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Abstract
Additively manufacturing (AM) techniques make it gsible to fabricate open-cell
interconnected structures with precisely contrddahicro-architectures. It has been shown that
the morphology, pore size, and relative density @orous structure determine its macro-scale
homogenized mechanical properties and, thus, éledical performance as a biomaterial. In this
study, we used analytical, numerical, and expertalédechniques to study the elastic modulus,
Poisson’s ratio, and yield stress of AM porous latanals made by repeating the same
octahedral unit cell in all spatial directions. Aytecal relationships were obtained based on both
Euler-Bernoulli and Timoshenko beam theories bylyhg a single unit cell experiencing the
loads and boundary conditions sensed in an infiaitéce structure. Both single unit cells and
corresponding lattice structures were manufactwgdg AM and mechanically tested under
compression to determine the experimental valuesnethanical properties. Finite element
models of both single unit cell and lattice struetwere also built to estimate their mechanical
properties numerically. Differences in the bulk mmaaical properties of struts built in different
directions were observed experimentally and wekertainto account in derivation of the
analytical solutions. Although the analytical andmerical results were generally in good
agreement, the mechanical properties obtained &yl timoshenko beam theory were closer to
numerical results. The maximum difference betwesalydical and numerical results for elastic
modulus and Poisson’s ratio was below 6%, while yi@ld stress it was about 13%, both
occurring at the relative density of 50%. The maximdifference between the analytical and
experimental values of the elastic modulus was <{'glative density = 50%).
Keywords: Additive manufacturing, Porous biomaterials, Eaptoperties, Octahedral, Finite

element, Analytical solution



1.INTRODUCTION

Design of advanced biomaterials that replace tsseither permanently (e.g. implants) or
temporarily (e.g. tissue engineering scaffolds)ehlbgen receiving expanding attention as of late.
That is partially due to the availability of advadcmanufacturing techniques such as additive
manufacturing (3D printing) that make it possibtefabricate porous structures with complex
micro-architectures [1-3]. The complex micro-stwuet of such biomaterials determines their
large-scale properties including not only the meatel properties [4] but also fluid transport
properties such as permeability [5, 6] and biolabjroperties such as the tissue regeneration
performance [7-10]. Although the type of materiddia from which these complex micro-
architectures are made also play a role [11], ffects of geometrical features on the relevant
properties of porous biomaterials remain paramoegprdless of the material type.

It is therefore imperative to study the relatiopsbietween the micro-geometrical features of
additively manufactured (AM) porous structures din€lir macroscopic properties. One of the
most important types of such properties is the meidal properties including both quasi-static
[12] and fatigue resistance [13]. Previous studie®ur group as well as other groups have
shown that both above-mentioned types of mechamcaperties severely depend on the
geometrical features of the porous biomaterial4113-15], which are also referred to in the
literature as the micro-architecture or topology][lof such biomaterials. The type and
dimensions of the unit cell, which when repeatediffierent directions, creates the porous
structure are found to be particularly important][1

Space-filling polyhedra and their derivatives areoag the most important types of the basic
unit cells used for design of AM porous biomateriddeally, designers would like to have

access to simple analytical relationships or coedprtal models that could be used to estimate



the mechanical properties of porous structuresdaseall important types of (space-filling)
polyhedra. The availability of such relationshipscomputational models allows for rational
design of such biomaterials, where the choice dfaeil type and dimensions (e.g. pore size and
porosity) is based on accurate predictions of #slting mechanical properties. That is why
there has been a surge of concern in topology-pippelationships of porous structures made
from different unit cell types. For example, theamanical response of porous structures made
with the cube [18], rhombic dodecahedron [19-2&fratkaidecahedrons [22, 23], diamond [24],
body-centered cubic structure (BCC) [25], pyrami@4], rhombicuboctahedron [27], truncated
cube [28], and truncated cuboctahedron [29] unillscbave been studied analytically,
numerically, and experimentally [30-32].

The current study advances the above-mentionedofimesearch by addressing the topology-
property relationship for a new unit cell, naméig ctahedral unit cell, to expand the library of
unit cells from which the basic unit cells can besen. An extensive library of unit cells to
choose from is particularly important for the desigf biomaterials where not only the
mechanical properties but also other types of lgickdly relevant properties need to be
simultaneously taken into account.

The octahedral unit cell (Figure 1) is a morpholdiggt has not been studied thoroughly in the
past. Two earlier studies [33, 34] have studiednapker version of this unit cell where the
horizontal struts (struts BB, B B, BB ", afl B in Figure 1) which are important in the
structure strength are excluded. Presence of thizombal struts also has the advantage of
making the lattice structure isotropic. Moreovére tagreement between analytical, numerical,

and experimental results were not optimal in bbthabove-mentioned studies.



In this study, analytical, numerical, and experitaémpproaches are used to study the elastic
mechanical properties (elastic modulus, Poissoa®o,r and yield stress) of AM porous
biomaterials based on octahedral unit cell. Anealtirelationships (based on both Euler-
Bernoulli and Timoshenko beam theories) are obthifoe one unit cell with boundary and
loading conditions identical to that of a unit ckdtated inside a lattice structure. As for the
analytical study, we used a methodology similathioones used in our previous works on other
unit cell types [27-29]. Finite element models walso built for both single unit cells and lattice
structures based on the octahedral unit cell. 8mspecimens were fabricated using AM and
mechanically tested to obtain experimental restlbe results of the analytical, numerical, and
experimental approaches were compared to each ¢thémvestigate the accuracy of the
presented analytical relationships and numericalatso

2 MATERIALS AND METHODS

2.1 Analytical formulas

2.1.1 Relative density

Relative density is defined as the proportion @f plorous structure density to the bulk material
density. The relative density can be obtained bguéating the volume occupied by the material
inside a porous structure and dividing it by théaltorolume of the porous structure. Each
octahedral unit cell possesses 12 struts each dndemgthl and cross-sectional arda(Figure

1). Therefore, the total strut volume inside eaait gell is 12[A. Since the dimensions of an
octahedral unit cell are/2, the total volume of the unit cell &/2 [3. As a result, the relative

density of the structure is calculated as
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This formula, however, does not consider the matenerlay in the vertices (see the effects of
mass multiple counting on the numerical resultslitierent unit cell types in [35]). The actual

relative density is lower than the value calculatedeq. (1). Each unit cell with struts having

circular cross-section is composed of 24 piecesvehia Figure 2. The volume of each of the
pieces is equal t0.5 nr?l — 3.707 r3. Therefore, the exact relative density of the loethal

unit cell is

2] _ 3 2 2 3 2
. 24(0.5 r?l — 2.57576913) _12mr?l 61.81846 _ 3ﬁn<r) 2185612 (f) 2)

221 w2 22 1 l
2.1.2 Euler-Bernoulli theory

In order to obtain the elastic modulus, Poissoat®r and yield stress of an octahedral unit cell
(which are identical to those of the octahedrdidatstructure), the displacements of the unit cell
vertices after applying an external lo&anust be determined first. To calculate the disgriaent

of the vertices, the stiffness matrix of the umll és needed. The unit cell has a symmetric plane
coinciding the square BB'B "B (Figure 1). Moreoydue to the symmetry of the unit cell (and
as a result its deformation) with respect to plaB8 ™ and AB'B™", point A can only move in
the two noted planes, and as a result their intéseline. Consequently, point A can only move
vertically (in the directior; shown in Figure 1). Point B is located in both syenmetry planes
ABB'" and BB'B B . Therefore, point B (and itercesponding points B, B, and B ) has
only one degree of freedom (DOF) in the directi@mdnstrated in Figure 1 gs. Therefore,
the entire system has two DOFs. The first DOF aigasif vertices A and A’, while the second
DOF consists of vertices B, B, B, and B . pdotting the free-body diagram of the system,
only strut AB is considered. The deformations @& geven other inclined struts are similar to
that of strut AB and their effects will be considémwhen calculating the elements of the stiffness

matrix.



The angles of the ends of the struts remain unatdhdgring the unit cell deformation. That is
because the vertices of the structure are rigidesodf the angles between the connected struts at
a vertex are changed, it means that a plastic hgwg@med at the vertex whose investigation is
beyond the scope of the current study. Since tigearof both ends of each strut in the unit cell
remain constant during the simple compression efuthit cell, the general deformation of each
strut can be considered as the summation of twbndisdeformations at the free end of a
cantilever beam. The forces and moments requirdzbtapplied at the free end of a cantilever
beam to cause such pure extension and pure ladesplacement (without any additional
rotation) is shown in Figure 3. This figure will beferred to several times in the next
subsections.

Since the unit cell has two DOFs, the stiffnessrmatf the system must be a 2x2 matrix. The
elements of the stiffness matrix are obtained Hevis. The first DOF is displaced{ = 1) and
the second DOF is kept fixed,(= 0). The forces required to be applied to D@fFsandq, to
cause such a deformation determine the elemigptandk,, of the stiffness matrix. Similarly,
the forces required at each of the two DOFs toegus= 1 andg; = 0 determine the elements
k., and k,, of the stiffness matrix. It is assumed that theclmamical properties of the bulk
material could be different for the horizontal amglined struts [36]. The elements of the
stiffness matrix are obtained in the remaindehaf sub-section.

First DOF (g1 = 1): In this deformation, points B, B', B™", and B " edixed, while points A
and A" are displaced towards the symmetry planenty (Figure 4). This deformation for strut

AB can be assumed to be the summation of two distieformations: a) contraction of strut AB

by g and b) lateral displacement (without rotation)itsfend A by‘/z—E (Figure 4). The loads



required to cause such a deformation can be olot&iom Figure 3 and are depicted in Figure 4.

Equilibrium of forces at point A in the y directigives

EAAV2Y2  12EJN2V2 1 4AE, AS8E,l (3)
Q2ham0 2 Ttttz 0 2 sk
In Eq. (3),#?‘/7E and 125“?? are multiplied by 4, because there are four sislkauts

connected to point A (see Figure 1). SimilarlyEa. (3),Q,; has been multiplied by %2, because
the force calculated at point A is % of the totaicks applied at the first DOF (because point A
has a corresponding point at the lowermost patih@funit cell, denoted A"). On the other hand,

equilibrium of forces in the x direction at pointgdres

EAN2N2  12EJ0~N2V2 1 4AE, 48E(] (4)
fo,B=O = ] 772—1—3772+ZQ2=0 = Q2=k21=_T+ E
In Eq. (4),§EE andleslﬁg are multiplied by 2, because there are two similalined

1 2 2 3 2 2

struts connected to point B (see Figure 1). Sityilap, is multiplied by %, because the force
calculated at point B is ¥ of the total forces &plto the second DOF (because point B has
three other corresponding points in the unit cidhoted B, B, and B™ ).

Second DOF g, = 1): In this deformation, point A is fixed, while poirg is displaced

horizontally in the x direction (Figure 5). Thisfdemation can be assumed to be the summation

of two distinct deformations: a) expansion of st byg, and b) lateral displacement (without

rotation) of its end B b))/zZ (Figure 5a). The equilibrium of forces at pointirAthe y direction

yields

EANZNZ  12EJ0\22 0 1 4AE, 48El (5)
Q2ham0 2 AT g gm0 5 Gk =g



Due to this deformation, struts BB® and BB " alsoaexpanded by2 (Figure 5b. Therefore,

the equilibrium of forces in the x direction at poB yields

EAN22  12EIN2N2  24yE, V2 1 6
fo,szo = - SITTZ_Z_;??Z_ ;/3\57_'_1%:0 = Q;=kyp ©

4AE, 48E,]
= (1+2y)+ B

wherey is the ratio of the bulk material elastic moduilughe horizontal direction (i.e. in struts
BB, BB, BB, and B 'B) to that in the inokd struts. For a structure with equal
mechanical properties in all the strytss= 1.

2.1.3 Timoshenko theory

Timoshenko beam theory takes shear deformationratadional inertia effects into account,
making it suitable for describing the behavior bb beams. The procedure of calculating the
elements of the stiffness matrix using Timoshen&arb theory is very similar to that previously

presented for Euler-Bernoulli beam theory. The odifference is that in the relationships

-1

3
presented in subsection 2.1.2, the lateral fo%Egé must be replaced t(ylzl? +— ) . The

2KAGs

proof is stated in the following. The governing atjons of a uniform beam (with constant cross-

section) based on Timoshenko beam theory are:

dz? do (7)
W(Esl E) = q(x,t)

dw 1 d ( d(p)

ax ¢ KAGs dx \° dx

wherew is the lateral (in z-direction) deflection of th@d-surface is the rotational angle of
the normal to the mid-surface, ards the shear coefficient factor. The bending manip,

and shear forc@ are in relation with the angle of rotatipnand displacement by



dp (8)

= kAG +6W
Q_K S(q) ax)

If the only load applied to the cantilever Timoskemeam is forc® at its free end, Egs. (7)

gives
s FEF L g F 9)
~3E1 ' xaG, T 2E,1 " KAG,

In a cantilever beam at the free end of which a e is imposed, the displacement and
rotation are identical to those of the correspogdinler-Bernoulli beam. Due to the same reason
as in the Euler-Bernoulli beam theory (the angléhatfree end of the cantilever beam shown in
Figure 3 must remain unchanged), the rotationsywed by the load” and momeniM at the
free end of the beam must be equal and oppositgeldre, the relationship betwekhandF is

FI? N F Ml
2E,]  kAG, El

M= F (l N El ) (10)
= = -
2 KAG;l

The forceF and momentV respectively tend to increase and decrease thealadeflection.
Consequently, the resulted lateral deflection cawmeforceF and momenM at the free end of

the beam is given by

_FPB N Fl (Fl_l_ FESI> > FI® N Fl (11)
" 3EJ]  kAGy, \2  KkAGy)2EJ]  12EJ  2KkAG,

Rewriting (11) as a function &fgives

B 1 (12)
F=—p — 8

12E.1 1 2KAG,

12EgI
13

Therefore for the Timoshenko beam theory, the &htérrces 6 in Figure 3a must be

replaced b)( e + )_16.

12E]  2KAGs

10



2.1.4 The obtained stiffness matrices

The load applied on the first DOF equals twice ¢x¢éernal load applied to the unit cell, or
Q, = 2F. Since the unit cells are free to move laterdhy, external load on the second DOF is
zero. Using the force and stiffness matrix elemestitained above, the force-displacement

relationships for the Euler-Bernoulli and Timoshetideam theories are respectively given by

4AE, 48El 4AE, 48E,l (13)
{Ql} _ {ZF} _| 1 13 ! 13 {ql}
Q, 0 4E,A  48E 4AE, 48E I | \q,

" + B ] (1+2y)+ B
and

[ 44Es | 4 _AAE 4 1 (14)

| 1 B ! o |
{Ql} _ {ZF} _ | 12E,1 " 2kAG;, 12E.1 " 2kAG;, |{q1}

Q2 0J 7| 44E, 4 4(1 + 2y)AE, (g,
- +—3 + 3
1 Eo 1 l E 1
12E,] * 2kAG, 12E,] © 2kAG,

Note that both these stiffness matrices are synitnetr

2.1.5 The elastic properties

The elastic modulus of a unit cell can be obtaibgd = % wherel,, A,,, and§, are the

utu

length, cross-sectional area, and axial displacemwiethe unit cell under an external axial load

P,. By replacing the corresponding values, we have

g F (15)
(th)l\/E

Insertingq; from the inverse of Eq. (13) into Eq. (15) andidiivg it by the elastic modulus of

the bulk materiak; yields the relative elastic modulus of the octahkdtructure based on the

Euler-Bernoulli beam theory as

E  \2A(241 + yAl*> + 12y]) (16)
E; 1212 + Al2 + 24yl?)

and for the Timoshenko beam theory as

E _ VZA(12Iy + Ayxl? + 24kl + 12yl + 12ylvy) (17)
E;  12(AkI2 + 2yAkl?2 + 121 + 24yl + 121k + 12Ivg + 24ylvy)

11



Poisson’s ratio is simply defined as the ratioadétal and axial strains, which for our problem is
equal toZ—z. Substituting the corresponding values from thesige of Eq. (13) inu%z gives the
1 1

Poisson’s ratio relationship for the Euler-Bernoléam theory as

_Ar-121 (18)
V120 + A2 + 2pAL2

and for the Timoshenko beam theory as

~ Akl? + 121 — 121k + 121v, (19)
VT Ak + 2yAxl? + 121 + 24yl + 121k + 12Ivg + 24ylvg

For having the yield stress of the structure, fire maximum stress of the structure must be
obtained. In a general displacement, the incraasieei length of strut AB is

NGl (20)
Saxiar = (92 — ql)?

and the difference between the lateral displacesngfrits two ends A and B are

2 (21)
Siaterar = (g2 + Q1)7
Based on Eq. (20), the normal stress generatdekisttut due to increase in its length is
Es V2 (22)

Oaxial = T(QZ —q1) 7
On the other hand, the bending moment generatéigeiends A and B of strut AB due to the
differences in the lateral deflections of both eafithe strut is (see Figure 3)

6E,l V2 (23)
M = 2 (a2 +Q1)7

and the resulted bending StreSgI—GtSNhiCh after inserting Eq. (23) gives

6E,c V2 (24)
bending — —37 42 1) 5~
g, 7z (1210

The maximum stress in the struts of the structsitbiérefore found byqyiq & Gpenaing- It Was

observed that,yiq — Openaing has a larger magnitude than.;, + openaing (Which was

12



expected due to the fact that strut AB is most abbyounder compression when the unit cell is

compressed, i.e7,,;, < 0). The yield stress of the structure is obtaineamnfra simple cross

. . F . . .
multiply: if an external stress,,; = W on the unit cell causes the maximum local stress i
2

the struts reachy,,,,x = Ouxiai — Openaing, then the external yield stress which causesdbal |

stress of the material reach the yield stress ¢k material o, iS 0, = Oyt Oys/Omax OF

F oys

= 5 i
(l\/i) (Jaxial _Ubending)

gy After insertingq; andgq, from the inverse of Eq. (13) into Egs. (22)

and (24) and the resulting,,, into % we have

(l\/i) Omax
a, 24 241 + yAI? + 12yl (25)
oy, | [12I1+yAB + 6cAI2(1 +v)

for the Euler-Bernoulli beam theory and

(12yl + 24 =1k + 12ylk + 12ylvs + yAxl?) (26)
(12yU (1 + vg) + 12Uk + yAxl3) + 6c(121 + yAID)(1 +y)(A + vy)

oy V24
T

Oy
for the Timoshenko beam theory.

2.2. Finite element modeling

Two types of FE models were constructed: singlé aell structure and lattice structure. The

load and boundary conditions in the FE single veds set similar to that in the analytical

approach. In the single unit cell model, the rotei movement of all the vertices were fixed in

all the directions. Points B and B™" were free toveonly in the X direction, and points B™ and

B were only free to move in the Z direction (fig 1). Points A and A™ were only allowed to

move in the Y direction (Figure 1). A nodal downdaertical force was imposed on point A.

In the lattice structure (Figure 6), the lowermisties of the structure were constraint vertically

(i.e. in the Y direction) and all the uppermost e®dvere moved downward in such a way that

the lattice structure underwent 0.2 % strain. Allhee top and bottom nodes were free to move in

13



the horizontal plane (i.e. in directions X and Dne of the lowermost nodes of the lattice
structure was constraint in all directions to prevdynamic rigid body motions that could

compromise the convergence of the solution.

The struts of both types of FE models were disoeetiusing BEAM 189 element type in

ANSYS which is based on the standard Timoshenkokbaory. Linear elastic material model

with material properties similar to those of thdkbmaterial used for manufacturing the test
specimens were assigned to the elements. ANSY Sneanlstatic solver was used to solve the

FE models. To obtain the elastic modulus of theicstirres, the well-known formul& =

p lstructure

was used, wheré&;;,...ure IS the applied displacement on the lattice stmectu

AstructureSStructure

(or the single unit cell)lsirycture aNd Agtructure @re the length and cross-sectional area of the
lattice structure (or the single unit cell), ahds the measured resultant force in the structewe.
obtaining the Poisson’s ratio, the lateral disphaest was divided by the applied axial

displacement. In order to obtain the relative ysless, the maximum stress in the structure was

measured and then inserted—gHL (for proof, see the two sentences before Eqg. (25))

structure 9max

2.3. Experimental tests

5" generation Replicator Desktop Makerbot 3D printéth poly-lactic acid (PLA) filaments
(khaki color) were used for manufacturing the gstcimens. In order to have the mechanical
properties of the filament bulk material, some mgtical specimens were manufactured and
tested before carrying out the experimental test®acahedral unit cells. The cylinders were
made in the horizontal and vertical directions &l &s in a 45° angle with respect to the 3D
printer platform (FigureZ, Table 1). Three specimens were manufactureddadn eylinder type

(totally nine specimens) all having the nominalgias of 25.4 mm and diameters of 12.7 mm.

14



The extruder travel speed was set to 150 mm/stanthfill density was set to 100%. The layer
thickness was set to 2Qn.

For the experimental tests on the octahedral strectwo sets of specimens: lattice (Figure 8)
and single (Figure 9) octahedral structures werauf@etured with different relative densities.
For the single unit cells, five different strut nasl to length ratios of 0.05, 0.1, 0.15, 0.2, 0.25
were chosen, and for each strut radius to lendib, three specimens were made. For the lattice
structure, four different strut radius to lengttioa of 0.05, 0.1, 0.15, and 0.2 were considered.
However, the manufactured specimens with r/I=0.48 many defects and their results were
omitted. The dimensions of all the single unit aelld lattice structure specimens were 4x4x4
cm. The static compression tests were performeanyuan Instron ElectroPuls E10000 machine
with a 10 kN load cells. The displacement rate setg0 0.2 mm/min.

3.RESULTS

The load-displacement curves of each set of testisyens were generally close to each other
(Figure 10). The elastic moduli and yield stressgsined from single and lattice test specimens
were used for validation of the analytical and nuoa results (Figure 11). The results of the
single unit cell and lattice FE models were lesntii% different. Therefore, only the results
pertaining to the FE lattice structure is reporteete. The build orientation significantly
influenced the obtained mechanical properties efliblk material (Table 1) with as much as
25% difference between the smallest and largesegadf the elastic modulus. Since the struts of
the octahedral structure (Figure 1 and Figure @) raostly inclined, the bulk mechanical
properties obtained from the 45° cylinder model wsexd for normalizing the experimental data.
The data points presented in Figure 11 for theyéical solution are reported for uniform

mechanical properties (i.e.= 1).

15



Comparison of the elastic properties (Figure 1lgwshthat all the analytical and numerical
results are in good agreement, especially foriveadensities below 0.4. Generally, the elastic
properties obtained for the Timoshenko and EulenBali beam theories were close. As the
relative density of the structure increased, thfedince between the analytical results obtained
using the Euler-Bernoulli and Timoshenko beam tiesoincreased. However, their maximum
difference (atu = 0.5) did not exceed 6% for elastic modulus and Poiss@tio and 10% for
yield stress. Compared to the analytical resultsiobd using the Euler-Bernoulli theory, the
mechanical properties estimated using the analysigiaitions based on the Timoshenko beam
theory were closer to the numerical results, whach also based on the Timoshenko beam
theory.

As opposed to the elastic modulus and Poissonit, the difference between the numerical and
analytical values of yield stress values had areesing, decreasing, and then again increasing
trend (Figure 11c). The two values coincide attnetadensity around 26% (Figure 11c). The
maximum difference between the numerical and alalytesults was about 12% which occured
atu = 0.6. Another important observation is that at a re&@atiensity as large as 50%, the elastic
modulus and vyield stress of the octahedral stractlar not exceed 14% of those of the bulk
material.

The experimentally determined values of the elasiodulus of the “lattice” structures (Figure
11a) are generally close to the corresponding &nalysolution based on the Timoshenko beam
theory. For the relative density of 0.491, the expental mean elastic modulus was 17% lower
than the analytical solution. The agreement betvea@erimental results and analytical solutions
was improved for the experiments based on “singtat cells. The experimental and analytical

elastic modulus values almost coincided at thdivelalensity of 0.033. They, however, start to

16



deviate from each other as the relative densityeased (Figure 11a). The mean experimental
elastic modulus of the single unit cell specimers atvays larger than the analytical counterpart
(Figure 11a). The maximum difference between thayadical and single unit cell experimental

elastic moduli was about 9% which occured at thegive density of 49.1%.

The experimental/analytical correlation was alsedydor the yield stress (Figure 11c). The

obtained yield stresses from the lattice specimgase always below the Timoshenko beam
theory analytical curve. Similar to the elastic mld curves (Figure 11a), the yield stress
obtained from the single unit cell specimens weresthy larger than those determined

analytically with the only exception being for thelative density of 0.033. The maximum

difference between the analytical solution and eékperimental values of the yield stress for
single unit cells was 16.5% which occured at atinedadensity of 36%.

4.DISCUSSIONS

The advantage of analytical relationships is fatitreation of mechanical properties. That can be
helpful in reducing the designing cost (the costesiluating the mechanical properties
associated with different designs of porous stmestun an optimal design scheme), effort, and
time. The analytical relationships obtained herbictv are the main contribution of this study,

showed good agreement with numerical and experghaesults. The parametric study of

different effective parameters in a porous strietis much easier to be performed using
analytical relationships, by which a designer dad the optimum relative density and pore size
according to the required mechanical propertiesain application. Moreover, the future

numerical models based on octahedral micro-stracttein be validated/benchmarked by

comparing their results with the presented anaitielationships.
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Although there was generally a good analytical/micagexperimental correlation in this study,
the experimental results deviated from analyticad aumerical predictions at smaller relative
densities (Figure 11a,c). As the strut diametecoive smaller and comparable to the resolution
of the AM process, the roughness of the surfacgspfore important role in deviation from
theory [37]. Fine-tuning the analytical model tsainclude the roughness effects can lead to a
great improvement in theory/experiment correlatiBelated to this is the usage of advanced
mechanical models for treating the behavior of tpim the lattice structure [38, 39]. Both
process variation effects and joint behavior argpartant in explaining the discrepancies
between model predictions and experimentally measuvalues.

Increasing the relative density increasesrtfieratio of struts. In thick beams, the effects & th
shear and rotation inertia become important. Thefgects are considered in the Timoshenko
beam theory but are ignored in the Euler-Berncaglam theory. That is why the results of the
Euler-Bernoulli and Timoshenko beams almost comatl small relative densities but start to
deviate as the relative density increases (Figlije 1

While the experimental results (i.e. the elasticdolos and yield stress) of the tested lattice
structures were usually lower than both the anad{@nd numerical solutions, the experimental
results of the single unit cells were usually dlighigher than the numerical and analytical
values. The difference between the results of singiit cell specimens and the analytical
solutions increased as the relative density ine@a®ne of the main reasons for this increased
elastic modulus is that as the relative densitygases, more parts of the neighbor struts start to
be aggregated at the vertices. Therefore, thelémgth of the struts (the portions of struts not
touching parts of other struts) decreases. Sineedhresponding material of the neighbor struts

supports the material located at the ends of tinéces, they do not participate significantly in
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the structure deformation. The resulted decreasthendeformation of the lattice structure
decreases the deformation of the unit cell thaddea an increase in the elastic modulus of the
lattice structure. The aggregation of the endshef struts in the vertices was not taken into
account in the analytical and numerical solutionghis study, and therefore they predicted lower
stiffness values as compared to the experimentd. dane way to take the effects of the
aggregation of the ends of the struts into accautd replace the “vertex to vertex” lengthjn

the analytical calculations with a reduced length,ceq, Wherel,.quceq 1S the free length of the
struts.

The elastic modulus of the bulk material is affdctey the manufacturing direction of the
material (Table 1). The elastic modulus of the bulterial in a direction parallel to the extruded
filaments is 3.21% higher than that of the bulk enat built with a 45° angle with respect to the
extruded filaments. It was observed that by settirg1.0321 in the analytical elastic properties
relationships, the change in the elastic propertiesnall and therefore for this type of structure
it cannot be the cause of deviation of the expentaleand analytical solutions with respect to
each other. The parametgrcan become important in structures for which thechmanical
properties of the bulk material are substantialffecent in different directions. For example, if
the build direction of the octahedral unit cellsswzarallel to the YZ direction rather than the XZ
direction (Figure 1), the structure would have ugeld vertically-built struts as well as struts
built in the 45° direction. Since the mechanicaparties of the vertically built struts is about
20% lower than that of the struts made in with & dbgle, including the parametgrin the
analytical relationships could substantially charnige estimated mechanical properties of the

lattice structure.
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The elastic modulus of an octahedral structure n@d&i-6AI-4V (which is one of the most
well-known materials for biomedical applicatiots, = 113.8 GPa) with 50% porosity is lower
than 8 GPa (see Figure 11). This elastic modulusrasind the stiffness values measured for
human bone, see e.g. [40]. Therefore, porous bienatg with octahedral unit cell type can
successfully be used for large bone defects witbausing stress shielding.

In this study, the mechanical properties of porbignaterias based on the octahedral unit cell
were obtained in the elastic range. One of the mppiication of these analytical relationships is
in designing bone replacing scaffolds. Depedinghmnapplication, the porous biomaterials are
also susceptible to other loading types such assigat, cycling, and impact loads. Obtaining
analytical solutions for non-static loads in comp#ructures (such as porous biomaterials) are
usually very laboroious. In addition, the strainuwes may be different from those obtained
analytically for the unit cells situated close he tboundaries of the lattice strucutre even for
simple unit cells under simple loading scenariogpdtimental and numerical approaches are
more effective in studying the above-mentioned sagecomplex loading or non-unform strain
distribution. Recent advances in full-field strameasurement techngiues such as Digital Image
Correlation (DIC) which is an optical method for sebving the full-field deformation of
structure [41-45]) and finite element damage maode(such as cohesive zone models which can
efficiently model the crack propagation in diffetestructures [46-48]) allow for better
description of the deformation and failure in thesectures under complex loads, and therefore
better designs of the micro-architecture of pordismaterials. In addition to mechanical
aspects, permeability [5] and biological perform@amé porous biomaterials are also of great
importance. In particualr the type of unit cell el@tine the amount of the surface area of porous

biomaterials. Since the surface of porous biomalteigould be used for improvement of their
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bone regeneration performance [49], it is importansimultaneously consider all the relevant
aspects including permeability, surface area, ardhanical properties when choosing the type
of unit cell and the relative density of the pordigmaterial.

5. CONCLUSIONS

It was observed that the analytical results basetthe Timoshenko beam theory are closer to the
numerical results as compared to the analyticallt®based on the Euler-Bernoulli beam theory.
There was generally good agreement between nurhancaanalytical results. The maximum
difference between analytical and numerical restdtselastic modulus and Poisson’s ratio,
which occurred at very large relative densitiess wawver than 6%. The experimental results
obtained from both single unit cells and lattiaeistures were also close to the derived analytical
solutions. Introduction of porosity into the bullkatarial in the form of octahedral morphology
led to a huge decrease in mechanical propertiest felative density as large as 50%, the elastic
modulus and vyield stress of the octahedral stractlid not exceed 14% of those of the bulk

material.
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Figure Captions

Figure 1- Degrees of freedom of an octahedral undgell

Figure 2- The volumes constructing a unit cell

Figure 3- Forces and moments required to cause (kteral displacements with no rotation at the free end of
the beam, and (b) simple tension

Figure 4- Loads applied to strut AB to cause defor@tion modeql = 1 and q2 = 0 for Euler-Bernoulli beam
theory

Figure 5- Loads applied to struts (a) AB and (b) BBto cause deformation modeg1 = 0 andq2 = 1 for
Euler-Bernoulli beam theory

Figure 6- The octahedral lattice structure: (a) front view, (b) oblique view

Figure 7- Additively manufactured cylindrical specimens made (a) horizontally, (b) vertically, and (c}5°
angled for obtaining the bulk material properties d Khaki filament

Figure 8- Additively manufactured octahedral lattice structures with (a) r/I=0.25, (b) r/I=0.2, (c) #=0.15, and
(d) r1=0.1

Figure 9- Additively manufactured octahedral singleunit cells with (a) r/I=0.05, (b) r/I=0.1, (c) r/E0.2, and (d)
r/1=0.25

Figure 10- Load-displacement curves for (a) singlanit cell and (b) lattice structure specimens wittdifferent
radius to strut length ratios

Figure 11- Comparison of analytical, numerical, ancexperimental vs. relative density for (a) elastiocnodulus,
(b) Poisson’s ratio, and (c) yield stress
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Table 1- Elastic properties of cylindrical specimemade of Khaki filaments

Vertically-made Horizontally-made 45°-made
Elastic modulus (GPa) 2.04 £0.0! 2.49+ 0.0: 2.42+0.1C
Yield stress (MPa) 68.82 + 0.4 56.16 £ 0.4 65.00 £ 0.1
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Figure 1- Degrees of freedom of an octahedral unéll
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Figure 2- The volumes constructing a unit cell
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Figure 3- Forces and moments required to cause I@gral displacemend with no rotation at the free end of the

beam, and (b) simple tensian
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Figure 4- Loads applied to strut AB to cause defation modeq, = 1 andq, = 0 for Euler-Bernoulli beam
theory
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Figure 5- Loads applied to struts (a) AB and (b) BB cause deformation modg;, = 0 andq, = 1 for Euler-
Bernoulli beam theory
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Figure 6- The octahedral lattice structure: (a) fria view, (b) oblique view

Figure 7- Additively manufactured cylindrical spetiens made (a) horizontally, (b) vertically, and @&}° angled
for obtaining the bulk material properties of KhaKilament
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0.25, (b) r/1=0.2, (c)I#0.15, and (d)

Figure 8- Additively manufactured octahedral latécstructures with (a) r/l

=0.1

r/l
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(© @
Figure 9- Additively manufactured octahedral singleit cells with (a) r/I=0.05, (b) r/1=0.1, (c) rd0.2, and (d)
r/1=0.25

35



10000 g T T
i /’I/ / r/1=0.05 (sample 1)
!
| it | r/1=0.05 (sample 2)| |
9000 I r/1=0.05 (sample 3)
b r/I=0.1 (sample 1)
8000 [ i /// / r/1=0.1 (sample 2) 1
; // ! r/1=0.1 (sample 3)
; /,/ ! — — —r/I=0.15 (sample 1)
7000 '1’ 1 /I — — —1/1=0.15 (sample 2)[7
b — — —1/I=0.15 (sample 3)
) LEET T~ — — —r/I=0.2 (sample 1)
6000 M 11y = T ITmao "
R oy //; TR T~ — — —r/I=0.2 (sample 2)
z g TSl - - =02 (sample 3)
3 5000F ///’ Y seo| = — m=0.25 (sample 1)
S ,'1 R / \ — - — r/I=0.25 (sample 2)
P! \ | == r/1=0.25 (sample 3)
40001 1w
}
3000 B
2000 - i
1000 —
0 8
Displacement (mm)
(a)
10000 » ‘ ‘
: HII r/I=0.1 (sample 1)
| i r/1=0.1 (sample 2) ||
9000 | '//, — — —1/I=0.2 (sample 1)
j ’//, — — —r/I=0.2 (sample 2)
8000 i — — —1/1=0.2 (sample 3)
l — - — r/1=0.25 (sample 1)
| / — - — r/I=0.25 (sample 2)
7000 iy — - — 1/I=0.25 (sample 3)[]
f o
6000 | ”f -
s v
g So0of 'u |
s j
At
4000 - il B
i
3000 .
H“J
2000 - 11! .
ol
N
1000 [Y! <
l/,‘
O //l Il Il Il Il Il Il
0 2 4 6 8 10 12 14 16 18 20

Displacement (mm)

(b)
Figure 10- Load-displacement curves for (a) singlait cell and (b) lattice structure specimens widifferent
radius to strut length ratios

36



0.18

T T
— — — Analytical (Euler-Bernoulli)
0.16 H Analytical (Timoshenko) , /]
FE ,
O  Experiment (Lattice structure) % /

@ 0147 o Experiment (Single unit cell) P4
mj
2% o012 E
=3
°
o
£ 01F B
L
2
© 0.08 q
-
Q
N
® 0.06 q
E
(=}
Z 0.04f g

0.02 q

0 . . . . .
0 0.1 0.2 0.3 0.4 0.5

Relative density

(a)

=
8
]
w
[=4
o
2
s 0.2 ~
a
0.15 b
— — — Analytical (Euler-Bernoulli)
Analytical (Timoshenko)
FE
01 n n n n . . . . .
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Relative density
0.2 T T
— — — Analytical (Euler—Bernoulli)
0.18 Analytical (Timoshenko) -
FE
0.16 O  Experiment (Lattice structure)
O Experiment (Single unit cell)

Y

o
[
'

y

(=
[N
N

°
o
@

Normalized yield stress § /o S)
[=]
o o
(=} =

o
o
g

0.02

0 . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6

Relative density

(c)
Figure 11- Comparison of analytical, numerical, anekperimental vs. relative density for (a) elastimdulus, (b)
Poisson’s ratio, and (c) yield stress

37



