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ABSTRACT:

Functional classification of the road is important to the construction of sustainable transport systems and proper design of facilities.
Mobile laser scanning (MLS) point clouds provide accurate and dense 3D measurements of road scenes, while their massive data
volume and lack of structure also bring difficulties in processing. 3D point cloud understanding through deep neural networks
achieves breakthroughs since PointNet and arouses wide attention in recent years. In this paper, we study the automatic road type
classification of MLS point clouds by employing a point-wise neural network, RandLA-Net, which is designed for consuming
large-scale point clouds. An effective local feature aggregation (LFA) module in RandLA-Net preserves the local geometry in point
clouds by formulating an enhanced geometric feature vector and learning different point weights in a local neighborhood. Based on
this method, we also investigate possible feature combinations to calculate neighboring weights. We train on a colorized point cloud
from the city of Hannover, Germany, and classify road points into 7 classes that reveal detailed functions, i.e., sidewalk, cycling
path, rail track, parking area, motorway, green area, and island without traffic. Also, three feature combinations inside the LFA
module are examined, including the geometric feature vector only, the geometric feature vector combined with additional features
(e.g., color), and the geometric feature vector combined with local differences of additional features. We achieve the best overall
accuracy (86.23%) and mean IoU (69.41%) by adopting the second and third combinations respectively, with additional features
including Red, Green, Blue, and intensity. The evaluation results demonstrate the effectiveness of our method, but we also observe
that different road types benefit the most from different feature settings.

1. INTRODUCTION

Automation of road information extraction is of great signific-
ance to economic and social development. Road type, which
indicates the function of a road segment, is key to various ap-
plications, including autonomous driving, inspections of in-
frastructures, and decision making of companies and govern-
ments (Zhu et al., 2012). LiDAR provides accurate 3D point
measurements and is illumination invariant, showing a strong
ability for mapping. Similar to image recognition, point cloud
processing also benefits from the rapid development of deep
learning techniques (Liu et al., 2019). However, it is still chal-
lenging to interpret 3D point clouds using neural networks due
to their irregular data structure.

Determining the type of each road point is consistent with
the aim of point cloud semantic segmentation. Recent studies
on semantic segmentation of point clouds using deep learning
mainly consist of two kinds of methods, i.e., projection-based
and point-based methods. In projection-based methods, point
clouds are first projected onto 2D planes (i.e., images) (Wu et
al., 2018) or converted into voxels (i.e., 3D grids) (Riegler et al.,
2017). Through achieving a regularly aligned data format, 2D
or 3D convolutional neural networks (CNN) can be applied. Al-
though these methods address the problem of unorganized point
clouds indirectly, some spatial information is lost and additional
computational resources are needed during pre-processing.

As an active research topic in this area, point-based neural net-
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works can directly consume and model 3D point data. Point-
Net (Qi et al., 2017a), the pioneering work among these meth-
ods, employs a series of shared multi-layer perceptrons (MLP)
to learn higher-dimensional features for each point. Then these
per-point features are aggregated by applying a symmetric func-
tion (e.g., max-pooling), ensuring that point cloud processing
is irrelevant to the point order. However, PointNet does not
consider local structures inside the point cloud, limiting its per-
formance in complex scenes (Qi et al., 2017b). Starting from
PointNet, many networks are proposed combining MLPs with
local feature aggregation. The local feature aggregation mod-
ule aims to extract prominent features from a point neighbor-
hood, thereby exploiting wider contextual information around
each point. The choice of input features for local aggregation
has a great impact on its effectiveness. PointNet++ uses relat-
ive coordinates in a local region together with additional point
features (e.g., R, G, B), while DGCNN (Wang et al., 2019) con-
structs the concatenation of all original and relative features as
input. RandLA-Net (Hu et al., 2020), which is adopted in this
study, employs more complex encoding for relative coordin-
ates to capture geometric details. The encoded geometric fea-
ture, together with additional point features, is then used to
achieve local feature aggregation. Different from PointNet++
and DGCNN, which use a symmetric function to aggregate in-
put features indistinguishably, RandLA-Net represents local in-
formation as a weighted sum of all neighboring point features,
making the choice of input features even more crucial for cap-
turing the local geometry.

Some of the aforementioned methods have already verified their
model performance on benchmark MLS point cloud datasets
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like SemanticKITTI (Behley et al., 2019). The labeling of these
datasets covers the whole road scene including road surface,
cars, buildings, etc. However, further research on detailed clas-
sification focusing on different road types is still needed. Some
studies also evaluate different input features of the local aggreg-
ation module (Widyaningrum et al., 2021). It turns out that one
fixed feature combination is not optimal for all datasets (Liu et
al., 2020). To find a proper setting for road type classification,
it is important to conduct more experiments.

The main contributions of this paper are:

• We achieve detailed road type classification in dense urban
areas by applying RandLA-Net.

• We assess how features should be combined to achieve
weights of neighboring points when aggregating local in-
formation in point clouds.

This paper is organized as follows: Section 2 illustrates the
dataset employed in this study. Section 3 describe the methodo-
logy, including the data pre-processing procedure, details of the
neural network, and adopted evaluation metrics. Experiment
results are discussed in Section 4. Finally, Section 5 presents
the drawn conclusions.

2. DATASET AND STUDY AREA

The MLS point cloud used in this paper is acquired by Cyc-
lomedia’s proprietary recording system (Cyclomedia, 2021), in
the city of Hannover, Germany. This system is mainly com-
posed of 5 high-resolution cameras and a Velodyne HDL-32E
LiDAR sensor (Velodyne, 2010). Figure 1 shows the trajectory
of the recording vehicle, which is about 16 km in length. The
original LiDAR point cloud has an average point spacing of 1
cm and is colorized by panoramic images obtained at the same
time.

Ground truth annotations of the MLS point cloud contain 9 road
classes: sidewalk, cycling path, rail track, parking area, motor-
way, green area, island without traffic, pedestrian area (car-free
zones) and others. The order of these classes also reveals the
priority of labeling. For example, if a motorway is crossing a
rail track in a point cloud, corresponding points will be labeled
as rail track.

3. METHODOLOGY

This study investigates the capability of a deep neural net-
work, i.e., RandLA-Net, for classifying 3D point clouds into
different road types and evaluates the performance of different
feature combinations in the local feature aggregation module.
Our methodology mainly includes data pre-processing, training
with RandLA-Net, and evaluation.

3.1 Data pre-processing

To handle the sheer volume of the acquired MLS point cloud,
we first downsample it using grid sampling, with a grid size of
0.1 m. Figure 2a presents an example of the colorized point
cloud after downsampling. Afterwards, non-road points are
removed by a ground filtering approach (Isenburg, 2014), as
shown in Figure 2b. The label of each point is then achieved
through overlaying the ground truth annotations, which are
polygons stored in the shapefile format, on the road point cloud

Figure 1. Trajectory of the recording vehicle shown in purple,
with a length about 16 km. The base map is provided by

© OpenStreetMap.

(see Figure 2d). Also, points belonging to pedestrian area and
others have similar appearance as sidewalk. Considering that
they are detected with the help of other information like a road
sign in practice, pedestrian area and others are merged into the
sidewalk to ease the training.(1)

After pre-processing, the point cloud dataset used for our study
has a total number of 74,629,166 points, with 9 attributes, i.e.,
x, y, z, R, G, B, intensity, return number, and number of returns.
Besides, the distribution of points in 7 road types is illustrated
in Table 1, in which a class imbalance issue can be observed.
Motorway contains a dominant number of points. sidewalk and
green area are also frequently seen in the data. By contrast, rail
track has the least amount of points. The MLS point cloud after
pre-processing is vertically split into 39 tiles, with 29 tiles for
training and 10 for testing.

sidewalk cycling path rail track parking area
17.27 3.22 0.54 3.92

motorway green area island without traffic
32.68 14.12 2.88

Table 1. Number of points (·106) in each road type.

3.2 RandLA-Net

We implement RandLA-Net (Hu et al., 2020) for road type clas-
sification in this study. RandLA-Net is a point-wise neural net-
work and follows an encoder-decoder hierarchical design (see
Figure 3). Given a point cloud with a large number of points,
the points are progressively downsampled in each encoding
layer and upsampled again in decoding layers to preserve the
original resolution in final predictions. To achieve processing
efficiency, random sampling is chosen as the downsampling
strategy. Since random sampling drops points non-selectively,
each neural layer also contains an effective local feature ag-
gregation (LFA) module to summarize neighborhood informa-
tion without losing important point features. The LFA module

(1) When using (x, y, z, R, G, B) and the original feature combination in
the LFA module of RandLA-Net, the mean IoU is improved by 10.97%
after merging the labels.
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(a) Downsampled point cloud (b) Filtered point cloud

(c) Filtered point cloud (intensity) (d) Labeled point cloud

Figure 2. Downsampled, filtered and labeled point cloud. Circle areas highlight the similarity between some parking areas and
sidewalks.

Figure 3. Overview of the RandLA-Net architecture (Hu et al., 2020). N indicates the number of input points. FC: Fully Connected
layer, LFA: Local Feature Aggregation, RS: Random Sampling, MLP: shared Multi-Layer Perceptron, US: Up-sampling, DP:

Dropout.

Figure 4. Components of an encoding layer in RandLA-Net (Hu et al., 2020). Top: Local Spatial Encoding (LocSE) block which
transforms the input features and Attentive Pooling block which aggregates the local information based on weighing the neighboring
points. Bottom: Two pairs of LoSE and Attentive Pooling blocks are stacked together to increase the receptive field, which forms the

Dilated Residual Block of each encoding layer.
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is the key to modeling and perceiving the local geometry of
point clouds. Moreover, the neighborhood around each point is
selected using K-Nearest Neighbor (KNN) in RandLA-Net.

As shown in Figure 4 (top), the LFA module consists of two
components, i.e., Local Spatial Encoding (LocSE) and Attent-
ive Pooling. Within LocSE, coordinates of the input points are
first transformed to a higher dimensional geometric feature vec-
tor rki according to:

rki = MLP (pi ⊕ pki ⊕ (pi − pki )⊕ ‖pi − pki ‖), (1)

where MLP = multi-layer perceptrons
i ∈ {1, 2, ..., N}
N = the total number of points
k ∈ {1, 2, ...,K}
K = the number of nearest neighbors
pi = coordinates of the centered point
pki = coordinates of one neighboring point
⊕ = concatenation operation
‖ · ‖ = Euclidean distance

The geometric feature vector rki and additional features fk
i (e.g,

R, G, B) are then concatenated as f̂k
i , which is the input of

Attentive Pooling.

The aim of Attentive Pooling is to aggregate the enhanced point
feature f̂k

i in the neighborhood to achieve local contextual in-
formation for each point. Neural networks like PointNet++ and
DGCNN apply a symmetric function (e.g., max-pooling and∑

) as the aggregation function, which is simple but inevitably
processes the neighboring points indistinguishably, causing a
certain loss of geometric information. The Attentive Pooling in
RandLA-Net, instead, learns different weights ski of the neigh-
boring points through a MLP, as indicated by g(f̂k

i ,W ) in Fig-
ure 4 (top). The neighborhood features are subsequently ag-
gregated by taking a weighted sum. Moreover, RandLA-Net
applies the LFA module twice in each layer to effectively in-
crease the receptive field of the network, as shown in Figure 4
(bottom).

In this study, we use a colorized MLS point cloud. Apart from
the geometric vector rki , how to combine additional features
(e.g., R, G, B) to aggregate local information in road scenes
remains to be discussed. In urban areas, road objects like mo-
torway and green area have totally different appearance. Their
variation in color can also differ a lot. Additionally, as indic-
ated in Figure 2c, intensity values of the vegetation (green area)
present distinct characteristics. Thus, it might be beneficial to
include these features or even their local differences as addi-
tional information sources to help distinguish road types.

However, it may happen that the surface material of two adja-
cent road segments (e.g., sidewalk and parking area shown in
circled areas of Figure 2) are the same, making the appearance
and reflection values of different road objects very similar. In
this case, it is possible that using only geometric features can
reduce class confusion and acquire more accurate results.

Based on these assumptions, we compare three feature com-
binations to calculate neighboring weights in the local feature
aggregation module of RandLA-Net, which refer to the choice
of f̂k

i in g(f̂k
i ,W ):

1. rki : Geometric feature vector only.
2. rki ⊕ fki : Geometric feature vector rki concatenated with

additional features fk
i , which is the original implementa-

tion of RandLA-Net.
3. rki ⊕ (fi − fki ): Geometric feature vector rki concatenated

with relative additional features (fi − fk
i ).

We also consider two settings of the additional features fk
i , i.e.,

(R, G, B) and (R, G, B, I), with I indicating the intensity. The
intensity feature is a more stable attribute compared to RGB
values since it is not affected by illumination conditions during
recording.

3.3 Evaluation metrics

To evaluate and compare the performance of different feature
combinations illustrated in Section 3.2, we determine the fol-
lowing evaluation metrics in this study, which are commonly
used in the semantic segmentation task:

• Overall accuracy (OA), which measures the proportion of
correctly classified points among all input points.

• Mean Intersection over Union (mIoU), which is the mean
value of Intersection over Union (IoU) in each class, with
IoU defined as:

IoU =
Overlap of the predicted and ground truth
Union of the predicted and ground truth

. (2)

4. RESULTS AND DISCUSSION

In this section, we first compare the evaluation results for three
feature combinations in the local feature aggregation module of
RandLA-Net in Section 4.1. Section 4.2 shows the impact of
adding intensity features on the overall performance, as well as
the results of several specific road types. Finally, we discuss the
importance of defining appropriate road classes that represent
distinct functions in Section 4.3.

Table 2 and Table 3 summarize the quantitative results of road
type classification with different feature combinations in the
LFA module.

fki OA mIoU
rki

RGB
84.01% 67.05%

rki ⊕ fki 83.58% 64.07%
rki ⊕ (fi − fki ) 85.66% 69.17%

rki
RGBI

85.57% 68.75%
rki ⊕ fki 86.23% 68.26%

rki ⊕ (fi − fki ) 86.09% 69.41%

Table 2. Comparison of the overall accuracy (OA) and the mean
Intersection over Union (mIoU) among different setups in the

LFA module.

Figure 5 and Figure 6 also illustrate part of the results in our
test area. Compared to the ground truth labeling, each fea-
ture setup achieves reasonable predictions in general. How-
ever, since RandLA-Net learns and aggregates point features
in a local neighborhood, inaccurate geometric shapes along ob-
ject edges can be observed. Moreover, a feature combination
that improves the overall accuracy does not ensure performance
gains on each road type.
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fki sidewalk cycling path rail track parking area motorway green area island without traffic
rki

RGB
64.7% 50.6% 87.1% 31.2% 82.2% 85.4% 68.2%

rki ⊕ fki 63.4% 48.6% 75.7% 32.8% 82.3% 83.5% 62.3%
rki ⊕ (fi − fki ) 67.5% 57.9% 85.6% 35.2% 83.6% 85.5% 68.9%

rki
RGBI

67.3% 50.4% 82.0% 34.2% 85.1% 87.0% 75.3%
rki ⊕ fki 68.3% 53.5% 82.7% 36.3% 86.0% 85.5% 65.5%

rki ⊕ (fi − fki ) 67.6% 53.2% 87.0% 34.6% 85.4% 86.9% 71.1%

Table 3. IoU of each class among different setups in the local feature aggregation module.

4.1 Comparison between different feature combinations

In the case of using RGB features, neighboring weights ob-
tained with the combination of geometric feature vector rki and
local feature differences (fi − fk

i ) result in a dominant advant-
age in both evaluation metrics. Adding intensity, rki ⊕ (fi − fki )
helps to achieve the best mIoU of 69.41%, but the gap between
it and other feature combinations is much smaller than that
shown when only adopting RGB features.

(a) RGB: rki (b) RGBI: rki

(c) RGB: rki ⊕ fki (d) RGBI: rki ⊕ fki

(e) RGB: rki ⊕ (fi − fki ) (f) RGBI: rki ⊕ (fi − fki )

(g) Ground truth (h) Colorized view

Figure 5. Comparison of road type classification results using
different feature combinations to weigh the neighboring points.

Holes in the dataset are caused by the removal of cars in
pre-processing. Rectangles, ellipses, and circles highlight the

differences between results with different feature combinations
and the ground truth.

As illustrated in Table 3, the best performance on cycling path
is achieved when combining geometric feature vector and color
difference. The red circled area in Figure 5h shows part of a
cycling path painted in two colors. RGB difference in the local
region helps to highlight the color variation within one object

and produces a clear outline of the cycling path in Figure 5e.
However, both the cycling path and motorway in this figure are
made of asphalt, so involving the local difference of intensity
(i.e., rki ⊕ (fi − fki )) does not bring an advantage compared to
using original intensity values (i.e., rki ⊕ fki ), which is also sup-
ported by the IoU results in Table 3.

Moreover, Table 3 demonstrates the effectiveness of using the
geometric feature rki only in the classification of green area and
island without traffic. As shown in the boxed area of Figure
6h, there is a vegetation stripe next to the southern border of
the rail track. Figure 6b indicates difficulties in distinguishing
both classes. Due to the illumination condition, the hue of this
figure is slightly dark, reducing the contrast in the appearance
of green area and rail track. Eliminating the effect of RGB
features when weighing neighboring points helps to highlight
the difference in geometrical shapes of objects (see Figure 6a).

For the class island without traffic, using only the geometric
vector rki shows a dominant advantage. Island without traffic
refers to areas that channel traffic, which is always slightly
higher than the surrounding road surface. As shown in the white
circled area in Figure 5, the traffic island has a very similar color
as the motorway, which brings confusion in Figure 5c.

Also, one can see that only the geometric feature vector does
not provide enough information for the network when adjacent
objects are made of the same material but have a difference in
color, especially for classes (e.g., parking area) that are some-
times identified by paintings in specific colors.

However, the segmentation performance on the motorway class
is only slightly affected by the feature combination of weighing
the neighboring points, which can also be explained by the ob-
ject properties. Motorway has the most simple geometric char-
acteristics among all these classes and is more invariant than
additional features like RGB.

4.2 Impact of intensity

Comparisons of mIoU in Table 2 suggest that adding intensity
features is beneficial when classifying different road types of
3D point clouds. Intensity brings effective information in train-
ing the model. Only relying on RGB features is not enough to
distinguish some classes. First, there exist some traffic islands
that are covered with vegetation (see boxed areas in Figure 5),
resulting in island without traffic misclassified as green area if
only RGB features are used to weigh neighboring points.

Also, point colors are easily affected by the change of illumin-
ation (see Figure 7a), while intensity values are more stable in
case of shadows (see Figure 7b). Classification results in Figure
7c indicates that shadows cause confusions between the side-
walk and cycling path with additional features (R, G, B). Such
confusions are largely reduced in Figure 7d, when the intensity
feature is also considered.
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(a) RGB: rki (b) RGB: rki ⊕ fki (c) RGB: rki ⊕ (fi − fki ) (d) Ground truth

(e) RGBI: rki (f) RGBI: rki ⊕ fki (g) RGBI: rki ⊕ (fi − fki ) (h) Colorized view

Figure 6. Comparison of road type classification results using different feature combinations to weigh the neighboring points.
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(a) Colorized view

(b) Intensity

(c) RGB: rki ⊕ fki

(d) RGBI: rki ⊕ fki

(e) Ground truth

Figure 7. Comparison of road type classification results with
additional features (R, G, B) and (R, G, B, I). Circle areas

indicate the impact of the intensity feature.

In the case of sidewalk, parking area, and motorway, the ori-
ginal feature combination (i.e., rki ⊕ fki ) in the LFA module of
RandLA-Net gives the best result when intensity is also used
as input for the network, as indicated in Table 3. This tells us
that intensity has a larger impact on the performance of these
classes than the choice of feature combination in local inform-
ation aggregation.

4.3 Definition of road types

As discussed in previous sections, some road classes in our
dataset have the same material type or even appearance, which
confuses the classification task to some extent. For instance, the
vertical motorway in Figure 6 looks very similar to the sidewalk
next to it. The horizontal motorway in this figure, on the other
hand, has a different color. Moreover, in our dataset there exists
a priority list in labeling, e.g., a road object should be classified
as sidewalk even though it is also used as motorway (see 5),
which is due to the importance of promoting green transporta-
tion in large cities nowadays.

Indeed, when defining the road type, the usage of a road seg-
ment is the most meaningful for the human being and practical
applications like urban planning. However, a road class defini-
tion with high complexity might harm the performance of deep
neural networks.

5. CONCLUSIONS

In this study, a deep neural network designed for the semantic
segmentation of large-scale point clouds, RandLA-Net, is em-
ployed to classify road types of a colorized MLS point cloud.
Considering the key component in RandLA-Net, which is the
local feature aggregation (LFA) module, three feature combin-
ations used to calculate point weights in a local neighborhood
are assessed and compared. The difference in using RGB and
RGBI features in road type classification is also discussed.

Through our experiments, RandLA-Net is demonstrated to be
applicable to the road type classification task. The best mIoU
(69.41%) is achieved when combining the enhanced geomet-
ric feature vector and local differences of RGBI features. The
geometric feature vector adopted by RandLA-Net is powerful
in modeling the 3D geometry and learning the local shapes of
road objects, especially island without traffic. Using feature
difference instead of the feature itself (which is the original im-
plementation of RandLA-Net) makes it easier to detect complex
objects in our dataset, like cycling path painted in various col-
ors. Moreover, intensity, an important LiDAR feature, adds ef-
fective information to the neural network and helps to overcome
the negative effect of illumination changes in the environment,
which improves the overall performance of RandLA-Net.

In the pre-processing step, we apply grid sampling with a grid
size of 0.1 m, which helps to avoid the problem of varying
densities in point clouds and does not harm the local struc-
ture of road segments. As future work, more investigation on
the effect of downsampling strategies can be conducted. Also,
although RandLA-Net aims to process neighboring points in-
distinguishably through learning different weights, there is still
space in improving the delineation between objects in the clas-
sification results. The feasibility of RandLA-Net on larger data-
sets and comparisons to other methods (e.g., image-based meth-
ods) should also be further studied. Additionally, urban scenes
designed for modern life always show complex characteristics,
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bringing difficulties to the automatic detection of objects like
road segments. Definition of the road types determines inform-
ation input to deep neural networks and affects how the scene
is modeled. Dividing the road classes in a balanced way, to
account for both the test accuracy and practical usage, needs a
more detailed discussion in future research.
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