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Abstract

The recent decade has seen exponential growth in technology and information processing. This has
enabled a paradigm shift in several logistical operations such as the introduction of on-demand same-
day delivery of groceries.

One of the most relevant challenges in dynamic same-day pickup & delivery systems is related to
uncertainty about future orders. Lack of knowledge about emerging orders results in the selection of
routes that are optimal till such time additional information is not available and sub-optimal thereafter.
This induces a mismatch between the routes of the vehicles in the future and the origins of the emerging
orders. In our thesis, we introduce simple anticipatory techniques that solve this problem and can scale
to large problem instances of thousands of orders. In particular, our techniques utilize endogenous
properties of the problem to affect both how vehicles are assigned to orders, and how to route vehicles
to serve those orders. One of our techniques introduces rewards that reduce the cost of assignment
between a vehicle and a group of orders if the vehicle is routed towards a favourable zone. A favourable
zone can be a region with more number of orders that can be picked up at its nearest depots, or a
region whose distance to the nearest depots is lower than others, etc. Another technique penalizes
assignment between a vehicle and a group of orders if the vehicle is routed away from a high-demand
zone and vice versa. We propose, formally discuss and experimentally evaluate several formulations
of both rewards adjustment and adjustment with penalty + rewards.

We test our techniques in combination with the state-of-the-art Vehicle Group Analysis (VGA) framework
in Amsterdam for a fleet of 10 vehicles and up to 3600 grocery orders. We further conduct extensive
computation tests with varying hours of service under different conditions and compare the performance
of our methods with the original VGA method. We identify that our most promising anticipatory tech-
nique can reduce the number of rejections in the busiest of demand scenarios by up to 1% of total
demand. The increase in orders served comes at a cost of marginally increased distance travelled by
the fleet of vehicles. Additionally, we note that the value of rejections saved increases by up to 5%
when the system is not working up to its maximum capacity and allowing for greater scope for antici-
pation. Furthermore, our results underpin the strength and weaknesses of each anticipatory technique
and highlight the importance of studying anticipation under a wide range of demand scenarios.
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1
Introduction

Today, the advent of high-speed internet, instant downloads, live-streaming, etc. have all conditioned
the modern customer to expect instant gratification. This, in turn, has impacted customer expectations
when it comes to how we perceive last-mile delivery: the domain of delivering physical goods, trans-
portation of people, and various kinds of at-home services. Since the Covid-19 pandemic, the demand
for goods and services at one’s doorstep is continuously increasing [51]. At the same time, this increase
in demand is combined with the hopes of achieving the same level of gratification as one would at a
brick-and-mortar store, i.e, customers expect near-instant deliveries[17]. The fact that a quarter of the
customers aged 18-34 abandon their online orders if their products are not shipped within the same
day stresses this need for more efficient delivery operations [44].

As such, the growing nature of demand hasmade logistics imperative to themanufacturing, e-commerce,
food, and public transportation industries. This can also be observed by the $10.6 trillion expenditure
on logistics in 2020 alone, of which 28% was solely for last-mile distribution infrastructure [47]. Further-
more, the market size of last-mile deliveries is expected to rise at a CAGR of 8.9%. This indicates an
increase from $39.57 Billion in 2020 to $66 Billion in 2026 and is largely attributed to the expansion of
e-commerce [46].

Another domain influenced by last-mile deliveries is the grocery industry. Companies like Gorillas,
Flink, Blink-it, Zepto, Amazon, DoorDash, and many more [44][30][66][27] realise this potential and
have invested heavily in infrastructure, technology, and labour force to offer faster and in some cases
under-10 minute deliveries. The main focus of these companies remains to attract a greater share of
the global online grocery consumer market. A market that is poised to grow by $600 Billion between
2020-2024 [34].

As a result, the importance of an efficient distribution strategy that not only reduces the growing opera-
tional cost but also increases the level of service to their customers is no longer just an active area of
interest but an immediate necessity to meet the growing demand.

From a technological standpoint, various advancements within IT and telecommunication, with growing
amounts of data, offer opportunities to meet the rising expectation of instant gratification by customers.
In particular, increased computing power allows these companies to use routing algorithms that can gen-
erate re-planned solutions in real-time thereby incorporating recent information [19]. These changes
can then be communicated effectively to individual drivers enabling same-day delivery (SDD). How-
ever, in order to truly achieve sustainable and profitable grocery delivery within minutes of a request,
reactive planning that simply responds to current information may not be enough to achieve effective
routing for the rapidly moving fleet of vehicles. Anticipation, i.e, incorporating information about the
future is essential to avoid ineffective decisions [18].

To illustrate the benefit of anticipation, Figure 1.1 highlights the route taken by a vehicle under a myopic
algorithm and compares it with its anticipatory counterpart at different time intervals. In this example,
all orders must be delivered within a total operation period of 80 seconds. Further, the time required to

1
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travel between two locations is given along the edges. Figure 1.1a represents the original route plan
(black arrows) by both the anticipatory and the myopic routing techniques at T = 0seconds. Orders 1
and 2 are known at T = 0seconds and result in a planned route that picks up both orders from depot D1
and delivers them to their respective destinations. The estimated time at the end of delivering order 2
is 60 seconds. Further, Figures 1.1b and 1.1c represent the route plans by the myopic and anticipatory
routing techniques at T = 25seconds respectively. Order 3 is not known at T = 25seconds as its time
of request is t = 30seconds. With the unchanged demand, the myopic route plans continue with the
initial plan of delivering both orders by 60 seconds. On the other hand, the anticipatory technique can
explicitly predict the possible occurrence of orders in the future. This is indicated by the red basket
denoting order 3 in Figure 1.1c. As a result, the anticipatory technique redirects the vehicle as per a
new route plan (green arrows). According to this new plan the anticipatory technique takes a minor
detour towards depot D2 and is en route to deliver order 2 by the end of 65 seconds. Figure 1.1d and
Figure 1.1e further highlight the evolution of the route plan for the myopic and anticipatory algorithms at
T = 35seconds. At this time order 3 is known. The myopic algorithm delivers order 1 and is en route to
deliver order 2. However, in order to deliver order 3, it has to return to depot D2 to collect the order. It is
unable to do this as the time required to reach depot D2 exceeds the operational period of 80 seconds.
On the other hand, for the anticipatory routing technique, the vehicle is already located at the depot D2
and can deliver both order 3 and order 2 within the operational period of 80 seconds. As a result, the
anticipatory technique is able to deliver additional orders within the same time period.

As illustrated, incorporation of anticipation within the routing algorithms can lead to better customer
service and reduce the burden of rising operational costs. However, anticipation itself can be a major
challenge in the context of routing[56]- sophisticated techniques suffer from a limited computation time
and simpler techniques are usually unable to adequately handle large real-world scenarios. There-
fore, there is a need to find a computationally inexpensive anticipatory framework that can improve
performance for large real-world scenarios.

1.1. Research Objective
The objective of this work is to develop anticipatory techniques to enhance a state-of-the-art dynamic
routing algorithm for a large-scale on-demand grocery delivery service. In addition, we develop solu-
tions for situations that can deliver orders very fast in a densely populated setting with multiple ware-
houses. The primary performance indicators include the total distance traveled by the fleet of vehicles,
the overall delay in delivery of orders, and the number of ignored orders. The framework operates
under a set of service constraints that have been adopted from previous works. The goals identified
include:

• Propose an anticipatory framework that has the potential to improve the state-of-the-art VGA
algorithm.

• Evaluate whether the proposed anticipatory technique outperforms the base approach on a wide
variety of problem instances.

• Analyse the circumstances in which the proposed anticipatory technique has a greater impact on
performance improvement.

• Establish a benchmark for maximum potential performance improvement when deploying antici-
patory approaches over the base framework.

1.2. Contribution Statement
The contributions in this work expand on earlier published works for on-demand SDD operations and
anticipatory routing [28][15][2]. We do this by re-implementing the state-of-the-art with suitable feature
enhancements. More specifically, we contribute by:

• Proposing and investigating several anticipatory techniques in combination with the state of the
art Vehicle Group Assignment (VGA) framework designed for the context of on-demand same-day
grocery delivery.

• Improving the performance of the VGA framework through anticipation.
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(a) Initial routing scenario at T = 0seconds.

(b) Myopic routing at T = 25seconds.
(c) Anticipatory routing at T = 25seconds.

(d) Myopic routing at T = 35seconds.
(e) Anticipatory routing at T = 35seconds. The basket of order 3

changes color from red to grey as it is known and no longer anticipated

Figure 1.1: An illustrative example of routes taken by a vehicle under myopic and anticipatory systems at different time
intervals. All orders must be delivered within a total operation period of 80 seconds. Further, the time required to travel
between two locations is given along the edges. Figure 1.1a represents the original route plan (black arrows) by both the

anticipatory and the myopic routing techniques at T = 0seconds. Orders 1 and 2 are known at T = 0seconds and result in a
planned route which picks up both orders from depot D1 and delivers them to their respective destinations. The estimated time
at the end of delivering orders 2 is 60 seconds. Further, Figures 1.1b and 1.1c represent the route plans by the myopic and

anticipatory routing techniques at T = 25seconds respectively. Order 3 is not known at T = 25seconds as its time of request is
t = 30seconds. With the unchanged demand, the myopic route plans continue with the initial plan of delivering order 2 by 60
seconds. On the other hand, the anticipatory technique can explicitly predict the possible occurrence of an order in the future.
This is indicated by the red basket denoting order 3 in Figure 1.1c. As a result, the anticipatory technique redirects the vehicle
as per a new route plan (green arrows). According to this new plan, the anticipatory technique takes a minor detour towards

depot D2 and is en route to deliver order 2 by the end of 65 seconds. Figure 1.1d and Figure 1.1e further highlight the evolution
of the route plan for the myopic and anticipatory algorithms at T = 35seconds. At this time order 3 is known. The myopic

algorithm delivers order 1 and is en route to deliver order 2. However, in order to deliver order 3, it has to return to depot D2 to
collect the order. It is unable to do this as the time required to reach depot D2 exceeds the operational period of 80 seconds.
On the other hand, for the anticipatory routing technique, the vehicle is already located at the depot D2 and can deliver both
order 3 and order 2 within the operational period of 80 seconds. As a result, the anticipatory technique is able to deliver

additional orders within the same time period.
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• Developing an independent framework for data set generation to generate multiple reproducible
data sets for analyzing the proposed anticipatory techniques.

• Identifying the impact of different spatial & temporal demand characteristics on the anticipatory
potential of the proposed techniques.

1.3. Thesis Overview
This work is composed as follows. First, in Chapter 2, an overview of the existing literature on vehicle
routing is presented. Chapter 3 defines the problem context and the state-of-the-art VGA algorithm to
provide the reader with both an intuitive as well as a mathematical understanding of the topics. Chapter
4 further focuses on the most promising anticipatory techniques and discusses several modifications
that were proposed to influence VGA’s decision-making. Further Chapter 5 focuses on several demand
instances that have been prepared for the purpose of comparing results and investigating the effect of
the data. In Chapter 6, the proposed methods are evaluated and a comparative study is highlighted.
Finally, in Chapter 7, conclusions and recommendations for future work are presented.



2
Related Works

The related literature is split into several sections. The first section introduces the Vehicle Routing
Problems (VRP). It further illustrates different types of VRPs and the attributes that define a VRP. The
next section covers initial work regarding SDD problems. This is further expanded into more recent
works involving anticipation in the next section. The sections following anticipation cover literature
pertinent to our problem formulation and research objective. These include multiple-depot vehicle
routing, work regarding different demand scenario generation, & most importantly methodically related
work.

2.1. Vehicle Routing Problems
On-demand same-day grocery delivery problems belong to a well-studied family of problems named
Vehicle Routing Problems. VRP’s were first introduced by Dantzig and Ramser et al.[12] in 1959. Their
work aimed at finding an optimal truck-dispatching solution for efficient problem delivery of gas to gas
stations. However, VRPs can further be generalized as a set of problems whose goal is to find optimal
route plans for a fleet of vehicles so as to visit several sets of customers from one or multiple depots.
A solution to a VRP is illustrated in Figure 2.1

Figure 2.1: Illustration of a VRP: The problem includes 14 customer locations and their respective demand quantities. These
customers are to be served by 4 vehicles with capacities of 10 each. Different line styles represent individual vehicle route

plans[29].

VRPs themselves is a vast field of research and can be classified into four main sub-categories of prob-
lems based on information availability and information certainty. This is covered in detail by Schorpp

5



2.2. Same Day Delivery 6

et al.[54].

Classification on Information availability: Problems are either categorized as static or dynamic.

In the static case, all necessary information needed to solve the problem is available beforehand. Sev-
eral approaches such as ant colony optimization, integer linear programming, tabu search heuristic,
branch and bound algorithm, large neighborhood search, simulated annealing, etc. have been ex-
plored extensively for solving the static variant of the problem and can be studied further in the work
by Toth et al.[58].

On the other hand, in the dynamic variant information is only made available as time progresses. Lim-
ited information at any point in time impacts the performance. This is because even if the routes planned
are optimal given the current information, they may result in sub-optimal routes when future information
is made available. The DVRP variant in itself comprises a broad class of problems including applica-
tions in several logistical domains such as Dial-a-ride problem (DARP)[10][11][8], Courier services[40],
Grocery delivery, Ambulance fleet management problem (AFMP)[69], etc. A comprehensive overview
of such problems is given by Pillac et al.[39] and Psaraftis et al.[42]. It is important to note that each
of the logistical contexts mentioned has distinctive attributes that define the problem being solved. For
instance:

• A retail-based delivery can be defined as a fleet of vehicles that receive requests that are to be
picked from any warehouse and delivered to their respective destination. These problems typi-
cally optimize for the number of orders served, but the distance traveled and customer lateness
are also considered in some studies.

• Dial A Ride Problem refers to a problem wherein individuals need to be transported from any
pickup point to any destination within a stipulated time period. Instead of distributing agents from
a single depot to many different locations, it involves no depot and agents that are both picked up
and dropped off. The urgency of serving customers is the main goal and hence, these problems
typically focus on optimizing the arrival times.

.

Depending on the logistical context, attributes that formally define a DVRP are varied. These attributes
in turn impact decision-making when developing a solution framework. For the sake of complete com-
prehension, it is imperative to formalize the different attributes that make up a DVRP. Adapting from
the taxonomy by Psaraftis et al.[42], we categorize the different attributes that are used to classify a
DVRP in Figure 2.2. A detailed description of the relevant attributes is further available in Appendix A.

Classification on information certainty: This type of classification splits the problem into determinis-
tic and stochastic. When all information required for the purpose of solving a VRP has no uncertainty
associated with it, the problem is considered deterministic. On the contrary, a stochastic problem deals
with uncertainties due to one or many factors. These include uncertainty in the demand quantity of a
request, uncertainty in the occurrence of a request itself, or uncertainty in the travel times of the vehi-
cles. The stochastic variant of vehicle routing problems and their solution are covered in great detail in
the survey by Ritzinger et al.[49].

2.2. Same Day Delivery
SDD operations are a particular case of VRP’s characterized by deliveries that must occur within the
same day of the order being placed. In these types of problems, orders are placed while the fleet of
vehicles is operational and already executing a planned route. This means that at the time of planning
and execution-only partial information about the orders is available. In a special case of SDD, all
requests need to be picked up from their appropriate pick-up locations before being delivered. These
are called same-day pickup and delivery problems (SDPD). These problems constraint the sequence
in which different locations need to be reached, thereby, adding to the complexity of the problem.

SDD problems can belong to two main VRP variants- dynamic vehicle routing problems (DVRP) or
stochastic dynamic vehicle routing problems (SDVRP). An SDVRP problem is an extension of a DVRP
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Figure 2.2: DVRP taxonomy: The figure highlights all attributes and solution frameworks that describe a DVRP. Each attribute
can in turn take different values depending on the problem being solved and its corresponding solution approach.
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problem where one or more types of uncertainties are also considered in the solution framework. These
uncertainties are described in more detail in Appendix A.

One of the first contributions to SDD was the study by Gendreau et al.[18]. They developed a solution
framework for the logistical context of courier services wherein a fleet of vehicles collect couriers from
different locations and bring them to a depot. Their approach adapted a background tabu search
heuristic [21][22], initially developed for the static routing problem, to a dynamic one with stochastic
requests. At the occurrence of a new request, all tabu search heuristics are paused and the routes
from the best solution of each parallel search are added to an adaptive memory[50]. The framework
then decides whether to accept or reject the new request based on the feasibility of the new request
in each solution. If the request is feasible for even one solution, it is accepted, and the corresponding
feasible solutions are updated. The solutions which are incompatible are removed. Post updating, the
tabu search is repeated till the next decision instance.

Additionally, Ichoua et al.[24] further built on the approach by Gendreau et al.[18] by allowing vehicles to
divert to better routes while they were already en route to a particular destination. While the approach
improved performance, it also posed technical challenges associated with identifying a high quality &
feasible diversion in extremely short time spans.

Another notable contribution is that of the Multiple Plan Approach(MPA) by Bent & Hentenryck et al.[7].
The principal idea behind the MPA generalized the approach by Gendreau et al.[18] by making it in-
dependent of the search procedure used to generate solutions. During the execution phase, the MPA
generates feasible routing solutions by means of a local search technique and stores them in memory.
At the occurrence of a new request MPA checks whether the request can be incorporated within any
of its generated solutions and if not, rejects the request. Although, if the request is feasible within any
of the plans, it is accepted. Once accepted, all solutions in the memory that cannot incorporate the
request are removed. Even amongst the remaining solutions, the one solution that incorporates the
request best according to an objective is considered as the distinguished plan - the plan to be exe-
cuted in reality which is chosen using a decision function. Once the request is assigned new routing
plans are again generated which are in accordance with the current distinguished plan[6]. As plans are
continuously generated, the distinguished plan is also adapted regularly.

In contrast to these works, our methodology works by generating an exhaustive list of possible trips that
each vehicle can take. It does so using a search functionality. Next, our method then assigns plans
based on the results of an ILP solver. This is in contrast to the consensus function or other heuristics
needed due to multiple scenarios in the above studies. Furthermore, unlike the above approaches, our
solution can handle multiple new requests at any decision instance.

SDD has gained major prominence in the last decade owing to advancements in computational capabil-
ities [49]. However, these problems are NP-hard [16]. Because of this exact algorithms such as branch
& bound, ant-colony optimization, large-neighbourhood search, & genetic algorithms are rarely able to
solve large problem instances. In most cases, the incorporation of approximate techniques such as
the ones covered in this Section, coupled with heuristic and probabilistic anticipatory approaches have
helped achieve satisfactory performance. These are discussed further in the subsequent section.

2.3. Anticipation in Same Day Delivery
Anticipation in SDD can be classified into four broad categories- Non-Reactive Implicit, Non-Reactive
Explicit, Reactive Implicit & Reactive Explicit. A summary of these classifications is illustrated in Table
2.1. Further, a detailed description of each category is provided in Appendix B.

2.3.1. Non-Reactive Implicit Anticipation
Waiting strategies are perhaps the most common and simplest of the anticipatory techniques applied in
the SDD literature. They are primarily based on the abstract idea that by waiting at a specific location
one can assimilate more information before taking any further planning decisions. This will in turn
benefit the overall routing provided the waiting does not hamper with the deadlines of the current route.
Several studies exist on waiting strategies and are briefly explained below.

Minic et al.[37] conducted an empirical study of 4 heuristic waiting strategies- wait first, drive first, dy-
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Table 2.1: Classification of Anticipation: A summary of what each category of anticipation signifies.

namic waiting, and advanced dynamic waiting for a dynamic pickup and delivery problem with time
windows. These are illustrated by means of Figure 2.3. They tested the strategies for a total of 1,000
new requests. They further utilized the cheapest insertion[52] or tabu search heuristic and achieved
overall improvements over the base algorithm.

Another study by Branke et al.[9] highlighted specific locations at which a vehicle is made to wait and
how this impacted overall solution quality. The overall duration of waiting in each case is equal to the
maximum duration a vehicle can wait without requiring a change in planning or the number of orders
served. This is known as the slack time of the vehicle. Their strategies include waiting at the depot,
waiting at a location farthest from the depot, waiting at every customer location with the same average
waiting time, and waiting at each customer with a waiting time proportional to the distance traveled.
In addition, they also explored evenly distributed waiting times for customer requests that are to be
serviced when the time to reach the depot is less than the available slack time. They compared each of
these approaches for 1,000 new requesting customers and also compared the solution with evolutionary
algorithms. Their work specifically highlighted that waiting at the depot for as long as possible is not a
suitable approach. For the other strategies, however, the performance is highly case-specific.

In a nutshell, waiting strategies work by simply delaying the decision-making to a future point in time.
This delay allows the decision system to accumulate more information and make better routing de-
cisions. In contrast, our anticipatory approaches do not delay decision-making. Rather, they exploit
characteristics of either the underlying demand or other properties of the environment to make modifi-
cations to the intrinsic value (cost) of a trip. In most cases, our techniques modify the current routing
plan. Furthermore, our approach works on a rolling horizon basis, i.e, decisions are made at a fixed
cadence and for a group of orders. On the other hand, waiting-based approaches tend to re-plan at
every new request. We also explore and discuss the implications of deploying waiting strategies on
our solution framework in Appendix F.

Other studies incorporate heuristic anticipation by exploiting assumptions of what a good decision policy
should look like. For instance, Kalina et al.[26] modified the Cheapest Insertion heuristic[52] specifically
for the vehicle routing problems with time windows. This modification introduces elements to the cost
structure based on the interactions between individual time window constraints caused by their respec-
tive widths and placements within the vehicle’s route. They name this the Slackness Savings heuristic
and empirically prove the addition of route flexibility in the insertion cost anticipates future customer
requests implicitly. While our work incorporates a very similar modification to the cost function, we also
introduce other factors such as a high penalty for every ignored order at a given time step. Furthermore,
our anticipatory techniques also tend to utilize heuristic rules to modify the overall cost in addition to
defining a more involved cost term.

Minic et al.[36] further expanded on their waiting strategy research by developing a new anticipatory
routing framework coined the Double Edge Horizon (DEH). The framework optimizes a two-fold goal-
a short-term goal and a long-term goal. They set their short-term goal to reduce the total traveled
distance and set the long-term goal to maintain routes that are flexible enough to include future requests.
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(a) Drive-First Waiting strategy (b)Wait-First Waiting strategy

(c) Dynamic Waiting strategy

(d) Advanced Dynamic Waiting strategy

Figure 2.3: Heuristic Waiting Strategies [37]: 2.3a highlights the drive-first waiting strategy where-in the vehicle always moves
to the next destination and waits if the vehicle arrival is before the earliest arrival time. 2.3b highlights the wait-first strategy
where-in the vehicle waits at the past delivery location as long as it can deliver all known orders within the constraints of time.
2.3c expands on wait-first and drive-first by dividing orders into zones and implementing drive-first within a zone and wait-fist
between zones. 2.3d enhances the dynamic waiting strategy by waiting only a fraction of the total available time depending on

certain characteristics.
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They achieved this by modifying the cost function in such a way that one component represents the
increase in travel distance whereas the other component represents the reduction in slack time. Their
work highlighted an improvement in routing performance but also noted a reduction in the degree of
improvement as the requests increased. Our work differs from that of Minic’s et al.[36] in two respects.
At first, their problem serves orders based on Time Windows (TW), i.e., orders are served between two
specific time periods in the future. In contrast, our problem works on the delivery deadline (DD) model,
where orders need to be delivered as soon as they are requested and within a certain period. Second,
the formulation of their problem allows them to plan on longer horizons of 4 hours. On the other hand,
the planning horizon for our work is only 8 minutes. These differences, help us draw useful insights
on the type of anticipatory approaches that will complement our solution framework. These are briefly
covered in Appendix F.

2.3.2. Non-Reactive Explicit Anticipation
Azi et al.[3] studied the DVRP Problem with delivery deadlines of one hour. His work focused on
accepting or rejecting a request as soon as it occurred and could only be assigned to vehicles that
were waiting at the depot at the time of request occurrence. The success of his work can be attributed
to making immediate decisions due to anticipation using scenario sampling.

Bent & Hentenryck et al.[7] further expanded their work on the MPAwith the Multiple Scenario Approach
(MSA). MSA extends on the MPA by including scenarios of possible future requests when generating
new routing solutions. The future requests are sampled from either a probability distribution or historical
data. Once the new solutions are obtained, the sampled requests are removed. Routes are selected
by means of a consensus function wherein a route most similar to all other obtained routes is chosen.

Building on the work by Bent & Hentenryck et al.[7], Voccia et al.[66] compared the performance of the
MSA algorithm with a fleet of 3 vehicles and for different request sizes ranging from 100-800 based on
the data instances given by Solomon et al.[55]. They additionally leveraged waiting for strategies at the
depot. They also analyzed the effect of the simulation horizon over the number of sample scenarios,
indicating that the sample scenarios required increase quickly as the sampling horizon increases.

Another study on Non-Reactive Explicit anticipation is the anticipatory insertion technique developed by
Ghiani et al.[19] for the single-vehicle routing problem. The principle idea of AI is to utilize the expected
future requests to alter existing routes prior to solving. AI often incorporates a secondary heuristic
decision over stochastic requests. For instance, Ghiani used an adaptation of the center of gravity LW
strategy by Thomas et al.[57] on the combination of real and stochastic requests as the anticipatory
technique in his study.

Anticipatory Insertion was further formalized in a recent study by Lochem et al.[32][31]. Within their
method, historical requests were clustered in advance in order to exploit the inherent patterns in de-
mand and then compute a predicted number of requests for each cluster. The predicted requests of
each request type that were generated were then combined along with actual requests before the start
of the operation. During the operation, any placed request was compared with the pool of artificial
request types using a classifier. If the request was found comparable to any of the artificial request
types, an artificial request from the cluster was removed and the real request was inserted in its place.
This method was known as the add, replace, and remove technique. Further, an initial solution was
constructed by routing using a cluster insertion heuristic where clustered requests were inserted into a
single route. Finally, the initial solution was optimized using a solver involving ALNS and other heuris-
tics. The interested reader is referred to their thesis work[32] for more information.

One fundamental difference between the anticipatory techniques explored in our study and the ones
discussed in this section so far is that our approaches do not add to the computational burden of the
algorithm. This is because, unlike the above-described approaches, our techniques do not identify
multiple scenarios by explicitly sampling probable future requests. Rather, we focus on using implicit
properties of existing demand for planning routes. This implicit nature allows us to iterate over large
demand situations rather quickly.

Furthermore, Ichoua et al.[25] continued building on their previous work [24]. Their approach worked
by dividing the map into independent sub-regions and then utilizing a policy to decide whether a vehicle
should wait in a sub-region or serve the next customer. The decision to wait was made if the probability
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of future requests in the corresponding sub-region was higher than a threshold value. This threshold
value was computed using a PFA. One of the anticipatory techniques explored in our study also draws
on the concept of sub-regions. It further determines whether a vehicle should remain in the sub-region
or move to other demand regions depending on a threshold value. However, unlike Ichoua et al.[25],
our work utilizes heuristics to determine a suitable threshold value.

Van Hemert & Poutre et al.[23] proposed an evolutionary algorithm that solved an SDVRP. Their study
divided customer requests into so-called fruitful regions. These fruitful regions are basically clusters of
customer locations that are likely to require service in the future. One of the anticipatory techniques
explored in our study exploits the concept of fruitful regions for adjusting routing decisions towards
promising regions.

Ulmer et al.[60] developed a Cost-Benefit Heuristic for customer assignments for same-day courier
deliveries. Cost-Benefit Heuristic (CBH) analyses whether a customer request should be accepted
depending on the location of the customer with respect to the vehicle. It does so by analyzing the relative
gain of delivering a new request vs the relative cost associated with the delivery. They compared their
methodology with other approaches and show comparable performance at much lesser computational
demands. Our approaches use similar heuristic rules as CBH to make quick and flexible decisions
however, there are some notable differences. CBH utilizes a CI heuristic to identify the route plan for
each new order and then applies its CBH heuristic policy to decide whether the plan to serve the new
order should be implemented. Our approach, on the other hand, first uses the anticipatory heuristic
policy to modify the value of every pre-computed trip comprising of several orders. Then, the ultimate
decision plan is implemented by an ILP solver. This allows us to evaluate hundreds or more route plans
instantly. Further, CBH has shown to work on 1 vehicle and a handful of orders. On the contrary, our
problem comprises of 10 vehicles and handles thousands of orders.

2.3.3. Reactive Explicit Anticipation
Most studies on this type of anticipation formalize the DVRP as a Markov Decision Process (MDP)
and solve it using the Approximate Dynamic Programming method (ADP). ADP-based anticipatory
techniques are sophisticated frameworks that simulate several future scenarios offline to identify the
value of every possible decision the algorithm can encounter online. This allows them to make robust
decisions keeping in mind the future impact. Unlike ADPs, our anticipatory techniques are limited to
implicit anticipatory heuristics that only estimate the future impact. As a result, our approaches do not
require an offline computation step to estimate the value of a decision. Furthermore, given the explicit
nature of computation, ADPs are not known to scale to larger problem instances. This grossly limits
their scope. The interested reader is referred to Appendix C for a brief description of ADP and its
underlying definitions.

Meisel et al.[35] conducted one of the first studies to deploy approximate anticipatory techniques for
a DVRP problem with late customer requests. They did this by implementing an offline AVI & MVF
to evaluate the post-decision states (refer Appendix C for brief description). This allowed them to
achieve reasonable spatial-temporal coverage for decision-making. ADP-based methods suffer from
state-space dimensionality owing to the limits of computation and hence, their study is only performed
on 49 customer locations.

Ulmer et al.[61] studied the SDD problem for a single-vehicle scenario. Their work comprised of a good
inclusion of dynamic requests as they were able to overcome some of the limitations of dimensionality
common with previous works including ADPs. They achieved this by aggregation and partitioning of
the state-space [59]. The authors proposed a method building on approximate dynamic programming
to evaluate which subset of requests to accept. The decision scheme comprised of an aggregated
state-space of only the current time and the free time budget. The free time budget is considered as
the time remaining after the vehicle serves all current customers. The computational analysis from
the study indicated that this method provides superior results regardless of the degree of dynamism
or the service area. However, as ATB only considers temporal parameters, it remains sensitive to how
customers are distributed within the service area. In particular, ATB did not perform well in the case of
asymmetrically clustered request locations.

Building on their previous work, Ulmer et al. enabled a solution that allowed the vehicle to return to
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the depot even before existing requests are served [63]. As per our knowledge, this is so far the only
study allowing for preemptive depot returns in SDD. By extensive computational tests, they showed
that pre-emptive depot returns improved the obtained solutions in most cases. Our work also utilizes a
similar construct of allowing returns to a depot even before a route plan is completed. The difference
between our work and Ulmer et al. is that we do not incorporate anticipation to make decisions on early
returns to a depot. However, we focus on much larger problem instances than the ones covered by
Ulmer et al..

Ulmer and Thomas[62] studied the SDD Problem with a heterogeneous fleet. Their fleet consisted
of a set of drones and a set of road-based delivery vehicles. The focus of the problem was to find
out whether a dynamic customer request should be served by a drone or a vehicle. Using a PFA
they developed a heuristic decision-making policy that maximized the served requests. Their results
showed that vehicles were better suited to serve high-density urban districts while drones work better
for more distant and less populated areas. This was primarily because drones routes are independent
of roads and therefore from traffic. Contrary to this study, our work focuses on a homogeneous fleet of
vehicles.

2.4. Multiple Depot Vehicle Routing
As per our knowledge, limited work has been done in the context of multiple depots for DVRP’s. Multiple
depots add to the complexity of the problem as they add to the decision scheme by increasing the
possibilities from where a request can be picked up. Most literature focuses on splitting the dynamic
multiple depot problem into multiple single depot problems where-in each request is assigned to a
single depot based on the proximity to the customer destination. This can be observed in the works
by Yu et al.[33] and Xu et al.[68]. Our work differs from their approach as we include the decision of
pickup location within the routing decision itself. A comprehensive overview of multiple depot vehicle
routing has also been conducted by Montoya et al.[38].

Work on Demand Distributions

A solution framework can be considered robust only if it consistently performs well on a range of demand
situations. As a result, generating multiple demand distributions for the sake of evaluating solution
methodologies is pertinent to VRPs. In this respect, we identify two noteworthy works by Solomon
et al.[55] and Van Lon et al.[65] where the generation of demand distribution scenarios was given
paramount importance.

Solomon et al. generated 6 notable data sets, each that differed in their spatial-temporal characteristics
as well as the scheduling horizon and length of time windows. They further assessed the performance
of different heuristic methodologies on each instance and identified the heuristic methodology that
consistently outperformed others for all demand patterns.

Van Lon et al. characterized demand distributions in terms of self-defined dynamic and urgency-based
measures and identified how different temporal distributions- Gaussian, Poisson, and uniform vary in
terms of these measures. They then generated distributions that varied only in terms of their urgency
and/or dynamism keeping all other stochastic parameters fixed. They further tested the performance of
cheapest insertion on the different distributions and concluded urgency and dynamism must be treated
separately as characteristics of the data. Our work on generating data sets is largely inspired by these
two studies.

2.5. Methodically Related Work
The anticipatory routing framework proposed in our study primarily builds on two works- the on-demand
SDD by Kronmueller et al.[28] and the anticipatory routing methods for ride-pooling services by Fiel-
baum et al.[15].

The study of Kronmueller et al.[28] in turn built upon the work of Alonso-Mora et al.[2] and Alonso-
Mora et al.[1]. The authors proposed a routing & assignment procedure focused on ride-sharing for a
large-scale metropolitan area. Their ride-sharing method was called Vehicle-Group Assignment (VGA)
Method and with enough computation time, their method could solve large-scale real-world instances
of thousands of vehicles, in an any-time optimal manner. This was possible as the algorithm was
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specifically able to decompose the problem of trip generation and vehicle assignment. Kronmueller et
al.[28] translated their work into a retail-based SDD context. Their work is discussed in detail in Chapter
3.

Further, the study by Fielbaum et al.[15] extended the work by Alonso-Mora et al.[2] and Alonso-Mora et
al.[1]. In particular, Fielbaum et al.[15] introduced anticipatory routing techniques to improve the perfor-
mance of the VGA algorithm in the context of DARP. Their anticipatory techniques- artificial requests
and adjustment using rewards - work by modifying the decision scheme within the VGA framework.
While artificial requests affect trips by generating artificial future orders at specific nodes, rewards ad-
justment adjust trip costs by rewarding trips that direct vehicles to specific nodes. The number of
artificial orders and rewards in each method was determined by means of several generation and re-
jection rates and the performance across each rate was explored. Additionally, they also compared
performance when different specific nodes were considered. Overall, the results from the numerical
analysis highlighted that incorporation of adjustment using rewards within the VGA framework result in
a lower number of rejections with marginally higher delays. On the other hand, relatively lower delays
with reduced service rates were observed for artificial requests when compared with the base algo-
rithm. Our work devises modifications to the anticipatory technique - adjustment with reward - to suit
the context of an on-demand grocery delivery problem. A detailed explanation of the adjustment with
rewards approach is provided in Chapter 3. Our modifications are further explained in Chapter 4.



3
Preliminaries

At the time of conducting this thesis, the VGA framework proved capable of generating a healthy service
rate for close to 10,000 orders with a fleet of just 30 vehicles. Thus, the algorithm holds great promise
to formalize into practical solutions for real-life delivery applications. As a result, to further explore
potential enhancement avenues, VGA was re-implemented for this thesis. In this chapter, the problem
is formulated more formally in Section 3.1. Next, an overview of the implemented VGA algorithm is
given in Section 3.2.

3.1. Problem Formulation
The problem we face is a SDPD problem where goods need to be delivered to customer locations as
fast as possible from one of many depots via a fleet of vehicles. Further, the fleet of vehicles must
work under a set of constraints and must aim to minimize a given objective function. For our work, the
objective function is a combination of the total distance traveled by the fleet, the delay in delivery to
each customer, and the total ignored orders at the end of the operation. The algorithm we build to solve
this focuses on two main aspects- which of the vehicles serve which of the orders and the sequence
in which the orders are assigned to a vehicle. In Section 3.1.1, we first define different elements of the
problem. Further in Section 3.1.2, we describe the problem at hand. We cover the dynamics of the
problem in Section 3.1.3.

3.1.1. Definitions
As the problem under consideration is exactly the one solved in [28], we adopt several of our notations
and definitions from their work. Table 3.1 provides a summary of the notations considered. We further
adapt their definitions wherever necessary to suit our work.

Environment: The problem environment is a weighted & directed graph G = (N,A) that represents
the road network used by vehicles. N represents a set of nodes of the graph and A represents the arcs
that connect two nodes together. It is important to note that the graph is only sparsely connected, i.e.,
all nodes are not connected to each other. The weight of the arcs represents the travel times between
two connected nodes. For the purpose of simplicity, we assume that travel times between a pair of con-
nected nodes is always constant. Further, specific nodes of the graph are assigned as depots where
the vehicles arrive to pick up the goods for placed orders. We assume that the inventory of goods is
infinite in all of the depot nodes. The depot nodes are defined as D = {d1, d2, ...., dh} ⊂ N .

Vehicle Fleet: The vehicle fleet V = {v1, v2, ..., vm} is defined by m identical vehicles that can pick up
and deliver goods at specific nodes of the graph. A single-vehicle vi can be completely defined at any
time t by its current location li,t, the loaded orders LOi,t on the vehicle, and its planned route πvi(t)
representing the sequence in which it shall pick up and deliver orders. Further, the maximum capacity
of orders that can simultaneously be on the vehicle is constrained by a value denoted by c.

15
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Figure 3.1: Travel time between depot node d1 and destination node x3: Travel time is the sum of individual weights of all the
arcs along the path.

Demand: The set of orders O = {o1, o2, ...., on} makes up the demand of unique orders during the
operation period. In our work, we do not drill down into the elements of each independent order but
assume that all orders are of the same size, set to a value of one. As a result, a unique order oi is
completely defined by the time at which it is placed ti and the destination gi at which it needs to be
delivered. The pickup location of the order is not determined by the placed order itself. Rather, it is
determined as a result of the routing algorithm. The demand is distinguishable into five sub-categories-
UOt, POt, LOt, DOt & IOt. An order belongs to different categories depending on the point of time.
UOt represents the unknown orders that have not been placed yet i.e the time of simulation has not
reached the time at which the request will be placed (t < ti). POt represents the set of orders that
have been requested but not been loaded onto any of the vehicles. LOt represents the set of orders
that have been loaded onto a vehicle and set out for delivery. DOt represents the set of completed
deliveries. Finally, IOt represents the set of orders that were either never assigned to a vehicle or
could not complete delivery during the operation period. Orders are typically considered ignored when
they can not satisfy the given delivery time constraints. Note that we consider a completely dynamic
problem. This means that at time t = 0, all orders are unknown UO0 = O whereas at time t = τ all
orders are either delivered or ignored DOτ ∪ IOτ = O.

Times:

Each vehicle follows an independent route plan, i.e. vehicle’s travel along arcs between any two nodes
x1 and x2. The travel time between these nodes is given by the function travel(x1, x2). Note that the
graph is directed. This means that travel(x1, x2) does not equal travel(x2, x1) as the vehicle may be
required to take a different path to reach x1 from x2. This is representative of one-way roads often
found in urban environments. Furthermore, travel between any two locations is equal to the sum of the
weights of all the arcs that need to be traversed between the two locations. This is further illustrated in
Figure 3.1.

During operation, the vehicles not only traverse between nodes but also pick up and deliver goods.
Loading goods at the depot as well as delivering orders at the customer location requires additional
time that must be taken into account. For our work, we assume a constant loading and service time
represented by δload and δservice respectively.

An order oi is picked up at time tpick,i and delivered to its destination at tdrop,i. The earliest possible
drop-off (optimal drop-off) of an order is denoted by tideal,i. This optimal time to drop off is determined
by considering a virtual idle vehicle that is already located at the nearest pickup depot denoted by
dbest,i, and starts serving the order immediately after the request is placed. Mathematically, this means
tideal,i = ti+ δload+ travel(dbest,i, gi)+ δservice. The actual delivery time can be higher than the optimal
drop-off time as vehicles may already be serving other requests and may not be idle. Further, even if a
vehicle is idle, it may not be located at dbest,i. The difference between the time it takes for the vehicle to
actually drop off an order and the ideal drop-off time of that order is known as a delay. This is denoted
mathematically asΘi = tdrop,i−tideal,i >= 0. One of the constraints in the system is that of a maximum
permissible delay for each order δdelay. The latest possible drop off time hence can be computed as
tdrop,max,i = tideal,i + δdelay. The maximum permissible delay is pre-determined by the operator and
remains constant during the course of the operation. An illustration for all points in time for an order is
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illustrated in Figure 3.2.

Figure 3.2: Visualization of the different time spans for one order. For an ideal delivery, a vehicle would be required already at
the corresponding depot, the moment the order gets placed[28]

Table 3.1: Explanation of variables required for problem formulation

Variable Explanation

Environment
G = (N,A) Directed graph representing the network
N Node, representing a specific location
A Arcs, connection between two nodes
D Set of depots D = {d1, d2, ...., dh}
di Location of depot i

Vehicle Fleet
vi Single Vehicle vi = {t, li,t, LOi,t, πvi

(t)}
li,t Current location of vehicle vi at time t
LOi,t Loaded orders of vehicle vi at time t
V Fleet of m vehicles V = {v1, v2, ..., vm}
c Maximum capacity of a vehicle

Demand
oi Single order oi = {ti, gi}
ti Time order i gets known
gi Goal location of order i
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Table 3.1: Explanation of variables required for problem formulation (contd.)

Variable Explanation

Demand
UOt Unknown orders- yet to be made known to the system at time t
POt Placed orders- orders that are known but not loaded onto a vehicle at time t
LOt Loaded orders- Orders that are loaded by a vehicle at time t
DOt Delivered orders- Orders that are already delivered at time t
IOt Ignored orders- Orders that do not get delivered at time t
O Set of all n orders O = {o1, o2, ...., on} = UO ∪ PO ∪ LO ∪DO ∪ IO

Times
t Current time
τ End of working day
δload Loading time of one order at the depot
δservice Service time of one order at its destination
travel(x1, x2) Travel time between two locations x1 and x2
δdelay Maximum delay until an order has to be delivered
tpick,i Pickup time of order oi
tdrop,i Drop off time of order oi
tdrop,i,max Maximum drop off time of order i
tideal,i Ideal delivery time of order oi

Miscellaneous
dbest,i The closest depot to an orders destination gi

3.1.2. Problem Statement
The problem we focus on is a Dynamic Multiple Depot Vehicle Routing Problem with Pickups and
Deliveries. To elaborate, consider a direct weighted graph G = (N,A), a set of depotsD, where orders
can be picked up, and a fleet of vehicles V in an initial state that is described by the location of the
vehicles and the number of loaded orders on each vehicle (li,0, LOi,0). The initial location of the vehicles
corresponds to any of the depots and are empty (LOi,0 = ∅)∀vj ∈ V . Further, the operation during
which the fleet is operational is indicated by times [0, τ ]. Orders are revealed at time t = [0, τ − δτ ]
where δτ is the time span during which no more orders are allowed to be placed. The objective is to
find an optimal assignment Ω of orders oi ∈ O to vehicles vj ∈ V in such a way that:

• Each individual feasible vehicle route πvj from Ω must determine the orders that are to be picked
up, the sequence in which they are to be picked up and the sequence in which they are to be
delivered.

• It must find these feasible routes by minimizing an objective function subject to certain constraints.
This function is described in Equation 3.1. The constraints include the maximum capacity c of the
vehicle, the maximum delay δdelay before which an independent order must be delivered and the
end of the simulation period τ .

• Orders that cannot be delivered by any vehicle within the constraints of time (θi ≤ δdelay) or before
the end of the operation period τ are ignored.

• Orders that can be delivered within the time constraints of δdelay may not be assigned a vehicle.
This happens if no suitable trips involving such orders are found or other better trips are available
to the vehicle.
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For our work, J is defined as the overall cost over the entire time horizon. It is expressed in time units
as the cost of assigning a set of requests, known as a trip Ti to their respective vehicle vj with updated
routes πvj . Further, a penalty α is also added for ignored requests. This can be considered as charges
incurred for hiring a third-party delivery agent to fulfill deliveries of ignored orders. The overall cost over
the full-time horizon is indicated by Equation 3.1.

J =
∑

(vj ,Ti,πvj
)∈ga

γ(vj , Ti, πvj ) +
∑

Oi∈IO

α (3.1)

where γ(vj , Ti, πvj ) is the cost of assigning vehicle vj to trip Ti for the route πvj . Equation 3.1 represents
the overall objective function at t = τ . Generally, the cost function and constraints are universal and
could be changed to fit other requirements. As a result, our problem combines several NP-hard prob-
lems, including the capacitated vehicle routing problem [45], the multi-depot vehicle routing problem
[38], and dynamic optimization, while looking at large fleet sizes.

3.1.3. Problem Dynamics
The problem statement covered in the previous section does not explain how the problem evolves with
time. At first, the problem evolves during the operation period t ∈ [0, τ ] in fixed intervals denoted by
ψ = {t1, t2, ....tK}. At each interval, the state Sk at tk ∈ ψ of the problem is characterised by the time
itself, the vehicle’s fleet state Vtk characterized by tk, (lj,tk , LOj,tk)∀vj ∈ V , and the set of known but
not yet loaded orders POtk . This is highlighted in Equation 3.2:

Sk = (tk, Vtk , POtk) (3.2)

The transition from the current state Sk to a future state Sk+1 involves the transition of the vehicle’s fleet
and the transition of the set of known but not loaded orders. The vehicle state transitions as per the trip
each vehicle is assigned. This will be covered in Section 3.2. Further, the set of known but not loaded
orders transitions due to the discovery of new requests as time progresses from tk to tk+1 and loading
of previous orders as per the trips Ti ∈ T assigned to the vehicles. Figure 3.3 depicts an overview:

Figure 3.3: Dynamics of transition between two states: The transition of the vehicle fleet is known, however, due to new
unknown requests, the transition of open orders is partly unknown. The solution approach takes the input state and outputs the

assignment of a trip for each vehicle [28]

3.2. Method
The work in this thesis builds on the work of a previously developed solution algorithm. The algorithm is
coined the Vehicle Group Analysis (VGA) method by the authors and is known for its capability to handle
large problem instances [2][15][28]. In the following Section, we will elaborate on how the algorithm
solves the problem discussed in Section 3.1.
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3.2.1. Overview
The VGA algorithm works by solving the problem in a rolling-horizon style i.e, at a particular instance
of time tk ∈ ψ, an optimal solution is obtained. The simulation is then propagated forward till the next
instance tk+1 ∈ ψ wherein another solution is obtained by VGA. This process repeats till the end of the
simulation period tK ∈ ψ. Further, the decision intervals at which the VGA framework is implemented
are constant and can be denoted by δt where tk = k · δt. This results in K = τ/δt decisions from the
start till the end of the operation. Solving this K times results in the overall solution of the problem
formulated previously.

The process of optimal decisions by the VGA can be divided into four steps. In the first step, a decision
needs to be made about which depots can act as a picking point for an order. This is elaborated in
Section 3.2.2. Once all possible order-pickup locations are obtained, potential trips need to be formed
by grouping orders and the current vehicle location. The trip generation process is explained in a
step-wise manner of 2 steps. Each step is discussed in detail in Section 3.2.3 and 3.2.4respectively.
Furthermore, amongst the many trips possible for a vehicle only one must be selected and in such a
way that one order can be delivered by one vehicle only. This is elaborated in Section 3.2.5. Further,
we briefly discuss how does the methodology handles the case when vehicles are idle in Section 3.2.6.
Next, the time propagation is briefly covered in Section 3.2.7. An overview of the base method is
illustrated in Figure 3.4.

Figure 3.4: Schematic overview of the base method. ”Step A assigns a number of potential pick-up locations to each order.
During step B individual candidates are combined to feasible trips. Step C performs an assignment of trips and individual

vehicles. With step D we ensure that the structure of the problem and the solution stays stable. The clock in step D symbolizes
the propagation of time between states[28].”

As the base method does not explicitly consider future states of the problem, it is myopic in its approach.
However, in our solution framework, we additionally incorporate an anticipatory technique prior to the
assignment decision. The anticipatory techniques explored are briefly discussed in Chapter 4.

3.2.2. Pick-ups
When a new order occurs, the system receives a destination where the order is to be delivered and
a time at which it was requested. This is in line with on-demand grocery delivery where the customer
is not concerned with the pickup of the order itself. Thus, a decision regarding which depot should be
used to pick up the order needs to be made. In theory, any depot dl can act as a pickup location as
long as the order can be delivered within the time constraint: travel(dl, gi) < travel(dbest, gi) + δdelay.
This implies that the travel time to a destination from a depot should be lesser than the sum of the
travel time from the closest depot and the maximum permissible delay. All depots dl ∈ D that satisfy
this constraint are considered as feasible options. To describe an order along with its feasible depot
locations, a term candidate ci ∈ C of the order oi ∈ O is introduced.

A candidate is a tuple containing an order oi and its associated pickup location, i.e., ci = (oi, pi) =
(ti, gi, pi). An order can have several candidates associated with it depending on the number of feasible
pickup locations. In [28], a heuristic is implemented to limit the number of candidates for each order
to a threshold value x. This implies the x closest pickup locations that satisfy the above constraint
make up the candidates of the order. Limiting the number of candidates per order limits the number of
potential trips for each vehicle, and hence, reduces computation time. Further, by computing feasible
depots of all nodes N of the graph, candidates for every order can be determined offline. This is
because candidates of an order only depend on the destination location and hence remain constant.
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This additionally reduces the online computation time.

3.2.3. Candidate-Vehicle Graph
Each trip Ti ∈ T can be defined as an ordered sequence of locations to pick up and deliver orders and
is executed by a vehicle. The generation of trips is a two-step process. At first, the candidates are
individually checked for the feasibility of delivery by a vehicle. The results are stored in the CV graph.
In the subsequent step, trips are formed by identifying candidates that can be feasibly clubbed together
on the same vehicle. This is illustrated in the next section.

The Candidate-Vehicle graph is an undirected graph comprising of two types of nodes- one for vehi-
cles nodes and another for candidates. Two types of edges exist. These are vehicle-candidate and
candidate-candidate. As such, an edge is added between a vehicle and a candidate when the candi-
date can be feasibly delivered by the vehicle. Further, an edge between two candidates implies two
different orders that can be combined and delivered by the same vehicle. Such an edge is added be-
tween two candidates of different orders that share a common pickup pi only when a virtual vehicle
located at pi can deliver both the orders feasibly. As a result, we check which vehicles can serve a
given order and if two orders could be combined in a single trip, independent of the vehicle. This is
further illustrated in step 1 of Figure 3.5.

Figure 3.5: Schematic overview of trip generation[28].

3.2.4. Candidate-Trip-Vehicle Graph
As a next step to the CV graph, the Candidate-Trip-Vehicle graph is constructed one vehicle at a time.
The CTV graph again has two types of nodes- trip nodes and vehicle nodes. A vertex is added for every
trip that can be feasibly delivered by at least one of the vehicles. As such, all vehicles that can serve the
trip are added as unique vertices e(Ti, vj). The vertex of this trip is in turn connected to all the candidates
of that trip e(ci, Tj). The computation of a trip starts with 1 candidate that is already available in the
CV graph and adds other candidates iteratively up to a maximum size η set by the operator. The CTV
graph generation is computationally expensive and calculations for a vehicle stop when a predefined
time ρmax,CTV has elapsed. All complete trips generated up to this point are considered for assignment
[28].

Note that in the CTV graph, for a trip containing a pool of candidates and for a particular vehicle there
can be many possible routes with which the candidates can be served. Each route must follow a differ-
ent sequence in which the candidates of a trip are picked up and delivered. A simple illustration of this
is provided in Appendix D. In our case, the formation of individual routes is achieved by the function
RouteGenerator. RouteGenerator performs an exhaustive search over the possible sequence of loca-
tions in which a vehicle can complete its deliveries. Additionally, for a vehicle that already contains prior
parcels, the RouteGenerator also includes the destinations of those parcels in the exhaustive search.
The pre-empty capabilities in our solution, henceforth, increase the number of possible routes as new
candidates can be picked up before prior parcel deliveries. Hence, for any trip-vehicle combination,
there can be more than one way in which the trip can be executed. However, for every feasible vehicle
and trip combination, only the optimal route and the associated cost are stored. These are computed
by a function bestRoute that iterates through the feasible routes of each trip-vehicle combination and
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chooses a route that minimizes the given objective function for the trip. This cost of visiting a sequence
of locations of a Trip Ti by vehicle vj is given by Equation 3.3 and the overview of the CTV graph is
illustrated in step 2 of Figure 3.5.

γ(Ti, vj , πvj ) = (1− β) ·
∑
oi∈Ti

θi + β · (TravelT imei) (3.3)

where γ(Ti, vj) represents the cost function, β represents the convex weight, and θi represents the
delay in delivery.

3.2.5. Assignment of Trips to Vehicles
With the generation of the complete CTV graph, all feasible trips and the vehicles that can serve them
are computed. However, a decision still needs to be made about which of the trips must be assigned
to which of the vehicles to obtain an optimal routing solution. This decision is made by formulating the
assignment as an integer linear program that is solved incrementally.

At first, a greedy solution is implemented that selects trips in a hierarchical fashion- Trips with the higher
number of served candidates are prioritized over trips with a lower number of served candidates. If two
or more trips serve the same number of candidates, then the trip that minimizes the objective function
γ(vj , Ti, πvj ) gets a preference.

Next, the initial greedy solution Ωgreedy is used to initialize the ILP for obtaining the optimal assignment
Ω of trips to vehicles. The notations for the ILP are defined in Table 3.2 [28]. Further, the mathematical
formulation for the ILP itself is depicted in Algorithm 1 [28].

The number of binary variables in the ILP is equal to the number of candidates plus the number of edges
between trips and vehicles. In the worst case, all vehicles can serve all candidates individually and all
candidates can be combined in trips. However, this is unlikely. Equation 3.4 represents the objective
function of a single state that must be minimized by the ILP. It includes the cost of the trips that are
assigned to the vehicles and the cost of candidates that are rejected. Further, Equation 3.5 highlights
the constraints that only one trip should be assigned to a vehicle. Next, Equation 3.6 represents the
second constraint which indicates that either an order is assigned to at most one vehicle or is rejected.
It furthermore ensures that only one candidate belonging to the same order is chosen. Finally, either the
vehicle delivers the assigned orders or remains idle, i.e, it is not get assigned to any trip and remains
idle.

Table 3.2: Explanation of variables required for Assignment Decision

Variable Explanation

ϵi,j ∈ {0, 1} Binary decision variables for every edge between a vehicle j and a trip i.
χk ∈ {0, 1} Binary variable defined for every candidate ck ∈ C. The value of 1 indicates a candi-

date that is not part of any assignment.
e(Ti, vj) Edge of CTV graph connecting Trip Ti and vehicle vj .
ϵTV Set of {i, j} indices for all edges in e(Ti, vj).
ITV=j Set of trips that can be serviced by vehicle j.
IVT=i Set of vehicles that can service a trip i.
ITC=k Set of Trips that contain a candidate k.
χ Set of all variables χ ∈ {ϵi,j , χk|∀i, j ∈ ϵTV ,k ∈ C}
ICO=h Set of candidates that belong to order h.
γi,j Cost associated with edge e(Ti, vj).
γko Cost of rejecting a request.
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Algorithm 1 Optimal Assignment
Input: Greedy assignment of trips to vehicles Ωgreedy

Output: Optimal assignment of trips to vehicles Ω
begin

Initialize with Ωgreedy;

Solve;

∑
optim

= argmin
χ

∑
i,j∈ϵTV

γi,jϵi,j +
∑

k∈1,..,n

γkoχk (3.4)

with constraints- ∑
i∈IT

vj

ϵi,j ≤ 1 ∀vj ∈ V (3.5)

∑
IC
O=h

∑
IT
C=k

∑
IV
T=i

ϵi,j + χk = 1 ∀oh ∈ O (3.6)

return Ω
end

3.2.6. Rebalancing
After the completion of the assignment step, there may be a scenario where one or more vehicles are
not assigned any trips and do not have prior parcels to deliver. This could be because the vehicles
may be located far away from the depots of the candidates, or other vehicles are serving the nearby
candidates at a lower overall cost. As a result, such vehicles remain idle. To ensure that the idle vehicles
are located at the best possible location for the next decision interval, rebalancing of idle vehicles is
carried out. Rebalancing in itself is an anticipatory approach focused on only idle vehicles.

In our work, rebalancing of all idle vehicles is done by sending them to the closest possible depot
location. This ensures that the vehicles are already located at pickup locations for the next decision
interval ensuring reduced waiting times and delivery times of orders. It is important to note that more
advanced rebalancing approaches have been studied previously. One such work is the rebalancing
strategy for ride-sharing by Waller et al.[67]. However, our work focuses on extremely busy scenarios
where the system is working close to its maximum capacity. As a result, the scope of rebalancing in
our work is limited.

3.2.7. Time-Propagation
At the end of the assignment of any decision interval tk ∈ ψ, an additional time propagation step is
implemented. This step simulates the time and all other elements affected by it till the next decision
interval tk+1 ∈ ψ. During this step the following events occur:

• The vehicle propagates according to the plan determined in the previous decision interval
• Parcels that are delivered are removed from the vehicles
• New orders are loaded onto the vehicle as parcels
• Orders that are ignored are recorded and removed from the trip generation process

Post the time-propagation, the above steps are repeated as per the problem dynamics covered in
Section 3.1.3. In addition, minor changes were made to the base method introduced by Kronmueller
et al. [28]. This is covered in Appendix E. Finally, additional notations used to completely define the
solution methodology are covered in Table 3.3.
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Table 3.3: Explanation of variables required for Solution Framework

Variable Explanation

tk Time at decision k
ψ = {t1, t2, ....., tK} Time instants for re-optimization
γ(vj , Ti, πvj ) Cost Function for assigning trip Ti to vehicle vj with updated route πvj
J Overall Cost Function
α Penalty for not delivering an order
β Weighted factor for the cost function
pi Pickup location of the order i- independent of the order itself
ci One candidate of order oi where ci = (oi, pj)

πvj(t) Planned route of vehicle vj at time t
Πvj Route followed by vehicle vj throughout the operation period
Ω Assignment of all routes to vehicles without anticipation
C List of all candidates of orders O



4
Anticipation by Introducing Rewards &

Penalties

Any solution methodology to a DVRP suffers from incomplete information when making routing deci-
sions. As myopic solutions aim to identify optimal assignments for existing orders at any given decision
step, they result in sub-optimal service performance whenever new information about the demand is
made available. Research has shown that anticipatory routing methods improve service quality over
myopic solutions [49]. In general, anticipation works by utilizing heuristic, analytical or probabilistic tech-
niques such as machine learning, data mining, threshold-based decision making, etc, in two possible
ways:

• predicting and incorporating future unknown orders in the trip computation allowing for better
routing decisions taking the future into account. As such, these techniques deal with exogenous
demand.

• using decision rules to increase route flexibility of a trip to be more robust for any future scenarios.
Such techniques do not deal with exogenous demand for performance improvement.

The incorporation of an anticipatory technique within a solution framework is illustrated by means of
Figure 4.1. As such, the vehicle state, emerging orders, overall trip generation (CV & CTV graph) and
assignment process can be abstracted as the assignment procedure P . The anticipatory technique se-
lected incorporates further information and works on top of the pre-defined assignment procedure. This
abstraction clarifies the boundaries between the anticipatory technique and the assignment procedure,
allowing us to explore several forms of anticipation for the same assignment procedure.

In this study, we modify and deploy anticipatory techniques that deal with non-exogenous demand and
were first introduced by Fielbaum et al.[15]. These techniques alter how the VGA system assigns trips
to vehicles i.e, influence assignment Ω to ΩA. In particular, our techniques make modifications to the
assignment procedure by introducing rewards and/or penalties to the objective cost function at every
single stage of the problem, i.e, assignment ωA,k at a single decision instance tk ∈ ψ. To compare the
performance across each approach and its myopic counterpart, we utilize the overall cost metric defined
by Equation 3.1. One must note that the cost obtained in Equation 3.1 is a-posterior and can only be
determined at the end of the operation. A simple addition of cost obtained at each interval of ψ will not
compute this overall cost. This is because intermediate stages deal with the re-assignment of orders
at future intervals. However, this cost provides a sound benchmark for determining the improvement
of the anticipatory technique over the base (myopic) algorithm.

In addition to adjustment using rewards & penalties, we also explored alternative anticipatory tech-
niques from existing literature. These include several waiting approaches[9][37], the double edge
horizon technique by Minic et al.[36], and a trip trimming method inspired by the slackness-savings
approach first proposed by Kalina et al.[26]. However, we identified through our preliminary analysis,
that these approaches did not compliment the rolling horizon nature of VGA. As a result, we do not

25
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Figure 4.1: A diagram synthesizing the assignment process during the period of operation. The state of the fleet, and new
orders behave as inputs to the decision system (assignment system). The anticipatory technique makes alterations to

information from the input. This altered information is then fed to the numerical solver for assignment and routing decisions.
Finally, the time propagates forward to the next decision interval k + 1. Together the state of the system, newly emerging

orders, and the assignment system form the assignment procedure P . The anticipatory technique works on top of P and the
two are independent of each other. The blue background represents elements determined by the system and the green

background represents elements that may depend on exogenous information.

discuss these in detail and the interested reader is referred to Appendix F & Appendix G for a detailed
discussion and results respectively.

The rest of the Chapter is structured as follows. In Section 4.1, we introduce the basic concept of
assignments with rewards. In Section 4.2, we introduce a penalty term to the assignments with rewards
and the necessary modifications incorporated. Finally, we propose different variations to computing
rewards & penalty adjustment values in Section 4.3.

4.1. Introduction to Assignment with Rewards
The anticipatory technique of assignments by introducing rewards was first proposed by Fielbaum et
al.[15] for DARP. In our thesis, we modify the framework and translate the approach to the context of
on-demand grocery delivery.

At each decision interval of ψ, rewards adjustment alters assignments by modifying the cost associated
with feasible trips. We do this by altering the cost function γ in Equation 3.1. This modification is
illustrated in Equation 4.1. Recall that γ(vj , Ti, πvj ) is the original cost of inserting trip Ti into vehicle
vj if the route is πvj . The rewards value R is introduced to modify this cost and achieve anticipatory
routing. The design of the rewards value R is discussed in detail in Section 4.3. Further, a tuning
parameter Θ controls how much weight is given to the reward.

γA(vj , Ti, πvj ) = γ(vj , Ti, πvj )−Θ ·R(vj , Ti, πvj ) (4.1)

The anticipatory technique impacts the system in a dual manner. The first impact of this cost modifica-
tion is the way in which the bestRoute function [28] chooses a route for a given vehicle-trip combination.
With adjustments to the costs from γ to γA, a different sequence of picking up and delivering orders
may end up having the lowest cost. As a result, the route selection for each vehicle-trip combination
might be altered. The second and more important impact is the change in assignments ωA,k at any
decision interval k by the ILP solver. The shift in assignments from ωk to ωA,k is also due to a change
in costs from γ to γA that impacts each vehicle-trip combination differently. The complete adjustment
of the assignment procedure is provided by a pseudo-code showcased in Algorithm 2 [15]. According
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to the algorithm, the assignment procedure P gets influenced by the cost modification of the rewards
adjustment technique. This is indicated in bullets two and three.

Algorithm 2 Reward Adjustment over assignment procedure P
Input: G = (N,A), C = {c1, c2, ...cn}, V = {v1, v2, ..., vm}, R, CTV graph, ψ = {t1, t2, ....tK}
Output: ΩA

begin
• Compute feasible matches between trips Ti ∈ T and vehicles vj using the original assignment
procedure P

• Re-compute the cost of routes πvj using the adjustment γA(vj , Ti, πvj ) = γ(vj , Ti, πvj ) − Θ ·
R(vj , Ti, πvj ) for every e(Ti, vj)

• For every e(Ti, vj) determine the optimal route using γA.
• Implement the ILP solver to find the optimal assignments ωAk with γA as the objective function
• Update the vehicle itinerary to the next decision interval in ψ

return ωAk

end

One important variable to note is the weight of the rewards Θ. The value of Θ is tuned by the operator
and determines the impact of the reward value on the system. If the value of Θ is too low, the impact on
the system may be negligible. On the other hand, a very high value of Θ will result in a greater impact
of rewards on the costs. This may degrade the performance due to a greater focus on preparing for
the future than the present. Once the value of Θ is tuned, it remains constant and affects all trips at all
decision intervals in the same manner. Therefore, altering the decision across trips is purely due to the
reward value R which varies as a function of the vehicle-trip-route combination.

How the costs are modified depends on the manner in which the reward value R is designed. For
instance, let us consider the value of a reward that takes a higher value when a greater number of
rejected orders correspond to the nodes of the trip. Such a rewards value influences the VGA framework
to favor trips that historically have a higher demand along the route. The question then arises on how
to define the value of the rewards R? In our work, we propose several specifications of defining R. In a
nutshell, all rewards value depend on some characteristic of one or more nodes of the route πvj . Two
questions naturally arise:

• What node/nodes to look at?
• What characteristic of the node to use for computing the rewards value R?

To answer the first question, our rewards value is subject to one node of the route πvj :

• The Last Node, LN(πvj ), or
• The Last Depot, LD(πvj ) of the route πvj

The Last Node, LN(πvj ) of a route represents the final delivery destination at which the route culmi-
nates. On the other hand, the Last Depot, LD(πvj ) of a route represents the depot at which the vehicle
collects the last set of orders for the route without making a return to any other depot. An example of
these nodes is provided in Figure 4.2. The Figure 4.2a illustrates the concept of the last node for a
given route. Further, Figure 4.2b highlights the last depots of two independent routes.

Next, given the considered node is the last node LN(πvj ), the reward value is typically a function of
one or more of the following characteristics:

• Number of orders placed within the last 8 minutes that have their destinations corresponding to
the node under consideration.

• Distance between the node and the closest depot CD of the node.
• Normalised average distance between x closest depots of the node and the node itself. The value
x is determined by the operator and is equivalent to the number of depots considered for pickup
for an order. Further, the normalization metric is the maximum distance between all nodes of the
graph and all their x considered depots.

• Average of the candidates with pickup locations corresponding to all x closest depots of the node.
The candidates considered are for orders placed in the last 8 minutes.
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(a) An illustration of a vehicle route’s nodes. The planned route of the vehicle collects parcels from the first depot and delivers them to two
delivery locations A and B. Further, the vehicle collects another order from the second depot and delivers it at location C. Location C marks the

last node of the vehicle route (LN(πvj
) = C) for the decision interval as no other deliveries are scheduled at the given time step.

(b) An illustration of a vehicle route’s nodes. The planned route of the vehicle collects parcels from the first depot and delivers them to its
subsequent delivery nodes. The vehicle again returns to a different depot to pick up more orders and deliver them to its subsequent nodes. As no
other pickups in the route are scheduled post the second depot (yellow), the second depot of the route in both cases represents the LD(πvj

)

last depot of the route.

Figure 4.2: Examples for Last Node and Last Depot of a Route

Furthermore, when the considered node is the last depot LD(πvj ), we consider the number of can-
didates with pickups location as the depot itself to be the value of the rewards. These adjustment
approaches are covered in more detail and described mathematically in Section 4.3.

Our proposed assignment with rewards shares some similar advantages and disadvantages as those
covered by Fielbaum et al.[15]. First, the anticipatory technique does not increase the computational
burden of the overall algorithm. This is because the system deals with the same number of orders as
the myopic algorithm at the time of trip generation. As a result, if the myopic algorithm works effectively
with regard to the computational burden, then it will continue to do so even after the incorporation of
the anticipatory framework. Second, the impact of anticipation at an individual vehicle-trip-route level
is clear. For instance, for rewards values based on orders at the last depot, the system will direct
vehicles towards trips with a higher number of order pickups at the last depot of the route. However,
unlike Fielbaum et al.[15], it is hard to assess the impact of anticipation on the entire system in a clear-
cut manner. As a result, identifying the scenarios in which one should expect anticipation to perform
well for our case is non-trivial. Similar to Fielbaum et al., another disadvantage of our technique is that
it operates at an individual level, i.e., the anticipatory technique impacts each vehicle-trip combination.
As a result, it is hard to assess how many of the vehicles are directed towards a particular region. This
may result in a greater imbalance between vehicles and demand regions because of an aggressive
anticipatory technique. Further, the value of Θ needs to be determined carefully. This is because the
larger the value of Θ, the greater the number of vehicles affected and hence, the greater the impact of
anticipation.

4.2. Addition of a Penalty Term to Adjustment Techniques
In this section, we introduce an additional penalty term to the adjustment method discussed in Section
4.1. The basic principle of adding a penalty term was to prevent vehicles from going into unfavorable
locations by penalizing their corresponding trips. Depending on certain underlying criteria, the penalty
term introduced replaces the reward term for each vehicle-trip-route combination . These criteria are
discussed independently for every variation to the technique in Section 4.3. A generalized formulation
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that highlights an overall modification to the cost γ in Equation 3.1 is shown in Equation 4.2.

γA(vj , Ti, πvj ) = γ(vj , Ti, πvj )−

- χ · Pe(vj , Ti, πvj ) If underlying criteria are met (Section 4.3)

κ ·R(vj , Ti, πvj ) If underlying criteria are not met (Section 4.3)
(4.2)

wherePe(vj , Ti, πvj ) is the penalty associated with the trip-vehicle combination, χ, and κ are the weights
associated with the penalty and rewards terms of the assignments including a penalty. Note that the
tuning weight κ for the value of the rewards is different than Θ introduced in Section 4.1. This is delib-
erately chosen for two reasons. First, a separate tuning parameter allows a clear distinction between
the adjustment with rewards techniques and the adjustment with penalty techniques that include an
additional rewards term. Second, as the value of the rewards computed in adjustment with penalty is
principally different than the one computed in adjustment with rewards, a different tuning factor range
is applied.

In addition to the nodes and characteristics considered in Section 4.1, we also explore alternative com-
putations of the penalty and rewards adjustment terms. Generally, these terms are still characteristics
of one or more nodes of the system, however, the selection of nodes and characteristics considered
vary. This is because adjustments based on penalty require additional nodes to estimate a penalty
value. A simple classification for the nodes considered and their characteristics are provided below:

• First node FN(πvj ) and last node LN(πvj ) of the route: Penalty & rewards value are computed
by first evaluating the number of candidate destinations within a certain threshold distance of the
FN(πvj ). The region within this threshold distance (or travel time) is called the vicinity of the node.
If the value computed exceeds a certain pre-defined threshold, the penalty metric is computed on
the basis of the LN(πvj ). On the other hand, if the value computed falls short of the pre-defined
threshold, the value of a reward is computed on the basis of the LN(πvj ). This is explained clearly
by means of an illustration in Figure 4.3.

• First node FN(πvj ) and all other nodes n ∈ πvj ∨ n /∈ FN(πvj ) of the route: Methods with this
type of node selection follow a similar hierarchical approach to computing penalty and rewards
values as the first approach. The only difference is that instead of computing penalty at the last
node, it is computed for all nodes no ∈ n that lie outside the vicinity region of the first node. This
is also illustrated in Figure 4.4.

Figure 4.3: Example of Penalty + Reward Adjustment Techniques: Illustration of First Node & Last Node method of Penalty +
Reward Computation. The green circles represent vicinity nodes, whereas the yellow circles represent the node at which

penalty/reward is computed.
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(a) Illustration of First Node & All Nodes method Penalty Computation. The green circles represent
vicinity nodes, whereas the yellow circles represent the node at which the penalty is computed.

(b) Illustration of First Node & All Nodes method Reward Computation. The green circles represent
vicinity nodes, whereas the yellow circles represent the node at which reward is computed.

Figure 4.4: Examples of Nodes considered in Penalty + Reward Adjustment Techniques(Contd.)

4.3. Proposed Rewards & Penalty Adjustment Techniques
In this section, we mathematically define each of the adjustment based techniques discussed in Sec-
tion 4.1 and 4.2. At first the two most promising techniques are discussed. This is followed by brief
introductions to alternative formulations.

4.3.1. Distance-Based Reward Adjustment: x Closest Depots
Under this method, the rewards value R is computed as a function of the average distance between
the x nearest depots and the last node LN(πvj ) of the route. The method influences assignments of
vehicles towards trips that end in locations closer to depots. The value of a reward is computer as per
Equation 4.3.

R(vj , Ti, πvj ) = Θ · (1− 1

x

∑
n∈De

Dn

Dmax
) (4.3)

where Dn is the distance of each closest depots n from the LN(πvj ), De represents the depot nodes
considered, x is an operator defined value representing the threshold number of closest depots or
pickup locations, and Dmax represents the maximum distance between all the graph nodes and their
respective x depots.

The value computed in Equation 4.3 is normalised with the maximum distance. This limits the value of
the term Dn/Dmax between zero and one. This is done to mitigate the complexity of selecting a tuning
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parameter Θ due to the wide range of distances between nodes and x closest depots. Further, the
normalized value is subtracted from one to ensure that nearer average distances have a higher reward
impact and vice versa.

Intuitively, the adjustment value obtained from Equation 4.3 indicates how quickly a vehicle can travel
from the last node of its route to its x closest depots. In particular, a higher reward value indicates that
the last node of the vehicle route is closer to its feasible depots and vice versa. By rewarding routes that
are closer to depots in a vehicle-trip combination and by specifically assigning such trips to vehicles,
we expedite the pickup of new candidates. This is because, with lesser travel times to pickup locations,
a vehicle can quickly reach the pickup location for future assigned orders. As a result, it can end up
delivering those orders faster. This faster pickup and in turn faster delivery has the potential to free
up a vehicle’s time to deliver more orders in the same operation time, thereby providing anticipatory
benefit to the underlying routing framework.

A potential pitfall of the rewards adjustment method could be that the reward value constantly aims
to minimize the distance between the last node of a trip and depots. As a result, in situations where
depots are located farther away from high demand regions, the anticipatory approach may influence
VGA to assign trips that end closer to depots even if they are located farther away from high-demand
zones. This could be counter-intuitive and may result in degraded performance.

Figure 4.5 attempts to provide a clearer understanding of the anticipatory technique. According to the
figure, two feasible trips starting from the same node and with the same number of orders can be served
by one vehicle. Note that Trip 1 is overlapped by Trip 2 for the route that is common to both. The order
destinations are indicated by dark blue nodes for both trips. Each trip roughly travels the same distance
and has a comparable cost metric. Trip 1 ends at a location located further away from all three closest
depots (x = 3). The termination node of Trip 2 is visibly closer to its depots than Trip 1 and therefore
its average distance is lower. As a result, Trip 2 is rewarded more than Trip 1.

Figure 4.5: Distance-Based Reward Adjustment- x Closest Depots: Two feasible trips starting from the same node and
serving the same number of orders can be assigned to one vehicle. Each trip roughly travels the same distance and has a
comparable cost metric. Trip 1 ends at a location located further away from all three closest depots (x = 3). The termination

node of Trip 2 is visibly closer to its depots than Trip 1 and therefore its average distance is lower. As a result, Trip 2 is
rewarded more than Trip 1.

Having understood the impact of the underlying adjustment technique, the question arises on how the
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rewards are incorporated within the VGA frameworks assignment procedure P? This is highlighted in
Algorithm 3. For every route of a trip-vehicle combination, the rewards value R is computed. Then,
the cost of each route is adjusted. Finally, the route with the lowest cost is selected as the route for
the vehicle-trip combination and stored in memory. This is repeated till all edges of the vehicle- trip
combination are computed. Results obtained from this algorithm are then supplied to the ILP solver for
assignments.

Algorithm 3 Rewards Adjustment Value Cost Computation
Input: G = (N,A), CTV graph, β, Θ
Output: Updated Routes and Cost for CTV graph
begin

for each e(Ti, vj) in CTV graph do
Set γtemp =∞, πtemp

Find all possible πvr
in each e(Ti, vj)

while πvr in e(Ti, vj) do
Obtain LN(πvr )

Compute adjustment value,

R(πvr ) = (1− 1
x

∑
n∈DeLN

Dn

Dmax
)

Compute cost of route,

γ(vr, Ti, πvr ) = (1− β) ·
∑

oi∈Ti
θi + β · (TravelT imei)− θ ·R(πvr )

if γ(vr, Ti, πvr ) < γtemp then
γtemp = γ(vr, Ti, πvr )

πtemp = πvr

end
end
πvj = πtemp

γA(vj , Ti, πvj ) = γtemp

return πvj , γA(vj , Ti, πvj )
end

end

4.3.2. Candidates-Based Penalty + Rewards
In this approach, trips that direct a vehicle from a higher demand sector to a lower demand sector are
penalized whereas trips that take a vehicle from a lower demand sector to a higher demand sector are
rewarded. The penalty and rewards value for this technique are a function of more than one node of the
trip and utilize a hierarchical computation. To clarify, the algorithm first selects the first node FN(πvj )
of the trip to determine the number of candidates in its vicinity Cv ∈ C. In our case, vicinity is defined as
a region within a threshold distance ϕ. Hence, Cv,FN includes all candidates whose pickup locations
pickup(C) are within ϕ seconds from the first node. Further, when the percentage of candidates in the
vicinity to all candidates on the graph is higher than a threshold value ϵ, the sector is deemed as a
high-demand sector. The approach then iterates through all nodes of the trip to ascertain how many
of the nodes No(πvj ) lie greater than ϕ distance outside the high demand sector. It then penalizes
the trip for each No(πvj ) node. The value of the penalty term is a function of the distance between
each n ∈ No(πvj ) to the candidate pickups that are in the vicinity of the first node FN(πvj ). This is
mathematically defined in Equation 4.4 and depicted in Figure 4.6a.
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(a) Illustration of Penalties (b) Illustration of Rewards

Figure 4.6: Candidates-Based Penalty + Rewards: Sub-figure 4.6a illustrates the situation of penalties. According to the figure,
the first node of the vehicle-trip-route is in a region of high-demand (where order pickups in vicinity > ϵ· total order pickups).
Since, the vehicle-trip-route leaves the vicinity region, it is penalised. This penalty value is equivalent to the summed value of

individual non-vicinity node penalties. These non-vicinity node penalties are a function of travel times between the
corresponding node (large orange bubbles) and each order in the vicinity of the first node. Alternately, when the vehicle is not
in a high demand region, as in Sub-figure 4.6b, the vehicle-trip-route is rewarded as the vehicle moves towards the last node
with several order pickups within ϕ distance. The value of the reward is a function of the travel time between the last node and

all nearby order pickups.

Pe(vj , Ti, πvj
) =

∑
i,pj

(TTipj
− ϕ) {∀i ∈ No(πvj ); pj ∈ pickup(Cv,FN )} (4.4)

Alternately, if the vehicle is not in a high-demand sector, we compute the value of a reward on the basis
of the number of candidates with pickups pickups(Cv,LN ) within the vicinity of the last node LN(πvj ) of
the trip. This is mathematically defined in Equation 4.5 and illustrated in Figure 4.6b.

R(vj , Ti, πvj ) =
∑
pj

(ϕ− TTipj ) {∀pj ∈ pickup(Cv,LN ); i = LN(πvj )} (4.5)

Intuitively, a non-zero penalty value obtained by Equation 4.4 indicates that the vehicle-trip under con-
sideration leaves a high-demand sector and the magnitude of the adjustment value provides directional
evidence of how far the vehicle has traversed out of this high demand sector. Alternately, a non-zero
reward term indicates a vehicle-trip combination where in the vehicle is entering a sector with higher
demand. The magnitude of the adjustment indicates the average distance between the last node of
the trip and all the pickup locations of orders in its vicinity.

Incorporating the adjustment terms in cost influences the system in two ways. At first, it influences
certain vehicles to remain in high-demand regions and deliver orders to their full capacity. Second, it
influences other vehicles to be re-directed towards similar or other areas of high demand. Intuitively,
this means that the method limits the possibility of a vehicle ending up in a location where demand may
be scarce in the future. It does so by nudging the vehicle towards regions of substantial current demand.
It is important to note that adjustment with penalty + reward is based on the underlying assumption that
high demand zones are always better than low demand zones. A step-by-step incorporation of the
penalty and reward terms are highlighted in Algorithm 4.3.2.
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Algorithm 4 Penalty and Reward Adjustment Value Cost Computation
Input: G = (N,A), CTV graph, β, Θ, χ, ϵ, {c1, c2, ..cn} ∈ C
Output: Updated Routes and Cost for CTV graph
begin

for each e(Ti, vj) in CTV graph do
Set γtemp =∞, πtemp

Find all possible πvr
in each e(Ti, vj)

while πvr in e(Ti, vj) do
Obtain FN(πvr )

Identify candidates in vicinity, Cv,FN

Cv,FN ⊂ {c1, c2, .., ci} {∀ci ∈ C ∨ travel(FN(πvr ), pi) <= ϕ; pi ̸= FN(πvr )}

Identify out of sector nodes of the trip,
No(πvr ) ⊂ N(πvr ) {∀n ∈ N(πvr ) ∨ travel(FN(πvr ), n) > ϕ}
Check if High Demand Sector and Penalise for leaving,
if |Cv,FN |/|C| > ϵ then

Pe(πvr ) =
∑
i,pj

(TTipj
− ϕ) {∀i ∈ No(πvj ); ∀pj ∈ pickup(Cv,FN )} (4.6)

Compute new cost of route,
γ(vr, Ti, πvr ) = (1− β) ·

∑
oi∈Ti

θi + β · (TravelT imei) + χ · Pe(πvr )

end
else

R(πvr ) =
∑
pj

(ϕ− TTipj
) {i = LN(πvj ); ∀pj ∈ pickup(Cv,LN )} (4.7)

Compute new cost of route,
γ(vr, Ti, πvr ) = (1− β) ·

∑
oi∈Ti

θi + β · (TravelT imei)− κ ·R(πvr )

end

if γ(vr, Ti, πvr ) < γtemp then
γtemp = γ(vr, Ti, πvr )

πtemp = πvr

end
end
πvj = πtemp

γA(vj , Ti, πvj ) = γtemp

return πvj , γA(vj , Ti, πvj )
end

end

4.3.3. Other Adjustment Techniques
In addition to the approaches discussed in Section 4.3.1 and Section 4.3.2, alternate rewards and
penalty adjustment techniques were also explored. These approaches were only tested during pre-
liminary simulations and were discarded because of relatively worse performance. They are briefly
discussed below:
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Orders or Candidates-Based Rewards Adjustment
Orders at Last Node: In this approach, the rewards value is computed as the number of candidate
destinations generated at the last nodeLN(πvj ) of the vehicle-trip combination during the last 8 minutes
of simulation. This is mathematically highlighted in the Equation 4.8 and illustrated in Figure 4.7a.

R(vj , Ti, πvj ) = |ci| {∀ci ∈ C ∨ gi = LN(πvj ); (tk − ti) ≤ 480} (4.8)

Candidates at Last Depot: The rewards value is computed as the number of candidates with pickup
location corresponding to the last depotLD(πvj ) of the vehicle-trip combination during the last 8minutes
of simulation. This is mathematically highlighted in the Equation 4.9 and illustrated in Figure 4.7b.

R(vj , Ti, πvj ) = |ci| {∀ci ∈ C ∨ pi = LD(πvj ); (tk − ti) ≤ 480} (4.9)

Average of Candidates at x Closest Depots from Last Node: In this rewards type definition, all x
closest depots De associated with the last destination node of the given vehicle-trip combination are
considered. The rewards value is computed as the average of the total candidate pickups generated
at the corresponding depots. Further, only candidates that were requested in the last 8 minutes were
used in computation. This is shown in Equation 4.10 and illustrated in Figure 4.7c.

R(vj , Ti, πvj ) =
|ci|
x

{∀ci ∈ C ∨ pi ∈ De} (4.10)

Maximum of Candidates at x Closest Depots from Last Node: In this rewards type definition, all x
closest depots De associated with the last destination node of the given vehicle-trip combination are
considered. The rewards value is computed as the maximum of the total candidate pickups generated
at each of the considered depots. Further, only candidates that were requested in the last 8 minutes
were considered for computation keeping in mind the constraints of the maximum delay. This is shown
in Equation 4.11 and illustrated in Figure 4.7d.

R(vj , Ti, πvj ) = maxDe|ci| {∀ci ∈ C ∨ pi ∈ De; } (4.11)

Candidates at Closest Depot from Last Node
In this rewards adjustment type, candidate pickups generated at a depot located closest (CD) to the
last destination node LN(πvj ) of the vehicle-trip combination are considered for computing the value
of the reward. This is highlighted in Equation 4.12 and Figure 4.7e.

R(vj , Ti, πvj ) = |ci| {∀ci ∈ C ∨ pi = CD} (4.12)

Distance-Based Rewards Adjustment
Distance of Closest Depot to Last Node: In this adjustment approach, the distance of the closest
depot CD from the last node LN(πvj ) of the vehicle-trip combination is used for computing the value
of the reward. This is also illustrated in Figure 4.7f.

R(vj , Ti, πvj ) = (1− DCD

Dmax
) (4.13)

Convex Combination of Candidates and Distance of x Closest Depots to Last Node
In this rewards adjustment type, the value of the rewards is computed as a convex combination of the
average distance to x depots and the average quantity of candidates at the corresponding depots. The
depotsDe considered are the x closest depots to the last node of the scheduled vehicle-trip combination.
This is represented in Equation 4.14 and illustrated in Figure 4.8a

R(vj , Ti, πvj ) = δ · (1− 1

x

∑
n∈De

Dn

Dmax
) + (1− δ) · ( |ci|

x
) {∀ci ∈ C ∨ pi ∈ De} (4.14)

where δ represents the weight pertaining to the distance-candidate relevance in the equation.
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Candidates-Based Penalisation
Penalization with Constant Term: In this method of adjustment using a penalty, the objective is to
restrict vehicles to regions of substantially high demand. It does so by adjusting the cost with a constant
penalty term. The penalty is applied on the basis of the first node-last node approach discussed in
Section 4.2. This means that the vehicle is penalized for ending a route outside the high-demand
sector without taking into account the impact of the distance it moves away from this region. The
penalty term is explained in Equation 4.16 and illustrated in Figure 4.8b.

Pe(vj , Ti, πvj ) =
∑
pi

ρ {∀pi ∈ pickup(Cv,FN )} (4.15)

where ρ is a constant penalty term.

This approach is similar to the method discussed in Section 4.3.2. However, unlike the method dis-
cussed in Section 4.3.2, this method does not reward vehicles for moving to more suitable locations.
Further, instead of using a penalization term that is a function of the distance between order pick-up lo-
cations and the last node of the trip, this approach makes use of a constant penalty term. Furthermore,
for computing the penalty we do not consider all nodes of the trip, but only the last node.

Penalization with Travel Time Metric: Building on the penalization approach with a constant term,
this approach penalizes the cost in exactly the samemanner with the only difference being the selection
of a relative penalty term instead of a constant term. This means that in addition to penalizing a vehicle
for ending a route outside the high-demand sector, the method also focuses on how far the vehicle has
moved from the high-demand sector. This is explained in Equation 4.16 and illustrated in Figure 4.8c.

Pe(vj , Ti, πvj ) =
∑
pi

(TTnpi
− ϕ) {n = LN(πvj ); ∀pi ∈ pickup(Cv,FN )} (4.16)

Zone-Based Adjustment (Penalty + Rewards)
The Zone-Based Adjustment anticipatory approach is inspired by the work of Ichoua et al.[25]. Similar
to the approach taken by [25] in their study, we divide the graph intoM geographical zones. We do this
using an Integer Linear Program that divides the graph into zones of relatively similar sizes where each
node is reachable by its center within tM = 100 seconds. The formulation of sub-regions is detailed
further in Chapter 5. However, unlike [25], we do not determine whether the vehicle should wait or
move to the next destination based on a probability factor dependent on the time at which orders are
placed. Rather, we adjust the cost by means of a penalty or reward term depending on the vehicle’s
movement. To do this, we first compute the relative frequency of orders in each zone for every time
iteration. If the vehicle moves from a zone of lower relative frequency to a higher relative frequency, it is
rewarded. On the other hand, if the vehicle moves from a zone of higher relative frequency to a zone of
lower relative frequency, it is penalized. Finally, if the vehicle remains in the same zone, no alterations
to vehicle-trip costs are made. The penalization and rewards are computed as per Equations 4.17 and
4.18 respectively.

Pe(vj , Ti, πvj ) = −ρ P (ZD) < P (ZO) (4.17)

R(vj , Ti, πvj ) = ρ P (ZO) < P (ZD) (4.18)

where P (ZD) and P (ZO) are relative frequencies of destination zone ZD and origin zone ZO respec-
tively. Further, ρ represents a constant penalty-reward term that is empirically determined.
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(a) Candidates-based Rewards Adjustment - At Last Node: Trip 2
has a higher number of orders placed at its last node in the last 8
minutes than Trip 1 (5 orders for Trip 1, and 10 orders for Trip 2).

Therefore, Trip 2 is rewarded more than Trip 1.

(b) Candidates-Based Rewards Adjustment - At Last Depot: The
last depot before the termination of both trips has different

pick-up orders as shown in their icons (10 for Trip 2, and 30 for
Trip 1). As the number of order pickups for depot associated with

Trip 1 is higher, it is rewarded more than Trip 2.

(c) Candidates-Based Rewards Adjustment - Average of
Candidates at x Closest Depots of Last Node: Both Trips have 3
unique closest depots. Trip 1 ends near depots with 5, 10, & 50
order pickups whereas Trip 2 ends near the closest depots with
30 order pickups each. The average number of candidates for

Trip 1 is, therefore, 21.67 & that of Trip 2 is 30. As a result, Trip 2
is rewarded more than Trip 1.

(d) Candidates-Based Rewards Adjustment - Maximum of
Candidates at x Closest Depots of Last Node: Both Trips have 3
unique closest depots. Trip 1 ends near depots with 5, 10, & 50
order pickups whereas Trip 2 ends near the closest depots with

30 order pickups each. As maximum order pickups are
associated with the depot closer to Trip 2, it receives a higher

reward than Trip 1.

(e) Candidates-Based Rewards Adjustment - Candidates at the
closest depot from the last node: Rewards are computed

proportionally to order pickups at the closest depot. As order
pickups at the depot closest to Trip 2 are higher than that of Trip

1, Trip 2 is rewarded more than Trip 1.

(f) Distance-based Rewards Adjustment - Distance of closest
depot from the last node: Rewards are computed inversely

proportional to the distance between the closest depot and last
node of each trip. The last node of Trip 2 is 40 seconds away

from its closest depot. On the other hand, the last node of Trip 1
is 60 seconds away from its closest depot. Hence, Trip 2 is

rewarded more than Trip 1.

Figure 4.7: Other Adjustment Techniques: All sub-figures have two Trips 1 and 2 that serve the same number of orders and
have the same cost. Each sub-figure represents an independent adjustment technique that utilizes unique information to

modify the costs. These are explained in individual sub-figures.
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(a) Convex Combination of Candidates and Distance of x Closest Depots to Last Node: The value of rewards is computed as a convex
combination of two values- the first is a function of average travel time between the last node of the vehicle-trip-route and its x closest depots,
and the second is the average number of order pickups at the same x depots. In this case, Trip 1 has an average travel time of 60s and an

average order pickup of 23.33 (30+10+30/3). On the other hand, Trip 2 has an average travel time of 40s, and 21.57 order pickups at
corresponding depots. As Trip 1 has a higher travel time than Trip 2, and a higher number of average order pickups, it is not explicit which Trip
will be rewarded more. The weight of the convex combination will determine which of the average travel time and order pickups will be prioritized

for rewards. If full priority is given to travel time, Trip 2 will be rewarded more than Trip 1. On the other hand, if full priority is given to order
pickups, Trip 1 will be rewarded more than Trip 2.

(b) Candidate Based Penalty- Penalization with constant term:
The first node of the vehicle-trip-route is in a region of

high-demand (where order pickups in vicinity > ϵ· total order
pickups). Since the vehicle-trip-route leaves the vicinity region, it
is penalized. This penalty value is equivalent to a constant value
ρ summed repeatedly till the number of repetitions is equal to the
number of order pickups in the vicinity of the first node of the

vehicle-trip-route.

(c) Candidate Based Penalty- Penalization with travel time metric:
According to the figure, the first node of the vehicle-trip-route is in
a region of high-demand (where order pickups in vicinity > ϵ· total
order pickups). Since the vehicle-trip-route leaves the vicinity
region, it is penalized. This penalty value is equivalent to the
penalty at the last node, which is a function of travel times

between the corresponding node (large orange bubble) and each
order in the vicinity of the first node.

Figure 4.8: Other Adjustment Techniques (contd.): All sub-figures have two Trips 1 and 2 that serve the same number of
orders and have the same cost. Each sub-figure represents an independent adjustment technique that utilizes unique

information to modify the costs. These are explained in individual sub-figures.



5
Demand Distribution & Instance Setup

The real potential of any anticipatory technique can only be ascertained if it offers consistent perfor-
mance enhancement over the myopic simulation on a diverse set of situations. This is owing to the
fact that no two days or even hours of grocery delivery operations have the same demand distribution.
Hence, it is imperative for the anticipatory approach to be evaluated on different demand distributions
to confirm the merits and limits of the approach.

At the time of conducting this study, to the best of our knowledge, no open-source real demand data
sets were available for testing the limits and capabilities of our solution methodology. Further, popular
simulation instances in literature [55][61][28] were limited in terms of the number of orders and the
unique spatial-temporal characteristics they offered. It, therefore, became crucial to generate our own
unique data set instances to evaluate the performance of our proposed approaches. For this purpose,
a total of 85 unique data sets were created majorly differing in their spatial-temporal characteristics. A
temporal characteristic pertains to the distribution of demand across time whereas a spatial character-
istic represents the distribution of demand over the graph. In addition, other forms of stochasticity were
also introduced in the instance set up to limit any performance bias. In the following sections, we first
study the temporal characteristics of demand. Second, we capture the spatial aspects of demand. In
the next section, we cover the generation of five unique data sets that mimick real-world data. Finally,
we explore external factors that add more stochasticity to the instance setup.

5.1. Temporal Characteristics
The temporal characteristic of a demand distribution focuses on the way new orders are placed across
time during a simulation period.

Most studies in literature model the demand on one of the following four random distributions- non-
homogeneous Poisson, homogeneous Poisson, Gaussian, or Uniform. Consequently, the question
arises which temporal patterns are suitable for our use case.

To identify the suitability of a temporal distribution, we refer to the work done by Van Lon et al.[65]. To
characterize the nature of each temporal distribution, Van Lon et al., distinguishes them on the basis of
a self-defined measure called dynamism. Their definition of dynamism refers to the degree of change
of continuous activity. Intuitively, this means that a highly dynamic scenario changes continuously
whereas a less dynamic scenario changes occasionally. This is illustrated by means of Figure 5.1.
Additionally, a complete explanation of dynamism is provided in Appendix H.

39
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Figure 5.1: Degree of Dynamism: Visualization of order arrival times, each red bar indicates an event in which a new order is
announced. The figures (a) to (f) are presented in decreasing order of dynamism. In (a) the events have equal interarrival
times and are nicely distributed over the period, in (b) and (c) we see that changes occur less frequently. In (d) and (e) all

events arrive in one or two batches making it less continuous and therefore less dynamic. In (f) all 10 events arrive at the same
time resulting in a scenario with no dynamism [65].

From their work, they identify that Uniform and Gaussian distributions are typically more dynamic than
their Poisson counterparts. This is illustrated in Figure 5.2. We re-implement their work using test data
sets and identify that our results highly correlate with their findings. This is highlighted in Figure 5.3.

Figure 5.2: Degree of Dynamism for the four commonly produced temporal distributions [65]

Figure 5.3: Degree of Dynamism for test instances

As the focus of our study is to build robust anticipatory techniques for fast-moving on-demand grocery
deliveries, we aim to conduct our experiments on highly dynamic demand situations. As a result, model-
ing our demand distributions as Uniform and Gaussian temporal distributions over Poisson distributions
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seems to be an appropriate choice. Using this rationale, we generate demand distributions for 80 data
instances with 40 instances distributed Uniformly, and 40 instances distributed as a pure Gaussian.
From the generated data instances, one instance from each of the temporal distribution categories is
illustrated in Figures 5.4a and 5.4b.

(a) Gaussian Temporal Distribution (b) Uniform Temporal Distribution

Figure 5.4: Temporal Demand Patterns: Distribution of orders with time. Each bar represents the orders accumulated in a
period of 6 minutes

5.2. Spatial Characteristics
The spatial characteristic of the demand pertains to how the orders’ destinations are spatially distributed
on the graph network during a simulation period.

To the best of our knowledge, most literature deploys a uniform distribution of demand across the entire
graph region with only a few notable exceptions [61][55] where demand is also clustered into two or
more distributions. Furthermore, limited information is available about how the demand is distributed
within each cluster. In our work, we identify two independent factors to characterize spatial distributions.
These are-

• Whether the demand is clustered in specific sub-regions of the graph?
• How the demand is distributed in each of its specific clusters or the entire graph?

We discuss the clustering of demand in Section 5.2.1 whereas the nature of the distribution is classified
further in Section 5.2.2.

5.2.1. Clustered vs Non-clustered Distributions
Demand for grocery delivery in an urban setting is not always evenly distributed. Some regions are
densely populated while others have sparsely located residences. Furthermore, some regions tend
to utilize online on-demand deliveries more than others. For instance, areas with a higher millennial
population are more likely to order online than other demographics [43]. Keeping this in mind, having
the demand spread throughout the map may not necessarily represent a true picture of demand in an
urban setting.

To model this uneven distribution of demand we generate two separate demand models- clustered
distributions and non-clustered distributions. Clustered distributions generate order destinations at
specific sub-regions of the graph creating an unevenly distributed demand pattern. On the other hand,
non-clustered regions can be considered as a 0 clustered distribution where the demand is distributed
throughout the entire graph network. In our work, clustered data set instances are divided into clusters
of 3, 5, and 7 sub-regions of the graph. This is done for the sake of adding more generality to our
simulation instances.

To generate suitable clusters of sub-regions within the graph network, we make use of an integer linear
program similar to the one used by Waller et al.[67]. The notations for the integer linear program are
highlighted in Table 5.1 and the ILP itself is illustrated by means of Algorithm 5. At first, a reachability
matrix R(i, j) is prepared from the travel time matrix τ(i, j). The reachability matrix comprises all
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origin nodes along rows and destination nodes along columns. A value of 1 across origin node i and
destination node j indicates that j is reachable by i. A value of 0 indicates otherwise. Reachability can
be defined as a binary term indicating whether the time required to travel between two nodes is lesser
than a threshold time period Γ. Furthermore, a binary variable x is defined where xi = 1 if vertex i is
used as a cluster center. Equation 5.1minimizes the number of nodes in the graph given the constraint
that every destination j must be reachable by at least one cluster center i. This is highlighted by
Equation 5.2. The solution to the ILP solver indicates the minimum number of cluster centers required
to cover the entire graph in terms of reachability. The nodes corresponding to cluster centers represent
the center of the sub-region and their reachable destinations form the nodes for the sub-regions of the
graph. This is indicated by equation 5.3. Note that in case a node is reachable by two cluster centers,
a random assignment of the node to the sub-regions takes place. A solution by the ILP is illustrated in
Figure 5.5.

Table 5.1: Explanation of variables for sub-region computation

Variable Explanation

τ(i, j) Travel time matrix indicating time taken to travel from node i to j
g1, g2, ..., gn n sub-regions or clusters of the Graph G
Γ Reachability threshold. All distances beyond this threshold are considered unreach-

able. We empirically determine a suitable value to be 150 seconds.

Algorithm 5 Sub-region computation in Graph using ILP
Input: G = (N,A), τ(i, j)
Output: {g1, g2, ..., gn} ∈ G
begin

R(i, j)← τ(i, j) < Γ

Solve; ∑
optim

= argminx

∑
i∈N

xi (5.1)

with constraints- ∑
i∈N

(R(i, j) ∗ xi) >= 1 ∀j ∈ N (5.2)

for i ∨ xi ← 1 do
gi ← gi, j ∀j ∈ R(i, j) > 0 (5.3)

end
return g1, g2, ..gn

end
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Figure 5.5: Sub-regions/Clusters obtained from the ILP solver: A total of 12 sub-regions are identified. Each unique color
represents a sub-region. The black nodes represent the cluster centers.

Once all the sub-regions of the graphs are obtained n sub-regions are selected at random, where n
can be 3, 5, or 7. Further, a random demand factor between 0.2 and 1 is determined for each of the
selected sub-regions. Each value of the demand factor indicates the ratio of total orders that are to
be generated for its corresponding sub-region. Additional noise is also to be added to the generated
demand. For this purpose, a noise value is defined that represents the share of total demand that will
be generated anywhere on the graph irrespective of the clusters. To generate and append the noise,
a standard noise value of 0.15 is selected and appended to the list of demand factors. These demand
factors are then normalized, to sum up to a total of 1. Figure 5.6 highlights two demand distributions
with clustered demand and non-clustered demand respectively.
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(a) Clustered Demand Distribution with 3 clusters (b) Non-clustered Demand Distribution

Figure 5.6: Spatial Demand Distribution on the Graph: Comparison between clustered demand patterns and non-clustered
demand patterns. The clusters represent sub-regions of the Graph where the majority of the orders are generated. Sub-region

computation is done by means of the ILP solver. Red colors represent zones with the highest demand. The intensity of
demand diminishes as color intensity reduces from red to blue.

5.2.2. Uniform vs Gaussian Distributions
In addition to the clustering of demand into sub-regions, the nature in which orders are spread within
each sub-region may also impact the performance of the proposed approach. As a result, we model
spatial demand using two separate distributions techniques- Gaussian normal distribution and Uniform
distribution.

Although the generation of a Uniform distribution is fairly simple, deployment of a true Gaussian distribu-
tion on a 2-dimensional graph proved to be non-trivial. Several intuitions were developed for modeling
a complete Gaussian distribution. These are coined displacement to the center method, index method,
and independent axis method. Amongst these, the independent axis method proved to be robust and
was selected for generating Gaussian distributions. We introduce the independent axis method in this
section by means of Algorithm 6. The other methods are covered in Appendix I for the interested
reader.

In the independent axis method, the mean and standard deviation are computed independently for
latitudes and longitudes of all the nodes in the graph/sub-region. In the subsequent steps, two inde-
pendent Gaussian distributions are generated using the mean and standard deviation of longitudes and
latitudes respectively. The independent distributions are then combined to form the complete coordi-
nates of the distribution. Then for each coordinate from the list of generated coordinates, the closest
node of the graph is determined and stored as the station corresponding to the order. Figures 5.7a and
5.7b illustrate examples of generated Uniform and Gaussian spatial distributions respectively. Accord-
ing to the figure, the Gaussian distribution has orders distributed around the cluster center which in this
case is the center of the graph. On the other hand, uniform distribution has no such patterns and the
orders are arranged throughout the graph region.
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Algorithm 6 Generation of Spatial Demand using Independent Axis Method
input: num_orders, G = (N,A)
output: demand_nodes
begin

Computing Gaussian Distribution:
listLongitude ← N · longitudes
meanx ← mean(listLongitude)
stdx ← std(listLongitude)
listLatitude ← N · latitudes
meany ← mean(listLatitude)
stdy ← std(listLatitude)
coordx ← Gauss(meanx, stdx, num_orders)
coordy ← Gauss(meany, stdy, num_orders)
coord← combine(coordx, coordy)
Finding nearest Node on Graph:
for destination ∈ coord do

distmax ←∞

for node ∈ N do
dlat← destination.longitude− node.longitude
dlon← destination.latitude− node.latitude

a = sin(dlat/2)2 + cos(node · latitude) ∗ cos(destination · latitude) ∗ sin(dlon/2)2 (5.4)

c = 2 ∗ atan2(sqrt(a), sqrt(1− a)) (5.5)

dist = 6373 · c (5.6)

if dis ≤ distmax then
distmax = dis
best_node← node

end
end
demand_nodes← demand_nodes, best_node

end
return demand_nodes

end

5.3. Demand Instances
The various spatial-temporal combinations give rise to 16 unique data set types. These are highlighted
in Table 5.2. Distributions from each data set type are sampled to obtain 5 independent instances. As
a result, we generate a total of 80 unique instances. Further, each data set instance has the same
number of orders set to 2500, and the same time period of distribution set to 3 hours. Same order
quantity and time span are selected in order to simplify the comparison of solution methodologies; Any
variation in performance can be largely attributed to changes in spatial-temporal configurations of the
demand.
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(a) Uniform Spatial Demand Distribution (b) Gaussian Spatial Demand Distribution

Figure 5.7: Comparison between a Uniform spatial demand distribution and a Gaussian spatial demand distribution: The
Gaussian distribution has orders distributed around the cluster center which in this case is the center of the graph. On the other
hand, uniform distribution has no such patterns and the orders are arranged throughout the graph region. Red colors represent

zones with the highest demand. The intensity of demand diminishes as color intensity reduces from red to blue.

Table 5.2: Unique Data Set Types

Temporal Characteristic Spatial Characteristic Clusters

Uniform Uniform -
Uniform Uniform Clustered 3
Uniform Uniform Clustered 5
Uniform Uniform Clustered 7
Uniform Gaussian -
Uniform Gaussian Clustered 3
Uniform Gaussian Clustered 5
Uniform Gaussian Clustered 7
Gaussian Uniform -
Gaussian Uniform Clustered 3
Gaussian Uniform Clustered 5
Gaussian Uniform Clustered 7
Gaussian Gaussian -
Gaussian Gaussian Clustered 3
Gaussian Gaussian Clustered 5
Gaussian Gaussian Clustered 7

5.4. Realistic Simulation Instances
In addition to the 80 demand instances mentioned previously, 5 additional demand instances were
generated by combining multiple temporal and spatial characteristics in a single instance. The goal of
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generating these instances was to obtain close-to real-world scenarios that could indicate the perfor-
mance improvement of our proposed anticipatory approach in a large-scale real-world setting. These
instances are illustrated in the Figure 5.8. The total demand of instances 1-5 increases from 1600
orders to 3600 orders. The main purpose of varying the demand was to test the capability of our antic-
ipatory approaches as the overall demand per unit time increases. This was achieved by generating
additional instances within the same time interval and superimposing the instances on themain demand
instance. All instanced have a constant period of operation between 9 am-5 pm.
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(a) Instance 1: 1600 orders

(b) Instance 2: 2500 orders

(c) Instance 3: 3300 orders

(d) Instance 4: 3400 orders

(e) Instance 5: 3600 orders

Figure 5.8: Realistic Instances: The instances are generated by superimposing multiple demand instances over each other in
a random fashion. The demand increases from 1600-3600 orders from instance 1-5. This is done to test the capability of

anticipation under different demand scenarios. The temporal distribution is divided into 30 bins each and the spatial distribution
is normalized. In the spatial graphs, nodes with red color have the highest demand intensity. This decreases as the color of the

nodes turn dark blue. This is also represented by the color bars next to the figures.
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5.5. Variation due to Depot Distribution on the Graph
The decision of how depots are located on the graph can have a big impact on the performance of
the algorithm. For instance, if the majority of the depots are located in one part of the graph, vehicles
will have to travel long distances to serve orders in other parts of the graph. This may result in longer
routes and a reduced number of orders served. In the worst-case scenario, parts of the graph may be
completely under-served. On the other hand, optimally placed depots may increase the service rate
but may not be representative of real-world routing.

It is safe to surmise that this impact may become even more profound with the anticipatory techniques
discussed in Chapter 4. The first of the twomain approaches push vehicles towards trips that end closer
to depot locations. This means that our algorithm will be even more likely to avoid any high-demand
regions that are farther from depots than the base algorithm. On the other hand, our second approach
constantly penalizes the vehicles for leaving high-demand regions. This may result in vehicles loading
more orders in the same trip limiting the benefit of rolling horizon-based optimization.

As a result, the decision of selecting depot locations is an imperative part of the instance setup. We
identified three main approaches for the distribution of depots on the graph- the K-center distribution
method, the Uniform distribution method, and Shorted Distance distribution method. Amongst these,
we identified the K-center distribution method to be suitable for our use case. Other approaches along
with our reasoning for selecting the K-center method are detailed further in Appendix J.

5.5.1. K-Center Distribution Method
The K-Center algorithm aims tominimize themaximum distance of any nodewith respect to their closest
depot. In this method, the first depot is selected randomly. Then every subsequent depot is determined
in such a way that its location is farthest from every other depot on the graph. This is repeated until
k depots are obtained. The algorithm was executed five times and the depot distribution that had the
lowest average distance to every other node on the graph was selected. This depot distribution is
highlighted in the Figure 5.9.

Figure 5.9: Depot distribution using the K-center Method: 15 depots are placed throughout the graph and are represented by
the yellow indicators.



6
Evaluation

In this chapter, we test the proposed anticipatory approaches from Chapter 4 and analyse their perfor-
mance in comparison to the base method introduced in Chapter 3.

For the simulation, a fleet of 10 vehicles is chosen, with each vehicle having a total capacity of 10.
From a research standpoint, this is a fairly large fleet to route in simulation and is only possible due
to the large-scale routing capabilities of VGA. From an operational standpoint, however, this is still a
relatively small fleet, unable to serve a very large number of orders. This was deliberately chosen so
as to obtain a high rejection rate that enables us to analyse rejections in a crisp manner. Further, the
impact of anticipation and how it affects the different performance KPIs can be evaluated clearly as any
change in performance will be largely attributable to the anticipatory technique itself.

Other parameters are mostly adopted from the implementation by [28]. These include the maximum
size of the trip that is limited to the capacity of the vehicle and equals 10. A maximum delay δdelay of
8 minutes with no possibility of re-insertion of ignored orders. Further, each order has only 5 possible
pickup locations (x = 5). The decision intervals of the algorithm is set to 100 seconds, i.e., δt occurs
after every 100 seconds. The penalty to ignore orders is set to a high value of 104. As such, these
parameters were determined empirically to have the best performance with limited resources in the
study by Kronmueller et al. and remain constant throughout the simulations. A complete list of the
parameters is given in Appendix K. Further, aspects of simulation such as details of the graph, and the
vehicle movement are covered in Appendix L.

We evaluate the capabilities of our proposed method by studying multiple performance KPIs. The first
KPI of concern is the service rate, i.e., the percentage of total orders that got served. In some cases, we
switch the service rate with the rejection rate that represents the percentage of rejections of the overall
orders. We then look at other customer experience metrics. These include the total time it takes to
deliver the order from the time of its request, the delay in delivery time relative to its optimal delivery
time, the time a parcel remains on a vehicle, and the duration an order waits at the depot before being
picked up by a vehicle. In addition, we also look at the operator’s cost which is determined in terms of
the total travelled distance of all vehicles. Finally, we observe the capacity utilization of our vehicles.
We do this by comparing the mean loaded parcels for each method. We also compute the a-posterior
cost given by Equation 3.1 to give an absolute performance comparison.

In the following sections, we first analyse the performance of single simulation instances to give the
reader an intuition of the comparative numbers, magnitudes and behaviour of the proposed approaches.
This is highlighted in Section 6.1. We then investigate our most promising approaches on the realistic
instances defined in Section 5.4. The goal is to see the large-scale long-run effects of the proposed
techniques. We further evaluate the sensitivity of the reward weights to analyse the robustness of
the approach. These are showcased in Section 6.2. We then collate our findings from running our
simulations under high-workload scenarios present in the 80 demand instances defined in Section 5.3.
We further deep-dive on the impact different demand distributions have on our anticipatory techniques.
These are covered in Section 6.3.

50
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6.1. Comparative Performance on Single Data Instances
A comparison of multiple anticipatory techniques and the myopic simulation is undertaken on sample
data set instances. These data set instances are only small-scale versions of the larger data sets
discussed in Chapter 5. The motivation for selecting sample data set instances was twofold. First, it
allowed us to run our initial simulations quickly, discarding poorly performing anticipatory techniques
early on. Second, it allowed us to get an early insight that the distribution of demand impacts the results
from our adjustment techniques - adjustment with rewards, and adjustment with penalty and rewards-
differently.

6.1.1. Assessing Performance of Anticipation by Introducing Rewards
In this section, we analyse the performance of several rewards adjustment techniques covered in Sec-
tion 4.3 by running the simulations on a sample data set instance indicated in Figure 6.1.

A smaller sample data instance other than the ones discussed in Chapter 5 was generated for com-
paring multiple variations of the rewards adjustment technique. This was done to quickly evaluate and
identify the most promising rewards adjustment approach for further analysis. The data set instance
comprises a clustered Gaussian spatial distribution of 3 clusters and a random uniform temporal distri-
bution. The total number of orders is 150 and the period of operation is 30 minutes.

(a) Spatial Distribution of Demand (b) Temporal Distribution of Demand

Figure 6.1: Preliminary Instance for Testing Anticipation with Adjustments using Rewards: The data set instance comprises a
clustered Gaussian spatial distribution of 3 clusters and a random uniform temporal distribution. The total number of orders is

150 and the period of operation is 30 minutes. The spatial graph is normalised such that red nodes indicate the highest
demand and violet nodes indicate low or no demand. This is also indicated in the colour bar. The temporal distribution is

divided into 30 bins, 1 for each minute of the simulation.

Note, our definition of rewards adjustment covers only those techniques where a reward (no penalty)
term exists. Figure 6.2 highlights the overall cost, service rate, time KPI’s, mean loaded parcels, and
total travel distance of all vehicles. The last bar (represented in red) in the graph highlights the results
obtained in case of perfect anticipation. Perfect anticipation is a simulation scenario that represents
the upper benchmark of performance improvement due to anticipation. The methodology is explained
in detail in Appendix M. Detailed results are covered in Appendix P.

We observe that except for the adjustment technique where the value of the rewards is determined by
the number of orders generated at the last node, all other techniques seem to improve the service rate
by 1%-4%. Whether this is an improvement for an operator depends on the goals of the operator. For
instance, in almost all simulations, the increase in the service rate comes at the cost of greater distances
travelled by the vehicles. If the operator cost budget is limited, this increase in travel distance may be
a great deterrent for adopting the anticipatory technique, even if it serves more customers.

One more thing to note is that the average loaded parcels on vehicles are lesser for all rewards adjust-
ment techniques while the service rate and distance travelled is higher for a majority of the approaches.
At first, it appears that for the majority of the approaches, the vehicles take shorted trips with lesser
parcels and return to the depot several times in a route. This could potentially explain both the longer
travel due to frequent depot returns as well as the lower occupancy of the vehicles. The service rate
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improvement, however, can be the virtue of better assignments by rewards adjustment and cannot be
explained by the shorter trips of the vehicles. The only exception to the above findings is the distance-
based rewards adjustment- x closest depots from the last node technique that additionally reduces the
total distance travelled. According to this technique, the vehicles are carrying lesser parcels on aver-
age, travelling lesser duration, but still improving the service rate over the myopic scenario. This could
potentially be explained by better assignments due to rewards adjustment.

Another positive aspect from these results indicates that customer experience metrics are marginally
better for 6 out of the 8 anticipatory techniques. Additionally, comparing the performance of our tech-
niques with the perfect anticipation scenario, we observe that our approaches are able to achieve be-
tween 10% to 50% of the improvement anticipation can provide if perfect information about the future
is known. Achieving such improvements with only a marginal increase in computation time indicates
reasonable merit for further analysing rewards adjustment.

Amongst the explored rewards adjustment techniques, the technique that outperforms all others is the
one where rewards values are computed as the average distance of x closest depots from the last node.
Apart from having the highest service rate, it is the only technique that reduces the distance travelled
by all the vehicles. As such, its performance comes closest to the perfect anticipation case. From now
on, any rewards adjustment simulation refers to the distance-based adjustment: x closest depots from
the last node.

Figure 6.2: Performance Comparison of Several Adjustment Techniques using Rewards versus the Myopic Algorithm: Overall
cost, service rate, time KPIs, mean loaded parcels, and total travel distance of all vehicles are displayed. The grey bar
represents the performance of the Myopic simulation. Each other bar represents a unique rewards adjustment technique
discussed in Chapter 4. Additionally, the Perfect Anticipation - 200s look ahead is represented by the red bar. Perfect

Anticipation provides the maximum potential of anticipatory improvement over the VGA for the given data instance. The figure
at the top represents absolute results whereas the bottom figure represents the difference in performance between the

approach under consideration and the myopic simulation. Detailed results are covered in Appendix P.
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6.1.2. Assessing Performance of Anticipation by Introducing Penalty + Rewards
In this section, we analyse the performance of several penalty/ penalty + reward adjustment techniques
discussed in Section 4.3. These are compared with the results of the myopic algorithm, as well as the
perfect anticipation case discussed in Appendix M. The results are obtained by simulating on a data
sample instance indicated in Figure 6.3. The data set instance comprises a uniform spatial distribution
and a series of temporal Gaussian distributions superimposed over each other. The total number of
orders is 150 and the period of operation is 30 minutes.

(a) Spatial Distribution of Demand (b) Temporal Distribution of Demand

Figure 6.3: Preliminary Instance for Testing Anticipation with Adjustments using Penalty/ Penalty + Rewards (P+R): The data
instance comprises a uniform spatial distribution and a series of temporal Gaussian distributions superimposed over each other.
The total number of orders is 150 and the period of operation is 30 minutes. The spatial graph is normalised such that red
nodes indicate the highest demand and violet nodes indicate low or no demand. This is also indicated in the colour bar. The

temporal distribution is divided into 30 bins, 1 for each minute of the simulation.

The key performance KPIs from the simulations are compared in Figure 6.4. These include the overall
cost, service rate, time KPI’s, mean loaded parcels, and total travel distance of all vehicles. We note
from the figure that all anticipatory techniques with penalization outperform the myopic scenario with
the overall service improvement ranging between 1%-3%. Furthermore, we note that techniques that
include both a penalty and a reward term perform relatively better than ones with only a penalty term.
This makes sense, as the former also incentivizes the vehicles to move towards high-demand regions
while the latter only focuses on restricting vehicles in high demand regions.

Further, from the preliminary results, we observe that penalization with a constant term performs exactly
the same as penalization with the travel time term. This, however, could have been a result of the nature
of the distribution and not necessarily repeatable across simulations.

It is also interesting to note that unlike the rewards adjustment techniques mentioned previously, pe-
nalization based approaches load more orders on an average and reduce the total travelled distance.
This seems reasonable, as by keeping the vehicles in high-demand zones we potentially limit any un-
necessarily long trips that lead to low demand yield sectors. Additionally, since we are more likely to
remain within small sectors of high demand, we potentially load more parcels for deliveries. The only
exception to this is the zone-based adjustment technique. This can potentially be explained by the fact
that the zones are defined differently under this technique. Unlike other anticipatory techniques where
the zones are defined relative to the first node of the vehicle, the zone-based adjustment approach
generates zones using an ILP solver. As a result, the zones generated are independent of the vehicle
locations. The static generation of zones seems to not have the same impact as the dynamic zones in
reducing the total travelled distance.

Comparing the performance of the proposed techniques with the perfect anticipation scenario, it seems
that adjustment with penalty offers about 30% of the maximum improvement VGA can achieve with an-
ticipation. Similarly, adjustment with penalty + rewards offers about 60%, and zone-based adjustment
offers about 50% of the maximum improvement VGA can achieve with anticipation.

Amongst the explored penalization based techniques, the method where adjustment occurs due to both
penalty and rewards stands out. Not only does it outperform in terms of service rate improvement, but
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Figure 6.4: Performance Comparison of Several Adjustment Techniques using Penalty/Penalty & Reward, & Myopic
Simulations: overall cost, service rate, time KPIs, mean loaded parcels, and total travel distance of all vehicles are displayed.

The grey bar represents the myopic simulation results and each other bar represents a unique adjustment with P/P+R
technique discussed in Chapter 4.Additionally, the Perfect Anticipation - 200s look ahead is represented by the red bar. Perfect
Anticipation provides the maximum potential of anticipatory improvement over the VGA for the given data instance. The figure

at the top represents absolute results whereas the bottom figure represents the difference in performance between the
approach under consideration and the myopic simulation. Detailed results are covered in Appendix P.
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it also marginally reduces the distance travelled as well as the delivery time, thereby offering an overall
better customer experience. From now on, all further results for adjustment with penalty + reward refer
to the technique of candidates based penalty + reward adjustment.

6.1.3. Discussion on Preliminary Results
While the preliminary results are promising and offer about 1-4% service rate improvement with both
adjustment techniques, it is imperative to note that the simulations are only executed on independent
sample data instances. Running rewards adjustment on the data instance used for penalty adjustment
show marginal to no improvement over the myopic scenario. Similar findings are also observed in the
case of penalty adjustment where performance improvement on the rewards adjustment data instance
is mild. This stresses the need for a methodology that identifies a suitable anticipatory technique given
the underlying demand distribution. Furthermore, the possibility of switching anticipatory techniques
during operations could be explored.

Another important aspect to note here is that the underlying data instances used are fairly small. As
a result, minor improvement in performance can have a relatively large impact on performance KPIs.
The data instances however are deliberately chosen to be small so as to identify the most promising
adjustment techniques without long computation cycles. Whether the selected anticipatory approaches
offer performance enhancement in large data instances still remains to be seen.

6.2. Analysis over Realistic Demand Instances
The objective of this section is to identify whether the proposed anticipatory techniques can replicate
their performance from Section 6.1 on near-realistic large-scale data instances. Further, the long period
of operation helps us analyse the long term effects of our anticipation methodologies.

6.2.1. Comparative Performance
Figure 6.5 highlights the relative performance of anticipation by rewards adjustment as well as the
adjustment with penalty + rewards with respect to the myopic algorithm for all 5 realistic data instances.

Looking at Figure 6.5b, we observe that rewards adjustment serves marginally more orders in 3 out of
the 5 instances. This translates to a service rate improvement of 0.1-1% over the myopic simulation.
It is important to note that resources such as total fleet size, number of depots, and other operational
constraints are kept constant for all 5 demand instances and across each methodology- myopic, antic-
ipatory approach, etc. As a result, the change in relative performance between the anticipatory tech-
nique and myopic instance is solely due to anticipation. As the demand in instances 1-5 increases from
1600-3600 orders, we observe that the potential of rewards adjustment diminishes with an increase in
total demand and even degrades in comparison to the myopic simulation. In particular, for instance, 4
and 5, the orders served by rewards adjustment are lower than the myopic simulations.

In addition, Figure 6.5c highlights the change in average delivery time for the different anticipatory tech-
niques with respect to the myopic simulation. It can be seen that the delivery time for both anticipatory
techniques typically increases in comparison to the myopic simulation. A similar phenomenon can also
be observed with distance travelled. This is illustrated in Figure 6.5d. These results indicate that the
improvement observed amongst the preliminary results (Section 6.1) in terms of reduced delivery times
and distance travelled seem to have diminished entirely for large scale instances.

It is also important to note that the adjustment with penalty and rewards outperforms the overall service
rate in only 1 out of the 5 instances. The instance for which this technique offers improvement is the
one with the least demand. Additionally, resources such as total fleet size, number of depots, and other
operational constraints are kept constant for all 5 demand instances and across solution methodology.
The results indicate a sharp degradation in performance of adjustment with penalty + rewards as the
overall demand increases while the other features are kept constant.
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(a) Comparison of Overall Cost for individual realistic instances: A
positive value of the bars indicates higher cost than the myopic

simulation, and hence, poorer performance.

(b) Comparison of the number of Orders Served for individual realistic
instances: A positive value indicates that the anticipatory methodology

serves more orders than the myopic simulation.

(c) Comparison of the total delivery time for individual realistic instances:
A positive delivery time for the anticipatory methodology indicates that
customers on average receive their orders later than in the myopic

simulation. (d) Comparison of overall distance travelled for individual realistic
instance: A higher distance means a greater amount of travel for all

vehicles.

Figure 6.5: Performance Comparison of Rewards Adjustment, Adjustment with Penalty + Reward, & Perfect Anticipation with
respect to the Myopic Algorithm for the realistic demand instances: Overall Cost Comparison, Rejections Saved, Delivery Time,

& Distance travelled are the key performance KPIs that are compared between the considered anticipatory methodology
(colour in legend) and the myopic simulation represented by the blue dotted line. Other KPIs are covered in a detailed table in

Appendix P.

An interesting observation is that the upper benchmark of performance improvement i.e, perfect antic-
ipation also has a threshold limit of total orders after which its performance diminishes. This can be
observed in Figure 6.5a where the overall cost difference between perfect anticipation and myopic sim-
ulation diminishes as demand increases from instances 1-5, with perfect anticipation performing worse
than the myopic simulation in instance 4. This, however, can not be attributable to the performance
limits of the approach but is rather the result of limited computation time for trips of the CTV graph. To
illustrate this, we simulate two perfect anticipation scenarios with trip computation cut off ρCTV,max of
30s and 90s for instance 4. This is depicted in Figure 6.6. The 30s approach performs worse than the
myopic simulation, but the 90s approach does better. This seems reasonable, as with more number
of orders in the perfect anticipation horizon, a greater number of trips are possible. Hence, a greater
trip computation time is required for exhaustively generating all possible trips. We, therefore, conclude
that in the case of instance 4, the cut-off time of 30 seconds can not exhaustively search all vehicle-trip
combinations. This leads to relatively poor performance. Increasing the cut-off time solves this issue
but at the cost of exponentially longer computations.



6.2. Analysis over Realistic Demand Instances 57

Figure 6.6: Performance comparison to illustrate perfect anticipation performance at different ρCTV,max cut-offs. The figure
displays Overall Cost, Service rate, time KPIs, mean loaded parcels and total driven distance for all vehicles. The bottom figure

represents a change in KPIs with respect to the myopic simulation run.

6.2.2. Impact over Temporal Evolution of the System
In this section, we study how the number of rejections evolves in time, compared to the case of no an-
ticipation. The main objective is to reason about the diminished performance of our approaches during
a full day of operation. Figure 6.8b shows how many rejections are saved by introducing anticipation
over VGA’s algorithm for each of the 5 realistic data instances. This is done by depicting the difference
between the accumulated rejections in the myopic scenario, and the accumulated rejections in all our
anticipatory techniques. The figure also illustrates the demand over time to assess any variation in
anticipatory potential with respect to the temporal distribution of orders.

In the case of rewards adjustment, results are hard to analyse. The inter-dependence of demand per
time step and anticipatory technique is not apparent. This is possible because the rewards adjustment
technique itself is not directly dependent on the demand but rather a function of the depot locations in
relation to the demand. One indisputable finding remains that rewards adjustment shows limited benefit
in a high rate of demand (approximately 50+ orders in 5 minutes) situations and continues to perform
worse even when this rate of demand diminishes. This can clearly be observed in instance four of the
Figure 6.8b. In the figure, the demand/time decreases to 20 orders/5 minutes around 14:00. At such de-
mand rates, our anticipatory technique has already shown performance improvements(refer instances
1 and 2). Despite the reduction in the demand rate, the rewards adjustment technique completely fails
at recovering from the initial loss of orders and continues to have a higher number of rejections than
the myopic simulation.

Observing results from individual instances, we find that while adjustment using penalty + rewards
shows performance improvement in only 1 of the 5 instances, it initially saves rejections in 3 out of the
5 cases with performance diminishing after a few hours of operations. The 2 instances where it does
not seem to do well from the beginning of the simulation are cases where demand per time instance
is substantially higher (instances 4 and 5) than other instances. We conclude that restricting vehicles
in certain regions may result in poorer states of the vehicles in the long term. Perhaps, this explains
why adjustment with penalty + rewards outperformed the myopic simulation in small data instances
(Section 6.1) but failed to replicate those results in large-scale long term scenarios (Section 6.2). We
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(a) Instance 1 (b) Instance 2

(c) Instance 3 (d) Instance 4

(e) Instance 5

Figure 6.7: The difference in accumulated rejections over time with and without anticipatory methods: The y-axis shows the
cumulative difference between the number of accumulated rejections if using the no-anticipatory method at all, and introducing
rewards (green curve), penalty + rewards (purple curve) or perfect anticipation (red curve). Demand is represented in blue to
evaluate variation in anticipatory performance with respect to variation in demand. Instances 1-5 increase in demand from
1600-3600 orders. Each vertical bar of demand represents the number of orders in approximately 5 minutes of operation.
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also find that anticipation shows limited benefit in cases where the demand per time step is extremely
high - approximately 40+ orders every 5 minutes- and continues to perform worse even when this rate
of demand reduces. Therefore, previous vehicle states may have a strong compounding effect on the
future performance of anticipatory methodologies.

Further, we also note that in all simulations, first, the anticipatory techniques perform slightly worse
than the myopic simulation before improving the number of rejections. This is in line with the principle
of anticipation, where decisions are modified to be better prepared for the future.

6.2.3. Assignment Including Rewards: Sensitivity to Change in Tuning Parame-
ter Θ

We study the effect rewards weight Θ from the rewards adjustment anticipatory technique has on our
simulations. We do this by systematically varying the tuning parameterΘwhile keeping all other param-
eters unchanged. Figure 6.8 shows the resulting effect of the %rejections and total delivery time as Θ
is varied. The results in the graph represent an average performance value for all 5 realistic instances.

We note from the figure that both the number of rejections and the total delivery time first increases
with an increase in Θ. This indicates that a mild rewards adjustment that only impacts the system in
a limited manner ends up diminishing performance. As Θ is further increased, the anticipatory impact
becomes more apparent, peaking at aΘ value between 50-100. As this range ofΘ where performance
improvement is wide, one can expect a performance improvement even if an optimal Θ is not achieved.
Additionally, any further increase in Θ after 100 drastically worsens performance. This is because a
higher Θ leads to an aggressive adjustment where vehicles compromise on serving current orders
and select trips closer to depots. Building from the findings of Fielbaum et al.[15], we conclude that
identifying an optimal tuning parameter is a crucial issue for our anticipatory techniques.

(a) Average rejected requests percentage as a function of the weight of
the rewards Θ

(b) Average delivery time as a function of the weight of the rewards Θ

Figure 6.8: Sensitivity to tuning parameter Θ: % rejections and the total delivery time as a function of Θ are displayed. The
baseline results, i.e, myopic simulation results are shown by a horizontal red line. The results represent averages of 5

simulations where each simulation is executed on a unique realistic data instance. Other KPIs are illustrated in Appendix N.

A similar analysis was conducted for the technique involving adjustment with penalty + rewards. It was
found that the best performance across all realistic instances was achieved when both κ and χ were
equal to 1. Any deviation from this value resulted in gross degradation in performance.

6.2.4. Discussion on Analysis over Realistic Demand Instances:
Analysing our anticipatory techniques over large scale instances, it is clear that the impact of anticipation
reduces as the demand increases. However, it is important to note that while the demand increased
from instances 1-5, the number of vehicles, depots, and time constraints remained the same for all
instances. As a result, each vehicle had a higher workload that increased from instances 1-5. It is
likely that the anticipatory potential reduces under extremely high workload scenarios and eventually
becomes counter-intuitive to the routing algorithm (as observed in instances 4 and 5). Increasing the
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number of vehicles proportionally to the demand may resolve this diminished anticipatory potential and
indicate a similar improvement in performance as observed in Section 6.1 over a myopic algorithm with
the same proportional increase in vehicles.

6.3. Analysis across 80 Demand Instances
The results obtained in Section 6.1 and Section 6.2 indicate that the performance of an anticipatory
technique is largely dependent on the underlying demand distribution. It, therefore, becomes imperative
to understand how the impact of anticipation varies with different demand scenarios. In this section, we
will explore the performance of our techniques over 80 standardized high demand scenarios introduced
in Section 5.3, and evaluate spatial-temporal characteristics that favour anticipation.

6.3.1. Overall Performance

Figure 6.9: Overall Performance Comparison of Rewards Adjustment and Adjustment with Penalty + Reward with respect to
Myopic Algorithm for all standardized demand instances: Overall cost, service rate, time KPIs, mean loaded parcels, & total
travel distance of all vehicles are displayed. The result is aggregated over 80 demand instances introduced in Section 5.3.

Figure 6.9 highlights the performance of the myopic, rewards adjustment, and adjustment with penalty
+ rewards approaches for all 80 data sets combined. To eliminate any influence of outliers in individual
results, a median of each selected KPI is computed for all instances. From the figure, it appears that
rewards adjustment marginally improves performance in a majority of the data set instances. This is
true for all performance KPIs except the distance travelled. However, the impact of an increase in
distance is minor in comparison to the increase in service rate. This can also be observed by the lower
overall costs compared to the myopic simulation. These results suggest that the rewards adjustment
technique proves to be robust at improving performance without any additional computation budget
requirement. Although, it is important to note that the degree of improvement is marginal and only up
to a maximum demand per unit time value.

On the other hand, adjustment with penalty and rewards diminishes performance in a majority of the
data set instances. This relatively poor performance of anticipation with penalisation and rewards is,
however, not unexpected. One possible suggestion could be that since the duration of operations is
3 hours, the long-term impact of restricting vehicles in certain zones have taken effect and diminished
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overall results. Other reasons could be associated with the demand distribution itself. These are
discussed in more detail in subsequent sections.

6.3.2. Performance Comparison across 80 Demand Instances

Figure 6.10: Median difference in accumulated rejections with and without anticipatory methods: The y-axis represents the
median difference in rejection with and without anticipatory techniques, and the x-axis represents independent demand

distributions (highlighted in the legend). Results are aggregated over 5 instances for each distribution. A positive value of a bar
indicates that the median number of orders served by the anticipatory methodology is greater than the myopic method for
particular data distribution. The black lines over the bars represent the standard error over the median rejections saved.

In this section, we study the difference in accumulated rejections between our proposed anticipatory
techniques and the myopic simulation over each data set type described in Section 5.3.

Figure 6.10 highlights the median difference in rejections between each of the proposed anticipatory
techniques with respect to the myopic simulations. The results are aggregated over 5 instances for
each unique distribution. Further, a confidence interval of 65% was chosen to evaluate the standard
error around the median value. From the figure, we observe that the rewards adjustment technique
serves more orders in 10 out of 16 data set types. On the other hand, adjustment with penalty and
rewards outperforms the myopic simulations only in 3 out of the 16 data set types. Further looking into
the results, we observe that rewards adjustment tend to do better under certain distribution types over
others. For instance, rewards adjustments outperform the myopic simulation in all scenarios when both
the spatial and temporal distributions are Uniform. On the other hand, rewards adjustment outperforms
the myopic simulation in only 1 out of the 4 instances when both the spatial and temporal distributions
are Gaussian. As such, the results from the figure strengthen our hypothesis that there exists an inter-
dependence between the impact of anticipation and the underlying demand distribution. Apart from
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rejections saved, differences in other KPIs are also studied and can be found in Appendix O.

Impact of Temporal Distribution

(a) Rewards adjustment vs Myopic (b) Adjustment with penalty + rewards vs Myopic

Figure 6.11: Median difference in accumulated rejections with and without anticipation for independent temporal distribution:
Both figures represent a comparison of rejections between a unique anticipatory technique and its myopic counterpart. The two
bars in each figure correspond to results obtained on different temporal demand patterns discussed in Section 5.1. As such, a

positive value of the bar represents additional orders served when deploying an anticipatory methodology in place of the
myopic method. The results are aggregated over 40 instances for each of the temporal distributions.

Figure 6.11 illustrates the median rejections accumulated with and without anticipatory techniques for
each temporal data distribution. As such, a positive value of the bar represents additional orders served
when deploying an anticipatory methodology in place of themyopic method. The results are aggregated
over 40 instances for each of the temporal distributions.

The figure highlights that both anticipatory techniques are capable of servingmore orders in comparison
to their myopic counterpart in the case of Uniform temporal distributions. As Gaussian distribution
aggregate the majority of the demand within a small operation period, the solution algorithm has more
trips and routes to work on within that period. This large rate of demand limits the anticipatory benefit
provided by the proposed techniques. This also aligns with our findings in Section 6.2 that anticipatory
techniques tend to diminish in performance as the number of orders per time instance increases.

Impact of Spatial Distribution

(a) Rewards adjustment vs Myopic (b) Adjustment with penalty + rewards vs Myopic

Figure 6.12: Median difference in accumulated rejections for Spatial Distribution Types- Nature of Distribution: Each figure
represents a comparison in rejections accumulated between an anticipatory technique and its myopic counterpart.

Independent bars in each figure correspond to one of the spatial distributions discussed in Section 5.2.2. As such, a positive
value of the bar represents additional orders served when deploying an anticipatory methodology in place of the myopic

method. The results are aggregated over 40 instances for each of the temporal distributions.
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Figure 6.12 highlights the impact that the nature of a spatial distribution has on the proposed anticipatory
techniques. It does so by illustrating the median rejections accumulated with and without anticipatory
techniques for each spatial data distribution. As such, a positive value of the bar represents additional
orders served when deploying an anticipatory methodology in place of the myopic method. The results
are aggregated over 40 instances for each of the spatial distributions - Uniform & Gaussian.

Looking at the figure, the rewards adjustment approach tends to perform relatively better when the dis-
tribution is Uniform rather than Gaussian. On the other hand, it appears from the figure that adjustment
with penalty + rewards has no dependence on the spatial distribution pattern of demand. Surprisingly,
one would expect adjustments with penalties + rewards to serve more orders in the case of Gaussian
distributions. This is because the approach restricts vehicles to certain regions where demand is high.
As a result, such an approach should keep vehicles at the centre of the Gaussian demand clusters
thereby serving more orders. This, however, does not seem to be the case.

(a) Rewards adjustment vs Myopic (b) Adjustment with penalty + rewards vs Myopic

Figure 6.13: Median difference in accumulated rejections for Spatial Distribution- Clustered vs Non-clustered: Each figure
represents a comparison in rejections accumulated between an anticipatory technique and its myopic counterpart. Independent
bars in each figure correspond to results obtained on different demand types as per Section 5.2.1. As such, a positive value of

the bar represents additional orders served when deploying an anticipatory methodology in place of the myopic method.

Apart from the different spatial distributions, demand locations are also divided into clustered or non
clustered locations as per Section 5.2.1. Figure 6.13 highlights the difference in accumulated rejections
with and without anticipatory techniques for clustered and not clustered demand. The figure highlights
that both anticipatory techniques perform substantially better in scenarios where the demand is not
clustered.

Perhaps, the decrease in performance of rewards adjustment when demand is clustered could be
explained by the relative distribution between the depots and sub-graphs where demand is generated.
To clarify, we know that the rewards adjustment approach tends to select trips that end closer to depots.
Now, in the case where the sub-regions of demand are substantially farther away from depot locations,
the rewards adjustments technique will influence vehicles to locations of relatively lower demand that
are closer to the depots. As a result, in the case of clustered demand, where clusters themselves are
located farther from depots, the anticipatory technique may prove to be counter-intuitive and limit the
benefit of anticipation. A potential solution in this direction could be incorporating a rewards value term
that uses the endogenous demand of the graph. Such a rewards value term may limit the counter-
intuitive trip selection of the proposed approach by keeping in view the location of the demand.

The results obtained for adjustment with penalty + rewards are even more surprising. Since this antic-
ipatory approach restricts vehicles in certain locations, one would expect it to outperform the myopic
simulations when the demand is already clustered in certain regions. However, this does not seem to
be the case. From these results, it can be argued that a combination of multiple spatial & temporal
characteristics influences the anticipatory potential of the discussed approach. We will further explore
this relationship between depots and demand in further discussions to validate our hypothesis.
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(a) Rewards adjustment versus Myopic (b) Adjustment with penalty + rewards versus Myopic

Figure 6.14: Variation in rejections accumulated (anticipatory potential) with and without anticipatory techniques for an
increasing average travel time between demand and depots: Each point on the scatter plot corresponds to a pair of simulations
executed on a unique data instance from the 80 data instances generated in Section 5.3. The y-axis represents the rejections
saved by deploying an anticipatory methodology in place of the myopic simulation. The x-axis represents the overall average
travel time between all order destinations and their respective x closest depots. The blue line represents the regression line for

the scatter points and the shaded area represents 95% confidence interval.

Impact of Proximity to Depots
In this section, we studied the impact of relative distribution between depots and demand on the an-
ticipatory potential of our approaches. Figure 6.14 illustrates the difference in rejections accumulated
with and without anticipatory techniques versus the travel time between the depots and demand. Each
point on the scatter plot corresponds to a pair of simulations executed on a unique data instance from
the 80 data instances generated in Section 5.3. The y-axis represents the rejections saved by deploy-
ing an anticipatory methodology in place of the myopic simulation. The x-axis represents the overall
average travel time between all order destinations and their respective x closest depots. The blue line
represents the regression line for the scatter points and the shaded area represents 95% confidence
interval.

Following the regression line from the figure, we observe that rejections saved by using rewards ad-
justment technique marginally reduces as the average travel time between the depots and demand
increases. After around 200 seconds of average travel time between depots and demand, the antic-
ipatory benefit becomes completely void and serves even lesser orders in comparison to the myopic
simulations.

On the other hand, adjustment with penalty + rewards serves lesser orders than its myopic counterpart
when the average travel time between depots and demand is low. As the average travel time increases,
the gap in the orders served between the adjustment with penalty + rewards and its myopic counterpart
reduces, becoming greater than zero after 210 seconds. This indicates that adjustment with penalty
+ rewards has a higher anticipatory potential when the demand is located farther away from depots.
Since the goal of the adjustment with penalty + rewards anticipatory technique is to keep vehicles in
high demand zones, an increase in distance between demand and depots will cause the anticipatory
method to focus on longer trips with more parcels per vehicle that limit the number of returns to depots.
Thus, these results are aligned with our understanding of the approach. The interesting question here
is that why does this anticipatory potential not translate to a similar performance when demand is
clustered in specific regions as covered in the previous section? Additional analysis on the relationship
between adjustment with penalty + rewards needs to be explored.

It is important to note that an increase in anticipatory potential does not indicate more orders served
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over the myopic simulation. Rather, it focuses on the relative difference in orders served between the
anticipatory technique and its myopic counterpart. An increase in anticipatory potential therefore, high-
lights a positive impact on the anticipatory approach. This could be either reducing the gap of orders
served between the anticipatory technique and its myopic counterpart when the myopic simulation out-
performed the anticipatory technique, or increase in rejections saved by the anticipatory technique. As
a result, when we refer to increase in anticipatory potential, it is irrespective of whether the anticipatory
techniques outperforms the myopic simulation.

The results from Figure 6.14 provide directional evidence about the impact of average travel time on
anticipation. At the same time, it can be observed that the independent simulation results are widely
scattered to be able to draw any strong conclusive insights. Hypothesizing that the spatial-temporal
nature of demand also impacts this relationship, we further split the Figure 6.14 for each unique demand
distribution in Section 5.3. This is indicated in Figure 6.15 for rewards adjustment vs myopic simulations
and Figure 6.16 for adjustment with penalty + rewards versus myopic simulations. Just like Figure 6.14,
each chart in Figures 6.15 and 6.16 illustrates the difference in rejections accumulated with and without
anticipatory techniques versus the travel time between the depots and demand. Each chart further
corresponds to a unique demand distribution from Section 5.3.

Independent charts for both anticipatory techniques provide a relatively clearer relationship between
the average travel times from depots to demand and their impact on the anticipatory potential. As
such, for rewards adjustment, 13 out of the 16 distribution setups indicate that increasing the average
distance between depots and demand limits the impact of anticipation for rewards adjustment, i.e, the
rejections saved by rewards adjustment reduces with increase in average travel time. Furthermore,
adjustment with penalty and rewards highlights a much higher anticipatory impact in 11 out of the 16
distribution setups with an increase in the travel time.

6.3.3. Discussion on Analysis across 80 Demand Instances
Analysing the performance of both anticipatory techniques over the different demand instances provides
several interesting insights.

First, we identify that rewards adjustment seems more robust than adjustment with penalty+rewards
in improving performance over the myopic solution. Despite this, adjustment with penalty+rewards
notes the largest number of median rejections saved over the myopic scenario for all data instances.
This is observed when the demand is Uniformly distributed in space and time and has no clustered
orientation. This indicates that adjustment with penalty + rewards offers a unique opportunity to be
deployed whenever the underlying demand is Uniformly distributed.

Furthermore, both forms of anticipation show limited improvement in spatially clustered demand pat-
terns. As a result, one can maximize performance enhancement by applying anticipation only when
the demand is not clustered and turning anticipation off when clustering of demand is observed. This
would allow the system to benefit from the advantages of anticipation whenever possible.

In addition, we note that the performance of rewards adjustment decreases as the distance to the
depot increases. In contrast, the performance of adjustment with penalty + rewards increases with
distance. An anticipatory technique that deploys rewards adjustment when demand is close to depots
and adjustment with penalty + rewards when demand moves further away from depots could allow an
improvement over both independent anticipatory techniques.
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Figure 6.15: Variation in anticipatory potential (difference in rejections accumulated) of rewards adjustment when increasing
average distance between travel time between depots and x closest depots for each demand distribution: Each point on the
scatter plot corresponds to a pair of simulations executed on a unique data instance from the 5 data instances of a particular
demand distribution. The y-axis represents the rejections saved by deploying the rewards adjustment methodology in place of
the myopic simulation. The x-axis represents the overall average travel time between all order destinations and their respective

x closest depots. The blue line represents the regression line for the scatter points and the shaded area represents a 65%
confidence interval.
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Figure 6.16: Variation in anticipatory potential (difference in rejections accumulated) of adjustment with penalty and rewards
when increasing average travel time between depots and x closest depots for each demand distribution: Each point on the
scatter plot corresponds to a pair of simulations executed on a unique data instance from the 5 data instances of particular

demand distribution. The y-axis represents the rejections saved by deploying the adjustment with penalty + rewards
methodology in place of the myopic simulation. The x-axis represents the overall average travel time between all order

destinations and their respective x closest depots. The blue line represents the regression line for the scatter points and the
shaded area represents a 65% confidence interval.



7
Conclusion

The objective of this study was to enhance the state-of-the-art solution for large-scale on-demand same-
day grocery deliveries. We focus on devising several anticipatory techniques that can be implemented
over the state-of-the-art VGA algorithm and improve the overall performance.

We propose a total of 12 modifications to existing anticipatory methods to suit the context of same-
day delivery. For the first 8 methods, the objective function is modified by introducing a reward to
all possible combinations of routes a vehicle can take. The other 4 methods focus on introducing an
additional penalty term to prevent the vehicles from taking certain routes.

We observe that for small problem instances of 150 orders and 30 minutes of operation, eleven out of
the twelve anticipatory methods serve up to 5% more orders and marginally reduce delivery times in
comparison to the myopic method. This comes at a cost of greater distance traveled for a majority of
the methods.

Additionally, the quality of anticipatory improvement decreases as the demand increases to real-world
settings while keeping other resources constant. In particular, for large-scale long-duration problem in-
stances, the rewards adjustment anticipatory technique improves service rate over the myopic method-
ology by only 0.1-1% of total demand. In certain instances of very high demand (3400+ orders in 3
hours), the rewards adjustment anticipatory techniques is even outperformed by the myopic methodol-
ogy. On the other hand, adjustment with penalty + rewards is outperformed by the myopic algorithm
in 4 out of the 5 real-world instances. For both anticipatory techniques, a threshold demand rate (ap-
proximately 40+ orders/ 5 minutes for adjustment with penalty + rewards and 50+ orders/ 5 minutes
for rewards adjustment) is found. Any demand scenario with a higher demand rate generally leads
to poorer performance than myopic methodology when deploying anticipatory techniques. While dis-
cussing this limitation, it is important to consider that operational resources such as fleet size, number
of depots, etc, remain constant and do not scale with the rising demand. As a result, the diminished
anticipatory potential could be attributed to the over-saturation of the existing fleet. An interesting ques-
tion here would be whether increasing the number of vehicles or the number of depots helps increase
the impact of anticipation for large problem sizes?

On further exploration, we identify that the performance of our methods is highly dependent on the
underlying demand. To explore this phenomenon further, we devise strategies to generate several
different types of demand distributions varying in their spatial-temporal characteristics and relationship
with the graph environment. Our analysis indicates that our methods perform much better when de-
mand per time instance is moderate and is distributed uniformly in time and space. Further, depending
on the anticipatory technique, the average distance between demand and their feasible depots also
plays an important role in influencing the overall performance of our methods. Despite their limitations,
we identify that the proposed technique for rewards adjustment: adjustment based on distance from
x closest depots to the last node of the trip, outperforms the myopic methodology on a majority of
the instances. The rate of improvement is, however, marginal and ranges from 0.05-1.2% of the total
demand.
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We believe that our study opens up avenues for multiple directions of future research:

First, more robust anticipatory techniques could be explored. For instance, in the rewards adjustment
case, more advanced methods depending on endogenous or exogenous demand could be utilized
to compute the value of the reward. Further, for adjustment with penalty and rewards, a time metric
of demand could also be added to their adjustment term to limit their diminishing impact over a long
duration of operation. In addition, entirely new anticipatory techniques such as the artificial requests
method with VGA could also be explored.

Second, anticipation has shown to be sensitive to underlying demand and graph characteristics. There-
fore, further analysis on how these characteristics impact performance will be of considerable value.
This insight will allow us to understand where our methods succeed and where they don’t. This could
enable an alternate direction of research on ensemble methods that switch one or more ”less robust”
anticipatory techniques based on changes in the underlying demand patterns. Additionally, the impact
of operational parameters such as fleet size, number of depots, re-insertions of ignored orders, etc. on
anticipation can also be explored.

Third, in our work, we only performed a limited study on how the tuning parameters vary the perfor-
mance of anticipation. A thorough analysis on Θ, χ, and κ and how they impact the performance also
needs to be conducted. Further, adapting the parameter values during operations could also be ex-
plored. How one tunes the parameters would depend on a multitude of external and internal factors
and can be a considerable challenge. One approach to addressing this challenge could be through
learning procedures.

Finally, assumptions that limit the practical implementation of our methods such as negligible trip com-
putation time, fixed vehicle speeds, the lack of real data, etc. could be navigated to reduce the gap
between these methods and their industrial applications.



A
Attributes of Vehicle Routing Problems

A.1. Constraints
Three main constraints affect the retail-based same-day delivery problem. These include the total
working hours, the capacity of the vehicle, and the delivery time constraints [59].

• Total Working Hours: All SDD research has fixed total working hours within which it needs to
satisfy as many requests as possible. Inability to satisfy a request or rejection (if allowed) is often
associated with a penalty. With the total working hours fixed, the focus of research is to find
optimum routes for serving the maximum number of requests.

• Capacity: A CVRP is associated with the limited capability of a vehicle to deliver orders due to
lack of space or weight carrying capacity within the vehicle. The logistical context often influences
the vehicle capacity. For instance, postal deliveries may consider infinite capacity due to the
limited volume of an individual post. In contrast, transportation of customer grocery may occupy
considerable vehicle space, and hence setting capacity constraints seems logical. We focus on
problem formulations where capacity constraint incorporation is imperative to the routing criteria.

• Time Constraints: Same-day delivery can have two distinct types of constraints associated with
delivery times. These are known as TW and DD. In TW formulations, a customer places an
order to be delivered within a pre-specified time period during the day. On the other hand, DD
formulations focus on delivering the order as early as possible after the request is made or within
a maximum allowable delay time. The choice of time constraint selected within literature can
largely affect the routing policy performance[14]. Further within the two constraint scenarios, a
delay in the specified delivery times may or may not be allowed or only allowed up to a specific
margin.

A.2. Type of fleet
A homogeneous fleet is one where all the deliveries are carried out by the same type of vehicle. In
contrast, a heterogeneous fleet uses different types of vehicles or even a multi-modal transportation
system. An example of such a fleet is given in Ulmer and Thomas (2018)[62] where the delivery can
either be carried by a drone or a vehicle. A heterogeneous fleet brings with it the added complexity of
selecting an appropriate vehicle for the delivery of services in addition to assignment and routing. In
our work, we focus only on research based on a homogeneous fleet.

A.3. Fleet Size
Mainly research across SDD can be divided into two separate scenarios- a single-vehicle scenario
and a multi-vehicle scenario. Single vehicle scenarios are generally simplifications of the fleet routing
problems to highlight the effectiveness of a robust state-of-the-art approach such as the one deploying
approximate dynamic programming for routing decisions[61][63]. The proposed work focuses on the
multi-vehicle fleet scenario.
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A.4. Objective Function
An objective function for a minimization or maximization problem defines the business goals in math-
ematical terms. In-vehicle routing, existing literature largely varies in the formulation of the objectives
desired from a model. Some of the commonly observed objectives in same-day delivery include the
number of customers serviced or rejected[66], cost of operations, total slack time available[61], travel
distance, and total service delay[20]. An objective function can also be a combination of two or more
objectives. For instance, the meal delivery problem mentioned in [48] considers a weighted combina-
tion of customer service delay and total travel time as its objective. In some works such as the one by
Mitrovic-Minic et al.[36], anticipation is also heuristically incorporated by making suitable additions to
the objective function. Comparison of different objectives remains out of the scope of this literature.

A.5. Uncertainties
Existing literature covers uncertainty in four main aspects - Travel time, Service time, Demand, and
Requests[42].

• Travel Time: In a real-world setting, travel time between two locations is neither constant nor
known in advance. This is largely attributable to varying traffic conditions, unforeseen accidents,
or traffic management. In addition, the existence of multiple routes between the origin and the
destination as well as the interdependence of travel between routes can also affect the uncertainty
of travel times. In the context of modeling travel, a considerable amount of research focuses on
assuming a static travel time. Albeit simple, a static travel time can not accurately represent
a real-world scenario. There are three possibilities of modeling uncertainties in travel times -
time-dependent, stochastic, or both. Ritzinger, in his literature review, highlights that models that
consider uncertainty in travel times show the performance improvement of up to 10% over models
that consider static travel time[49].

• Service Time: The time required to provide service to a customer could vary due to several
factors such as varying duration to find parking or differing services required by the customer. At
least for the case of retail-related vehicle routing, the service represents the drop off of the order
at the required location. There is limited interest in the research community to model uncertainty
in-service time[42] despite the fact that it may be of substantial benefit to the logistics industry.
This could probably be attributed to the complexity of modeling the service time in the solution
approaches. Currently, most research assumes a constant service time for simplicity.

• Demand: Applications where the actual quantity of items required are not known prior to reach the
customer destination represent uncertainty in demand. Typical examples that showcase uncer-
tainty in demand include garbage collection, gas supply, etc. In the case of on-demand same-day
delivery problems, the quantity demanded is always known prior to reach customer destinations
and hence, does not require any special modeling.

• Request: Uncertainty in requests is a widely researched problem class where the information
about a customer request for pickup, delivery or service remains unknown prior to the order itself.
All same-day delivery problems deal with stochastic requests and utilize a range of approaches
to accurately anticipate orders.



B
Types Of Anticipatory Techniques

The main idea of anticipation is to incorporate future information in the decision-making model so as to
obtain a better overall solution. This in turn will make the overall solution more optimal and robust to
incomplete information. Several techniques of anticipation have been developed and deployed over the
last two decades in the context of SDVRP. In the following sections, we will first present a classification
of the different anticipation techniques. This will be followed by studying some commonly recurring
anticipatory techniques. We will further analyze their possible advantages and drawbacks and briefly
touch upon any heuristics required for their implementation.

Largely different anticipatory techniques differ in terms of the degree to which they provide anticipation
to a decision point. As such Schneeweiss et al.[53] categorized anticipatory techniques by the following
criteria-

• Reactive vs Non-Reactive Anticipation: Reactive anticipation classifies to those set of antici-
patory techniques that incorporate future developments within the present decision. In particular,
MDP and look-ahead-based solution methodologies that simulate future decision points are in-
herently reactive. Generally, such methods make use of the Bellman equation[5] for estimating
the value of a decision. On the other hand, non-reactive approaches are techniques that do not
simulate the future using the Bellman equation[59].

• Implicit vs Explicit Anticipation: Anticipatory techniques that do not utilize stochastic informa-
tion, but rather depend on heuristics or rule of thumb are considered implicit anticipation. On the
contrary, techniques that require information of future requests/demand or other factors of uncer-
tainty and explicitly utilize them in the solution methodologies are known as explicit anticipatory
techniques.

Table B.1: Classification of Anticipatory Techniques[59]: Reactive techniques make use of derivations of bellman equation,
where as sampled stochasticities are incorporated when the anticipatory techniques are explicit. A perfect anticipation scenario

is also covered where all stochastic information and the original bellman equation can be used.

These two broad criteria are further combined to make four distinct anticipatory classes- Non-reactive
Implicit, Non-reactive Explicit, Reactive Explicit, and Reactive Implicit. These are highlighted in Table
B.1, where B stands for the use of Bellman equation and P stands for utilization of stochasticity. It
highlights that reactive anticipation is a technique that makes use of either the Bellman equation or one
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of its derivations. Further, it covers the difference between explicit and implicit anticipation, highlight-
ing the relevance of sampling stochastic information for the former. Another category in Table B.1 is
perfect anticipation, it represents all known future states and therefore these can be solved without the
approximation of Bellman equation and sampling. Perfect anticipation is tractable only for problems
with q small number of decision states where the recursive calculation is possible. As such, most SD-
VRP literature problems are too vast for perfect anticipation and therefore, not included in this literature
survey. The interested reader can read the work of Schneeweiss for more details on perfect anticipa-
tion[53]. Further, we did not identify any reactive implicit approaches during the course of the literature
study.



C
Approximate Dynamic Programming

Within the MDP framework, a number of decision points occur subsequently. For each decision point,
a set of states is given. For each state and decision point, a subset of decisions is available. The
combination of a state and a decision leads to a PDS. A transition would then lead to a new state
from the state space. In the context of SDVRP, a state could indicate vehicle locations, the routes, the
current timestep, and the set of ordered but unassigned requests. Decisions can be taken regarding
the assignment of the unassigned orders to vehicles and their subsequent routing. A PDS could then
represent the updated routes, new-vehicle locations, and assigned requests. A new request or subset
of new requests at a later time would represent the transition to the next state[59]. For more details,
the interested reader can review the modeling study by Ulmer et al.[64].

In the ADP framework, expected future values are accumulated at the PDS and depend on a base
policy applied. The value of a post-decision state is computed by recursively applying the policy rules
from the post-decision state to the terminal state. This is also given in Equation C.1.

V π
S (Sx

k ) = [

K∑
j=k+1

R(Sj , X
π(Sj))|Sx

k ] (C.1)

where V π
S (Sx

k ) is the value of the PDS Sx
k when applying policy π.

Further, the decision rule of the particular state is computed by the Bellman equation[5], which is the
sum of immediate reward and the expected reward given by the PDS value. This is shown in Equation
C.2

Xπ∗

k (Sk) = max
x∈X(Sk)

R(Sk, x) + V π
S (Sx

k ) (C.2)

where Xπ∗

k (Sx
k ) is a decision at the particular post-decision state.

As the PDS space can be vast, depending on several attributes, the computation of their values can
suffer due to dimensionality constraints on the algorithm. In particular, aggregation and partitioning
methods are used to simplify and reduce the state space for the approximation of the values. These
methods are further explored in [59]. Further, two main ADP methods exist for mapping the state space
to expected rewards- VFA and PFA. The interested reader is referred to the thesis study by Engelen
for a complete working of a PFA[14]. Here, the author uses PFA to estimate weights for the convex
objective function of the used policy. Additionally, VFA can further be classified as MVF and AVI. While
MVF are parametric methods such as regression analysis, AVI computes independent and individual
values of the PDS. The interested reader is referred to the study by Powell[41] for more details on the
working of AVI’s.
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Illustrating Multiple Routes for a

Vehicle-Trip Combination

Figure D.1: Visualization of two possible sequences of deliveries for the same vehicle-trip combination

The scenario displayed in Figure D.1 showcases two ways in which a vehicle can serve a trip. Option
1: Indicated by the black arrow represents a route that first delivers order B and then orders A. Option
2: Indicated by the red arrow represents a route that first delivers order A and then orders B.

In terms of cost, let us assume that orders A and B are requested at time t = 0 seconds and have
an optimum delivery of 11 seconds and 8seconds respectively. In this case, we assume service and
pickup times are negligible. In the selection of option 1, the total operating cost is 8+5 = 13 seconds,
whereas the cost due to delay to order A is 8+5-11=2seconds. On the other hand, option 2 results in
an operator cost of 11+5=16 seconds, and a delay to order B of 11+5-8 = 8 seconds. If we assume a
weightage factor β of 0.5, the total cost of option 1 becomes 7.5 seconds and that of option 2 becomes
12 seconds, making option 1 the more optimal route.
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E
Alteration to the Implementation of VGA

from Original Works

In the work by Kronmueller et al.[28] when an assignment of trips to vehicles at any decision interval
of ψ is decided, requests that do not get picked up before the maximum waiting time deltamax are
re-inserted into the pool of orders. As such, they describe two different delay terms δdelay,real which
is defined by the service level and δdelay,heuristic which is equivalent to the maximum delay at which
the method performs well. As long as δdelay,heuristic < δdelay,real orders can be re-inserted after being
ignored. The re-inserted candidate gets a new release time t, which is equivalent to the current time.
This is done for satisfying the feasibility constraints of the re-inserted order. However, the original
release time is used for the computation of the overall costs. The total number of re-insertions ζ can
be defined as-

ζ =
δdelay,real

δdelay,heuristic
(E.1)

This re-insertion affects performance improvements greatly.

We introduce a slight modification to their approach. In our work, we keep δdelay,heuristic = δdelay,real.
As a result, any request that gets ignored by the system is not re-assigned in the next iteration but
removed from the pool of orders. While this grossly limits the capability of the VGA approach, results
with re-insertions can be hard to interpret and analyze. As the main objective of our research is to
compare the benefits of anticipation over a myopic setting, absolute method performance is not of prime
importance to us. This simplification grossly eases the comparison between the proposed anticipatory
techniques and their myopic counterpart.
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Explored Anticipatory Techniques

In this section, we discuss each of the anticipatory techniques explored during the course of our re-
search. These include several waiting approaches, the double edge horizon technique by Minic et
al.[37], modifications to the assignments by introducing rewards first proposed by Fielbaum et al.[15],
and a trip trimming method inspired by the slackness-savings approach first proposed by Kalina et
al.[26].

F.1. Waiting Strategies
A common approach found in the literature for anticipation is the concept of waiting to accumulate more
requests before a trip is executed. The fundamental idea of this approach is based on the premise that
if a vehicle is capable of delivering requests before their delivery deadline then there may be a benefit
in waiting at the pick-up location for any future request possibilities as long as the delivery deadline of
all the requests along the trip is not violated. This way the vehicle can deliver more orders by clubbing
them and limiting the extent of the detour the vehicle may need to take otherwise.

In our study, the waiting strategy was applied to the VGA algorithm post computation of trips. At first,
the waiting strategy computed how much estimated time was available for delivering each order before
the delivery deadline (constraint of maximum delay). The free time available is considered slack time.
Next, the strategy computed the minimum amount of slack available across all the pickups and deliv-
eries of the trip. Once the minimum slack was computed, it was assigned as the waiting time of the
corresponding vehicle. As a result, a vehicle with a non-zero waiting time was required to wait at spec-
ified locations for a total duration equivalent to the waiting time. The cost of the trip was also adjusted
to compensate for the additional waiting time that results in an added delay to the customer. This cost
adjustment is highlighted in Equation F.1. In addition to the waiting added to each trip, the ILP solver
also receives an adjusted trip-vehicle cost parameter and hence, may assign an entirely new trip for the
delivery of goods. Each of the waiting strategy approaches is discussed in the following sub-sections
and their simulation results are illustrated in Section F.1.4.

γA(vj , Ti, πvj ) = γ(vj , Ti, πvj ) + λ ·
∑
r∈Ti

δr (F.1)

where δr is the additional delay in delivery for each order r in trip Ti due to waiting of the vehicle at the
pick-up location, and λ is a weight associated with delay computation of a trip.

F.1.1. Wait-First
The wait-first approach presented by Minic et al.[37] and discussed briefly in Chapter 2 utilizes the
entire slack. It does so by waiting at the depot as long as it does not violate the constraints of any order
of the trip. The vehicle waits at the first pickup location of the planned route.

77



F.1. Waiting Strategies 78

F.1.2. Demand-Based Waiting
Demand-based waiting aims to improve the limit the slack consumption of wait first by rationing the
available waiting time. It attempts to do so as a function of the change in input demand to the system. As
such, this approach is similar in principle to the advanced dynamic waiting proposed by Minicet al.[37].
Under this approach, we look at demand at six consecutive simulation runs i+1, i, i−1, i−2, i−3, i−4. It
is imperative to note that each simulation run represents a fixed time horizon simulation. We compute a
metric called the demand value factor at i as themoving average of the demands from i−4 to i. Similarly,
the overall demand value factor at i+ 1 is the moving average value from i− 3 to i+ 1. Whenever the
demand factor at i+1 is greater than the demand factor at i, a waiting factor is computed according to
equation F.2 and is multiplied with the total available slack at iteration i+ 1. The resulting value is the
total time the vehicle waits at the depot. On the other end, if the demand factor at i is greater than i+1,
no waiting is applied. The intuition behind this approach is that in situations when input demand has
already peaked, the algorithm should focus on optimizing the route instead of waiting. This was devised
in order to further limit the negative impact of information loss due to the fixed time horizon simulations
instead of re-execution at every new request as is common in other waiting strategy studies.

WF = max(0, (1−DV Fi/DV Fi+1)) (F.2)

Here WF stands for waiting factor, and DV Fi stands for Demand value factor for simulation at time
i− 1 to i.

F.1.3. Distributed Waiting
All of the waiting strategies discussed to utilize the waiting time at the first pickup location of the route
followed in the vehicle-trip plan. However, as shown by [9] and [57], distributing the waiting time propor-
tionally throughout the trip performs substantially better than the wait first approach. In particular, they
found that distributing the waiting times gives similar service rates as waiting first without increasing the
number of vehicles in the simulation. In our approach, we distribute the total waiting time at each pick-up
location encountered by the vehicle during the course of the route of the vehicle-trip combination.

F.1.4. Results of Waiting strategies
The results of the different waiting strategies were compared on 30-minute simulations of orders with
uniform spatial and temporal distributions in Figure F.1. The figure highlights the overall cost, service
rate, time KPIs, mean loaded parcels, total driven distance, and distance per order for each of the
waiting strategies.
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Figure F.1: Comparative Performance of Waiting strategies: overall cost, service rate, time KPI’s, mean loaded parcels, total
driven distance, and distance per order are displayed for each of the waiting strategies. The top figure represents absolute

performance, whereas the bottom figure represents differences in performance with respect to the myopic simulation.

Analyzing the performance of the preliminary results, we can see that all waiting strategies perform
worse than the myopic approach. This can be attributed to the fact that in our approach we use a
fixed time cadence for simulations, whereas in Minic’s and other waiting strategy studies, the time
cadence is dependent on new information. Neglecting this new information in time could grossly affect
the performance benefit offered by waiting strategies. As a result incorporation of waiting strategies
with VGA or other rolling horizon-based techniques may not be advisable.

F.2. Trip Trimming
Motivated from the slackness savings heuristic first covered in [26], the goal of the trip trimming ap-
proach is to provide temporal flexibility to the vehicle route. Intuitively what this means is that the more
free the vehicle would be at any given time, the greater would be its capability to serve orders in the
future. While the fundamental motivation of both slackness saving and trip trimming is the same, they
largely differ in their implementation. We cover this briefly below-
Slackness savings attempts to add flexibility to the route by modifying the cost computation of the DVRP.
Instead of optimizing for distance traveled as is common in routing problems, it looks at a weighted com-
bination of vehicle distance and reduction in slack. This is shown in Equation F.3.

ci = µ · (SLRi) + (1− µ) · (fi) (F.3)

SLRi =
∑
i∈Γ

(sli − sli−1) (F.4)

Here, ci represents the cost obtained at a single simulation run i, fi represents the distance traveled
by the vehicle at simulation run i, µ represents the weight parameter of the convex combination of
distance and reduction in slack, SLRi represents a reduction in slack at i, sli and sli−1 represent the
slack before and after insertion of a request at simulation run i. Finally, Γ represents all requests that
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are currently requested and known. It is important to note that slackness savings according to Kalina
et al.[26], re-planned trips at every new request. Hence, the simulation runs i corresponded with the
request i for the study. This is in contrast to our study where i stands for a fixed time step in the
simulation and only executes once the previous time step has completed its execution.
On the other hand, the trip trimming approach proposed by us makes no adjustment to the objective
cost function discussed in Equation 3.1. Instead, it eliminates the last pick-up and delivery of the trip
to provide free slack to the vehicle for future orders. This in turn frees the vehicle’s bandwidth to serve
orders better in the future. This is better explained through an illustration shown in Figure F.2. Further,
trip trimming just like the VGA executes on a rolling horizon basis and not at every new request. Trip
trimming is further divided into two sub-approaches as covered below:

Figure F.2: Illustration of Trip Trimming: The D huts represent the depots, the blue nodes represent delivery locations, and the
white nodes represent nodes traversed along the route. The cross above each node represents trip trimming.

• Trim Trip: The first approach of trip trimming involves the elimination of all last order pickup and
deliveries irrespective of the vehicle and trip size even if it would eliminate a trip that could be
completed before the next simulation run.

• Trim Trip Criterion Constraint: The second approach within trip trimming is identical to the first,
however adds a constraint before it eliminates the last pick-up of the trip. This constraint allows a
request to be eliminated only if the vehicle already has two requests scheduled for pick-up before
the to-be-eliminated request. This was added as we hypothesized that the original approach
may over-compensate by eliminating orders that could have been successfully completed without
vastly affecting future performance.

F.2.1. Results of Trip Trimming
The preliminary results of trip trimming are highlighted in Figure F.3. All experiments were executed in
an environment of 150 orders distributed uniformly in space and time along with the graph and having
an operation period of 30 minutes.
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Figure F.3: Comparative Performance of Trip Trimming Based approaches: overall cost, service rate, time KPI’s, mean loaded
parcels, total driven distance, and distance per order are displayed for each of the waiting strategies. The top figure represents
absolute performance, whereas the bottom figure represents differences in performance with respect to the myopic simulation.

Both of the trip-trimming approaches performed worse than the myopic approach. This performance
worsened as the problem was scaled to large-scale instances and hence, further exploration into trip
trimming-based anticipation was halted for exploring more robust anticipatory techniques.

F.3. Double Edge Horizon
Introduced in Chapter 2, Double Edge Horizon by Minic et al.[36] was adapted to work in tandem with
the assignment procedure of VGA. This adaptation is highlighted by means of two Algorithms 7 and
8. The first of the two algorithm introduces how the reduction in slack is computed in the original DEH
method to provide the reader with a fundamental understanding of the method. This reduction in slack
is added to the objective function as per the slackness savings Equation F.3. The second Algorithm
8 highlights the modifications made to our problem formulation and the VGA framework defined in
Chapter 3 for incorporating the double edge horizon framework in its objective function.

The Algorithm 8 successfully highlights that a change in delay in the given problem context translates
to a reduction in slack from the DEH problem covered in Algorithm 7. However, we identify several
caveats that make the implementation of DEH with VGA non-trivial. A simple illustration depicting the
three main requirements for implementing VGA and DEH together is depicted in Figure F.4. The first
of the three requirements is resolved by Algorithm 8. The second and third requirements are explained
further:

It is important to note that there is a major difference in the cadence with which the double edge hori-
zon executes in Minic’s study. While Minic’s algorithm re-plans its trips after every new request, VGA
executes via a rolling horizon period. This makes the translation of double edge to VGA non-trivial.
This difference is indicated in the algorithms by the variable i. In the original Double Edge Horizon
framework, i represents the arrival of a new request that re-executes the entire plan. This brings us to
challenges with adapting the VGA to suit the double edge horizon framework.
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Algorithm 7 Double Edge Horizon - Reduction in slack
ei ← earliest start time of request i
li ← latest start time of request i
Ei ← earliest possible start time of request i
Li ← latest possible start time of request i
Si ← service time at request i

Ei ← max(ei, Ei−1 + Si−1 + ti−1,t)

Li ← min(li, Li+1 − Si − ti,i+1)

Slack(SLi)← Li − Ei

Reduction in slack←
∑

i∈0,tend
(SLi − SL

′

i)

Algorithm 8 Adjustment to VGA for reduction in slack computation
ei ← Request time + optimum travel time at simulation run i
li ← Request time + optimum travel time + max delay at simulation run i
Ei ← Actual arrival time = Request time + Optimum travel time + delay at simulation run i
Li ← li

Slack(SLi) ← Li − Ei = Request time + optimum travel time + max delay - request time - optimum
travel time - delay

Slack(SLi)←max delay - delayi

Slack before insertion (SLi−1)←max delay - delayi−1

Slack after insertion (SLi)←max delay - delayi

Reduction in slack← delayi − delayi−1
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Furthermore, the planning horizon for double edge horizon methodology is at least 4 hours in the future
with the short-term horizon itself spanning an hour. On the contrary, our method plans trips for only
8 minutes of operation. As a result, the division of a short-term and long-term horizon for the VGA
framework is not straightforward. In particular, the short-term horizon computation is based on the
assumption that the majority of the requests in that horizon are already known. This is because DEH
follows a time window formulation where orders requested at a particular time have to be delivered at
a specific future duration. As a result, several orders occur much before their delivery durations. In
contrast, orders generated in our problem context have to be delivered as quickly as possible. Hence,
exact information about orders to be delivered even a few minutes into the future is hard to predict.
Thus, simulations with DEH were not executed due to their inability to work in synergy with the VGA
framework.

Figure F.4: The double edge horizon dilemma Illustrates the three pillars for integrating VGA with DEH.



G
Preliminary Results of Anticipatory

Approaches

As a part of our initial exploration, we implemented several anticipatory approaches introduced in Chap-
ter 4 and discussed in Appendix F over the VGA algorithm. The goal was to identify a suitable antic-
ipatory technique that complimented the VGA framework. We evaluated the performance of each ap-
proach - wait-first, trip trimming, rewards adjustment, and over the defined performance KPIs - overall
cost, service rate, time KPIs, mean loaded parcels, and total travel distance of all vehicles.

For the preliminary results, all simulations were executed on a data set of 150 orders and 30 minutes
of operation periods. The demand was distributed as a clustered Gaussian distribution in space and a
combination of Uniform and Gaussian distribution in time. The data distribution is highlighted in Figure
G.1. The spatial map in Figure ?? represents the demand intensity where intensity on any node is
computed as the demand on the corresponding node divided by the maximum demand over all nodes
of the graph.

Figure G.1: Spatial & Temporal Distribution of demand for Preliminary Simulations: The data set instance comprises a
clustered Gaussian spatial distribution of 3 clusters and a random uniform temporal distribution. The total number of orders is

150 and the period of operation is 30 minutes. The spatial graph is normalized such that red nodes indicate the highest
demand and violet nodes indicate low or no demand. This is also indicated in the color bar. The temporal distribution is divided

into 30 bins, 1 for each minute of the simulation.

The results of the simulation are further covered in Figure G.2 and Table G.1. Figure G.2 highlights
the overall cost, service rate, time KPIs, mean loaded parcels, and total travel distance of all vehicles.
The last bar (represented in red) in the graph depicts the results obtained in case of perfect anticipa-
tion. Perfect anticipation is a simulation scenario that represents the upper benchmark of performance
improvement due to anticipation. We compare the performance across each of the explored anticipa-
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tory techniques that are used in conjunction with the same base assignment procedure P of the VGA
algorithm. It is substantially clear from the figure that amongst all the selected approaches, adjustment
using rewards is the only technique where all performance parameters are improved considerably over
the myopic simulation. This suggests that the improvements noted by Fielbaum et al. [15] over myopic
simulations in DARP can also be translated to same-day grocery deliveries.

Figure G.2: Performance Comparison of Several Adjustment Techniques versus the Myopic Algorithm: Overall cost, service
rate, time KPI’s, mean loaded parcels, and total travel distance of all vehicles are displayed. The grey bar represents the
performance of the Myopic simulation. Each other bar represents a unique anticipatory technique. Additionally, the Perfect

Anticipation - 200s look ahead is represented by the red bar. Perfect Anticipation provides the maximum potential of anticipatory
improvement over the VGA for the given data instance. The figure at the top represents absolute results whereas the bottom

figure represents the difference in performance between the approach under consideration and the myopic simulation.

Table G.1: Preliminary simulation results for anticipatory techniques and the myopic approach

S.no Simulation Type Overall Cost Service Rate Orders Delivered Delivery Time Delay Time Time On Vehicle Waiting Time Distance Travelled
1 Myopic 284664.47 82.67 124 488.07 396.52 253.19 234.88 159.93
2 Anticipation by Trimming Trip (C > 3) 412005.84 74.0 111 486.38 395.02 210.95 275.42 164.68
3 Rewards Adjustment 234935.19 86.0 129 474.78 385.39 241.37 233.4 155.38
4 Wait-First 355515.86 78.0 117 525.76 435.01 278.45 247.31 135.71
5 PA-200 second Look Ahead 184607.13 89.33 134 457.79 366.14 303.22 154.57 151.26



H
Computation of Dynamism

In this section, we mathematically define the computation of dynamism by Van Lon et al. [65]. Their
definition of dynamism as mentioned previously computes the degree of continuity of change. This
means any deviation from a perfectly continuous occurrence of orders will end up being less dynamic.
Note that we only briefly highlight how dynamism is computed mathematically. The reader is urged to
peruse their work for an in-depth study.

At first, we define the inter-arrival times between any two orders as follows-

∆ = {δ1, δ2, ..., δn} ∀oi ∈ O (H.1)

where ∆ is the list of inter-arrival times and δi is the time gap between order i and i− 1.

The authors further define a case of 100% dynamism, wherein every event has the same inter-arrival
time. This is illustrated in Figure H.1.

Figure H.1: A scenario of the perfect inter-arrival time

The perfect inter-arrival time θ can be computed as per Equation H.2.

θ =
τ

ϵ
(H.2)

where τ is the total time period of operation and ϵ is the number of orders in that period.

Once the perfect inter-arrival time is obtained, deviations σi for each order i from the 100% dynamism
case can be computed as follows-

σi =


θ − δi if i = 0 and δi < θ

θ − δi + θ−δi
θ · σi−1 if i > 0 and δi < θ

0 otherwise

(H.3)

Consequently, the deviation for an entire scene is given as-
|∆|∑
i=0

σi (H.4)
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Next, a theoretical maximum of the deviation σ̃i is computed as follows-

σ̃i =

θ + θ−δi
θ · σi−1 if i > 0 and δi < θ

θ otherwise
(H.5)

The value of σ̃i is computed to normalize the deviations of inter-arrival times.

Finally, the value of dynamism is computed as-

dynamism = 1− deviation

maximumdeviation
= 1−

∑|∆|
i=0 σi∑|∆|
i=0 σ̃i

(H.6)



I
Spatial Gaussian Distribution Methods

Three methods were explored during the course of this study to generate a perfect 2D Spatial Gaussian
distribution. These were the displacement to the center method, index method, and independent axis
method. The independent-axis method has already been discussed in previous chapters and hence,
will not be covered in this section. The other two methods are algorithmically described in the following
sections.

I.1. Displacement to Center Method
In this method, first, the center node of the graph is obtained for computing the travel time distance
between all nodes of the graph and the central node. The distances are stored in memory and using
a truncated normal distribution function, a new Gaussian distribution of distances is obtained with the
minimum distance from the center node as the mean and a function of maximum distance from the
central node as the standard deviation. The Gaussian distribution contains as many samples as the
number of orders to be generated. Next, each element of the Gaussian distribution is subtracted from
all the elements of the list containing the distance of each node from the center. At every iteration,
the index where the difference of distances is minimum is selected and stored in memory. The final
collection of indexes represents the indexes of the nodes of the graph where demand is to be generated.

I.2. Index Method
In the index method, first, the center node of the graph is identified and the index of the corresponding
node on the graph is stored as the central index. Next, a standard deviation of the indexes is computed
by passing all indexes of the graph. Finally, a truncated normal distribution of indexes is generated as
per Equation I.4. The indexes are used to identify the appropriate nodes of the graph where demand
is to be generated.
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Algorithm 9 Generation of Spatial Demand using Displacement to Center Method
input: num_orders, G = (N,A)
output: demand_nodes
begin

Get Graph Center,
x, y, z ← 0
for n ∈ N do

latitude← rad(n→ latitude)
longitude← rad(n→ longitude)
x+ = cos(latitude)cos(longitude)
y+ = cos(latitude) ∗ sin(longitude)
z+ = sin(latitude)

end
total← length(N)
x, y, z ← x/total, y/total, z/total
centre← atan2(y, x), atan2(z, (x2 + y2)0.5)

for node ∈ N do
dlat← centre.longitude− node.longitude
dlon← centre.latitude− node.latitude

a = sin(dlat/2)2 + cos(node · latitude) ∗ cos(centre · latitude) ∗ sin(dlon/2)2 (I.1)

c = 2 ∗ atan2(sqrt(a), sqrt(1− a)) (I.2)

dist = 6373 · c (I.3)

if dis ≤ distmax then
distmax = dis
best_node← node

end
end
centre_node← best_node

Find distance of every node from center,
dist_center ← ∅
for n ∈ N do

dist_center ← dist_center, travel(center_node, n)
end

Generate truncated normal distribution of distances,
dis_gaus = []
while count(dis_gaus) ≤ num_orders do

dis_gaus← truncNorm(min(dist_center),max(dist_center/3))
end

Mapping gaussian distribution of distances to closest node,
for i ∈ dis_gaus do

rel_dis← abs(dist_center − i)
indexes← indexes, rel_dis.index(min(rel_dis))

end

demand_nodes← N [indexes]
return demand_nodes

end
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Algorithm 10 Generation of Spatial Demand using Index Method
input: num_orders, G = (N,A)
output: demand_nodes
begin

Get Graph Center,
x, y, z ← 0
for n ∈ N do

latitude← rad(n→ latitude)
longitude← rad(n→ longitude)
x+ = cos(latitude)cos(longitude)
y+ = cos(latitude) ∗ sin(longitude)
z+ = sin(latitude)

end
total← count(N)

x, y, z ← x/total, y/total, z/total

centre← atan2(y, x), atan2(z, (x2 + y2)0.5)

Find index of central node in the graph G,

central_index← N.index(centre)

Find the standard deviation of indexes of graph G,

sigma← std(0, count(N))

Find the truncated Gaussian distribution of indexes,

x← truncNorm((0− central_index)/sigma, (count(N)− central_index)/sigma) (I.4)

demand_nodes← N [x]
return demand_nodes

end



J
Depot Distribution:

In this section, we highlight other approaches for distributing the depots across the graph. These are
discussed below-

J.1. Uniform Distribution Method:
In the Uniform Distribution Method, k depots are randomly distributed along with all the nodes of the
graph. This can be observed in Figure J.1.

Figure J.1: Uniformly distributed Depot Locations

J.2. Shortest Distance Distribution Method:
In the Shortest Distance Distribution Method, an integer linear program is used to minimize the distance
of the depot to its neighboring nodes. At first, a data set highlighting the travel time between all nodes
is prepared. Next, the reach-ability of a node to every other node is established basis a threshold travel

91



J.3. Why K-center distribution? 92

time value. This threshold is determined empirically. Finally, an ILP with a cost matrix minimizing the
distance between the nodes and depots is prepared under the constraint that every node should be
reachable by at least one depot. A final constraint setting the minimum number of depots to at least k
is established and the depot distribution is obtained. This is illustrated in Figure J.2

Figure J.2: Depot distribution using the Shortest Distance Distribution Method

J.3. Why K-center distribution?
After a detailed analysis of preliminary results from each method, we observe that the performance
of the base method remained best with the Shortest Distance Distribution of depots and worst with
the Uniformly Distributed depot locations. The K-center approach results in solutions in between the
two approaches. This can be attributed to the fact the uniform distribution method leads to spatially
imbalanced depot locations whereas the integer linear program approach leads to highly optimized
depot locations. As we hope to replicate the performance in as realistic a scenario as possible, we
select the K-center method that only moderately optimizes the distribution of depots on the graph.



K
Numerical Values of Simulation

Parameters

Table K.1: Unique Data Set Types

Parameter Value

Maximum Delay δdelay 8 minutes
Number of vehicles n 10
Capacity per vehicle c 10
Weight of cost function β 0.5
Penalty for rejection of request α 10000
Maximum considered vehicles per candidate 7
Maximum size of each Trip 10
Allowed Re-insertions of orders ζ 0
Service time per order δservice 30 seconds
Loading time per order δloading 15 seconds
Time-interval between each decision ∆t 100 seconds
Extra time at the end of the day 15 minutes
Number of depots condisered per order x 5
CTV graph calculation timeout per vehicle ρmax,CTV 30 seconds
Rewards weight for assignment including rewards Θ 100
Rewards weight for assignment including penalty κ 1
Penalty weight in assignments including penaltyχ 1
Number of zones/sub-regions obtained from the ILP solverM 12
Upper bound of reachability tM 100 seconds
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L
Simulation

To assess the performance of the fleet using the anticipatory routing algorithm, on-demand SDD oper-
ations need to be simulated. In this section, we first introduce the graph network. In the subsequent
section, we highlight the movement of the vehicle over the graph network in simulation.

L.1. Graph
The city of Amsterdam is identified for simulating the performance of the proposed solution. For this
purpose, the map of Amsterdam is first extracted from the open-source Open Street Maps repository[4].
The graph obtained consists of a large graph of nodes and edges comprising of waterways, road-ways,
pedestrian-pathways, etc. The map is filtered for only motorways and highways that are accessible by
vehicles as well as for a specific size. The final graph contains 2717 nodes and 5656 edges. Amongst
the 2717 nodes, fifteen are chosen as depot nodes basis the depot distribution algorithm. The depot
distribution algorithm adds stochasticity to the location of the depots. One such graph is illustrated with
Figure L.1.

L.2. Vehicle Movement
As discussed in Section3.1, vehicles travel along with any two known locations x1 and x2 where the
travel time is given by the function travel(x1, x2). However, no prior information about the travel time
between the graph nodes is available. To compute the travel times, we first extract distance information
between any two nodes that are connected by an arc from the OSM graph [4]. We then assume that
each vehicle travels with a constant velocity of 10m/s and is not affected by congestion or one-off
incidents. Using the distance and constant velocity, we compute the travel times for traversing on any
of the 5656 edges of the graph[28]. While this gives the travel time between any two directly connected
nodes, the question arises on how shall the vehicle travel across two non-consecutive nodes. We solve
this by first computing the shortest path between any combination of nodes using the Dijkstra shortest
path algorithm [13]. Once the shortest paths are known, we calculate the total travel time as the sum
of individual travel times of all the arcs included in the shortest path between any two nodes. We store
the resulting travel times between the node-node combinations offline. This can be then queried by the
solution framework for online route optimization during simulation.

94



L.2. Vehicle Movement 95

Figure L.1: Map of Amsterdam: Representation of the graph obtained from Open Street Map indicating road network, stations,
and depot locations. The waterways are highlighted by thick light blue lines, while the transportable network is highlighted by

dark blue thin lines.



M
Perfect Anticipation

Figure M.1: Illustration of Perfect Anticipation

The results of any anticipatory policy are hard to evaluate without a common benchmark of an optimal
policy. In our study, we attempted to define an upper bound to anticipation using the concept of perfect
anticipation. Perfect anticipation works by allowing the VGA framework to look at exact future demand
up to a certain horizon. This information of future and current orders are then used to plan for a trip.
Additionally, suitable adjustments are made within the VGA framework to wait at the depot if the vehicle
reaches its location before an order is requested. Perfect anticipation is further explained by means of
an illustration shown in Figure M.1.

The optimal amount of look-ahead was evaluated by running VGA and perfect anticipation with different
times of look ahead from 100 seconds to 700 seconds. The overall cost, service rate, time KPI’s, mean
loaded parcels, and total travel distance of all vehicles are compared with the Myopic simulation and
illustrated in Figure M.2. Further, the time estimate for executing the complete look ahead for each
simulation is highlighted in Figure M.3.
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Figure M.2: Results of Perfect Anticipation: Overall cost, service rate, time KPI’s, mean loaded parcels, and total travel
distance of all vehicles are displayed. Each bar represents a perfect anticipation scenario with a different look-ahead horizon.

Figure M.3: Simulation time vs Look ahead of Perfect anticipation for 30 minutes of simulation: Each bar represents the time
taken to complete the simulation when using the underlying technique given on the x-axis.

It is clear from the figures, that the improvement in performance saturates after a certain level of look
ahead and even worsens. This is primarily due to the vehicle-trip computation limit ρCTV,max of 30
seconds that cuts off the exhaustive trip generation function. As such with more number requests,
more combinations of trips can be formed and the simulation time increases exponentially. This can be
observed in Figure M.3. The cut-off keeps the simulation time in check at the cost of solution quality. For
our demand and graph inputs, it was observed that 200 seconds of look ahead made for a reasonable
parameter for both the solution quality as well as the simulation time.



N
Performance Sensitivity to Change in Θ

Variation in performance KPIs due to change in tuning parameter Θ is represented in the Figure N.1.
The underlying data used for simulations is the realistic-data instances covered in Chapter 5. From the
figure, the range 50-100 for Θ seems to be reasonable for all KPIs considered.
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Figure N.1: Time On the vehicle, waiting time, delay time, total distance traveled, and mean loaded parcels are displayed. The
baseline (red dotted line) represents the results of the myopic (Θ = 0) simulation. Results represent average values obtained

from simulations on 5 realistic data instances.



O
The Difference in Performance KPI’s

between Anticipatory & Non-Anticipatory
Simulations across each

Spatial-Temporal Demand Distribution

Figure O.1 highlights the service metrics comparison between anticipatory and myopic simulations for
all instances of a distribution type. Key insights can be drawn on how different demand distribution
types impact the performance of the anticipatory techniques.
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Figure O.1: Comparison between all service KPIs across all 5 instances of each data set with and without anticipatory methods



P
Independent Simulation Results

P.1. Preliminary Data Instances
Table P.1: Preliminary simulation results for various rewards adjustment techniques and the myopic simulation

S.no Simulation Type Overall Cost Service Rate [%] Orders Delivered Delivery Time [s] Delay Time [s] Time On Vehicle [s] Waiting Time [s] Distance Travelled [Km]
0 Myopic 284664.47 82.67 124 488.07 396.52 253.19 234.88 159.93
1 RA - Orders Generated at Last Node 274784.8 83.33 125 485.34 395.26 252.66 232.68 161.6
2 RA - Candidates at Last Depot 305183.26 81.33 122 502.86 411.45 243.31 259.55 169.52
3 RA - Average of the Candidates at x Closest Depots from Last Node 243834.4 85.33 128 461.66 371.12 230.78 230.88 165.8
4 RA - Maximum of the Candidates at x Closest Depots from Last Node 265284.09 84.0 126 490.06 399.99 238.59 251.47 169.17
5 RA - Candidates at Closest Depot from Last Node 264522.54 84.0 126 477.74 387.93 227.35 250.39 166.09
6 RA - Distance of Closest Depot to Last Node 254654.14 84.67 127 477.78 386.97 241.77 236.01 163.28
7 RA - Average Distance of x Closest Depots to Last Node 234935.19 86.0 129 474.78 385.39 241.37 233.4 155.38
8 RA - Convex Combination of Candidates and Distance of x Closest Depots to Last Node 244897.14 85.33 128 477.16 387.76 237.09 240.06 161.27
9 PA - 200 seconds Look ahead 184607.13 89.33 134 457.79 366.14 303.22 154.57 151.26

Table P.2: Preliminary simulation results for various adjustments with penalization & rewards and the myopic simulation

S.no Simulation Type Overall Cost Service Rate [%] Orders Delivered Delivery Time [s] Delay Time [s] Time On Vehicle [s] Waiting Time [s] Distance Travelled [Km]
0 Myopic 430183.52 72.67 109 465.24 368.94 260.38 204.86 152.05
1 Candidate Based Penalization: Penalization with Constant Term 410549.66 74.0 111 466.91 368.93 264.72 202.19 148.33
2 Candidate Based Penalization: Penalization with Travel Time Metric 410549.66 74.0 111 466.91 368.93 264.72 202.19 148.33
3 Adjustment with Candidate Based Penalty + Reward 390453.72 75.33 113 454.27 360.68 253.9 200.37 150.44
4 Zone Based Adjustment (P+R) 400936.92 74.67 112 471.79 372.47 261.79 210.0 156.84
5 PA - 200 seconds Look ahead 369389.92 76.67 115 434.35 335.92 289.0 145.35 148.83

P.2. Realistic Data Instances
Table P.3: Simulation results for anticipatory techniques and the myopic simulation for independent pseudo-realistic instances

Instance Simulation Type Overall Cost Service Rate [%] Orders Delivered Delivery Time Saved [s] Delay Time Saved [s] Time on Vehicle Saved [s] Waiting Time Saved [s] Distance Travelled Saved [Km]
1 Myopic 12833789.38 59.26 1814 494.62 399.98 280.02 214.6 2010.76

Rewards Adjustment 12795192.09 59.39 1818 495.48 400.65 276.75 218.72 2011.18
Adjustment with Penalty + Reward 12844721.32 59.26 1814 505.49 412.02 278.9 226.58 2029.65
Perfect Anticipation - 200s Look ahead 11980525.7 62.07 1900 484.93 388.99 308.43 176.51 1963.39

2 Myopic 6617262.5 72.02 1619 500.57 402.99 275.27 225.3 2092.01
Rewards Adjustment 6546661.44 72.33 1626 498.43 400.51 272.81 225.62 2085.88
Adjustment with Penalty + Reward 6737050.18 71.49 1607 502.83 405.72 274.07 228.75 2103.37
Perfect Anticipation - 200s Look ahead 5833765.87 75.44 1696 466.22 368.81 298.82 167.39 2025.74

3 Myopic 3415343.66 80.12 1282 468.79 365.6 255.22 213.56 1992.31
Rewards Adjustment 3263981.53 81.06 1297 461.98 359.25 248.4 213.58 2016.06
Adjustment with Penalty + Reward 3380260.66 80.38 1286 475.44 372.07 257.6 217.84 2034.32
Perfect Anticipation - 200s Look ahead 2827138.92 83.62 1338 410.99 308.19 270.69 140.31 1919.85

4 Myopic 16946169.06 51.18 1740 494.62 396.77 268.46 226.15 1965.12
Rewards Adjustment 17134500.16 50.62 1721 497.77 399.19 266.93 230.83 1991.33
Adjustment with Penalty + Reward 17286438.41 50.18 1706 500.42 404.98 267.78 232.64 1987.82
Perfect Anticipation - 200s Look ahead 16993453.15 50.97 1733 470.44 372.15 286.38 184.05 1970.3

5 Myopic 19388284.48 47.08 1695 494.91 398.13 273.16 221.75 1744.96
Rewards Adjustment 19621705.27 46.42 1671 494.07 395.96 273.87 220.2 1761.55
Adjustment with Penalty + Reward 19819392.75 45.89 1652 505.54 409.82 273.42 232.12 1767.5
Perfect Anticipation - 200s Look ahead 19223389.03 47.47 1709 462 365.74 293.67 168.33 1727.06
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P.3. 80 Data Instances
Table P.4: Results for Independent Simulations

Instance Simulation Type Overall Cost Service Rate [%] Orders Delivered Delivery Time [s] Delay Time [s] Time On Vehicle [s] Waiting Time [s] Distance Travelled [Km]
1 Myopic 18633664.235 25.96 649 473.073959938367 380.090909090909 264.305084745763 208.768875192604 649.47

Rewards Adjustment 18534251.08 26.36 659 468.911987860395 376.115326251897 266.488619119879 202.423368740516 642.16
Adjustment with Penalty & Rewards 18708471.91 25.68 642 488.688473520249 399.208722741433 262.714953271028 225.973520249221 651.82

2 Myopic 18594802.08 26.12 653 487.407350689127 381.211332312404 276.08269525268 211.324655436447 673.16
Rewards Adjustment 18535983.225 26.36 659 487.1593323217 381.332321699545 278.200303490137 208.959028831563 668.45
Adjustment with Penalty & Rewards 18539591.645 26.36 659 491.468892261002 392.286798179059 268.748103186646 222.720789074355 666.29

3 Myopic 18505604.195 26.48 662 473.601208459214 378.486404833837 271.980362537764 201.62084592145 650.39
Rewards Adjustment 18479221.185 26.6 665 484.968421052632 387.666165413534 273.593984962406 211.374436090226 644.37
Adjustment with Penalty & Rewards 18462285.035 26.68 667 486.064467766117 395.685157421289 258.697151424288 227.367316341829 648.07

4 Myopic 18300549.495 27.32 683 472.94729136164 381.341142020498 257.836017569546 215.111273792094 642.99
Rewards Adjustment 18134223.005 28 700 473.695714285714 382.578571428571 256.247142857143 217.448571428571 641.01
Adjustment with Penalty & Rewards 18366841.12 27.08 677 492.283604135894 403.288035450517 266.035450516987 226.248153618907 656.24

5 Myopic 18176798.685 27.84 696 485.367816091954 392.155172413793 266.294540229885 219.073275862069 657.37
Rewards Adjustment 18202703.05 27.72 693 475.532467532468 382.030303030303 261.357864357864 214.174603174603 659.1
Adjustment with Penalty & Rewards 18209012.89 27.72 693 484.092352092352 400.236652236652 246.099567099567 237.992784992785 661.78

6 Myopic 17879135.475 29.04 726 470.643250688705 382.429752066116 241.409090909091 229.234159779614 626.95
Rewards Adjustment 17869596.72 29.08 727 473.317744154058 383.163686382393 249.403026134801 223.914718019257 633.44
Adjustment with Penalty & Rewards 18100451.88 28.16 704 483.551136363636 398.109375 240.997159090909 242.553977272727 634.76

7 Myopic 17812664.12 29.32 733 476.113233287858 388.416098226467 253.778990450205 222.334242837653 619.24
Rewards Adjustment 17800191.145 29.36 734 467.453678474115 381.141689373297 242.797002724796 224.656675749319 624.29
Adjustment with Penalty & Rewards 17936471.995 28.84 721 489.73092926491 405.44105409154 243.231622746186 246.499306518724 620.99

8 Myopic 18592202.045 26.12 653 478.37212863706 373.275650842266 258.408882082695 219.963246554364 655.09
Rewards Adjustment 18582358.875 26.16 654 478.620795107034 373.178899082569 260.793577981651 217.827217125382 658.75
Adjustment with Penalty & Rewards 18486378.36 26.56 664 481.564759036145 379.665662650602 256.103915662651 225.460843373494 658.72

9 Myopic 17595747.54 30.2 755 462.419867549669 385.331125827815 220.531125827815 241.888741721854 570.08
Rewards Adjustment 17900812.36 28.96 724 469.385359116022 388.17955801105 229.660220994475 239.725138121547 582.72
Adjustment with Penalty & Rewards 17698092.21 29.8 745 469.465771812081 396.781208053691 218.445637583893 251.020134228188 582.42

10 Myopic 18557642.705 26.28 657 487.613394216134 387.566210045662 255.803652968037 231.809741248097 654.41
Rewards Adjustment 18458354.805 26.68 667 483.850074962519 383.886056971514 261.866566716642 221.983508245877 657.61
Adjustment with Penalty & Rewards 18572153.865 26.24 656 494.545731707317 401.90243902439 253.253048780488 241.292682926829 659.73

11 Myopic 18430478.72 26.8 670 504.341791044776 388.444776119403 295.153731343284 209.188059701493 699.44
Rewards Adjustment 18469008.65 26.64 666 501.953453453453 386.36036036036 294.186186186186 207.767267267267 701.3
Adjustment with Penalty & Rewards 18461443.9 26.68 667 503.155922038981 393.07796101949 288.52323838081 214.632683658171 704.8

12 Myopic 18499250.085 26.52 663 497.579185520362 388.855203619909 275.303167420814 222.276018099548 689.17
Rewards Adjustment 18516734.885 26.44 661 491.465960665658 382.402420574887 271.904689863843 219.561270801815 701.77
Adjustment with Penalty & Rewards 18482383.815 26.6 665 501.317293233083 397.114285714286 275 226.317293233083 686.63

13 Myopic 18505403.08 26.48 662 479.756797583082 377.844410876133 261.555891238671 218.200906344411 673.16
Rewards Adjustment 18649316.27 25.88 647 473.383307573416 367.782071097372 256.503863987635 216.879443585781 677.54
Adjustment with Penalty & Rewards 18775882.675 25.4 635 492.233070866142 395.4 248.236220472441 243.996850393701 686.35

14 Myopic 17988698.125 28.6 715 469.632167832168 387.093706293706 240.304895104895 229.327272727273 624.25
Rewards Adjustment 17998403.505 28.56 714 467.182072829132 386.795518207283 238.606442577031 228.575630252101 635.01
Adjustment with Penalty & Rewards 18211290.04 27.72 693 485.454545454545 406.844155844156 230.487734487734 254.966810966811 637.08

15 Myopic 18812177.095 25.24 631 497.892234548336 386.188589540412 287.16323296355 210.729001584786 669.19
Rewards Adjustment 18892248.405 24.92 623 504.46709470305 391.349919743178 285.274478330658 219.192616372392 685.81
Adjustment with Penalty & Rewards 18735017.44 25.56 639 501.075117370892 390.247261345853 287.727699530516 213.347417840376 666.88

16 Myopic 18350699.395 27.12 678 480.053097345133 384.600294985251 265.72418879056 214.328908554572 639.79
Rewards Adjustment 18426939.62 26.8 670 474.383582089552 377.964179104478 256.858208955224 217.525373134328 643.24
Adjustment with Penalty & Rewards 18435856.24 26.8 670 495.888059701493 404.573134328358 261.553731343284 234.334328358209 648.48

17 Myopic 18596311.15 26.12 653 486.595712098009 385.83460949464 271.828483920368 214.767228177642 672.3
Rewards Adjustment 18588877.52 26.16 654 497.816513761468 393.081039755352 282.249235474006 215.567278287462 680.04
Adjustment with Penalty & Rewards 18521317.3 26.44 661 495.553706505295 396.295007564296 269.590015128593 225.963691376702 683.6

18 Myopic 18381584.63 27 675 491.425185185185 388.928888888889 275.518518518519 215.906666666667 642.26
Rewards Adjustment 18371428.14 27.04 676 493.835798816568 387.866863905325 276.741124260355 217.094674556213 658.28
Adjustment with Penalty & Rewards 18367760.435 27.08 677 504.540620384047 406.002954209749 275.546528803545 228.994091580502 656.87

19 Myopic 18566366.23 26.24 656 488.40243902439 384.237804878049 276.792682926829 211.609756097561 672.46
Rewards Adjustment 18714075.155 25.64 641 494.572542901716 386.05616224649 271.88767550702 222.684867394696 688.31
Adjustment with Penalty & Rewards 18619878.285 26.04 651 499.142857142857 397.967741935484 271.121351766513 228.021505376344 679.57

20 Myopic 18694644.53 25.72 643 496.804043545879 386.662519440124 274.940902021773 221.863141524106 665.06
Rewards Adjustment 18647545.43 25.92 648 501.319444444444 392.618827160494 282.79012345679 218.529320987654 673.86
Adjustment with Penalty & Rewards 18815224.795 25.24 631 499.610142630745 395.838351822504 270.112519809826 229.497622820919 675.59

21 Myopic 18409291.825 26.88 672 478.717261904762 383.815476190476 264.916666666667 213.800595238095 659.65
Rewards Adjustment 18301487.105 27.32 683 479.910688140556 384.055636896047 268.002928257687 211.90775988287 664.21
Adjustment with Penalty & Rewards 18512519.725 26.48 662 492.561933534743 399.358006042296 274.35498489426 218.206948640483 664.45

22 Myopic 18535781.585 26.36 659 484.039453717754 380.734446130501 278.742033383915 205.297420333839 659.17
Rewards Adjustment 18477975.545 26.6 665 486.44962406015 383.885714285714 281.795488721805 204.654135338346 667.09
Adjustment with Penalty & Rewards 18405270.215 26.92 673 498.702823179792 401.001485884101 277.832095096582 220.87072808321 666.43

23 Myopic 18468464.82 26.64 666 491.492492492493 384.756756756757 290.558558558559 200.933933933934 681.64
Rewards Adjustment 18352352.25 27.12 678 494.620943952802 389.430678466077 286.072271386431 208.548672566372 670.5
Adjustment with Penalty & Rewards 18415254.025 26.88 672 500.831845238095 401.528273809524 275.534226190476 225.297619047619 681.05

24 Myopic 18489531.715 26.56 664 490.98343373494 389.138554216867 279.579819277108 211.403614457831 675.43
Rewards Adjustment 18352504.955 27.12 678 491.542772861357 389.873156342183 281.740412979351 209.802359882006 675.91
Adjustment with Penalty & Rewards 18502204.25 26.52 663 494.458521870287 397.785822021116 274.805429864253 219.653092006033 676.5

25 Myopic 18432830.72 26.8 670 495.516417910448 395.498507462687 287.292537313433 208.223880597015 677.44
Rewards Adjustment 18477500.03 26.6 665 482.741353383459 382.431578947368 278.828571428571 203.912781954887 683.06
Adjustment with Penalty & Rewards 18363982.45 27.08 677 489.234859675037 394.81388478582 271.155096011817 218.07976366322 675.9
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Table P.4: Results for Independent Simulations

Instance Simulation Type Overall Cost Service Rate Orders Delivered Delivery Time Delay Time Time On Vehicle Waiting Time Distance Travelled
26 Myopic 18185061.555 27.8 695 486.873381294964 387.748201438849 269.451798561151 217.421582733813 638.11

Rewards Adjustment 18155941.105 27.92 698 491.070200573066 388.593123209169 271.0888252149 219.981375358166 644.21
Adjustment with Penalty & Rewards 18375944.165 27.04 676 494.334319526627 401.230769230769 274.133136094675 220.201183431953 656.33

27 Myopic 18507641.005 26.48 662 482.235649546828 384.613293051359 258.270392749245 223.965256797583 668.01
Rewards Adjustment 18533522.075 26.36 659 471.775417298938 373.860394537178 250.241274658574 221.534142640364 670.15
Adjustment with Penalty & Rewards 18717500.125 25.64 641 487.294851794072 396.767550702028 246.563182527301 240.731669266771 672.25

28 Myopic 18094690.285 28.16 704 478.302556818182 381.772727272727 265.997159090909 212.305397727273 612.57
Rewards Adjustment 18153095.61 27.92 698 475.994269340974 380.462750716332 248.097421203438 227.896848137536 628.22
Adjustment with Penalty & Rewards 18377107.6 27.04 676 492.936390532544 404.705621301775 247.430473372781 245.505917159763 634.2

29 Myopic 18005996.435 28.52 713 469.697054698457 380.589060308555 254.201963534362 215.495091164095 632.87
Rewards Adjustment 18251402.95 27.52 688 472.861918604651 381.039244186047 248.375 224.486918604651 650.9
Adjustment with Penalty & Rewards 18122180.77 28.08 702 485.74358974359 404.155270655271 241.940170940171 243.803418803419 644.54

30 Myopic 17709058.07 29.72 743 445.635262449529 373.519515477793 222.331090174966 223.304172274563 591.14
Rewards Adjustment 17671004.105 29.88 747 450.899598393574 376.726907630522 228.041499330656 222.858099062918 593.21
Adjustment with Penalty & Rewards 17973919.875 28.68 717 466.311018131102 400.599721059972 220.536959553696 245.774058577406 609.75

31 Myopic 18369381.645 27.04 676 484.686390532544 381.829881656805 266.973372781065 217.713017751479 646.29
Rewards Adjustment 18290219.39 27.36 684 479.997076023392 379.81432748538 265.223684210526 214.773391812865 645.78
Adjustment with Penalty & Rewards 18436051.9 26.8 670 503.114925373134 405.153731343284 258.835820895522 244.279104477612 650.8

32 Myopic 18122756.07 28.04 701 467.743223965763 377.851640513552 245.807417974322 221.935805991441 638.14
Rewards Adjustment 18182432.16 27.8 695 469.490647482014 380.168345323741 249.653237410072 219.837410071942 647.32
Adjustment with Penalty & Rewards 18142956.73 28 700 493.382857142857 407.525714285714 249.34 244.042857142857 645.46

33 Myopic 18324638.99 27.24 681 492.945668135095 394.477239353891 267.499265785609 225.446402349486 638.98
Rewards Adjustment 18343500.44 27.16 679 491.692194403535 392.293078055965 275.59499263623 216.097201767305 633.88
Adjustment with Penalty & Rewards 18348014.695 27.16 679 495.930780559647 405.589101620029 263.017673048601 232.913107511046 634.39

34 Myopic 18154951.395 27.92 698 480.606017191977 385.763610315186 268.736389684814 211.869627507163 639.79
Rewards Adjustment 18193166.125 27.76 694 479.14409221902 382.829971181556 253.893371757925 225.250720461095 648.25
Adjustment with Penalty & Rewards 18267880.265 27.48 687 492.459970887918 400.43231441048 257.183406113537 235.276564774381 663.53

35 Myopic 18019697.175 28.48 712 483.181179775281 391.511235955056 263.575842696629 219.605337078652 638.35
Rewards Adjustment 18065952.09 28.28 707 476.56152758133 383.669024045262 252.513437057992 224.048090523338 650.18
Adjustment with Penalty & Rewards 18069632.1 28.28 707 480.312588401697 394.087694483734 249.623762376238 230.68882602546 644.2

36 Myopic 18436377.255 26.76 669 471.715994020927 376.828101644245 263.823617339312 207.892376681614 656.51
Rewards Adjustment 18221505.105 27.64 691 471.84515195369 379.678726483357 261.635311143271 210.20984081042 652.21
Adjustment with Penalty & Rewards 18569749.855 26.24 656 485.91006097561 394.560975609756 262.618902439024 223.291158536585 667.71

37 Myopic 18460367.125 26.68 667 495.670164917541 389.932533733133 282.269865067466 213.400299850075 649.25
Rewards Adjustment 18617376.96 26.04 651 499.646697388633 390.322580645161 288.637480798771 211.009216589862 653.92
Adjustment with Penalty & Rewards 18591234.695 26.16 654 500.683486238532 400.325688073395 268.640672782875 232.042813455657 656.39

38 Myopic 18750228.705 25.48 637 480.568288854003 376.431711145997 269.824175824176 210.744113029827 670.41
Rewards Adjustment 18584936.02 26.16 654 486.403669724771 381.038226299694 281.14373088685 205.25993883792 673.04
Adjustment with Penalty & Rewards 18707536.135 25.68 642 496.154205607477 396.274143302181 281.766355140187 214.38785046729 664.27

39 Myopic 18361491.905 27.08 677 483.69423929099 387.534711964549 263.648449039882 220.045790251108 622.81
Rewards Adjustment 18351563.755 27.12 678 483.88790560472 387.163716814159 269.520648967552 214.367256637168 630.51
Adjustment with Penalty & Rewards 18393814.66 26.96 674 488.856083086053 396.154302670623 269.786350148368 219.069732937685 621.32

40 Myopic 18468958.27 26.64 666 482.507507507508 386.31981981982 256.677177177177 225.83033033033 627.54
Rewards Adjustment 18401552.865 26.92 673 485.560178306092 390.005943536404 263.144130757801 222.416047548291 631.73
Adjustment with Penalty & Rewards 18503476.65 26.52 663 495.844645550528 401.69532428356 271.466063348416 224.378582202112 629.3

41 Myopic 16753268.31 33.64 841 489.67063020214 387.38049940547 281.843043995244 207.827586206897 749.62
Rewards Adjustment 16564161.325 34.44 861 504.507549361208 403.693379790941 296.47619047619 208.031358885017 742.65
Adjustment with Penalty & Rewards 16608094.175 34.28 857 512.471411901984 414.757292882147 293.742123687281 218.729288214702 741.35

42 Myopic 16466144.6 34.84 871 502.708381171068 403.623421354765 288.107921928817 214.60045924225 733.2
Rewards Adjustment 16506773.1 34.68 867 507.565167243368 406.930795847751 292.559400230681 215.005767012687 737.2
Adjustment with Penalty & Rewards 16463588.74 34.88 872 515.05504587156 420.23623853211 292.307339449541 222.747706422018 731.48

43 Myopic 16593823.785 34.32 858 501.782051282051 404.320512820513 289.412587412587 212.369463869464 740.57
Rewards Adjustment 16522176.76 34.6 865 491.891329479769 397.243930635838 281.743352601156 210.147976878613 737.52
Adjustment with Penalty & Rewards 16450951.985 34.92 873 505.084765177549 413.711340206186 287.437571592211 217.647193585338 733.97

44 Myopic 16331178.82 35.3741496598639 884 503.846153846154 409.080316742081 286.772624434389 217.073529411765 730.64
Rewards Adjustment 16318481.48 35.4141656662665 885 494.811299435028 402.523163841808 275.28813559322 219.523163841808 729.96
Adjustment with Penalty & Rewards 16257714.715 35.6942777110844 892 509.440582959641 420.072869955157 279.743273542601 229.69730941704 724.43

45 Myopic 16444836.3 34.92 873 492.537227949599 399.70332187858 282.995418098511 209.541809851088 731.6
Rewards Adjustment 16414823.01 35.04 876 491.62899543379 398.309360730594 285.570776255708 206.058219178082 727.02
Adjustment with Penalty & Rewards 16501058.11 34.72 868 508.94470046083 416.341013824885 295.278801843318 213.665898617511 732.22

46 Myopic 15643640.75 38.2 955 497.815706806283 404.797905759162 282.794764397906 215.020942408377 699.5
Rewards Adjustment 15485944.27 38.84 971 492.125643666323 402.880535530381 274.332646755922 217.792996910402 691.54
Adjustment with Penalty & Rewards 15630473.76 38.28 957 506.345872518286 418.237199582027 276.038662486938 230.307210031348 694.52

47 Myopic 15680903.185 38.04 951 500.166140904311 400.745531019979 273.40483701367 226.761303890641 697.37
Rewards Adjustment 15624836.585 38.28 957 503.76802507837 406.455590386625 272.942528735632 230.825496342738 695.17
Adjustment with Penalty & Rewards 15925741.745 37.08 927 515.077669902913 421.549083063646 262.142394822006 252.935275080906 707.49

48 Myopic 16246212.315 35.76 894 523.475391498881 415.771812080537 271.808724832215 251.666666666667 724.63
Rewards Adjustment 16283948.54 35.6 890 519.733707865169 412.548314606742 269.165168539326 250.568539325843 729.08
Adjustment with Penalty & Rewards 16250926.93 35.76 894 525.064876957494 426.321029082774 258.623042505593 266.441834451902 722.86

49 Myopic 15772222.115 37.68 942 510.815286624204 407.366242038217 297.831210191083 212.984076433121 705.23
Rewards Adjustment 15731883.895 37.84 946 506.815010570825 404.931289640592 287.698731501057 219.116279069767 702.79
Adjustment with Penalty & Rewards 15856288.8 37.36 934 517.798715203426 419.561027837259 285.845824411135 231.952890792291 707.6

50 Myopic 16218148.035 35.84 896 493.487723214286 396.845982142857 283.818080357143 209.669642857143 722.07
Rewards Adjustment 16130398.735 36.2 905 493.64861878453 397.880662983425 288.850828729282 204.797790055249 715.47
Adjustment with Penalty & Rewards 16022200.515 36.68 917 511.332606324973 418.415485278081 280.123227917121 231.209378407852 714.03

51 Myopic 16220171.905 35.8143257302921 895 509.148603351955 401.806703910615 304.867039106145 204.28156424581 726.81
Rewards Adjustment 16183895.79 35.9743897559024 899 513.563959955506 408.304783092325 298.735261401557 214.828698553949 725.58
Adjustment with Penalty & Rewards 16157895.355 36.09443777511 902 520.347006651885 415.815964523282 303.09866962306 217.248337028825 724.71

52 Myopic 16126518.835 36.24 906 507.019867549669 410.955849889625 279.318984547461 227.700883002207 711.67
Rewards Adjustment 15969117.625 36.88 922 503.460954446855 409.467462039046 276.280911062907 227.180043383948 706.25
Adjustment with Penalty & Rewards 16144031.325 36.2 905 516.764640883978 428.009944751381 270.114917127072 246.649723756906 713.65

53 Myopic 16484761.745 34.76 869 514.200230149597 401.364787111623 306.318757192175 207.881472957422 737.49
Rewards Adjustment 16417194.07 35.04 876 514.88698630137 403.711187214612 304.083333333333 210.803652968037 737.14
Adjustment with Penalty & Rewards 16577161.65 34.4 860 519.201162790698 411.147674418605 307.904651162791 211.296511627907 736.3

54 Myopic 15958422.045 36.92 923 506.199349945829 407.51570964247 286.191765980498 220.00758396533 707.09
Rewards Adjustment 15779891.435 37.64 941 501.510095642933 402.853347502657 289.638682252922 211.871413390011 697.87
Adjustment with Penalty & Rewards 16002822.565 36.76 919 511.54189336235 418.861806311208 276.21436343852 235.32752992383 711.13
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Table P.4: Results for Independent Simulations

Instance Simulation Type Overall Cost Service Rate Orders Delivered Delivery Time Delay Time Time On Vehicle Waiting Time Distance Travelled
55 Myopic 16316725.08 35.4141656662665 885 500.811299435028 398.559322033898 290.835028248588 209.976271186441 725.16

Rewards Adjustment 16327377.795 35.3741496598639 884 503.343891402715 400.485294117647 295.02149321267 208.322398190045 726.59
Adjustment with Penalty & Rewards 16432847.05 34.9739895958383 874 517.747139588101 417.5823798627 299.400457665904 218.346681922197 727.1

56 Myopic 16388592.995 35.1340536214486 878 510.9715261959 405.980637813212 303.800683371298 207.170842824601 734.99
Rewards Adjustment 16525756.835 34.5738295318127 864 513.552083333333 405.986111111111 305.949074074074 207.603009259259 741.67
Adjustment with Penalty & Rewards 16402521.48 35.094037615046 877 518.638540478905 415.403648802737 307.574686431015 211.063854047891 733.96

57 Myopic 16376494.635 35.2 880 502.45 400.295454545455 295.418181818182 207.031818181818 729.27
Rewards Adjustment 16465058.32 34.84 871 501.916188289323 401.126291618829 295.559127439724 206.357060849598 735.64
Adjustment with Penalty & Rewards 16508257.145 34.68 867 509.41291810842 410.356401384083 299.22952710496 210.18339100346 735.29

58 Myopic 16457111.435 34.88 872 514.792431192661 405.376146788991 303.525229357798 211.267201834862 734.87
Rewards Adjustment 16526324.565 34.6 865 516.679768786127 406.834682080925 305.721387283237 210.95838150289 737.13
Adjustment with Penalty & Rewards 16479130.47 34.8 870 515.252873563218 410.945977011494 301.742528735632 213.510344827586 737.94

59 Myopic 16494243.2 34.6938775510204 867 503.525951557093 401.099192618224 296.123414071511 207.402537485582 733.4
Rewards Adjustment 16532993.415 34.5338135254102 863 501.008111239861 400.061413673233 292.276940903824 208.731170336037 733.83
Adjustment with Penalty & Rewards 16596124.295 34.2937174869948 857 508.690781796966 410.164527421237 296.30805134189 212.382730455076 737.59

60 Myopic 16271621.32 35.64 891 511.244668911336 406.86531986532 301.019079685746 210.225589225589 725.64
Rewards Adjustment 16272155.86 35.64 891 512.294051627385 408.061728395062 300.837261503928 211.456790123457 728.72
Adjustment with Penalty & Rewards 16403510.74 35.12 878 519.211845102506 417.183371298405 296.126423690205 223.085421412301 734.48

61 Myopic 16407311.285 35.08 877 496.744583808438 403.524515393387 289.689851767389 207.054732041049 731.57
Rewards Adjustment 16140122.3 36.16 904 488.375 397.70685840708 283.438053097345 204.936946902655 717.6
Adjustment with Penalty & Rewards 16059640.955 36.52 913 503.167579408543 414.641840087623 289.46878422782 213.698795180723 713.91

62 Myopic 16231921.75 35.8 895 504.891620111732 405.71843575419 303.663687150838 201.227932960894 725.5
Rewards Adjustment 16474859.31 34.8 870 500.405747126437 401.131034482759 297.001149425287 203.404597701149 734.62
Adjustment with Penalty & Rewards 16061033.115 36.52 913 512.780941949617 417.688937568456 296.392113910186 216.38882803943 716.23

63 Myopic 16429221.46 35 875 513.384 408.812571428571 303.329142857143 210.054857142857 731.92
Rewards Adjustment 16331516.75 35.4 885 516.650847457627 409.381920903955 305.315254237288 211.335593220339 730.5
Adjustment with Penalty & Rewards 16363966.795 35.28 882 521.72335600907 416.327664399093 314.380952380952 207.342403628118 732.59

64 Myopic 16574011.425 34.3737494997999 859 507.514551804424 404.286379511059 301.998835855646 205.515715948778 740.85
Rewards Adjustment 16494851.315 34.6938775510204 867 502.20184544406 402.500576701269 290.035755478662 212.166089965398 734.63
Adjustment with Penalty & Rewards 16499200.97 34.6938775510204 867 512.118800461361 412.535178777393 299.79815455594 212.320645905421 733.94

65 Myopic 16356629.925 35.28 882 493.683673469388 399.692743764172 282.630385487528 211.053287981859 730.85
Rewards Adjustment 16287599.735 35.56 889 493.946006749156 398.728908886389 284.610798650169 209.335208098988 729.47
Adjustment with Penalty & Rewards 16137962.34 36.2 905 505.116022099447 414.590055248619 289.534806629834 215.581215469613 720.68

66 Myopic 15789676.95 37.6 940 491.773404255319 402.821276595745 273.025531914894 218.747872340426 701.9
Rewards Adjustment 15602026.085 38.36 959 489.843587069865 399.745568300313 278.713242961418 211.130344108446 696.17
Adjustment with Penalty & Rewards 15667208.905 38.12 953 495.948583420777 413.139559286464 265.305351521511 230.643231899265 695.81

67 Myopic 16309934.78 35.48 887 507.727170236753 404.895152198422 265.314543404735 242.412626832018 727.56
Rewards Adjustment 16279728.16 35.6 890 506.960674157303 403.065168539326 266.759550561798 240.201123595506 728.32
Adjustment with Penalty & Rewards 16334236.525 35.4 885 510.166101694915 415.531073446328 264.962711864407 245.203389830508 728.05

68 Myopic 16072072.85 36.44 911 508.371020856202 398.931942919868 291.386388583974 216.984632272228 718.7
Rewards Adjustment 16092905.325 36.36 909 509.117711771177 401.645764576458 291.193619361936 217.924092409241 714.65
Adjustment with Penalty & Rewards 16156970.485 36.12 903 517.619047619048 413.31007751938 290.148394241418 227.47065337763 721.97

69 Myopic 16241823.835 35.734293717487 893 508.808510638298 406.406494960806 271.297872340426 237.510638297872 726.67
Rewards Adjustment 16161901.425 36.0544217687075 901 504.249722530522 402.972253052164 274.882352941176 229.367369589345 724.85
Adjustment with Penalty & Rewards 16310378.12 35.4541816726691 886 505.075620767494 406.351015801354 270.3769751693 234.698645598194 729.24

70 Myopic 16287939.095 35.56 889 501.980877390326 399.492688413948 291.402699662542 210.578177727784 729.19
Rewards Adjustment 16270760.59 35.64 891 508.112233445567 404.930415263749 295.037037037037 213.07519640853 728.18
Adjustment with Penalty & Rewards 16262710.495 35.68 892 508.008968609865 408.850896860987 286.137892376682 221.871076233184 725.99

71 Myopic 15711361.995 37.92 948 488.061181434599 402.978902953587 276.086497890295 211.974683544304 699.99
Rewards Adjustment 15602948.565 38.36 959 486.980187695516 401.666319082378 276.464025026069 210.516162669447 699.13
Adjustment with Penalty & Rewards 15676857.66 38.08 952 496.013655462185 412.832983193277 277.955882352941 218.057773109244 698.32

72 Myopic 16074923.23 36.44 911 497.097694840834 405.190998902305 286.402854006586 210.694840834248 717.46
Rewards Adjustment 15943364.705 36.96 924 489.470779220779 396.124458874459 280.977272727273 208.493506493506 710.41
Adjustment with Penalty & Rewards 16021106.12 36.68 917 505.016357688113 416.028353326063 284.384950926936 220.631406761178 714.24

73 Myopic 16122160.345 36.24 906 507.040838852097 401.326710816777 303.451434878587 203.58940397351 718.69
Rewards Adjustment 16122068.745 36.24 906 505.363134657837 401.122516556291 293.466887417219 211.896247240618 720.49
Adjustment with Penalty & Rewards 16162469.76 36.08 902 506.716186252772 403.789356984479 294.70509977827 212.011086474501 721.52

74 Myopic 16189844 35.96 899 501.776418242492 399.291434927697 287.129032258064 214.647385984427 725
Rewards Adjustment 16219701.345 35.84 896 500.353794642857 400.3125 285.760044642857 214.59375 722.69
Adjustment with Penalty & Rewards 16451027.74 34.92 873 511.958762886598 413.8843069874 285.281786941581 226.676975945017 734.48

75 Myopic 15934057.675 37 925 497.086486486487 397.191351351351 282.652972972973 214.433513513513 713.35
Rewards Adjustment 16004374.21 36.72 918 502.095860566449 400.907407407407 291.16339869281 210.932461873638 715.42
Adjustment with Penalty & Rewards 16088215.375 36.4 910 510.22967032967 412.872527472528 286.465934065934 223.763736263736 716.75

76 Myopic 16166816.2 36.0544217687075 901 513.997780244173 413.885682574917 295.334073251942 218.663706992231 721.4
Rewards Adjustment 16055895.33 36.4945978391357 912 505.269736842105 406.88048245614 296.845394736842 208.424342105263 715.66
Adjustment with Penalty & Rewards 16419722.305 35.0140056022409 875 507.530285714286 409.96 287.611428571429 219.918857142857 729.61

77 Myopic 16064339.06 36.48 912 502.899122807018 403.462719298246 294.048245614035 208.850877192982 720.12
Rewards Adjustment 15945283.68 36.96 924 498.668831168831 400.275974025974 294.672077922078 203.996753246753 712.36
Adjustment with Penalty & Rewards 16010961.045 36.72 918 509.920479302832 415.254901960784 291.114379084967 218.806100217865 718.09

78 Myopic 16085912.635 36.4 910 508.492307692308 407.812087912088 292.268131868132 216.224175824176 716.27
Rewards Adjustment 16170814.35 36.04 901 500.795782463929 400.562708102109 293.482796892342 207.312985571587 721.7
Adjustment with Penalty & Rewards 16247294.175 35.76 894 513.482102908277 418.190156599553 285.804250559284 227.677852348993 726.35

79 Myopic 15907651.165 37.12 928 502.504310344828 403.658405172414 274.922413793103 227.581896551724 707.33
Rewards Adjustment 15723030.845 37.88 947 505.525871172123 406.927138331573 274.88489968321 230.640971488912 701.69
Adjustment with Penalty & Rewards 15909441.695 37.16 929 521.922497308934 428.606027987083 266.616792249731 255.305705059203 708.39

80 Myopic 16357709.03 35.28 882 518.857142857143 402.138321995465 313.456916099773 205.40022675737 732.06
Rewards Adjustment 16564749.47 34.44 861 522.39837398374 405.066202090592 317.044134727062 205.354239256678 736.94
Adjustment with Penalty & Rewards 16422767.385 35.04 876 531.84703196347 416.438356164384 316.834474885845 215.012557077626 734.77
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