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Abstract

The annotation effort associated with object
detection is extremely costly. One option to reduce
cost is to relax the demands on annotation quality,
effectively allowing annotation noise. Current
research primarily focuses on noise correction
before or during training. However, there remains a
gap in the research regarding the impact of specific
types of human annotation noise on object-detector
performance. This research aimed to determine
how sensitive object detectors are to human
annotation noise. A systematic methodology
was developed to generate and quantify the
effects of four noise types: missing annotations,
extra annotations, inaccurate bounding boxes,
and wrong classification labels.  Additionally,
evaluations were conducted on YOLOVS and
Faster R-CNN using the PASCAL VOC 2012,
VisDrone, and Brain-Tumor datasets. The
experiments demonstrated that adding noise to
smaller datasets adversely affects the performance
of object detectors trained on these datasets
more than it does for those trained on larger
datasets.  Similarly, annotation noise in small
objects affects detector performance more than
large objects. Furthermore, YOLOVS is resilient
to low levels of missing annotations and inaccurate
bounding boxes but is sensitive to all levels of
incorrect classification labels. Interestingly, extra
annotations seem to have a regularization effect
on YOLOvV8. In contrast, Faster R-CNN is
generally more susceptible to annotation noise
compared to YOLOVS, particularly concerning
extra annotations, though both models display
similar trends regarding inaccurate bounding
boxes.

1 Introduction

Object detection involves identifying and locating objects
within an image [I1]. Recent success in this area can
be attributed to the availability of large-scale, crowd-
sourced datasets that are meticulously annotated with
precise bounding boxes and classification labels [2-6].
Notable examples of these datasets include MS COCO [7],
PASCAL VOC 2012 [8], and ImageNet [9]. Although
these datasets generally feature high-quality annotations,
the associated human annotation effort is extremely time-
consuming and expensive [3, 5, 10-12]. Precisely drawing
one bounding box on Amazon’s Mechanical Turk takes
50.8 seconds on average, while the process of quality and
coverage verification takes an additional 37.2 seconds on
average [5].Therefore, achieving high-quality labels requires
significant time and effort, resulting in substantial costs.

Innovative methods to reduce the annotation effort have
been explored. One method is center click annotations [13],
where annotators click the center of an imaginary bounding

box around the object. These clicks are then incorporated
into Multiple Instance Learning techniques for object
localization. This method reduces annotation time by 9x
to 18x but requires additional annotator training. Another
method involves using annotators’ eye movements to derive
bounding boxes [14]. This method reduces the annotation
time by 6.8x, but has limitations in accuracy and requires
a complex setup to track eye movements. These methods
showed promise in reducing annotation effort but require
additional overhead.

Another option to reduce costs is to have less strict demands
on the annotation quality. Li et al. [2] proposed a learning
framework that simultaneously optimizes bounding boxes,
classification labels, and hyperparameters by alternating
between noise correction and model training. Wang et al. [3]
proposed a self-correction technique based on a Bayesian
filter for prediction ensemble to better leverage noisy
bounding box annotations. Chadwick and Newman [10]
proposed an improvement to co-teaching, a method where
two models teach each other by discarding samples with
high loss, thereby reducing the impact of annotation noise.
While these approaches demonstrate promise in improving
performance with noisy data, they still fall short of matching
the performance of models trained on noise-free annotations.

Despite these advancements, a gap remains in analyzing the
impact of specific types of human annotation noise on object
detector performance. Current research [2-4, 10, 15, 16]
primarily focuses on noise correction before or during
training, aiming to mitigate the effects of noisy annotations.
These approaches, while useful, do not provide a detailed
understanding of how individual types of annotation noise
affect detection accuracy. This lack of granular insights
limits the ability to develop targeted strategies for improving
model robustness and optimizing the annotation processes.
Various studies categorize human annotation noise
differently, leading to inconsistent conclusions and a
fragmented understanding of their effects. Adhikari et
al. [15] describe the following four types of human
annotation noise:

1. Missing annotations

2. Inaccurate bounding boxes
3. Extra annotations

4. Wrong classification labels

Tkachenko et al. [4] described similar types, excluding
extra annotations. Chadwick and Newman [10] proposed an
additional type: systematically swapping labels of classes
with similar appearances. This study focuses on the four
types of noise from Adhikari et al. Due to the limited
time frame of the study, the fifth type from Chadwik and
Newman was not included. While this type is significant,
it somewhat overlaps with wrong classification labels. The
types of human annotation noise considered in this research
are visualized in Figure 1.



Figure 1: Four types of annotation noise considered in this
work. (a) Missing annotation (cup not annotated), (b) Extra
annotation (bottom annotation does not correspond to an object) (c)
Inaccurately drawn bounding box, (d) Wrong classification label.

This research aims to answer how sensitive deep-learned
object detectors are to the four different types of human
annotation noise. The performance of the YOLOVS [17]
and Faster R-CNN [18] object detection architectures is
evaluated across varying levels of artificially generated noise
to understand how these affect model performance. This
work has the following contributions:

1. A systematic methodology to generate and quantify the
effects of four distinct types of human annotation noise.

2. Extensive evaluation of the performance of YOLOVS
[17] and Faster R-CNN [18] architectures under varying
levels of annotation noise using the PASCAL VOC 2012
[8], VisDrone [19] and Brain-Tumor! datasets.

2 Related Works

2.1 Reducing the annotation effort

The topic of reducing the annotation effort is extensively
investigated in the field of object detection. Innovative
strategies such as click center annotations [13] and leveraging
eye-tracking data [14] have shown promising results.
However, they require additional overhead, including the
training time required for annotators and the setup for
tracking eye movements. This section explores two additional
methodologies to reduce annotation effort: learning with
label noise and weakly-supervised learning.

Learning with label noise

One option to reduce the cost is to have less strict demands
on the annotation quality, effectively allowing noise in
the annotations. To mitigate the effects of noisy data,
numerous solutions have been proposed. Meta-Refine-Net
(MRNet) adapts to noisy data by assigning lower weights to

!The dataset can be found at Ultralytics Brain-Tumor

incorrect labels and generating more accurate bounding box
annotations, demonstrating effectiveness in experiments on
PASCAL VOC 2012 and MS COCO 2017 [16]. Another
learning approach jointly optimizes object labels, bounding
box coordinates, and model hyperparameters by alternating
noise correction and model training [2].  ObjectLab,
an algorithm that detects missing annotations, inaccurate
bounding boxes, and incorrect classification labels [4],
leverages a trained object detection model to score label
quality, prioritizing mislabeled images for review and
correction. ~ While these methods aim to mitigate the
effects of noisy annotations, they assume that annotation
noise negatively impacts performance without explicitly
demonstrating it. This research aims to fill this gap by
thoroughly exploring and quantifying the specific effects of
different types of annotation noise on detector performance.

Weakly-supervised learning

Another option to reduce cost is to train object detectors with
only image-level labels, as done in weakly-supervised object
detection [20]. Multiple weakly-supervised approaches have
been proposed. A min-entropy latent model (MELM) reduces
randomness in object locations and detector ambiguity,
improving detection performance compared to state-of-the-
art weakly-supervised approaches [21]. Another method
is a multiple-instance learning approach that iteratively
refines object locations, preventing fixation on erroneous
localizations [22]. While these methods aim to exploit image-
level annotations, which can be considered noisy annotations,
this work aims to explore and quantify the effect of noisy
annotations on the performance of object detectors.

2.2 Exploring the Effect of Noisy Annotations

Some studies not only propose their own methods but
also explore how specific types of annotation noise affect
object detector performance. For instance, Wang et al. [3]
introduced noise into a subset of COCO annotations under
relaxed restrictions, simulating real-world conditions. They
augmented these annotations with synthesized Gaussian
noise scaled to object size in bounding box coordinates.
They found that as noise levels increased, there was notable
performance degradation when evaluating on popular
object detection architectures such as FCOS and Faster
R-CNN. Additionally, they suggested a Bayesian filter-based
self-correction technique to enhance model robustness
against noisy data. While their work aimed to demonstrate
performance degradation caused by inaccurate bounding
boxes, this work evaluated how sensitive deep-learned object
detectors are to all four types of human annotation noise.

Chadwik and Newman [10] investigated the impact of
their five types of human annotation noise at 25% and
50% of noisy annotations introduced in the KITTI dataset
using the CNN object detector. Their experimental results
showed severe degradation in performance, even with limited
annotation noise. Finally, they proposed an improvement to
co-teaching, a method where two models teach each other
by discarding samples with high loss, to mitigate the effects
of annotation noise. While their study emphasized showing
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performance decline, this study focused on exploring the
effects of noisy annotations in greater depth by lowering the
steps of noise introduction from 25% to 10% and validating
the results across multiple architectures and datasets over
multiple runs.

Adhikari et al. [15] experimented on training single-
stage object detectors with different loss functions and
hyperparameter settings at varying levels of inaccurate
bounding box noise. Their experiments showed that the focal
loss, which down-weights the loss assigned to well-classified
examples to focus more on hard, misclassified examples,
is impacted more than the cross-entropy loss with high
amounts of noise. Finally, it was discovered that larger
values of ~, the focusing parameter in focal loss, improve
the robustness of the model to label noise such that extreme
gamma values make the model indifferent to the noise level.
This work aimed to evaluate the sensitivity of single and
two-stage object detectors to varying levels of all four types
of annotation noise.

3 Methodology

This research aims to evaluate how sensitive deep-learned
object detectors are to four types of human annotation noise:
(i) missing annotations, (ii) extra annotations, (iii) inaccurate
bounding boxes, and (iv) wrong classification labels. For
each noise type, the experiment assesses the performance
of various object-detection architectures on datasets with
different levels of artificially generated noise. Initially, the
models are trained and evaluated on a noise-free dataset,
corresponding to noise level 0. Subsequently, for each noise
level ranging from 1 to 5, an additional 10% of the training
annotations are intentionally corrupted by introducing the
relevant type of annotation noise. For instance, at noise level
3, 30% of the annotations are corrupted, with 10% coming
from each previous noise level, namely level 1, 2, and 3. This
approach introduces noise incrementally across the different
noise levels, ensuring unbiased results. At each noise level,
new models are trained on the noisy data and evaluated on a
noise-free test set. Finally, the results are aggregated across
multiple runs. The pseudo-code outlining the experiment is
presented in Algorithm 1.

The datasets used in this study are divided into train,
validation, and test sets with proportions of 75:10:15,
respectively. Only the train set is intentionally corrupted
with annotation noise. The validation set, used during model
training, remains free from noise to ensure the validation
process accurately reflected the model’s performance on
clean data. The test set is also kept free noise-free to
objectively evaluate detector performance.

The experiment is conducted using various combinations
of the YOLOvS (YOLO) [17] and Faster R-CNN [18]
architectures with three distinct datasets: the PASCAL VOC
2012 (PASCAL) dataset [8], the VisDrone dataset [19]
and the Brain-Tumor dataset?>. The combination of YOLO

2The dataset can be found at Ultralytics Brain-Tumor

Algorithm 1 Experiment for each noise type

1: for i : 0 ... number_of_runs —1 do

2 Train and evaluate the model on noise-free dataset
3 for each noise_level in range(5) do

4 Generate 10% of noise in the dataset on top of
S existing noise

6: Train and evaluate the model on the corrupted
7 dataset

8 end for

9 Aggregate the results over the runs

10: end for

with the PASCAL dataset is run three times to calculate
confidence intervals and establish reliable results. It is
important to note that the combinations of YOLO with the
VisDrone and brain-tumor datasets and Faster R-CNN with
the PASCAL dataset are run only once, primarily to validate
the findings of the first experiment.

3.1 Detection Architectures

Object detection architectures can be broadly classified into
two categories: one-stage detectors and two-stage detectors
[1]. One-stage detectors, such as YOLO [23] and SSD [24],
perform detection in a single step, predicting both bounding
boxes and class probabilities directly from the image in one
evaluation. Two-stage detectors, like Faster R-CNN [18] and
Mask R-CNN [25], first generate region proposals and then
classify these proposals into different object categories.

The choice of YOLO and Faster R-CNN is motivated
by their widespread use and representativeness of the one-
and two-stage paradigms, respectively. YOLO is known
for its speed and efficiency, while Faster R-CNN is known
for its high detection accuracy [26]. By evaluating both
architectures, this study aims to provide insights into how
each paradigm handles different types of annotation noise.

3.2 Datasets

The PASCAL [8], VisDrone [19], and Brain Tumor® datasets
are used. The PASCAL dataset is a benchmark in object
detection, including 20 categories of everyday object in
varied and complex ground-level scenes. The dataset consists
of 17,125 images and 40,138 annotations and tests the
model’s ability to handle common detection tasks. In
contrast, the VisDrone dataset comprises 7,019 images and
381,964 annotations of aerial scenes captured by drones.
The dataset features objects like pedestrians and vehicles
in different weather conditions and altitudes. It measures
the model’s ability to identify smaller and often occluded
objects from high vantage points. = The Brain Tumor
dataset, consisting of 1,116 images and 1,166 annotations
for identifying and localizing brain tumors, tests the models’
adaptability to specialized domains with highly similar
images. The use of three distinct datasets further enhances the
robustness of the evaluation by testing the detectors in both
ground-level, medical, and aerial image scenarios, which vary

3The dataset can be found at Ultralytics Brain-Tumor
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significantly in terms of object size, occlusion, background
complexity, and dataset size.

3.3 Noise generation

Each noise type is generated to simulate human annotation
errors. The methods for noise generation are detailed below.
The pseudo-code for all the noise scripts can be found in
Appendix A.

Missing annotations: An annotation is deleted by randomly
selecting an image and uniformly removing an annotation.

Extra annotations: The sensitivity of deep-learned object
detectors is evaluated to small and big extra annotations.
The small extra annotations are created by uniformly
generating an x and y coordinate. The width and height are
uniformly generated up to half the allowed dimensions. Big
extra annotations are generated by drawing the center from a
normal distribution with a mean of 0.5 and standard deviation
of 0.185. The width and height are uniformly generated from
half to the full allowed dimensions. For both, the centers of
the new annotations are placed at a Euclidean distance of
at least 0.005 from the original annotations, the minimum
distance between centers in the PASCAL dataset. Finally, the
classification label is uniformly assigned.

Inaccurate bounding boxes: The centers are randomly
shifted by 10%, and the corresponding width and height are
uniformly shifted by 10% in each direction.

Wrong classification labels: An image is randomly
selected and noise is introduced by randomly selecting a
classification label and uniformly replacing it with another.

4 Experimental Setup

The experiments with YOLO [17] use the YOLOVS8s* model
pretrained on MS COCO. For the PASCAL dataset, training
is performed with a batch size of 64 over 100 epochs. For
the VisDrone dataset, training utilizes a batch size of 32 over
150 epochs. Finally, for the brain-tumor dataset, the model is
trained with a batch size of 8 for 75 epochs. All experiments
are perfomed using YOLO’s default hyperparameters’.

The experiments with Faster R-CNN [18] employ a ResNet-
50-FPN [27] backbone and are conducted exclusively with
the PASCAL dataset. This experiment is run for 10 epochs
with a batch size of 16. Stochastic Gradient Descent (SGD)
is used as the optimizer, with a learning rate of 0.005,
momentum of 0.9, and a weight decay of 0.0005. Early
stopping is implemented with a patience of 2 epochs; if the
validation loss does not improve for 2 consecutive epochs,
the best model weights are restored and the learning rate is
reduced by a factor of 10.

The datasets are split into training, validation, and test
sets with a ratio of 75:10:15, ensuring that each set is

4 Available at Ultralytics website
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representative of the overall data. To ensure reproducibility,
the data splits are available in the repository®.

Seeds are used for all experiments and related methods
to ensure reproducibility. The seeds are calculated based
on the noise level and number of runs using the formula:
seed = (i * 6) + noise_level + 1, where ¢ represents the run
specified in the outer loop of Algorithm 1. A noise level of 0
corresponds to training and evaluation of the model on the
noise-free dataset.

5 Results

The results are discussed separately for each noise type,
with each subsection following a consistent structure. Then,
detection performance is measured using the mAP@50-95
metric. mMAP@50-95 stands for mean Average Precision
(mAP) average over Intersection-over-Union thresholds
ranging from 50-95% in steps of 5%. This metric is
commonly used in object detection to evaluate overall
precision at different IoU overlap thresholds between
predicted and ground truth boxes. A higher mAP@50-95
indicates better average precision or recall of objects across
different classes and IoU thresholds.

For each noise type, a graph presents the percentage
decrease in mAP@50-95 for each noise level compared to
the baseline (noise level 0). For YOLO trained on PASCAL,
the 95% confidence intervals are shown to account for
variance, while other detector-dataset combinations report
the direct percentage decreases as they are run only once.
Trends in detection performance across noise levels and
combinations are then analyzed.

5.1 Missing Annotations

Statistics are collected on the removed annotations for YOLO
with PASCAL experiments. They reveal notable variability in
the number of annotations removed per class, with the Person
class having a substantially higher number of annotations
removed compared to other classes. This disparity is due
to the dataset containing significantly more annotations for
the Person class. Interestingly, despite the higher removal
rate, the Person class remains one of the more robust classes,
indicating that more training data enhances model robustness
against missing annotations. Additionally, the analysis shows
that both small and large annotations are removed across the
noise levels. The statistics demonstrate that the generated
noise effectively simulates missing annotations. A detailed
analysis can be found in Appendix B.1.

YOLO with PASCAL: Figure 2 illustrates a modest,
linear decline from noise level 0 to 3 with mAP@50-95
decreasing from 0.541 to 0.519, followed by a slight increase
at noise level 4 to 0.522 and a significant drop at noise
level 5 to 0.462. Notably, the confidence intervals at noise
levels 2, 3, and 4 are significantly wider compared to noise
levels 0, 1, and 5. This indicates greater variability in
performance when a moderate number of annotations are

% Available on Github
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removed. Furthermore, mAP@50, mAP@75, and mAP@95
are investigated and reveal consistent trends. Their graphs are
detailed in Appendix C.1. These findings suggest that YOLO
exhibits a degree of robustness to moderate levels of missing
annotations in the PASCAL dataset, while highlighting
increased variability in performance at these levels.

Percentage decrease of mMAP@50-95 compared to the baseline

10 for increasing levels of missing annotations

—e— YOLO with PASCAL

—e— YOLO with Brain Tumor
—e— YOLO with VisDrone

—e— Faster R-CNN with PASCAL

Percentage Difference in mAP@50-95
from Baseline (%)
b
o

=50

0 1 2 3 4 5
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Figure 2: Percentage decrease in mAP@50-95 indicating YOLO’s
greater robustness to missing annotations compared to Faster R-
CNN. YOLO maintains performance with greater variability at
lower noise levels. Smaller missing annotations and smaller datasets
have a greater negative impact on performance compared to their
larger counterparts.

YOLO with VisDrone: A consistent notable linear decrease
in performance across all noise levels is observed in Figure
2, with mAP@50-95 dropping 30% from 0.246 to 0.174 at
noise level 5. This decline can be attributed to the dataset
containing a large number of small objects, which are harder
for the model to learn. This suggests that missing small
annotations negatively impacts performance more than
bigger annotations.

YOLO with Brain-Tumor: Interestingly, Figure 2 shows
a significant initial performance drop of 10%, followed by
improved and stable performance at noise levels 2 and 3,
which align well with the confidence intervals of YOLO
with PASCAL. Noise level 4 displays a significant drop of
an additional 9%, followed by a slight performance increase.
This fluctuation is likely due to the dataset’s smaller size,
indicating that smaller datasets are more sensitive to missing
annotations, as evident from the initial drop at noise level
1. However, the stable performance at noise levels 2 and
3 underscores that YOLO exhibits a partial degree of
robustness to moderate levels of missing annotations.

Faster R-CNN with PASCAL: Similar to YOLO with
Brain-Tumor, Figure 2 shows an initial performance drop
of 12%. Noise level 2 performs similarly to noise level
1. Remarkably, levels 3 and 4 align within YOLO with
PASCAL’s confidence intervals, while level 5 shows slightly
worse performance for Faster R-CNN. These findings
suggest Faster R-CNN is more sensitive to lower levels of
missing annotations than YOLO. For moderate and higher
levels, their sensitivity appears comparable.

In conclusion, smaller missing annotations have a greater
negative impact on performance compared to larger ones.
Surprisingly, YOLO shows more robustness to missing
annotations at lower noise levels than Faster R-CNN. YOLO
is moderately affected by missing annotations, with accuracy
declining slightly and variability increasing at moderate
levels of missing data, yet exhibiting a pronounced decrease
in performance at high levels of missing annotations. Finally,
smaller datasets affect performance more than larger datasets.

5.2 Extra Annotations

Small Extra Annotations

For the YOLO and PASCAL experiments, statistics are
computed for the small, extra annotations. The statistics
show that the extra annotations are evenly distributed across
the classes. Additionally, the statistics reveal that the
generated extra annotations cover small areas and do not
match real objects. In conclusion, the statistics show that the
noise generation process effectively simulates small extra
annotations. A detailed analysis can be found in Appendix
B.2.

Percentage decrease of mMAP@50-95 compared to the baseline
for increasing levels of small extra annotations
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Figure 3: Percentage decrease in mAP@50-95 compared to the
baseline indicating that small extra annotations have a regularizing
effect for YOLO. Faster R-CNN is sensitive to small extra
annotations.  Smaller datasets and a higher number of small
annotations lead to more pronounced performance declines.

YOLO with PASCAL: Surprisingly, Figure 3 shows
consistent performance across the noise levels, with narrower
confidence intervals observed at noise levels 0 and 1
compared to the remaining levels. The average mAP@50-95
fluctuates from 0.534 to 0.545. The results suggest that
small extra annotations have a regularizing effect. Further
analysis of mAP@50, mAP@75, and mAP@95 revealed
similar trends in mAP@50 and mAP@75 across noise
levels. However, mAP@95 exhibits a significant initial
drop, from 0.14 to 0.12, after which performance remains
relatively stable across the remaining noise levels. Graphs
for mAP@50, mAP@75, and mAP@95 are available in
Appendix C.2. In summary, extra annotations did not notably
affect mAP overall but did reduce precision at the highest
IOU threshold, suggesting regularization with potential cost
to localization accuracy.



YOLO with VisDrone: Remarkably, Figure 3 demonstrates
an initial performance drop of 5%, with performance
remaining relatively stable across subsequent noise levels.
The initial drop can be attributed to the dataset containing
many small objects, which became harder to learn after
the addition of small extra annotations. The subsequent
stability further emphasizes that small extra annotations act
as regularization terms.

YOLO with Brain-Tumor: Figure 3 shows an unexpected
trend compared to YOLO with PASCAL: it displays an
initial performance drop followed by a more pronounced
decline to 19%. The performance remains relatively stable
across the subsequent noise levels. These initial drops can
be attributed to the small size of the dataset, which makes
it more sensitive to small extra annotations. Additionally,
the consistent performance from noise levels 2 to 5 further
emphasizes that small extra annotations act as regularization
terms.

Faster R-CNN with PASCAL: Notably, Figure 3 reveals
a substantial initial drop of 18% followed by inconsistent
behavior across the remaining noise levels. These results
suggest that YOLO is more robust to small, extra annotations
than Faster R-CNN.

In summary, small extra annotations have a regularizing
effect on YOLO. Furthermore, smaller datasets show a
more pronounced performance decline with small extra
annotations. Additionally, their effect is more noticeable
when datasets contain a substantial number of smaller
annotations. Lastly, Faster R-CNN appears more sensitive to
small additional annotations compared to YOLO.

Big Extra Annotations

Statistics are computed for big extra annotations, for the
YOLO and PASCAL dataset experiments. They reveal that
the generated annotations are evenly distributed across the
classes. Additionally, they show that the extra annotations
cover large areas and match real objects to some extent, which
is expected for big extra annotations. In conclusion, the
statistics show that the noise generation process effectively
simulates big extra annotations. A detailed analysis can be
found in Appendix B.2.

YOLO with PASCAL: Interestingly, Figure 4 shows
that the performance across noise levels mirrors the pattern
observed with small extra annotations. The only notable
difference is a performance drop at noise level 1 with big
extra annotations. The mAP@50-95 fluctuates from 0.557
to 0.532. Further analysis attributes this drop to baseline
performance disparities: small extra annotations averaged
0.54 mAP@50-95, while big extra annotations achieved
0.55. Analysis of mAP@50, mAP@75, and mAP@95 yield
similar trends as observed with small extra annotations. The
graphs of mAP@50, mAP@75, and mAP@95 are detailed
in Appendix C.2. In summary, big extra annotations seem to
have a similar effect as small extra annotations.

Percentage decrease of mMAP@50-95 compared to the baseline

1 for increasing levels of big extra annotations
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Figure 4: Percentage decrease in mAP@50-95 compared to the
baseline indicating that big extra annotations have a regularizing
effect for YOLO. Faster R-CNN is sensitive to big extra annotations.
Smaller dataset with big extra annotations lead to more pronounced
performance declines compared to big datasets.

YOLO with VisDrone: Remarkably, Figure 4 presents
a performance evolution nearly identical to YOLO with
PASCAL. The only deviation is a performance drop observed
for VisDrone at noise level 5, likely caused by VisDrone
having significantly more extra annotations than PASCAL.
These results suggest that YOLO with VisDrone is more
resilient to big extra annotations compared to small ones.
These findings emphasize that big extra annotations have a
regularization effect and highlight the greater resilience of
larger datasets to big extra annotations.

YOLO with Brain Tumor: Figure 4 shows a significant,
linear decrease in performance up until noise level 4, where
performance dropped a remarkable 25% compared to the
baseline, followed by a notable increase of 7% at noise level
5. The consistent initial decline highlights the impact of big
extra annotations on a smaller datasets.

Faster R-CNN with PASCAL: Notably, Figure 4 shows
a similar, but less pronounced trend as in Figure 3. In
Figure 4, the first two noise levels exhibit significantly worse
performance compared to YOLO with PASCAL. This is
followed by a recovery to nearly identical performance at
noise level 3, which then declines again in subsequent noise
levels.

In conclusion, extra annotations have a regularizing
effect on YOLO. Moreover, smaller datasets seem to be more
sensitive to extra annotations. Finally, Faster R-CNN seems
to be less robust to extra annotations than YOLO.

5.3 Inaccurate Bounding Boxes

For the YOLO and PASCAL experiments, statistics are
computed for inaccurate bounding boxes. The statistics
reveal significant overlap with the original bounding
boxes while still maintaining substantial difference such
that inaccurate bounding boxes are effectively simulated.



Additionally, the average number of inaccurate bounding
boxes per class is computed. As expected, the Person class is
most affected, which can be attributed to the characteristics of
the PASCAL dataset. The statistics reveal that the generated
noise effectively simulates inaccurate bounding boxes. A
detailed analysis can be found in Appendix B.3.

Percentage decrease of mMAP@50-95 compared to the baseline
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Figure 5: Percentage decrease in mAP@50-95 compared to the
baseline showing that YOLO and Faster R-CNN show equal
robustness to inaccurate bounding box noise, with moderate
sensitivity at low noise levels and severe sensitivity at high noise
levels. Inaccurate bounding boxes for small objects and smaller
datasets harm performance more significantly.

YOLO with PASCAL: Figure 5 shows a relatively
consistent, linear decrease in performance from noise levels
0 to 4, where performance dropped 10% compared to the
baseline. The confidence intervals at levels 2 to 5 are
significantly larger than at levels 0 and 1, indicating greater
variability as more boxes are inaccurate. These findings
highlight YOLO’s sensitivity to inaccurate bounding boxes.
Additional analysis of mAP@50, mAP@75, and mAP@95
revealed similar trends, except for mAP@95. mAP@95
decreased sharply and linearly from 0.14 at noise level 0 to
0.025 at noise level 5, indicating a severe impact on precise
detection. Plots of mAP@50, mAP@75, and mAP@95 can
be found in Appendix C.3.

YOLO with VisDrone: Notably, Figure 5 shows a
significant linear decrease over the noise levels, with a
35% performance loss at noise level 5, and performs much
worse than YOLO and Faster R-CNN with PASCAL. These
findings suggest that inaccurate bounding boxes of small
objects negatively impact performance more than big objects
since the VisDrone dataset contains significantly more small
objects than PASCAL.

YOLO with Brain-Tumor: Interestingly, Figure 5 shows a
significant linear decrease in performance from noise level 0
to 4, with a 35% performance decrease at noise level 4, after
which performance stabilizes at noise level 5. The initial
steady decline highlights the impact of inaccurate bounding
boxes on a smaller dataset, which lacks the robustness seen
in larger datasets.

Faster R-CNN with PASCAL: Unexpectedly, Figure
5 shows almost identical performance to YOLO with
PASCAL. This suggests that both YOLO and Faster R-
CNN are somewhat robust to inaccurate bounding boxes,
especially at lower noise levels.

In conclusion, YOLO and Faster R-CNN seem to be
equally robust to inaccurate bounding box noise. They
demonstrate moderate sensitivity to inaccurate bounding
boxes at low noise levels but demonstrate severe sensitivity
at higher noise levels, highlighted by the wider confidence
intervals of YOLO. Furthermore, inaccurate bounding boxes
for small objects seem to harm performance more than
big objects. Finally, smaller datasets are more sensitive to
inaccurate bounding boxes than larger datasets.

5.4 Random Wrong Classification Labels

For the YOLO and PASCAL experiments, statistics are
computed. They show that all classes are affected. As for
missing annotations and inaccurate bounding boxes, the
Person class is affected most while the other classes are
affected in a relatively similar manner. In summary, the
statistics show that the noise effectively simulates wrong
classification labels. A detailed analysis can be found in
Appendix B .4.

Percentage decrease of mMAP@50-95 compared to the baseline
for increasing levels of wrong classification labels
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Figure 6: Percentage decrease in mAP@50-95 indicating that
YOLO is severly sensitive to wrong classification labels at all noise
levels. Faster R-CNN is even significantly more sensitive. Smaller
datasets and smaller objects with wrong classification labels affect
detector performance more, particularly at lower noise levels.

YOLO with PASCAL: Figure 6 shows a notable, consistent
linear decrease from noise level O to noise level 5, with a 12%
performance loss at noise level 5. The confidence intervals
are very tight except at noise levels 1 and 4. These results
indicate that YOLO is sensitive to wrong classification labels
at all noise levels. Additionally, the mAP@50. mAP@75,
and mAP@95 are investigated and detailed in Appendix
C.4. The mAP@50 and mAP@75 followed similar trends.
However, the mAP@95 showed a significant initial drop
from noise level 0 to noise level 1 as the mAP@95 dropped
from 0.15 to 0.095. This highlights that even 10% of wrong
classification labels severely impacts the ability of the model
to accurately detect objects.



YOLO with VisDrone: Interestingly, Figure 6 exhibits
a linear decrease from noise level O to noise level 2, with a
performance decrease of 12% at noise level 2, after which
the performance stabilizes. These results suggest that wrong
classification labels of small objects negatively impact
performance more than big objects, especially at lower noise
levels.

YOLO with Brain-Tumor: Remarkably, Figure 6 shows
two initial drops,resulting in a 21% performance loss at noise
level 2, followed by a slight improvement at noise level 3 to
17%. Finally, the performance drops significantly to 33%
and to 38% for the remaining noise levels, respectively. The
significant drops and instability can be explained by the
smaller size of the dataset.

Faster R-CNN with PASCAL: Figure 6 shows a consistent
linear decrease over the noise levels much more severe than
YOLO with PASCAL, with a staggering performance loss
of 48% at noise level 5. These results suggest that Faster
R-CNN is less robust to wrong classification labels than
YOLO.

In summary, YOLO demonstrates severe sensitivity to wrong
classification labels, highlighted by the wide confidence
interval at noise level 1. Faster R-CNN seems more sensitive
to wrong classification labels than YOLO. Moreover, smaller
datasets seem more sensitive to wrong classification labels.
Finally, wrong classification labels of smaller objects impact
performance more severely than large objects, especially at
lower noise levels.

6 Discussion

This research aimed to evaluate the sensitivity of deep-
learned object detectors to four types of human annotation
noise: (i) missing annotations, (ii) extra annotations, (iii)
inaccurate bounding boxes, and (iv) wrong classification
labels. To address this, the performance of YOLOvVS
and Faster R-CNN was assessed for each noise type on
different datasets with incrementally added noise levels. The
experiments revealed the following:

1. Annotation noise in smaller datasets impacts object
detector performance more negatively than annotation
noise in larger datasets.

2. Annotation noise in smaller objects impacts detector
performance more negatively compared to bigger
objects.

3. YOLOv8 shows resilience to low levels of missing
annotations and inaccurate bounding boxes but is
sensitive to all levels of wrong classification labels.

4. Extra annotations have a regularizing effect on
YOLOVS.

5. Faster R-CNN is more sensitive to all noise types
compared to YOLOVS, except for inaccurate bounding
boxes where performance is impacted similarly.

The conclusions were drawn from an extensive analysis
of the results based on multiple metrics. However, some
conclusions were based on single runs for each noise type.
Specifically, conclusions 1, 2, and 5 need to be interpreted
with caution due to being derived from single runs. The
remaining conclusions are based on three runs and are more
reliable.

The performance decrease caused inaccurate bounding box
noise for the YOLO and Faster R-CNN architecture follows
a similar trend as for FCOS and Faster R-CNN as shown
in [3]. Furthermore, Chadwick and Newman [10]showed
severe performance degradation for the CNN object detector
at low levels of all types of noise. The results show that
YOLO shows more robustness to annotation noise across all
levels. To obtain the best results reliably, data needs to be
meticulously annotated. However, when limited resources are
available, having less strict demands on missing annotations,
extra annotations, and inaccurate bounding boxes will not
severely impact YOLO performance. Additionally, building
on top of existing knowledge in the machine learning
domain that larger datasets enhance model robustness,
smaller datasets indeed harm resilience of the detectors
against annotation noise. Similarly, the greater impact
on smaller objects is logical, given that the performance of
state-of-the-art object detectors on larger objects significantly
outperforms smaller objects, indicating that smaller objects
are harder to learn. Additionally, the relative size of noise-
induced errors is larger for smaller objects, leading to greater
performance degradation.

The regularizing effect of extra annotations on YOLOVS
might be due to the model’s ability to learn from additional,
noisy data, enhancing its generalization capabilities.
YOLOVS8’s sensitivity to incorrect classification labels at all
noise levels could stem from the architecture’s reliance on
accurate class predictions for effective object detection. The
similar impact of inaccurate bounding boxes on YOLO and
Faster R-CNN suggests a shared vulnerability in localizing
objects precisely under such conditions.

Future research should perform hyperparameter optimization
in a similar experiment to see if noise can be mitigated in a
simple manner. Additionally, more runs should be conducted
on Faster R-CNN compared to YOLOvVS to validate the
observed trends. Moreover, the performance of multiple
single and two-stage detectors should be compared. Finally,
resources should be allocated to investigate the effects of the
fifth noise type not considered in this study: systematically
swapping classes with similar appearances.

7 Responsible Research

The results presented in this study are derived directly from
the experiments without any manipulation. Adhering to
principles of responsible and transparent research, all data,
trained models, and code used in this study are openly
available in a dedicated repository’. This repository includes

7 Available on Github


https://github.com/laurensmichielsen/Research-Project

tools to replicate the experiments and verify results, ensuring
the reliability of the findings reported here.

In line with the FAIR principles, the models and datasets
used in this research are easily discoverable via dedicated
web pages, ensuring they are findable. Accessibility is
ensured as all models and datasets are freely available
without requiring any credentials for download. This open
access guarantees that these resources are available to
anyone interested in this research. The datasets include
annotations in standard formats (XML), and detector-specific
formats are well-documented and accessible online, ensuring
interoperability. Extensive documentation of the datasets
and models is available, making them reusable for further
research.

Moreover, this research is designed to be fully reproducible.
All relevant code is available in the GitHub repository,
with clear instructions on how to set up and run the
experiments. The repository includes detailed information
on the seeds, specific models, hyperparameters, and other
essential configurations used in the experimental setup. This
transparency ensures that others can replicate the experiments
and verify the results, contributing to the robustness and
reliability of the research findings.
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A

Noise Generation Pseudo-code

The following algorithms present the pseudocode of the noise
generation scripts.

A.1 Missing annotations

Algorithm 2 Generate Missing Annotations

num_annotations_to_remove = 0.1xtotal_annotations
: Initialize random seed with seed
: for i: 0 ... num_annotations_to_remove do
Select a random annotation file
Remove a random annotation from the file
end for

A.2 Extra Annotations

Algorithm 3 Generate Small Extra Annotation

x_center = uniformly generate between 0 and 1
y-center = uniformly generate between 0 and 1
while min(Euclidean distance(new_center, centers)) < ¢
do
x_center = uniformly generate between 0 and 1
y-center = uniformly generate between 0 and 1
end while
width_range = min(1—x_center,x_center)
height_range = min(1—y_center,y_center)
width = uniformly generate between 0 and width_range
height = uniformly generate between 0 and height_range

Algorithm 4 Generate Big Extra Annotation

x_center = \(0.5,0.185%)
y-center = (0.5, 0.1852)
while min(Euclidean distance(new_center, centers)) < e
do
x_center = \/(0.5,0.1852)
y-center = /(0.5,0.1852)
end while
width_range = min(1 — x_center, x_center)
height_range = min(1 — y_center, y_center)
width = uniformly generate between 0.5 * width_range and
width_range
height = uniformly generate between 0.5 * height_range
and height_range

Algorithm 5 Generate Extra Annotations

num_annotations_to_remove = 0.1xtotal_annotations
Initialize random seed with seed
for i: 0 ... in num_annotations_to_remove do
Select a random label file from labels_folder
Generate extra annotation by calling Extra Annotation
class_label = uniformly generate
Add the extra annotation
end for

A.3 Inaccurate Bounding Boxes

Algorithm 6 corrupt_bbox

Input: class_id, bbox_width,
bbox_height

Output: Corrupted bounding box annotation
x_center_new = x_center + random value between max(-
0.1, -x_center) and min(0.1, 1 - x_center)

y-center_new = y_center + random value between max(-
0.1, -y_center) and min(0.1, 1 - y_center)

max_width = min(1 - x_center_new, X_center_new) * 2
max_height = min(1 - y_center_new, y_center_new) * 2
max_width = min(1.1 * bbox_width, max_width)
max_height = min(1.1 * bbox_height, max_height)
bbox_width_.new = random value between 0.9 *
min(bbox_width, max_width) and max_width
bbox_height new = random value between 09 *
min(bbox_height, max_height) and max_height

x_center, y_center,

Algorithm 7 generate_noise_type3

Input: labels_folder, seed,
total_annotations
Output: Labels and images with corrupted annotations
num_annotations_to_corrupt = 0.1xtotal _annotations
Initialize random seed with seed
for : = 0 to num_annotations_to_corrupt —1 do
Select a random label file from labels_folder
Collect the annotations from the label file
Corrupt the annotation using corrupt_bbox
Replace the annotation with the corrupted one
end for

target_labels_folder,

A.4 Wrong classification labels

Algorithm 8 Generate Wrong Classification Label

Input: seed, total_annotations
Output: Modified labels and images with missing
annotations
num_annotations_to_remove = 0.1xtotal_annotations
Initialize random seed with seed
for annotation in num_annotations_to_remove do
Select a random label file
Select a random annotation from the label file
Randomly Generate a different classification label
end for




B Statistics for the experiments
B.1 Missing Annotations

Statistics are collected on the removed annotations for
experiments involving YOLO and PASCAL. A notable
finding is the substantial difference in the number of removed
annotations per class. On average, around 6178.0 annotations
for the Person class are removed at noise level 5, while other
classes have between 192.33 and 812.0 annotations removed.
This variation can be attributed to the PASCAL dataset
containing significantly more annotations for the Person class
compared to other classes. The average number of removed
annotations per class across noise levels is reported in Table
1. Additionally, the mean, standard deviation, and quantiles
of the removed annotation areas are calculated for each
noise level. These statistics are shown in Table 2. The
results demonstrate that annotations of both small and large
boxes were removed. Removing annotations of varying
object sizes is important for evaluating how sensitive object
detectors are to missing annotations, as it simulates realistic
human annotation errors and tests detectors’ robustness
across different object scales.

Table 1: Average number of annotations removed per class over
different noise levels showing that the Person class was affected
most.

Classes Noise Level 1  Noise Level 2 Noise Level 3 Noise Level 4 Noise Level 5

acroplane  110.33 211.67 31133 39133 47167
bicycle 65.33 127.67 194.67 261.67 328.67
bird 134.33 252.67 37233 47033 572.67
boat 74.33 145.67 213.67 28733 358.67
bottle 62.67 140.67 231.00 331.67 432.00
bus 51.67 98.00 146.67 20233 256.67
car 15033 30833 452.00 612.00 79233
cat 160.67 308.67 45333 566.00 678.00
chair 12633 260.00 417.67 586.33 778.00
cow 4733 112.00 170.67 232.67 290.67
diningtable  33.00 7233 104.00 149.00 19233
dog 174.33 35233 514.67 669.67 812.00
horse 64.33 130.00 196.67 269.00 33133
motorbike  67.00 129.67 189.33 255.00 322.00
person 1344.33 2693.33 4040.00 5387.00 6718.00
pottedplant  62.00 115.00 178.00 247.67 32033
sheep 62.00 122.00 190.00 255.67 321.67
sofa 60.00 126.00 189.00 249.00 323.00
train 84.67 164.00 23433 303.67 35633
tvmonitor 6100 122.00 188.67 256.67 323.67
Noise levels 1 2 3 4 5
Mean 0.2986 0.2913 0.2830 0.2759 0.2683
Std Dev 0.2752 0.2722 0.2699 0.2686 0.2661
25th % 0.0615 0.0591 0.0552 0.0509 0.0472
50th % 0.2135 0.2056 0.1941 0.1844 0.1752
75th % 0.4793 0.4662 0.4541 0.4414 0.4268

Table 2: Statistics of the Areas of the Removed Annotations
at Different Noise Levels showing that small, medium and large
objects were removed.

In addition, for the YOLO with PASCAL experiments, the
average percentage decrease in AP@50-95 relative to the
baseline for each class is computed across different noise
levels. Figure 7 shows that the Person class is one of the
more robust classes to missing annotations. This robustness
can be attributed to the PASCAL dataset having significantly
more annotations for the Person class. This suggests that

more training data makes the model more robust to missing
annotations. Additionally, Figure 7 shows that the Sofa class
is affected most. The Sofa class contains the least amount
of annotations in the training data, further underscoring that
more training data makes the model more robust to missing
annotations.

Percentage Difference of AP@50-95 over Noise Levels compared
to the baseline for increasing levels of missing annotations
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Figure 7: Average percentage decrease in AP@50-95 for each class
in the PASCAL dataset trained with YOLO. The graph shows that
the Person class remains one of the more robust classes against
missing annotations.

B.2 Extra annotations

Small extra annotations

For the YOLO and PASCAL experiments, statistics are
collected for the generated small, extra annotations. In
contrast to removed annotations, the extra annotations are
distributed evenly across classes. The average number of
extra annotations per class ranges from 717.0 to 769.66 at
noise level 5. For other noise levels, annotations are also
evenly distributed. The average extra annotations per class
can be found in Table 3. Additionally, the mean, standard
deviation, and quantiles are calculated for the areas of the
extra annotations. These statistics are reported in Table 4.
As shown, the areas are very small compared to those of
the removed annotations. The average at the noise levels
for missing annotations ranged from 0.26 to 0.29, while for
the small extra annotations this range from 0.01 to 0.02.
Finally, the mean, standard deviation, and quantiles of the
highest IoU of the new annotations with original annotations
in images were calculated. These statistics are in Table 5.
The IoU was used to measure the overlap with real objects.
They demonstrate that the generated annotations did not
correspond to any real objects. From these statistics, we can
conclude that extra annotations were evenly distributed per
class and corresponded to small additional annotations that
did not match real objects. Therefore, the noise generation
process was able to simulate small extra annotations and is
suitable to study the sensitivity of object detectors to small
extra annotations.



Table 3: Average number of small extra annotations per class over
the noise levels showing that the small extra annotations were evenly
distributed over the classes

Classes Noise Level 1  Noise Level 2 Noise Level 3 Noise Level 4 Noise Level 5

aeroplane 159.00 305.33 446.00 586.00 730.33
bicycle 135.33 290.67 440.33 598.00 750.33
bird 146.00 296.67 448.33 600.33 745.67
boat 148.67 309.67 463.67 613.00 766.33
bottle 148.67 292.00 437.00 592.33 734.00
bus 14233 300.33 447.67 594.33 748.67
car 156.33 297.67 452.33 614.00 769.00
cat 156.67 308.67 456.33 601.33 758.67
chair 146.33 295.67 436.33 578.67 729.33
cow 152.33 296.33 445.67 594.33 742.00
diningtable 159.00 303.00 469.67 629.67 777.00
dog 156.00 310.00 467.33 61233 760.33
horse 158.33 311.67 465.33 622.00 767.67
motorbike 139.00 275.00 436.00 583.33 72733
person 143.33 297.00 437.33 587.33 744.33
pottedplant 150.00 297.33 431.67 571.67 717.00
sheep 153.33 304.33 454.00 601.33 754.33
sofa 147.00 292.67 448.67 596.33 744.67
train 143.67 296.33 443.67 588.00 743.33
tvmonitor 154.67 296.33 460.67 619.67 769.67

Table 4: Statistics of the areas of the small extra annotations showing
that the generated annotations indeed covered small areas.

Noise levels | 1 2 3 4 5

Mean 0.0158 0.0157 0.0156 0.0156 0.0156
Std Dev 0.0232  0.0230 0.0230 0.0231 0.0230
25th % 0.0015 0.0015 0.0015 0.0015 0.0015
50th % 0.0065 0.0065 0.0065 0.0064 0.0064
75th % 0.0201 0.0199 0.0199 0.0198 0.0198

Table 5: Statistics of the highest IoU of the added annotations with
the original annotations at different noise levels demonstrating that
the small extra annotations do not correspond to real objects.

Noise levels | 1 2 3 4 5

Mean 0.0289 0.0286 0.0287 0.0284 0.0284
Std Dev 0.0640 0.0632 0.0640 0.0640 0.0641
25th % 0.0000 0.0000 0.0000 0.0000 0.0000
50th % 0.0006 0.0006 0.0006 0.0005 0.0005
75th % 0.0256 0.0253 0.0254 0.0245 0.0244

Furthermore, for the YOLO and PASCAL experiments, the
average percentage decrease in AP@50-95 for each class
was calculated across the various noise levels. Figure 8
demonstrates that all classes experience similar fluctuations
in performance within narrow intervals across the noise
levels, further highlighting that small extra annotations act as
regularization terms.

Big Extra Annotations

For the PASCAL datasets experiments, statistics are collected
for the generated big, extra annotations. Similarly to the
small extra annotations, the big extra annotations are
distributed evenly per class. The average number of big
extra annotations per class ranges from 719.0 to 767.67 at
noise level 5. The extra annotations are also distributed
evenly over the remaining noise levels. The average extra
annotations per class can be found in Table 6. Additionally,
the mean, standard deviation, and quantiles are calculated
for the areas of the extra annotations. These statistics are
shown in Table 8. The areas are big in comparison to those

Percentage Difference of AP@50-95 over Noise Levels compared
to the baseline for increasing levels of small extra annotations
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Figure 8: Average percentage decrease in AP@50-95 for each class
in the PASCAL dataset trained with YOLO. The graph shows that
all the classes have a similar performance evolution with small extra
annotations added.

of the small extra annotations, with the means of the big
extra annotations ranging from 0.28 to 0.29 in comparison
to 0.01 to 0.02. Additionally, the mean of the areas of the
big extra annotations is very similar to that of the removed
annotations. Furthermore, the standard deviation is smaller
for the big extra annotations showing that the experiment
indeed generates big extra annotations. Finally, the mean,
standard deviation, and quantiles of the highest IoU of the
new annotations with original annotations in images are
calculated. These statistics are reported in Table 7. They
show that the generated annotations do have some overlap
with existing annotations, in contrast to the small extra
annotations.  This difference was expected as big extra
annotations take up significant space of the image and are
bound to overlap to some extent with actual annotations.
From these statistics we can conclude that the big extra
annotations were evenly distributed per class and correspond
to realistic big extra annotations.

Table 6: Average number of big extra annotations per class over the
noise levels showing that the annotations are distributed evenly over
the classes.

Classes Noise Level 1  Noise Level 2 Noise Level 3 Noise Level 4  Noise Level 5
aeroplane 147.67 307.67 452.67 604.33 745.33
bicycle 146.00 295.33 458.67 615.00 755.33
bird 159.67 310.33 453.67 610.00 760.00
boat 145.33 297.33 434.67 594.33 746.33
bottle 153.33 301.00 457.67 605.00 752.00
bus 152.33 303.67 45233 604.00 756.00
car 152.67 304.00 452.33 604.00 765.67
cat 152.00 297.00 434.67 581.33 743.33
chair 151.00 298.00 449.00 602.33 755.67
cow 150.67 291.33 440.00 586.67 741.33
diningtable 149.67 303.67 467.67 611.00 767.67
dog 142.33 307.33 462.33 613.67 757.00
horse 161.00 313.33 462.33 604.33 750.33
motorbike 160.00 310.67 466.67 602.33 751.67
person 146.67 299.00 448.33 593.00 739.67
pottedplant 146.33 284.33 424.00 574.00 719.00
sheep 135.67 288.00 446.33 599.33 749.00
sofa 147.00 293.00 443.67 592.33 740.67
train 146.33 298.33 443.33 597.00 743.00
tvmonitor 150.33 288.67 437.67 590.00 741.00




Noise levels | 1 2 3 4 5

Mean 0.2806 0.2826 0.2830 0.2829 0.2832
Std Dev 0.1480 0.1488 0.1493 0.1495 0.1498
25th % 0.1712 0.1740 0.1743 0.1741 0.1736
50th % 0.2649 0.2651 0.2650 0.2648 0.2651
75th % 0.3698 0.3729 0.3738 0.3738 0.3746

Table 7: Statistics of the areas of the big extra annotations at
different noise levels showing that the they cover large areas.

Noiselevels | 1 | 2 | 3 | 4 | 5
Mean 0.2490 | 0.2485 | 0.2490 | 0.2493 | 0.2489
Std Dev 0.1886 | 0.1871 | 0.1871 | 0.1871 | 0.1869
25th % 0.0872 | 0.0888 | 0.0890 | 0.0890 | 0.0894
50th % 0.2320 | 0.2323 | 0.2333 | 0.2338 | 0.2330
75th % 0.3829 | 0.3791 | 0.3803 | 0.3805 | 0.3793

Table 8: Statistics of the highest IoU of the big extra annotations
with the original annotations at different noise levels demonstrating
that the big extra annotations cover some parts of real objects.

Additionally, for the YOLO and PASCAL runs, the
averagepercentage decrease in AP@50-95 for each class is
computed across the various noise levels. Figure 9 shows that
all classes experience similar fluctuations in performance,
similar to the experiment with small extra annotations.
However, the intervals for bigger annotations are bigger.
These findings further highlight that extra annotations act as
regularization terms.

B.3 Inaccurate Bounding Boxes

For the PASCAL dataset experiments, the IoU between
the corrupted bounding box and original bounding box is
calculated. The values for each noise level can be found in
Table 9. The table shows there is significant overlap between
the corrupted and original bounding boxes, effectively
simulating human annotation noise for bounding boxes.
Additionally, the average number of corrupted bounding
boxes per class is computed. As with missing annotations,
there was a large discrepancy between the Person class
and other classes. At noise level 5, on average 6,678
bounding boxes were corrupted for the Person class, while
for other classes the average corruptions ranged from
304.0 to 811.66. This disparity can be attributed to the
PASCAL dataset having significantly more annotations for
the Person class than other classes. The average number of
corrupted bounding boxes per class can be found in Table
10. In summary, the generated noise corrupted bounding
boxes while maintaining significant overlap with original
annotations, effectively simulating noisy human labels.

Additionally, the percentage decrease in AP@50-95 for each
class in the PASCAL dataset for YOLO is computed across
the various noise levels. Figure 10 shows that despite
having the most corrupted bounding boxes, the Person class
remains relatively robust across the noise levels. This
further highlights that more data enhances model robustness
inaccurate bounding boxes.

Percentage Difference of AP@50-95 over Noise Levels compared
to the baseline for increasing levels of big extra annotations
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Figure 9: Average percentage decrease in AP@50-95 for each class
in the PASCAL dataset trained with YOLO. The graph shows that
all the classes have a similar performance evolution with big extra
annotations added and follows a similar pattern as the small extra
annotations but with slightly bigger intervals.

Percentage Difference of AP@50-95 over Noise Levels compared
to the baseline for increasing levels of inaccurate bounding boxes
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Figure 10: Average Percentage decrease in AP@50-95 for each class
in the PASCAL dataset trained with YOLO. The graph shows that
the Person class, despite having the most corrupted bounding boxes,
remains relatively robust.



Noiselevels: | 1 | 2 | 3 | 4 | 5
Mean 0.5543 | 0.5487 | 0.5449 | 0.5381 | 0.5305
Std Dev 0.2480 | 0.2491 | 0.2513 | 0.2541 | 0.2571
25th % 0.4128 | 0.4030 | 0.3969 | 0.3818 | 0.3655
50th % 0.6273 | 0.6215 | 0.6177 | 0.6115 | 0.6041
75th % 0.7417 | 0.7383 | 0.7368 | 0.7342 | 0.7304

Table 9: Statistics of IoU of the corrupted bounding boxes with the
original bounding boxes at different noise levels showing overlap
that simulates human annotation noise.

Table 10: Average number of annotations removed per class over the
noise levels showing that the Person Class was impacted most.

Classes Noise Level I Noise Level 2 Noise Level 3 Noise Level 4  Noise Level 5
aeroplane 111.67 209.33 295.67 390.00 471.67
bicycle 54.33 116.67 184.33 249.00 316.33
bird 121.00 239.67 351.67 461.33 559.33
boat 72.67 156.33 237.33 312.00 389.67
bottle 71.67 139.33 22233 307.00 400.67
bus 48.00 99.33 155.00 207.33 270.33
car 135.33 283.33 449.00 630.33 811.67
cat 169.00 334.00 470.00 591.33 702.33
chair 118.00 259.00 418.67 590.00 776.33
cow 48.67 104.67 159.67 207.33 271.00
diningtable 30.67 70.33 111.00 156.33 200.33
dog 176.00 342.33 509.33 663.67 804.67
horse 70.00 136.67 202.00 278.67 343.00
motorbike 56.67 117.00 182.33 256.33 325.33
person 1399.67 2745.67 4058.00 5373.67 6678.00
pottedplant 53.00 109.67 177.00 248.33 325.67
sheep 57.67 112.33 174.67 244.00 314.00
sofa 61.67 130.00 198.67 256.67 330.33
train 80.33 157.33 229.33 293.00 360.33
tymonitor 60.00 129.00 202.00 267.67 329.00

B.4 Wrong Classification Labels

For the experiments involving the PASCAL dataset, the
confusion matrix for the wrong and original classification
labels was computed at each noise level. At noise level 5,
all the classes were changed at least 4.3 times with each
other. The confusion matrices revealed that all the classes
were affected. As for missing annotations and inaccurate
bounding boxes, the Person class was affected most. At
noise level 5, the Person class was switched at least 238.7
with another class on average. The confusion matrices for
each noise level are available in the repository®. In summary,
the confusion matrices show that the noise script effectively
simulated wrong classification labels.

Moreover, for the YOLO and PASCAL runs, the average
percentage decrease in AP@50-95 compared to the baseline
is computed for each class across the various noise levels.
Figure 11 shows that despite having the most classification
labels corrupted, the Person class remains the most robust
against wrong classification noise. This further highlights
that more training data improves model robustness against
wrong classification labels.

8 Available on Github

Percentage Difference of AP@50-95 over Noise Levels compared
to the baseline for increasing levels of wrong classification labels
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Figure 11: Average percentage decrease in AP@50-95 for each class
in the PASCAL dataset trained with YOLO. The graph shows that
the Person class, despite having the most labels corrupted, remains
the most robust.

C Further Results for the experiments

C.1 Missing Annotations

Figures 12, 13, 14, and 15 present the 95% confidence
intervals of the mAP@50-95, mAP@50, mAP@75, and
mAP@95 for the YOLO object detector trained on
the PASCAL dataset with increasing levels of missing
annotations. The figures show that YOLO is somewhat robust
to lower levels of missing annotations, but its performance
drops significantly at higher noise levels.

MAP@50-95 of YOLO trained on PASCAL with increasing
levels of missing annotations
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Figure 12: mAP@50-95 95% confidence interval of YOLO object
detector for different levels of missing annotations in the PASCAL
dataset. YOLO is somewhat resilient to lower levels of missing
annotations, but performance drops significantly at higher levels.
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mMAP@50 of YOLO trained on PASCAL with increasing
levels of missing annotations
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Figure 13: mAP@50 95% confidence interval of YOLO object
detector for different levels of missing annotations in the PASCAL
dataset. YOLO is somewhat resilient to lower levels of missing
annotations, but performance drops significantly at higher levels.

mAP@75 of YOLO trained on PASCAL with increasing
levels of missing annotations
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Figure 14: mAP@75 95% confidence interval of YOLO object
detector for different levels of missing annotations in the PASCAL
dataset. YOLO is somewhat resilient to lower levels of missing
annotations, but performance drops significantly at higher levels.

mAP@95 of YOLO trained on PASCAL with increasing
levels of missing annotations
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Figure 15: mAP@95 95% confidence interval of YOLO object
detector for different levels of missing annotations in the PASCAL
dataset. YOLO is somewhat resilient to lower levels of missing
annotations, but performance drops significantly at higher levels.

C.2 Extra annotations

Small Extra Annotations
Figures 16, 17, 18, and 19 present the 95% confidence
intervals of the mAP@50-95, mAP@50, mAP@75, and

mAP@95 for the YOLO object detector trained on the
PASCAL dataset with increasing levels of small extra
annotations. The figures show that the extra annotations
have a regularizing effect. However, Figure 19 shows that
mAP@95 drops significantly even at noise level 1. In
conclusion, the small extra annotations seem to have a
regularizing effect but with cost to localization accuracy at
the highest level.

MAP@50-95 of YOLO trained on PASCAL with increasing
levels of small extra annotations
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Figure 16: mAP@50-95 95% confidence interval of YOLO object
detector for different levels of small extra annotations in the
PASCAL dataset. The extra annotations seem to have a regularizing
effect.

mMAP@50 of YOLO trained on PASCAL with increasing
levels of small extra annotations
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Figure 17: mAP@50 95% confidence interval of YOLO object
detector for different levels of small extra annotations in the
PASCAL dataset. The extra annotations seem to have a regularizing
effect.

Big Extra Annotations

Figures 20, 21, 22, and 23 present the 95% confidence
intervals of the mAP@50-95, mAP@50, mAP@75, and
mAP@95 for the YOLO object detector trained on the
PASCAL dataset with increasing levels of big extra
annotations. The figures show that the extra annotations
have a regularizing effect. However, Figure 23 shows
that mAP@95 drops significantly even at noise level 1.
In conclusion, the big extra annotations seem to have a
regularizing effect but with cost to localization accuracy at
the highest level.



mMAP@75 of YOLO trained on PASCAL with increasing
levels of small extra annotations
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Figure 18: mAP@75 95% confidence interval of YOLO object
detector for different levels of small extra annotations in the
PASCAL dataset. The extra annotations seem to have a regularizing
effect.

mMAP@95 of YOLO trained on PASCAL with increasing
levels of small extra annotations
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Figure 19: mAP@95 95% confidence interval of YOLO object
detector for different levels of small extra annotations in the
PASCAL dataset. The initial drop at noise level 1 indicates that
the model’s ability to precisely detect objects is severely harmed by
small extra annotations.

C.3 Inaccurate Bounding Boxes

Figures 24, 25, 26, and 27 present the 95% confidence
intervals of the mAP@50-95, mAP@50, mAP@75, and
mAP@95 for the YOLO object detector trained on the
PASCAL dataset with increasing levels of inaccurate
bounding boxes. The figures show that YOLO exhibits
some robustness at lower noise levels, but performance drops
significantly at higher noise levels. Moreover, Figure 27
shows a linear decrease of mAP@95 over the noise levels,
indicating that even minimal inaccurate bounding boxes
severely impact the ability of YOLO to accurately detect
objects at the highest precision.

MAP@50-95 of YOLO trained on PASCAL with increasing
levels of big extra annotations
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Figure 20: mAP@50-95 95% confidence interval of YOLO object
detector for different levels of big extra annotations in the PASCAL
dataset. The extra annotations seem to have a regularizing effect.

mAP@50 of YOLO trained on PASCAL with increasing
levels of big extra annotations
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Figure 21: mAP@50 95% confidence interval of YOLO object
detector for different levels of small extra annotations in the
PASCAL dataset. The extra annotations seem to have a regularizing
effect.

C.4 Wrong Classification Labels

Figures 28, 29, 30, and 31 present the 95% confidence
interval of the mAP@50-95, mAP@50, mAP@75, and
mAP@95 for YOLO trained on PASCAL with increasing
levels of wrong classification labels. The figures show that
YOLO is sensitive to all levels of wrong classification labels.



mAP@75 of YOLO trained on PASCAL with increasing
levels of big extra annotations
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Figure 22: mAP@75 95% confidence interval of YOLO object
detector for different levels of small extra annotations in the
PASCAL dataset. The extra annotations seem to have a regularizing
effect.

mAP@95 of YOLO trained on PASCAL with increasing
levels of big extra annotations
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Figure 23: mAP@95 95% confidence interval of YOLO object
detector for different levels of small extra annotations in the
PASCAL dataset. The initial drop at noise level 1 indicates that
the model’s ability to precisely detect objects is severely harmed by
small extra annotations.

MAP@50-95 of YOLO trained on PASCAL with increasing
levels of inaccurate bounding boxes
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Figure 24: mAP@50-95 95% confidence interval of YOLO for
different levels of inaccurate bounding boxes in the PASCAL
dataset. YOLO seems somewhat robust to inaccurate bounding
boxes at low noise levels but performance drops significantly at
higher noise levels.

mAP@50 of YOLO trained on PASCAL with increasing
levels of inaccurate bounding boxes
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Figure 25: mAP@50 95% confidence interval of YOLO for different
levels of inaccurate bounding boxes in the PASCAL dataset. YOLO
seems somewhat robust to inaccurate bounding boxes at low noise
levels but performance drops significantly at higher noise levels.

mAP@75 of YOLO trained on PASCAL with increasing
levels of inaccurate bounding boxes
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Figure 26: mAP@75 95% confidence interval of YOLO for different
levels of inaccurate bounding boxes in the PASCAL dataset. YOLO
seems somewhat robust to inaccurate bounding boxes at low noise
levels but performance drops significantly at higher noise levels.

mAP@95 of YOLO trained on PASCAL with increasing
levels of inaccurate bounding boxes
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Figure 27: mAP@95 95% confidence interval of YOLO for

different levels of inaccurate bounding boxes in the PASCAL
dataset. Inaccurate bounding boxes severely impact YOLO’s ability
to accurately detect objects at the highest precision.



MAP@50-95 of YOLO trained on PASCAL with increasing
levels of wrong classification labels
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Figure 28: mAP@50-95 95% confidence interval of YOLO for
different levels of wrong classification labels in PASCAL. YOLO
is sensitive to all levels of wrong classification labels.

mMAP@50 of YOLO trained on PASCAL with increasing
levels of wrong classification labels
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Figure 29: mAP@50 95% confidence interval of YOLO for different
levels of wrong classification labels in PASCAL. YOLO is sensitive
to all levels of wrong classification labels.

mAP@75 of YOLO trained on PASCAL with increasing
levels of wrong classification labels
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Figure 30: mAP@75 95% confidence interval of YOLO for different
levels of wrong classification labels in PASCAL. YOLO is sensitive
to all levels of wrong classification labels.

mMAP@95 of YOLO trained on PASCAL with increasing
levels of wrong classification labels
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Figure 31: mAP@95 95% confidence interval of YOLO for different
levels of wrong classification labels in PASCAL. YOLO is sensitive
to all levels of wrong classification labels.
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