framework to cope with the discrete and linkedure of the
optimization parameters. Section 3 describes thaahoptimization
scheme. In section 4, this scheme is used for plsitest case with two
optimization parameters in order to illustrate tmeénciple. Finally,
section 5 addresses a realistic design optimizgiioblem — the truss
design problem introduced before.

2. OPTIMIZATION FRAMEWORK

Before outlining the actual optimization scheme, first set up a
framework to cope with the discrete nature of thetinsization

parameters. In the terminology of Arora and HuaRQ jve adopt a
hybrid single - multiple variable approach, usingimgle variable (the
design entity) to identify the design state, andtiple variables (the
parameters) to select the best design update in ga@tion of the
optimization process. We also propose a schemadore that all links
between optimization parameters remain satisfieénwvperforming a
design update.

2.1.

The primary element of the optimization framewaktie design entity.
Each design entity represents one of the unknowrtke optimization
problem. Design entities can be scalar variableb s$ the dimensions
of a structure, or more complex variables such section profile to be
chosen from a steel catalog. We assume that atiawks are discrete,
so that we can construct a table containing alsibdes values for each
design entity. In a practical design optimizatiomlkgem, continuous
variables can always be made discrete using an oppate
discretization step.

Design entities

In the example problem, the height of the truss $salar design entity —
possible values are given in table 1. The membetiogss must be

chosen from a catalog of CHS profiles — this catadogiven in table 2.

The catalog contains 119 sections defined by thred&an standard EN
10210-2 [5]. For each section, an index and a remaspecified, as well
as the outer diametel the wall thickness, the section areA, and the

moment of inertid.

The state of each design entéyis represented by an indéx These
indices are collected in a vectbrepresenting the state of the entire
design.



Table 1: Possible truss height values.

Index Height

[m]

18
2.0
2.2
2.4
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Table 2: CHS profile catalog.

Quter Wall Section Moment
Index Name diameter thickness area  of inertia
[mm] [mm]  [enf]  [cm?
1 CHS 21x3.2 21.3 3.2 1.82 0.77
2 CHS 26x3.2 26.9 3.2 2.38 1.70
3 CHS 33x2.6 33.7 2.6 2.54 3.09
4 CHS 33x3.2 33.7 3.2 3.07 3.60
5 CHS 33x4.0 33.7 4.0 3.73 4.19
6 CHS 42x2.6 42.4 2.6 3.25 6.46
7 CHS 42x3.2 42.4 3.2 3.94 7.62
8 CHS 42x4.0 42.4 4.0 4.83 8.99
9 CHS 48x3.2 48.3 3.2 4,53 11.59
10 CHS 48x4.0 48.3 4.0 5.57 13.77
11 CHS 48x5.0 48.3 5.0 6.80 16.15
119 CHS 660x50 660 50 958 448670
2.2. Parameters

In each iteration of the optimization process, vtk nvodify the design

state in order to move in the direction of the mptn. To this end, we
have to make a well-considered design update: pioate must have a
beneficial impact on the objective function andfee critical constraint.

Complex constraints make it very difficult to pretdthe effect of a

design update. It is therefore important to consadeappropriate set of
candidate states in order to select the best update

Assessing the influence of increasing or decreaaismgle property of

a design entity, which would typically be the sestiarea, is not

sufficient. As an example, assume that one of bwccmembers in the

truss design problem has been assigned sectianbtéble 2, and that
the joint between this member and one of the br&esisceptible to

chord face failure. In an attempt to improve thiatj@apacity, we take

the section with the next larger area — sectioridvever, this section

has a smaller wall thickness, which is one of tetednining factors for

chord face failure. As a consequence, the desigatepdoes not have a
beneficial effect at all on the critical constraimn the contrary, the

problem becomes worse.

This issue is solved by combining the single vdeaapproach (to

identify the state of a design entity) with a mlkivariable approach (to
determine the set of candidate states for the aesign update). To this
end, we declare certain properties of the desigitiesnas optimization

parameters. These parameters are decreased aedsedtrone after
another in order to find all neighboring designtesta The states thus
obtained constitute the set of candidate states.

The choice of which design entity properties arenstered as
parameters must be based on their expected effedh® objective
function and the constraints. In the case of thengle problem, we
choose the values of the scalar design entitiesojtsmization

parameters, as well as the outer diamdtand the wall thicknestsof

the CHS profiles. The section arkand the moment of inertlaare also
relevant for the objective function and some of ¢bastraints, but since

they depend directly on the diametkand the thicknest there is no
need to consider them as separate optimizatiomysess.

For each design entiy all possible parameter values are collected in a
matrix P°. For the scalar design entity representing thgtteof the
truss,P® is a column vector containing the values in tahlén design

statei, the value of the design entity is equalF}‘?). For the design
e

entities representing a CHS profik,is a 119 x 2 matrix containing the
diametersd (in the first column) and the thicknesgeén the second
column) specified in table 2. In design stgtéhe diameted and the
thicknesst of the CHS profile represented by design erdigre given

—p€ —p€
byd= F}el andt= F}ez.

2.3. Links

Due to the existence of links, it is not always gibe to find a
neighboring state by simply changing a single patam As an
example, assume that one of the CHS profiles ha®gee3 from table 2.
If we want to increase the wall thicknessf this profile, we have to
modify its outer diameted as well. Similarly, if we want to modify the
outer diameter of one of the top chord memberb@fixample truss, we
have to modify the other top chord member sectimtordingly.

The neighboring design state in the direction afeaain parameter is
therefore defined as the closest state to the mudesign state for which
(1) all links are satisfied and (2) the target pzeter moves in the
desired direction. The distance between the cudesign staté and a
candidate neighboring design stgteés measured by means of the
functiond (i, j):

€Y

where M is the number of design entities ahd is the number of
parameters associated with design engityDifferent parameters may
have different dimensions or magnitudes; all terimsthe distance

function (1) are therefore divided by a referenedug éﬁ in order to
make them dimensionless. In the examples considieréde present
paper, the reference vallﬁﬁ is chosen as follows: for parameters that
can only assume strictly positive values (suchhaesdimensions of a
section), the current vald@ﬁ is used; for parameters that may assume

zero or negative values, the reference value ispooed as the distance
between the minimum and the maximum value:
e A i @
mjaxF’jk - ijnij otherwise
Finding the design state that minimizes the dig&anactiond (i, j) and
simultaneously complies with the aforementionedstaints (to satisfy
the links and to move in the desired direction)aiscombinatorial
problem that has the same dimensions as the dridiserete design
optimization problem. Solving this problem by meafsenumeration
would involve a very high computational effort. dnder to reduce the
dimensions of the problem, only the design entitieg have an actual
(direct or indirect) link with the target designtignare considered. The
other design entities do not need to be updates);, #imply preserve
their current state. A branch-and-bound-like altpon is then used to
find the neighboring state: all terms in the dis@rfunction (1) are
positive; as a consequence, we can terminate thenation operation as
soon as the value corresponding to the best caedisiate yet is
exceeded. In this way, large numbers of combinatzan be discarded,
and the computational cost is somewhat reducedomgsas the number
of linked parameters remains limited, this approhels proven to be
viable.



3. OPTIMIZATION SCHEME

The optimality criteria method is an algorithm foontinuous design
optimization that has been developed around 1986 ésg. reference
[9]). It has been conceived as an efficient altéveato mathematical
programming methods, allowing for the solution optimization
problems with much larger numbers of parameters. mbthod is based
on the formulation of the optimality conditions fibre problem at hand
and the derivation of an iterative updating schéno@ these conditions.
Originally, the iterative updating scheme was datifor each individual
type of problem, based on a physical interpretatbrihe optimality
conditions. Two decades later, Venkayya [10] presea generalization
of the method, making it directly applicable to atype of design
optimization problem. For a detailed description tbé generalized
optimality criteria method, the reader is refertedhe book of Haftka
and Gurdal [6].

The optimality criteria method is not directly ajgpble to discrete
design optimization problems. An alternative aljori has therefore
been developed, based on the same principles asptimeality criteria
method, but within the framework set up in secion

3.1
The discrete design optimization problem is forrntedaas follows:
f()
subjectto: gi() <

i0Zy

Optimality criteria method for discrete problems

min :
I

@)

wherei is the design state as defined in sectior @) is the objective
function, g(i)<1 is the constraint, and, is a set collecting all
admissible design states, i.e. the design statewticch the parameter
links are satisfied.

This optimization problem is solved in an iterativay. Given a certain
design staté’, all candidate new design stajes the neighborhood of
statei® are identified as explained in subsections 2.2 28d These
states are collected in a sBt. For each candidate statélZ the
objective and constraint functiorfyj) andg(j) are evaluated and the
differences Af (j) = f(j)~ f(ioig) and Ag(j)=9() -d(icw) are
calculated.

If the current design stai€® is infeasible, i.e. ifg(igy) >1, the next

inew :

statei"®"is determined by means of the following updatinig:r
i"eW = argmax: —Af_ ()
j Ag(j)-¢€
subjectto:Ag j(¥ O
if Ag(j) =0 thenAf ()< O
j0T;

4)

wheree¢ is a very small positive number introduced in ortteensure
that the denominator does not become zero.

If the current design stat®’ is feasible, i.e. ifj(igq) <1, the following
updating rule is used:

i"®W=argmax: _B90)
i of()-e
subjectto: Af j(¥ O

if Af(j) =0 thenAg § )< 0

JakA

®)

It is possible that none of the neighboring dessgates satisfies the
restrictions specified by the updating rule; in tsucases, the
optimization scheme terminates. It is also possiiée the updating rule
has multiple solutions; if this occurs, the nextida staté"" is selected

arbitrarily among these solutions.

The selection of the next design state accordinegtations (4) and (5)
is visualized in figure 1. It can be explained abofvs: if the current
design state is infeasible, the next state is ahasethat the constraint

(a)

(b)

Fig. 1 These graphs illustrate how the next design s$atbosen (a)
the current state is infeasible and (b)hié tcurrent state is feasible.
each candidate state, the impact on the objectivetibn and th
constraint function can be represented by a védfdr); Ag())} . A stat
for which the vectofAf(j); Ag(j)} points in the direction of a dark-
colored arrow is preferred over a state for whigboints in the direction
of a light-colored arrow. States corresponding ectors{Af(j); Ao j)}
located in the hatched area are not allowed.

function decreases maximally while the objectivection increases
minimally. If the current design state is feasilthe next state is chosen
so that the objective function decreases maximalijfe the constraint
function increases minimally. In some rare cadesjght be possible to
change the design such that both the constrainttiim and the
objective function decrease; if this occurs, thelsenges are obviously
highly preferable. Conversely, design changes foickwboth functions
increase might also be possible; these changessviér be selected.

Iterative application of this procedure leads tpath in the parameter
space that can generally be subdivided into tweéspénr the first part of
the optimization path, the design will move towatigs boundary of the
feasible domain, either from the feasible or frone tinfeasible side
(depending on the starting point). This part isilimto the relative
difference quotient algorithm for discrete optintiaa proposed by Chai
and Sun [3]. In the classical optimality criteri@timod (for continuous
optimization problems), this part does not exist,aascaling operation
ensures that the constraint is active throughoetetfitire optimization
run. In the second part of the optimization patig tesign will stay
close to the boundary of the feasible domain amdigrlly move in the
direction of the optimum. This part is similar teetclassical optimality
criteria method, in the sense that the design gored by reducing the
investment in the least cost-effective parameterder to increase the
investment in the most cost-effective parametehe main difference
with the continuous scheme is that only a singleupater (or a single
family of linked parameters) is changed in eachinoightion step,
resulting in an optimization path that continuousigsses the boundary
of the feasible domain instead of exactly followiitg Eventually, all
parameters become equally cost-effective, which nmethat the
optimality criteria are satisfied — the optimunrésched. At this point it
is no longer possible to improve the design byrsawin one parameter
in order to invest in another. As a consequenaeatgorithm will enter
a loop. Once a loop has been detected, or once gfahe neighboring
design states satisfies the restrictions specifiethe updating rule, the
algorithm is terminated, and the optimum is idéedifas the design on
the optimization path for which the lowest objeetifunction value is
reached while the constraint is satisfied.

3.2. Multiple constraints

The optimization scheme outlined in the previoubsggtion is only
usable for optimization problems with a single domist. Practical
design optimization problems are usually charanteriby a large
number of constraints. In this subsection, a metigroposed to
combine a large number of constraints of the tgpe1 into a single
constraing <1.

The most obvious method of combining constraintcfioms is to take
the maximum:

(6)

= max
g b Ik



However, this approach would cause the optimizasidmeme to fail, as
can be shown by means of the following simple eXxamponsider the
structure shown in figure 2: two vertical cablersegts with lengths,
andl, and section#, andA; carry a vertical point loaBl. The aim is to
determine the optimal cable sectighsandA;. The objective function is
defined as follows:

f= |1Aﬂ_ +]| 2A: (7)
Two stress constraints are formulated:
F/
o= is] ®)
y
F/
0= 2x1 ©)
y

where fy is the yield strength of the material. Both coaistr functions

g1 andg, are combined into a single constraint functgpaccording to
equation (6).

Ll
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Fig. 3. Vertical cable consisting of two segmentthvlengthsl, andl,
and sectiongy andA; carrying a vertical point loal.

Suppose that the design is in the infeasible doragause botA; and
A, are too small. lterative application of the updatirule given by
equation (4) will first cause the smallest sectiorincrease until both
valuesA; andA; are equal. At that point, neith&; nor A, will increase
further, as this does not affect the combined camgtfunctiong, while
it leads to an increase of the objective funcfiolsuch modifications are
not allowed by the updating rule. As a consequettoe,optimization
scheme is stuck.

Now suppose that the design is in the feasible dunieth A; and A,
are larger than necessary. lterative applicatiomefupdating rule given
by equation (5) will cause the largest sectiondordase untify andA,
are equal. At that point, eithéy or A, will be arbitrarily selected for
further reduction, as both lead to the same deeredshe objective
functionf and increase of the combined constraint funagidn the next
step, the other section will be reduced, so thaandA, become equal
again. These two operations will be repeated tim¢ilinfeasible domain
is reached.

From this simple example, we can conclude that d¢oimdp constraint
functions by taking the maximum value is a suitaperoach as long as
all constraints are satisfied. If one or more caists are not satisfied, it
may cause the optimization scheme to fail.

An alternative approach to combine multiple constréunctions has
been proposed by Kreisselmeier and Steinhauser [7]:

1
=2 E
g=—log exp( gk )

k

The Kreisselmeier-Steinhauser (KS) function is aatim approximation
of the maximum operator. The parameter 0 determines the accuracy
and the smoothness of the approximation — for swallies ofp, the
approximation is very inaccurate but smooth; faghhvalues of, the
accuracy increases and the smoothness reducestefioding to infinity,
the KS function becomes equal to the maximum operat

(10)

The KS function is frequently used in continuousirajzation: by virtue
of its smoothness, it allows for the use of a grattbased optimization

scheme. In the frame of the discrete optimizaticmeme proposed in
this paper, the smoothness of the function is legsortant. What
matters here is that the KS function does not afdpend on the
constraint that is most strongly violated; all doamts are taken into
account. As a consequence, the optimization scheitheo longer get
stuck in the situation outlined above: when the fd8ction is used,
increasingA; or A, will have a beneficial impact on the combined
constraint functiorg; hence, this will be allowed by the updating rule.
The KS function will always yield an overestimatiof the maximum
operator — using this function in order to comhidoastraints of the type
gk <1 is therefore a conservative approach. Howeveanay lead to a
design that is not truly optimal. In order to avéhis, we modify the KS
function by using a variable smoothness parameter

1
p:—
max[ rrllaxgk 3 -

As the design approaches the feasible domain, #ranmeterp will
approach infinity, and the modified KS function Miecome identical to
the maximum operator.

(11)

4. TEST CASE

In this section, the discrete optimization schemaeillustrated for a
simple test case. The aim is to design a v-shapdie cstructure as
shown in figure 3 that carries a vertical pointdda = 20 kN. The
structure spans a distance=212 m.

2a
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Fig. 2. Cable structure with spam,2ags, and sectionA carrying ¢
vertical point load-.

Two design entities are considered: the sag ofcti#e and the cable
section. Possible values for both design entities gaven in tables 3
and 4. The cable sag and the section diametet are used as
optimization parameters.

Table 3: Possible values for the cable sag

Index Sag
[m]
1 0
2 1
3 2
31 30

Table 4: Possible cable sections.

Index Diameter  Section area
[mm] [mnf]
1 1.0 0.79
2 1.5 1.77
3 2.0 3.14
99 50.0 1963.50
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Diameter [mm)]

Utilization ratio [ — ]

0.8 M
20 25 30 35 40 45 50 55
(b) Structural weight [kg]

(a)

Fig. 4. (a) Sag and diameter and (b) utilizatiofiorand structural weight for the designs evaluatedhe optimization of the v-shaped cable
structure. The dot marked by a plus sign correspdadhe initial design, the dots encircled in klaepresent the designs that are selectetiein
optimization, and the dot marked by an x-sign apomads to the optimized design. The shading refldet objective function; lighter is better. The
hatched area is the infeasible domain.

parameter: the steepest step downwards is selelftéde design is
feasible, we reduce the investment in the leasteffsctive parameter:
the flattest step leftwards is selected. Eventuadly steps become
N = [2,. 2 parallel. At this point, all parameters are equabst-effective — the
Fi)=2pAVa%+s (12) optimality criteria are satisfied; the optimum éached.
whereA is the section area ana=7850 kg/ni is the density of the

The aim is to minimize the structural weight; thgeztive functionf (i)
is therefore defined as:

material. A single stress constraint is formulated: 5. TRUSSDESIGN PROBLEM
22 In this section, the example optimization problemsatibed in the
F 1+—2 introduction is addressed. The aim is to minimize self weight of a
(i) = S (13) Warren type truss consisting of CHS members witldeg joints. The
2Afy layout of the truss as well as the loads and then@bary conditions are

shown in figure 5. The truss must be designed oomance with the

where fy =700N/mm? is the yield strength of the material. The displacement, member force, and buckling conssaipecified in part
constraint functiong(i) represents the ratio of the actual stress to thé-1 of Eurocode 3 [4]. In addition, the rules ie BIDECT design guide
maximum allowable stress and can therefore be derei as a for CHS joints must be followed [11]. The truss dimsions, steel grade,
utilization ratio. and load level are inspired by one of the worketldmsign examples in

) . . L . the CIDECT guide: the span liss 36 m and the height at mid-span is
Figure 4 shows a graphical representation of thémamtion path in = 2 4 m. S355 steel is used for the chords ands S2@el for the
terms of the parameterssandd and in terms of the objective and praces. The loading consists of the purlin loBdmd the self weight of
constraint function$ andg. In the initial design state, the sags 20 M he truss. The unfactored value of the purlin loisd = 68 kN; the
and the cable diameteris 10 mm. In the optimized state, the S48 7 factored value i = 100 kN. The safety factor for the self weight is
m and the diametet is 15.5 mm. The corresponding structural wefght 1 35 Factored load values are used for the asadjshe ultimate limit
is 27.31 kg and the utilization ratpis 0.997. It can be verified by state (to check the capacities of members andsjinhfactored values
enumeration that this is indeed the optimum. for the serviceability limit state (to check thefldetions).

The optimization path in figure 4 clearly consisfstwo parts; a first
part where the design moves in the direction off#lasible domain, and
a second part where it follows the boundary offéasible domain until
it reaches the optimum.

The optimization problem is formulated in terms1& design entities:
the heighth, of the truss at end-span, 3 top chord sectionsa{mefor a
symmetric structure), 4 bottom chord sections, Abdace sections. The
heighth, must take one of the values in table 1; the sestimust be
Figure 4b clearly visualizes the updating mechanigfitthe design chosen from the catalog in table 2. In order taiemghat the optimized
infeasible, we increase the investment in the mosst-effective design is buildable, the top chord members musiale the same outer

F F r F F
F/2 F/2
A y
\/v\/ hz Iy
4 7. 7%7/'

l

Fig. 5. Simply supported Warren type truss witlparg and a height varying frofm, at mid-span td, at the ends, subjected to 7 vertipaint load
F andF/2.



diameter, and the bottom chord members must ak la® same outer chord — as specified by the CIDECT rules, thishis kargest allowable
diameter. brace diameter.

First, the initial design state is chosen. In aerapt to choose realistic

values, the height, at end-span is set to 2 m, and CHS 193x5.0 psofilee' CONCLUSION
are selected for all members. The correspondingtsiral weightf is ~ This paper presents a new algorithm for discretgdeoptimization
2797 kg, and the overall utilization ratids 6.403. under buildability constraints. The algorithm issed on the optimality
criteria method. It proceeds as follows: given gaie design state, all
neighboring design states that satisfy the linksvben optimization
parameters are identified. For each of these neigyilp states, the
change in cost and the change in performance e#tpect to the current
state are evaluated. If the current state is iitfgsthe next state is
chosen so that performance increases maximallyewtokt increases
minimally. If the current state is feasible, thngtate is chosen so that
cost decreases maximally while performance decseaseimally. This
operation is applied iteratively until it gets tpegl in a loop; at this
point, the optimum is found. The new algorithm iscessfully applied
to a simple test case, as well as a realistic dpdition problem
involving the design of a Warren type truss compoeé steel CHS

Next, the discrete optimality criteria based altfori is used to optimize
the design. Figure 6 shows the structural weighttae utilization ratio
for all designs evaluated in the optimization pescéifter 65 iterations,
a loop is detected, and the optimization schenteriminated. At this
point, a total number of 2815 designs has beenuated. This is
comparable with the number of design evaluationquired for
continuous design optimization problems where thedignts of the
objective function and the constraints are computeith finite
differences [1]. It is at least two orders of magde lower than the
number of design evaluations required for similatirnization problems
solved with an evolutionary algorithm [1].

7 . T J 7 members with welded joints. In terms of numericfficency (the
number of design evaluations), the new algorithneamparable with
6 continuous optimization schemes based on finiteedihces and much
more efficient than evolutionary algorithms.
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