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Abstract 

Additively manufacturing (AM) techniques make it possible to fabricate open-cell 

interconnected structures with precisely controllable micro-architectures. It has been shown that 

the morphology, pore size, and relative density of a porous structure determine its macro-scale 

homogenized mechanical properties and, thus, its biological performance as a biomaterial. In this 

study, we used analytical, numerical, and experimental techniques to study the elastic modulus, 

Poisson`s ratio, and yield stress of AM porous biomaterials made by repeating the same 

octahedral unit cell in all spatial directions. Analytical relationships were obtained based on both 

Euler-Bernoulli and Timoshenko beam theories by studying a single unit cell experiencing the 

loads and boundary conditions sensed in an infinite lattice structure. Both single unit cells and 

corresponding lattice structures were manufactured using AM and mechanically tested under 

compression to determine the experimental values of mechanical properties. Finite element 

models of both single unit cell and lattice structure were also built to estimate their mechanical 

properties numerically. Differences in the bulk mechanical properties of struts built in different 

directions were observed experimentally and were taken into account in derivation of the 

analytical solutions. Although the analytical and numerical results were generally in good 

agreement, the mechanical properties obtained by the Timoshenko beam theory were closer to 

numerical results. The maximum difference between analytical and numerical results for elastic 

modulus and Poisson’s ratio was below 6%, while for yield stress it was about 13%, both 

occurring at the relative density of 50%. The maximum difference between the analytical and 

experimental values of the elastic modulus was <15% (relative density = 50%). 

Keywords: Additive manufacturing, Porous biomaterials, Elastic properties, Octahedral, Finite 

element, Analytical solution 
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1. INTRODUCTION  

Design of advanced biomaterials that replace tissues either permanently (e.g. implants) or 

temporarily (e.g. tissue engineering scaffolds) have been receiving expanding attention as of late. 

That is partially due to the availability of advanced manufacturing techniques such as additive 

manufacturing (3D printing) that make it possible to fabricate porous structures with complex 

micro-architectures [1-3]. The complex micro-structure of such biomaterials determines their 

large-scale properties including not only the mechanical properties [4] but also fluid transport 

properties such as permeability [5, 6] and biological properties such as the tissue regeneration 

performance [7-10]. Although the type of material/alloy from which these complex micro-

architectures are made also play a role [11], the effects of geometrical features on the relevant 

properties of porous biomaterials remain paramount regardless of the material type.  

It is therefore imperative to study the relationship between the micro-geometrical features of 

additively manufactured (AM) porous structures and their macroscopic properties. One of the 

most important types of such properties is the mechanical properties including both quasi-static 

[12] and fatigue resistance [13]. Previous studies of our group as well as other groups have 

shown that both above-mentioned types of mechanical properties severely depend on the 

geometrical features of the porous biomaterial [1, 4, 13-15], which are also referred to in the 

literature as the micro-architecture or topology [16] of such biomaterials. The type and 

dimensions of the unit cell, which when repeated in different directions, creates the porous 

structure are found to be particularly important [17].  

Space-filling polyhedra and their derivatives are among the most important types of the basic 

unit cells used for design of AM porous biomaterials. Ideally, designers would like to have 

access to simple analytical relationships or computational models that could be used to estimate 
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the mechanical properties of porous structures based on all important types of (space-filling) 

polyhedra. The availability of such relationships or computational models allows for rational 

design of such biomaterials, where the choice of unit cell type and dimensions (e.g. pore size and 

porosity) is based on accurate predictions of the resulting mechanical properties. That is why 

there has been a surge of concern in topology-property relationships of porous structures made 

from different unit cell types. For example, the mechanical response of porous structures made 

with the cube [18], rhombic dodecahedron [19-21], tetrakaidecahedrons [22, 23], diamond [24], 

body-centered cubic structure (BCC) [25], pyramidal [26], rhombicuboctahedron [27], truncated 

cube [28], and truncated cuboctahedron [29] unit cells have been studied analytically, 

numerically, and experimentally [30-32]. 

The current study advances the above-mentioned line of research by addressing the topology-

property relationship for a new unit cell, namely the octahedral unit cell, to expand the library of 

unit cells from which the basic unit cells can be chosen. An extensive library of unit cells to 

choose from is particularly important for the design of biomaterials where not only the 

mechanical properties but also other types of biologically relevant properties need to be 

simultaneously taken into account.  

The octahedral unit cell (Figure 1) is a morphology that has not been studied thoroughly in the 

past. Two earlier studies [33, 34] have studied a simpler version of this unit cell where the 

horizontal struts (struts BB`, B`B``, B``B```, and B```B in Figure 1) which are important in the 

structure strength are excluded. Presence of the horizontal struts also has the advantage of 

making the lattice structure isotropic. Moreover, the agreement between analytical, numerical, 

and experimental results were not optimal in both the above-mentioned studies.  
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In this study, analytical, numerical, and experimental approaches are used to study the elastic 

mechanical properties (elastic modulus, Poisson’s ratio, and yield stress) of AM porous 

biomaterials based on octahedral unit cell. Analytical relationships (based on both Euler-

Bernoulli and Timoshenko beam theories) are obtained for one unit cell with boundary and 

loading conditions identical to that of a unit cell located inside a lattice structure. As for the 

analytical study, we used a methodology similar to the ones used in our previous works on other 

unit cell types [27-29]. Finite element models were also built for both single unit cells and lattice 

structures based on the octahedral unit cell. Similar specimens were fabricated using AM and 

mechanically tested to obtain experimental results. The results of the analytical, numerical, and 

experimental approaches were compared to each other to investigate the accuracy of the 

presented analytical relationships and numerical models. 

2 MATERIALS AND METHODS 

2.1 Analytical formulas 

2.1.1 Relative density 

Relative density is defined as the proportion of the porous structure density to the bulk material 

density. The relative density can be obtained by calculating the volume occupied by the material 

inside a porous structure and dividing it by the total volume of the porous structure. Each 

octahedral unit cell possesses 12 struts each having length � and cross-sectional area � (Figure 

1). Therefore, the total strut volume inside each unit cell is 12��. Since the dimensions of an 

octahedral unit cell are �√2, the total volume of the unit cell is 2√2	��. As a result, the relative 

density of the structure is calculated as 

� = 12��2√2�3 = 3�2 ��2 (1) 
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This formula, however, does not consider the material overlay in the vertices (see the effects of 

mass multiple counting on the numerical results of different unit cell types in [35]). The actual 

relative density is lower than the value calculated in Eq. (1). Each unit cell with struts having 

circular cross-section is composed of 24 pieces shown in Figure 2. The volume of each of the 

pieces is equal to 0.5	���� − 3.707	��. Therefore, the exact relative density of the octahedral 

unit cell is  

� = 24�0.5	��2� − 2.575769	�3�2√2�3 = 12	��2�2√2�3 − 61.818462√2�3 = 3�2� ����2−21.85612	 ����3 (2) 

2.1.2 Euler-Bernoulli theory 

In order to obtain the elastic modulus, Poisson’s ratio, and yield stress of an octahedral unit cell 

(which are identical to those of the octahedral lattice structure), the displacements of the unit cell 

vertices after applying an external load � must be determined first. To calculate the displacement 

of the vertices, the stiffness matrix of the unit cell is needed. The unit cell has a symmetric plane 

coinciding the square BB`B``B``` (Figure 1). Moreover, due to the symmetry of the unit cell (and 

as a result its deformation) with respect to planes ABB`` and AB`B```, point A can only move in 

the two noted planes, and as a result their intersection line. Consequently, point A can only move 

vertically (in the direction �� shown in Figure 1). Point B is located in both the symmetry planes 

ABB`` and BB`B``B```. Therefore, point B (and its corresponding points B`, B``, and B```) has 

only one degree of freedom (DOF) in the direction demonstrated in Figure 1 as ��. Therefore, 

the entire system has two DOFs. The first DOF consists of vertices A and A`, while the second 

DOF consists of vertices B, B`, B``, and B```. For plotting the free-body diagram of the system, 

only strut AB is considered. The deformations of the seven other inclined struts are similar to 

that of strut AB and their effects will be considered when calculating the elements of the stiffness 

matrix. 
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The angles of the ends of the struts remain unchanged during the unit cell deformation. That is 

because the vertices of the structure are rigid bodies. If the angles between the connected struts at 

a vertex are changed, it means that a plastic hinge is formed at the vertex whose investigation is 

beyond the scope of the current study. Since the angles of both ends of each strut in the unit cell 

remain constant during the simple compression of the unit cell, the general deformation of each 

strut can be considered as the summation of two distinct deformations at the free end of a 

cantilever beam. The forces and moments required to be applied at the free end of a cantilever 

beam to cause such pure extension and pure lateral displacement (without any additional 

rotation) is shown in Figure 3. This figure will be referred to several times in the next 

subsections.  

Since the unit cell has two DOFs, the stiffness matrix of the system must be a 2×2 matrix. The 

elements of the stiffness matrix are obtained as follows. The first DOF is displaced (�� = 1) and 

the second DOF is kept fixed (�� = 0). The forces required to be applied to DOFs �� and �� to 

cause such a deformation determine the elements ��� and ��� of the stiffness matrix. Similarly, 

the forces required at each of the two DOFs to cause �� = 1 and �� = 0 determine the elements 

��� and ��� of the stiffness matrix. It is assumed that the mechanical properties of the bulk 

material could be different for the horizontal and inclined struts [36]. The elements of the 

stiffness matrix are obtained in the remainder of this sub-section. 

First DOF ( ! = !): In this deformation, points B, B`, B``, and B``` are fixed, while points A 

and A` are displaced towards the symmetry plane by unity (Figure 4). This deformation for strut 

AB can be assumed to be the summation of two distinct deformations: a) contraction of strut AB 

by √�� , and b) lateral displacement (without rotation) of its end A by √��  (Figure 4). The loads 
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required to cause such a deformation can be obtained from Figure 3 and are depicted in Figure 4. 

Equilibrium of forces at point A in the y direction gives 

"#$,& = 0					 ⇒ 								()�� √22 √22 4 + 12()+�� √22 √22 4 − 12,� = 0				⇒					,� = ��� = 4�()� + 48()+�� 									 (3) 

In Eq. (3), 
-.&/ √�� √��  and 

��-.0/1 √�� √��  are multiplied by 4, because there are four similar struts 

connected to point A (see Figure 1). Similarly, in Eq. (3), ,� has been multiplied by ½, because 

the force calculated at point A is ½ of the total forces applied at the first DOF (because point A 

has a corresponding point at the lowermost part of the unit cell, denoted A`). On the other hand, 

equilibrium of forces in the x direction at point B gives 

"#2,3 = 0					 ⇒								()�� √22 √22 2 − 12()+�� √22 √22 2 + 14,� = 0				⇒					,� = ��� = −4�()� + 48()+�� 									 (4) 

In Eq. (4), 
-.&/ √�� √��  and 

��-.0/1 √�� √��  are multiplied by 2, because there are two similar inclined 

struts connected to point B (see Figure 1). Similarly, ,� is multiplied by ¼, because the force 

calculated at point B is ¼ of the total forces applied to the second DOF (because point B has 

three other corresponding points in the unit cell, denoted B`, B``, and B```). 

Second DOF ( 4 = !): In this deformation, point A is fixed, while point B is displaced 

horizontally in the x direction (Figure 5). This deformation can be assumed to be the summation 

of two distinct deformations: a) expansion of strut AB by √�� , and b) lateral displacement (without 

rotation) of its end B by √��  (Figure 5a). The equilibrium of forces at point A in the y direction 

yields 

"#$,& = 0					 ⇒ 					−	()�� √22 √22 4 + 12()+�� √22 √22 4 − 12,� = 0				 ⇒					,� = ��� = −4�()� + 48()+�� 									 (5) 
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Due to this deformation, struts BB` and BB``` are also expanded by √2 (Figure 5b). Therefore, 

the equilibrium of forces in the x direction at point B yields 

"#2,3 = 0					 ⇒						−	()�� √22 √22 2 − 12()+�� √22 √22 2 − 2�5()� √2√22 + 14,� = 0				⇒					,� = ���
= 4�()� (1 + 25) + 48()+�� 									 

(6) 

where 5 is the ratio of the bulk material elastic modulus in the horizontal direction (i.e. in struts 

BB`, B`B``, B``B```, and B```B) to that in the inclined struts. For a structure with equal 

mechanical properties in all the struts, 5 = 1. 

2.1.3 Timoshenko theory 

Timoshenko beam theory takes shear deformation and rotational inertia effects into account, 

making it suitable for describing the behavior of short beams. The procedure of calculating the 

elements of the stiffness matrix using Timoshenko beam theory is very similar to that previously 

presented for Euler-Bernoulli beam theory. The only difference is that in the relationships 

presented in subsection 2.1.2, the lateral forces 
��-.0/1  must be replaced by 8 /1��-.0 + /�9&:.;<�. The 

proof is stated in the following. The governing equations of a uniform beam (with constant cross-

section) based on Timoshenko beam theory are: 

=�=>� �()+ =?=>� = �(>, @)	
=A=> = ? − 1B�C) ==> �()+ =?=>�	

(7) 

where	A is the lateral (in z-direction) deflection of the mid-surface, ? is the rotational angle of 

the normal to the mid-surface, and B is the shear coefficient factor. The bending moment D22 

and shear force , are in relation with the angle of rotation ? and displacement A by 
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D22 = −()+ E?E> 	
, = 	B�C)	(−? + EAE>)	

(8) 

If the only load applied to the cantilever Timoshenko beam is force F at its free end, Eqs. (7) 

gives 

G = ���3()+ + ��B�C) 									HI=								J = ���2()+ + �B�C)		 (9) 

In a cantilever beam at the free end of which a moment D is imposed, the displacement and 

rotation are identical to those of the corresponding Euler-Bernoulli beam. Due to the same reason 

as in the Euler-Bernoulli beam theory (the angle at the free end of the cantilever beam shown in 

Figure 3 must remain unchanged), the rotations produced by the load � and moment D at the 

free end of the beam must be equal and opposite. Therefore, the relationship between D and � is 

���2()+ + �B�C) = D�()+ 											⇒ 															D = � ��2 + ()+B�C)�� (10) 

The force � and moment D respectively tend to increase and decrease the lateral deflection. 

Consequently, the resulted lateral deflection caused by force � and moment D at the free end of 

the beam is given by 

G = ���3()+ + ��B�C) − ���2 + �()+B�C)�� ��2()+ = ���12()+ + ��2B�C)										 (11) 

Rewriting (11) as a function of F gives  

� = 1��12()+ + �2B�C) 	G									 
(12) 

Therefore for the Timoshenko beam theory, the lateral forces 
��-.0/1 G in Figure 3a must be 

replaced by 8 /1��-.0 + /�9&:.;<� G. 
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2.1.4 The obtained stiffness matrices  

The load applied on the first DOF equals twice the external load applied to the unit cell, or 

,� = 2�. Since the unit cells are free to move laterally, the external load on the second DOF is 

zero. Using the force and stiffness matrix elements obtained above, the force-displacement 

relationships for the Euler-Bernoulli and Timoshenko beam theories are respectively given by 

L,�,�M = N2�0 O = P 4�()� + 48()+�� −4�()� + 48()+��−4()�� + 48()+�� 4�()� (1 + 25) + 48()+�� Q N����O 
(13) 

and 

L,�,�M = N2�0 O =
RS
SSS
T 4�()� + 4��12()+ + �2B�C) −4�()� + 4��12()+ + �2B�C)−4�()� + 4��12()+ + �2B�C)

4(1 + 25)�()� + 4��12()+ + �2B�C)UV
VVV
W
N����O 

(14) 

Note that both these stiffness matrices are symmetric. 

2.1.5 The elastic properties 

The elastic modulus of a unit cell can be obtained by ( = XY/Y&YZY where �[, �[, and G[ are the 

length, cross-sectional area, and axial displacement of the unit cell under an external axial load 

F[. By replacing the corresponding values, we have 

( = �(2��)�√2 (15) 

Inserting �� from the inverse of Eq. (13) into Eq. (15) and dividing it by the elastic modulus of 

the bulk material () yields the relative elastic modulus of the octahedral structure based on the 

Euler-Bernoulli beam theory as 

(() 	= √2�(24+	 + 	5��� + 	125+)��(12+	 + 	��� + 	2�5��)  
(16) 

and for the Timoshenko beam theory as 

(() 	= √2�(12+5	 + 	�5B�� + 	24B+ + 	125B+	 + 	125+\))��(�B�� + 	25�B�� + 12+	 + 	245+	 + 	12+B	 + 	12+\) + 	245+\)) (17) 
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Poisson’s ratio is simply defined as the ratio of lateral and axial strains, which for our problem is 

equal to 
]^]_. Substituting the corresponding values from the inverse of Eq. (13) into 

]^]_ gives the 

Poisson’s ratio relationship for the Euler-Bernoulli beam theory as 

\ = ��� − 12+12+ + ��� + 25���	 (18) 

and for the Timoshenko beam theory as 

\ = �B�� + 	12+	 − 12+B	 + 	12+\)�B�� + 	25�B�� + 12+	 + 	245+	 + 	12+B	 + 	12+\) + 	245+\) (19) 

For having the yield stress of the structure, first the maximum stress of the structure must be 

obtained. In a general displacement, the increase in the length of strut AB is  

G`2a`/ = (�� − ��) √22  (20) 

and the difference between the lateral displacements of its two ends A and B are 

G/`bcd`/ = (�� + ��) √22  (21) 

Based on Eq. (20), the normal stress generated in the strut due to increase in its length is 

e`2a`/ = ()� (�� − ��) √22  (22) 

On the other hand, the bending moment generated in the ends A and B of strut AB due to the 

differences in the lateral deflections of both ends of the strut is (see Figure 3) 

D = 6()+�� (�� + ��)√22  (23) 

and the resulted bending stress is 
fg0  which after inserting Eq. (23) gives 

ehcijaik = 6()l�� (�� + ��) √22  (24) 

The maximum stress in the struts of the structure is therefore found by e`2a`/ ± ehcijaik. It was 

observed that e`2a`/ − ehcijaik has a larger magnitude than e`2a`/ + ehcijaik (which was 
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expected due to the fact that strut AB is most probably under compression when the unit cell is 

compressed, i.e. e`2a`/ < 0). The yield stress of the structure is obtained from a simple cross 

multiply: if an external stress ec2b = o�/√��^ on the unit cell causes the maximum local stress in 

the struts reach ep`2 = e`2a`/ − ehcijaik, then the external yield stress which causes the local 

stress of the material reach the yield stress of bulk material e$) is e$ = ec2b 	e$)/ep`2 or 

e$ = o	rs.�/√��^�rtuvtw<rxyz{vz|�. After inserting �� and �� from the inverse of Eq. (13) into Eqs. (22) 

and (24) and the resulting ep`2 into  
o	rs.�/√��^r}tu, we have 

e$e$. = √2�� ~ 24+ + 	5��� + 125+12+� + 5��� + 6l���(1 + 5)� 
 

(25) 

for the Euler-Bernoulli beam theory and  

e$e$. = −√2�� ~ (125+	 + 	24 ∗ +B	 + 	125+B	 + 	125+\) + 	5�B��)(125�+(1 + \)) + 12�+B	 + 5�B��) + 6l(12+ + 5���)(1 + 5)(1 + \))� 
 

(26) 

for the Timoshenko beam theory. 

2.2. Finite element modeling 

Two types of FE models were constructed: single unit cell structure and lattice structure. The 

load and boundary conditions in the FE single cell was set similar to that in the analytical 

approach. In the single unit cell model, the rotational movement of all the vertices were fixed in 

all the directions. Points B and B`` were free to move only in the X direction, and points B` and 

B``` were only free to move in the Z direction (Figure 1). Points A and A` were only allowed to 

move in the Y direction (Figure 1). A nodal downward vertical force was imposed on point A.  

In the lattice structure (Figure 6), the lowermost nodes of the structure were constraint vertically 

(i.e. in the Y direction) and all the uppermost nodes were moved downward in such a way that 

the lattice structure underwent 0.2 % strain. All of the top and bottom nodes were free to move in 
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the horizontal plane (i.e. in directions X and Z). One of the lowermost nodes of the lattice 

structure was constraint in all directions to prevent dynamic rigid body motions that could 

compromise the convergence of the solution. 

The struts of both types of FE models were discretized using BEAM 189 element type in 

ANSYS which is based on the standard Timoshenko beam theory. Linear elastic material model 

with material properties similar to those of the bulk material used for manufacturing the test 

specimens were assigned to the elements. ANSYS nonlinear static solver was used to solve the 

FE models. To obtain the elastic modulus of the structures, the well-known formula ( =
X	/.��Y��Y�y&.��Y��Y�yZ.��Y��Y�y was used, where G)bd[gb[dc is the applied displacement on the lattice structure 

(or the single unit cell), �)bd[gb[dc and �)bd[gb[dc	are the length and cross-sectional area of the 

lattice structure (or the single unit cell), and F is the measured resultant force in the structure. For 

obtaining the Poisson’s ratio, the lateral displacement was divided by the applied axial 

displacement. In order to obtain the relative yield stress, the maximum stress in the structure was 

measured and then inserted in  
X	rs./.��Y��Y�y^ 	r}tu (for proof, see the two sentences before Eq. (25)). 

2.3. Experimental tests 

5th generation Replicator Desktop Makerbot 3D printer with poly-lactic acid (PLA) filaments 

(khaki color) were used for manufacturing the test specimens. In order to have the mechanical 

properties of the filament bulk material, some cylindrical specimens were manufactured and 

tested before carrying out the experimental tests on octahedral unit cells. The cylinders were 

made in the horizontal and vertical directions as well as in a 45º angle with respect to the 3D 

printer platform (Figure 7, Table 1). Three specimens were manufactured for each cylinder type 

(totally nine specimens) all having the nominal lengths of 25.4 mm and diameters of 12.7 mm. 
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The extruder travel speed was set to 150 mm/s and the infill density was set to 100%. The layer 

thickness was set to 200 µm.  

For the experimental tests on the octahedral structure, two sets of specimens: lattice (Figure 8) 

and single (Figure 9) octahedral structures were manufactured with different relative densities. 

For the single unit cells, five different strut radius to length ratios of 0.05, 0.1, 0.15, 0.2, 0.25 

were chosen, and for each strut radius to length ratio, three specimens were made. For the lattice 

structure, four different strut radius to length ratios of 0.05, 0.1, 0.15, and 0.2 were considered. 

However, the manufactured specimens with r/l=0.15 had many defects and their results were 

omitted. The dimensions of all the single unit cell and lattice structure specimens were 4×4×4 

cm. The static compression tests were performed using an Instron ElectroPuls E10000 machine 

with a 10 kN load cells. The displacement rate was set to 0.2 mm/min. 

3. RESULTS 

The load-displacement curves of each set of test specimens were generally close to each other 

(Figure 10). The elastic moduli and yield stresses obtained from single and lattice test specimens 

were used for validation of the analytical and numerical results (Figure 11). The results of the 

single unit cell and lattice FE models were less than 1% different. Therefore, only the results 

pertaining to the FE lattice structure is reported here. The build orientation significantly 

influenced the obtained mechanical properties of the bulk material (Table 1) with as much as 

25% difference between the smallest and largest values of the elastic modulus. Since the struts of 

the octahedral structure (Figure 1 and Figure 6) are mostly inclined, the bulk mechanical 

properties obtained from the 45º cylinder model was used for normalizing the experimental data. 

The data points presented in Figure 11 for the analytical solution are reported for uniform 

mechanical properties (i.e. 5 = 1). 
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Comparison of the elastic properties (Figure 11) shows that all the analytical and numerical 

results are in good agreement, especially for relative densities below 0.4. Generally, the elastic 

properties obtained for the Timoshenko and Euler-Bernoulli beam theories were close. As the 

relative density of the structure increased, the difference between the analytical results obtained 

using the Euler-Bernoulli and Timoshenko beam theories increased. However, their maximum 

difference (at � = 0.5) did not exceed 6% for elastic modulus and Poisson’s ratio and 10% for 

yield stress. Compared to the analytical results obtained using the Euler-Bernoulli theory, the 

mechanical properties estimated using the analytical solutions based on the Timoshenko beam 

theory were closer to the numerical results, which are also based on the Timoshenko beam 

theory. 

As opposed to the elastic modulus and Poisson’s ratio, the difference between the numerical and 

analytical values of yield stress values had an increasing, decreasing, and then again increasing 

trend (Figure 11c). The two values coincide at relative density around 26% (Figure 11c). The 

maximum difference between the numerical and analytical results was about 12% which occured 

at � = 0.6. Another important observation is that at a relative density as large as 50%, the elastic 

modulus and yield stress of the octahedral structure do not exceed 14% of those of the bulk 

material. 

The experimentally determined values of the elastic modulus of the “lattice” structures (Figure 

11a) are generally close to the corresponding analytical solution based on the Timoshenko beam 

theory. For the relative density of 0.491, the experimental mean elastic modulus was 17% lower 

than the analytical solution. The agreement between experimental results and analytical solutions 

was improved for the experiments based on “single” unit cells. The experimental and analytical 

elastic modulus values almost coincided at the relative density of 0.033.  They, however, start to 
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deviate from each other as the relative density increased (Figure 11a). The mean experimental 

elastic modulus of the single unit cell specimen was always larger than the analytical counterpart 

(Figure 11a). The maximum difference between the analytical and single unit cell experimental 

elastic moduli was about 9% which occured at the relative density of 49.1%. 

The experimental/analytical correlation was also good for the yield stress (Figure 11c). The 

obtained yield stresses from the lattice specimens were always below the Timoshenko beam 

theory analytical curve. Similar to the elastic modulus curves (Figure 11a), the yield stress 

obtained from the single unit cell specimens were mostly larger than those determined 

analytically with the only exception being for the relative density of 0.033. The maximum 

difference between the analytical solution and the experimental values of the yield stress for 

single unit cells was 16.5% which occured at a relative density of 36%.  

4. DISCUSSIONS 

The advantage of analytical relationships is fast estimation of mechanical properties. That can be 

helpful in reducing the designing cost (the cost of evaluating the mechanical properties 

associated with different designs of porous structures in an optimal design scheme), effort, and 

time. The analytical relationships obtained here, which are the main contribution of this study, 

showed good agreement with numerical and experimental results. The parametric study of 

different effective parameters in a porous structure is much easier to be performed using 

analytical relationships, by which a designer can find the optimum relative density and pore size 

according to the required mechanical properties in an application. Moreover, the future 

numerical models based on octahedral micro-structure can be validated/benchmarked by 

comparing their results with the presented analytical relationships.  
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Although there was generally a good analytical/numerical/experimental correlation in this study, 

the experimental results deviated from analytical and numerical predictions at smaller relative 

densities (Figure 11a,c). As the strut diameters become smaller and comparable to the resolution 

of the AM process, the roughness of the surface plays more important role in deviation from 

theory [37]. Fine-tuning the analytical model to also include the roughness effects can lead to a 

great improvement in theory/experiment correlation. Related to this is the usage of advanced 

mechanical models for treating the behavior of joints in the lattice structure [38, 39]. Both 

process variation effects and joint behavior are important in explaining the discrepancies 

between model predictions and experimentally measured values. 

Increasing the relative density increases the �/� ratio of struts. In thick beams, the effects of the 

shear and rotation inertia become important. Those effects are considered in the Timoshenko 

beam theory but are ignored in the Euler-Bernoulli beam theory. That is why the results of the 

Euler-Bernoulli and Timoshenko beams almost coincide at small relative densities but start to 

deviate as the relative density increases (Figure 11). 

While the experimental results (i.e. the elastic modulus and yield stress) of the tested lattice 

structures were usually lower than both the analytical and numerical solutions, the experimental 

results of the single unit cells were usually slightly higher than the numerical and analytical 

values. The difference between the results of single unit cell specimens and the analytical 

solutions increased as the relative density increased. One of the main reasons for this increased 

elastic modulus is that as the relative density increases, more parts of the neighbor struts start to 

be aggregated at the vertices. Therefore, the free length of the struts (the portions of struts not 

touching parts of other struts) decreases. Since the corresponding material of the neighbor struts 

supports the material located at the ends of the vertices, they do not participate significantly in 



19 

 

the structure deformation. The resulted decrease in the deformation of the lattice structure 

decreases the deformation of the unit cell that leads to an increase in the elastic modulus of the 

lattice structure. The aggregation of the ends of the struts in the vertices was not taken into 

account in the analytical and numerical solutions in this study, and therefore they predicted lower 

stiffness values as compared to the experimental data. One way to take the effects of the 

aggregation of the ends of the struts into account is to replace the “vertex to vertex” length, �, in 

the analytical calculations with a reduced length �dcj[gcj, where �dcj[gcj is the free length of the 

struts. 

The elastic modulus of the bulk material is affected by the manufacturing direction of the 

material (Table 1). The elastic modulus of the bulk material in a direction parallel to the extruded 

filaments is 3.21% higher than that of the bulk material built with a 45º angle with respect to the 

extruded filaments. It was observed that by setting 5 = 1.0321 in the analytical elastic properties 

relationships, the change in the elastic properties is small and therefore for this type of structure 

it cannot be the cause of deviation of the experimental and analytical solutions with respect to 

each other. The parameter 5 can become important in structures for which the mechanical 

properties of the bulk material are substantially different in different directions. For example, if 

the build direction of the octahedral unit cells was parallel to the YZ direction rather than the XZ 

direction (Figure 1), the structure would have included vertically-built struts as well as struts 

built in the 45º direction. Since the mechanical properties of the vertically built struts is about 

20% lower than that of the struts made in with a 45º angle, including the parameter 5 in the 

analytical relationships could substantially change the estimated mechanical properties of the 

lattice structure. 
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The elastic modulus of an octahedral structure made of Ti-6Al-4V (which is one of the most 

well-known materials for biomedical applications, () = 113.8	CFH) with 50% porosity is lower 

than 8 GPa (see Figure 11). This elastic modulus is around the stiffness values measured for 

human bone, see e.g. [40]. Therefore, porous biomaterials with octahedral unit cell type can 

successfully be used for large bone defects without causing stress shielding.  

In this study, the mechanical properties of porous biomaterias based on the octahedral unit cell 

were obtained in the elastic range. One of the main application of these analytical relationships is 

in designing bone replacing scaffolds. Depeding on the application, the porous biomaterials are 

also susceptible to other loading types such as transient, cycling, and impact loads. Obtaining 

analytical solutions for non-static loads in complex structures (such as porous biomaterials) are 

usually very laboroious. In addition, the strain values may be different from those obtained 

analytically for the unit cells situated close to the boundaries of the lattice strucutre even for 

simple unit cells under simple loading scenarios. Experimental and numerical approaches are 

more effective in studying the above-mentioned cases of complex loading or non-unform strain 

distribution. Recent advances in full-field strain measurement technqiues such as Digital Image 

Correlation (DIC) which is an optical method for observing the full-field deformation of 

structure [41-45]) and finite element damage modeling (such as cohesive zone models which can 

efficiently model the crack propagation in different structures [46-48]) allow for better 

description of the deformation and failure in these structures under complex loads, and therefore 

better designs of the micro-architecture of porous biomaterials. In addition to mechanical 

aspects, permeability [5] and biological performance of porous biomaterials are also of great 

importance. In particualr the type of unit cell determine the amount of the surface area of porous 

biomaterials. Since the surface of porous biomaterials could be used for improvement of their 
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bone regeneration performance [49], it is important to simultaneously consider all the relevant 

aspects including permeability, surface area, and mechanical properties when choosing the type 

of unit cell and the relative density of the porous biomaterial.  

5. CONCLUSIONS 

It was observed that the analytical results based on the Timoshenko beam theory are closer to the 

numerical results as compared to the analytical results based on the Euler-Bernoulli beam theory. 

There was generally good agreement between numerical and analytical results. The maximum 

difference between analytical and numerical results for elastic modulus and Poisson’s ratio, 

which occurred at very large relative densities, was lower than 6%. The experimental results 

obtained from both single unit cells and lattice structures were also close to the derived analytical 

solutions. Introduction of porosity into the bulk material in the form of octahedral morphology 

led to a huge decrease in mechanical properties: for a relative density as large as 50%, the elastic 

modulus and yield stress of the octahedral structure did not exceed 14% of those of the bulk 

material.  
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Figure Captions 

Figure 1- Degrees of freedom of an octahedral unit cell 
Figure 2- The volumes constructing a unit cell 
Figure 3- Forces and moments required to cause (a) lateral displacement δ with no rotation at the free end of 

the beam, and (b) simple tension u 

Figure 4- Loads applied to strut AB to cause deformation mode q1 = 1 and q2 = 0 for Euler-Bernoulli beam 
theory 

Figure 5- Loads applied to struts (a) AB and (b) BB̀ to cause deformation mode q1 = 0 and q2 = 1 for 
Euler-Bernoulli beam theory 

Figure 6- The octahedral lattice structure: (a) front view, (b) oblique view 

Figure 7- Additively manufactured cylindrical specimens made (a) horizontally, (b) vertically, and (c) 45º 
angled for obtaining the bulk material properties of Khaki filament  

Figure 8- Additively manufactured octahedral lattice structures with (a) r/l=0.25, (b) r/l=0.2, (c) r/l=0.15, and 
(d) r/l=0.1 

Figure 9- Additively manufactured octahedral single unit cells with (a) r/l=0.05, (b) r/l=0.1, (c) r/l=0.2, and (d) 
r/l=0.25 

Figure 10- Load-displacement curves for (a) single unit cell and (b) lattice structure specimens with different 
radius to strut length ratios 

Figure 11- Comparison of analytical, numerical, and experimental vs. relative density for (a) elastic modulus, 
(b) Poisson’s ratio, and (c) yield stress 
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Table 1- Elastic properties of cylindrical specimens made of Khaki filaments 

 Vertically-made Horizontally-made 45º-made 
Elastic modulus (GPa) 2.04 ± 0.09 2.49± 0.01 2.42 ± 0.10 
Yield stress (MPa) 68.82 ± 0.44 56.16 ± 0.49 65.00 ± 0.14 
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Figure 1- Degrees of freedom of an octahedral unit cell 
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(a) (b) 
Figure 2- The volumes constructing a unit cell 
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Figure 3- Forces and moments required to cause (a) lateral displacement � with no rotation at the free end of the 
beam, and (b) simple tension � 
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Figure 4- Loads applied to strut AB to cause deformation mode  ! = ! and  4 = � for Euler-Bernoulli beam 
theory 
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Figure 5- Loads applied to struts (a) AB and (b) BB` to cause deformation mode  ! = � and  4 = ! for Euler-
Bernoulli beam theory 
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Figure 6- The octahedral lattice structure: (a) front view, (b) oblique view 

 

Figure 7- Additively manufactured cylindrical specimens made (a) horizontally, (b) vertically, and (c) 45º angled 
for obtaining the bulk material properties of Khaki filament  
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Figure 8- Additively manufactured octahedral lattice structures with (a) r/l=0.25, (b) r/l=0.2, (c) r/l=0.15, and (d) 
r/l=0.1 
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(a) (b) 

  
(c) (d) 

Figure 9- Additively manufactured octahedral single unit cells with (a) r/l=0.05, (b) r/l=0.1, (c) r/l=0.2, and (d) 
r/l=0.25 
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(a) 

 
(b) 

Figure 10- Load-displacement curves for (a) single unit cell and (b) lattice structure specimens with different 
radius to strut length ratios 
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(a) 

 
(b) 

 
(c) 

Figure 11- Comparison of analytical, numerical, and experimental vs. relative density for (a) elastic modulus, (b) 
Poisson’s ratio, and (c) yield stress 
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