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Chapter 1

Introduction

1.1 The Pocket Negotiator

Julia felt pleased with herself. She had just signed the contract for the new job she was
about to start in a couple of weeks. A job contract that was very satisfactory indeed!
When she thought back to the dicussion of the contract details of her previous job, she
could still feel the disappointment. How different it had been this time. Back then, she
had been totally unprepared. Of course, she had had some idea of the salary she wanted,
but of course her boss didn’t agree and she had had to settle for a compromise. She had
never really felt satisfied about that. This time she had been much better prepared. Her
friend Michael had been urging her to try his latest gadget: the Pocket Negotiator. She
had been hesitant at first, but decided to give it a try. The device had guided her through
all the steps needed to prepare for the negotiation. She had been forced to think about
what she really wanted and the machine had suggested things that she would never
have thought of by herself. It had also advised her to think about the wishes of her
new employer and ways for her to meet them. And just now during the meeting itself,
the Pocket Negotiator had helped her analyse the offers made by the HR manager, and
suggested some counteroffers. The HR manager had been impressed by her arguments
and original proposals. In the end, both had happily signed the contract. This was
definitely a good start to her new job!

The research reported on in this thesis is part of a larger research project that
aims to develop a negotiation support system called the Pocket Negotiator. This thesis
focuses on the question how such a system can represent and reason about a user’s
preferences between the possible outcomes of a negotiation. The Pocket Negotiator
project was originally motivated as follows [68].

‘Negotiation is a complex emotional decision-making process aiming to
reach an agreement to exchange goods or services. Although a daily
activity, few people are effective negotiators. Existing support systems
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make a significant improvement if the negotiation space is well-under-
stood, because computers can better cope with the computational com-
plexity. However, the negotiation space can only be properly developed if
the human parties jointly explore their interests. The inherent semantic
problem and the emotional issues involved make that negotiation cannot
be handled by artificial intelligence alone, and a human-machine collab-
orative system is required.

[We] will develop a new type of human-machine collaborative system
that combines the strengths of both and reduces the weaknesses. Fun-
damental in these systems will be that user and machine explicitly share
a generic task model. Furthermore, such systems are to support humans
in coping with emotions and moods in human-human interactions. For
this purpose we will contribute new concepts, methods and techniques.
For integrative bargaining we will develop such a system, called a Pocket
Negotiator, to collaborate with human negotiators. The Pocket Nego-
tiator will handle computational complexity issues, and provide bidding
and interaction advice, the user will handle background knowledge and
interaction with the opponent negotiator.

The Pocket Negotiator will enhance the negotiation skills and perfor-
mance of the user by increasing the user’s capacity for exploration of the
negotiation space, reducing the cognitive task load, preventing mental
errors, and improving win-win outcomes. We will devise a negotiation
model that matches human cognitive representations of negotiation, and
develop methods and tools to support humans in coping with emotions.
Two negotiation domains, labour agreements and real estate acquisition,
with associated experts provide the development ground for the Pocket
Negotiator. We will validate the techniques and tools in training situa-
tions, and realistic experiments.’

From this description we would like to highlight the following points. First, the
project concerns negotiation support, which is characterised by collaboration between
a human negotiator and a support system (software agent). This topic is strongly
related to automated negotiation, although there are some differences. Automated
negotiation concerns autonomous agents, who, although they may act on a human
user’s behalf, have the authority to propose, reject and accept bids and commit to
agreements on their own. In negotiation support, agents may advise their users on
the actions to take, but it is the user who retains responsibility for actions and their
consequences. Still, a negotiation support system’s strategy will be similar to the
strategy of an autonomously negotiating agent; the support system should suggest
the action that it would take himself if it were autonomous. In addition, a support
system should be able to explain its suggestions in order for the user to understand
why this action is the best.

Second, the negotiation support system should be able to help in real-world nego-
tiations such as buying a house or car, or negotiating about employment conditions.
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Although people often think that negotiation is just bargaining over a single issue
(usually the price), enlarging the negotiation space can lead to better deals. For ex-
ample, a deal where you get a good value on some issue that is important to you but
less important to your opponent, and your opponent gets a good value on an issue
that is important for him but less so for you, is better than a deal where a compromise
has been made on both issues. So it is important to take all possible issues into ac-
count simultaneously during a negotiation. This means that outcomes (possible bids)
are complex entities with a specified value for every issue on the table. Since real-
world negotiations often involve many issues, each of which can have many different
values, the outcome space is typically very large.

Third, the goal of a negotiation support system is to help a human negotiator to
reach a better deal in negotiation. The quality of a deal is determined for a large part
by the user’s personal preferences, so a negotiation support system should take these
into account. Although the satisfaction of a person with the result of a negotiation
might also be influenced by other aspects, such as the process of the negotiation, the
atmosphere and emotions during the negotiation, or the state of the relationship with
the opponent, we will focus here on satisfaction with the deal itself. In real-world
negotiations, there is often no clear-cut border between acceptable and unacceptable
deals. Rather, deals are considered more or less preferred by either participant of
a negotiation on some scale of preference. Since a negotiation support system sup-
ports a human user, it should have a model of this user’s preferences. While some
preferences are (almost) universal (e.g. wanting to pay as little as possible), most
are subjective and have to be elicited from the user. Although most current negotia-
tion support systems use numerical measures such as utility to represent preferences,
such quantitative preferences are hard to specify for human users, and therefore
hard to elicit. Therefore, it would be more natural to model the user’s preferences
in a qualitative way. Moreover, due to the exponential size of the outcome space
in real-world, multi-issue negotiations, it is not feasible to specify a preference or-
dering directly. Therefore, we aim to represent the preferences in a more compact
way by using multiple evaluation criteria that influence preference and deriving an
overall preference among outcomes by aggregating them. This approach is called
multi-criteria preference representation.

In this thesis, we focus on the representation of, and reasoning about, such qual-
itative, multi-criteria preferences over a complex outcome space. Other research
within the Pocket Negotiator project has focused on social acceptance of negotia-
tion support systems [102], the design and evaluation of interfaces for preference
construction [100] and value reflection [101], smart bidding strategies in complex
negotiation domains [117, 12, 13, 14, 11], the development of an explanation facil-
ity based on shared mental models between system and user [77, 79, 78], emotions
in negotiation [35, 39] and negotiation training in virtual reality [37, 36].

In the remainder of this chapter, we first give some background on (automated)
negotiation in order to illustrate the exact context (Section 1.2). Then in Section 1.3
we discuss the field of preference handling. Finally, in Section 1.4 we specify the
research objectives and give an overview of the structure of this thesis.
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1.2 Negotiation

Rosenschein and Zlotkin [113] identify three main components in negotiation: the
space of possible deals, the negotiation process, and the negotiation strategy.

1.2.1 Space of possible deals

To what kind of agreements can the agents come? The price for a given good or
service is a different kind of agreement than a job contract, which in turn is different
from a plan for joint action. To bring some structure in the wide variety of domains
of negotiation, Rosenschein and Zlotkin [113] identify a three-tier hierarchy of ne-
gotiation domains: task oriented, state oriented and worth oriented domains. Task
oriented domains are a subset of state oriented domains, which in turn are a subset
of worth oriented domains.

In a task oriented domain, each agent is assigned a set of tasks that it can carry
out by itself (it has all the resources and capabilities needed and other agents cannot
interfere). Negotiation then is about redistributing tasks among the agents to every-
one’s benefit. In a state oriented domain, agents have a specific goal to reach. Agents
aim to move from an initial state to a state where their goal is satisfied. There may be
multiple goal states, and multiple ways to reach a goal state. Also, goals of different
agents may conflict, and agents may not have all resources or capabilities to reach
their goal. So negotiation is about which state is to be reached, and about the allo-
cation of (scarce) resources. In contrast to state oriented domains, where an agent’s
goal will either be satisfied or it will not (goal satisfaction is binary), in worth ori-
ented domains it is possible to specify a degree of satisfaction: agents assign a worth
or value to every possible outcome that captures its desirability. In worth oriented
domains it is possible for agents with opposite desires to reach a compromise.

The aim of the Pocket Negotiator project is to provide negotiation support in a
wide variety of (real-world) domains, e.g. employment conditions and real estate.
As discussed above, outomes in such negotiations are complex entities that have
specified values for a set of issues. Such outcomes are not split into acceptable and
unacceptable ones, but are rather ordered according to their relative preference. This
means that we have to model the highest level of negotiation domains: worth ori-
ented domains.

1.2.2 Negotiation process

Given a set of possible deals, what is the process that agents can use to converge to
agreement on a single deal? What are the rules that specify how consensus will be
reached? A negotiation protocol is a set of rules that govern the interaction. It spec-
ifies things such as who can take part in the negotiation, which actions are allowed
and what their consequences are, when the negotiation ends, and how agreements
are enforced. A commonly used protocol in automated negotiation is the alternating
offers protocol. This is a protocol for bilateral (two-party) negotiation, in which the
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participants take turns in making an offer. The only actions that are allowed are
making an offer, accepting an offer from the opponent, or leaving the negotiation.

In real-world human-human negotiations, the negotiation protocol is not very
strict. Besides offers, other information may be exchanged, and parties may try to
persuade each other. A branch in automated negotiation that aims to formalize this
kind of interaction is argumentation-based negotiation [5, 3, 6, 21, 67, 73, 81, 88, 89,
97, 96, 110, 114, 116]. Here, the exchange of offers is extended with other possible
moves. Argumentation-based negotiation is commonly seen as a dialogue in which
multiple locutions or speech acts are possible. Some commonly used locutions are
propose, accept, reject, assert, challenge, justify, promise, and threat. One of the ad-
vantages of argumentation-based argumentation is that information and arguments
about the negotiators’ preferences can be exchanged. Having an accurate model
of the opponent’s preferences can improve the quality of the negotiation outcome.
One way to acquire such information is just asking for it. Argumentation-based ne-
gotiation provides the means for such communication. Moreover, through the use
of argumentation, negotiators can justify their negotiation stance and influence the
other’s negotiation stance. This can lead to more efficient negotiations.

1.2.3 Negotiation strategy

Given a set of possible deals and a negotiation process, what strategy should an
individual agent adopt while participating in the process? A distinction that is of-
ten made in the literature on negotiation is between approaches that are based on
game theory, heuristics, and argumentation [110]. The game-theoretic approach, e.g.
[113], studies how negotiation protocols and strategies can be defined such that
they satisfy certain desirable properties, such as termination (every negotiation will
end), efficiency (there is no deal that is better than the agreement that is reached),
and equilibrium (there is no incentive to play a different strategy). Although game-
theoretic approaches are very powerful, Rahwan et al. [110] argue that they have
some significant limitations because they make some strong assumptions, such as
complete and correct information and rationality of agents, which cannot be made
in real life. Negotiators often keep their preferences to themselves, so that prefer-
ences of the opponent are not (completely) known. Also, nothing is known about
the opponent’s rationality. Heuristic-based approaches, e.g. [53, 69], do not make the
strong assumptions that the game-theoretic approach makes. Strategies in this ap-
proach are based on certain rules of thumb that apply in most cases. However, they
cannot be proven to lead to an optimal solution. Therefore, this approach relies on
experimental testing, for example through simulation of negotiations with various
parameters. In argumentation-based negotiation, an agent’s strategy should not only
determine what offers he will make, but also what information to share, what argu-
ments to use to try to persuade the opponent, and how to react to the opponent’s
arguments. As such arguments are likely to include preference information, an agent
in argumentation-based negotiation should at least be able to reason about his own
and the opponent’s preferences.
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Another distinction is between agents that keep a model of the opponent (pref-
erences, strategy, trustworthiness, etc.) and those that do not. It is argued that
opponent modelling increases the effectiveness and efficiency of negotiation [117].
We focus here on modelling the opponent’s (qualitative) preferences. Such an op-
ponent model may be based on some general assumptions (e.g. sellers prefer higher
prices). An agent can then try to find out more about the opponent’s preferences
by exchanging arguments. For example, the agent might ask explicitly for the oppo-
nent’s preferences or underlying interests (e.g. [55]). Finally, an agent could try to
change the opponent’s preferences. This may be done in a friendly manner, by point-
ing out some information that the opponent hasn’t considered, or making a promise.
A less friendly approach (but maybe more effective) is making a threat. This is
where persuasive argumentation comes into play (e.g. [116, 81, 112]). Finding out
and changing preferences through the exchange of arguments has been studied in
the field of interest-based negotiation [106, 111, 108] and some studies have been
performed as to the effectiveness of this approach [55, 98, 109]. However, this work
only concerns the task oriented domain. To our knowledge, no such study has yet
been performed in worth oriented negotiation domains.

1.3 Preference handling

Preferences are studied and applied in many different contexts. We briefly mention
a few examples here that give a feeling for the wide variety of situations in which
preferences play a role. In decision making (e.g. [76, 28, 49, 51, 95, 7]), it is the task
of the decision maker to select an action that is the best (or at least good enough,
depending on the setting) according to some preference model. Special attention is
given to multi-criteria decision making (MCDM) and decision making under uncer-
tainty (DMU). Decision making typically involves experts, who have to make impor-
tant decisions, which means that some time can be spent in the construction of an
accurate preference model. In recommender systems (e.g. [115, 91, 120]), a system
recommends one or more items to a user according to the system’s model of the
user’s preferences. This approach can be applied in e-commerce, where relatively
little time can be spent on preference elicitation, but on the other hand data about
many different users are available. Preferences also play a major role in the field of
social choice (or collective decision making) (e.g. [132, 83, 84, 42, 85]). The task
here is to choose an option based on the preferences of multiple parties. Often this is
accomplished by some kind of voting mechanism. In negotiation support, finding the
best outcome for the user is not enough. Since the need for negotiation originates
from a conflict of interests, the user is unlikely to obtain his most preferred outcome.
Rather, a deal is struck that satisfies both negotiation partners to an acceptable de-
gree. This means that it is necessary to construct a preference model that represents
the preferences of the user between at least all acceptable states. Moreover, it is
beneficial to also have such a model of the opponent’s preferences.

The field of preference handling (for an overview, see [31, 47, 70]) consists of
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several related aspects. First, any system working with a user’s preference has to
have an accurate representation or model of those preferences (see Section 1.3.1).
Second, it needs to be able to reason with that model (see Section 1.3.2). Third, in
order for a model to be constructed, it has to be elicited from the user (see Section
1.3.3). These aspects are not independent, but the choices made for one influence
the choices that can be made in the others. Chevaleyre et al. [42] mention five ob-
jectives or desirable properties that should be considered when making such choices.
First, the language should be expressive. This is measured in the types of relations
that can be expressed. For example, the preference relations expressed by a CP-net
[29] always have a particular lattice-type structure, and the leximin ordering in the
prioritized goals approach is always total. Second, the language should be succinct.
Every ordering can be expressed by explicitly listing it, but in any reasonably-sized
outcome space this is infeasible. Coste-Marquis et al. [44] investigate the expres-
sive power and relative succinctness of some propositional preference representation
languages. Third, the language should have low computational complexity if it is to
be used in practice. Fourth, it is an advantage if the language is elicitation-friendly.
Related to this is the last objective, of cognitive relevance, i.e. that the preference
representation resembles the way humans think about preferences.

1.3.1 Representation

A first broad distinction that can be made in preference representation is that be-
tween quantitative and qualitative approaches. In quantitative approaches, each al-
ternative is associated with a numeric value, the utility of that option. Approaches
differ in how such a value is computed. For example, in decision making under un-
certainty, the expected utility of a decision can be used, which is based on the utilities
of its possible outcomes and their probabilities. In multi-criteria decision making, the
overall utility is based on the degree of satisfaction of each of a set of evaluation cri-
teria. In negotiation, a deal or outcome generally consists of multiple issues. For a
complete deal, negotiators have to agree on the value for every issue. The satisfac-
tion of a negotiator with a possible deal depends on his preferences over the values
of the various issues. This is not straightforward. A commonly used approach (also
used in the automated negotiating agents competition (ANAC, [14, 11])), is based
on weighted utilities: every issue has an associated weight indicating its importance
and every possible value of every issue has a certain utility. The overall utility of a
possible deal is then determined by the sum of weighted utilities of the issues’ values.
This is known as a factored value function. This approach makes the assumption of
preferential independence, as discussed in depth by Keeney and Raiffa [76]. If a
user’s preferences are conditional, which is often the case, it will not be able to re-
flect the user’s true preferences. To overcome the limitiations of this approach, a
generalization has been proposed, called generalized additive independence (GAI)
value functions [31, 54, 15]. This language is fully general and can represent any
value function. A GAI value function can also be represented graphically in a GAI-
network [59]. This approach is very powerful, but it makes the strong assumption
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that numeric utilities and weights are available, which is not always the case.
In qualitative approaches, preference is not defined as a value function but as a

binary relation between alternative outcomes. Such a relation is commonly defined
as at least a preorder (i.e. a reflexive and transitive relation). In some approaches
it is also assumed to be total and/or antisymmetric. If a preference relation is a
total preorder it can also be represented by assigning a rank (or utility) to every
outcome, but this is not possible if the relation is partial (i.e. if there are preferentially
incomparable outcomes).

The question is how to represent such a relation. One possibility is to use explicit
comparison statements, e.g. ‘I like this car better than that car’. Unfortunately, this
does not provide guidance for ordering new outcomes that are not mentioned in
any statement, and providing a full preference relation quickly becomes infeasible in
any real-life domain. Therefore, preference relations are commonly represented in
a more compact way. Here, the structure of outcomes is advantageous. Outcomes
are defined as assignments of values to a set of attributes or variables (if all variables
are Boolean, outcomes correspond to propositional models). This gives the option of
generalizing preference statements, e.g. ‘I like red cars better than black cars’. Such
statements relate to one specific evaluation criterion. Approaches that use multiple
evaluation criteria to determine preference differ both in the types of criteria that are
used and in the way (the preferences induced by) the criteria are aggregated.

One type of criterion, which is especially used in the case where outcomes are
represented as propositional models, is goals. Although there is no consensus on the
exact definition of a goal, in this context it can be seen as some desired proposition
that is either satisfied or not. Every goal splits the outcome space in two: a set
of outcomes that satisfies the goal and a set of outcomes that does not. Another
type, that can be seen as a generalization of a goal, is to let an evaluation criterion
assign a level of satisfaction to every outcome. Usually the scales of satisfaction are
shared among all criteria (i.e. criteria are commensurate). Sometimes the scales are
bipolar, i.e. they distinguish between negative, neutral and positive degrees. Finally,
it is possible for every criterion to specify its own preference relation on the set of
outcomes, which can be any preorder.

There are more considerations that distinguish the different approaches. One is
the question whether criteria can be conditional or not, e.g. whether it is possible to
specify that in summer, I prefer to go on holiday in Crete, while in winter I prefer the
Alps. Another question is what ‘framing’ can be used by the criteria, i.e. on which
variables they can be based. Sometimes (e.g. in CP-nets [29]), criteria are defined
directly on the variables whose values define the outcomes. In other cases it is also
possible to define the criteria on more abstract, derived concepts. In that case it
would be possible to specify for example that I like to go on holiday to some place
where I can either sunbathe on the beach or ski (thus expressing the same preference
as in the conditional case, but in a more abstract way).

If multiple criteria play a role, the overall preference is determined by an aggre-
gation of those criteria. This can be done in several different ways. Possibly the
best-known approach is the ceteris paribus (‘all other things being equal’) interpreta-
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tion of preference statements [22, 138]. Here, the statement ‘I like red cars better
than black cars’ is interpreted in such a way that a red car is preferred to a black
car if both cars are the same on all other relevant aspects. What exactly the other
relevant aspects are depends on the specific approach. They can be the values of the
other variables, or the satisfaction (level) of the other criteria. A well-known frame-
work, called CP-nets [29], combines the ceteris paribus semantics with conditional
preferences. Extensions of this approach that incorporate relative importance [32]
and stronger conditional statements [136] have been proposed as well.

If goals are used as criteria, obviously the outcomes that satisfy all goals are the
most preferred. In real-life applications, however, such outcomes may not be avail-
able. In that case other ways are needed to determine preference between the avail-
able options. A simple approach is to count the number of goals that are satisfied. The
more goals an outcome satisfies, the more preferred it is. This approach can be re-
fined by assigning a weight to every goal that indicates its importance [41, 119, 118].
Instead of assigning weights, the importance of a goal can also be indicated qualita-
tively, as is done in the prioritized goals approach (e.g. [33]). Here, every goal has
an associated rank (multiple goals can have the same rank). Different strategies to
obtain a preference ordering can be applied, such as the leximin and discrimin or-
derings. For example, the leximin strategy prefers one outcome over another if there
is a rank where the first satisfies more goals than the second, and for every more
important rank, they satisfy the same number of goals.

Sometimes a compensation or trade-off between the satisfaction and the impor-
tance of criteria can be made. This requires commensurability of the scales used for
measuring the satisfaction of all criteria and their relative importance.

Finally, an operator that can combine any arbitrary preference relations induced
by criteria is the lexicographic rule. Here, criteria are ordered according to priority
by a strict partial order (a transitive and asymmetric relation). The lexicographic rule
weakly prefers one outcome over another if for every criterion, either this criterion
also weakly prefers the first outcome over the second, or there is another criterion
with a higher priority that strictly prefers the first over the second. Andréka et al. [8]
prove that this rule is in fact the only operator for combining arbitrary preference
relations that satisfies all of the desired properties IBUT (independence of irrelevant
alternatives, based on preferences only, unanimity with abstentions, and preservation
of transitivity).

1.3.2 Reasoning

Once a preference model is there, it should be able to answer some queries. There are
two kinds of queries that are used often [29]: outcome optimization (finding the best
outcome) and preferential comparison (determining the preference relation between
two given outcomes). Outcome optimization is needed in decision making; only one
decision can be made and it should be the best possible one. Also, a recommenda-
tion system works best if it recommends the most preferred options. On the other
hand, in negotiation, finding the best outcome for one party is not enough. Typically,
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negotiating parties have conflicting preferences so that one party’s most preferred
outcome is not likely to be accepted. In this case we need a preference ordering of
some or all relevant possible deals, on which a negotiation strategy can be based. To
this end, the preferential comparison query is used. A third kind of query is to de-
termine for a given outcome whether it is good enough (satisficing). This approach
is useful when time or resources are limited. There are different interpretations of
what it means to be good enough. One is that the outcome should be better than
some reference outcome, such as the current situation. In this case, the query would
correspond to a preferential comparison query between the given outcome and the
reference outcome.

In order to answer such preference queries, the system has to be able to reason
with the preference model. The algorithms for this depend on the chosen prefer-
ence representation. In general, there is a trade-off between the expressivity of the
representation format and the complexity of the query algorithms. For example, a
well-known framework that defines both a representation language and algorithms
that answer queries is CP-nets [29]. In an acyclic CP-net, outcome optimization is
easy. In fact, the optimal outcome is not selected from a set of given outcomes, but
rather ‘constructed’ by choosing the most preferred value for every variable, where
variables whose preference is unconditional are assigned first, and the dependent
variables are assigned after that. This approach is possible because of the assump-
tions that the CP-net framework makes, resulting in a preference ordering that has
the form of a lattice with a unique optimal outcome which may be constructed by as-
signing the most preferred value to every variable. Comparison queries in the CP-net
framework are answered by constructing so-called ‘improving flipping sequences’ (a
sequence of outcomes where each outcome differs from the previous one in the value
of exactly one variable, and outcomes are increasingly preferred). This algorithm is
also only applicable due to the specific structure of a preference relation induced by
a CP-net, but in contrast to outcome optimization it is not easy but PSPACE-complete
in general.

One option to reason about preferences is to use argumentation. Following the
seminal work of Dung [52], formal argumentation has grown to be a core study
within artificial intelligence [18]. Besides providing a reasoning mechanism for sin-
gle agents (see e.g. [104]), argumentation is also applied in communication between
multiple agents [90, 87, 107].

Using argumentation for preference modelling has several advantages. First,
since argumentation is a form of defeasible reasoning, it is equipped to deal with
incomplete and inconsistent information. This is often the case in preference reason-
ing. Second, argumentation is modular, in the sense that arguments are not proofs,
but single reasons for a given statement. That is, although arguments may have
the structure of a logical proof, their acceptability is determined by their interaction
with other arguments. The overall conclusion can only be drawn when the relations
among arguments are clear. Adding new reasons will not affect the existing argu-
ments, but it might influence the overall conclusion. This corresponds nicely to the
use of multiple criteria to determine the overall preference. For example, if one house
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is bigger than another, this might be a reason or argument for preferring the first. If
the first house is also more expensive, this might in turn be a reason for preferring the
second. The overall preference for one house over the other can only be decided if all
known reasons are compared. Argumentation itself does not pin down the strategy
to be used; that depends on the underlying logical language, which can be defined at
will. Third, argumentation is clear, because arguments can be built in a step-by-step
fashion, using inference rules. By defining the inference rules in a natural way, the
structure of an argument will reflect the reasoning steps that are made. This means
that arguments that are formed for reasoning can also be used to explain the (cur-
rent) preference model to the human user, or to support statements in a dialogue
with other agents. This can be useful in e.g. recommendation or bidding support
(especially in argumentation-based negotiation).

In existing approaches, argumentation is mostly applied in the context of decision
making (e.g. [72, 9, 7, 94, 133]). In such approaches, arguments are built in favour
of or against certain decisions. Through the interplay of attacking arguments, one de-
cision should eventually be chosen as the best. Although the arguments are typically
based on evaluation criteria, this approach does not really reason about preferences.
The conclusions of arguments typically involve statements about a single decision,
and the attack between arguments advocating different decisions is implicit, due to
the fact that only one option can be chosen. In contrast, reasoning about preferences
themselves would involve direct comparisons between options.

Another approach to reasoning about preferences is to use modal logic. Especially
when outcomes are seen as propositional models, the step to the possible worlds of
modal logic is an intuitive one. Modal logics have been used in several ways to repre-
sent and reason about preferences. For example, Boutilier [28] presents a logic with
a possible worlds semantics to model qualitative probabilities and preferences that
can represent (defeasible) conditional preferences. Van Benthem et al. [22] present a
modal logic that formalizes the ceteris paribus preferences as initiated by Von Wright
[138]. Liu [86] and Girard [58] both use modal logic to model preference change.

1.3.3 Elicitation

Before a preference model can be used in practice in a system, it has to be constructed
or instantiated. To this end, preferences have to be elicited from the human user.
Since preference elicitation is likely to be an iterative process, an existing preference
model also needs to be updateable. We can distinguish several ways of constructing
and updating a preference model.

First, a default preference model can be derived from data about the user. This is
particularly useful if many data are available about different users and their prefer-
ences in the current domain. This approach is similar to collaborative filtering, where
a customer’s preferences are estimated from the preferences of other customers. If
the domain is known, and preferences are known for many users, then this step is
useful. One advantage is that it saves time because not all criteria have to be added
manually. If the required data are not available, this step has to be skipped. In any
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case, further elicitation steps are necessary, since although this step may provide a
good starting point, it will not be accurate enough and has to be personalized further.

Second, criteria and priorities can be inserted and/or updated manually. This
requires that the user understands the used representation framework, or the prefer-
ence model can be intuitively displayed, and that the user knows his own preferences
well. If this is the case, the process is clear and the resulting preference model is ac-
curate. Disadvantages are that it is only suitable for (nearly) expert users, and can
take a lot of time.

Third, a preference model can be constructed or updated by incorporating infor-
mation that is acquired by asking the user particular questions, or by observing the
user’s behaviour (see e.g. [43] for CP-nets, [27] for conditionally lexicographic pref-
erence relations). The aim of this approach is to reduce the user’s cognitive load, but
still acquire an accurate preference model.

1.4 Thesis overview

The main research objective of this thesis is to develop a framework for the repre-
sentation of, and reasoning about a user’s preferences in the context of a negotiation
support system. Above, we have motivated our assumption that such preferences
are qualitative and based on multiple criteria, and range over a complex domain
of outcomes. The specific research questions that we address in this thesis are the
following.

1. How can argumentation be used to reason about qualitative multi-criteria prefer-
ences?

2a. How can qualitative multi-criteria preferences be derived when information about
the outcomes is incomplete?

2b. How can qualitative multi-criteria preferences be derived when information about
the outcomes is uncertain?

3. What kind of attributes should be chosen as criteria?

4a. How can a general framework for the representation of qualitative multi-criteria
preferences over multi-attribute domains be defined?

4b. How expressive is the proposed framework?

4c. How expressive are binary goals as criteria?

5a. How can a preference model be explained?

5b. How can explanations of preference provided by a user be used by a system to
update the preference model?

6. How can modal logic be used to reason about qualitative preferences and the rela-
tions between preference orderings?
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Every chapter in this thesis deals with a specific aspect of modelling qualitative,
multi-criteria preferences, thus covering one or more research questions. All chapters
are shortly introduced below. The general structure of the thesis is shown in Figure
1.1. Except for this Introduction and the Conclusion, every chapter is a copy of an
article. Except for layout and some minor corrections, the articles are left unchanged.
This means that there is a certain amount of unavoidable overlap, but also that every
chapter is self-contained and can be read independently from the others.

Chapter 2: Incomplete and uncertain information

This chapter first presents an argumentation-based framework for the modelling of,
and reasoning about qualitative multi-criteria preferences. This basic framework uses
a simple definition of objects (outcomes) and preferences between them. Objects are
defined as value assignments to a set of attributes (variables) which are all binary
(Boolean). For preference, a version of the lexicographic ordering is used where the
criteria are the same as the attributes that define the objects, and the importance
(priority) between them is a total preorder (this definition is the same as the leximin
or # ordering used in prioritized goals [44, 33]). An argumentation framework,
including a logical language, a set of inference rules, and a definition of the defeat
relation between arguments, is then defined to reason about preferences between
objects (research question 1).

The second part of this chapter considers the question of how to reason about
preferences when only incomplete information about the objects is available (research
question 2a). We first discuss some naive strategies of dealing with preferences be-
tween objects for which it is not known for every attribute whether it is true or false.
From the limitations of these strategies, we identify two desired properties for strate-
gies handling preferences based on incomplete information: decisiveness and safety.
We then propose an adequate strategy that is both decisive and safe, based on the
notion of least and most preferred completions of objects. This definition generalizes
the simple preference definition used in the first part of the chapter: if all information
is complete, it results in the same preferences. Finally, the argumentation framework
defined in the first part is extended to incorporate this strategy for handling incom-
plete information (research question 1).

The third part of this chapter deals with the case of uncertain information about
objects (research question 2b). It first explores how uncertain (defeasible) informa-
tion can be represented ordinally using certainty levels (degrees of belief), and de-
fines an epistemic argumentation framework to reason about uncertain facts. Then
it considers how to reason about preferences between objects for which the truth or
falsehood of attributes is uncertain. After discussing some purely qualitative strate-
gies, we define a compensatory strategy and a safer compensatory strategy, which are
based on the notion of subjective probability. The safer compensatory strategy gener-
alizes both the compensatory strategy and the decisive and safe strategy for handling
incomplete information from the second part of the chapter. Both strategies are also
incorporated into the basic argumentation framework for modelling preferences that
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Basic framework Incomplete information Uncertain information

- simple definition 
of preference
- argumentation 
framework

- argumentation 
frameworks

- certainty levels

Interest-based preferences

- more abstract definition of preference

- motivation for interests as criteria

- argumentation framework

Qualitative Preference Systems

- definition of QPS framework 
(multi-valued domains, three kinds of criteria)

- argumentation framework

- expressivity of QPS (interests, conditional,  
goal-based and bipolar preferences, comparison 
with other frameworks)

- reasoning with background knowledge

- explanation of preferences

- update by using explanations

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6
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(discussion of naive 
strategies, desired 
properties, safe and 
decisive strategy)
- argumentation 
framework

- distinction between attributes and criteria

- expressivity of goals

- strategies for handling 
uncertain information 
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compensatory, safer 
compensatory)
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Preference Logic

- modal logic for preferences
- expressivity

Chapter 7

Figure 1.1: Thesis overview



CHAPTER 1. INTRODUCTION 15

was presented before (research question 1).

Chapter 2 is a copy of [127], which is based on two previous publications [124, 125].

[127] Wietske Visser, Koen V. Hindriks, and Catholijn M. Jonker. Argumentation-
based qualitative preference modelling with incomplete and uncertain infor-
mation. Group Decision and Negotiation, 21(1):99–127, 2012.

[124] Wietske Visser, Koen V. Hindriks, and Catholijn M. Jonker. Argumentation-
based preference modelling with incomplete information. In CLIMA X, volume
6214 of Lecture Notes in Artificial Intelligence, pages 141–157. 2010.

[125] Wietske Visser, Koen V. Hindriks, and Catholijn M. Jonker. An argumenta-
tion framework for deriving qualitative risk sensitive preferences. In Modern
Approaches in Applied Intelligence, volume 6704 of Lecture Notes in Computer
Science, pages 556–565, 2011.

Chapter 3: Interest-based preferences

This chapter addresses the question what kind of attributes should be chosen as cri-
teria (research question 3). It argues that instead of issues (the attributes that define
negotiation outcomes), the negotiators’ underlying interests should be chosen, espe-
cially if the issues are not preferentially independent. Using interests as criteria is
more flexible than modelling conditional preferences, and provides a better explana-
tion of the derived preferences.

While this chapter still considers binary (Boolean) attributes, the definition of
preference is more abstract compared to the one used in the basic framework in
Chapter 2. Here, criteria can also be derived attributes, and the importance between
them can be any preorder, thus generalizing both the lexicographic variant used in
Chapter 2 and ceteris paribus preference. As in the previous chapter, an argumenta-
tion framework is defined that models the proposed preference definition, this time
taking interests explicitly into account (research question 1).

Chapter 3 is a copy of [126].

[126] Wietske Visser, Koen V. Hindriks, and Catholijn M. Jonker. Interest-based pref-
erence reasoning. In 3rd International Conference on Agents and Artificial In-
telligence (ICAART 2011), pages 79–88, 2011.

Chapter 4: Qualitative Preference Systems

This chapter presents a general framework for the representation of qualitative,
multi-criteria preferences, called Qualitative Preference Systems (QPS) (research ques-
tion 4a). The model is more general than the ones presented in the previous chapters,



16 CHAPTER 1. INTRODUCTION

in which attributes and criteria were assumed to be binary. Here, outcomes are de-
fined as value assignments to a set of variables which can have arbitrary domains.
Three types of criteria are defined. Simple criteria derive a preference relation over
outcomes from a preference relation on the values of a single variable. Multiple crite-
ria can be combined in a cardinality criterion, which is based on counting the number
of criteria that support a preference, or in a lexicographic criterion, which is based
on priority. Together, all used criteria form a layered structure called a criterion tree.

After the definition of the QPS framework, the chapter considers the expressiv-
ity of the framework (research question 4b). It shows that QPS can model con-
ditional preferences and underlying interests, goal-based preferences, and bipolar
preferences. It also compares the QPS framework in detail with two other well-
known approaches, Logical Preference Description language [33] and CP-nets [29],
and gives a translation from both languages into QPS.

Finally, the chapter considers the expressivity of goals (binary criteria), even when
the domains of the variables that define the outcomes are not Boolean themselves
(research question 4c). It shows that any QPS (including simple criteria ranging over
multi-valued variables) can be translated to an equivalent and just as succinct goal-
based QPS where all simple criteria have been replaced by goals. Moreover, it shows
that goal-based QPSs allow more fine-grained updates of the criterion tree because
goals relating to different variables can be interleaved.

Chapter 4 is currently submitted for publication in a journal [123]. This article is
based on two previous publications [121, 130]. [122] is an extended abstract of
[121].

[123] Wietske Visser, Reyhan Aydoğan, Koen V. Hindriks, and Catholijn M. Jonker.
Qualitative Preference Systems: A framework for qualitative multi-criteria
preferences. Submitted.

[121] Wietske Visser, Reyhan Aydoğan, Koen V. Hindriks, and Catholijn M. Jonker.
A framework for qualitative multi-criteria preferences. In 4th International
Conference on Agents and Artificial Intelligence (ICAART 2012), pages 243–
248, 2012.

[130] Wietske Visser, Koen V. Hindriks, and Catholijn M. Jonker. Goal-based qualita-
tive preference systems. In 10th International Workshop on Declarative Agent
Languages and Technologies (DALT 2012), 2012.

[122] Wietske Visser, Reyhan Aydoğan, Koen V. Hindriks, and Catholijn M. Jonker.
A framework for qualitative multi-criteria preferences: Extended abstract. In
24th Benelux Conference on Artificial Intelligence (BNAIC 2012), 2012.

Chapter 5: Argumentation framework for QPS

This chapter presents an argumentation framework to reason about preferences ex-
pressed in the QPS framework (research question 1). It defines a logical language, a
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set of inference rules, and a defeat relation. It shows that this argumentation frame-
work models a QPS if the input is a knowledge base containing all information about
the outcomes and the criteria. Finally, an extension of the argumentation framework
is proposed in which it is possible to reason with background knowledge to derive in-
formation about the values of variables by default. This is useful when outcomes are
not completely specified but the unspecified values are dependent on other variables.

Chapter 5 is a copy of [128].

[128] Wietske Visser, Koen V. Hindriks, and Catholijn M. Jonker. An argumentation
framework for qualitative multi-criteria preferences. In Theory and Applica-
tions of Formal Argumentation (TAFA 2011), volume 7132 of Lecture Notes in
Artificial Intelligence, pages 85–98. 2012.

Chapter 6: Explaining QPS

The topic of this chapter is the explanation of preference models. Especially for sys-
tems that support a human user, it is important that their reasoning, and hence their
models of the user’s preferences, can be explained in a natural way (research question
5a). This chapter proposes to use the structure of a QPS criterion tree to generate
explanations for the resulting preferences between outcomes. It uses the intuition
that preferences can be explained by the criteria that are deciding in the overall
preference. Explanations are proposed for every kind of preference by every type of
criterion.

Next, the chapter considers how explanations given by the user can be used to
update the current preference model as maintained by the system (research question
5b). Detailed interaction diagrams are provided that specify how the system should
react to an explanation, given by the user, of a preference that does not follow from
the current model. There are basically two possibilities: to ask the user a follow-up
question or to update the preference model. In the latter case, the updated prefer-
ence model will not only support the same preference as stated by the user, but also
generate the same explanation for it.

Chapter 6 is a copy of [129].

[129] Wietske Visser, Koen V. Hindriks, and Catholijn M. Jonker. Explaining qual-
itative preference models. In 6th Multidisciplinary Workshop on Advances in
Preference Handling (M-PREF 2012), 2012.

Chapter 7: Multi-Attribute Preference Logic

This chapter takes a different approach than the other chapters. It introduces a
modal logic, called Multi-Attribute Preference Logic (MPL), that provides a language
for expressing several strategies to qualitatively derive a preference between objects
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(outcomes) from property (attribute) rankings (research question 6). Objects here
are defined as specific sets of possible worlds (propositional models) that share the
same truth assignments. Preferences are derived from a set of desired properties
(propositional formulas) that are ranked according to importance. Three different
strategies from the literature on prioritized goals [44, 33] to derive preferences from
property rankings are modelled. The additional value of the logic is that it is possible
to reason about these different preference orderings within the logic. This means we
cannot only reason about which objects are preferred according to a certain ordering,
but also about the relation between different orderings.

Chapter 7 is a copy of [65]. Two extended abstracts of this article have been pub-
lished as well [64, 63].

[65] Koen V. Hindriks, Wietske Visser, and Catholijn M. Jonker. Multi-attribute
preference logic. In N. Desai, A. Liu, and M. Winikoff, editors, PRIMA 2010,
volume 7057 of Lecture Notes in Artificial Intelligence, pages 181–195. 2012.

[64] Koen Hindriks, Catholijn Jonker, and Wietske Visser. Reasoning about multi-
attribute preferences (extended abstract). In 8th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2009), pages 1147–
1148, 2009.

[63] Koen Hindriks, Catholijn Jonker, and Wietske Visser. Reasoning about multi-
attribute preferences. In 21st Benelux Conference on Artificial Intelligence
(BNAIC 2009), pages 319–320, 2009.

Chapter 8: Conclusion

The final chapter presents some general conclusions and discusses possible directions
for future research.



Chapter 2

Argumentation-based
qualitative preference
modelling with incomplete
and uncertain information

Abstract This paper presents an argumentation-based framework for the mod-
elling of, and automated reasoning about multi-attribute preferences of a qualita-
tive nature. The framework presents preferences according to the lexicographic
ordering that is well-understood by humans. Preferences are derived in part
from knowledge. Knowledge, however, may be incomplete or uncertain. The
main contribution of the paper is that it shows how to reason about preferences
when only incomplete or uncertain information is available. We propose a strat-
egy that allows reasoning with incomplete information and discuss a number of
strategies to handle uncertain information. It is shown how to extend the basic
framework for modelling preferences to incorporate these strategies.

2.1 Introduction

Our introduction of an argumentation-based framework for modelling qualitative
multi-attribute preferences under incomplete or uncertain information is motivated
by research into negotiation support systems. In this context, we are faced with the
need to express a user’s preferences. A necessary (but not sufficient) condition for
an offer to become an agreement is that both parties feel that it satisfies their pref-
erences well enough. Unfortunately, eliciting and representing a user’s preferences
is not unproblematic. Existing negotiation support systems are based on quantitative
models of preferences. These kinds of models are based on utilities; a utility function
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determines for each outcome a numerical value of utility. However, it is difficult to
elicit such models from users, since humans generally express their preferences in a
more qualitative way. We say we like something more than something else, but it
seems strange to express liking something exactly twice as much as an alternative. In
this respect, qualitative preference models will provide a better correspondence with
the way preferences are expressed by humans. We also think that qualitative models
will allow a human user to interact more naturally with an agent negotiating on his
behalf or supporting him in his negotations, and will investigate this in future. There
are, however, several challenges that need to be met before qualitative models can
be usefully applied. Doyle and Thomason [49] provide an overview including among
others the challenge to deal with partial information (information-limited rational-
ity) and, more generally, the challenge to formalize various reasoning-related tasks
(knowledge representation, reasons, and preference revision).

For any real-life application it is important to be able to handle multi-attribute
preferences. It is a natural approach to derive object preferences from general pref-
erences over properties or attributes. For example, it is quite natural to say that you
prefer one house over another because it is bigger and generally you prefer larger
houses over smaller ones. This might still be so if the first house is more expensive
and you generally prefer cheaper options. So there is an interplay between attributes
and the preferences a user holds over them in determining object preferences. This
means that object preferences can be quite complex. One approach to obtain pref-
erences about objects is to start with a set of properties of these objects and derive
preferences from a ranking of these properties that indicates the relative importance
or priority of each of these properties. This approach to obtain preferences is typi-
cal in multi-attribute decision theory [76], a quantitative theory that derives object
preferences from utility values assigned to outcomes which are derived from numeric
weights associated with properties or attributes of objects. On the other hand, also
several qualitative approaches have been proposed [33, 34, 44, 86].

Next, a user’s preferences and knowledge about the world may be incomplete, un-
certain, inconsistent and/or changing. For example, a user may lack some informa-
tion regarding the objects he has to choose between, or he might have contradictory
information from different sources. Preferences may change for various reasons, e.g.
new information becoming available, experience, changing goals, or interaction with
persuasive others. For now, we focus on the situation in which information about
objects is incomplete or uncertain, but we will address other types of incompleteness,
uncertainty, inconsistency and change in future.

The topic is related to decision making under uncertainty (e.g. [51, 28]). In
DMU, the aim is to find the best decision in case of uncertainty about the current
state of the world, and hence about the outcomes of decisions. Our approach is more
general and can be applied in different contexts; we compare the preference between
abstract ‘objects’, which could be states of the world (as in decision making), but also
e.g. products, contracts, holiday arrangements, or houses. Also, the best option may
not always be available (e.g. in negotiation, you typically have to find a compromise)
so that also the preference between non-optimal solutions is important.
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One of the challenges of reasoning about preferences is their multi-attribute na-
ture. There are several distinct notions: importance of attributes, degree of satisfac-
tion of attributes, and degree of belief of facts. In some approaches, (some of) these
measures are assumed to be commensurate (e.g. Amgoud and Prade [7] and Keeney
and Raiffa’s classical utility theory [76]), others (including this paper) suppose non-
commensurability. In this paper we focus on the case where it is not completely
certain which attributes the objects have (there are different degrees of belief), com-
bined with relative importance of attributes. We leave the degree of satisfaction of
attributes for future work. Dubois et al. [50] present several multi-attribute prefer-
ence ordering rules, but do not take uncertainty into account. Bonet and Geffner [24]
present a qualitative model for decision making with plausibility measures of input
situations, but they treat plausible and likely beliefs equally. Amgoud and Prade [7]
present an argument-based approach to multi-criteria decision making, but assume
that the knowledge base is consistent, fully certain and complete.

The approach we take is based on argumentation. In recent years, argumenta-
tion has evolved to be a core study within artificial intelligence and has been applied
in a range of different topics [18]. We incorporate some of the ideas introduced in
existing qualitative approaches but also go beyond these approaches by introducing
a framework that is able to reason about preferences also when only incomplete in-
formation is available or when the available information is not certain. Because of its
non-monotonic nature, argumentation is useful for handling inconsistent, incomplete
and uncertain information. Although a lot of work has been done on argumentation-
based negotiation (for a comprehensive review, see [110]), most of this work con-
siders only the bidding phase in which offers are exchanged. For preparation, the
preferences of a user have to be made clear (both to the user himself and to the
agent supporting him), hence we need to express and reason with them. We focus
here on the modelling of a single user’s preferences by means of an argumentation
process. The idea is that a user weighs his preferences, which gives him better insight
into his own preferences, and so this weighing is part of the preference elicitation
process. The weighing of arguments maps nicely onto argumentation. For example,
‘I like to travel by car because it is faster than going by bike’ is countered by ‘But
cycling is healthier than driving the car and that is more important to me, so I prefer
to take the bike’. This possibility to construct arguments that are attacked by coun-
terarguments is another advantage of argumentation, since it is a very natural way
of reasoning for humans and fits in with a user’s own reasoning processes. This is a
general feature of argumentation and we will make extensive use of it: arguments
like those above form the basis of our system. We believe that this way of reasoning
will also be very useful in the preference elicitation process since the user’s insight
into his preferences grows piece by piece as he is expressing them. The introduction
of an argumentation-based framework for reasoning about preferences even when
only incomplete information is available seems particularly suitable for such a step-
by-step process. It allows the user to extend and refine the system representation of
his preferences gradually and as the user sees fit. Another motivation to use argu-
mentation is the link with multi-agent dialogues [4], which will be very interesting
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in our further work on negotiation.
In this paper we present an argumentation-based framework for reasoning with

qualitative multi-attribute preferences. In Section 2.2, we introduce qualitative mul-
ti-attribute preferences, in particular the lexicographic preference ordering. In Sec-
tion 2.3 we start by modelling this ordering for reasoning with complete and cer-
tain information in an argumentation framework. Then we proceed and extend this
framework in such a way that it can also handle incomplete information. In Section
2.4, we propose a strategy (based on the lexicographic ordering) with some desired
properties to derive object preferences in the case of incomplete information. In
Section 2.5 this strategy is subsequently incorporated into the argumentation frame-
work. In Section 2.6 we discuss the situation where information about objects is
uncertain and introduce an epistemic argumentation framework to reason with such
uncertain information. Section 2.7 presents concrete, qualitative preference strate-
gies that provide different ways for handling uncertain information. Section 2.8
concludes the paper.

2.2 Qualitative multi-attribute preferences

Qualitative multi-attribute preferences over objects are based on a set of relevant at-
tributes or goals, which are ranked according to their importance or priority. Without
loss of generality, we only consider binary (Boolean) attributes (cf. [33]). Moreover,
it is assumed that the presence of an attribute is preferred over its absence. For ex-
ample, given that garden is an attribute, a house that has a garden is preferred over
one that does not have one. The importance ranking of attributes is defined by a
total preorder (a total, reflexive and transitive relation), which we will denote by ⊵.
This relation is not required to be antisymmetric, so two or more attributes can have
the same importance. The relation ⊵ yields a stratification of the set of attributes
into importance levels. Each importance level consists of attributes that are deemed
equally important. Together with factual information about which objects have which
attributes, the attribute ranking forms the basis on which various object preference
orderings can be defined. One of the most well-known preference orderings is the
lexicographic ordering, which we will use here. Brewka [33] and Coste-Marquis et
al. [44] define more multi-attribute preference orderings, such as the discrimin and
best-out orderings. In this paper we focus on the lexicographic ordering because it
defines a total preference relation (contrary to the discrimin ordering) and it is more
discriminating than the best-out ordering. Furthermore, the experimental research of
Bonnefon and Fargier [26] shows that among several qualitative approaches to order
options based on their positive and negative aspects, cardinality-based approaches
such as the lexicographic ordering best predict the actual choices made by humans.
Since the other orderings are structurally similar to the lexicographic ordering, a
similar argumentation framework could be defined for them if desired.

The lexicographic preference ordering first considers the highest importance lev-
el. If some object has more attributes on that level than another, the first is preferred.
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large ≜ garden ≜ closeToWork ⊳ nearShops ≜ quiet ⊳ detached
villa 3 3 7 7 7 3
apartment 3 7 3 3 7 7
cottage 7 3 7 3 3 3

Table 2.1: An example of objects and attributes

If both objects have the same number of attributes on this level, the next importance
level is considered, and so on. Two objects are equally preferred if they have the
same number of attributes on every importance level. We illustrate the lexicographic
preference ordering by means of an example.

Example 2.1. Paul wants to buy a house. According to him, the most important
attributes are large (e.g. minimally 100m2), garden and closeToWork, which among
themselves are equally important. The next most important attributes are nearShops
and quiet. Being detached is the least important. Paul can choose between three
options: a villa, an apartment and a cottage. The attributes of these objects are dis-
played in Table 2.1. In this table, the attributes are ordered in decreasing importance
from left to right. ≜ between attributes indicates equal importance, ⊳ a transition to
a lower importance level. A 3 indicates that an object has the attribute, a 7 means
that the attribute is absent. Which house should Paul choose? He first considers the
highest importance level, which in this case comprises large, garden and closeToWork.
The villa and the apartment both have two of these attributes, while the cottage only
has one. So at this moment Paul concludes that both the villa and the apartment are
preferred to the cottage. For the preference between the villa and the apartment he
has to look further. At the next importance level, the apartment has one attribute and
the villa has none. So the apartment is preferred over the villa. Note that although
the cottage has the most attributes in total, it is still the least preferred option because
of its bad score at the more important attributes.

Definition 2.1. (Lexicographic preference ordering) Let P be a set of attributes
or goals, and ⊵ a total preorder on P representing the relative importance among
attributes. We write P ⊳ Q for P ⊵ Q and Q /⊵ P, and P ≜ Q for P ⊵ Q and Q ⊵ P. We
use ∣ ⋅ ∣ to denote the cardinality of a set. Object a is strictly preferred over object b
according to the lexicographic ordering if there exists an attribute P such that ∣{P ′ ∣ a
has P ′ and P ≜ P ′}∣ > ∣{P ′ ∣ b has P ′ and P ≜ P ′}∣ and for all Q ⊳ P: ∣{Q′ ∣ a has
Q′ and Q ≜ Q′}∣ = ∣{Q′ ∣ b has Q′ and Q ≜ Q′}∣. Object a is equally preferred as
object b according to the lexicographic ordering if for all P: ∣{P ′ ∣ a has P ′ and
P ≜ P ′}∣ = ∣{P ′ ∣ b has P ′ and P ≜ P ′}∣.

2.3 Basic argumentation framework for preferences

In this section we present an argumentation framework for deriving preferences ac-
cording to the lexicographic ordering, based on complete and certain information. In
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later sections we extend this basic framework in order to deal with incomplete and
uncertain information.

2.3.1 Abstract AF and semantics

In order to formally model and reason with preferences we define an argumentation
framework (AF). We use as our starting point the well-known argumentation theory
of Dung [52]. An abstract argumentation framework [52] is a pair ⟨A,→⟩ where A
is a set of arguments, and → a binary defeat relation (informally, a counterargument
relation) on A.

To define which arguments are justified, we use Dung’s [52] preferred semantics.

Definition 2.2. (Preferred semantics) A preferred extension of an AF ⟨A,→⟩ is a
maximal (w.r.t. ⊆) set S ⊆ A such that: ∀A, B ∈ S ∶ A /→ B and ∀A ∈ S: if B → A then
∃C ∈ S ∶ C → B. An argument is credulously (sceptically) justified w.r.t. preferred
semantics if it is in some (all) preferred extension(s).

Informally, a preferred extension is a coherent point of view that can be defended
against all its attackers. In case of contradictory information there will be multiple
preferred extensions, each advocating one point of view. The contradictory conclu-
sions will be credulously, but not sceptically justified.

An AF is abstract in the sense that both the set of arguments and the defeat
relation are assumed to be given, and the construction and internal structure of ar-
guments is not taken into account. If we want to reason with argumentation, we
have to instantiate an abstract AF by specifying the structure of arguments and the
defeat relation.

2.3.2 Arguments

Arguments are built from formulas of a logical language (see Section 2.3.4), that
are chained together using inference steps (see Section 2.3.5). Every inference step
consists of premises and a conclusion. Inferences can be chained by using the conclu-
sion of one inference step as a premise in the following step. Thus a tree of chained
inferences is created, which we use as the formal definition of an argument (similar
to e.g. Vreeswijk [131]).

Definition 2.3. (Argument) An argument is a tree, where the nodes are inferences,
and an inference can be connected to a parent node if its conclusion is a premise of
that node. Leaf nodes only have a conclusion (a formula from the knowledge base),
and no premises. A subtree of an argument is also called a subargument. inf returns
the last inference of an argument (the root node), and conc returns the conclusion
of an argument (the conclusion of its last inference).

Some example arguments will be given in Example 2.3 after the presentation of
the specific language and inference schemes that are used to build them.
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2.3.3 Defeat

This section provides the formal definition of defeat that we will use. The most com-
mon type of defeat is rebuttal. An argument rebuts another argument if its conclusion
is the negation of the conclusion of the other argument. Rebuttal is always mutual.
Another type of defeat is undercut. An undercutter is an argument for the inapplica-
bility of an inference used in another argument (for the specific undercutters used in
our framework, see Section 2.3.5). Undercut works only one way. Defeat is defined
recursively, which means that rebuttal can attack an argument on all its premises and
(intermediate) conclusions, and undercut can attack it on all its inferences.

Definition 2.4. (Defeat) An argument A defeats an argument B if
• conc(A) = ϕ and conc(B) = ¬ϕ (rebuttal), or
• conc(A) =‘inf(B) is inapplicable’ (undercut), or
• A defeats a subargument of B.

2.3.4 Language

The language has to allow us to express everything we want to talk about when
reasoning about preferences. To start, we need to be able to state the facts about
objects: which attributes they do and do not have. We also have to express the
importance ranking of attributes, so we need to be able to say that one attribute
is more important than another, or that two attributes are equally important. Of
course, we want to say that one object is preferred over another, and that two objects
are equally preferred. Finally, we need to be able to express how many attributes of
equal importance a certain object has, since the lexicographic preference ordering is
based on counting these. To this end, we introduce a special predicate has(a, [P], n)
which expresses that object a has n attributes with equal importance as attribute P.
Since we have no names for importance levels, we denote them by any attribute of
that level, placed between square brackets. It is not necessary that the attribute used
is among the attributes that the object has; in our example, has(apartment, [quiet], 1)
is true even though the apartment is not quiet. All of the things described can be
expressed in the following language.

Definition 2.5. (Language) Let P be a set of attribute names with typical elements
P,Q, and O a set of object names with typical elements a, b, and let n be a non-
negative integer. The input language Lin and full language L are defined as follows.

ϕ ∈ Lin ∶∶= P(a) ∣ ¬P(a) ∣ P ⊳ Q ∣ P ≜ Q

ψ ∈ L ∶∶= ϕ ∈ Lin ∣ pref(a, b) ∣ eqpref(a, b) ∣ has(a, [P], n)

Formulas of this language have the following informal meaning:
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P(a) object a has attribute P
¬P(a) object a does not have attribute P
P ⊳ Q attribute P is more important than attribute Q
P ≜ Q attribute P is equally important as attribute Q
pref(a, b) object a is strictly preferred over object b
eqpref(a, b) object a is equally preferred as object b
has(a, [P], n) object a has n attributes equally important as attribute P (not

necessarily including P itself)

The idea is that preferences over objects are derived from facts about which ob-
jects have which attributes, and the importance order among attributes. These facts
are contained in a knowledge base, which is a set of formulas from Lin. A knowledge
base is complete if, given a set of objects to compare and a set of attributes to com-
pare them on, it contains for every object a and for every attribute P, either P(a) or
¬P(a), and for all attributes P,Q, either P ⊳ Q, Q ⊳ P or P ≜ Q.

Example 2.2. The information from Example 2.1 can be expressed in the form of
the following knowledge base that is based on the language Lin.

large ≜ garden ≜ closeToWork ⊳ nearShops ≜ quiet ⊳ detached
large(villa) large(apartment) ¬large(cottage)
garden(villa) ¬garden(apartment) garden(cottage)
¬closeToWork(villa) closeToWork(apartment) ¬closeToWork(cottage)
¬nearShops(villa) nearShops(apartment) nearShops(cottage)
¬quiet(villa) ¬quiet(apartment) quiet(cottage)
detached(villa) ¬detached(apartment) detached(cottage)

2.3.5 Inferences

An argument is a derivation of a conclusion from a set of premises. Such a deriva-
tion is built from multiple steps called inferences. Every inference step consists of
premises and a conclusion, and has a label. The inferences that can be made are
defined by inference schemes. The inference schemes of our framework are listed
in Table 2.2. The first and second inference schemes are used to count the number
of attributes of equal importance as some attribute P that object a has. This type
of inference is inspired by accrual [103], which combines multiple arguments with
the same conclusion into one accrued argument for the same conclusion. Although
our application is different, we use a similar mechanism. We want all attributes that
are present to be counted. Otherwise we would conclude incorrect preferences (e.g.
if the large attribute of the apartment were not counted, we would incorrectly de-
rive that the villa were preferred over the apartment). Inference scheme 1, which
counts 0, can always be applied since it has no premises. Inference scheme 2 can
be applied on any subset of the set of attributes of some importance level that an
object a has. This means that it is possible to construct an argument that does not
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1 has(a, [P], 0) count(a, [P],∅)

2

P1(a) . . . Pn(a) P1 ≜ . . . ≜ Pn

has(a, [P1], n) count(a, [P1],{P1, . . . , Pn})

3

P1(a) . . . Pn(a) P1 ≜ . . . ≜ Pn ≜ P
count(a, [P], S ⊂ {P1, . . . , Pn}) is inapplicable

count(a, [P], S)uc

4

has(a, [P], n) has(b, [P ′], m) P ≜ P ′ n > m
pref(a, b) prefinf(a, b, [P])

5

has(a, [Q], n) has(b, [Q′], m) Q ≜ Q′ ⊳ P n ≠ m
prefinf(a, b, [P]) is inapplicable

prefinf(a, b, [P])uc

6

has(a, [P], n) has(b, [P ′], m) P ≜ P ′ n = m
eqpref(a, b) eqprefinf(a, b, [P])

7

has(a, [Q], n) has(b, [Q′], m) Q ≜ Q′ /≜ P n ≠ m
eqprefinf(a, b, [P]) is inapplicable

eqprefinf(a, b, [P])uc

Table 2.2: Inference schemes for the basic argumentation framework (complete and
certain information)

count all attributes that are present (a so-called non-maximal count). To ensure that
only maximal counts are used, we provide an inference scheme to make arguments
that defeat non-maximal counts (inference scheme 3). An argument of this type says
that any count which is not maximal is not applicable. This type of defeat is called
undercut. Inference scheme 4 says that an object a is preferred over an object b if
the number of attributes of a certain importance level that a has is higher than the
number of attributes on that same level that b has. For the lexicographic ordering, it
is also required that a and b have the same number of attributes on any level higher
than that of P. We model this by defining an inference scheme 5 that undercuts
scheme 4 if there is a more important level than that of P on which a and b do not
have the same number of attributes. Finally, inference schemes 6 and 7 do the same
as 4 and 5, but for equal preference. We need these because equal preference cannot
be expressed in terms of strict preference.

Example 2.3. We now illustrate the inference schemes with some arguments that
can be made from the knowledge base in Example 2.2. The example arguments are
listed in Table 2.3 (for space reasons, the inference labels are left out). Argument
A illustrates the general working; a preference for the apartment over the cottage is
derived, based on the fact that there is an importance level where the apartment has
two attributes and the cottage only one. Argument B illustrates a zero count. Here
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a preference for the apartment over the villa is derived, based on the fact that there
is an importance level where the apartment has one attribute and the villa zero.
In argument C a non-maximal count is used (stating that the apartment has zero
attributes of the level of nearShops), which leads to another conclusion, namely that
the villa and the apartment are equally preferred. However, there are undercutters
to attack such arguments (argument D).

2.3.6 Validity

The argumentation framework defined in previous sections indeed models lexico-
graphic preference, assuming a complete and consistent knowledge base.

Proposition 2.1. Let A(KB) denote all arguments that can be built from a knowledge
base KB. Then there is an argument A ∈ A(KB) such that the conclusion of A is
pref(a, b) and A is sceptically justified under preferred semantics iff a is preferred
over b according to the lexicographic preference ordering (Definition 2.1) given KB.

Proof. Suppose a is preferred over b. This means that there exists an attribute P such
that ∣{P ′ ∣ a has P ′ and P ≜ P ′}∣ > ∣{P ′ ∣ b has P ′ and P ≜ P ′}∣ and for all Q ⊳ P:
∣{Q′ ∣ a has Q′ and Q ≜ Q′}∣ = ∣{Q′ ∣ b has Q′ and Q ≜ Q′}∣. Let P1 . . . Pn denote
all attributes of equal importance as P such that a has Pi and let P ′1 . . . P ′m denote all
attributes of equal importance as P such that b has Pi . Note that n > m. Then the
knowledge base is as follows: P1 ≜ . . . ≜ Pn ≜ P ′1 ≜ . . . P ′m and P1(a) . . . Pn(a) and
P ′1(b) . . . P ′m(b). The following argument (A) can be built (note that this argument
can also be built if m is equal to 0, by using the empty set count):

P1(a) . . . Pn(a) P1 ≜ . . . ≜ Pn

has(a, [P1], n)

P ′1(b) . . . P ′m(b) P ′1 ≜ . . . ≜ P ′m
has(b, [P ′1], m) P1 ≜ P ′1 n > m

pref(a, b)

We will now play devil’s advocate and try to defeat this argument. We can try
rebuttal and undercut of the argument and its subarguments. Rebuttal of premises
is not applicable, since the knowledge base is consistent. Rebuttal of (intermediate)
conclusions is not possible either, since there is no way to derive a negation. Then
there are three inferences we can try to undercut (the last inference of the argument
and the last inferences of two subarguments). For the left-hand count, this can only
be done if there is another Pj such that Pj ≜ P and Pj /∈ {P1, . . . , Pn} and Pj(a) is
the case. However, P1 . . . Pn encompass all such attributes, so count undercut is not
possible. The same argument holds for the other count. At this point it is useful to
note that these two counts are the only ones that are undefeated. Any lesser count
will be undercut by the count undercutter that takes all of P1 . . . Pn (resp. P ′1 . . . P ′m)
into account. Such an undercutter has no defeaters, so any non-maximal count is
not justified. The final thing that is left to try is undercut of prefinf(a, b, [P1]). The
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undercutter of prefinf(a, b, [P1]) is based on two counts. We have seen that any non-
maximal count will be undercut. If the maximal counts are used, we have n = m,
since we have for all Q ⊳ P: ∣{Q′ ∣ a has Q′ and Q ≜ Q′}∣ = ∣{Q′ ∣ b has Q′ and
Q ≜ Q′}∣. So the undercutter inference rule cannot be applied since n ≠ m is not true.
This means that for every possible type of defeat, either the defeat is inapplicable
or the defeater of A is itself defeated by undefeated arguments. This means that A
is in every preferred extension and hence sceptically justified according to preferred
semantics.

Suppose a is not preferred over b. This means that for all attributes P, either
∣{P ′ ∣ a has P ′ and P ≜ P ′}∣ ≤ ∣{P ′ ∣ b has P ′ and P ≜ P ′}∣ or there exists an attribute
Q ⊳ P such that ∣{Q′ ∣ a has Q′ and Q ≜ Q′}∣ ≠ ∣{Q′ ∣ b has Q′ and Q ≜ Q′}∣. This
means that any argument with conclusion pref(a, b) (which has to be of the form
above) is either undercut by count(b, [P], S)uc because it uses a non-maximal count,
or by prefinf(a, b, [P])uc because there is a more important level where a preference
can be derived. This means that any such argument will not be in any preferred
extension and hence not sceptically justified under preferred semantics.

The same line of argument can be followed for eqpref.

2.4 Incomplete information

So far, we have defined an argumentation system that can reason about preferences
according to the lexicographic preference ordering. Above, we have assumed that
the information about the objects that are compared is complete. But, as stated
in the introduction, this is not always the case. In this section we investigate how
incomplete information can best be handled when reasoning about preferences.

Suppose it is not known whether an object has a specific attribute, e.g. we know
that P(a) but we do not know whether P(b) or ¬P(b). This might not be a problem.
If the preference between a and b can be decided based on attributes that are more
important than P, the knowledge whether P(b) or ¬P(b) is the case is irrelevant.
But otherwise this information is necessary to decide a lexicographic preference. In
that case, different approaches or strategies for drawing conclusions are possible.
However, not all strategies give desired results. In the following, we will discuss some
naive strategies and their shortcomings, from which we will derive some desired
properties of strategies, and define and model a strategy that gives intuitive results.

2.4.1 Naive strategies

Optimistic, resp. pessimistic, strategy This strategy always assumes that an object
has, resp. does not have, the attribute that is not known. This strategy can always
derive some preference between two objects, since it completes the knowledge by
making particular assumptions, and can then derive a complete preference ordering
over objects. But there is no guarantee that the inferences made are correct. In fact,
any inferred preference can only be correct if all the assumptions it is based on are
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P ≜ Q ≜ R
a 3 ? 7
b 7 3 ?
c ? 7 3

Table 2.4: Example of intransitive preference with the disregard attribute strategy

either correct or irrelevant. Since we do not know whether assumptions are correct
and the strategy does not check for relevance, the inference can only be correct by
chance. For example, suppose it is not known whether the villa has a garden and
whether it is closeToWork. The optimistic strategy would assume that it has both
attributes, in which case an incorrect preference of the villa over the apartment would
be derived. The pessimistic strategy on the other hand would assume the villa has
neither of the attributes, and would derive an incorrect preference of the cottage over
the villa.

Note that using the framework defined in Section 2.3 without adaptation would
boil down to using a pessimistic strategy: if it is not known whether an object has a
certain attribute, the attribute is (implicitly) assumed to be absent. This is due to the
fact that only attributes for which it is known that an object has them are counted.
Attributes that an object does not have and attributes for which this information is
unavailable are treated the same way (i.e. not taken into account when counting).

Disregard attribute strategy This strategy does not take into account the attributes
for which information about the objects to be compared is incomplete. It can always
derive some preference between two objects, since the information regarding the re-
maining attributes is complete, so a complete preference ordering over objects can
be derived. But the inference might not be correct, since the attributes that are dis-
regarded might be relevant in defining a preference order. For example, suppose it
is not known whether the cottage is large. In that case, the attribute large will not be
taken into account when comparing the cottage to another object. This leaves only
the attributes garden and closeToWork on the highest importance level, of which all
attributes have exactly one. Since the cottage has the most attributes on the next im-
portance level, a preference of the cottage over the villa as well as the apartment will
be derived, even though in the original example the cottage was the least preferred
object.

This strategy has another undesired effect. Consider the situation in Table 2.4.
When comparing a and b, this strategy only takes attribute P into account, and
concludes a preference of a over b. Similarly, preferences of b over c, and of c over a
can be derived. So with this strategy, intransitive preferences can be derived, which
is undesired.

Cautious strategy In order to prevent the derivation of preferences that are only
correct by chance, a natural alternative is to use a cautious strategy that prevents
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such inferences. This strategy infers nothing unless all information about the objects
under comparison is available. It never makes incorrect preference inferences, but
it lacks in decisiveness. Even if the unknown information is irrelevant to make an
inference, nothing is inferred.

2.4.2 Desired properties for strategies

Given the limitations of the strategies discussed above, it is clear that we need a
more balanced strategy that takes two main concerns into account, which we call
decisiveness and safety.

Decisiveness We call a strategy decisive if it does not infer too little. As mentioned
above, an unknown attribute might be irrelevant for deciding a preference. This is
the case if the preference is already determined by more important attributes. For ex-
ample, suppose that we do not know whether the apartment has attribute nearShops.
Then we can still conclude that the apartment is preferred over the cottage, based
on the attributes large, garden, and closeToWork. It is not required that a preference
is derived in every case, since the missing information might be essential, but all
preferences that are certain (for which no essential information is missing) should be
derived. The cautious strategy is not decisive.

Safety We call a strategy safe if it does not infer too much. Suppose again that
we do not know whether the apartment has attribute nearShops. Whereas this is ir-
relevant for deciding a preference between apartment and cottage, we do need this
information for deciding the preference between the villa and the apartment. A strat-
egy that makes assumptions about the missing information, or that disregards the
attribute in question, will make unfounded inferences, and hence be unsafe. The
optimistic, pessimistic and disregard attribute strategies are not safe.

2.4.3 A decisive and safe strategy

We have seen above what may go wrong when a naive strategy is used to deal with
incomplete information. In this section we define an alternative strategy that does
satisfy the properties of decisiveness and safety identified above. A preference infer-
ence should never be based on an unfounded assumption for a strategy to be safe.
But to be decisive, a strategy needs to be able to distinguish relevant from irrelevant
information. Our approach is based on the following intuition. When comparing
two objects under incomplete information, multiple situations are possible. That is,
whenever it is not known whether an object has an attribute, there is a possibility
that it does and a possibility that it does not. If a preference can be inferred in every
possible situation, then apparently the missing information is not relevant, and it is
safe to infer that preference. It is not necessary to check every possible situation, but
it suffices to look at extreme cases. For every object, we can construct a best- and
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P ⊳ Q ⊳ R
a 3 3 ?
b ? 7 3

P ⊳ Q
a 3 ?
b ? 3

P ≜ Q
a 3 ?
b 7 3

a. b. c.

Table 2.5: Examples of objects and attributes with incomplete information

worst-case scenario, or best and worst possible situation. A possible situation is a
completion of an object in the sense that all missing information is filled in.

Definition 2.6. (Completion) A completion of an object a is an extension of the
knowledge base with (previously missing) facts about a such that for every attribute
P, either P(a) or ¬P(a) is in the extended knowledge base. So if a has n unspecified
attributes, there are 2n possible completions of a.

Since we assumed that presence of an attribute is preferred over absence, the
most preferred completion assumes presence of all unknown attributes, and the least
preferred completion assumes absence. If even the least preferred completion of a is
preferred over the most preferred completion of b, then a must always be preferred
over b, since a could not be worse and b could not be better. For example, consider
the objects and attributes in Table 2.5a. Recall our assumption that presence of
attributes is preferred over absence. So in the worst case for a, a does not have
attribute R. And in the best case for b, b has attribute P. But even in this situation,
a will be preferred over b, based on attribute Q. There is no way that this situation
can improve for b or deteriorate for a, so it is safe to infer a preference for a over b.
The strategy’s power to make such inferences makes it decisive.

The next example illustrates that this approach does not infer a preference when
the missing information is relevant. Consider Table 2.5b. In the situation that is
worst for a and best for b, b will be preferred because it has both attributes, while a
only has P. But in the other extreme situation, that is best for a and worst for b, a is
preferred. This means that in reality, anything is possible, and it is not safe to infer a
preference.

We have seen when a preference for a over b can be inferred, and in which case
no preference can be inferred. There are, however, two more possibilities. One is
the case in which a preference of the most preferred completion of a over the least
preferred completion of b can be derived, but only equal preference between the least
preferred completion of a and the most preferred completion of b. This is illustrated
in Table 2.5c. In this case, we would like to derive at least a weak preference of a
over b. This is important, because in many cases a weak preference is strong enough
to base a decision on, even if a strict preference cannot be derived. When having to
decide between a and b, choosing a cannot be wrong when a is weakly preferred
over b. Failing to derive a weak preference makes a strategy less decisive.

The last possibility is equal preference. We only want to derive an equal prefer-
ence between two objects a and b if all possible completions of a are equally pre-
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ferred as all possible completions of b. This also means that the most and least
preferred completions of a and b have to be equally preferred. This can only be the
case if all information about a and b is known, for as soon as some information is
missing, there will be multiple possible completions which are not equally preferred.

2.5 Argumentation framework for preferences with
incomplete information

This section presents how our framework is extended to incorporate the decisive
and safe strategy for incomplete information as presented in Section 2.4.3. We first
present the changes to the language and then the changes to the inference rules. The
defeat definition does not have to change.

2.5.1 Language

To distinguish between the different completions of an object, we introduce a com-
pletion label. We use the object name without label to denote the object in general,
that is, the object with any completion. The superscript + is used for the most pre-
ferred completion of an object, − for the least preferred completion. For example,
consider object a in Table 2.5a. The most preferred completion of a has attribute R,
and is denoted a+. The least preferred completion of a does not have attribute R,
and is denoted a−.

Reasoning with completions as discussed above can be viewed as a kind of as-
sumption-based reasoning. To be able to support such reasoning, we extend the
language and introduce weak negation, denoted by ∼, which is also used by Prakken
and Sartor [105]. This is used to formalize a kind of assumption-based reasoning. A
formula ∼ ϕ can always be assumed, but is defeated by ϕ (see the next section for
the details). So the statement ∼ ϕ should be interpreted as ‘ϕ cannot be derived’.

Finally, we add formulas of the type wpref(a, b) which express weak preference,
just as pref(a, b) and eqpref(a, b) express strict and equal preference, respectively.
We use weak preference in the sense that an object a is weakly preferred over an
object b if any completion of a is either preferred over or equally preferred as any
completion of b, but no strict or equal preference can be derived.

This leads to the following redefinition of the language.

Definition 2.7. (Language) Let P be a set of attribute names with typical elements
P,Q, and O a set of object names with typical elements a, b, and let n be a non-
negative integer, and x , y ∈ {+,−,{}} a label for objects (where {} means no label).
The input language Lin and full language L are defined as follows.

ϕ ∈ Lin ∶∶= P(a) ∣ ¬P(a) ∣ P ⊳ Q ∣ P ≜ Q

ψ ∈ L ∶∶= ϕ ∈ Lin ∣ pref(ax , b y) ∣ eqpref(ax , b y) ∣ wpref(ax , b y) ∣ has(ax , [P], n) ∣ ∼ ψ
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1 has(ax , [P], 0) count(ax , [P],∅)

2a

∼ ¬P1(a) . . . ∼ ¬Pn(a) P1 ≜ . . . ≜ Pn

has(a+, [P1], n) count(a+, [P1],{P1, . . . Pn})

2b

P1(a) . . . Pn(a) P1 ≜ . . . ≜ Pn

has(a−, [P1], n) count(a−, [P1],{P1, . . . Pn})

3a

∼ ¬P1(a) . . . ∼ ¬Pn(a) P1 ≜ . . . ≜ Pn

count(a+, [P1], S ⊂ {P1, . . . , Pn}) is inapplicable
count(a+, [P1], S)uc

3b

P1(a) . . . Pn(a) P1 ≜ . . . ≜ Pn

count(a−, [P1], S ⊂ {P1, . . . , Pn}) is inapplicable
count(a−, [P1], S)uc

4

has(ax , [P], n) has(b y , [P ′], m) P ≜ P ′ n > m
pref(ax , b y) prefinf(ax , b y , [P])

5

has(ax , [Q], n) has(b y , [Q′], m) Q ≜ Q′ ⊳ P n ≠ m
prefinf(ax , b y , [P]) is inapplicable

prefinf(ax , b y , [P])uc

6

has(ax , [P], n) has(b y , [P ′], m) P ≜ P ′ n = m
eqpref(ax , b y) eqprefinf(ax , b y , [P])

7

has(ax, [Q], n) has(b y, [Q′], m) Q ≜ Q′ /≜ P n ≠ m
eqprefinf(ax , b y , [P]) is inapplicable

eqprefinf(ax, b y, [P])uc

8 ∼ ϕ asm(∼ ϕ) 9
ϕ

asm(∼ ϕ) is inapplicable
asm(∼ ϕ)uc

10

pref(a−, b+)
pref(a, b) 11

eqpref(a−, b+) pref(a+, b−)
wpref(a, b)

12

eqpref(a+, b−) eqpref(a−, b+)
eqpref(a, b)

Table 2.6: Inference schemes for incomplete information

2.5.2 Inferences

The inference rules of the extended framework are listed in Table 2.6. Two inference
rules are added that define the meaning of the weak negation ∼. According to in-
ference rule 8, a formula ∼ ϕ can always be inferred, but such an argument will be
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defeated by an undercutter built with inference rule 9 if ϕ is the case.
P is supposed to be among the attributes of the least preferred completion of a

(a−) only if it is known that a has P. This is modelled by inference rule 2b in Table
2.6. For the most preferred completion of a, it is only required that it is not known
that a does not have P; if this is not known, a+ will be assumed to have P. This is
modeled by using premises of the form ∼ ¬P(a) instead of P(a). This can be seen
in inference rule 2a. Inference rules 4 through 7 remain unchanged, except that
completion labels are added.

To infer overall preferences from the preferences over certain completions, three
more inference rules are defined. Inference rule 10 states that if (even) a− is pre-
ferred over b+, then a must be preferred over b, as we saw above. When a+ is
preferred over b−, but a− is only equally preferred as b+, this is not strong enough to
infer a strict preference of a over b, but we can infer a weak preference of a over b
using inference rule 11. Rule 12 states that in order to infer equal preference between
a and b, both the most preferred completion of a and the least preferred completion
of b, and the least preferred completion of a and the most preferred completion of b
must be equally preferred.

Example 2.4. In the case of Table 2.5a, argument A in Table 2.7 can be built. Ar-
gument B shows that a weak preference can be inferred in the situation of Table
2.5c.

2.6 Uncertain information

In the last two sections we focused on the situation where some information regard-
ing the presence or absence of attributes for a given outcome is lacking. With the
proposed safe and decisive strategy however, it may still be the case that no prefer-
ence can be inferred. What should we do in such a case? One approach is to ask the
user for the missing information. But the user might not have this information, and
might not have the time or resources to look it up. Still, in many situations there is
other information available on the basis of which the missing facts can be derived.
For example, if the destination country of a certain holiday is not given, but it is
specified that the trip will be to Rome, we can infer that the country will be Italy. In
this case, the derived fact is completely certain since there is no doubt that Rome is
in Italy. In other cases, the derived information may be less than fully certain, e.g.
because the applied rule only holds by default and there are some exceptions to it,
or because the used facts or applied rule are not certain themselves, e.g. because the
source of the information is unreliable. For example, for a holiday to Rome in July
we can infer that it will be sunny because that is usually the case. But this conclu-
sion is not completely certain because it may be an exceptionally rainy July in Rome
this year. Or we may conclude that the hotel we will stay in will be clean based on
the reviews we have read online, but again this conclusion is not certain because we
cannot trust the source completely (the hotel itself may have posted fake reviews).
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The main point we want to make here is that even if missing information can
be derived, the acquired facts may have different certainty levels. Such ‘degrees
of belief’ play an important role in the deriviation of preferences. Consider a simple
case in which preference is determined by a single attribute P (like before, we assume
that presence of an attribute is preferred over absence). If both for outcome a and
for outcome b it can be derived that P is present, but for a this conclusion is more
certain than for b, it would be rational to prefer a. This is because there is a bigger
chance that the information about b is incorrect. The situation gets more complicated
in case of multiple attributes. For example, are two certainly true attributes and
one certainly false attribute better or worse than three attributes whose truth is not
completely certain? In Section 2.7 we present different qualitative strategies to derive
preferences in case of more or less certain information. But first we will formalise
the concept of certainty levels.

2.6.1 Certainty levels

Different approaches to model degrees of belief can be found in the literature. Among
the best-known ones are subjective probability, Dempster-Shafer belief functions, and
possibility theory (see [66] for an overview and references). In this paper we take a
qualitative approach in which the knowledge base is stratified according to the cer-
tainty of the formulas (see also Amgoud et al. [1], who use similar certainty levels but
apply them to decision making in a different way). Each stratum in the knowledge
base corresponds to one level of certainty. Note that in the literature, the notion of
certainty levels (or similar notions) is sometimes referred to as preference or priority
between formulas. In this paper, we use the term preference only to refer to prefer-
ence between objects or outcomes, and priority to refer to the relative importance of
attributes.

Essentially, a certainty level is the qualitative counterpart of the (subjective) prob-
ability of an attribute being true. In the case of the highest certainty level, denoted
N , this probability is 1; certainly true information is always true. Similarly, the prob-
ability is 0 for the negation of formulas with certainty level N . Also, as is common in
the literature on subjective probability, we assume that the subjective probability of
truth of a completely uncertain formula (with certainty level 0) is 0.5 (the principle
of indifference, [66]). For intermediate certainty levels, an exact probability can not
always be given due to the qualitative nature of certainty levels, but intuitively the
probability is higher for higher certainty levels.

A knowledge base is K = K1 ∪ . . .∪KN where K1 contains the knowledge with the
lowest certainty, and knowledge in KN is fully certain. We assume that KN is consis-
tent, but K may not be. Note that there is no subset K0; a formula with certainty level
0 is completely uncertain and does not belong in a knowledge base. Every epistemic
formula ϕ in the knowledge base has an associated certainty level l, denoted ϕ ∶ l
(i.e. ϕ ∈ Kl). We will use the notation ϕ ∶ −l to denote that the negation of ϕ has
certainty level l (see inference scheme 6 in Table 2.8). This notation is convenient as
it provides a uniform way of expressing the certainty that some attribute is present or
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absent in an outcome. In this paper we assume that non-epistemic information about
the relative importance of desired attributes is fully certain; we leave the situations
where this is not the case for future work.

Note that the concept of certainty levels is very general and can also be applied
in the cases discussed in the previous sections. If the information is complete and
fully certain, there are two certainty levels (true and false): N = 1 and level 0 does
not occur. The situation with incomplete information is the same except that some
information may have certainty level 0 (complete uncertainty). In the generic situa-
tion, we have the same three levels, 0 for complete uncertainty and the scale ends N
and −N for complete certainty, plus any number of certainty levels in between.

The argumentation framework for deriving preferences based on uncertain in-
formation can be considered as consisting of two separate parts: an epistemic part
for reasoning about the (uncertain) attributes of outcomes and a preferential part,
which contains several approaches to derive preferences from uncertain information.
In this paper the main focus is on the preferential part, which will be discussed in
Section 2.7. For this part, only the ‘output’ (justified conclusions) of the epistemic
part matters, i.e. which outcomes have which attributes with what certainty. The
way in which this information is derived is not important for the preferential part of
the framework. However, the preferential part does assume that for every attribute
P and every outcome a, there is a single certainty associated with P(a). This means
that the epistemic part must resolve conflicts and incompleteness. There are several
ways in which to do this in a reasonable way. However, in the remainder of the cur-
rent section we will give only one possible specification of the epistemic part, and
will not discuss all possible alternatives as it is outside the scope of this paper.

2.6.2 Epistemic argumentation framework

In order to derive new facts form other facts in the knowledge base, we introduce a
new kind of formula to the input language: rules. A rule is of the form L1, . . . , Lk,∼
Ll , . . . ,∼ Lm ⇒ Ln where Li = P(a) or ¬P(a). Its informal reading is: if all of
L1, . . . , Lk hold, then typically Ln holds, except if one of Ll , . . . , Lm holds. The same
kind of rules was used by Prakken and Sartor [105]. If there are no exceptions,
and the rule is fully certain, then it is called a strict rule. Otherwise it is defeasible.
Defeasible rules describe what is ‘normally’ the case. Using this kind of rules can
add some information to an incomplete knowledge base. This can be beneficial in
situations where a user does not have certain information, and does not have the
time or resources to verify information.1

Definition 2.8. (Epistemic language) As before, we distinguish a subset of the full
language called the input language. A knowledge base can only contain formulas of

1For rules to be fully applicable, it would also be required to extend the language with literals that
refer to other knowledge than just which outcomes have which attributes, and to specify explicitly which
attributes are desired and influence preference. A full discussion of this issue is outside the scope of this
paper.
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1

L1, . . . , Lm,∼ Lp, . . . ,∼ Lq ⇒ L ∶ l L1 ∶ l1 . . . Lm ∶ lm ∼ Lp . . . ∼ Lq

L ∶ min(l, l1, . . . , lm) DMP

2 ∼ L
asm(∼ L)

3
L

asm(∼ L) is inapplicable
asm(∼ L)uc

4
∼ L ∼ ¬L

L ∶ 0 5
L ∶ l ¬L ∶ l

L ∶ 0 6
¬L ∶ l
L ∶ −l

Table 2.8: Inference schemes for epistemic formulas

the input language; other formulas have to be derived by inference. The epistemic
input language Lin

e is defined as follows (where L is a literal (P(a) or ¬P(a), where
P is an attribute and a an outcome) and l is a certainty level such that 0 < l ≤ N).

ϕ ∈ Lin
e ∶∶= L ∶ l ∣ L, . . . , L,∼ L, . . . ,∼ L ⇒ L ∶ l

The full epistemic language Le is defined as follows (where L is a literal (P(a) or
¬P(a)) and l is a certainty level such that −N ≤ l ≤ 0).

ϕ ∈ Le ∶∶= ϕ ∈ Lin
e ∣ ∼ L ∣ L ∶ l

To apply a rule, inference scheme 1 in Table 2.8, called defeasible modus ponens,
is introduced. The level of certainty of the conclusion is the same as the level of
the least certain premise, this is called the weakest link principle (see e.g. [99] for a
motivation). The inferences 2 and 3 for weak negation are the same as before.

Now, for any atom ϕ, we can have any of the following situations.
• Either ϕ or ¬ϕ (but not both) is in K or can be derived, with only one level of

certainty.
• Neither ϕ nor ¬ϕ is in K or can be derived.
• The formula ϕ occurs in K or can be derived multiple times with different

levels of certainty.
• Both ϕ and ¬ϕ are in K or can be derived.

The first situation is the most straightforward case, and this information can be used
directly by the preferential part of the framework. The incompleteness in the sec-
ond situation is a case of complete uncertainty with respect to ϕ. We use inference
scheme 4 in Table 2.8 to derive a certainty level 0 for an atom ϕ if neither ϕ nor
¬ϕ can be derived. The other two situations are more complicated, and there are
multiple possibilities for handling these cases. For example, if there are multiple ar-
guments concluding ϕ and/or ¬ϕ, one could aggregate these arguments such that
arguments with the same conclusion strengthen each other, but such a conclusion is
weakened by counter-arguments. This approach is not trivial; see [103] for a dis-
cussion of the issues concerning accrual of arguments. For the sake of simplicity,
the approach we take here is to make sure that only the conclusion with the highest
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certainty level will be justified. To this end, the definition of rebuttal would have to
be adapted such that an argument only rebuts another argument if their conclusions
are each other’s negation and the first argument has a higher certainty level than
the second. Also, a more certain argument for ϕ would have to defeat a less certain
argument for ϕ. One remaining issue is what to do with arguments for ϕ and ¬ϕ
with equal certainty. If such arguments rebut each other, there will be multiple pre-
ferred extensions, which means less sceptically justified conclusions. One could also
argue that this situation is equivalent to the case of complete uncertainty. This can
be modelled with inference scheme 5 in Table 2.8.

In order to get the desired results in all cases described above, the definition of
defeat has to be slightly changed. First of all, for an argument A to rebut another
argument B, the conclusion of A should not only be the negation of the conclusion
of B, but it should also be at least as certain. This definition of rebuttal is similar
to the ones used in preference-based argumentation [2] and argumentation with
defeasible priorities [105]. Next, since we want only the most certain argument
for some conclusion to be justified, we introduce a new kind of defeat such that an
argument A defeats an argument B if their conclusions are the same but A’s conclusion
is more certain. The definition of undercut remains unchanged.

Definition 2.9. (Defeat) An argument A defeats an argument B if
• conc(A) = ϕ ∶ l and conc(B) = ¬ϕ ∶ l ′ (rebuttal) and l > l ′ > 0, or
• conc(A) = ϕ ∶ l and conc(B) = ϕ ∶ l ′ and l > l ′ > 0, or
• conc(A) =‘inf(B) is inapplicable’ (undercut), or
• A defeats a subargument of B.

In the following, we will assume that the epistemic part of the argumentation
framework will resolve conflicts between formulas and their negations with possibly
different certainty levels.

2.7 Argumentation framework for preferences with
uncertain information

Now that we have introduced a framework for epistemic reasoning with uncertain
information, we turn to the question how to derive preferences, if any, from such
uncertain information. Different approaches to infer preferences from information
with varying degrees of certainty are possible. We discuss several different ones. The
strategies we present in this section all apply the lexicographic ordering in the sense
that a preference between two objects is determined at the highest importance level
of attributes where a preference can be derived. They differ in the way a preference
is determined within one importance level.

In the lexicographic ordering, objects are compared w.r.t. their attributes on an
importance level. The highest importance level where a preference can be derived
determines the overall preference. In the Boolean case, preference within an im-
portance level is determined solely by the number of true attributes of both objects
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(the number of false attributes can be ignored because it can be computed when the
number of true attributes is known). This comparison is relatively easy, since we only
have to compare two numbers. In the case of uncertainty, instead of two possible val-
ues for an attribute, we have multiple (2N + 1), one for each level of certainty. So
in this case, we compare two tuples of numbers. Such a comparison can be done in
different ways, resulting in different strategies. Abstractly, we can say that the tuples
are compared by a ‘beats’ relation B. If on some importance level object a has mN

certainly true, . . . , and m−N certainly false attributes, object b has m′
N certainly true,

. . . , and m′
−N certainly false attributes, and ⟨mN , . . . , m−N ⟩ >B ⟨m′

N , . . . , m′
−N ⟩, then

object a is preferred over object b on that importance level. The key issue is how to
define B.

2.7.1 Purely qualitative strategies

We briefly mention some extreme cases. First, it would be possible to reduce the
number of certainty levels to two (N and −N) by treating the levels in between ei-
ther the same way as N (optimistic approach) or the same way as −N (pessimistic
approach). This is a generalisation of the optimistic and pessimistic strategies dis-
cussed in Section 2.4.1, and the same objections apply. A third option is to treat
all positive certainty levels the same way as N and all negative certainty levels the
same way as −N . This shows great confidence in the correctness of information,
but ignores the differences in certainty. Finally, it is possible to treat all certainty
levels between −N and N the same way as 0 (this essentially reduces the problem
to the case with incomplete information discussed in Section 2.4). This focuses on
the uncertainty of the information, but does not take into account that there may
be different degrees of uncertainty. Any non-extreme approach should distinguish
between different certainty levels.

An obvious strategy is dominance: an outcome a is (weakly) preferred to an out-
come b if for all attributes, it is at least as certain that a has it as that b has it. For
example, in the situation in Table 2.9a, object a is preferred to object b since its
certainty level is at least as high for every attribute. This strategy is clear-cut and
quite safe. On the other hand, it is not very decisive: the resulting preference rela-
tion is far from complete. Also, it does not take into account what it means for two
attributes to be equally important, namely that they are interchangeable. If P and
Q have equal importance, it does not matter for preference whether an object has P
but not Q, or Q but not P. For example, in the situation in Table 2.9a, objects a and
c are incomparable according to dominance, while it would be intuitive to prefer a.
To solve this issue, the definition of dominance can be straightforwardly adapted to
the following definition of ‘ordered dominance’. The attributes within an importance
level can be rank-ordered according to the certainty that an object has the attribute
(in the case of ties, i.e. multiple attributes having the same certainty for an outcome,
consecutive ranks are assigned to them at random). Such an ordering may be differ-
ent for every object. Now object a is (weakly) preferred to object b if for every rank,
it is at least as certain that a has the attribute with that rank in a’s ordering as that
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P ≜ Q ≜ R
a 2 1 1
b 1 1 -1
c 1 2 0

P ≜ Q ≜ R ≜ S ≜ . . .
a 2 -2 -2 -2 . . .
b 1 1 1 1 . . .

a. b.

P ≜ Q ⊳ R ≜ S ≜ T
a -1 2 2 2 -1
b 2 -1 1 1 1

P ≜ Q
a 1 0
b -1 1

c. d.

Table 2.9: Examples of objects and attributes with uncertain information

b has the attribute with that rank in b’s ordering. This definition results in a pref-
erence of a over c in Table 2.9a. This definition captures the intuition behind equal
importance of attributes, and again, the derived preferences are intuitive. However,
it still lacks in decisiveness, since many objects will be incomparable even though it
may be reasonable to prefer one over the other.

In order to define a more decisive strategy, one could consider using the lexico-
graphic ordering on certainty levels. That is, within one importance level, we first
count all attributes with certainty N . If one object has more of those than another,
the first object is preferred over the second (within this level). If both objects have
the same number, we go on to count the attributes with certainty N − 1, and so on.
When both objects have the same number of attributes on every certainty level, we
go on to consider the next importance level. The advantage of this strategy is that
it results in a complete preference relation, i.e. two objects are never incomparable.
On the other hand, some derived preferences may not be intuitive, since no number
of less certain attributes can be valuated higher than a single more certain attribute.
Consider for example the situation in Table 2.9b, where N = 2. It is known for cer-
tain that object a has attribute P and none of the other attributes. Object b has
all attributes with certainty 1. The lexicographic strategy will always prefer object
a, no matter how many attributes there are in the importance level, even though it
would be more intuitive to prefer b when the odds are taken into account. In the
next section we propose a strategy that does take the odds into account and allows
compensation.

2.7.2 Compensatory strategy

The reason that it would be more intuitive to prefer object b to object a in Table 2.9b
as the number of attributes in the importance level increases, is that it becomes more
likely that object b will have more attributes than object a. In other words, the ex-
pected number of attributes of b, which increases with every attribute with certainty
1 that is added, will be higher than the expected number of attributes of a, which
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stays 1. In this section we present a strategy for determining preference that is based
on the expected number of attributes of each object. As said before, the strategy
applies the lexicographic ordering in the sense that a preference between two objects
is determined at the highest importance level of attributes where a preference can be
derived. Within an importance level, it prefers one object to another if the first has a
higher expected number of attributes on that level than the second.

In order to calculate the expected number of attributes that an outcome has on
some importance level, we need to know the subjective probability pr associated
with each certainty level. Some probabilities may be known, such as pr(N) = 1
and pr(−N) = 0, others have to be estimated. The probability function has to be
monotonic, i.e. pr(l) > pr(l ′) iff l > l ′, and pr(l) = 1 − pr(−l). Here we only
treat the case for unconditional probabilities. Extending this with conditional prob-
abilities is a straightforward application of well-known techniques and would un-
necessarily complicate the presentation of the argumentation framework here. If
the probabilities of an outcome having different attributes are independent, given
P1(a) ∶ l1, . . . , Pn(a) ∶ ln, the expected number of attributes among P1, . . . , Pn that
object a has is given by ∑n

i=1 pr(li).
To incorporate this strategy into the argumentation framework, the interpretation

of the formula has(a, [P], n) is changed slightly from ‘object a has n attributes equally
important as attribute P ’ to ‘object ax expectedly has n attributes equally important
as attribute P ’. Inference scheme 1 in Table 2.10 takes as premises the attributes
of a certain importance level and the certainty levels of an object a having these
attributes. It concludes that the expected number of attributes of the object on that
importance level is the sum of the probabilities of the certainty levels. Inference
scheme 2 is an undercutter that defeats an argument built with scheme 1 if not all
attributes at the importance level in question are considered. Note that all attributes
on the importance level should be included; if some attribute is not present, the
certainty level will just be −N . Inference scheme 3 infers that an object a is preferred
over an object b if the expected number of attributes of a is higher than the expected
number of attributes of b on a certain importance level. This scheme is undercut by
inference scheme 4 if there is a higher importance level where a and b do not have
the same expected number of attributes. Schemes 5 and 6 do the same for equal
preference.

Example 2.5. Consider the situation in Table 2.9c. Since both objects have one
attribute with certainty 2 and one attribute with certainty -1 on the highest impor-
tance level, the preference is determined on the second importance level. Which ob-
ject is preferred depends on the probabilities of the different certainty levels. Since
N = 2, we have pr(2) = 1 and pr(−2) = 0, but the probabilities for the other cer-
tainty levels can be subjectively estimated. For example, if we take pr(1) = 0.75 and
pr(−1) = 0.25, the expected number of attributes of object a on the second impor-
tance level will be 2∗pr(2)+pr(−1) = 2∗1+0.25 = 2.25 and the expected number of
attributes of object b on the second importance level will be 3∗pr(1) = 3∗0.75 = 2.25,
and both objects will be equally preferred. This is illustrated with argument A in Ta-
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1

P1(a) ∶ l1 . . . Pn(a) ∶ ln P1 ≜ . . . ≜ Pn

has(a, [P1],∑n
i=1 pr(li))

count(a, [P1],{P1, . . . , Pn})

2

P1(a) ∶ l1 . . . Pn(a) ∶ ln P1 ≜ . . . ≜ Pn

count(a, [P1], S ⊂ {P1, . . . , Pn}) is inapplicable
count(a, [P1], S)uc

3

has(a, [P], n) has(b, [P], m) n > m
pref(a, b) p(a, b, [P])

4

has(a, [Q], n) has(b, [Q], m) Q ⊳ P n ≠ m
p(a, b, [P]) is inapplicable

p(a, b, [P])uc

5

has(a, [P], n) has(b, [P], m) n = m
eqpref(a, b) eqp(a, b, [P])

6

has(a, [Q], n) has(b, [Q], m) Q ⊳ P n ≠ m
eqp(a, b, [P]) is inapplicable

eqp(a, b, [P])uc

Table 2.10: Inference schemes for the compensatory strategy for uncertain informa-
tion

ble 2.11. Other probability estimates lead to other preferences. In argument B, we
take pr(1) = 0.8 and pr(−1) = 0.2, and b is preferred over a. In argument C , we take
pr(1) = 0.7 and pr(−1) = 0.3, and a is preferred over b.

For this strategy we have been specific in assigning probabilities to certainty lev-
els. As can be seen in Example 2.5, small differences in the estimated probabilities
can lead to completely different preferences. This makes the strategy decisive (it
always infers a preference), but not very safe, since subjective probabilities are not
always exactly known and may not be estimated accurately. In the next section we
present a safer version of the compensatory strategy that generalises both the com-
pensatory strategy of this section and the safe and decisive strategy for incomplete
information presented in Section 2.4.3.

2.7.3 A safer compensatory strategy

The strategy presented here is a generalisation of the compensatory strategy of the
previous section, inspired by the strategy for incomplete information presented in
Section 2.5. The idea is as follows. Instead of assigning a single probability pr(l) to
every certainty level l, we specify a range of probability with a lower bound pr−(l)
and an upper bound pr+(l). Now we can use the same intuition as before. If the worst
case for object a is still preferred over the best case for object b, then a has to be pre-
ferred over b (on some importance level). Note that fully certain information still
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Table 2.11: Some example arguments in the compensatory strategy
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1

P1(a) ∶ l1 . . . Pn(a) ∶ ln P1 ≜ . . . ≜ Pn

has(ax , [P1],∑n
i=1 prx(li))

count(ax , [P1],{P1, . . . , Pn})

2

P1(a) ∶ l1 . . . Pn(a) ∶ ln P1 ≜ . . . ≜ Pn

count(ax , [P1], S ⊂ {P1, . . . , Pn}) is inapplicable
count(ax , [P1], S)uc

3

has(ax , [P], n) has(b y , [P], m) n > m
pref(ax , b y) p(ax , b y , [P])

4

has(ax , [Q], n) has(b y , [Q], m) Q ⊳ P n ≠ m
p(ax , b y , [P]) is inapplicable

p(ax , b y , [P])uc

5

has(ax , [P], n) has(b y , [P], m) n = m
eqpref(ax , b y) eqp(ax , b y , [P])

6

has(ax , [Q], n) has(b y , [Q], m) Q ⊳ P n ≠ m
eqp(ax , b y , [P]) is inapplicable

eqp(ax , b y , [P])uc

7

pref(a−, b+)
pref(a, b)

8

eqpref(a−, b+) pref(a+, b−)
wpref(a, b)

9

eqpref(a+, b−) eqpref(a−, b+)
eqpref(a, b)

Table 2.12: Inference schemes for the safer compensatory strategy for uncertain in-
formation

gets a single probability value: pr−(−N) = pr+(−N) = 0 and pr−(N) = pr+(N) = 1.
The strategy is less decisive than the compensatory strategy presented in the previ-
ous section, since it is not always able to derive a preference between two objects.
However, it is still more decisive than the dominance-based strategy.

Inference schemes 1 to 6 in Table 2.12 are the same as those for the compensatory
strategy in Table 2.10, except that labels (− and +) are added to objects and pr−

and pr+ are used in inference scheme 1. These inference schemes can be used to
infer preferences between best and worst cases of objects, similar to best and worst
completions in Section 2.5. The inference schemes to infer preferences between
objects are exactly the same as before: inference schemes 7 to 9 in Table 2.12 are the
same as inference schemes 10 to 12 in Table 2.6.

Example 2.6. Consider the same situation in Table 2.9c again. If we take pr+(1) =
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Table 2.13: Some example arguments in the safer compensatory strategy
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0.9, pr−(1) = 0.8, pr+(−1) = 0.2 and pr−(−1) = 0.1, we can build argument A in Table
2.13, concluding that b is preferred over a. If we take pr+(1) = 0.8, pr−(1) = 0.7,
pr+(−1) = 0.3 and pr−(−1) = 0.2, no justified arguments concluding a preference
between a and b can be constructed.

Proposition 2.2. The safer compensatory strategy presented here generalises the
compensatory strategy in Section 2.7.2.

Let pr−(l) = pr+(l) for every certainty level l, i.e. the probability range is actually
a single probability value. Then for every object a, the expected number of attributes
is the same for a+ and a− and this strategy coincides with the compensatory strategy
in Section 2.7.2.

Example 2.7. Consider the same situation in Table 2.9c again. With pr−(1) =
pr+(1) = 0.75 and pr−(−1) = pr+(−1) = 0.25, we can construct argument B in Table
2.13, which is analogous to argument A in Table 2.11.

Proposition 2.3. The safer compensatory strategy presented here generalises the
safe and decisive strategy in Section 2.4.3.

As said before, the case with incomplete information corresponds to the case
with three certainty levels: N and −N (certain presence/absence of attributes) and
0 (unknown). If we take pr−(0) = 0 and pr+(0) = 1, then for every object a, the
strategy proposed here counts the number of present and unknown attributes for a+

and only the certainly present attributes for a−, and hence coincides with the strategy
presented in Section 2.7.

Example 2.8. Consider the situation in Table 2.5c. If we translate this to certainty
levels, taking N = 1, we get the situation in Table 2.9d. In this case, argument C in
Table 2.13 can be built (for reasons of space, this argument’s two subarguments are
displayed separately). When we compare this argument to argument B in Table 2.7
we see that the conclusions are indeed the same.

2.8 Conclusion

In this paper we have made the following contributions. Approaches based on ar-
gumentation can be used to model qualitative multi-attribute preferences such as
the lexicographic ordering. The advantage of argumentation over other approaches
emerges most clearly in the case of incomplete or uncertain information. Our ap-
proach to the incomplete information case allows to reason about preferences from
best- and worst-case perspectives (called completions here), and the consequences
for overall preferences. In addition we proposed different ways to reason about pref-
erences in case of uncertain information.

In our future work we would like to distinguish more explicitly between mental
attitudes such as beliefs, goals, desires and preferences. This will also allow us to
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reason about these attitudes, for example that a certain preference we have is based
on some specific beliefs. We hope to gain insight from modal preference languages
with belief operators such as the one presented by Liu [86].

In the current paper we have focused on the case where we have incompleteness
of uncertainty in the epistemic part of the knowledge base (i.e. about the attributes
that objects do or do not have). It would be interesting to explore the case where also
information about what attributes influence preference and the importance order be-
tween them is incomplete or uncertain. This is especially useful when modelling
preferences of others, where it is not realistic that all relevant information is avail-
able. Other interesting cases are inconsistency in and change of the knowledge that
is used to determine preferences.

Other interesting areas for future work include the representation of dependent
preferences (e.g. ‘I only want a balcony if the house does not have a garden, other-
wise I do not care’), different degrees of satisfaction of attributes, and preferences
based on underlying interests or values. We would also like to look into the relation
with e.g. CP-nets [29] and value-based argumentation [71].

Finally, we believe that the argumentation-based framework for preferences pre-
sented here can be usefully applied in the preference elicitation process. It allows the
user to extend and refine the system representation of his preferences gradually and
as the user sees fit. To facilitate this elicitation process more research is needed on
how our framework can support a user e.g. by indicating which information is still
missing.



Chapter 3

Reasoning about interest-based
preferences

Abstract In decision making, negotiation, and other kinds of practical reasoning,
it is necessary to model preferences over possible outcomes. Such preferences
usually depend on multiple criteria. We argue that the criteria by which out-
comes are evaluated should be the satisfaction of a person’s underlying interests:
the more an outcome satisfies his interests, the more preferred it is. Underlying
interests can explain and eliminate conditional preferences. Also, modelling in-
terests will create a better model of human preferences, and can lead to better,
more creative deals in negotiation. We present an argumentation framework for
reasoning about interest-based preferences. We take a qualitative approach and
provide the means to derive both ceteris paribus and lexicographic preferences.

3.1 Introduction

We present an approach to qualitative, multi-criteria preferences that takes under-
lying interests explicitly into account. Reasoning about interest-based preferences
is relevant in decision making, negotiation, and other types of practical reasoning.
Since our long-term goal is the development of a negotiation support system, the
motivations and examples in this paper are mainly taken from the context of negoti-
ation, but the main ideas apply equally well in other contexts.

The goal of a negotiation support system is to help a human negotiator reach
a better deal in negotiation. The quality of a deal is determined for a large part
by the user’s personal preferences. A deal generally consists of multiple issues. For
example, when applying for a new job, some issues are the position, the salary, and
the possibility to work part-time. For a complete deal, negotiators have to agree on
the value for every issue. The satisfaction of a negotiator with a possible outcome
depends on his preferences.
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Since the number of possible outcomes is typically very large (exponential in the
number of issues), it is not feasible to have the user express his preferences over
all possible outcomes directly. It is common to compute or derive preferences over
possible outcomes from preferences over the possible values of issues and a weighing
or importance ordering of the issues. One of the best-known approaches is multi-
criteria utility theory [76], a quantitative approach where preferences are expressed
by numeric utilities. Since such quantities are hard for humans to provide, qualitative
approaches have been proposed too, e.g. [33]. Our approach is also of a qualitative
nature.

In this paper we argue that issues alone are not enough to derive outcome prefer-
ences. Instead, we will focus on modelling underlying interests and their relation to
issues. There are several reasons for taking interests into account. First, underlying
interests can explain and eliminate conditional preferences. Consider the following
example. If it rains, I prefer to take my umbrella, but if it doesn’t, I prefer not to
take it. This is a conditional preference; my preference over taking my umbrella
depends on the circumstance of rain. Underlying interests can explain such condi-
tional preferences: I prefer to take my umbrella when it rains because I do not want
to get wet, and I prefer not to take it when it’s dry because I don’t want to carry
things unnecessarily. If we take such interests as criteria on which to base prefer-
ence, we can eliminate conditional preferences entirely. We will get back to this in
more detail later. Second, interest-based negotiation is said to lead to better out-
comes than position-based negotiation [75, 108]. By understanding one’s own and
the other party’s reasons behind a position and discussing these interests, people are
more likely to find more creative options in a negotiation and by that reach a mu-
tually acceptable agreement more easily. A well-known example is that of the two
sisters negotiating about the division of an orange. They both want the orange, and
end up splitting it in half. Had they known each other’s underlying interests, they
would have reached a better deal: one sister only needed the peel to make a cake
and would gladly have let the other sister have all of the flesh for her juice. Third,
thinking about underlying interests is a very natural, human thing to do. Interests are
what really matters to people, they are what drive them in their decisions and opin-
ions. Taking underlying interests explicitly into account will result in a better model
of human preferences. Such a model is also suited for explanation of the reasoning
and advice of a support system.

This last point brings us to the motivation for using argumentation to reason
about interest-based preferences. Reasoning by means of arguments is a very human
type of reasoning. People often base their decisions on (mental) lists of arguments
in favour of and against certain decisions. Therefore argumentation is suitable for
explanation of a system’s reasoning to a human user. Another advantage of argumen-
tation is that it is a kind of defeasible reasoning. It is able to reason with incomplete,
uncertain and contradictory information. Finally, argumentation can be used to (try
to) persuade the opponent during negotiation (but this is outside the scope of this
paper).

The paper is organised as follows. In Section 3.2 we introduce and discuss the
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most important concepts that we will use throughout the paper. Then, in Section 3.3,
we give an overview of existing approaches to preferences and underlying interests.
We give some more details about qualitative multi-criteria preferences in Section 3.4.
In Section 3.5 we motivate the explicit modelling of underlying interests, illustrated
with examples. Our own approach is presented in Section 3.6. Finally, Section 3.7
concludes the paper.

3.2 Concepts

Before we go on, we will clarify some important concepts that we will use. In nego-
tiation, issues are the matters which are under negotiation. An issue is a concrete,
negotiable aspect such as monthly salary or number of holidays. Every issue has a set
or range of possible values. The value of an issue in a given instance can be objec-
tively determined (e.g. €2400, 30 days). Issues and their possible values typically
depend on the domain. Besides the issues under negotiation, there may be other
properties of a deal that influence preferences. For example, the location of the com-
pany that you are applying to work for can be very important, because it determines
the duration of your daily commute, but it is hardly negotiable. Still, such properties
are important in negotiation. If, for example, you already got an offer from another
company near your home, you will only consider offers that are better taking the
location into account.

A possible outcome or possible deal has a specified value for every issue. All bids
made during a negotiation are possible outcomes. For example, a possible outcome
could be a job contract for the position of programmer, with a salary of €3000 gross
per month, with 25 holidays, for the duration of one year with the possibility of
extension. Any other assignment to the issues would constitute a different outcome.
It is the user’s preferences over such possible outcomes that we are interested in.

With criteria we mean the features on which a preference between outcomes is
based. It is common to base preferences directly on the negotiated issues; in that
case the issues are the criteria. In this paper we argue that not issues, but underlying
interests should be used as criteria.

Many terms are used for what we consider to be underlying interests, such as
fundamental objectives, values, concerns, goals and desires. In our view, an inter-
est can be any kind of motivation that leads to a preference. Essentially, a preference
depends on how well your interests are met in the outcomes to be compared. The de-
gree to which interests are met is influenced by the issues, but there is not necessarily
a one-to-one relation between issues and interests. For example, an applicant with
childcare responsibilities will have the interest that the children are taken care of af-
ter school. This interest can be met by various different issues, for example part-time
work, the possibility to work from home, a salary that will cover childcare expenses,
etc. One issue may also contribute to multiple interests. Many issues that deal with
money do so, because the interests different people have for using the money will be
diverse.
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3.3 Related work

Existing literature about preferences is abundant and very diverse. In this section we
briefly discuss the approaches that are most closely related to our interests.

Interest-based negotiation is discussed by Rahwan et al. [108]. However, this
approach has a particular view on negotiation as an allocation of indivisible and
non-sharable resources. The resources are needed to carry out plans to reach certain
goals. Even though the goals can be seen as underlying interests, it is hard to model
e.g. negotiation about a job contract as an allocation of resources. Salary might be an
allocation of money, but other issues, like position or start date, cannot be translated
as easily into resources.

Argumentation about preferences has been studied extensively in the context of
decision making [1, 7, 93, 94]. The aim of decision making is to choose an action
to perform. The quality of an action is determined by how well its consequences
satisfy certain criteria. For example, Amgoud et al. [1] present an approach in which
arguments of various strengths in favour of and against a decision are compared.
However, it is a two-step process in which argumentation is used only for epistemic
reasoning. In our approach, we combine reasoning about preferences and knowledge
in a single argumentation framework.

Within the context of argumentation, an approach that is related to underlying
interests is value-based argumentation [17, 16]. Values are used in the sense of ‘fun-
damental social or personal goods that are desirable in themselves’ [16], and are
used as the basis for persuasive argument in practical reasoning. In value-based ar-
gumentation, arguments are associated with values that they promote. Values are
ordered according to importance to a particular audience. An argument only defeats
another argument if it attacks it and the value promoted by the attacked argument
is not more important than the value promoted by the attacker. We will illustrate
this with a little example. Consider two job offers a and b. a offers a higher salary,
but b offers a better position. We can construct two mutually attacking preference
arguments, A: ‘I prefer job offer a over job offer b because it has a higher salary’, and
B: ‘I prefer job offer b over job offer a because it has a better position’. In Dung-style
argumentation frameworks [52], there is no way to choose between two mutually
attacking arguments (unless one is defended and the other is not). In value-based
argumentation, we could say that preferring a over b promotes the value of wealth
(w), and preferring b over a promotes the value of status (s), and e.g. wealth is con-
sidered more important than status. In this case A defeats B, but not the other way
around.

In this framework, every argument is associated with only one value, while in
many cases there are multiple values or interests at stake. Kaci and Van der Torre
[71] define so-called value-specification argumentation frameworks, in which argu-
ments can support multiple values, and preference statements about values can be
given. However, the preference between arguments is not derived from the prefer-
ence between the values promoted by the arguments. Besides, there is no guarantee
that a value-specification argumentation framework is consistent, i.e., some sets of
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preference statements do not correspond to a preference ordering on arguments.
In value-based argumentation, we cannot argue about what values are promoted

by the arguments or the ordering of values; this mapping and ordering are supposed
to be given. But these might well be the conclusion of reasoning, and might be
defeasible. Therefore, it would be natural to include this information at the object
level. Van der Weide et al. [134] describe some argument schemes regarding the
influence of certain perspectives on values. However, for the aggregation of multiple
values, they assume a given order on sets of values, whereas we want to derive such
an order from an order on individual values.

3.4 Qualitative multi-criteria preferences

Regardless of whether we take issues or interests as criteria, we need to be able
to model multiple criteria. In any realistic setting, preferences are determined by
multiple criteria and the interplay between them. Therefore we shortly introduce
two well-known approaches to multi-criteria preferences which we will use in our
framework.

One approach is ceteris paribus (‘all else being equal’) comparison. One outcome
is preferred to another ceteris paribus, if it is better on some criteria and the same on
all other criteria. This approach has been widely used since Von Wright [138]. Also
Wellman and Doyle [135] derive preferences from sets of goals in a ceteris paribus
way. In [29], ceteris paribus comparison is combined with conditional preferences in
a graphical preference language called CP-nets. The preference order resulting from
ceteris paribus comparison is not complete; an outcome satisfying criterion G but not
H cannot be compared to an outcome satisfying H but not G.

Another well-known approach is the lexicographic preference ordering (see e.g.
[33], where it is denoted #). Here, preferences over outcomes are based on a set of
relevant criteria, which are ranked according to their importance. The importance
ranking of criteria is defined by a total preorder ⊵, which yields a stratification of
the set of criteria into importance levels. Each importance level consists of criteria
that are equally important. The lexicographic preference ordering first considers the
highest importance level. If some outcome satisfies more criteria on that level than
another, then the first is preferred over the second. If two outcomes satisfy the same
number of criteria on this level, the next importance level is considered, and so on.
Two outcomes are equally preferred if they satisfy the same number of criteria on
every level.

We use a slightly more abstract definition of preference that covers both ceteris
paribus and lexicographic preferences. Let C be a set of binary criteria, ordered
according to importance by a preorder ⊵. If P ⊵ Q and not Q ⊵ P, we say that P is
strictly more important than Q and write P ⊳ Q. If P ⊵ Q and Q ⊵ P, we say that P
is equally important as Q and write P ≜ Q. C can be divided into equivalence classes
induced by ≜, which we call importance levels. An importance level L is said to be
more important than L′ iff the criteria in L are more important than the criteria in
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high high full-
salary position time

a 3 3 3
b 3 3 7
c 3 7 3
d 3 7 7
e 7 3 3
f 7 3 7
g 7 7 3
h 7 7 7

family
wealth status time

a 3 3 7
b 3 3 3
c 3 3 7
d 3 3 3
e 7 3 7
f 7 3 3
g 7 7 7
h 7 7 3

a. Issues b. Interests

Table 3.1: Satisfaction of issues and interests

L′. Let O be a set of outcomes, and sat a function that maps outcomes a ∈ O to sets
of criteria Ca ∈ 2C . If P ∈ sat(a), we say that a satisfies P.

Definition 3.1. (Preference) An outcome a is strictly preferred to another outcome
b if it satisfies more criteria on some importance level L, and for any importance
level L′ on which b satisfies more criteria than a, there is a more important level on
which a satisfies more criteria than b. An outcome a is equally preferred as another
outcome b if both satisfy the same number of criteria on every importance level.

The least specific importance order possible is the identity relation, in which case
the importance levels are all singletons and no importance level is more important
than any other. In this case, the preference definition is equivalent to ceteris paribus
preference (if a is preferred to b ceteris paribus, there are no criteria that b satisfies
but a does not). If the importance order is a total preorder, the definition is equivalent
to lexicographic preference. In general, the more information about the relative
importance of interests is known, the more preferences can be derived. We note that
lexicographic preferences subsume ceteris paribus preferences in the sense that if one
outcome is preferred to another ceteris paribus, it is also preferred lexicographically,
regardless of the importance ordering on criteria.

3.5 Modelling interests

We will illustrate the ideas presented in this paper by means of an example. Mark has
applied for a job at a company called Jones. After the first interview, they are ready
to discuss the terms of employment. There are three issues on the table: the salary,
the position, and whether the job is full-time or part-time. All possible outcomes are
listed in Table 3.1a. After some thought, Mark has determined that the interests that
are at stake for him are wealth, status, and time with his family. A high position will
give status. A high salary will provide both wealth and status. A part-time job will



CHAPTER 3. INTEREST-BASED PREFERENCES 57

b, d

a, c f

e h

g

e, f

a, b g, h

c, d

a. For Mark b. For Jones

Figure 3.1: Ceteris paribus preference orderings (arrows point towards more pre-
ferred outcomes)

give him time to spend with his family. Table 3.1b shows which interests each of the
outcomes satisfies.

All information is encoded in a knowledge base, which consists of three parts.
• Facts about the properties of the outcomes to be compared. When comparing

offers in negotiation, these may be the values for each issue, or any other
relevant properties. Facts are supposed to be objectively determined.

• A set of interests of a negotiator. Underlying interests are personal and sub-
jective, although they can sometimes be assumed by default. Interests may
vary according to importance. If no importance ordering is given, the ceteris
paribus principle can be used to derive preferences. The more information
about the relative importance of interests is known, the more preferences can
be derived. If there is a total preorder of interests according to importance, a
complete preference ordering over possible outcomes can be derived using the
lexicographic principle.

• Rules relating issues and other outcome properties to interests. These rules can
be very subjective, e.g. some people consider themselves very wealthy if they
earn €3000 gross salary per month, while for others this may be a pittance.
Even so, there can still be default rules that apply in general, e.g. that a high
salary promotes wealth for the employee. The relation between issues and
interests does not have to be one-to-one. There may be multiple issues that
can satisfy an interest, some issues may satisfy multiple interests at once, or
a combination of issues may be needed to fulfill an interest. As is common in
defeasible reasoning, there may be exceptions to rules. For example, one might
say that a high position ensures status in general, but this effect is cancelled
out if the job is badly paid.

With the inference scheme of defeasible modus ponens (see scheme 1 in Table
3.4), arguments can be constructed that derive statements about what interests are
satisfied by possible outcomes, based on their issue values and the rules relating
issues to interests. The conclusions from these arguments are summarized in Table
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jacket pants shirt
i b b w
j b b r
k b w w
l b w r
m w b w
n w b r
o w w w
p w w r

good
combination

i 7
j 3
k 3
l 7
m 3
n 7
o 7
p 3

a. Issues b. Interests

Table 3.2: Outcomes in the evening dress example

3.1b. If we compare the possible outcomes ceteris paribus, we can construct a partial
preference order for Mark, with b and d being the most preferred options, and g
the least preferred (see Figure 3.1a). This preference order is not complete. To
determine Mark’s preference between a and c on the one hand and f on the other
hand, we need to know whether wealth or family time is more important to him. If
wealth is more important, Mark will prefer a or c. If family time is more important,
he will prefer f . Similarly, to determine a preference between e and h, we need to
know whether status or family time is more important.

The company Jones has two major interests: it needs a manager and it has to cut
back on expenses. These interests relate directly (one-to-one) to high position and
low salary. The ceteris paribus preference ordering for Jones is displayed in Figure
3.1b.

The added value of interests It may seem that using interests next to issues just
introduces an extra layer in reasoning. From the issues and the relations between
issues and interests, we derive the interests that are met by outcomes, and from that
we derive preferences. Would it not be easier to derive the preferences directly from
the issues? We could just state that Jones has the interests of high position and low
salary, optionally with an ordering between them, and we would be able to derive
Jones’ preferences from that. This is because in this case there is a one-to-one relation
between interests and issues: every interest is met by exactly one issue, and every
(relevant) issue meets exactly one interest.

There are good reasons, however, why this approach is not always a good solu-
tion. Consider for example Mark’s preferences. A high salary satisfies both wealth
and status, and status can be satisfied by either a high salary or a high position.
Because of this, the (partial) preference ordering we determined for Mark cannot be
defined as a ceteris paribus ordering if the issues are taken as criteria. This is because
high position as criterion is dependent on high salary: if the salary is not high, then
high position is a distinguishing criterion, but if the salary is high, high position is not
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a. Preference graph
induced by CP-net

b. Ceteris paribus
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Figure 3.2: Preference orderings (arrows point towards more preferred outcomes)

relevant anymore, since the only interest that it serves, status, is already satisfied by
high salary. So with a fixed set of issues as criteria, ceteris paribus or lexicographic
models cannot represent every preference order. In many cases, this can be solved
intuitively by taking underlying interests into account.

There are other approaches to deal with this matter. Instead of assuming inde-
pendence of the criteria, one can also model conditional preferences, where criteria
may be dependent on other criteria. A well-known approach to represent conditional
preferences is CP-nets [29], which is short for conditional ceteris paribus preference
networks. A CP-net is a graph where the nodes are variables (comparable to our
notion of issues). Every node is annotated with a conditional preference table, which
lists a user’s preferences over the possible values of that variable. If such preferences
are conditional (dependent on other variables), each condition has a separate entry
in the table, and the variables that influence the preference are parent nodes of this
variable in the graph. In [29], an example of conditional preference is given regard-
ing an evening dress. A man unconditionally prefers black to white as a colour for
both the jacket and the pants. His preference between a white and a red shirt is
conditioned on the combination of jacket and pants. If they have the same colour, he
prefers a red shirt (for a white shirt will make his outfit too colourless). If they are
of different colours, he prefers a white shirt (because a red shirt will make his outfit
too flashy). The complete assignments (outcomes in our terminology) are listed in
Table 3.2a. The preference graph induced by the CP-net for this example is displayed
in Figure 3.2a.
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We propose to replace the variables the preferences over which are conditional
with underlying interests – the reason for the dependency. In the evening dress
example, the underlying interest is that the colours of jacket, pants and shirt make a
good combination, which in this case is defined by being neither too colourless nor
too flashy. The satisfaction of this interest by the different outcomes is listed in Table
3.2b. The variables jacket and pants are unconditional, so they can remain as criteria.
If we take jacket, pants, and good combination as criteria, we can construct the
preference graph in Figure 3.2b, using the ceteris paribus principle. The difference
with the preferences induced by the CP-net is that in the CP-net case, outcome i is
more preferred than k and m, and p is less preferred than l and n, while in the
interest-based case they are incomparable. This is due to the fact that in CP-nets,
conditional preferences are implicitly considered less important than the preferences
on the variables they depend on ([29], p. 145). In fact, if we would specify that
both jacket and pants are more important than a good combination, our preference
ordering would be the same as in Figure 3.2a. But the interest approach is more
flexible; it is possible to specify any (partial) importance ordering on interests. For
example, we could also state that a good combination is more important than either
the jacket or the pants, which results in the preference ordering in Figure 3.2c. In
our opinion, there is no a priori reason to attach more importance to unconditional
variables as is done in the CP-net approach.

3.6 Argumentation framework

In this section, we present an argumentation framework (AF) for reasoning about
qualitative, interest-based preferences. An abstract AF in the sense of Dung [52] is
a pair ⟨A,→⟩ where A is a set of arguments and → is a defeat relation (informally, a
counterargument relation) among those arguments. To define which arguments are
justified, we use Dung’s [52] preferred semantics.

Definition 3.2. (Preferred semantics) A preferred extension of an AF ⟨A,→⟩ is a
maximal (w.r.t. ⊆) set S ⊆ A such that: ∀A, B ∈ S ∶ A /→ B and ∀A ∈ S: if B → A then
∃C ∈ S ∶ C → B. An argument is credulously (sceptically) justified w.r.t. preferred
semantics if it is in some (all) preferred extension(s).

Informally, a preferred extension is a coherent point of view that can be defended
against all its attackers. In case of contradictory information, there will be multiple
preferred extensions, each advocating one point of view. The contradictory conclu-
sions will be credulously, but not sceptically justified.

We instantiate an abstract AF by specifying the structure of arguments and the
defeat relation.

Arguments Arguments are built from formulas of a logical language, that are
chained together using inference steps. Every inference step consists of premises
and a conclusion. Inferences can be chained by using the conclusion of one inference
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highsal(c) IM(wealth) highsal(x)⇒ wealth(x)
¬highpos(c) IM(status) highsal(x)⇒ status(x)
full-time(c) IM(family) highpos(x)⇒ status(x)
¬highsal( f ) ¬full-time(x)⇒ family(x)
highpos( f ) IJ(manager) highpos(x)⇒ manager(x)
¬full-time( f ) IJ(cutback) ¬highsal(x)⇒ cutback(x)

Table 3.3: The knowledge base for the example

step as a premise in the following step. Thus a tree of chained inferences is created,
which we use as the formal definition of an argument (cf. e.g. Vreeswijk [131]).

Definition 3.3. (Argument) An argument is a tree, where the nodes are inferences,
and an inference can be connected to a parent node if its conclusion is a premise of
that node. Leaf nodes only have a conclusion (a formula from the knowledge base),
and no premises. A subtree of an argument is also called a subargument. inf returns
the last inference of an argument (the root node), and conc returns the conclusion
of an argument, which is the same as the conclusion of the last inference.

Definition 3.4. (Language) Let P be a set of predicate names with typical elements
P,Q; O a set of outcome names with typical elements a, b; α an audience; and n
a non-negative integer. The input language LKB and full language L are defined as
follows.

ϕ ∈ LKB ∶∶= L ∣ Iα(P) ∣ P ⊳α Q ∣ P ≜α Q ∣ L1, . . . , Lk,∼ Ll , . . . ,∼ Lm ⇒ Ln

where Li = P(a) or ¬P(a).

ψ ∈ L ∶∶= ϕ ∈ LKB ∣ ∼ L ∣ sat(a, [P]α, n) ∣ prefα(a, b) ∣ eqprefα(a, b)

We make a distinction between an input and full language. A knowledge base, which
is the input for an argumentation framework, is specified in the input language.
The input language allows us to express facts about the criteria that outcomes (do
not) satisfy, statements about interests of an audience and their importance order-
ing, and defeasible rules. The knowledge base for the job contract example (the facts
restricted to outcomes c and f ) is displayed in Table 3.3. Other formulas of the lan-
guage that are not part of the input language, e.g. expressing a preference between
two outcomes, can be derived from a knowledge base using inference steps that build
up an argument (such formulas are not allowed in a knowledge base because they
might contradict derived statements).

Inferences Table 3.4 shows the inference schemes that are used. The first infer-
ence scheme is called defeasible modus ponens. It allows to infer conclusions from
defeasible rules. The next two inference rules define the meaning of the weak nega-
tion ∼. According to inference rule 2, a formula ∼ ϕ can always be inferred, but
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1
L1, . . . , Lk,∼ Ll , . . . ,∼ Lm ⇒ Ln L1 . . . Lk ∼ Ll . . . ∼ Lm

Ln
DMP

2 ∼ L
asm(∼ L)

3
L

asm(∼ L) is inapplicable
asm(∼ L)uc

4 sat(a, [P]α, 0) count(a, [P]α,∅)

5

P1(a) . . . Pn(a) P1≜α . . .≜αPn Iα(P1) . . . Iα(Pn)
sat(a, [P1]α, n) count(a,[P1]α,{P1, . . . , Pn})

6

P1(a) . . . Pn(a) P1 ≜α . . . ≜α Pn Iα(P1) . . . Iα(Pn)
count(a, [P1]α, S ⊂ {P1, . . . , Pn}) is inapplicable

count(a, [P1]α, S)uc

7

sat(a, [P]α, n) sat(b, [P ′]α, m) P ≜α P ′ n > m
prefα(a, b) prefinf(a, b, [P]α)

8

sat(a, [Q]α, n) sat(b, [Q′]α, m) Q ≜α Q′ ⊳α P n < m
prefinf(a, b, [P]α) is inapplicable

prefinf(a, b, [P]α)uc

9

sat(a, [P]α, n) sat(b, [P ′]α, m) P ≜α P ′ n = m
eqprefα(a, b) eqprefinf(a, b, [P]α)

10

sat(a, [Q]α, n) sat(b, [Q′]α, m) Q ≜α Q′ n ≠ m
eqprefinf(a, b, [P]α) is inapplicable

eqprefinf(a, b, [P]α)uc

Table 3.4: Inference schemes

such an argument will be defeated by an undercutter built with inference rule 3 if
ϕ is the case. Inference schemes 4 and 5 are used to count the number of interests
of equal importance (according to audience α) as some interest P1 that outcome a
satisfies. This type of inference is inspired by accrual [103], which combines mul-
tiple arguments with the same conclusion into one accrued argument for the same
conclusion. Although our application is different, we use a similar mechanism. In-
ference scheme 4 can be used when an outcome satisfies no interests. It is possible
to construct an argument that does not count all interests that are satisfied, a so-
called non-maximal count. But we want all interests to be counted, otherwise we
would conclude incorrect preferences. To ensure that only maximal counts are used,
we provide an inference scheme to construct arguments that undercut non-maximal
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counts (inference scheme 6). An argument of this type says that any count which
is not maximal is not applicable. Inference scheme 7 says that an outcome a is pre-
ferred over an outcome b if the number of interests of a certain importance level that
a satisfies is higher than the number of interests on that same level that b satisfies.
Inference scheme 8 undercuts scheme 7 if there is a more important level than that
of P on which a and b do not satisfy the same number of interests. Finally, inference
schemes 9 and 10 do the same as 7 and 8, but for equal preference.

Defeat The most common type of defeat is rebuttal. An argument rebuts another
argument if its conclusion contradicts conclusion of the other argument. Conclusions
contradict each other if one is the negation of the other, or if they are preference
or importance statements that are incompatible (e.g. prefα(a, b) and prefα(b, a), or
prefα(a, b) and eqprefα(a, b)). Defeat by rebuttal is mutual. Another type of defeat
is undercut. An undercutter is an argument for the inapplicability of an inference
used in another argument. Undercut works only one way. Defeat is defined recur-
sively, which means that rebuttal can attack an argument on all its premises and
(intermediate) conclusions, and undercut can attack it on all its inferences.

Definition 3.5. (Defeat) An argument A defeats an argument B (A→ B) if conc(A)
and conc(B) are contradictory (rebuttal), or conc(A) =‘inf(B) is inapplicable’ (un-
dercut), or A defeats a subargument of B.

Let us return to the example. With the information from the knowledge base, the
arguments A and B in Table 3.5 can be formed. A advocates a preference for c, based
on the interest wealth. B advocates a preference for f , based on the interest family.
Without an ordering on these interests, no decision between these arguments can be
made. But if wealth ⊳M family is known, argument C can be made, which undercuts
B. Similarly, with family ⊳M wealth, argument D can be made, which undercuts A.

Validity If some conditions in the input knowledge base (KB) hold, it can be shown
that the proposed argumentation framework models ceteris paribus and lexicograph-
ic preference. In the following, we consider a single audience and leave out the
subscript α.

Condition 3.1. Let C be a set of interests to be used as criteria, with importance
order ⊵.
(1) For all P, ‘I(P)’ is in KB iff P ∈ C.
(2) For all P ∈ C, a, ‘P(a)’ is a conclusion of a sceptically justified argument iff a
satisfies P.
(3) The relative importance among interests is

(a) a total preorder,
(b) the identity relation,

and for all P, Q ∈ C, ‘P ⊳ Q’ is in KB iff P ⊳ Q, and ‘P ≜ Q’ is in KB iff P ≜ Q.
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Table 3.5: Example arguments
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Theorem 3.1. (i) If conditions 3.1.1, 3.1.2 and 3.1.3a hold, then pref(a, b) (resp.
eqpref(a, b)) is a sceptically justified conclusion of the argumentation framework iff
a is strictly (resp. equally) preferred over b according to the lexicographic preference
ordering.
(ii) If conditions 3.1.1, 3.1.2 and 3.1.3b hold, then pref(a, b) (resp. eqpref(a, b)) is a
sceptically justified conclusion of the argumentation framework iff a is strictly (resp.
equally) preferred over b according to the ceteris paribus preference ordering.

Proof. We prove the theorem for strict preference. The same line of argument can be
followed for equal preference.
(i)⇐: Suppose a is strictly lexicographically preferred over b. This means that there
is an importance level on which a satisfies more interests (say, P1, . . . , Pn) than b (say,
P ′1, . . . , P ′m, n > m), and on all more important levels, a and b satisfy an equal number
of interests. In this case, we can construct the following arguments, where the first
two arguments are subarguments of the third (note that these arguments can also be
built if m is equal to 0, by using the empty set count).

P1(a) . . . Pn(a) I(P1) . . . I(Pn) P1 ≜ . . . ≜ Pn

sat(a, [P1], n)

P ′1(b) . . . P ′m(b) I(P ′1) . . . I(P ′m) P ′1 ≜ . . . ≜ P ′m
sat(b, [P ′1], m)

sat(a, [P1], n) sat(b, [P ′1], m) P1 ≜ P ′1 n > m

pref(a, b)

We will now try to defeat this argument. Premises of the type P(a) are justified by
condition 3.1.2. Premises of the type I(P) and P1 ≜ P2 cannot be defeated (condi-
tions 3.1.1 and 3.1.3a). There are three inferences we can try to undercut (the last
inference of the argument and the last inferences of two subarguments). For the first
count, this can only be done if there is another Pj such that I(Pj) and Pj ≜ P and
Pj /∈ {P1, . . . , Pn} and Pj(a) is the case. However, P1 . . . Pn encompass all interests
that a satisfies on this level, so count undercut is not possible. The same argument
holds for the other count. At this point it is useful to note that these two counts are
the only ones that are undefeated. Any lesser count will be undercut by the count
undercutter that takes all of P1 . . . Pn (resp. P ′1 . . . P ′m) into account. Such an under-
cutter has no defeaters, so any non-maximal count is not justified. The undercutter
of prefinf(a, b, [P1]) is based on two counts. We have seen that any non-maximal
count will be undercut. If the maximal counts are used, we have n = m for under-
cutter arguments that use Q ⊳ P, since we have that on all more important levels
than [P1], a and b satisfy an equal number of interests. So the undercutter inference
rule cannot be applied since n ≠ m is not true. For that reason, a rebutting argument
with conclusion pref(b, a) will not be justified. This means that for every possible
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type of defeat, either the defeat is inapplicable or the defeater is itself defeated by
undefeated arguments. This means that the argument is sceptically justified.
⇒: Suppose that a is not strictly lexicographically preferred over b. This means that
for all importance levels [P], either a does not satisfy more interests than b on that
level, or there exists a more important level where b satisfies more interests than
a. This means that any argument with conclusion pref(a, b) (which has to be of the
form above) is either undercut by count(b, [P], S)uc because it uses a non-maximal
count, or by prefinf(a, b, [P])uc because there is a more important level where a
preference for b over a can be derived. This means that any such argument will not
be sceptically justified.
(ii)⇐: Suppose a is strictly ceteris paribus preferred over b. This means that there is
(at least) one interest, let us say P, that a satisfies and b does not, and there are no
interests that b satisfies and a does not. In this case, we can construct the following
argument.

P(a) I(P)

sat(a, [P], 1) sat(b, [P], 0) P ≜ P 1 > 0

pref(a, b)

Premise P(a) is justified by condition 3.1.2. Premise I(P) cannot be defeated (con-
dition 3.1.1). Note that, since there is no importance ordering specified, counts can
only include 0 or 1 interest(s). So the first count cannot be undercut, because there
are no other interests that are equally important as P (condition 3.1.3b). The second
count cannot be undercut because b does not satisfy P. Since there are no inter-
ests that b satisfies but a does not, the last inference can only be undercut by an
undercutter that uses a non-maximal count and so will be undercut itself.
⇒: Suppose a is not strictly ceteris paribus preferred over b. This means that either
there is no interest that a satisfies but b does not, or there is some interest that b
satisfies and a does not. In the first case, the only arguments that derive a preference
for a over b have to use non-maximal counts and hence are undercut. In the second
case, any argument that derives a preference for a over b is rebut by the following
argument,

Q(b) I(Q)

sat(b, [Q], 1) sat(a, [Q], 0) Q ≜ Q 1 > 0

pref(b, a)

and is not sceptically justified.

3.7 Conclusion

In this paper we have made a case for explicitly modelling underlying interests when
reasoning about preferences in the context of practical reasoning. We have presented
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an argumentation framework for reasoning about qualitative interest-based prefer-
ences that models ceteris paribus and lexicographic preference.

In the current framework, we have only considered Boolean issues and interests.
While this suffices to illustrate the main points discussed in this paper, multi-valued
scales would be more realistic. Such an approach would open the way to modelling
different degrees of (dis)satisfaction of an interest. For example, Amgoud et al. [1]
take into account the level of satisfaction of goals on a bipolar scale. In the Boolean
case, the lexicographic preference ordering is based on counting the number of inter-
ests that are satisfied by outcomes. This is no longer possible if multi-valued scales
are used. In that case, we could count interests that are satisfied to a certain degree
(like e.g. [1]), or compare outcomes in a pairwise fashion and count the number
of interests that one outcome satisfies to a higher degree than another (like e.g.
[93, 134]).

Currently, we suppose that the interests and importance ordering among them are
given in a knowledge base. We can make our framework more flexible by allowing
such statements to be derived in a way that is similar to the derivation of statements
about the satisfaction of interests.

We would also like to look into the interplay between different issues promoting
or demoting the same interest. For example, a high salary and a high position both
lead to status, but together they may lead to even more status. Or a low salary may
promote cutback, but providing a lease car will demote it. Do these effects cancel
each other out? The principles that play a role here are related to the questions
posed in the context of accrual of arguments [103].

Since our long-term goal is the development of an automated negotiation support
system, we plan to look into negotiation strategies that are based on qualitative,
interest-based preferences as described here, as opposed to utility-based approaches
currently in use. For the same reason, we plan to implement the argumentation
framework for reasoning about interest-based preferences that we have presented
here. Another interesting question in this context is how interest-based preferences
can be elicited from a human user.



Chapter 4

Qualitative Preference Systems:
A framework for qualitative
multi-criteria preferences

Abstract A key challenge in the representation of qualitative, multi-criteria pref-
erences is to find a compact and expressive representation. Various frameworks
have been introduced, each with its own distinguishing features. In this paper
we introduce a new representation framework called Qualitative Preference Sys-
tems (QPS), which combines priority and cardinality. Moreover, the framework
incorporates knowledge that serves two purposes: to impose (hard) constraints,
but also to define new (abstract) concepts. We show that QPSs provide a gen-
eral, flexible and succinct way to represent conditional preferences, underlying
interests, bipolar preferences and preferences based on goals. We compare the
framework in detail with two well-known preference representation frameworks.
Preferences between outcomes are often derived from orderings on the possible
values of variables that may range over a variety of domains. We show that
QPSs that are based on such multi-valued criteria can be translated into equiva-
lent goal-based QPSs that are just as succinct, and that goal-based QPSs allow for
more fine-grained updates than their multi-valued counterparts. In short, QPS of-
fers a rich and practical representation for qualitative, multi-criteria preferences.

4.1 Introduction

More and more technology is being developed that aims to support people in their
activities and decisions. Such systems need an accurate representation of their users’
preferences. Human preferences between objects (products, states of the world,
agreements etc.) are typically not intrinsic but based on the evaluation of several
criteria. Also, although preferences are commonly represented by numeric utilities,
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the research community is looking for representation formats that are close to the
qualitative way that humans use to reason about preferences. A key challenge in
the representation of qualitative, multi-criteria preferences is to find a compact and
at the same time expressive representation. A framework for preference representa-
tion provides an adequate tool if it is sufficiently expressive to compactly represent
a broad range of preference orderings. To this end, various frameworks have been
introduced, each with its own distinguishing features. For example, in lexicographic
approaches (e.g. [8]) preference over outcomes is determined by combining multi-
ple criteria according to priority. Here, priority is a partial order on criteria. The
lexicographic rule induces a preference if every criterion either supports this prefer-
ence or is ‘overruled’ by a criterion with higher priority. Some goal-based approaches
(e.g. [33, 44]) use cardinality and compare alternatives by the number of goals they
satisfy.

In this paper we introduce a rich and practical representation framework for qual-
itative multi-criteria preferences called Qualitative Preference Systems (QPS). This
framework enables preference representation by using priority and cardinality. More-
over, the framework incorporates knowledge that serves two purposes: as usual,
knowledge can be used to impose (hard) constraints, but also to define new (ab-
stract) concepts. To illustrate, it can represent facts about the world (e.g. Barcelona
is in Spain), the feasibility of options (e.g. hotel X is fully booked in July), and defi-
nitions (e.g. the cost of a holiday is the sum of the costs of the flight, hotel and food).
A fundamental part of the QPS framework is the lexicographic rule studied by An-
dréka et al. [8]. This rule offers a principled tool for combining basic preferences. We
believe this ability to combine preferences is essential for any practical approach to
representing qualitative preferences. It is needed in particular for constructing multi-
criteria preferences. It is not sufficient, however, since more expressivity is needed
to be useful in practice. Therefore, QPSs in addition provide tools for representing
knowledge, for abstraction, for counting, and provide a layered structure for repre-
senting preference orderings. The QPS framework is presented in detail in Section
4.2.

Section 4.3 illustrates the expressivity of the QPS framework. We first discuss
two ways to deal with preferential dependence between attributes: conditional pref-
erences and underlying interests. Both approaches can be modelled in a QPS, though
we argue that the second one is more natural and intuitive. Next, we show that QPS
provides a general, flexible and succinct way to represent preferences based on goals.
In this approach goals are modelled as criteria that can be combined to derive a pref-
erence between outcomes. We show that the best-known qualitative approaches to
interpret goals as a representation of preference are all expressible in a QPS. We then
turn to the case where preferences are bipolar, i.e. based on arguments pro and ar-
guments con. We show that all natural principles to derive preferences from bipolar
arguments map straightforwardly to QPS criteria. Finally, we discuss in detail the re-
lation between Qualitative Preference Systems and two well-known frameworks that
are representative for a large number of purely qualitative approaches to modelling
preferences, namely Logical Preference Description language (LPD) [33] and CP-nets
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[29]. We show that LPD can be embedded into the QPS framework and that there
is an order preserving embedding of CP-nets in the QPS framework. In addition, we
consider the key issue of compact preference representation and show that these em-
beddings provide a representation that is just as succinct as the LPD expressions and
CP-nets.

Section 4.4 introduces a variant of QPS called goal-based Qualitative Preference
Systems. Most goal-based approaches in the literature define outcomes as propo-
sitional models, i.e. all variables are Boolean, either true or false. In real-world
applications however, not all variables are Boolean. For example, variables may be
numeric (e.g. cost, length, number, rating, duration, percentage) or nominal (e.g.
destination, colour, location). Qualitative Preference Systems typically express pref-
erences, in a compact way, based on preference orderings on the possible values of
variables. In Section 4.4 we show that such QPSs can be translated into equivalent
goal-based QPSs, i.e. QPSs that express preferences based solely on goals. Such a
translation requires at most polynomially more space, and hence is just as succinct as
the original QPS. This result shows that goals are very expressive as a representation
of qualitative preferences among outcomes.

In Section 4.5 we show that goal-based criterion trees also have some added value
compared to trees with multi-valued criteria. We introduce basic updates on a QPS
and show that goal-based QPSs allow for more fine-grained updates than their multi-
valued counterparts. This is due to the different structure of goal-based criteria. We
suggest a top-down approach to preference elicitation that starts with coarse updates
and only adapts the criterion structure if more fine-grained updates are needed.

Section 4.6 discusses some related work that was not discussed elsewhere in the
paper, and Section 4.7 concludes the paper.

4.2 Qualitative Preference Systems

4.2.1 Elements of a Qualitative Preference System

The main aim of a QPS is to determine preferences between outcomes (or alternatives)
in a purely qualitative way. An outcome is an assignment of values to a set of relevant
variables. Every variable has its own domain of possible values. Constraints on the
assignments of values to variables are expressed in a knowledge base. Outcomes are
defined as variable assignments that respect the constraints in the knowledge base.

The preferences between outcomes are based on multiple criteria. Every criterion
can be seen as a reason for preference, or as a preference from one particular per-
spective. We distinguish between simple and compound criteria. Simple criteria are
based on a single variable. Multiple (simple) criteria can be combined in a compound
criterion to determine an overall preference. There are two kinds of compound cri-
teria: cardinality criteria and lexicographic criteria. The subcriteria of a cardinality
criterion all have equal priority, and preference is determined by a kind of voting
mechanism that counts the number of subcriteria that support a certain preference
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and those that do not. In a lexicographic criterion, the subcriteria are ordered by pri-
ority and preference is determined by the subcriteria with the highest priority; lower
priority subcriteria only influence the preference if the higher priority subcriteria are
indifferent. The exact definitions of the different kinds of criteria will be given in the
next subsections.

Definition 4.1. (Qualitative Preference System) A Qualitative Preference System
(QPS) is a tuple ⟨Var, Dom, K ,C⟩. Var is a finite set of variables. Every variable X ∈ Var
has a domain Dom(X) of possible values. K (a knowledge base) is a set of constraints
on the assignments of values to the variables in Var. A constraint is an equation of
the form X = Expr where X ∈ Var is a variable and Expr is an algebraic expression that
maps to Dom(X).1 An outcome α is an assignment of a value x ∈ Dom(X) to every
variable X ∈ Var, such that no constraints in K are violated. Ω denotes the set of all
outcomes: Ω ⊆ ∏X∈Var Dom(X). αX denotes the value of variable X in outcome α. C
is a finite rooted tree of criteria, where leaf nodes are simple criteria and other nodes
are compound criteria. Child nodes of a compound criterion are called its subcriteria.
The root of the tree is called the top criterion. Weak preference between outcomes
by a criterion c is denoted by the relation ⪰c . ≻c denotes the strict subrelation, ≈c the
indifference subrelation.

Example 4.1. When comparing holidays, some variables could be D (destination),
Bb (been there before) and C (cost), with Dom(D) = {R, B, P} (Rome, Barcelona and
Paris), Dom(Bb) = {⊺, �}, Dom(C) = Z+. The definition of concepts (e.g. the cost of a
holiday is the sum of the costs of the flight, hotel and food) can be straightforwardly
represented with the following constraint: C = FlightC + HotelC + FoodC. Equational
constraints are also sufficiently expressive to model different kinds of knowledge. For
example, suppose I want to express that I have never been to Barcelona, i.e. in all
outcomes where D = B, we should have Bb = �. To do this, we first introduce an
auxiliary variable A with Dom(A) = {⊺,�}. Then we add A = (D = B) and A = A∧ ¬Bb
to the constraint base K . This ensures that there are no outcomes where D = B and
Bb = ⊺: if the first constraint is satisfied, A must be true, but in that case the second
constraint is violated.

4.2.2 Simple criteria

A simple criterion specifies a preference ordering on the values of a single variable.
Its preference between outcomes is based solely on the value of this variable in the
considered outcomes.

Definition 4.2. (Simple criterion) A simple criterion c is a tuple ⟨X c ,uc⟩, where
X c ∈ Var is a variable, and uc , a preference relation on the possible values of X c , is a
preorder on Dom(X c). ⋗c is the strict subrelation, ≐c is the indifference subrelation. A

1For now, we represent constraints with algebraic expressions, which are sufficiently expressive for our
current purposes. In future we would like to develop a more intuitive language to express constraints and
the other components of a QPS.
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simple criterion c = ⟨X c ,uc⟩ weakly prefers an outcome α over an outcome β , denoted
α ⪰c β , iff αX c uc βX c .

Example 4.2. Consider again the holiday domain from Example 4.1. A criterion
‘economy’ can be defined as s1 = ⟨C,us1⟩ where for all x , x ′ ∈ Dom(C), x us1 x ′ iff
x ≤ x ′. This criterion prefers any holiday with a lower cost over any holiday with
a higher cost, irrespective of the values of other variables. A criterion ‘exploration’
can be defined as s2 = ⟨Bb,{(�,⊺)}⟩. This criterion prefers holidays with Bb = � over
holidays with Bb = ⊺.

Note that the preference by a simple criterion is different from the ceteris paribus
(all else being equal) approach taken in other frameworks (e.g. [138, 29, 137]). That
is, a simple criterion prefers one outcome over another iff the first has a better value
for the variable that the criterion is based on than the last, irrespective of the values
of other variables.

Observation 4.1. Let c = ⟨X c ,uc⟩ be a simple criterion. Then ⪰c is a preorder. If uc

is total, then so is ⪰c .

In general, the variables of a QPS can have any arbitrary domain and simple
criteria can be defined over such variables (for example, the ‘economy’ criterion in
Example 4.2). In the goal-based case however, we define outcomes as propositonal
models, and hence all variables are Booleans. Goals are defined as simple criteria on
Boolean variables that prefer the truth of a variable over falsehood.

Definition 4.3. (Goal) A QPS goal is a simple criterion ⟨X ,u⟩, where X ∈ Var is a
Boolean variable (Dom(X) = {⊺,�}), and ⊺ ⋗ �. For convenience, we denote such a
goal by its variable X .

This is straightforward when goals are atomic, e.g. p. If goals are complex propo-
sitional formulas, e.g. (p ∨ q) ∧ ¬r, an auxiliary variable s can be defined by the
constraint s = (p ∨ q) ∧ ¬r. As this is a purely technical issue, we will sometimes use
the formula instead of the auxiliary variable in order not to complicate the notation
unnecessarily.

4.2.3 Cardinality criteria

A cardinality criterion consists of a set of subcriteria, that all have the same priority. It
weakly prefers an outcome α over an outcome β if it has at least as many subcriteria
that strictly prefer α over β as criteria that do not weakly prefer α over β .

Definition 4.4. (Cardinality criterion) A cardinality criterion c is a tuple ⟨Cc⟩ where
Cc is a nonempty set of criteria (the subcriteria of c). A cardinality criterion c = ⟨Cc⟩
weakly prefers an outcome α over an outcome β , denoted α ⪰c β , iff ∣{s ∈ Cc ∣ α ≻s

β}∣ ≥ ∣{s ∈ Cc ∣ α /⪰s β}∣.



CHAPTER 4. QUALITATIVE PREFERENCE SYSTEMS 73

Example 4.3. Consider a cardinality criterion c that has two subcriteria: the ‘econ-
omy’ criterion and the ‘exploration’ criterion from Example 4.2: c = ⟨{s1, s2}⟩. Con-
sider three outcomes α, β , γ such that αD = R, αC = 500, and αBb = ⊺; βD = B, βC =
350, and βBb = �; and γD = P, γC = 700, and γBb = �. Then we have β ≻c α ≈c γ. β
is the most preferred because it is preferred to α and γ by s1 and not less preferred
by s2. α and γ are equally preferred because α is more preferred by s1 and γ is more
preferred by s2.

Unfortunately, transitivity of ⪰c is not guaranteed for just any set of subcriteria.
This problem is known as the Condorcet effect. For example, consider three outcomes
α,β ,γ and three subcriteria s1, s2, s3 such that α ≻s1 β ≻s1 γ, β ≻s2 γ ≻s2 α, and
γ ≻s3 α ≻s3 β . Then α would be strictly preferred over β , β strictly preferred over γ
and γ strictly preferred over α, so the preference would not be transitive. However,
there are some conditions under which transitivity can be guaranteed. E.g. if every
subcriterion is a goal s = ⟨Xs,us⟩, they all induce a total preorder of preference that
stratifies the outcome space into two levels: the outcomes where Xs = ⊺ are more
preferred and the outcomes where Xs = � are less preferred. This also means that
α ≻s β iff αXs = ⊺ and βXs = �; and α /⪰s β iff αXs = � and βXs = ⊺. So in this case
the definition preference by a cardinality criterion compares the number of goals Xs

that α satisfies to the number of goals that β satisfies, just as is done by e.g. the #
strategy of [33] or the leximin ordering in [44].

Definition 4.5. (Goal-based cardinality criterion) A goal-based cardinality criterion
is a cardinality criterion all of whose subcriteria are goals.

Proposition 4.1. Let c = ⟨Cc⟩ be a goal-based cardinality criterion. Then α ⪰c

β iff ∣{s ∈ Cc ∣ αXs = ⊺}∣ ≥ ∣{s ∈ Cc ∣ βXs = ⊺}∣.

Proof. A goal s is defined as a simple criterion on a Boolean variable Xs (with domain
Dom(Xs) = {⊺,�}), such that ⊺ ⋗s �. Note that the relation us is total; there are no
incomparable values. If we compare two outcomes α and β on such a criterion, we
have exactly the following possibilities: if αXs = ⊺ and βXs = ⊺, or αXs = � and βXs = �,
then α ≈s β; if αXs = ⊺ and βXs = �, then α ≻s β; if αXs = � and βXs = ⊺, then β ≻s α.
This means that the definition of preference by a goal-based cardinality criterion c is
equivalent to α ⪰c β iff ∣{s ∈ Cc ∣ αXs = ⊺&βXs = �}∣ ≥ ∣{s ∈ Cc ∣ αXs = �&βXs = ⊺}∣,
which is equivalent to α ⪰c β iff ∣{s ∈ Cc ∣ αXs = ⊺}∣ − ∣{s ∈ Cc ∣ αXs = βXs = ⊺}∣ ≥
∣{s ∈ Cc ∣ βXs = ⊺}∣ − ∣{s ∈ Cc ∣ αXs = βXs = ⊺}∣, which is equivalent to α ⪰c β iff ∣{s ∈
Cc ∣ αXs = ⊺}∣ ≥ ∣{s ∈ Cc ∣ βXs = ⊺}∣.

Proposition 4.2. Let c = ⟨Cc⟩ be a goal-based cardinality criterion. Then ⪰c is a
preorder.

Proof. Since all subcriteria of c are reflexive (Observation 4.1), for any outcome α
both ∣{s ∈ Cc ∣ α ≻s α}∣ and ∣{s ∈ Cc ∣ α /⪰s α}∣ are 0, so α ⪰c α, hence ⪰c is reflexive.
Since all subcriteria are goals, α ⪰c β iff ∣{s ∈ Cc ∣ αXs = ⊺}∣ ≥ ∣{s ∈ Cc ∣ βXs = ⊺}∣. This
is just a comparison between two integers, and hence is transitive.
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In the following, we will only consider goal-based cardinality criteria, in order to
guarantee transitivity of the resulting preference relation.

Andréka et al. [8] showed that the only operator to combine any arbitrary prefer-
ence relations that satisfies the desired properties IBUT (independence of irrelevant
alternatives, based on preferences only, unanimity with abstentions, and preservation
of transitivity) is the priority operator, which assumes that priority is a partial order.
We observe here that if only Boolean preference relations (such as those resulting
from goals) are combined, the cardinality-based rule, in which all combined rela-
tions have equal priority, can also be applied as it also satisfies the IBUT properties.
Requiring antisymmetry in this case would unneccessarily restrict the expressivity.

4.2.4 Lexicographic criteria

Like a cardinality criterion, a lexicographic criterion combines multiple criteria into
one preference ordering. Unlike a cardinality criterion, the set of subcriteria has an
associated priority order (a strict partial order, which means that no two subcriteria
can have the same priority). A lexicographic criterion weakly prefers outcome α
over outcome β if for every subcriterion, either this subcriterion weakly prefers α
over β , or there is another subcriterion with a higher priority that strictly prefers
α over β . So, if there is a subcriterion that strictly prefers β over α or finds them
incomparable, the lexicographic criterion can still prefer α over β , but only if this
‘disagreeing’ subcriterion is ‘overruled’ by another subcriterion with higher priority
that strictly prefers α over β . If there is no such subcriterion, then the lexicographic
criterion will not prefer α over β . This definition of preference by a lexicographic
criterion is equivalent to the priority operator as defined by Andréka et al. [8]. It
generalizes the familiar rule used for alphabetic ordering of words, such that the
priority can be any partial order and the combined preference relations can be any
preorder.

Definition 4.6. (Lexicographic criterion) A lexicographic criterion c is a tuple
⟨Cc ,⊳c⟩, where Cc is a nonempty set of criteria (the subcriteria of c) and ⊳c , a pri-
ority relation among subcriteria, is a strict partial order (a transitive and asymmetric
relation) on Cc . A lexicographic criterion c = ⟨Cc ,⊳c⟩ weakly prefers an outcome α
over an outcome β , denoted α ⪰c β , iff ∀s ∈ Cc(α ⪰s β ∨ ∃s′ ∈ Cc(α ≻s′ β ∧ s′ ⊳c s)).

Example 4.4. Consider a lexicographic criterion c that has two subcriteria: the ‘econ-
omy’ criterion and the ‘exploration’ criterion from Example 4.2, and exploration has
higher priority: c = ⟨{s1, s2}, {(s2, s1)}⟩. For the three outcomes specified in Example
4.3, we have β ≻c γ ≻c α. β and γ are preferred to α because they are preferred
by s2, which has the highest priority. β is preferred to γ because they are equally
preferred by s2, but s1 prefers β . Note that even though α is cheaper than γ and
hence preferred by criterion s1, criterion c prefers γ to α because subcriterion s2 has
higher priority than s1 and s2 prefers γ to α.

Proposition 4.3. Let c = ⟨Cc ,⊳c⟩ be a lexicographic criterion. If for all subcriteria
s ∈ Cc , ⪰s is a preorder, then the relation ⪰c is also a preorder.



CHAPTER 4. QUALITATIVE PREFERENCE SYSTEMS 75

Proof. Preservation of reflexivity follows directly from the definition of ⪰c (if all sub-
criteria are reflexive, then for every outcome α: ∀s ∈ Cc(α ⪰s α) and hence α ⪰c α).
Preservation of transitivity has been proven by Andréka et al. [8].

If there is priority between goals (or if goals have incomparable priority), they can
be combined in a goal-based lexicographic criterion. Such a criterion can also be used
to specify priority between sets of equally important goals (goal-based cardinality
criteria).

Definition 4.7. (Goal-based lexicographic criterion) A goal-based lexicographic
criterion is a lexicographic criterion all of whose subcriteria are either goals, goal-
based cardinality criteria, or goal-based lexicographic criteria.

Note that in the goal-based case, multi-valued simple criteria do not occur any-
where in the criterion tree; that is, all simple criteria are goals. However, we will see
later in Section 4.4 that a criterion tree containing multi-valued simple criteria can
be translated to an equivalent goal-based criterion tree.

Priority between subcriteria of a lexicographic criterion (⊳) is a strict partial order
(a transitive and asymmetric relation). This means that no two subcriteria can have
the same priority. If two criteria have the same priority (in which case we assume that
they are goals, to avoid Condorcet effects), they have to be combined in a cardinality
criterion, which can then be a subcriterion of the lexicographic criterion. To simplify
the representation of such a lexicographic criterion with cardinality subcriteria, we
define the following alternative specification.

Definition 4.8. (Alternative specification of a lexicographic criterion) A tuple
⟨C ′

c ,⊵′c⟩, where C ′
c is a set of criteria and ⊵′c is a preorder, specifies a lexicographic

criterion c = ⟨Cc ,⊳c⟩ as follows.
• Partition C ′

c into priority classes based on ⊵′c .
• For every priority class P, define a criterion cP . If P contains only a single

criterion s, then cP = s. Otherwise cP is a cardinality criterion such that for all
s ∈ P: s ∈ CcP .

• Define c = ⟨Cc ,⊳c⟩ such that Cc = {cP ∣ P is a priority class} and cP ⊳c cP′ iff for
all s ∈ P, s′ ∈ P ′: s ⊳′s s′.

For example, the specification l = ⟨{g1, g2, g3},⊵⟩ such that g1 ⊵ g2 ≜ g3 is short
for l = ⟨{g1, c},⊳⟩ such that g1 ⊳ c and c = ⟨{g2, g3}⟩.

4.3 Expressivity of Qualitative Preference Systems

In this section, we discuss the expressivity of the QPS framework. In Section 4.3.1,
we show how conditional preferences and underlying interests can be modelled in
a QPS. This is useful when the obvious attributes that define the outcome space
are not preferentially independent. Section 4.3.2 discusses how some well-known
approaches to derive preferences from goals can be represented in a QPS. Section
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4.3.3 discusses bipolar preferences and how they can be modelled in a QPS. Sec-
tions 4.3.4 and 4.3.5 compare the QPS framework in detail with two representative
approaches to qualitative preference representation: Logical Preference Description
language [33] and CP-nets [29].

4.3.1 Conditional preferences and underlying interests

The reason that a QPS uses criteria to define a preference relation between possible
outcomes, is that typically, the outcome space is too large for a preference relation to
be specified directly. Instead, the outcome space is ‘framed’ into attributes which may
have different values for different outcomes [135]. Simple criteria can then define
a preference ordering on those possible values, and then be aggregated to obtain an
overall preference between outcomes. The quality of the resulting preference relation
depends highly on the chosen framing, i.e. on the attributes that the simple criteria
are based on. In some cases, especially in the case of combinatorial or multi-attribute
domains, a framing is readily available. For example, in negotiation, outcomes (bids
or agreements) are usually defined as assignments of particular values to each of the
issues that are on the table. Also in many other situations, objective properties or
features of the things to be compared present themselves as attributes on which a
preference can be defined.

Although it may be tempting to use a readily available framing to specify prefer-
ences over the available outcomes, we first ask the question whether this is actually
the best approach. One point of concern is the preferential (in)dependence of the
chosen attributes. An attribute X is preferentially independent of an attribute Y if
the preference between values of X does not depend on the value of Y . If there are
preferential dependencies between attributes, one option is to specify conditional
preferences, as is done in e.g. [29, 28]. Below we illustrate how conditional pref-
erences can be modelled in a QPS. Another solution is to use another framing and
express the preferences in terms of more fundamental attributes [135, 74]. In rec-
ommender systems and decision support, Stolze and Ströbel [115] propose to dis-
tinguish between preferences based on the product’s features and preferences based
on the customer’s needs (or intended use of the product). Likewise, Dimopoulos
et al. [46] distinguish between definitional attributes that establish the set of out-
comes, and decisional attributes that are used to identify the best choice among the
outcomes. In [126] a case is made for explicitly modelling the reason for the depen-
dencies, and taking the underlying interests of the user as criteria. Usually, there is
no one-to-one correspondence between specified attributes and interests, but there
are multiple attributes that influence the satisfaction of the same interest. An impor-
tant question is how to model the interplay between attributes. Below we explore
the ways in which interests can be modelled in a QPS.

Conditional preferences A QPS can be used to express conditional preferences,
i.e. preferences between values of one variable that depend on the values of other
variables.
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Example 4.5. If Anne goes on a holiday to Barcelona (B), she would like to go to-
gether with her friend Juan (J), but if she goes to Rome (R), she prefers to go with
Mario (M). To express this conditional preference in a QPS, we use an auxiliary vari-
able DF, whose domain consists of all combinations of the variables D (destination)
and F (accompanying friend), i.e. Dom(DF) = {(B, J), (B, M), (R, J), (R, M)}. To
keep the outcomes consistent, the constraint DF = (D, F) is added to the knowledge
base. Note that due to this constraint, the addition of the auxiliary variable DF does
not increase the outcome space. Finally, the following simple criterion expresses the
conditional preference: c = ⟨DF,uc⟩ where uc= {((B, J), (B, M)), ((R, M), (R, J))}.

This way of modelling conditional preferences may seem artificial. Instead of
representing this kind of preference as conditional preferences on the values of vari-
ables, it would be more natural to model the underlying reason for the conditional
preference, as was argued in [126].

Underlying interests

Example 4.6. Anne likes Juan and Mario equally well and would enjoy a holiday
with either of them very much. The reason that she prefers one of them to the other
depending on the destination, is that she prefers to go with someone who speaks the
language. Thus it would be both more natural and easier to model this preference
with a simple criterion based on a Boolean variable L (speak the language). The
value of this variable would then be defined by a constraint in the knowledge base
such as L = ((D = B∧ F = J)∨ (D = R∧ F = M)). This constraint is still rather ad hoc,
and could be replaced by more general knowledge such as ‘Barcelona is in Spain’,
‘the language of Spain is Spanish’, ‘Juan speaks Spanish’, etc.

This example also illustrates the abstraction level for preferences that knowledge
provides. It allows one to specify more fundamental goals that are only indirectly
related to the most obvious variables with which to specify outcomes. We used only
two destinations and two friends to illustrate the principle, but if more options are
added, the advantage of modelling underlying reasons or interests becomes even
more obvious. In that case, only factual information would have to be added to the
knowledge base (e.g. ‘Sevilla is in Spain’, ‘Carmen speaks Spanish’). If the preference
is modelled as a conditional preference, for every destination a preference between
all friends for company has to be specified separately.

There are different ways to model interests in a QPS. The first option, which was
illustrated in Example 4.6, is to model an interest as a simple criterion, based on an
‘auxiliary’ variable whose values are derived from the values of ‘basic’ variables. This
is the approach taken in [126]. In that paper, all attributes are Boolean, and interests
are defined as separate variables, whose truth values depend on the truth values
of other attributes. This approach can be generalized to the case where variables
have multi-valued domains. There are multiple options. If the variables concerned
share the same numeric scale as a domain, we can use the minimum (counterpart of
conjunction in the Boolean case) or the maximum (counterpart of disjunction in the
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Boolean case). If the domains consist of real numbers, we can also use arithmetic
functions such as a (weighted) sum or average. An option that is also applicable if the
variable domains are nominal is to specify explicitly what the value of the variable
representing the interest should be in different cases.

Example 4.7. Peter and his family are planning a holiday for next summer. Some
obvious attributes that can be used to frame the set of possible holidays are the fol-
lowing: the destination, the duration, the total cost, the means of transportation,
the kind of accommodation, etc. Peter’s children love to swim. Therefore, one of
the criteria should be a goal on the Boolean variable Swimming. The value of this
variable in a given outcome is determined by the constraint (propositional formula)
Swimming = Beach ∨ Pool ∨ Lake. Another important issue is the proximity of the
accommodation to a supermarket, which Peter defines to be the minimum distance
to any supermarket: ProximityToSM = min(DistanceToSM1, DistanceToSM2, . . .). An
intuitive criterion to compare holiday offers is the price per day. This value can be
calculated exactly by dividing the total price by the number of days: PricePerDay =
TotalPrice/NumDays. Peter’s wife likes to see something of the world, and therefore
prefers to go somewhere she has not been to before. This can be modelled by a
goal ¬BeenThereBefore, and a constraint BeenThereBefore = (Destination = Rome ∨
Destination = Prague ∨ Destination = Barcelona). Another option is a constraint
BeenThereBefore = (Destination = X ∧ beenTo(X)) and a knowledge base containing
formulas like beenTo(Rome), beenTo(Prague), beenTo(Barcelona).

A second possibility to model the relation between interests and other attributes
is to model an interest as a compound criterion, whose subcriteria are simple criteria
based on ‘basic’ variables. If the interest is modelled as a lexicographic criterion, the
priority between subcriteria can be varied. The interest can also be represented as
a cardinality criterion. However, only Boolean simple criteria (goals) can be used as
subcriteria of such a cardinality criterion. If the variables that the interest depends
on are not Boolean, the simple criteria that are based on them can be translated to
equivalent goal-based criteria, as will be explained in Section 4.4.

Example 4.8. For the weather to be considered good (Figure 4.1a), Peter finds that
the amount of sunshine is most important. If two climates are equally sunny, then
he prefers the one with the best temperature. Figure 4.1b shows a criterion tree
where value for money depends on a trade-off between the price and the luxury
of an accommodation. In this case the trade-off is modelled with goals of the form
X = v, where X is a variable and v a possible value from its domain. It is also possible
to use a cardinality criterion that counts satisfaction level goals (see Section 4.4.3),
as shown in Figure 4.1c. This results in a different preference ordering. While the
criterion in Figure 4.1b would prefer an expensive hotel with 4 stars and a cheap
hotel with 2 stars to a 3-star hotel with average price, the criterion in Figure 4.1c
prefers all three equally.
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Weather

Sunshine ⊳ Temperature

13-16h⋗
9-12h⋗
5-8h

1-4h
⋗

23-27○C⋗
28-32○C⋗
18-22○C

33-37○C
⋗
⋗

14-17○C

a. Weather

ValueForMoney

c1 ⊳ c2

Price = Cheap

Stars = 4

Price = Expensive

Stars = 3 Stars = 2

Price = Average

⊳ c3

b. ValueForMoney

ValueForMoney

Price ≤ Cheap

Stars ≥ 4

Price ≤ Expensive

Stars ≥ 3 Stars ≥ 2

Price ≤ Average

c. ValueForMoney

Figure 4.1: Criterion trees for two interests

4.3.2 Goal-based preferences

In planning and decision making, goals are used to identify the desired states or
outcomes. Keeney and Raiffa [76] distinguish between objectives and goals: ‘An
objective generally indicates the ‘direction’ in which we should strive to do better. A
goal is different from an objective in that it is either achieved or not. Goals are useful
for clearly identifying a level of achievement to strive toward.’ For example, if an
objective is to finish a task as soon as possible, a corresponding goal could be to finish
before 2 o’clock. If an objective is to find a cheap apartment, a goal could be to find
an apartment that costs at most €700 per month. Essentially, goals provide a binary
distinction between those states or outcomes that satisfy the goal and those that do
not [135]. Outcomes that satisfy all goals are acceptable. However, it may happen
that such outcomes are not available, but a decision still has to be made. Or there
may be multiple outcomes that satisfy all goals and only one can be chosen. In these
situations, goals provide no guidance to choose between the available alternatives
[135, 28]. Instead of using goals in an absolute sense, it would be more convenient
to use them to derive preferences between outcomes.

Several approaches to derive preferences over outcomes from goals can be found
in the literature. Goals are commonly defined as some desired property that is either
satisfied or not. As such, it is naturally represented as a propositional formula that
can be true or false. Hence outcomes are often defined as propositional models, i.e.
valuations over a set of Boolean variables p, q, r, . . .. Sometimes all theoretically pos-
sible models are considered, sometimes the set of outcomes is restricted by a set K of
knowledge or constraints. In the latter case, it is possible to specify which outcomes
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are actually available, or to use auxiliary variables whose values are derived from the
values of other variables.

In a QPS, a goal is defined as a simple criterion on a Boolean variable (proposi-
tion) that prefers truth over falsehood. Multiple goals can be combined in goal-based
compound criteria in order to derive an overall preference. Different interpretations
can be found in the literature of what it means, in terms of preferences between out-
comes, to have a goal p. In this section, we give a short overview of the best-known
ones and show that QPSs can express the same preferences by means of some small
examples.

Example 4.9. Anne is planning to go on holiday with a friend. Her overall preference
is based on three goals: that someone (she or her friend) speaks the language (L),
that it is sunny (S) and that she has not been there before (¬Bb). The set of variables
is Var = {L, S, Bb}. Since every variable is propositional, the domain for each variable
is {⊺,�} and there are eight possible outcomes. For the moment we do not constrain
the outcome space and do not use auxiliary variables (K = ∅). Two goals (l and S)
are based on atomic propositions, the third (¬Bb) on a propositional formula that
contains a negation. The overall preference between outcomes depends on the way
that the goals are combined by compound criteria. In the following we discuss several
alternatives.

Ceteris paribus preference One interpretation of having a goal p is that p is pre-
ferred to ¬p ceteris paribus (all other things being equal) [138, 135, 29]. The main
question in this case is what the ‘other things’ are. Sometimes they are the other
variables (atomic propositions) that define the outcomes [29, 138]. Wellman and
Doyle [135] define ceteris paribus preferences relative to framings (a factorisation
of the outcome space into a cartesian product of attributes). The preference relation
over all outcomes is taken to be the transitive closure of the preferences induced by
each ceteris paribus preference. So if we have p and q as ceteris paribus goals, then
p ∧ q is preferred to ¬p ∧ ¬q since p ∧ q is preferred to ¬p ∧ q (by goal p) and ¬p ∧ q
is preferred to ¬p ∧ ¬q (by goal q).

Example 4.10. Consider a lexicographic criterion l that has the three goals as sub-
criteria, and there is no priority between them, i.e. l = ⟨{L, S,¬Bb},∅⟩ (Figure 4.2a).
The resulting preference relation (Figure 4.2b) is a ceteris paribus preference.

This is a general property of Qualitative Preference Systems: a lexicographic cri-
terion with only goals as subcriteria and an empty priority relation induces a ceteris
paribus preference, where the other things are defined by the other goals (see also
[126]). The main advantage of the ceteris paribus approach is that it deals with mul-
tiple goals in a natural, intuitive way. However, the resulting preference relation over
outcomes is always partial since there is no way to compare p ∧ ¬q and ¬p ∧ q. This
is why Wellman and Doyle [135] claim that goals are inadequate as the sole basis for
rational action. One way to solve this is to introduce relative importance between
goals, which is done in the prioritized goals approach.
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l

¬Bb SL

L,S,¬Bb

L,¬S,¬Bb L,S,Bb

¬L,¬S,¬Bb ¬L,S,Bb

¬L,¬S,Bb

L,¬S,Bb

¬L,S,¬Bb

a. Criterion tree b. Preference relation

Figure 4.2: Ceteris paribus preference

Prioritized goals In e.g. [33, 44], preferences are derived from a set of goals with
an associated priority ordering (a total preorder). That is, there are multiple goals,
each with an associated rank. There may be multiple goals with the same rank.
Various strategies are possible to derive preferences from such prioritized goals. For
example, the ⊆ or discrimin strategy prefers one outcome over another if there is a
rank where the first satisfies a strict superset of the goals that the second satisfies,
and for every more important rank, they satisfy the same goals. The # or leximin
strategy prefers one outcome over another if there is a rank where the first satisfies
more goals than the second, and for every more important rank, they satisfy the same
number of goals.

The prioritized goals strategies discrimin (⊆) and leximin (#) can also be ex-
pressed in a QPS. An exact translation is given in Section 4.3.4. Here we just il-
lustrate the principle. In the prioritized goals approach, priority between goals is a
total preorder, which can be expressed by assigning a rank to every goal. A QPS can
model a discrimin or leximin preference with a lexicographic criterion that has one
subcriterion for every rank. These subcriteria are compound criteria that contain the
goals of the corresponding rank, and they are ordered by the same priority as the
original ranking. For the discrimin strategy, the subcriteria are lexicographic criteria
with no priority ordering between the goals. The leximin strategy uses the number
of satisfied goals on each rank to determine overall preference. Therefore, each rank
is represented by a cardinality criterion.

Example 4.11. Suppose that ¬Bb has the highest rank, followed by L and S that have
the same rank. The discrimin criterion tree for the example is shown in Figure 4.3a,
where l is the top criterion and l1 and l2 the lexicographic criteria corresponding
to the two ranks. The resulting preference relation is shown in Figure 4.3b. The
leximin criterion tree for the example is shown in Figure 4.3c, where l is the top
criterion and c1 and c2 the cardinality criteria corresponding to the two ranks. The
resulting preference relation is shown in Figure 4.3d.
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l

l1 ⊳ l2

¬Bb SL

l

c1 ⊳ c2

¬Bb SL

a. Criterion tree c. Criterion tree

L,S,¬Bb

L,¬S,¬Bb

L,S,Bb

¬L,¬S,¬Bb

¬L,S,Bb

¬L,¬S,Bb

L,¬S,Bb

¬L,S,¬Bb

L,S,¬Bb

L,¬S,¬Bb

L,S,Bb

¬L,¬S,¬Bb

¬L,S,Bb

¬L,¬S,Bb

L,¬S,Bb

¬L,S,¬Bb

b. Preference relation d. Preference relation

Figure 4.3: (a, b) Discrimin preference (c, d) Leximin preference

Absolute preference A simple interpretation is that any outcome with p is pre-
ferred to any outcome with ¬p [138, 135, 28]. Its use is limited since only one such
statement can be made [138]; if we have both p > ¬p and q > ¬q, we have that p∧¬q
is preferred to ¬p∧ q and ¬p∧ q is preferred to p∧¬q, which is a contradiction. This
means that the interpretation of goals as absolute preferences is not suitable when
multiple goals are considered, since the preference statements would be inconsistent.

In a goal-based lexicographic criterion, if there is a single goal that has a strictly
higher priority than all other goals, this goal induces an absolute preference. For
example, in both Figure 4.3a and Figure 4.3c the goal ¬Bb has higher priority than
either of the other goals, and all outcomes satisfying ¬Bb are preferred to all out-
comes not satisfying ¬Bb, as can be seen in Figure 4.3b and Figure 4.3d. This is
a by-effect of the definition of a lexicographic criterion. There can be at most one
goal with a strictly higher priority than all other goals, and this correpsonds to the
impossibility to have more than one absolute preference.
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4.3.3 Bipolar preferences

It has been argued [25, 26, 50, 7] that human preferences are bipolar, i.e. they result
from balancing pros and cons. In most approaches that study bipolar preferences,
the nature or origin of the arguments pro and arguments con is not specified. One
possibility is that they result from satisfaction levels of criteria. This is the case in
[133], where value functions are simplified by mapping outcomes to one of three
levels of value: satisfactory (1), indifferent (0), or unsatisfactory (-1) (the mapping
may differ per person). Two kinds of goals are defined. Achievement goals are satis-
fied if an outcome has a satisfactory value for the attribute that the goal relates to.
Avoidance goals are satisfied if the outcome does not have an unsatisfactory value.
Satisfaction of an achievement goal is an argument pro, while non-satisfaction of an
avoidance goal is an argument con. The distinction between three levels of satisfac-
tion is quite coarse, but can be useful when one has to find an alternative that is
‘good enough’ in limited time. The approach can be generalized so that there can be
more than one achievement goal and avoidance goal per attribute, as proposed by
Amgoud and Prade [7]. It is also possible that there are just two satisfaction levels.
In some goal-based approaches (e.g. [33]), it is assumed that not satisfying a goal
is something to be avoided, resulting implicitly in both an achievement goal and an
avoidance goal for every goal formula that is considered. Another possibility is that
arguments pro and arguments con relate to totally different attributes. For example,
two-factor theory [62] states that job satisfaction is caused by different factors than
job dissatisfaction. For the principles of combining bipolar arguments (and for their
representation in a QPS) the origin is not relevant, and we will not make any assump-
tions about it. The one assumption that we do make is that outcomes are evaluated
in the same way: if the fact that outcome α has property p is an argument for out-
come α, then if outcome β also has property p, this should also be an argument for
outcome β .

In a QPS, it is straightforward to represent achievement and avoidance goals.
Here the distinction between achievement goals and avoidance goals is purely con-
ceptual, formally they are both modelled as goals. For example, if it is an achieve-
ment goal to have a cost of at most 300 euro, then C ≤ 300 is a goal criterion, and if
it is an avoidance goal not to have a cost of more than 500 euro, then C < 500 is a
goal criterion.

Bipolar principles Different principles for deriving preferences from bipolar goals
are proposed in the literature. Bonnefon et al. [25] describe eight heuristics for
‘balancing the pros and cons’ and report on an experiment to determine which one
best predicts the actual choices made by humans. Bonnefon and Fargier [26] and
Dubois et al. [50] present the same rules, but with different labels. Amgoud and
Prade [7] describe several principles to compare decisions based on arguments pro
and arguments con. All principles can be categorized along two dimensions. The
first dimension is the polarity [7]. Unipolar rules use only achievement goals or only
avoidance goals to determine preference. Bipolar rules combine both kinds of goals,
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but do not compensate between them. Finally, non-polar rules are based on an ag-
gregation of all goals, where compensation is possible. The second dimension relates
to the way that the satisfaction of achievement goals and/or avoidance goals by out-
comes determines preference between those outcomes. Three different approaches
can be found in the literature: counting the number of satisfied goals, comparing the
order of magnitude (the maximal importance) of satisfied goals, and a combination
of counting and importance in a lexicographic way. The counting approach does not
take the relative importance of the goals into account. The other two approaches do,
where it is assumed that all goals are ordered by importance by a total preorder.

In the following, we will describe the various principles and show how they can
be modelled in a QPS. To illustrate, we assume that there are six achievement goals
G+

1 , . . . , G+
6 and six avoidance goals G−

1 , . . . , G−
6 , such that G+

1 ≜ G+
2 ≜ G−

1 ≜ G−
2 ⊳ G+

3 ≜
G+

4 ≜ G−
3 ≜ G−

4 ⊳ G+
5 ≜ G+

6 ≜ G−
5 ≜ G−

6 . Note that both an achievement goal G+

and an avoidance goal G− are goals in the sense that satisfaction (truth of the goal
proposition) is preferred over non-satisfaction (falsehood of the goal proposition).
The distinction is just that G+ signifies some satisfactory level, while ¬G− signifies
some unsatisfactory level.

Counting A simple approach is to count the number of goals that are satisfied, with-
out considering relative importance. The unipolar pro variant (Definition 6 in [7])
weakly prefers outcome α to outcome β if α satisfies at least as many achievement
goals as β . The unipolar con variant (Definition 9 in [7]) weakly prefers outcome α
to outcome β if α satisfies at least as many avoidance goals as β . The bipolar variant
(Definition 12 in [7]) combines these two notions and weakly prefers outcome α to
outcome β if α satisfies at least as many achievement goals as β and α satisfies at
least as many avoidance goals as β . This preference relation is not complete; for ex-
ample if α satisfies more achievement goals but less avoidance goals than β , they are
incomparable. Finally, the non-polar variant (Definition 16 in [7], C1 in [25]) really
aggregates all goals and weakly prefers outcome α to outcome β if α satisfies at least
as many (achievement or avoidance) goals as β . In this last case, satisfaction of an
achievement goal can compensate for non-satisfaction of an avoidance goal and vice
versa.

As the unipolar variants of this approach just compare the number of achievement
goals resp. avoidance goals that are satisfied by the outcomes that are compared, this
can straightforwardly be modelled in a QPS with a cardinality criterion. Figure 4.4a
and 4.4b show the criterion trees that model these variants. In the bipolar case, the
criteria cAchG and cAvG are combined in a lexicographic criterion as shown in Figure
4.4c. To get the intended result, there should be no priority between cAchG and cAvG.
Finally, the non-polar variant, which counts all satisfied achievement and avoidance
goals together, is displayed in Figure 4.4d.

Order of magnitude The order of magnitude approach compares the maximal im-
portance of the goals that are (not) satisfied by the outcomes. The unipolar pro
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cAchG

G+1 . . . G+6

l

cAchG cAvG

G+1 . . . G+6 G−1 . . . G−6

a. Unipolar pro c. Bipolar

cAvG

G−1 . . . G−6

c

G+1 . . . G+6 G−1 . . . G−6

b. Unipolar con d. Non-polar

Figure 4.4: Bipolar preferences in a QPS (counting)

variant (Definition 7, ‘promotion focus principle’ in [7]) weakly prefers outcome α
to outcome β if the most important achievement goal that α satisfies is at least as
important as the most important achievement goal that β satisfies. The unipolar con
variant (Definition 10, ‘prevention focus principle’ in [7]) weakly prefers outcome
α to outcome β if the most important avoidance goal that β does not satisfy is at
least as important as the most important avoidance goal that α does not satisfy. The
bipolar variant (Definition 13 in [7], F3 in [25]) again combines these two notions
and weakly prefers outcome α to outcome β if the most important achievement goal
that α satisfies is at least as important as the most important achievement goal that
β satisfies and the most important avoidance goal that β does not satisfy is at least
as important as the most important avoidance goal that α does not satisfy. Some
non-polar order of magnitude rules are also defined (F1, I1, F2, I2 in [25]), but as
the resulting preference relations are not transitive, we will not discuss them here.
In general, the rules of the order of magnitude approach suffer from a so-called
drowning effect, and are not unanimous with abstentions if applied to multi-criteria
preferences. For example, if outcome α satisfies one achievement goal of the high-
est importance and no other goals, and outcome β satisfies many more achievement
goals of the highest importance, then α and β would be preferred equally in this
approach, while one might intuitively prefer β .

Although the order of magnitude principle does not translate very naturally to
a QPS criterion, such a translation is possible. The unipolar pro principle can be
modelled by a lexicographic criterion with a goal subcriterion for every importance
level, such that the goal for level l is a disjunction of all achievement goals with an
importance of at least l (see Figure 4.5a). The unipolar con principle is modelled in
a similar way, but the goal for level l is a conjunction of all avoidance goals with an
importance of at least l (see Figure 4.5b). This representation is inspired by Brewka’s
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lAchG

G+1 ∨ G+2
G+1 ∨ G+2 ∨ G+3 ∨ G+4

G+1 ∨ G+2 ∨ G+3 ∨ G+4 ∨ G+5 ∨ G+6

lAvG

G−1 ∨ G−2
G−1 ∨ G−2 ∨ G−3 ∨ G−4

G−1 ∨ G−2 ∨ G−3 ∨ G−4 ∨ G−5 ∨ G−6

a. Unipolar pro b. Unipolar con

l

lAchG lAvG

G+1 ∨ G+2
G+1 ∨ G+2 ∨ G+3 ∨ G+4

G+1 ∨ G+2 ∨ G+3 ∨ G+4 ∨ G+5 ∨ G+6

G−1 ∨ G−2
G−1 ∨ G−2 ∨ G−3 ∨ G−4

G−1 ∨ G−2 ∨ G−3 ∨ G−4 ∨ G−5 ∨ G−6

c. Bipolar

Figure 4.5: Bipolar preferences in a QPS (order of magnitude)

[33] transformation of the ⊺ and κ strategies (which are equivalent to the unipolar
pro and con rules) to the # or ⊆ strategies, which map more naturally to a QPS
criterion. The bipolar variant of the order of magnitude principle is again modelled
by a lexicographic criterion that combines the two unipolar variants without priority,
as shown in Figure 4.5c.

Lexi The last approach, lexi, also takes the relative importance of the goals into
account, but does not suffer from the drowning effect. The unipolar pro variant
(Definition 8 in [7]) weakly prefers outcome α to outcome β if on every importance
level, either α satisfies at least as many achievement goals as β , or there is a more
important level where α satisfies more achievement goals than β . The unipolar con
variant (Definition 11 in [7]) weakly prefers outcome α to outcome β if on every
importance level, either α satisfies at least as many avoidance goals as β , or there is
a more important level where α satisfies more avoidance goals than β . The bipolar
variant (unnumbered in [7], C2 in [25]) combines these two notions and weakly
prefers outcome α to outcome β if on every importance level, either α satisfies at
least as many achievement goals as β , or there is a more important level where α
satisfies more achievement goals than β , and on every importance level, either α
satisfies at least as many avoidance goals as β , or there is a more important level
where α satisfies more avoidance goals than β . Finally, the non-polar variant (C3 in
[25]) weakly prefers outcome α to outcome β if on every importance level, either α
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Figure 4.6: Bipolar preferences in a QPS (lexi)

satisfies at least as many (achievement or avoidance) goals as β , or there is a more
important level where α satisfies more (achievement or avoidance) goals than β .
Note that the counting approach can be seen as a special case of the lexi approach,
where all arguments (are assumed to) have the same importance.

The lexi principle can be modelled very naturally in a QPS. For the unipolar pro
variant (see Figure 4.6a), a lexicographic criterion is defined with for every impor-
tance level a cardinality subcriterion that counts the number of satisfied achievement
goals on that level. The subcriteria are prioritized according to importance. The
representation of the unpiolar con variant (see Figure 4.6b) is the same except that
it considers avoidance goals instead of achievement goals. The bipolar variant com-
bines the two unipolar variants without priority (see Figure 4.6c). Finally, in the
non-polar variant, for every importance level, there is a cardinality criterion that
counts both the satisfied achievement goals and the satisfied avoidance goals (see
Figure 4.6d).

The distinction between negative and positive preferences is also made in the
field of soft constraint satisfaction. In [19], negative preferences are taken to be
constraints that specify impossible solutions, while positive preferences can be used
to discriminate between possible solutions. This can be modelled in a QPS by tak-
ing any representation of a bipolar variant (Figure 4.4c, 4.5c or 4.6c) and adding
priority: cAvG ⊳ cAchG or lAvG ⊳ lAchG. This makes sure that all possible solutions are
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preferred to impossible ones, and that the possible solutions are further ordered by
the achievement goals that they satisfy. Note however that in a QPS, really impos-
sible outcomes can also be filtered out by constraints in the knowledge base, which
may be a more accurate solution.

We have shown that QPSs are suitable to represent bipolar preferences in a
straightforward way. On the other hand, one may question the cognitive plausi-
bility of bipolar preferences themselves, seeing that Bonnefon et al. [25] found that
out of the eight proposed principles, the non-polar lexi rule has the highest empirical
validity, i.e. best predicts the actual choices made by humans in their experiments.
This rule does not distinguish between achievement goals and avoidance goals and
hence is not truly bipolar.

4.3.4 Comparison with Logical Preference Description language

Brewka [33] presents a rank-based description language for qualitative preferences
called logical preference description language (LPD). The basic expressions of LPD are
called basic preference descriptions which are pairs ⟨s, R⟩ with s one of the strategy
identifiers ⊺, κ, ⊆, # and R a ranked knowledge base (RKB). An RKB is a set F of
propositional formulas together with a total preorder ≥ on F , representing the relative
importance of the formulas. Alternatively, an RKB can be represented as a set of
ranked formulas ( f , i) where f is a propositional formula and i, the rank of f , is a
non-negative integer such that f1 ≥ f2 iff rank( f1) ≥ rank( f2).

The four basic strategy identifiers refer to different strategies to obtain prefer-
ences over outcomes from an RKB. Outcomes in this context are truth assignments or
propositional models, i.e. the variables used are Boolean. ⊆ prefers α over β if there
is a rank where α satisfies a superset of the formulas that β satisfies, and α and β
satisfy the same more important formulas. # prefers α over β if there is a rank where
α satisfies more formulas than β , and for all more important ranks, α and β satisfy
the same number of formulas. Since Brewka shows that basic preference descriptions
⟨⊺, R⟩ and ⟨κ, R⟩ can be transformed into equivalent basic preference descriptions of
the form ⟨⊆, R′⟩, we do not discuss these strategies here. We note that Coste-Marquis
et al. [44] also discuss the strategies κ, ⊆ and # but use different labels.

Definition 4.9. (Translation of an LPD basic preference description to a QPS) A
basic preference description d = ⟨s, R⟩ can be translated into a QPS τ(d) = ⟨Var, Dom,
K ,C⟩. Let R = ⟨F,≥⟩ be an RKB. To construct the corresponding QPS from the RKB,
the propositional variables used in F are collected in Var; moreover, for each formula
f ∈ F a new variable X f is added to Var and X f = f is added to the knowledge
base K (it is not necessary to add constraints X f = f for atomic formulas f but it is
convenient below to do so anyway). Clearly, Dom(X) = {⊺,�} for all X ∈ Var. For
every formula f ∈ F , a goal on the associated variable is defined: c f = ⟨X f ,{(⊺,�)}⟩.
If s =⊆, preference of ⟨s, R⟩ is captured by a lexicographic criterion c = ⟨Cc ,⊳c⟩ such
that Cc = {c f ∣ f ∈ F} and c f ⊳ c f ′ iff f > f ′. If s = #, for every rank i in R, a
cardinality criterion is defined with as subcriteria all goals associated to a formula
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of that rank: ci = ⟨{c f ∣ ( f , i) ∈ R}⟩. The preference of ⟨s, R⟩ is captured by a
lexicographic criterion c = ⟨Cc ,⊳c⟩ such that Cc = {ci ∣ ( f ′, i) ∈ R} and ci ⊳ ci′ iff i > i′.
This way, a subcriterion of c corresponds with a rank in the RKB R.

Theorem 4.1. Let d = ⟨s, R⟩, where s = # or s =⊆, be a basic preference description
and τ(d) = ⟨Var, Dom, K ,C⟩ its translation to a QPS with top criterion c. Then α ≥R

s β
iff α ⪰c β for arbitrary outcomes α,β .

Proof. If s =⊆, goals that correspond to formulas with the same rank are incomparable
according to the criterion c. This ensures that an outcome α can only be preferred
to an outcome β on some rank, if there is no criterion that strictly prefers β over α,
i.e. there is no formula that β satisfies but α does not. This means that α satisfies a
superset of the formulas that β satisfies, which is the definition of preference by the
⊆ strategy. If s = #, the way in which preferences are induced by c and its subcriteria
corresponds with how the strategy # induces preferences over outcomes.

Corollary 4.1. The QPS corresponding to a basic preference description is just as
succinct as this description. That is, the size of the QPS is comparable to that of the
LPD description (the size differs at most by a constant factor).

In LPD, complex preference descriptions can be built from basic ones with the con-
nectives ∧, ∨, > and −. The meaning of a complex description is defined in terms
of the orderings ≥1 and ≥2 induced by basic preference descriptions d1 and d2. The
order denoted by d1∧d2 is the intersection ≥1 ∩ ≥2 (Pareto ordering), d1∨d2 denotes
the transitive closure of ≥1 ∪ ≥2, −d1 denotes the reversed ordering ≥1, and d1 > d2

denotes the lexicographic ordering of ≥1 and ≥2 where α is strictly preferred to β if
α >1 β or α ≥1 β and α >2 β .

We show that complex descriptions can also be translated into a QPS that is just
as succinct. To this end, we first introduce the notion of a reversed criterion that
induces the reverse of the ordering induced by the original criterion. This can be
achieved by reversing the value preferences of all the simple criteria in a QPS.

Definition 4.10. (Reverse of a criterion)
• The reverse of a simple criterion c = ⟨X c ,uc⟩ is c− = ⟨X c ,uc−⟩ with β uc− α iff
α uc β .

• The reverse of a cardinality criterion c = ⟨Cc⟩ is c− = ⟨Cc−⟩ where Cc− = {s−i ∣ si ∈
Cc}.

• The reverse of a lexicographic criterion c = ⟨Cc ,⊳c⟩ is c− = ⟨Cc− ,⊳c−⟩ where
Cc− = {s−i ∣ si ∈ Cc} and s−1 ⊳c− s−2 whenever s1 ⊳c s2.

Theorem 4.2. Let c1 and c2 be any two criteria.
1. The lexicographic criterion c1∧2 = ⟨{c1, c2},∅⟩ induces the order ⪰c1 ∩ ⪰c2 .
2. The lexicographic criterion c1>2 = ⟨{c1, c2},{(c1, c2)}⟩ induces the order α ⪰c1>2

β iff α ≻c1 β or α ⪰c1 β and α ≻c2 β .
3. The criterion c−1 induces the order β ⪰c−1 α iff α ⪰c1 β .
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Theorem 4.2 clearly shows the expressive power of QPSs. It is very easy to repre-
sent specific operations for combining preference orderings by means of QPSs such
as creating a Pareto order (∧ operator), refining a preference ordering by means of
a second one (> operator), and reversing an ordering (− operator). Moreover, The-
orem 4.2 shows this can be done just as succinctly with QPSs as with RKBs; i.e. the
size needed differs at most with a constant factor.

The only operator that cannot be represented in a QPS is disjunction (∨). How-
ever, it has been argued convincingly by Andréka et al. [8] that this is not a natural
operator, since it does not satisfy the desired properties ‘indifference to irrelevant
alternatives’ and ‘unanimity with abstentions’. Indifference to irrelevant alternatives
means that two outcomes can be compared solely on their own merits; the presence
or absence of other possible outcomes does not influence the preference. The dis-
junction operator is not indifferent to irrelevant alternatives since it considers the
transitive closure of the union of preference relations. Unanimity with abstentions
means that if all combined preference relations prefer outcome α over outcome β ,
except possibly some that are indifferent, then the overall preference relation also
prefers α over β . The disjunction operator would be indifferent as soon as one of the
combined relations is indifferent, even if all others strictly prefer α over β .

We have shown that LPD descriptions (except disjunction) can be represented by
QPSs just as succinctly. QPSs are more general, however, than LPD, which is based
on ranked knowledge bases. Whereas RKBs require a total preorder on formulas,
QPSs allow incomparable priority between subcriteria. QPSs are not restricted to
Boolean variables as LPD is. Apart from propositional formulas, QPSs support the
use of equational constraints over arbitrary domains. In particular, QPSs provide a
definitional mechanism in order to introduce new concepts (abstract variables) and
it is possible to define preferences over such abstract variables. The knowledge that
can be captured in a QPS therefore is more general.

4.3.5 Comparison with CP-nets

Boutilier et al. [29] introduce CP-nets: qualitative graphical representations of pref-
erences that reflect (conditional) preference statements under a ceteris paribus (all
else being equal) interpretation.

Definition 4.11. (CP-net [29]) A CP-net N over variables V = {X1, . . . , Xn} is a
directed graph G over X1, . . . , Xn whose nodes are annotated with conditional pref-
erence tables CPT(X i) for each X i ∈ V. Each conditional preference table CPT(X i)
associates a total order ⪰i

u with each instantiation u of X i ’s parents Pa(X i) = U.
A preference ranking ⪰ (a total preorder over the set of outcomes) satisfies a CP-

net N iff for each variable X i and for each assignment u to the variables in U, yxu ⪰
yx ′u whenever x ⪰i

u x ′ – for all assignments y to the set of variables Y = V−(U∪{X i})
and all x , x ′ ∈ Dom(X i).

N entails α ≻ β , written N ⊧ α ≻ β , iff α ≻ β holds in every preference ordering
that satisfies N . Boutilier et al. [29] show that N ⊧ α ≻ β iff there is a sequence
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of improving flips from β to α. An improving flip of outcome uxy with respect to
variable X i is any outcome ux ′y such that x ′ ≻i

u x .

We restrict ourselves to acyclic CP-nets here, since cyclic CP-nets may not be sat-
isfiable.

Definition 4.12. (Translation of an acyclic CP-net to a QPS) An acyclic CP-net N
over variables V = {X1, . . . , Xn} can be translated into a QPS τ(N) = ⟨Var, Dom, K ,C⟩
with a criterion c ∈ C as follows. All variables in the CP-net are also variables in
the QPS: V ⊆ Var. For every variable X i ∈ V, a simple criterion ci is specified. If
X i is conditionally independent, ci = ⟨X i ,uci ⟩ such that x uci x ′ iff x ≻i x ′. If
X i is preferentially dependent, an auxiliary variable X ′

i is added to Var such that
Dom(X ′

i ) = ∏{Dom(X) ∣ X ∈ X i ∪ Pa(X i)}; the constraint X ′
i = ∏(X i ∪ Pa(X i)) is

added to K (this procedure was illustrated in Example 4.5); and ci = ⟨X ′
i ,uci ⟩ such

that xu uci x ′u iff x ≻i
u x ′. Finally, the top criterion of τ(N) is a lexicographic cri-

terion c = ⟨Cc ,⊳c⟩ such that for every simple criterion ci thus generated from the
CP-net, ci ∈ Cc , and ⊳c is the transitive closure of ⊳′c , where ci ⊳′c c j iff X i ∈ Pa(X j)
(note that since N is acyclic, ⊳c is asymmetric).

Theorem 4.3. Let N be an acyclic CP-net N over variables V = {X1, . . . , Xn} and
τ(N) = ⟨Var, Dom, K ,C⟩ its translation to a QPS with top criterion c. Then if N ⊧ α ≻
β then α ≻c β for arbitrary outcomes α,β .

Proof. Suppose that N ⊧ α ≻ β . This means that there is a sequence of improving
flips from β to α. First consider the case where this sequence has length 1, i.e. there
is a single improving flip w.r.t. some variable X i from β to α. Since the preference by
a simple criterion is taken from the corresponding CPT, α ≻ci β . If X i is not a parent
of any variable, all other simple criteria are indifferent between α and β (since they
do not involve X i), so α ≻c β . If X i is a parent of another variable X j , flipping its
value influences the value of the auxiliary variable X ′

j . However, ci has higher priority
than c j , so again we have α ≻c β . Since ⪰c is transitive, we also have α ≻c β if the
sequence of improving flips from β to α is longer than 1.

Corollary 4.2. ⪰c is an order preserving approximation of the preference relation
induced by N , and also satisfies the ceteris paribus property [48].

Corollary 4.3. The QPS corresponding to an acyclic CP-net is just as succinct as this
description. That is, the size of the QPS is comparable to that of the CP-net (the size
differs at most by a constant factor).

There are some things that CP-nets cannot express, but a QPS can. Most im-
portantly, we are able to express abstract preferences based on auxiliary variables
whose values are constrained by the knowledge base. Consider the well-known ex-
ample from game theory called the ‘battle of the sexes’: a husband and wife have
to decide whether to go to the theater or to a football match. The wife prefers the
theater and the husband prefers football, but both would rather go together than
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go to different places. If we let A (resp. B) stand for ‘the wife (resp. the husband)
goes to the theater’ and ¬A (resp. ¬B) for ‘the wife (resp. the husband) goes to the
football match’, then the ordering AB ≻ ¬A¬B ≻ A¬B ≻ ¬AB represents the wife’s
preferences. A CP-net cannot express this ordering, since there is no improving flip
between ¬A¬B and AB. In a QPS, this preference can be easily expressed by introduc-
ing an auxiliary variable T (‘together’), whose values are constrained by T = A↔ B.
A lexicographic criterion with two goals as subcriteria, based on T and A respec-
tively, where the one based on T has higher priority, induces the desired preference
ordering TAB ≻ T¬A¬B ≻ ¬TA¬B ≻ ¬T¬AB.

Second, we add priority between criteria, which allows us to express that a good
value for one variable is more important than a good value for another variable.
TCP-nets [30] are an extension to CP-nets in which some priority between variables
is taken into account, but this is not strong enough to represent lexicographic pref-
erences [136]. Wilson’s approach [136] can handle such preferences, but does not
allow to use auxiliary variables and knowledge as described above.

Third, in the formal definition of CP-nets, preference between values of a variable
as given in a CPT, are required to be a total order. According to Boutilier et al.
[29], a total preorder is allowed, but ‘one must be careful not to express indifference
between two values of a variable, yet express a (strict) conditional preference for a
child of that variable that depends on the values for which the user is indifferent’,
otherwise the CP-net is not satisfiable. QPSs do not need such restrictions; simple
criteria allow any (possibly partial) preorder for the preference between values of a
variable.

Fourth, in a CP-net, every variable occurs exactly once. In a QPS, some variables
may not occur in any criterion, and some variables may occur in multiple criteria,
e.g. if the preference on its values is different from different perspectives, or if the
preferences of multiple people are combined.

4.4 Goal-based Qualitative Preference Systems

Preferences in a QPS are ultimately based on simple criteria, i.e. preferences over the
values of a single variable. In general, the domain of such a variable may consist
of many possible values. In the goal-based case, simple criteria are based on binary
goals. In this section we show that the goal-based case is very expressive, by showing
that every QPS can be translated into an equivalent goal-based QPS (provided that
the domains of the variables used in the original QPS are finite). Moreover, we show
that this translation is just as succinct as the original representation. For illustration
purposes we will use the following example QPS.

Example 4.12. As before, the outcomes that we compare are holidays. For illustra-
tion purposes we simplify the outcome space and consider just two variables: C (cost)
and D (destination), where Dom(C) = {300, 400, 500} and Dom(D) = {R, B, P}
(Rome, Barcelona and Paris). For the moment, we do not use any constraints. Pref-
erences are determined by a lexicographic criterion l with two simple subcriteria:



CHAPTER 4. QUALITATIVE PREFERENCE SYSTEMS 93

l

C ⊳ D

300⋗
400⋗
500

R ≐ B
⋗
P

Figure 4.7: Example criterion tree

⟨C ,uC⟩ such that 300 ⋗C 400 ⋗C 500 and ⟨D,uD⟩ such that R ≐D B ⋗D P. We slightly
abuse notation and refer to these criteria by their variable, i.e. C and D. C has higher
priority than D: C ⊳l D. The criterion tree is shown in Figure 4.7.

We will show how QPSs such as the one in the example can be translated to an
equivalent goal-based QPS. In order to do this, we must first formalize the concept
of equivalence between QPSs.

4.4.1 Equivalence

An obvious interpretation of equivalence between criteria is the equivalence of the
preference relations they induce. I.e. two criteria c1 and c2 are equivalent if for all
outcomes α,β , we have α ⪰c1 β iff α ⪰c2 β . However, this definition only works if
the criteria are defined with respect to the same outcome space, i.e. the same set
of variables Var, the same domains Dom and the same constraints K . Since we will
make use of auxiliary variables, we cannot use this definition directly. Fortunately,
this is a technical issue that can be solved in a straightforward way.

Definition 4.13. (Equivalence of outcomes) Let S1 = ⟨Var1, Dom1, K1,C1⟩ and
S2 = ⟨Var2, Dom2, K2,C2⟩ be two QPSs such that Var1 ⊆ Var2, ∀X ∈ Var1(Dom1(X) ⊆
Dom2(X)) and K1 ⊆ K2. Let Ω1 and Ω2 denote the outcome spaces of S1 and S2,
respectively. Two outcomes α ∈ Ω1 and β ∈ Ω2 are equivalent, denoted α ≡ β , iff
∀X ∈ Var1 ∶ αX = βX .

In the following, the only variables that are added are auxiliary variables. Such
variables do not increase the outcome space because their value is uniquely deter-
mined by the values of (some of) the existing variables. We use special variable
names of the form ‘X = v’ to denote a Boolean variable that is true if and only if the
value of variable X is v. For example, the variable C = 300 is true in the outcomes
where the cost is 300, and false in the other outcomes. When only auxiliary variables
are added, every outcome in Ω1 has exactly one equivalent outcome in Ω2. We will
represent such equivalent outcomes with the same identifier.
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g(l)

g(C) ⊳ g(D)

C = 300 C = 400 C = 500

D = R

D = P

D = B

c⊳ ⊳ ⊳

Figure 4.8: Goal-based translation of the criterion tree in Figure 4.7

Definition 4.14. (Equivalence of criteria) Let S1 = ⟨Var1, Dom1, K1,C1⟩ and S2 =
⟨Var2, Dom2, K2,C2⟩ be two QPSs such that Var1 ⊆ Var2, ∀X ∈ Var1(Dom1(X) ⊆
Dom2(X)) and K1 ⊆ K2. Let Ω1 and Ω2 denote the outcome spaces of S1 and
S2, respectively. Two criteria c in C1 and c′ in C2 are called equivalent iff ∀α,β ∈
Ω1,∀α′,β ′ ∈ Ω2, if α ≡ α′ and β ≡ β ′, then α ⪰c β iff α′ ⪰c′ β

′.

Definition 4.15. (Equivalence of QPSs) Let S1 = ⟨Var1, Dom1, K1,C1⟩ and S2 =
⟨Var2, Dom2, K2,C2⟩ be two QPSs. S1 and S2 are equivalent iff the top criterion of C1

is equivalent to the top criterion of S2.

4.4.2 From multi-valued criteria to goals

A simple criterion on a variable with a finite domain can be translated to an equiva-
lent goal-based criterion in the following way.

Definition 4.16. (Goal-based translation) Let c = ⟨X ,u⟩ be a simple criterion such
that Dom(X) is finite. The translation of c to a goal-based criterion, denoted g(c), is
defined as follows. If c is already a goal, then g(c) = c. Otherwise:

• For every x ∈ Dom(X), define a goal cx on variable X = x with ⊺ ucx �.
• Define a lexicographic criterion g(c) = ⟨Cg(c),⊵g(c)⟩ such that Cg(c) = {cx ∣ x ∈

Dom(x)} and cx ⊵g(c) cx ′ iff x uc x ′.

Example 4.13. To illustrate, Figure 4.8 displays the translation of the criterion tree
in Figure 4.7. The simple criteria C and D have been replaced by their translations
g(C) and g(D). These lexicographic criteria have a subgoal for every value of C
resp. D. The priority between these goals corresponds to the value preferences of the
original simple criteria.

Theorem 4.4. Let c = ⟨X ,u⟩ be a simple criterion such that Dom(X c) is finite. The
goal-based translation g(c) of c as defined in Definition 4.16 is equivalent to c.

Proof. We distinguish five possible cases and show that in every case, c’s preference
between α and β is the same as g(c)’s preference between α and β .
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1. If αX = βX then (a) α ≈c β and (b) α ≈g(c) β .
2. If αX ≐c βX but αX ≠ βX then (a) α ≈c β and (b) α ≈g(c) β .
3. If αX ⋗c βX then (a) α ≻c β and (b) α ≻g(c) β .
4. If βX ⋗c αX then (a) β ≻c α and (b) β ≻g(c) α.
5. If αX /uc βX and βX /uc αX then (a) α /⪰c β and β /⪰c α and (b) α /⪰g(c) β and
β /⪰g(c) α.

1-5(a). This follows directly from the definition of simple criteria. 1(b). If αX = βX

then ∀x ∈ Dom(X) ∶ αX=x = βX=x , so also ∀x ∈ Dom(X) ∶ α ≈cx β . Hence, by the
definition of a lexicographic criterion: α ≈g(c) β . 2-5(b). If αX ≠ βX then ∀x ∈
Dom(X)/{αX ,βX} ∶ αX=x = βX=x and α ≈g(c) β . Since a subcriterion s of a compound
criterion such that α ≈s β does not influence that compound criterion’s preference
between α and β , the only criteria that can influence g(c)’s preference between α
and β are cαX and cβX . Since α ≻cαX

β and β ≻cβX
α, preference between α and β

by g(c) is determined by the priority between cαX and cβX . 2(b). If αX uc βX then
cαX ≜g(c) cβX , so they are together in a cardinality criterion and we have α ≈g(c) β .
3(b). If αX ⋗ βX then cαX ⊳g(c) cβX so by the definition of a lexicographic criterion
α ≻g(c) β . 4(b). Analogous to 3(b). 5(b). If αX /uc βX and βX /uc αX then cαX /⊳g(c) cβX

and cβX /⊳g(c) cαX and cαX /≜g(c) cβX , so by the definition of a lexicographic criterion
α /≻g(c) β and β /≻g(c) α.

By replacing every simple criterion c in a criterion tree with its goal-based trans-
lation g(c), an equivalent goal-based criterion tree is obtained.

Definition 4.17. (Relative succinctness) c′ is at least as succinct as c iff there exists
a polynomial function p such that size(c′) ≤ p(size(c)). (Adapted from [41].)

Theorem 4.5. Let c = ⟨X c ,uc⟩ be a simple criterion such that Dom(X c) is finite. The
translation g(c) of c as defined in Definition 4.16 is just as succinct as c.

Proof. The goal-based translation just replaces variable values with goals, and the
preference relation between them with an identical priority relation between goals,
so the translation is linear.

The above two theorems are very important as they show that goals are very
expressive as a way to represent qualitative preferences, and moreover, that this
representation is just as succinct as a representation based on multi-valued criteria.

4.4.3 Satisfaction level goals

We have shown that simple criteria based on multi-valued variables can be translated
to equivalent goal-based criteria. Note that this is not the same as restricting the
domain of all variables to be Boolean, as is done in some other approaches (e.g.
[33]). While goals are Boolean, the underlying structure of the outcomes remains
the same. One advantage of this is that goals can be chosen independently from the
factual representation of outcomes.
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EfficientTravel

TravelCost ≤€100

TravelCost ≤€200

. . . TravelTime ≤ 2h

TravelCost ≤€150

. . .

TravelTime ≤ 4h

TravelTime ≤ 6h

Figure 4.9: Representing preferences with satisfaction level goals

When we translate a multi-valued simple criterion into a goal-based lexicographic
criterion, every subcriterion is a goal of the type X = v where X is the original simple
criterion’s variable and v is one of its possible values. Preference between the pos-
sible values of X is translated to priority between goals. However, if the preference
between possible values follows a natural ordering on the values, such as ≤ or ≥ on
natural numbers, there is another intuitive possibility. Instead of specifying goals
with equations, we can also use other comparisons such as inequalities.

Consider for example a variable X with three levels of satisfaction: Dom(X) =
{1, 2, 3} and 3 ⋗ 2 ⋗ 1. Now instead of goals X = 3, X = 2 and X = 1, we specify goals
X ≥ 3, X ≥ 2 and X ≥ 1. We call such goals satisfaction level goals. These goals can
be combined in a compound criterion. If just the goals relating to a single variable
are combined, it does not matter what kind of compound criterion (lexicographic
or cardinality) or what priority ordering is chosen; the resulting preference relation
will be the same. This is due to the special relation between satisfaction level goals
relating to the same variable: when one of them prefers α over β all others either
also prefer α over β or are indifferent between them, but none can prefer β over α.
Of course, when satisfaction level goals relating to different variables are combined,
the choice of compound criterion and priority does make a difference.

Satisfaction level goals provide a straightforward way to specify goals on conti-
nous domains by discretizing them. Moreover, they provide the means to compensate
between different variables in a qualitative way. It may be worth noting that if all
combined variables share the same discrete domain and a satisfaction level goal is
specified for every value, this approach coincides with taking the sum of all variables.

Example 4.14. Efficient travel is a tradeoff between the travel time and the cost.
Both of these variables are measured on a (nearly) continous scale of hours and euros
respectively. These domains can be discretized by defining satisfaction level goals on
them. By varying the distance between satisfaction levels, the compensation between
time and cost can be fine-tuned. An example is shown in Figure 4.9.
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4.5 Updates in a QPS

In this section we show that goal-based criterion trees also have some added value
compared to trees with multi-valued criteria. We introduce updates on a criterion
tree as changes in the value preference of simple criteria or in the priority of lexico-
graphic criteria. The number of possible updates of this kind depends on the structure
of the tree. In general, the flatter a criterion tree, the more updates are possible. It
is possible to make criterion tree structures flatter, i.e. to reduce the depth of the
tree, by removing intermediate lexicographic criteria. The advantage of goal-based
criterion trees is that they can be flattened to a greater extent than their equivalent
non-goal-based counterparts. We first formalize the concept of flattening a criterion
tree. Then we define what we mean by basic updates in a criterion tree and show
the advantages of flat goal-based QPSs compared to other flat QPSs.

4.5.1 Flattening

Simple criteria are terminal nodes (leaves) and cannot be flattened further. We as-
sume that cardinality criteria are always goal-based, which means they have only
goals as subcriteria and cannot be flattened either. Lexicographic criteria can have
three kinds of subcriteria: simple, cardinality and lexicographic. They can be flat-
tened by replacing each lexicographic subcriterion by that criterion’s subcriteria and
adapting the priority accordingly, as defined in the following definition.

Definition 4.18. (Removing a lexicographic subcriterion) Let c = ⟨Cc ,⊳c⟩ be a
lexicographic criterion and d = ⟨Cd ,⊳d⟩ ∈ Cc a lexicographic criterion that is a sub-
criterion of c. We now define a lexicographic criterion f (c, d) = ⟨C f (c,d),⊳ f (c,d)⟩
that is equivalent to c but does not have d as a subcriterion. To this end, we define
C f (c,d) = Cc/{d} ∪ Cd and ∀i, j ∈ C f (c,d) ∶ i ⊳ f (c,d) j iff

• i, j ∈ Cc and i ⊳c j, or
• i, j ∈ Cd and i ⊳d j, or
• i ∈ Cc , j ∈ Cd and i ⊳c d, or
• i ∈ Cd , j ∈ Cc and d ⊳c j.

Theorem 4.6. f (c, d) is equivalent to c, i.e. α ⪰c β iff α ⪰ f (c,d) β .

Proof. ⇒. Suppose α ⪰c β . Then ∀s ∈ Cc(α ⪰s β ∨ ∃s′ ∈ Cc(α ≻s′ β ∧ s′ ⊳c s)). We
need to show that also ∀s ∈ C f (c,d)(α ⪰s β ∨ ∃s′ ∈ C f (c,d)(α ≻s′ β ∧ s′ ⊳ f (c,d) s)). We
do this by showing that α ⪰s β ∨ ∃s′ ∈ C f (c,d)(α ≻s′ β ∧ s′ ⊳ f (c,d) s) holds for every
possible origin of s ∈ C f (c,d). We have ∀s ∈ C f (c,d), either s ∈ Cc/{d} or s ∈ Cd .
• If s ∈ Cc/{d}, we know that α ⪰s β ∨ ∃s′ ∈ Cc(α ≻s′ β ∧ s′ ⊳c s).

• If α ⪰s β , trivially also α ⪰s β ∨ ∃s′ ∈ C f (c,d)(α ≻s′ β ∧ s′ ⊳ f (c,d) s) and we are
done.

• If ∃s′ ∈ Cc(α ≻s′ β ∧ s′ ⊳c s), then either s′ ∈ Cc/{d} or s′ = d.
• If s′ ∈ Cc/{d}, then s′ ∈ C f (c,d) and s′ ⊳ f (c,d) s, so also α ⪰s β ∨ ∃s′ ∈

C f (c,d)(α ≻s′ β ∧ s′ ⊳ f (c,d) s) and we are done.
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• If s′ = d, then (since α ≻s′ β) ∃i ∈ Cs′ (and hence ∈ C f (c,d))∶ α ≻i β . Since
s′ ⊳c s, we have i ⊳ f (c,d) s and so also α ⪰s β ∨∃i ∈ C f (c,d)(α ≻i β ∧ i ⊳ f (c,d)
s) and we are done.

• Now consider the case that s ∈ Cd . Since d ∈ Cc , we know that either α ⪰d β or
∃s′ ∈ Cc(α ≻s′ β ∧ s′ ⊳c d).
• If α ⪰d β , we know α ⪰s β ∨∃s′ ∈ Cd(α ≻s′ β ∧ s′ ⊳d s) and hence α ⪰s β ∨∃s′ ∈

C f (c,d)(α ≻s′ β ∧ s′ ⊳ f (c,d) s) and we are done.
• If ∃s′ ∈ Cc(α ≻s′ β ∧ s′ ⊳c d) then ∃s′ ∈ C f (c,d)(α ≻s′ β ∧ s′ ⊳ f (c,d) s) so trivially

also α ⪰s β ∨ ∃s′ ∈ C f (c,d)(α ≻s′ β ∧ s′ ⊳ f (c,d) s) and we are done.
⇐. Suppose α /⪰c β . Then ∃s ∈ Cc(α /⪰s β ∧ ∀s′ ∈ Cc(s′ ⊳c s → α /≻s′ β)). We need to
show that also ∃t ∈ C f (c,d)(α /⪰t β ∧∀t ′ ∈ C f (c,d)(t ′ ⊳ f (c,d) t → α /≻t′ β)). Either s ≠ d
or s = d.
• If s ≠ d, then s ∈ C f (c,d) and we know that α /⪰s β and ∀s′ ∈ C f (c,d)/Cd(s′ ⊳ f (c,d)

s → α /≻s′ β).
• If d /⊳c s, then ∀s′ ∈ Cc∗(s′ ⊳ f (c,d) s → s′ ∈ C f (c,d)/Cd). So we have ∃s ∈

C f (c,d)(α /⪰s β ∧ ∀s′ ∈ C f (c,d)(s′ ⊳ f (c,d) s → α /≻s′ β)). Take t = s and we are
done.

• If d ⊳c s, then α /≻d β , i.e. α /⪰d β or β ⪰d α.
• If α /⪰d β , then ∃u ∈ Cd(α /⪰u β ∧ ∀u′ ∈ Cd(u′ ⊳d u → α /⪰u′ β)). Since
∀s′ ∈ Cc(s′ ⊳c s → α /≻s′ β) and d ⊳c s, we also have ∃u ∈ C f (c,d)(α /⪰u

β ∧ ∀u′ ∈ C f (c,d)(u′ ⊳ f (c,d) u→ α /≻u′ β)). Take t = u and we are done.
• If β ⪰d α, then ∀v ∈ Cd(β ⪰v α ∨ ∃v′ ∈ Cd(β ≻v′ α ∧ v′ ⊳d v)). This means

that either ∀u ∈ Cd(β ⪰u α) or ∃u ∈ Cd(β ≻u α ∧ ¬∃u′ ∈ Cd(u′ ⊳d u)).
• If ∀u ∈ Cd(β ⪰u α), then ∀u ∈ Cd(α /≻u β). Take t = s and we are done.
• If ∃u ∈ Cd(β ≻u α ∧ ¬∃u′ ∈ Cd(u′ ⊳d u)), then ∃u ∈ Cd(α /⪰u β ∧ ∀u′ ∈

Cd(u′ ⊳d u→ α /≻u′ β)). Take t = u and we are done.
• If s = d, then α /⪰d β , so ∃u ∈ Cd(α /⪰u β ∧ ∀u′ ∈ Cd(u′ ⊳d u → α /≻u′ β)). Since
∀s′ ∈ Cc(s′ ⊳c d → α ≻s′ β), we have ∀s′ ∈ Cc(s′ ⊳c u → α ≻s′ β). Take t = u and
we are done.

Theorem 4.7. f (c, d) is just as succinct as c.

Proof. When a lexicographic subcriterion is removed according to Definition 4.18,
the total number of criteria decreases by 1: the subcriteria of d become direct subcri-
teria of c and d itself is removed. The priority between the original subcriteria of c
(i.e. Cc/{d}) and the priority between the original subcriteria of d (i.e. Cd) remains
unaltered. Just the priority between the subcriteria in Cc/{d} and d is replaced by
priority between the subcriteria in Cc/{d} and the subcriteria in Cd . Since ∣Cd ∣ is
finite, the increase in size is linear.

Definition 4.19. (Flat criterion) A criterion is flat iff it is (i) a simple criterion, (ii)
a goal-based cardinality criterion, or (iii) a lexicographic criterion such that all its
subcriteria are either simple criteria or goal-based cardinality criteria.
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f ∗(g(l))

⊳C = 300 C = 400 C = 500

D = R

D = P

D = B

c⊳ ⊳ ⊳

Figure 4.10: The result of flattening the criterion in Figure 4.8

Definition 4.20. (Flattening) The flat version of a non-flat lexicographic criterion
c, denoted f ∗(c), is obtained as follows. For an arbitrary lexicographic subcriterion
d ∈ Cc , get f (c, d). If f (c, d) is flat, f ∗(c) = f (c, d). Otherwise, f ∗(c) = f ∗( f (c, d)).

Example 4.15. The original criterion tree in Figure 4.7 is already flat. Its goal-based
translation in Figure 4.8 can be flattened further, as shown in Figure 4.10. Here the
lexicographic subcriteria g(C) and g(D) have been removed.

4.5.2 Updates

Criterion trees can be updated by leaving the basic structure of the tree intact but
changing the priority (⊵) between (in)direct subcriteria of a lexicographic criterion
(in the alternative specification) or the value preferences of a multi-valued simple
criterion (u). By performing these basic operations, the induced preference relation
also changes. Therefore, such updates can be used to ‘fine-tune’ a person’s preference
representation.

Definition 4.21. (Update) An update of a criterion tree is a change in (i) the pref-
erence between values (u) of a multi-valued simple criterion; and/or (ii) the priority
(⊵) between (in)direct subcriteria of a lexicographic criterion (in the alternative spec-
ification). The changed relations still have to be preorders.

Translating a criterion to a goal-based criterion does not change the updates that
can be performed.

Theorem 4.8. For every update on a criterion tree c, there exists an equivalent up-
date on the goal-based translation g(c) and vice versa.

Proof. Every change in a value preference u between two values x and y corresponds
one-to-one to a change in priority between cx and cy . Every change in priority be-
tween two subcriteria s and s′ corresponds one-to-one to a change in priority between
g(s) and g(s′).

Example 4.16. Consider for example the criterion tree in Figure 4.7. On the highest
level, there are three possibilities for the priority: C ⊳ D, D ⊳ C or incomparable
priority. On the next level, each simple criterion has preferences over three possible
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l′

D′ ⊳ C ′

300⋗
B⋗
R

P ⋗
400⋗
500

a. Update on the
original tree

g(l)′

g(D)′ ⊳ g(C)′

C = 300 C = 400 C = 500D = RD = P D = B⊳ ⊳ ⊳ ⊳

b. Update on the goal-based translation

f ∗(g(l))′

⊳ C = 300 C = 400 C = 500D = RD = P D = B⊳ ⊳ ⊳ ⊳

c. Update on the flattened goal-based translation

Figure 4.11: Updates on criterion trees

values, which can be ordered in 29 different ways (this is the number of different
preorders with three elements, oeis.org/A000798). So in total there are 3×29×29 =
2523 possible updates of this tree. For the goal-based translation of this tree (in
Figure 4.8) this number is the same. Figure 4.11a shows one alternative update of
the original criterion tree in Figure 4.7; Figure 4.11b shows the same update on its
goal-based translation in Figure 4.8.

Flattening a criterion tree influences the updates that can be performed; all up-
dates that are possible on the non-flat tree can also be performed on the flattened
version, but not vice versa. That is, flattening a criterion tree introduces more possi-
ble updates.

Theorem 4.9. For every update on a criterion tree c, there exists an equivalent (set
of) update(s) on the flattened criterion tree f ∗(c).

Proof. Since simple criteria are not altered in the flattening process, every change in
a value preference u between two values x and y can also be applied in the flattened
version. Every change in priority between two subcriteria s and s′ corresponds to a
change in priority between all of the (in)direct subcriteria of s that are flat and all of
the (in)direct subcriteria of s′ that are flat.

Example 4.17. Figure 4.11c shows an update on the flat goal-based criterion tree in
Figure 4.10 that is equivalent to the updates in Figure 4.11a and 4.11b.

Theorem 4.10. If a criterion tree c is not flat, there exist updates on f ∗(c) that do
not have equivalent updates on c.

We show this by means of an example.
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f ∗(g(l))

⊳C = 300 C = 400 C = 500

D = R

D = P

D = B

c⊳ ⊳ ⊳

Figure 4.12: Alternative flat goal-based tree obtained by updating the tree in Figure
4.10

Example 4.18. The goal-based tree in Figure 4.8 can be flattened to the equivalent
flat tree in Figure 4.10. This flattened tree can be updated in 209527 different ways
(the number of different preorders with 6 elements, oeis.org/A000798), thereby al-
lowing more preference relations to be represented by the same tree structure. Figure
4.12 shows an alternative flat goal-based tree that can be obtained from the previous
one by updating it. It is not possible to obtain an equivalent criterion tree by fine-
tuning the original criterion tree or its goal-based translation. This is because goals
relating to different variables are ‘mixed’: the most important goal is that the cost is
300, the next most important goal is that the destination is Rome or Barcelona, and
only after that is the cost considered again. This is not possible in a criterion tree
that is based on simple criteria that are defined directly on the variables C and D.

We have seen that the same updates are possible on a multi-valued criterion tree
and its goal-based translation. If, however, both trees are flattened, more updates
are possible on the flattened goal-based tree.

Theorem 4.11. Let c be a non-goal-based criterion. Then there exist updates on
f ∗(g(c)) that do not have equivalent updates on f ∗(c).

In general, the flatter a criterion tree, the more different updates are possible
(Theorem 4.10). Since a goal-based tree can be made flatter than an equivalent
criterion tree that is based on multi-valued simple criteria, the goal-based case allows
more updates. This is visualized in Figure 4.13.

4.5.3 Fine-tuning

The results above show that every update that can be applied on a criterion tree can
also be applied on its flattened goal-based translation, and that this last criterion
tree even allows more updates. However, if we look at the size of the updates, we
can see that for equivalent updates, more value preference or priority relations have
to be changed when the structure is flatter. For example, a simple inversion of the
priority between g(C) and g(D) in Figure 4.8 corresponds to the inversion of priority
between all of C = 300, C = 400 and C = 500 and all of D = R, D = B and D = P in
Figure 4.10. This suggests the following approach to fine-tuning a given preference
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Figure 4.13: Effects of goal-based translation and flattening on possible updates

representation during the preference elicitation process. First, one can fine-tune the
current criterion tree as well as possible using (coarse) updates. If the result does
not match the intended preferences well enough, one can start flattening, which will
create more, fine-grained possibilities to update the tree. If this still does not allow
to express the correct preferences, one can make a goal-based translation and flatten
it. This allows for even more possible updates on an even lower level.

Example 4.19. Susan and Bob are planning a city trip together. Susan would like
to go to a city that she has not been to before, and hence prefers Rome or Barcelona
to Paris as destination (D). She also does not want to spend too much money, so
she prefers a low cost (C). Bob is a busy businessman who only has a single week
of holiday, so he prefers a shorter length (Le), and would like some luxury (Lu),
expressed in the number of stars of the hotel. There is no priority between Susan’s
and Bob’s preferences. The initial criterion tree for Susan and Bob’s joint preferences
is displayed in Figure 4.14a.

Susan and Bob decide that Bob’s criterion on the length of the trip should be the
most important, because he really does not have time to go for two weeks. They also
decide that luxury is less important than the other criteria. In order to update the
tree, it is first flattened by removing the subcriteria of Susan and Bob. The new tree,
after flattening and updating, is shown in Figure 4.14b.

However, Bob feels that luxury can compensate for cost. To represent this, the
criteria for cost and number of stars are translated to goals and combined into three
cardinality criteria, as shown in Figure 4.14c. At this point, the travel agent’s website
is able to make a good selection of offers to show and recommend to Susan and Bob.

4.6 Related work

Gérard et al. [56] propose a qualitative approach for ordering alternatives, which
are represented as a vector of qualitative criteria evaluations (satisfaction levels). In
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Figure 4.14: Successive criterion trees for Susan and Bob

contrast to our approach, they do not determine preferences by aggregating the pref-
erence orderings given by each criterion, but define preference between alternatives
as a total preorder that satisfies all given constraints. A constraint can be a specific
preference statement (‘outcome α is preferred to outcome β ’), or a generic prefer-
ence such as Pareto ordering. Another difference is that they use the same linearly
ordered scale of satisfaction levels for every criterion, whereas we allow arbitrary do-
mains for variables and arbitrary preorders for preference among values from those
domains.

Qualitative choice logic [34] adds a new operator called ordered disjunction to
propositional logic. Benferhat and Sedki [20] extend QCL in order to handle negated
and conditional preferences. The semantics of QCL and the extensions is based on the
degree of satisfaction of ‘choice formulas’; the more formulas are satisfied to a high
degree, the better the alternative. In contrast, QPS uses explicit criteria which do not
use the same common satisfaction levels, but can represent any preorder between
alternatives.

Wilson [136] introduces an extension of CP-nets based on preference statements
of the form ‘low price is preferred over high price irrespective of the values of other
variables’. It is possible to represent CP-nets in this logic but the logic goes beyond
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CP-nets and is also able to represent lexicographic orderings. One of the main differ-
ences with our framework is that a QPS in addition supports abstraction (conceptual
knowledge). Abstraction allows us to represent certain orderings that cannot be rep-
resented in Wilson’s logic. An example is the ‘battle of the sexes’ that was discussed
above. The ordering AB ≻ ¬A¬B ≻ A¬B ≻ ¬AB cannot be represented by Wilson’s
logic, as there is no worsening swap between (A, B) and (¬A,¬B). By introducing a
new variable T which is defined by T = A ↔ B this order can be represented in a
QPS, as was shown above.

Van der Weide [133] proposes a conceptual framework and argumentation sys-
tem for reasoning about the values of a decision maker: the Perspective-based Value
Model (PVM) and Argumentation System for Perspective-based Value (ASPV). In this
framework, the preferences of a decision maker are influenced by his values, which
are conceptually similar to our notion of underlying interests. Every value provides
a perspective on the goodness of options, and perspectives may positively or nega-
tively influence other perspectives. For example, if an agent A has a value V and one
outcome α is better than another outcome β from the perspective of V , then this is
a (defeasible) reason for a preference of α over β by agent A. These influences are
modelled in a so-called Perspective-based Value Comparison Structure (PVCS). Influ-
ences can be positive (p ↑ q: p positively influences q) or negative (p ↓ q: p negatively
influences q), and are transitive. However, it is not specified how influences interact
when they contradict each other. For example, suppose that α is better than β from
perspective p, β is better than α from perspective q, and both p and q positively
influence perspective r. Then we have a reason (argument) to prefer α to β from
perspective r, but also a reason (argument) to prefer β to α from perspective r. The
two arguments attack each other. Van der Weide proposes that this conflict should
be resolved by meta-argumentation, accruing arguments with the same conclusion
and taking the relative strengths of arguments into account, but does not discuss the
exact procedure. This approach is inherently different from the approach taken by
Qualitative Preference Systems. In a QPS, all preferences are ultimately based on
preferences specified between the possible values of variables (simple criteria). In
contrast, the preferences of the perspectives that are lowest in a PVCS are assumed
to be given. Also, when a QPS compound criterion has multiple subcriteria, its re-
sulting preference is unequivocally defined even when the subcriteria contradict each
other. In [128], an argumentation framework was presented for reasoning about a
QPS and the properties of outcomes. Unfortunately, since the meta-argumentation
framework of Van der Weide is not completely specified, we cannot give a detailed
comparison between the two approaches.

Amgoud and Prade [7] propose a bipolar approach where a distinction is made
between goals and rejections. In the multi-criteria decision making setting, criteria
are mapped to a bipolar scale T = {−k, . . . ,−1, 0,+1, . . . ,+k} (which can be seen as
a generalisation of the three levels of value used by [133]). For every criterion ci and
every level j on the positive part of T , a goal g j

i ∶ ci ≥ + j is specified. Similarly, for
every criterion ci and every level j on the negative part of T , a rejection r j

i ∶ ci ≤ − j is
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specified. The importance of goals is defined as k− j+1, for rejections the importance
is j. If criteria have different level of importance, the importance of a goal (resp.
rejection) is the minimum of k − j + 1 (resp. j) and the importance of the associated
criterion. Decisions are compared with decision principles, which were discussed
in Section 4.3.3. In [7], it is assumed that all criteria use the same totally ordered
bipolar scale for the degree of satisfaction (criteria are commensurate). Importance
of arguments is also measured on the same scale. In contrast, in a QPS the preference
relations of different criteria are independent (no commensurability) and can be any
(possibly partial) preorder.

4.7 Conclusion

We introduced Qualitative Preference Systems, a new framework for representing
qualitative multi-criteria preferences. QPSs combine different features for compactly
expressing preferences. These features include the well-known lexicographic rule
which combines basic preferences over variables, and a cardinality-based rule which
counts criteria that are satisfied. In addition, QPSs enable the representation of
knowledge, which allows for expressing feasibility constraints as well as abstractions
(concept definitions). Finally, such systems support a layered structure for repre-
senting preference orderings. This combination of features provides an expressive
preference representation framework which at the same time allows for a compact
representation of preference orderings.

We have discussed the issue of preferential dependence between attributes. We
illustrated how conditional preferences can be modelled in a QPS, but argued that
modelling underlying interests instead would be a more natural solution. We il-
lustrated several ways to model interests in a QPS and showed how background
knowledge, which can be used to express constraints and define abstract concepts, is
essential in such situations as it can be used to specify criteria on a more fundamen-
tal level. We have shown that the QPS framework can be used to model preferences
between outcomes based on goals. It has several advantages over other approaches.
First, the QPS framework is general and flexible and can model several interpreta-
tions of using goals to derive preferences between outcomes. This is done by simply
adapting the structure of the criterion tree. It is possible to specify an incomplete
preference relation such as the ceteris paribus relation by using an incomplete pri-
ority ordering. But if a complete preference relation is needed, it is also easy to
obtain one by completing the priority relation between subcriteria of a lexicographic
criterion, or using cardinality criteria. Second, goals do not have to be independent.
Multiple goals can be specified using the same variable. For example, there is no
problem in specifying both p and p ∧ q as a goal. Third, goals do not have to be
consistent. It is not contradictory to have both p preferred to ¬p (from one perspec-
tive) and ¬p preferred to p (from another). This possibility is also convenient when
combining preferences of multiple agents, who may have different preferences. Pref-
erences of multiple agents can be combined by just collecting them as subcriteria of a
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new lexicographic criterion. The straightforward representation of goals in the QPS
framework also applies to bipolar goals. Both achievement goals (whose satisfaction
is an argument pro) and avoidance goals (whose non-satisfaction is an argument
con) can be modelled as QPS goals, and combined together using compound criteria.

We have shown that the Logical Preference Descriptions introduced in [33] can
be embedded in the QPS framework, with the exception of the disjunction operator
which is not natural as it does not satisfy independence of irrelevant alternatives and
unanimity with abstentions [8]. The ‘logical’ operators of [33] translate to structural
features of QPSs. We have also shown that QPSs are able to express conditional
preferences by providing an order preserving embedding of acyclic CP-nets into QPSs
which satisfies the ceteris paribus condition. Last but not least, these embeddings are
size preserving, i.e. the resulting QPSs provide a representation that is as succinct as
the LPD or CP-net representation. This fact indicates that various problems such as
dominance testing for QPSs have an associated computational complexity that is at
most as difficult as these alternative frameworks for preference representation.

Preferences are usually based on orderings of the possible values of each variable,
which can be Boolean, numeric, or nominal. We have shown that multi-valued cri-
teria can be translated to equivalent goal-based criteria. Such a translation requires
at most polynomially more space, and hence is just as succinct as the original QPS.
This result shows that goals are very expressive as a representation of qualitative
preferences among outcomes.

Goal-based criterion trees also have some added value compared to trees with
multi-valued criteria. We introduced basic updates on a QPS and showed that goal-
based QPSs allow for more fine-grained updates than their multi-valued counter-
parts. This is due to the different structure of goal-based criteria. In general, the
flatter a criterion tree, the more updates are possible. It is possible to make criterion
tree structures flatter, i.e. to reduce the depth of the tree, by removing intermediate
lexicographic criteria. The advantage of goal-based criterion trees is that they can
be flattened to a greater extent than their equivalent non-goal-based counterparts,
and hence provide more possible updates. We proposed a procedure to fine-tune a
criterion tree during the preference elicitation process. Essentially, this is a top-down
approach where a criterion tree is first updated as well as possible in its current
state, and is only flattened and/or translated to a goal-based tree if more updates are
necessary. This procedure gives rise to a more fundamental question. If it is really
necessary to take all these steps, then maybe the original criteria were not chosen
well in the first place. It may have been better to choose more fundamental interests
as criteria.



Chapter 5

An argumentation framework
for qualitative multi-criteria
preferences

Abstract Preferences between different alternatives (products, decisions, agree-
ments etc.) are often based on multiple criteria. Qualitative Preference Systems
(QPS) is a formal framework for the representation of qualitative multi-criteria
preferences in which a criterion’s preference is defined based on the values of
attributes or by combining multiple subcriteria in a cardinality-based or lexico-
graphic way. In this paper we present a language and reasoning mechanism
to represent and reason about such qualitative multi-criteria preferences. We
take an argumentation-based approach and show that the presented argumen-
tation framework correctly models a QPS. Then we extend this argumentation
framework in such a way that it can derive missing information from background
knowledge, which makes it more flexible in case of incomplete specifications.

5.1 Introduction

In the context of practical reasoning, such as decision making and negotiation, pref-
erences between the available alternatives play a key role. A system supporting a
human user in such tasks should therefore have a representation of that user’s pref-
erences. In this paper we present an argumentation framework to represent and
reason with qualitative, multi-criteria preferences. Preferences are modelled in a
qualitative way because it is hard for humans to give exact numeric utilities. We use
multiple criteria because it is a very natural thing to compare two alternatives on
several criteria and base an overall preference on those comparisons. Criteria thus
represent the underlying interests, or reasons for preferences. Moreover, the outcome
space may be so large that it is infeasible to specify preference between outcomes
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directly.
We briefly present a framework for representing qualitative multi-criteria prefer-

ences, called Qualitative Preference Systems. In this framework, preferences between
outcomes are determined by combining multiple criteria based on cardinality and
lexicographic ordering. Ultimately, the criteria are based on preferences between the
values of relevant variables. QPS is a framework that provides a formal definition of
qualitative multi-criteria preferences. The aim of this paper is to provide a language
and reasoning mechanism to reason about such Qualitative Preference Systems. In
addition, we provide the means of deriving information by default from background
knowledge, which is useful when e.g. the outcomes are incompletely specified.

The approach we take is argumentation-based. Argumentation is a kind of de-
feasible reasoning, which allows for reasoning with incomplete information in a
common-sense way, about things that are normally the case. Moreover, argumen-
tation is a natural way of reasoning for humans. As such, it is suitable for explaining
the reasoning of a system to a human user. Finally, argumentation can be used in
a persuasion dialogue, for example when multiple agents with different preferences
have to agree on a common action.

Note that the argumentation framework presented here is not a preference-based
argumentation framework (PAF) in the sense of [2]. In a PAF, preferences between
arguments are used to determine the success of an attack between them. A similar
approach, that considers preferences between rules in the logical language, has been
taken in the specific context of decision making [72]. In contrast, the framework
presented here aims to reason about preferences between objects outside of the ar-
gumentation framework (‘outcomes’) as opposed to preferences between arguments
or logical rules.

The outline of the paper is as follows. In Section 5.2, we briefly recall Qualitative
Preference systems. Section 5.3 presents the argumentation framework that provides
the means to reason about a QPS. In Section 5.4 we extend the argumentation frame-
work with background knowledge and the means to derive information by default.
Finally, Section 5.5 concludes the paper.

5.2 Qualitative Preference Systems

In this section we briefly present Qualitative Preference Systems. The main aim of a
QPS is to determine preferences between outcomes (or alternatives). An outcome is
represented as an assignment of values to a set of relevant variables. Every variable
has its own domain of possible values. Constraints on the assignments of values
to variables are expressed in a knowledge base. Outcomes are defined as variable
assignments that respect the constraints in the knowledge base.

The preferences between outcomes are based on multiple criteria. Every crite-
rion can be seen as a reason for preference, or as a preference from one particular
perspective. A distinction is made between simple and compound criteria. Simple
criteria are based on a single variable. Multiple (simple) criteria can be combined
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in order to determine an overall preference. In a QPS, this is done with compound
criteria. There are two kinds of compound criteria: cardinality criteria and lexico-
graphic criteria. The subcriteria of a cardinality criterion all have equal importance,
and preference is determined by counting the number of subcriteria that support it.
In a lexicographic criterion, the subcriteria are ordered by priority and preference is
determined by the most important subcriteria.

Definition 5.1. (Qualitative Preference System) A Qualitative Preference System
(QPS) is a tuple ⟨Var, Dom, K ,Ω,C⟩. Var is a finite set of variables. Every variable
X ∈ Var has a domain Dom(X) of possible values. K is a set of constraints on the
assignments of values to the variables in Var. Ω is the set of all outcomes. An outcome
α is an assignment of a value x ∈ Dom(X) to every variable X ∈ Var, such that no
constraints in K are violated. αX denotes the value of variable X in outcome α. C =
Cs∪Cc ∪Cl is a set of criteria, where Cs contains simple criteria, Cc contains cardinality
criteria and Cl contains lexicographic criteria. Weak preference between outcomes
by a criterion c is denoted by the relation ⪰c . ≻c denotes the strict subrelation, ≈c the
indifference subrelation.

Definition 5.2. (Simple criterion) A simple criterion c is a tuple ⟨X c ,uc⟩, where
X c ∈ Var is a variable, and uc , a preference relation on the possible values of X c , is
a preorder on Dom(X c). A simple criterion c = ⟨X c ,uc⟩ weakly prefers an outcome α
over an outcome β , denoted α ⪰c β , iff αX c uc βX c .

Definition 5.3. (Cardinality criterion) A cardinality criterion c is a tuple ⟨Cc⟩ where
Cc is a nonempty set of criteria (the subcriteria of c). A cardinality criterion c = ⟨Cc⟩
weakly prefers an outcome α over an outcome β , denoted α ⪰c β , iff ∣{s ∈ Cc ∣ α ≻s

β}∣ ≥ ∣{s ∈ Cc ∣ α /⪰s β}∣.
Definition 5.4. (Lexicographic criterion) A lexicographic criterion c is a tuple
⟨Cc ,⊳c⟩, where Cc is a nonempty set of criteria (the subcriteria of c) and ⊳c , a pri-
ority relation among subcriteria, is a strict partial order (a transitive and asymmetric
relation) on Cc . A lexicographic criterion c = ⟨Cc ,⊵c⟩ weakly prefers an outcome α
over an outcome β , denoted α ⪰c β , iff ∀s ∈ Cc(α ⪰s β ∨ ∃s′ ∈ Cc(α ≻s′ β ∧ s′ ⊳c s)).

5.3 Argumentation framework

In this section we present an argumentation framework for reasoning about qualita-
tive multi-criteria preferences as defined in Qualitative Preference Systems. The AF
provides the logical language to represent facts about outcomes, criteria and pref-
erences, and the means to construct arguments that infer preferences from certain
input.

5.3.1 Abstract argumentation framework

Our argumentation framework is a concrete instantiation of an abstract argumenta-
tion framework as defined by Dung [52]. To define which arguments are justified,
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we use Dung’s preferred semantics.

Definition 5.5. (Abstract argumentation framework) An abstract argumentation
framework (AF) is a pair ⟨A,→⟩ where A is a set of arguments and → is a defeat
relation among those arguments.

Definition 5.6. (Preferred semantics) A preferred extension of an AF ⟨A,→⟩ is a
maximal (w.r.t. ⊆) set S ⊆ A such that: ∀A, B ∈ S ∶ A /→ B and ∀A ∈ S: if ∃B ∈ A ∶ B → A
then ∃C ∈ S ∶ C → B. An argument is credulously (resp. sceptically) justified w.r.t.
preferred semantics if it is in some (resp. all) preferred extension(s). An argument is
overruled if it is not in any extension. We also say that a formula is justified (resp.
overruled) iff it is the conclusion of a justified (resp. overruled) argument.

An abstract AF can be instantiated by specifying the structure of arguments and
the nature of the defeat relation. Prakken [104] presents such an instantiation that
is itself still abstract: his argumentation systems define arguments as inference trees
formed by applying inference rules and specify three kinds of defeat. We take the
instantiation of an argumentation framework one step further and also define the
logical language and the specific inference schemes that are used.

5.3.2 Arguments

Arguments are built from formulas of a logical language, that are chained together
using inference steps. Every inference step consists of premises and a conclusion.
Inferences can be chained by using the conclusion of one inference step as a premise
in the following step. Thus a tree of chained inferences is created, which we use as
the formal definition of an argument (cf. e.g. [131, 104]).

Definition 5.7. (Argument) An argument is a tree, where the nodes are inferences,
and an inference can be connected to a parent node if its conclusion is a premise of
that node. Leaf nodes only have a conclusion (a formula from the knowledge base),
and no premises. A subtree of an argument is also called a subargument. inf returns
the last inference of an argument (the root node), and conc returns the conclusion
of an argument, which is the same as the conclusion of the last inference.

5.3.3 Defeat

We define two different kinds of defeat: rebuttal and undercut (note that, unlike e.g.
[104], in the current framework there is no distinction between attack and defeat).
An argument rebuts another argument if its conclusion contradicts a conclusion of
the other argument. Which conclusions contradict each other is defined below af-
ter the language is introduced. Defeat by rebuttal is mutual. The term undercut is
used in different ways in the literature; we use it for the same concept as e.g. [104].
An undercutter is an argument for the inapplicability of an inference step made in
another argument. Hence, it is a kind of meta-reasoning (the conlusion of an under-
cutting argument is not part of the object language). Undercut works only one way.
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Defeat is defined recursively, which means that rebuttal can attack an argument on
all its premises and (intermediate) conclusions, and undercut can attack it on all its
inferences.

Definition 5.8. (Defeat) An argument A defeats an argument B (A→ B) if conc(A)
and conc(B) are contradictory (rebuttal), or conc(A) =‘inf(B) is inapplicable’ (un-
dercut), or A defeats a subargument of B.

5.3.4 Language

The logical language provides the means to express statements about a the elements
of a QPS. For a given QPS S = ⟨Var, Dom, K ,Ω,C⟩, the domain of discourse is D =
Var ∪ ⋃X∈Var Dom(X) ∪ Ω ∪ C, i.e. variables and their possible values, outcomes and
criteria.

We make a distinction between an input and full language. A knowledge base,
which is the input for an argumentation framework, is specified in the input lan-
guage. The input language allows us to express facts about the outcomes that are
considered and details about the criteria that are used. With the full language we
can also express preferences. Such statements can be derived from a knowledge base
with the inference rules that will be introduced in the next section.

Basic expressions of the language (atoms) are built from predicates and terms.
Let C be a set of constants. i ∶ C ↦ D is an interpretation function that assigns
an element from the domain of discourse to every constant in C . There are two
sets of predicates. Pin contains predicates that can be used in the input language.
Pout contains predicates that cannot be used in the input language and can only be
derived. The predicates in Pin and Pout and their interpretation are in Table 5.1 and
5.2.

Formulas of the input language are just atoms of the input language. Formulas
of the full language are atoms (A) or weakly negated atoms (∼ A). Weak negation is
negation as failure: ∼ A is justified if A is not. Strong negation is not needed to model
Qualitative Preference Systems, but it will be added in the extended version of the
AF presented in Section 5.4 in order to reason with background knowledge.

Definition 5.9. (Language) The input language is defined as follows.
atomin ::= p(t1,. . .,tn) where p is an n-ary predicate ∈ Pin

literalin ::= atomin

formulain ::= literalin
The full language is defined as follows.

atomout ::= p(t1,. . .,tn) where p is an n-ary predicate ∈ Pout

literal ::= literalin ∣ atomout

formula ::= literal ∣ ∼ literal

Contradictory formulas Two arguments rebut each other if their conclusions are
contradictory. There are two ways in which two formulas can be contradictory.
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predicate interpretation
val(o,x,y) i(o)i(x) = i(y)

where i(o) ∈ Ω, i(x) ∈ Var, i(y) ∈ Dom(i(x))
‘the value of variable x in outcome o is y ’

sc(c,x) i(c) ∈ Cs, X i(c) = i(x)
where i(x) ∈ Var,

‘c is a simple criterion on variable x ’
valpref(c,y1,y2) i(y1) ui(c) i(y2)

where i(c) ∈ Cs, i(y1), i(y2) ∈ Dom(X i(c))
‘simple criterion c weakly prefers value y1 over value y2’

cc(c) i(c) ∈ Cc

‘c is a cardinality criterion’
lc(c) i(c) ∈ Cl

‘c is a lexicographic criterion’
sub(c,c1) i(c1) ∈ Ci(c)

where i(c) ∈ Cc ∪ Cl , i(c1) ∈ C
‘c1 is a subcriterion of criterion c’

prior(c,c1,c2) i(c1) ⊳i(c) i(c2)
where i(c) ∈ Cl , i(c1), i(c2) ∈ C

‘subcriterion c1 has higher priority than subcriterion c2

according to lexicographic criterion c’

Table 5.1: The predicates in Pin and their interpretation

• The formulas specify different values for the same variable in the same out-
come: val(o,x,y) and val(o,x,y ′) contradict each other if y ≠ y ′.

• prior(c,c1,c2) and prior(c,c2,c1) contradict each other, since priority is
asymmetric.

Two other candidates for contradiction are not modelled as such because they are
handled in a different way.

One might argue that ϕ and ∼ ϕ are contradictory, and hence arguments con-
cluding them should rebut each other. However, the status of these conclusions is
not equal. ϕ has to be derived and is grounded in facts in the knowledge base. ∼ ϕ
on the other hand is an assumption that can be made in the absence of evidence to
the contrary. ϕ is such evidence to the contrary, and that is why an argument con-
cluding ϕ undercuts the inference of ∼ ϕ instead of rebutting the conclusion (see the
inference schemes for weak negation and its undercutter below).

Incompatible preference statements, such as e.g. spref(c,o1,o2) and
epref(c,o1,o2) will resolve because epref(c,o1,o2) can only be derived if
pref(c,o2,o1), in which case the ∼pref(c,o2,o1) premise needed to derive
spref(c,o1,o2) will be undercut. Hence to have such arguments rebut each other
would be superfluous.
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predicate interpretation
pref(c,o1,o2) i(o1) ⪰i(c) i(o2)

where i(c) ∈ C, i(o1), i(o2) ∈ Ω
‘criterion c weakly prefers outcome o1 over outcome o2’

spref(c,o1,o2) i(o1) ≻i(c) i(o2)
where i(c) ∈ C, i(o1), i(o2) ∈ Ω

‘criterion c strictly prefers outcome o1 over outcome o2’
epref(c,o1,o2) i(o1) ≈i(c) i(o2)

where i(c) ∈ C, i(o1), i(o2) ∈ Ω
‘criterion c equally prefers outcome o1 and outcome o2’

sp(c,o1,o2,n) ∣{s ∈ Ci(c) ∣ i(o1) ≻s i(o2)}∣ = n
where i(c) ∈ Cc , i(o1), i(o2) ∈ Ω

‘there are n subcriteria of cardinality criterion c
that strictly prefer outcome o1 over outcome o2’

nwp(c,o1,o2,n) ∣{s ∈ Ci(c) ∣ i(o1) /⪰s i(o2)}∣ = n
where i(c) ∈ Cc , i(o1), i(o2) ∈ Ω

‘there are n subcriteria of cardinality criterion c
that do not weakly prefer outcome o1 over outcome o2’

Table 5.2: The predicates in Pout and their interpretation

Input knowledge base An input knowledge base is a set of formulas of the input
language. A knowledge base KB corresponds to a QPS S = ⟨Var, Dom, K ,Ω,C⟩ if the
following condition holds: a formula ϕ is in KB iff its interpretation holds in S. Note
that a knowledge base corresponding to a QPS is conflict-free, i.e. does not contain
contradictory formulas.

Example 5.1. We will use a running example throughout the paper to illustrate the
details of the argumentation framework. Anne is planning to go on holiday with a
friend. Anne’s overall preference is based on three simple criteria: c1: that someone
(she or the accompanying friend) speaks the language (sl), c2: that it is sunny (su)
and c3: that she has not been there before (bb). c1 and c2 have equal priority,
so they are aggregated in a cardinality criterion c4. c3 and c4 are combined in a
lexicographic criterion c5 where c3 has higher priority than c4. This information
can be represented in the following knowledge base.

Facts about two of the possible outcomes:
val(o1,sl,true) val(o1,su,true) val(o1,bb,true)
val(o2,sl,false) val(o2,su,true) val(o2,bb,false)

Information about the preferences:
lc(c5) cc(c4) sc(c1,sl) valpref(c1,true,false)
sub(c5,c3) sub(c4,c1) sc(c2,su) valpref(c2,true,false)
sub(c5,c4) sub(c4,c2) sc(c3,bb) valpref(c3,false,true)
prior(c5,c3,c4)
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5.3.5 Inference rules

In this section we present the inference rules that are used in the argumentation
framework to build arguments.

Weak negation The following two inference rules make sure that (i) a weakly
negated formula can always be derived, but (ii) this inference will be undercut if
the formula itself can be derived. So ∼ ϕ is sceptically justified iff ϕ is overruled.

∼ ϕ asm(∼ ϕ)
ϕ

asm(∼ ϕ) is inapplicable
asm(∼ ϕ)uc

Strict and equal preference The following inference schemes are used to derive
strict and equal preference from weak preference according to the common defini-
tions.

pref(c,o1,o2) ∼pref(c,o2,o1)

spref(c,o1,o2)

pref(c,o1,o2) pref(c,o2,o1)

epref(c,o1,o2)

Preference by a simple criterion The following inference rule concludes that a
simple criterion prefers one outcome over another if, for the variable that it is based
on, it prefers the value of the first outcome over the value of the second. This is
exactly the definition of preference by a simple criterion in a QPS.

sc(c,x) val(o1,x,y1) val(o2,x,y2) valpref(c,y1,y2)

pref(c,o1,o2)

Example 5.2. The following argument infers that simple criterion c1 prefers o1 over
o2. Similar arguments can be constructed for c2 and c3.

sc(c1,sl) val(o1,sl,true) val(o2,sl,false) valpref(c1,true,false)

pref(c1,o1,o2)

Preference by a cardinality criterion The next inference scheme derives prefer-
ence by a cardinality criterion according to its definition in a QPS: an outcome o1 is
weakly preferred over an outcome o2 if there are at least as many subcriteria that
strictly prefer o1 over o2 as subcriteria that do not weakly prefer o1 over o2.

cc(c) sp(c,o1,o2,l) nwp(c,o1,o2,m) l ≥ m

pref(c,o1,o2)

Preference by a cardinality criterion is based on (i) the number of subcriteria that
strictly prefer one outcome over the other, and (ii) the number of subcriteria that do
not weakly prefer one outcome over the other. The following inference rules provide
the required counting mechanism.

The next inference rules conclude that there are n subcriteria of c that strictly
prefer o1 over o2, resp. that there are n subcriteria of c that do not weakly prefer o1

over o2.
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spref(c1,o1,o2) . . . spref(cn,o1,o2) sub(c,c1) . . . sub(c,cn)

sp(c,o1,o2,n)
SP(c, o1, o2, n)

∼pref(c1,o1,o2) . . . ∼pref(cn,o1,o2) sub(c,c1) . . . sub(c,cn)

nwp(c,o1,o2,n)
NWP(c, o1, o2, n)

If there are no subcriteria of c that strictly prefer o1 over o2, resp. that do not
weakly prefer o1 over o2, no premises are needed to infer this.

sp(c,o1,o2,0)
SP(c, o1, o2,0)

nwp(c,o1,o2,0)
NWP(c, o1, o2,0)

With these inference schemes, it is possible to derive a formula sp(c,o1,o2,n)
for any n between 0 and the actual number of subcriteria of c that strictly prefer o1

over o2. We want to make sure that only the formula that counts all subcriteria of c
that strictly prefer o1 over o2 is justified. To this end, the following inference rules
provide an undercutter for the previous schemes when they are non-maximal.

spref(c1,o1,o2) . . . spref(cn,o1,o2) sub(c,c1) . . . sub(c,cn) m < n

SP(c, o1, o2, m) is inapplicable
SP(c, o1, o2, m)uc

∼pref(c1,o1,o2) . . . ∼pref(cn,o1,o2) sub(c,c1) . . . sub(c,cn) m < n

NWP(c, o1, o2, m) is inapplicable
NWP(c, o1, o2, m)uc

Example 5.3. The following argument concludes that there is one subcriterion of c4
that strictly prefers o1 over o2.

⋮
pref(c1,o1,o2) ∼pref(c1,o2,o1)

spref(c1,o1,o2) sub(c4,c1)

sp(c4,o1,o2,1)

It is also possible to construct an argument stating that there are two such criteria,
but it will be undercut.

⋮
pref(c1,o1,o2) ∼pref(c1,o2,o1)

spref(c1,o1,o2)

⋮
pref(c2,o1,o2) ∼pref(c2,o2,o1) ∗

spref(c2,o1,o2) sub(c4,c1) sub(c4,c2)

sp(c4,o1,o2,2)

⋮
pref(c2,o2,o1)

∗ is inapplicable

The following argument concludes that c4 prefers o1 over o2.

⋮
sp(c4,o1,o2,1) nwp(c4,o1,o2,0) 1 ≥ 0

pref(c4,o1,o2)
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Preference by a lexicographic criterion The following inference rule concludes
that a lexicographic criterion c prefers an outcome o1 over an outcome o2 if o1 is pre-
ferred over o2 by a subcriterion of c. This inference is undercut by the next inference
rule if there is a subcriterion of c with higher priority that does not prefer o1 over o2.

lc(c) sub(c,c1) pref(c1,o1,o2)

pref(c,o1,o2)
LC(c, c1, o1, o2)

lc(c) sub(c,c2) ∼pref(c2,o1,o2) ∼prior(c,c1,c2)

LC(c, c1, o1, o2) is inapplicable
LC(c, c1, o1, o2)uc

According to its definition in a QPS, a lexicographic criterion c prefers o1 over o2

if every subcriterion either (weakly) prefers o1 over o2 or there is a higher priority
subcriterion that strictly prefers o1 over o2. So if c prefers o1 to o2, all undominated
(w.r.t. priority) subcriteria prefer o1 to o2. pref(c,o1,o2) can be derived based on
any of those subcriteria, and there will be no justified undercutter. If c does not prefer
o1 to o2, it may still be possible to construct an argument for pref(c,o1,o2), but it
will be undercut because there is another subcriterion that does not prefer o1 to o2

and does not have lower priority. So together this pair of inference schemes correctly
models the definition of preference by a lexicographic criterion in a QPS.

Example 5.4. The following argument concludes that c5 prefers o1 to o2 based on
its subcriterion c4.

lc(c5) sub(c5,c4)

⋮
pref(c4,o1,o2)

pref(c5,o1,o2)
∗

However, this argument is undercut by the following one stating that there is
another subcriterion, c3, that does not prefer o1 to o2 and does not have lower
priority than c4.

lc(c5) sub(c5,c3) ∼pref(c3,o1,o2) ∼sprior(c5,c4,c3)
∗ is inapplicable

The only justified argument for preference between o1 and o2 by c5 is the fol-
lowing one.

lc(c5) sub(c5,c3)

sc(c3,bb) val(o2,bb,false) val(o1,bb,true) valpref(c3,false,true)

pref(c3,o2,o1)

pref(c5,o2,o1)

5.3.6 Correspondence between QPS and AF

Theorem 5.1. Let S = ⟨Var, Dom, K ,Ω,C⟩ be a QPS, KB a knowledge base that cor-
responds to S, and AF the argumentation framework built from KB. Then ϕ is a
sceptically justified conclusion of AF iff its interpretation holds in S.
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For every formula in KB, its interpretation holds in S (definition of correspon-
dence). Every formula in the input language whose interpretation holds in S is in KB
(definition of correspondence). All formulas in KB are justified since KB is conflict-
free. For every inference rule, its conclusion is justified if and only if its premises are
justified and all its undercutters (if any) are overruled. We have shown that every
inference or pair of inference and its undercutter inference models the corresponding
QPS definition: the interpretation of the conclusion holds in a QPS if and only if the
interpretations of all premises hold and and the interpretations of the premises of all
undercutters do not all hold.

5.4 Reasoning with background knowledge

The argumentation framework presented in the previous section models a QPS if the
input is a knowledge base corresponding to that QPS. In order for a knowledge base
to correspond to a QPS, it is necessary to specify the values of all variables for every
outcome. This corresponds to the formal (abstract) concept of an outcome as an
assignment of a value to every variable in a given set of variables, as defined in the
QPS framework.

In practice, an outcome is a concrete alternative (a decision, product, agreement
etc.). The major difference is that not all attributes may be known. In a sense, such
alternatives can be seen as partial outcomes (or sets of outcomes that share some
attributes). Even though not all attributes may be specified beforehand, it is often
possible to derive the values of some of the unspecified variables using background
information. For example, if it is not specified whether someone speaks the language
for a given holiday option, such information may be inferred if it is known that the
destination is Barcelona which is in Spain, where the language is Spanish, Juan will
accompany Anne, and he speaks Spanish.

In this section we introduce an extension of the argumentation framework in
which it is possible to reason with such background knowledge. To this end, we
extend the language and add one more inference scheme. This extension makes
the system more flexible in case of incomplete specifications. If some attributes re-
main unknown even with reasoning with background knowledge, the argumentation
framework still works correctly, it will just infer less preferences.

5.4.1 Language

Background knowledge is expressed using a set of predicates PK which may differ per
application domain. Atoms built with these predicates may also be negated (strong
negation). Furthermore, a new construct is added to the input language: (defeasible)
rules that consist of a set of (possibly weakly negated) antecedents and a consequent
(the same kind of rules is used by Prakken and Sartor [105]).

Definition 5.10. (Language) The input language is defined as follows.
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atomin ::= p(t1,. . .,tn) where p is an n-ary predicate ∈ Pin

atomK ::= p(t1,. . .,tn) where p is an n-ary predicate ∈ PK

literalin ::= atomin ∣ atomK ∣ ¬atomK

rule ::= literalin, . . ., literalin, ∼ literalin, . . ., ∼ literalin => literalin
formulain ::= literalin ∣ rule

The full language is defined as follows.
atomout ::= p(t1,. . .,tn) where p is an n-ary predicate ∈ Pout

literal ::= literalin ∣ atomout

formula ::= literal ∣ ∼ literal ∣ rule

Contradictory formulas Adding strong negation to the language also adds an ad-
ditional way in which two formulas can be contradictory.

• A and ¬A contradict each other.

Example 5.5. Anne’s criteria for a holiday are the same as before, but the informa-
tion that she has about her options is different. The values of the variables sl, su
and bb on which her preferences are based are not specified. Instead, for every out-
come she only knows who of her friends is going with her (fr): Juan (j) or Mario
(m), and the destination (de): Barcelona (b) or Rome (r). Besides, she has some
relevant background information. All of this is specified in the following knowledge
base.

Some facts from the background knowledge:
in(b,spain) in(r,italy)
mediterranean(spain) mediterranean(italy)
language(spain,spanish) language(italy,italian)
speaks(j,spanish) speaks(m,italian)
beenTo(b)

Some rules from the background knowledge:
val(O,fr,X), val(O,de,C), in(C,Cn), language(Cn,L),

speaks(X,L) => val(O,sl,true)
∼val(O,sl,true) => val(O,sl,false)
val(O,de,C), in(C,Cn), mediterranean(Cn),

∼val(O,su,false) => val(O,su,true)
val(O,de,C), beenTo(C) => val(O,bb,true)
∼val(O,bb,true) => val(O,bb,false)

Facts about some of the possible outcomes:
val(o1,fr,j) val(o2,fr,j) val(o3,fr,m) val(o4,fr,m)
val(o1,de,b) val(o2,de,r) val(o3,de,b) val(o4,de,r)

Information about the preferences:
lc(c5) cc(c4) sc(c1,sp) valpref(c1,true,false)
sub(c5,c3) sub(c4,c1) sc(c2,s) valpref(c2,true,false)
sub(c5,c4) sub(c4,c2) sc(c3,n) valpref(c3,false,true)
prior(c5,c3,c4)
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5.4.2 Inferences

Defeasible modus ponens This inference rule applies a rule L1,. . .,Lk,∼ Ll,. . .,
∼ Lm => Ln: when all its antecedents hold, the consequent is concluded.

L1,. . .,Lk,∼ Ll,. . .,∼ Lm => Ln L1 . . . Lk ∼ Ll . . . ∼ Lm

Ln
DMP

Note the difference between a rule in the language and an inference rule. Defea-
sible modus ponens is an inference rule that applies a rule from the language. We
reserve inference rules for domain-independent inferences, and provide the possibil-
ity to specify domain-specific rules in the language. Instead of possible undercutters
of an inference rule, it is possible to have weakly negated antecedents for the same
purpose.

Example 5.6. Below are some of the arguments that can be built with the knowledge
base from Example 5.5. The values for the variables su and bb can be derived in a
similar way.

r val(o1,fr,j) val(o1,de,b) in(b,spain) lang(spain,spanish) speaks(j,spanish)

val(o1,sl,true)

where r is
val(O,fr,X), val(O,de,C), in(C,Cn), lang(Cn,L), speaks(X,L) => val(O,sl,true).

∼val(O,sl,true) => val(O,sl,false) ∼val(o2,sl,true)
val(o2,sl,false)

The argument deriving a preference for o1 over o2 by criterion c5 is the same
as in Example 5.4, except that val(o2,bb,false) and val(o1,bb,true) are
derived instead of taken directly from the knowledge base (for reasons of space, the
argument is cut in three).

lc(c5) sub(c5,c3)

sc(c3,bb) A B valpref(c3,false,true)

pref(c3,o2,o1)

pref(c5,o2,o1)

A:

∼val(O,bb,true) => val(O,bb,false) ∼val(o2,bb,true)
val(o2,bb,false)

B:

val(O,de,C), beenTo(C) => val(O,bb,true) val(o1,de,b) beenTo(b)

val(o1,bb,true)



120 CHAPTER 5. ARGUMENTATION FRAMEWORK FOR QPS

5.5 Conclusion

In this paper we presented an argumentation framework for representing and rea-
soning about qualitative multi-criteria preferences. We showed that this argumen-
tation framework models the preferences as defined by Qualitative Preference Sys-
tems. Qualitative Preference Systems use both cardinality and lexicographic ordering
to combine multiple criteria, which are ultimately based on the attributes of the out-
comes. In an extension of the base argumentation framework we added the means
to reason with background knowledge, which adds expressivity and flexibility in case
of incomplete specifications.

Argumentation about preferences has been studied extensively in the context of
decision making [94, 7]. The aim of decision making is to choose an action to per-
form. The quality of an action is determined by how well its consequences satisfy
certain criteria. For example, Amgoud and Prade [7] present an approach in which
arguments of various strengths in favour of and against a decision are compared.
However, it is a two-step process in which argumentation is used only for epistemic
reasoning. Also in [26, 50], preferences are based on arguments, but not them-
selves derived using argumentation. In our approach, we combine reasoning about
knowledge, criteria and preferences between outcomes in a single argumentation
framework.

Within the context of argumentation, an approach that is related to criteria is
value-based argumentation [17, 16]. Values are used in the sense of ‘fundamental
social or personal goods that are desirable in themselves’ [16], and are used as the
basis for persuasive argument in practical reasoning. A value can be seen as a binary
criterion that is satisfied if the value is promoted. In value-based argumentation, ar-
guments are associated with values that they promote. Values are ordered according
to importance to a particular audience. An argument only defeats another argument
if it attacks it and the value promoted by the attacked argument is not more impor-
tant than the value promoted by the attacker. In this framework, every argument
is associated with only one value, while in many cases there are multiple values or
interests at stake. Kaci and Van der Torre [71] define so-called value-specification
argumentation frameworks, in which arguments can support multiple values, and
preference statements about values can be given. However, the preference between
arguments is not derived from the preference between the values promoted by the
arguments. Besides, there is no guarantee that a value-specification argumentation
framework is consistent, i.e., some sets of preference statements do not correspond
to a preference ordering on arguments.

In value-based argumentation, we cannot argue about what values are promoted
by the arguments or the ordering of values; this mapping and ordering are supposed
to be given. But these might well be the conclusion of reasoning, and might be
defeasible. Therefore, it would be natural to include this information at the object
level. Van der Weide et al. [134] describe some argument schemes regarding the
influence of certain perspectives on values. However, for the aggregation of multiple
values, they assume a given order on sets of values, whereas we want to derive such
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an order from an order on individual values.
In our future work we would like to look into the possibilities that the presented

framework offers to not only derive missing information about the attributes of out-
comes, but also information about e.g. the criteria that are used and their preferences
between attribute values, or priority between subcriteria. This would be especially
useful when modelling other agents’ preferences, e.g. the opponent in negotiation or
someone you have to make a joint decision with. Often, another person’s preferences
are not (completely) known, but some of them may be inferred by default.



Chapter 6

Explaining qualitative
preference models

Abstract We propose an explanation facility for a qualitative preference repre-
sentation framework. We show how an explanation can be provided for qual-
itative, multi-criteria preferences based on the criteria that are used to decide
preferences between outcomes. Such a facility provides an important tool for a
user to understand how preferences are determined. We show that this facility
can also be used by a user to inform the system about its preferences. Such a
user-provided explanation can be used for updating and improving a preference
model maintained by the system.

6.1 Introduction

A preference representation framework provides a tool for determining preferences
between outcomes. That is, for any two outcomes it can determine whether one is
strictly preferred to the other, both are equally preferred, or they are incomparable.
In this paper, we discuss an additional facility, namely the explanation of preferences
maintained by such a system. Explanation of preferences is useful and important in
many cases, such as situations where a decision maker has to explain his decision
to other actors; where a decision support system that is elicited from an expert has
to explain its list of recommended options to a non-expert user; or where agents
may give each other feedback on offers in negotiation, without revealing all their
preferences [82]. Another reason to use explanation is to improve users’ confidence
in a system, since lack of confidence is an obstacle to acceptance and practical use of
the system [92]. In these cases, it is not satisfactory to just present the preference
model. Although this model does contain all information on which the preference is
based, the format is not suitable for presentation to a user. First, the model is too
technical for the average human user to interpret. Second, even experts may have
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trouble interpreting the model since it may be quite large, and hence it would be
hard to quickly find the reason behind the preference.

Besides explaining someone’s preferences to another party, explanation may also
be used ‘in reverse’ during preference elicitation and updating. Here the idea is as fol-
lows. The user is not only asked to state his preference between two given outcomes,
but also to explain this preference. This explanation can then be used to update the
preference model in such a way that the explanation for the user’s preference that
would be generated by the updated model coincides with the explanation given by
the user.

In this paper we propose an approach to generate explanations from a preference
model and to use explanations to update a preference model. The preference models
we consider are expressed in a particular preference representation framework called
Qualitative Preference Systems (QPS) [121, 130]. QPS is a general framework for
the representation of qualitative, multi-criteria preferences. In Section 6.2, we give
a summary of the QPS framework. In Section 6.3 we propose a way to explain
qualitative preferences by the deciding criteria, and discuss in particular how this can
be implemented for QPS models. In Section 6.4 we discuss how such explanations,
if given by the user of a system, can be used to update the system’s current model of
the user’s preferences. We give detailed interaction diagrams that indicate when and
how a QPS preference model should be altered. Section 6.5 concludes the paper.

6.2 Qualitative Preference Systems

The main aim of the Qualitative Preference System (QPS) framework [121, 130] is to
determine preferences between outcomes in a purely qualitative way. Outcomes are
defined as variable assignments that respect the constraints in a knowledge base. The
preferences between outcomes are based on multiple criteria. Every criterion can be
seen as a reason for preference, or as a preference from one particular perspective.
We distinguish between simple and compound criteria. Simple criteria are based
on a single variable. Multiple (simple) criteria can be combined in a compound
criterion to determine an overall preference. QPS distinguishes between two kinds of
compound criteria: cardinality criteria and lexicographic criteria. The subcriteria of
a cardinality criterion all have equal priority, and preference is determined by a kind
of voting mechanism that counts the number of subcriteria that support a certain
preference and those that do not. In a lexicographic criterion, the subcriteria are
ordered by priority and preference is determined by the subcriteria with the highest
priority; lower priority subcriteria only influence the preference if the higher priority
subcriteria are indifferent.

Definition 6.1. (Qualitative Preference System [121]) A Qualitative Preference
System (QPS) is a tuple ⟨Var, Dom, K ,C⟩. Var is a finite set of variables. Every variable
X ∈ Var has a domain Dom(X) of possible values. K (a knowledge base) is a set of
constraints on the assignments of values to the variables in Var. An outcome α is an
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assignment of a value x ∈ Dom(X) to every variable X ∈ Var, such that no constraints
in K are violated. Ω denotes the set of all outcomes: Ω ⊆∏X∈Var Dom(X). αX denotes
the value of variable X in outcome α. C is a finite rooted tree of criteria, where
leaf nodes are simple criteria and other nodes are compound criteria. Child nodes
of a compound criterion are called its subcriteria. The root of the tree is called the
top criterion. Weak preference between outcomes by a criterion c is denoted by the
relation ⪰c . ≻c denotes the strict subrelation, ≈c the indifference subrelation. α ≻cβ
denotes that α /⪰c β and β /⪰c α.

Definition 6.2. (Simple criterion [121]) A simple criterion c is a tuple ⟨X c ,uc⟩,
where X c ∈ Var is a variable, and uc , a preference relation on the possible values
of X c , is a preorder on Dom(X c). ⋗c is the strict subrelation, ≐c is the indifference
subrelation. A simple criterion c = ⟨X c ,uc⟩ weakly prefers an outcome α over an
outcome β , denoted α ⪰c β , iff αX c uc βX c .

Definition 6.3. (Goal [130]) A QPS goal is a simple criterion ⟨X ,u⟩, where X ∈ Var
is a Boolean variable (Dom(X) = {⊺,�}), and ⊺ ⋗ �.

Definition 6.4. (Goal-based cardinality criterion [130]) A goal-based cardinality
criterion c is a tuple ⟨Cc⟩ where Cc is a nonempty set of goals (the subcriteria or
subgoals of c). A goal-based cardinality criterion c = ⟨Cc⟩ weakly prefers an outcome
α over an outcome β , denoted α ⪰c β , iff ∣{s ∈ Cc ∣ α ≻s β}∣ ≥ ∣{s ∈ Cc ∣ α /⪰s β}∣, or
equivalently, iff ∣{s ∈ Cc ∣ αXs = ⊺}∣ ≥ ∣{s ∈ Cc ∣ βXs = ⊺}∣.

Note that a goal-based cardinality criterion can only have goals as subcriteria.
This is to guarantee transitivity of the preference relation induced by a cardinality
criterion [121].

Definition 6.5. (Lexicographic criterion [121]) A lexicographic criterion c is a tu-
ple ⟨Cc ,⊳c⟩, where Cc is a nonempty set of criteria (the subcriteria of c) and ⊳c , a
priority relation among subcriteria, is a strict partial order (a transitive and asymmet-
ric relation) on Cc . s ⊳cs′ denotes that s /⊳c s′ and s′ /⊳c s. A lexicographic criterion
c = ⟨Cc ,⊳c⟩ weakly prefers an outcome α over an outcome β , denoted α ⪰c β , iff
∀s ∈ Cc(α ⪰s β ∨ ∃s′ ∈ Cc(α ≻s′ β ∧ s′ ⊳c s)).

6.3 Explaining preferences

Ideally, any explanation given to a human user should be easily understandable by
that user. Therefore, both the content and the format of the explanation matter.
Labreuche [82] distinguishes between two steps in explanation generation. First, the
content of the explanation has to be selected. Next, a natural language explanation
has to be generated. Like Labreuche, we focus on the first step and only look at the
content of an explanation. An example of natural language generation for evaluative
arguments such as explanations can be found in [40].
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We are not aware of any work on the explanation of preferences represented in
a qualitative framework, but some work has been done on the explanation of (deci-
sions based on) quantitative preferences. Klein and Shortliffe [80] presented strate-
gies for automatically explaining decisions based on Multiattribute Value Theory (a
quantitative preference representation framework). The explanations are based on
the compellingness of objectives. Labreuche [82] presents a general framework for
explaining the results of a multi-attribute preference model. He takes a quantitative
approach where the utilities of the combined criteria are weighted and summed to
obtain an overall utility. He develops a formal framework that justifies the selection
of arguments (criteria) to be presented as explanation of a preference.

One of the main differences between quantitative and qualitative approaches to
multi-criteria preference modelling is that quantitative approaches are compensatory,
whereas their qualitative counterparts are not. In quantitative approaches, a low
score on one criterion can be compensated by high scores on other criteria, even
if the other criteria are less important, as long as the scores are high enough. In
qualitative approaches, this is not possible. For example, if one outcome is preferred
to another according to the highest priority subcriterion of a lexicographic criterion,
it will also be preferred according to this lexicographic criterion, no matter what
the preferences of the other subcriteria are. This allows us to precisely identify the
criteria that are ‘responsible’ or ‘deciding’ for the overall preference. It is our intuition
that these criteria also provide a natural explanation for the overall preference.

Explanations for preferences by QPS criteria

We now turn to the question how a preference between two outcomes by a QPS cri-
terion can be explained. The answer to this question depends on the kind of criterion
that is considered. Preferences by simple criteria (including goals) are self-explana-
tory, since they follow immediately from the specification of the simple criterion or
goal. For example, a simple criterion c strictly prefers an outcome α to an outcome
β because α’s value of X c is better than β ’s value of X c . Similarly, a goal c strictly
prefers an outcome α to an outcome β because α satisfies c but β does not. Of course,
these facts may in turn require explanation. But since this would be explanation of
knowledge (factual information about outcomes) rather than preferences, we do not
discuss this topic here.

Preferences by compound criteria can be explained by the subcriteria that are de-
ciding in the overall preference. Which subcriteria are deciding depends both on the
kind of compound criterion (lexicographic or goal-based cardinality criterion) and
on the kind of preference (strict, equal or incomparable). The deciding factor may
be a single subcriterion, a pair, or even a set of multiple subcriteria that together de-
termine the overall preference. In the following, we discuss the deciding subcriteria
(and hence the explanations) for both kinds of compound criteria and for all kinds
of preferences. An overview is given in Table 6.1.
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lexicographic criterion c goal-based cardinality criterion c
α ≻c β any subcriterion s ∈ Cc such that

α ≻s β and for all s′ ∈ Cc ∶ if s′ ⊳ s
then α ≈s′ β and if s′ ⊳s then
α ⪰s′ β or there is a
s′′ ∈ Cc(s′′ ⊳c s′ and α /≈s′′ β)

the set of subgoals g ∈ Cc such
that α ≻g β

α ≈c β for all subcriteria s ∈ Cc: α ≈s β the set of subgoals g ∈ Cc such
that α ≻g β plus the set of
subgoals g ∈ Cc such that β ≻g α

α ≻cβ 1: any subcriterion s ∈ Cc such
that α ≻sβ and for all s′ ∈ Cc ∶ if
s′ ⊳ s then α ≈s′ β
2: any pair of subcriteria (s1, s2)
where s1, s2 ∈ Cc such that α ≻s1 β
and β ≻s2 α and s1 ⊳cs2 and for all
s′ ∈ Cc ∶ if s′ ⊳c s1 or s′ ⊳c s2 then
α ≈s′ β

n/a

Table 6.1: Explanations

Lexicographic criteria

Strict preference Suppose a lexicographic criterion c strictly prefers an outcome
α over an outcome β (α ≻c β). The explanation of this preference is given by a
subcriterion s that strictly prefers α to β (α ≻s β). But not just any subcriterion that
strictly prefers α to β will do. First, every subcriterion s′ with a higher priority than
s (s′ ⊳c s) has to be indifferent: α ≈s′ β , otherwise s would have been overruled by
s′. Second, every subcriterion s′ whose priority is incomparable to that of s (s′ ⊳cs)
and which is not overruled (∀s′′ ⊳c s′ ∶ α ≈s′′ β) has to agree with s or be indifferent
(α ⪰s′ β), otherwise s would not have decided the preference by c.

Example 6.1. Consider the lexicographic criterion c displayed in Figure 6.1. It has
four subcriteria c1, c2, c3, c4 such that c1 ⊳c c2 ⊳c c4 and c3 ⊳c c4. The nature of the
subcriteria is unspecified, but their preferences regarding four outcomes α,β ,γ,δ
are given. The criterion c strictly prefers α over β: α ≻c β . The subcriteria that can
explain this preference are c2 and c3. c3 strictly prefers α over β , and is undominated.
c2 also strictly prefers α over β , and is dominated only by an indifferent criterion (c1).
Neither is ‘contradicted’ by a criterion with incomparable priority.

Equal preference A lexicographic criterion c is only indifferent between two out-
comes α and β (α ≈c β) if all its subcriteria are indifferent between α and β . No
single subcriterion is deciding in the overall preference, but all subcriteria contribute
equally (note that priority does not matter, since indifferent criteria do not overrule
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c

c1

c2

c3

c4⊳
⊳

⊳

α ≈c1 β ≈c1 γ ≻c1 δ
α ≻c2 β ≈c2 γ ≻c2 δ
α,δ ≻c3 β ≈c3 γ; α ≻c3δ
γ ≈c4 β ≻c4 δ ≻c4 α

Figure 6.1: Example lexicographic criterion

lower priority criteria). This means that the explanation of the indifference is given
by the fact that all subcriteria are indifferent.

Example 6.2. Consider again the lexicographic criterion c in Figure 6.1. c is indif-
ferent between β and γ, because all subcriteria are indifferent between β and γ.

Incomparability If a lexicographic criterion c cannot compare between two out-
comes α and β (α ≻cβ), this incomparability can have two possible reasons. First, the
incomparability may result from a subcriterion s that cannot compare between α and
β (α ≻sβ). Like in the case of strict preference, every subcriterion s′ with a higher
priority than s (s′ ⊳c s) has to be indifferent: α ≈s′ β , otherwise s would have been
overruled by s′.

Example 6.3. Consider again the lexicographic criterion c in Figure 6.1. c cannot
compare between α and δ. This is due to subcriterion c3, which cannot compare
between α and δ, and which is not overruled by any other subcriterion. Therefore c3

explains c’s incomparability between α and δ.

Second, the incomparability may result from two conflicting subcriteria that do
not overrule each other. That is, there is one subcriterion s1 that strictly prefers α to
β (α ≻s1 β), and all higher priority subcriteria are indifferent. There is also another
subcriterion s2 that strictly prefers β to α (β ≻s2 α), and all higher priority subcriteria
are indifferent. Note that this also means that s1 and s2 have incomparable priorities,
which means that neither overrules the other, so no preference can be determined.
In this case, the subcriteria s1 and s2 together explain the incomparability.

Example 6.4. Consider again the lexicographic criterion c in Figure 6.1. c cannot
compare between γ and δ. Subcriterion c3 strictly prefers δ over γ, the other three
subcriteria stricly prefer γ over δ. Not all subcriteria are suitable to explain the
incomparability. c4 is discarded because c3 has higher priority. But also c2 should not
be used, even though it is incomparable in priority with c3. This is because c1 has
higher priority and is not indifferent. This makes c1 and c3 the deciding criteria that
are used as explanation.
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Figure 6.2: Example goal-based cardinality criterion

Goal-based cardinality criteria

Strict preference Suppose a goal-based cardinality criterion c strictly prefers an
outcome α over an outcome β (α ≻c β). Then this is because the subgoals that α
satisfies outnumber the subgoals that β satisfies. There may be subgoals that are
satisfied by both α and β . They are counted on both sides, but do not influence the
overall preference between α and β . Therefore, as an explanation of c’s preference
of α over β we only consider the subgoals g that α satisfies but β does not (αX g = ⊺
and βX g = �, or equivalently, α ≻g β).

Example 6.5. Consider the goal-based cardinality criterion c2 displayed in Figure
6.2. It has four goals g1, g2, g3, g4 as subcriteria. For three outcomes α,β ,γ it is
given whether they satisfy each of the four goals. The criterion c2 strictly prefers
α to β . The explanation of this preference is given by the goals g1 and g2 that α
satisfies but β does not. Although α also satisfies goal g3, this goal is not used in
the explanation since it is also satisfied by β and hence is not deciding in the overall
preference. Similarly, c2’s preference of α over γ can be explained by the goals g2

and g3.

Equal preference If a goal-based cardinality criterion c equally prefers two out-
comes α and β (α ≈c β), this means that both outcomes satisfy the same number of
subgoals of c. However, it does not necessarily mean that both outcomes satisfy the
same goals. As explanation, we take the goals that α satisfies but β does not, and
the set of goals that β satisfies but α does not. Both (disjoint) sets contain the same
number of goals, which compensate for each other. This explains the indifference
between the two outcomes.

Example 6.6. Consider again the goal-based cardinality criterion c2 in Figure 6.2. c2

is indifferent between β and γ. Both outcomes satisfy two goals, but one goal (g4)
is satisfied by both outcomes. Therefore the explanation of the indifference is given
by g3 (which is satisfied by β but not by γ) and g1 (which is satisfied by γ but not by
β).
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6.4 Using explanation to update a preference model

Before a preference model can be used in practice in a system, it has to be constructed
or instantiated. Preference elicitation is likely to be an iterative process, and for this
reason an existing preference model should also be updateable. There are several
ways of constructing and updating a preference model. In this paper we focus on
the approach of guiding preference elicitation by asking the user particular questions
and updating the preference model according to the answers. The advantages of
this approach are that it provides an intuitive interaction with non-expert users and
that preferences can be discovered during the process. In particular, we consider
the case in which the user is asked not only to give his preference between two
outcomes, but also to provide an explanation for this preference. This explanation
can then be used to update the current preference model. If the user just provides
his preference between outcomes, there may be many different ways in which the
model could be updated to reflect this preference. The added value of additionally
obtaining an explanation from the user is that it provides clues on how exactly the
model should be updated, possibly after some further interaction involving targeted
follow-up questions.

Updating a QPS model with explanations

We investigate how a system’s current model of the user’s preferences can be updated
by engaging in a conversation with the user. Using explanations of preferences given
by a user, the system can find out whether its current representation is accurate, and
if not, where it has to be changed. Our approach allows for an initial model to be
present that can be adapted by the user. The user can add preference information
on his own initiative, or alternatively the system can ask the user to provide specific
preferences (for example between two outcomes that are incomparable in its current
model). In any case, if the preference given by the user does not match the preference
that follows from the system’s current model, the user is asked to provide an expla-
nation. We assume that the user’s explanation of his preference coincides with one of
the explanations listed in Table 6.1. Depending on the user’s answer and the nature
of the top criterion (lexicographic or goal-based cardinality), the system can proceed
by asking follow-up questions or updating its preference model in a particular way.

In the following, we discuss every situation in detail and provide interaction di-
agrams for each. We assume that the user has stated a preference between two
outcomes that is not supported by the system’s current preference model. It is impor-
tant to distinguish between the current preference model maintained by the system,
and the statements of the user. Since the interaction is designed to identify the ele-
ments of the model that need to be updated, the user’s statements typically disagree
with the current model. The interaction diagrams start with the system asking for
an explanation for the given preference. The system’s possible responses depend on
the explanation given and the current preference model. More than one response
may be applicable. In that case, the system should keep the interaction going until
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Figure 6.3: Updating with a strict preference by a lexicographic criterion

the preference model induces the given preference. When the process is finished, the
updated preference model should not only model the preference given by the user,
but also generate the same explanation for it.

Lexicographic criteria

Strict preference The interaction diagram for updating a preference model with a
strict preference of an outcome α over an outcome β by a lexicographic criterion c is
given in Figure 6.3. The explanation of such a preference is given by a subcriterion s
of c that, according to the user, strictly prefers α to β . There can be different reasons
why this subcriterion does not decide c’s preference in the current preference model
S.
• First, s may not strictly prefer α to β according to S. In this case, the user is asked

to explain this preference.
• Second, s may not be listed as a subcriterion of c in S. In this case, the system

adds s to the set of subcriteria Cc .
• Third, according to S there may be another subcriterion s′ that overrules s, i.e.

that has higher priority but is not indifferent between α and β . In this case, the
user is asked to clarify this issue, and may respond in several ways. (i) If the user
states that s′ actually is indifferent, he is asked for an explanation. (ii) If the user
states that s actually has higher priority than s′, the system updates the priority
relation accordingly. (iii) If the user states that s′ is not actually a subcriterion,
the system removes s′ from Cc .

• Fourth, according to S there may be another subcriterion s′ that is not comparable
in priority to s, does not weakly prefer α to β , and is not overruled. In this case,
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the user is asked to clarify this issue. The same responses by the user as in the
previous case are possible, plus two more. (iv) If the user states that s′ actually
strictly prefers α to β , he is asked to give an explanation. (v) If the user states that
there actually is another subcriterion s′′ with higher priority that strictly prefers
α to β , there are three options. If the preference does not follow from S, then the
user is asked for an explanation. If s′′ does not have higher priority than s′ in S,
the system updates the priority relation. And if s′′ was not listed as a subcriterion
of c, the system adds it with the right priority.

Equal preference The interaction diagram for updating a preference model with
an equal preference between two outcomes α and β by a lexicographic criterion c is
given in Figure 6.4. Such a preference is explained by the fact that, according to the
user, all subcriteria are indifferent. There can only be one reason that the indifference
does not follow from the current preference model S.
• There must be a subcriterion s in S that is not indifferent. In this case, the user

is asked to clarify this issue. He can do so in two different ways. (i) If the user
states that s is actually indifferent, he is asked to give an explanation. (ii) If the
user states that s is not actually a subcriterion of c, then the system removes s
from the set of subcriteria Cc .

Incomparability The interaction diagram for updating a preference model with an
incomparability between two outcomes α and β by a lexicographic criterion c is given
in Figure 6.5. Since there are two kinds of explanation of such an incomparability,
the interaction tree splits into two branches. If the incomparability is explained by a
subcriterion that cannot compare between α and β according to the user, the possible
responses are very similar to the case of strict preference. Therefore we do not discuss
this case here but refer to the lefthand branch in Figure 6.5 for the details. If the
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Figure 6.5: Updating with an incomparability by a lexicographic criterion

incomparability is explained by two contradicting subcriteria s1 and s2, where α ≻s1 β
and β ≻s2 α according to the user, there can be different reasons why these subcriteria
do not decide c’s preference in the current preference model S.

• First, it may be that α /≻s1 β or β /≻s2 α according to the current preference model
S. In this case, the user is asked to explain that preference.

• Second, s1 or s2 may not be listed as a subcriterion of c in S. In this case, the
system adds it to the set of subcriteria Cc .

• Third, according to S there may be another subcriterion s′1 that overrules s1. In
this case, the user can reply in different ways. (i) If the user states that s′1 is actu-
ally indifferent between α and β , he is asked for an explanation. (ii) If the user
states that s′1 does not actually have higher priority than s1, the system updates
the priority relation accordingly. (iii) If the user states that s′1 is not actually a
subcriterion of c, then the system removes s′1 from the set of subcriteria Cc .

• Fourth, according to S there may be another subcriterion s′2 that overrules s2. This
case is handled analogously to the third case.
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Goal-based cardinality criteria

Strict preference The interaction diagram for updating a preference model with
a strict preference of an outcome α over an outcome β by a goal-based cardinality
criterion c is given in Figure 6.6. The explanation of such a preference is given by a
set of subgoals g1, . . . , gn that are all satisfied by α but not by β according to the user.
There can be different reasons why this set of goals does not decide c’s preference in
the current preference model S.
• First, one of the goals may not be satisfied by α in S. In this case, the user is asked

to explain this fact.
• Second, one of the goals may be satisfied by β in S. In this case, the user is also

asked to give an explanation.
• Third, one of the goals may not be listed as a subgoal of c in S. In this case, the

system adds it to the set of subgoals Cc .
• Fourth, there may be a set of goals g ′1, . . . , g ′m that are all satisfied by β but not by
α according to S, which contains at least as many goals as g1, . . . , gn. In this case,
the user is asked to clarify this issue, and may respond in several ways. (i) If the
user states that one of the goals is actually satisfied by α or (ii) not satisfied by
β , he is asked to for an explanation. (iii) If the user states that one of the goals
is actually not a subgoal of c, then the system removes this goal from the set of
subgoals Cc .

Equal preference The interaction diagram for updating a preference model with
an equal preference between two outcomes α and β by a goal-based cardinality
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criterion c is given in Figure 6.7. The explanation of such a preference is given by
two equally sized sets of subgoals: g1, . . . , gn that are all satisfied by α but not by β ,
and g ′1, . . . , g ′n that are all satisfied by β but not by α according to the user. Again,
there can be different reasons why these sets of goals do not decide c’s preference in
the current preference model S.
• First, according to S, α may not satisfy some gi , β may satisfy some gi , β may

not satisfy some g ′i , or α may satisfy some g ′i . In this case, the user is asked to
give an explanation.

• Second, any gi or g ′i may not be listed as a subgoal of c in S. In this case, the
system adds it to the set of subgoals Cc .

• Third, according to S there may be a goal gm in Cc that is not in g1, . . . , gn and is
satisfied by α but not by β . In this case, the user is asked to clarify this issue and
may respond in several ways. (i) If the user states that β actually satisfies gm, or
(ii) α actually does not satisfy gm, he is asked to explain this fact. (iii) If the user
states that gm is actually not a subgoal of c, then the system removes gm from the
set of subgoals Cc .

• Fourth, according to S there may be a goal g ′m in Cc that is not in g ′1, . . . , g ′n and
is satisfied by β but not by α. This case is handled analogously to the third case.

6.5 Conclusion

Qualitative Preference Systems (QPS) [121, 130] provide a general framework for
the representation of qualitative, multi-criteria preferences. We have shown that the
composite tree structure of multiple criteria, combined with the non-compensatori-
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ness of a qualitative approach provides a basis for the generation of explanations for
the preferences that follow from a preference model represented in the QPS frame-
work. The explanation strategy that we proposed is based on the intuition that pref-
erences between outcomes can be explained by the criteria that are deciding in the
overall preference. We identified the explanations that can be given for different
preferences by different kinds of criteria. We then showed that the same explana-
tions can also be useful when updating a preference model, because they provide
information on how exactly the model should be updated.

Some interesting issues remain for future work. First, in some instances it may be
necessary to explain facts about the outcomes involved in a preferential comparison,
e.g. to explain why they do or do not satisfy a particular goal. Explanation of knowl-
edge and reasoning is a separate field of study that may provide solutions to this
issue. Second, when the system updates the priority relation between two subcrite-
ria of a lexicographic criterion, this relation has to remain a partial order. Moreover,
as the system iteratively engages in an interaction with the user as described here, it
has to ensure that the previous preferences and explanations expressed by the user
remain valid. It is important to investigate how such consistencies can be ensured.
Third, the explanation of preferences may be part of a larger picture, for example in
recommendation, decision making or planning. We would like to investigate how the
explanation mechanism presented here can be embedded in other explanation mech-
anisms, such as the one presented in [38], where a tree structure of goals and beliefs
is used to explain actions. Besides these theoretical considerations, we would like to
take a more practical approach and implement the QPS framework together with the
proposed explanation mechanism and update mechanism. We can then experimen-
tally test the validity of our intuitions. This is related to the work of Dieckmann et
al. [45], who tested the predictive performance of the Take the Best (TTB) heuristic
[57], which is a simplified instantiation of the lexicographic rule.



Chapter 7

Multi-Attribute
Preference Logic

Abstract Preferences for objects are commonly derived from ranked sets of prop-
erties or multiple attributes associated with these objects. There are several op-
tions or strategies to qualitatively derive a preference for one object over another
from a property ranking. We introduce a modal logic, called Multi-Attribute Pref-
erence Logic, that provides a language for expressing such strategies. The logic
provides the means to represent and reason about qualitative multi-attribute
preferences and to derive object preferences from property rankings. The main
result of the paper is a proof that various well-known preference orderings can
be defined in Multi-Attribute Preference Logic.

7.1 Introduction

Preferences may be associated with various entities such as states of affairs, proper-
ties, objects and outcomes in e.g. games. Our main concern here are object prefer-
ences. A natural approach to obtain preferences about objects is to start with a set
of properties of these objects and derive preferences from a ranking of these proper-
ties, where the ranking indicates the relative importance or priority of each of these
properties. This approach to obtain preferences is typical in multi-attribute decision
theory, see e.g. Keeney and Raiffa [76]. Multi-attribute decision theory provides a
quantitative theory that derives object preferences from utility values assigned to
outcomes which are derived from numeric weights associated with properties or at-
tributes of objects. As it is difficult to obtain such quantitative utility values and
weights, however, several qualitative approaches have been proposed instead, see
e.g. [28, 33, 34, 44, 86]. There is also extensive literature on preference logic fol-
lowing the seminal work of Von Wright [138, 61], but such logics are not specifically
suited for the multi-attribute case. To illustrate what we are after, we first present a
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Figure 7.1: Properties of three houses

motivating example that is used throughout the paper.

Example 7.1. Suppose we want to buy a house. The properties that we find impor-
tant are that we can afford the house, that it is close to our work, and that it is large,
in that order. Consider three houses, house1, house2 and house3, whose properties are
listed in Figure 7.1, which we have to order according to our preferences. It seems
clear that we would prefer house1 over the other two, because it has two of the most
important properties, while both other houses only have one of these properties. But
what about the relative preference of house2 and house3? house3 has two out of three
of the relevant properties where house2 has only one. If the property that house2

has is considered more important than both properties of house3, house2 would be
preferred over house3.

Key to a logic of multi-attribute preferences is the representation of property
rankings. Encodings of property rankings have been explored by Coste-Marquis et
al. [44] where they are called goal bases, and by Brewka [33] where they are called
ranked knowledge bases. Such ranked goals are binary, and in this paper we also
consider desired attributes that are binary (as opposed to numeric or ordinal ones).
Coste-Marquis et al. and Brewka moreover discuss various options, or strategies, for
deriving object preferences from a property ranking. The preference orderings thus
obtained are not expressed in a logic, however. Brewka et al. [34] propose a non-
monotonic logic called qualitative choice logic to reason about multi-attribute pref-
erences. An alternative approach towards a logic of multi-attribute preferences is
presented in Liu [86] where property rankings called priority sequences are encoded
in first-order logic. Both approaches are based on one particular strategy, namely
lexicographic ordering, and cannot be used to reason about preference orderings.

In this paper a generic logic of qualitative multi-attribute preferences is proposed
in which property rankings and associated strategies for deriving object preferences
from such rankings can be defined. In Section 7.2 the syntax and semantics of Multi-
Attribute Preference Logic is introduced. Section 7.3 shows how various strategies
to obtain object preferences from a property ranking can be defined in the logic.
Section 7.4 presents the main result of the paper and shows that property rankings
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encoded as ranked knowledge bases and a number of related strategies to obtain
preference orderings can be equivalently translated into Multi-Attribute Preference
Logic. Section 7.5 concludes the paper.

7.2 Multi-Attribute Preference Logic

7.2.1 Syntax and semantics

The logic of multi-attribute preferences that we introduce here is an extension of the
modal binary preference logic presented by Girard [58]. This logic is a propositional
modal logic with a modal operator ◻≤ϕ, and its dual ◇≤ϕ. Here ◻≤ϕ expresses that
ϕ is true in all states that are at least as good as the current state. Binary preference
relations over formulae are subsequently defined. One of the more natural binary
preference statements is ϕ <∀∀ ψ which expresses that any state where ψ is true is
strictly better than any state where ϕ is true. That is, whenever ϕ is the case, ψ is
preferred, and never vice versa. By adding a global modality U to the language, the
binary preference operator <∀∀ can be defined by U(ψ→ ◻≤¬ϕ), when it is assumed
that the underlying order on worlds or states has been completely specified, i.e. is
total.

Multi-Attribute Preference Logic adds two operators to binary preference logic.
First, Multi-Attribute Preference Logic, as in hybrid logic [23] adds names for objects
to the language by adding nullary modal operators i, j to the language. The seman-
tics of the operators introduced here, however, differs from the standard semantics
of hybrid logic. Here i, j are used as names for objects which semantically are more
complex entities than the usual worlds of modal semantics. In order to avoid confu-
sion, we will refer to i, j as object names below. This language extension allows us
to talk about objects and associated preferences explicitly.

Second, the logic introduces a new modal operator ◻≠. The language of Multi-
Attribute Preference Logic consists of four unary modal operators. Instead of the
single operator ◻≤ it is more convenient to introduce the two operators ◻< and ◻=:
informally, ◻<ϕ expresses that at all worlds that are ranked higher than the current
one ϕ is true, whereas ◻=ϕ expresses that at all worlds that are equally ranked to
the current one ϕ is true. The modal operator ◻≠ is introduced to inspect worlds that
are not ranked equally to the current one.

Definition 7.1. (Language) Let At be a set of propositional atoms with typical
element p and Nom be a set of names, with typical elements i, j. The language Lpref

is defined as follows:

ϕ ∈ Lpref ∶∶= p ∣ i ∣ ¬ϕ ∣ ϕ ∧ϕ ∣ ◻= ϕ ∣ ◻≠ ϕ ∣ ◻< ϕ ∣ Uϕ

Disjunction ∨, implication →, and bi-implication ↔ are defined as the usual ab-
breviations. ◇<ϕ,◇=,◇≠ are abbreviations for ¬◻< ¬ϕ, ¬◻= ¬ϕ, and ¬◻≠ ¬ϕ. ◻≤ϕ
is short for ◻<ϕ ∧ ◻=ϕ and ◇≤ϕ is its dual. The dual of the global modal operator,
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Eϕ, is defined as ¬U¬ϕ. We also write Uiϕ for U(i → ϕ) and Eiϕ for E(i ∧ ϕ) for
i ∈ Nom. Finally, the set of purely propositional formulae is denoted by L0 and con-
sists of all formulae without any occurrences of modal operators or names i ∈ Nom.
ϕ ∈ L0 is also called an objective formula.

The basic concepts in the semantics for Multi-Attribute Preference Logic are ob-
jects and properties those objects may have. Properties are naturally represented by
sets of worlds. As we want to use properties to classify the ranking of objects, prop-
erties are ordered in correspondence with their relative importance; such an order is
called a property ranking here. To order properties, i.e. sets of worlds, it is required
that properties are disjoint sets of worlds. Property rankings will be derived from an
order on worlds below.

Objects are also identified with particular sets of worlds. The idea is that the
properties (in the sense of the previous paragraph) of an object can be derived from
the worlds which define the object. To ensure that objects are coherent, that is have a
uniquely defined set of properties, the worlds that define the object need to be copies
of each other, which means that these worlds need to assign the same truth values to
propositional atoms. Objects are identified with equivalence classes of worlds with
respect to a truth assignment.

Definition 7.2. (Object) Let W be a set of worlds and V be a mapping of W to truth
assignments 2At. An object is an equivalence class on W with respect to V . The set
OV denotes the set of all objects defined by W and V and is formally defined by:

OV = {[w]V ∣ w ∈ W}

where [w]V = {v ∈ W ∣ V(w) = V(v)}. Whenever V is clear from the context, we
drop the subscript V . As an object o is the equivalence class of a world w with respect
to V , we also say that world w identifies object o.

Definition 7.3. (Model) A multi-attribute preference model M is a tuple ⟨W,≾, V, N⟩
where W is a set of worlds with typical elements u, v, w, ≾ is a total pre-order (i.e.
a reflexive, transitive and total relation) on W , V is a valuation function mapping
worlds in W onto truth assignments in 2At, and N is a naming function. The strict
subrelation ≺ of ≾ is defined by: v ≺ w ∶= v ≾ w & w /≾ v. We write v ∼ w whenever
v ≾ w and w ≾ v.

Although the strict order ≺ derived from ≾ indicates a ranking of worlds where
v ≺ w means that w is ranked higher than v, we do not say that w is preferred over v,
because we want to reserve this terminology for talking about objects. A preference
between objects is derived from the ranking ≾ over worlds. The naming function N
maps names i to objects o.

The truth definition for propositional atoms and Boolean operators is standard.
Given a model M = ⟨W,≾, V, N⟩, the semantics of names i ∈ Nom is provided by
the naming function N . The truth definitions for most modal operators are also
standard definitions using the associated accessibility relations for these operators.
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The semantic clause for ◻= is defined by means of the relation ∼, which is derived
from the order ≾. Similarly, the semantic clause for ◻< is provided by means of the
strict order ≺. The global operator U simply inspects all worlds in a model.

The truth definition for ◻≠ is not directly defined in terms of a given relation on
W . It inspects all worlds that (i) are not ranked equally as the current one, and (ii)
are not copies of worlds that are ranked equally as the current one. The motivation
for this definition will become clear in Section 7.2.2 when clusters are introduced.

Definition 7.4. (Truth Definition) Let M = ⟨W,≾, V, N⟩ be an MPL model and w ∈ W
a world. The truth of a formula ϕ ∈ Lpref in M at w is defined by:
M, w ⊧ p ⇔ p ∈ V(w)
M, w ⊧ i ⇔ w ∈ N(i)
M, w ⊧ ¬ϕ ⇔ M, w /⊧ ϕ
M, w ⊧ ϕ ∧ψ ⇔ M, w ⊧ ϕ & M, w ⊧ ψ
M, w ⊧ ◻=ϕ ⇔ ∀v ∶ w ∼ v ⇒ M, v ⊧ ϕ
M, w ⊧ ◻≠ϕ ⇔ ∀u ∈ ⋃{[v]V ∣ w ∼ v} ∶M, u ⊧ ϕ
M, w ⊧ ◻<ϕ ⇔ ∀v ∶ w ≺ v ⇒ M, v ⊧ ϕ
M, w ⊧ Uϕ ⇔ ∀v ∶M, v ⊧ ϕ

A name i ∈ Nom refers to an object o and, semantically, is true at a world w that
identifies the object o, i.e. w ∈ o. A name thus is a special kind of operator that is
true in all worlds that identify a certain object, and false in all other worlds. We can
express that an object i has a property ϕ by Eiϕ = E(i ∧ ϕ). As we have E(i) as a
validity and the worlds that identify the corresponding object o are copies of each
other, we have Eiϕ ↔ Uiϕ for objective ϕ. This shows that an object is coherent
in the sense that an object has a consistent set of objective properties and can be
uniquely identified by this set.

The language also allows us to express properties that concern comparison of
objects. For example, U(i → ◇< j) expresses that for every property of object i
object j has a property that is strictly better. The formula E( j ∧ ¬ ◇≤ i) expresses
that object j has a property that object i cannot match, i.e. i has no property that
is strictly better than this property of j. We have E( j ∧ ¬ ◇≤ i) → U(i → ◇< j) in
Multi-Attribute Preference Logic. This validity is based on the assumption that the
pre-order in models for Lpref is total.

Recall that the binary preference operator ϕ <∀∀ ψ can be defined as U(ψ →
◻≤¬ϕ). Using <∀∀ it is possible to define property rankings and express that a prop-
erty ψ is ranked higher than property ϕ. Using the truth definitions for Uϕ, ◻=ϕ
and ◻<ϕ and the definition of ◻≤ϕ as ◻=ϕ ∧ ◻<ϕ, it can be shown that ϕ <∀∀ ψ has
the following truth definition:

M, w ⊧ ϕ <∀∀ ψ⇔ ∀u, v ∶M, u ⊧ ϕ & M, v ⊧ ψ⇒ u ≺ v

The intuitive reading of ϕ <∀∀ ψ is that every ψ-state is ranked higher than every
ϕ-state (cf. [58]). Returning to the comparison of objects again, i <∀∀ j expresses
that object j is preferred over i. The preference expressed in this way is a very strong
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kind of preference, however. It requires that all of object j’s relevant properties are
considered more important than objects i’s properties, which corresponds with the
definition of i <∀∀ j by U( j → ◻≤¬i). In contrast, Multi-Attribute Preference Logic
is able to specify principles that allow to derive preferences over objects from their
properties in a weaker sense. It enables, for example, to specify orderings where
object j is preferred over object i even when object i has at least one property that is
considered more important than a property that object j has (compare e.g. object c
and f in Figure 7.2). The logic thus facilitates the specification of different ordering
strategies, and, given such a specification, provides the means to derive a preference
of one object over another from a property ranking and an additional specification of
the objects’ properties.

Proposition 7.1 supports our claim that multi-attribute preference logic extends
binary preference logic as all listed axioms of this logic are valid in Multi-Attribute
Preference Logic as well (cf. [58], p. 66). We have listed only those axioms that can
straightforwardly be expressed without the need to introduce additional definitions
of other binary preference operators; all of the remaining axioms are valid as well in
Multi-Attribute Preference Logic when such definitions are added. Below we use that
∧ and ∨ bind their arguments stronger than → to be able to remove some brackets.

Proposition 7.1. We have the following validities:
1. ⊧ Eiϕ↔ Uiϕ for ϕ ∈ L0.
2. ⊧ ϕ <∀∀ ψ ∧ U(ξ→ ψ)→ ϕ <∀∀ ξ
3. ⊧ ϕ <∀∀ ψ ∧ U(ξ→ ϕ)→ ξ <∀∀ ψ
4. ⊧ ϕ <∀∀ ψ ∧ψ <∀∀ ξ ∧ Eξ→ ϕ <∀∀ ξ
5. ⊧ U¬ϕ ∨ U¬ψ→ ϕ <∀∀ ψ
6. ⊧ ϕ <∀∀ ψ→ U(ϕ <∀∀ ψ)
What Multi-Attribute Preference Logic adds to binary preference logic are names

for objects, and most importantly, the ◻≠ operator that allows us to define clusters
(see Section 7.2.2) that represent desirable attributes. All of the modal operators
◻=,◻<,◻≠ and U are normal modal operators and satisfy the K axiom. In addition,
we prove some properties of the ◻= and ◻≠ operators (some of the more obvious
axioms have not been listed below). Proposition 7.2.3 shows that Multi-Attribute
Preference Logic is related to the logic of only knowing, see [60].

Proposition 7.2. We have:
1. ⊧ ◻= ◻≠ ϕ↔ ◻≠ϕ
2. ⊧ ◻= ◻< ϕ↔ ◻<ϕ
3. ⊧ ◻=ϕ → ¬ ◻≠ ϕ where ¬ϕ ∈ L0 is consistent

Proof. We prove item 3. Suppose ◻=ϕ is true at world w. Then ϕ is true in all worlds
v ∼ w. Since the truth of objective formulae is the same within an object, ϕ is also
true in every world u ∈ {[v]V ∣ w ∼ v}. Since ¬ϕ is a consistent objective formula
and all valuations are present in the model, ¬ϕ must be true in some world in the
model. So there must be some world in {[v]V ∣ w ∼ v} that satisfies ¬ϕ, so we have
¬ ◻≠ ϕ at world w.
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Figure 7.2: Visualization of an MPL model

7.2.2 Clusters

The total pre-order ≾ in a multi-attribute preference model induces a strict linear
order on sets of worlds, which we call clusters. Formally, a cluster is an equivalence
class induced by ≾. Intuitively, such clusters represent the properties or attributes
considered relevant for deriving object preferences. The order on clusters induced
by ≾ represents a property ranking, i.e. the relative importance of one property com-
pared to another. The relation between objects and properties may now be clarified
as follows. The idea is that if an object has a particular property it should be rep-
resented within the cluster of worlds that represents the property. Technically, this
is realized by making sure that (at least) one of the copies of a world that identifies
the object is an element of the cluster that represents the property. The worlds that
identify an object act as representatives for the object within a certain cluster and
thus indicate that the object has that property. As clusters are disjoint and objects
may have multiple properties, this also explains the need for introducing copies of
worlds.

Definition 7.5. (Cluster) Let ≾ be a total pre-order on W . A cluster c is an equiva-
lence class induced by ≾, i.e. c = [w]≾ = {v ∣ w ∼ v} for some w ∈ W .

Example 7.2. The relation between clusters (properties) and sets of copies (objects)
is visualized in Figure 7.2 (this is a model of the theory in Example 7.4). The ellipses
(columns) represent the clusters or properties and the boxes (rows) represent objects.
Objects in this case are supposed to be houses. For example, the house labelled b
consists of two worlds, w4 and w5. As these worlds are part of the same object, they
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Figure 7.3: Visualization of an MPL model. All worlds where large is true are in the
shaded section.

must be copies of each other. One of these worlds, w4, is also part of the cluster
representing the property of being affordable. This means that house b is affordable,
as affordable is true at w4 (and thus also at w5). Similarly, it follows that house b is
close to work, a property that is true at w5 (and thus at w4). As there is no world
that is part of object b as well as in the cluster representing the property large, house
b is not large. The ranking of the properties is indicated by the ≺ symbol: property
affordable is more important than close to work which in turn is more important than
large. As a result, in any natural preference ordering based on this ranking one would
expect house b to be preferred over house c.

The modality ◻= can be used to express a property of a cluster. For example,
E ◻= ϕ expresses that there is a cluster where ϕ is true everywhere. ◻=ϕ expresses
that at least ϕ is true in the cluster. In Figure 7.2, for example, in the third cluster we
have that ◻=large is true. This means that every object that is represented by a world
in this cluster is large. But we also want every object that is large to be represented in
the cluster. To specify this, we use the modality ◻≠. We can now explain why simply
defining the truth of ◻≠ϕ in terms of truth of ϕ in all worlds that are not equally
ranked to the current one does not work. The point is that there may be copies v of
worlds w that have a different ranking than world w. As copies have the same truth
assignment, at such copies a propositional formula ϕ would be assigned the same
truth value. This is illustrated in Figure 7.3, where large is true in all worlds in the
shaded area. The key observation here is that worlds of a particular ranking identify
a set of objects, i.e. copies of these worlds which must be part of these objects (by
Definition 7.2 of an object). This is why ◻≠ϕ evaluates ϕ at all objects, or, more



144 CHAPTER 7. MULTI-ATTRIBUTE PREFERENCE LOGIC

precisely, the worlds that define these objects, that are not identified by any of the
worlds that have the same ranking as the current one.

By combining both operators we are able to characterize a cluster. For the third
cluster in Figure 7.2, we have that ◻=large ∧ ◻≠¬large where large exactly charac-
terizes the cluster. The characterization of a cluster by ϕ is abbreviated as Cϕ, and
defined by:

Cϕ ∶∶= ◻=ϕ ∧ ◻≠¬ϕ

ϕ is true for all objects identified by (worlds in) the cluster and not true in all worlds
that identify other objects. As an object may consist of several copies to represent
that it has various properties represented by different clusters, copies of such worlds
outside the cluster need to be excluded in the evaluation of ¬ϕ which explains the
truth condition for ◻≠.

Proposition 7.3 shows that properties and objects are related in such a way that
object preferences can be derived. The first item of the proposition states that if there
is an object that has property ϕ and the current world identifies a cluster character-
ized by ϕ, then within the cluster there is a world that is named i, i.e. identifies the
object i. The second item states that the converse is true for an object that does not
satisfy a property ϕ that characterizes a cluster. That is, if object i does not satisfy
ϕ and the current world identifies a cluster characterized by ϕ, then no world that
identifies the object labelled i is part of that cluster. The third item generalizes the
first item. It states that if there is a cluster characterized by ϕ, and there is an object
named i that satisfies ϕ, then there is an i-world in that cluster. The last item states
that when a world satisfies C(ϕ), then all worlds within the same cluster satisfy
C(ϕ).

Proposition 7.3. We have:
1. ⊧ C(ϕ) ∧ Eiϕ →◇=i
2. ⊧ C(ϕ) ∧ ¬Eiϕ → ¬◇= i
3. ⊧ EC(ϕ) ∧ Eiϕ → EiC(ϕ)
4. ⊧ C(ϕ)→ ◻=C(ϕ)

Proof. We prove item 1. Suppose M, w ⊧ C(ϕ)∧Eiϕ. This means that M, w ⊧ ◻≠¬ϕ.
By the truth definition for ◻≠, this is equivalent to ∀u ∈ ⋃{[v]V ∣ w ∼ v} ∶M, u ⊧ ¬ϕ.
By the definition of Eiϕ we must also have a world u′ such that M, u′ ⊧ i ∧ ϕ. This
means that we cannot have u′ ∈ ⋃{[v]V ∣ w ∼ v} and we have that u′ ∈ ⋃{[v]V ∣ w ∼
v}. It follows that u′ ∈ [v]V for some v ∼ w; as u′ must be a copy of v this means that
we have M, v ⊧ i and, by the truth definition for ◇=, we have M, w ⊧◇=i.

The operator C provides exactly what we need to define property rankings. Se-
mantically, we have already seen that the pre-order ≾ induces a strict linear order
on clusters. The formula Cϕ allows us to express that a cluster is characterized by
a formula ϕ. Using this operator and the binary preference operator <∀∀ we can
express that property ψ (represented by a cluster) is ranked higher than another
property ϕ (represented by another cluster) by Cϕ <∀∀ Cψ. For example, in Figure
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7.2, we have C(large) <∀∀ C(closeToWork) <∀∀ C(affordable). By combining this
with specifications of particular preferences orderings and statements that an object
has a particular property (cf. Proposition 7.3), this will allow the derivation of object
preferences from a property ranking.

7.3 Preference orderings

In this Section, we show how to use Multi-Attribute Preference Logic to define multi-
attribute preference orderings derived from property rankings. Coste-Marquis et al.
[44] describe three frequent orderings based on prioritized goals: best-out, discrimin
and leximin ordering. Brewka [33] defines a preference language in which different
basic preference orderings can be combined and identifies four ‘fundamental strate-
gies’ for deriving preferences from what he calls a ranked knowledge base: ⊺, κ, ⊆
and #. As best-out is the same as κ, discrimin is ⊆, and leximin is #, we will base the
remainder of our discussion on Brewka [33].

We first informally introduce these orderings and then present definitions for
each of them in the logic. Section 7.4 presents the definitions of [33] and a proof
that the definitions in Multi-Attribute Preference Logic match those provided in [33].
The advantage of defining preference orderings in a logic instead of providing set-
theoretical definitions is that it formalizes the reasoning about object preferences.
From a practical point of view, the logic allows us to provide rigorous formal proofs
for object preferences derived from property rankings. From a theoretical point of
view, it provides the tools to reason about preference orderings and allows, for ex-
ample, to prove that whenever an object is preferred over another by the ⊺ strategy
it also is preferred by the # strategy (see Proposition 7.4 below).

The two orderings ⊆ and # first consider the most important property. If some
object has that property and another does not, then the first is preferred over the
second. So in the example, both house1 and house2 would be preferred over house3.
If two houses both have the property or if neither of them has it, the next property
is considered. house1 and house2 are both affordable, but house1 is close to work
and house2 is not, so house1 would be preferred over house2. Note that although
house3 satisfies two properties and house house2 only satisfies one property, house2 is
still preferred over house3 because the single property of house2 is considered more
important than both properties of house3. The ⊆ and # orderings only differ if mul-
tiple properties are equally important. As we will make the assumption that no two
properties can have the same importance, we will not discuss the difference and only
refer to the # ordering in the following.

The ⊺ ordering looks at the highest ranked or most important property that is
satisfied. If that property of one object is ranked higher than that of another object,
then the first object is preferred over the second. If those properties are equally
ranked, then both objects are equally preferred. In our running example, house1

and house2 are both preferred over house3, since the property ranked highest that is
satisfied by both house1 and house2 is affordable, and this property is ranked higher
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than the highest ranked property satisfied by house3, i.e. closeToWork. Since the most
important property satisfied by house1 is the same as the most important property
satisfied by house2, house1 and house2 are equally preferred.

The κ ordering looks at the most important property that is not satisfied. If that
property of one object is less important than the property of another object, then the
first object is preferred over the second. If those properties are equally important,
then both objects are equally preferred. In our running example, the highest ranked
property that is not satisfied by house1 is large, that of house2 is closeToWork and that
of house3 is affordable. Since large is the least important property of these properties,
house1 is preferred over both other houses. As closeToWork is less important than
affordable, house2 is preferred over house3.

All preference orderings introduced can be defined in multi-attribute preference
logic. We use prefs∼(i, j) to stand for: object i is weakly preferred over object j
according to strategy s, where s is one of ⊺, κ and #; prefs(i, j) is used to express
strict preference.

Definition 7.6. (Preference Orderings) prefκ(i, j), prefκ∼(i, j), pref#(i, j), pref#∼(i, j),
pref⊺(i, j) and pref⊺∼(i, j) are defined by:

pref⊺(i, j) ∶∶= E(i ∧ ¬◇= j ∧ ◻<(¬i ∧ ¬ j))
pref⊺∼(i, j) ∶∶= pref⊺(i, j) ∨ U((◇=i ∧ ◻<¬i)↔ (◇= j ∧ ◻<¬ j))
prefκ(i, j) ∶∶= E(i ∧ ¬◇= j ∧ ◻<(◇=i ∧◇= j))
prefκ∼(i, j) ∶∶= prefκ(i, j) ∨ U((¬◇= i ∧ ◻<◇= i)↔ (¬◇= j ∧ ◻<◇= j))
pref#(i, j) ∶∶= E(i ∧ ¬◇= j ∧ ◻<(◇=i ↔◇= j))
pref#∼(i, j) ∶∶= pref#(i, j) ∨ U(◇=i ↔◇= j)

To understand these definitions, recall that we say that a world identifies an object
when it is part of that object and the object consists of copies of one and the same
world. These copies are used to represent that an object has a property present in a
property ranking. In Figure 7.2, for example, world w7 is a representative of object
c for the property large. Thus, the formula Ei¬ ◇= j may be read as ‘object i has a
property that object j does not have’. Similarly, ◇<i can be read as ‘there is a more
important property (than the current one) that object i has’. These readings may
help explain the definitions. pref⊺(i, j) may be read as ‘there is a property such that
i has it and j does not, and for all more important properties, neither i nor j has any
of them’. The second disjunct in the definition of pref⊺∼(i, j) defines when two objects
are equally preferred with respect to ⊺, and may be read as ‘if there is a property that
i has, but i does not have any more important properties, then j has that property
too and does not have any more important properties either, and vice versa’. Similar
readings can be provided for the other preference operators.

Proposition 7.4 shows that the relation between weak and strict preference is as
usual, and, moreover, a strict preference according to ⊺ or κ implies a strict prefer-
ence according to #.

Proposition 7.4. We have:
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1. ⊧ prefs(i, j)↔ prefs∼(i, j) ∧ ¬prefs∼( j, i) for s ∈ {⊺,κ, #}
2. ⊧ pref⊺(i, j)→ pref#(i, j)
3. ⊧ prefκ(i, j)→ pref#(i, j)

Example 7.3. Given the model of Figure 7.2, we can derive that pref#(b, d). By
definition, this is the case when E(b ∧ ¬ ◇= d ∧ ◻<(◇=b ↔ ◇=d)) is true. This
means that there must be a world w that is named b that has no equally ranked
world named d, and, moreover, for every higher ranked world v there is an equally
ranked world named b if and only if there is an equally ranked world with name d.
By inspection of Figure 7.2, world w5 fits the description.

7.4 MPL defines ranked knowledge bases

Here we prove that the preference orderings of Definition 7.6 define those of Brewka
[33]. Brewka calls property rankings ranked knowledge bases, defined as follows:

Definition 7.7. (Ranked knowledge base) A ranked knowledge base (RKB) is a
set F ⊆ L0 of objective formulae together with a total pre-order ≥ on F . Ranked
knowledge bases are represented as a set of ranked formulae ( f , k), where f is an
objective formula and k, the rank of f , is a non-negative integer such that f1 ≥ f2 iff
rank( f1) ≥ rank( f2). That is, higher rank is expressed by higher indices.

In the setting of [33], comparing objects given a ranked knowledge base means
comparing truth assignments which represent these objects, analogously to the repre-
sentation of the three houses used in Figure 7.1. It is easy to see that this example is
represented by the following ranked knowledge base: {(affordable, 3), (closeToWork,
2), (large, 1)}.

Object preferences can be derived in multiple ways from a ranked knowledge
base. In order to define these strategies, some auxiliary definitions are introduced
next. Below, Kn(m) denotes the set of properties of a certain rank n that are satisfied
with respect to truth assignment m; maxsatK(m) denotes the highest rank associated
with the properties that are satisfied by assignment m, and maxunsatK(m) denotes
the highest rank associated with the properties that are not satisfied by m.

Definition 7.8. Let K be a ranked knowledge base and m ∈ 2At.

Kn(m) ∶∶= { f ∣ ( f , n) ∈ K , m ⊧ f }
maxsatK(m) ∶∶= −∞ if m /⊧ fi for all ( fi , vi) ∈ K ,

max{i ∣ ( f , i) ∈ K , m ⊧ f } otherwise
maxunsatK(m) ∶∶= −∞ if m ⊧ fi for all ( fi , vi) ∈ K ,

max{i ∣ ( f , i) ∈ K , m /⊧ f } otherwise

Using these auxiliary definitions, preference orderings m1 ≥K
s m2 are defined

which mean that object (truth assignment) m1 is (weakly) preferred over object m2

according to strategy s.
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Definition 7.9. (Preference orderings) Let K be a ranked knowledge base. Then
the following preference orderings over truth assignments are defined:

• m1 ≥K
⊺ m2 iff maxsatK(m1) ≥ maxsatK(m2).

• m1 ≥K
κ m2 iff maxunsatK(m1) ≤ maxunsatK(m2).

• m1 ≥K
# m2 iff ∣Kn(m1)∣ = ∣Kn(m2)∣ for all n, or there is n s.t. ∣Kn(m1)∣ >

∣Kn(m2)∣, and for all j > n ∶ ∣K j(m1)∣ = ∣K j(m2)∣.
To simplify, we make the assumption here that different properties cannot have

the same ranking. In that case, the set of all satisfied properties of a given rank is
a singleton set or the empty set, we have that ≥ is a strict linear order on F - also
denoted by >, and, as a result, the ⊆ and # orderings coincide. We also assume that
properties in a ranked knowledge base are consistent. Finally, we may assume that a
ranked knowledge base does not contain logically equivalent properties with differ-
ent ranks since such occurrences except for the one ranked highest can be discarded
as it has no influence on any of the preference orderings.

Definition 7.10. (Translation function) The function τ translates ranked knowl-
edge bases K = ⟨F,≥⟩ and truth assignments m to formulae and is defined by:

• τ(K) ∶∶= ⋀{EC(ϕ) ∣ ϕ ∈ F}∧
U(⋁{C(ϕ) ∣ ϕ ∈ F or ϕ = ¬⋁{χ ∣ χ ∈ F}})∧
⋀{C(ϕ) <∀∀ C(ψ) ∣ ϕ,ψ ∈ F & ψ > ϕ}∧
⋀{C(¬⋁{ϕ ∣ ϕ ∈ F}) <∀∀ ψ ∣ ψ ∈ F}

• τname(m) ∈ Nom
• τ(m) ∶∶= ⋀{Eiϕ ∣ m ⊧ ϕ} ∪ {¬Eiϕ ∣ m /⊧ ϕ} with i = τname(m)
The translation of a ranked knowledge base K expresses that for each property ϕ

in K , there exists a corresponding cluster by Cϕ, that there are no other clusters than
those specified by the properties, and one extra cluster for the case in which none of
the properties is satisfied. It forces the ranking of these clusters to be the same as the
property ranking induced by K , with the added extra cluster as least important one.
The translation also associates an object name with a truth assignment and states for
each property whether the object (truth assignment) has the property or not.

Example 7.4. Using the translation function, and assuming that τname(house1) = b,
τname(house2) = d and τname(house3) = e, the RKB {(affordable, 3), (closeToWork, 2),
(large, 1)} translates into:

1. E(C(affordable)) ∧ E(C(closeToWork)) ∧ E(C(large))
2. U(C(affordable)∨ C(closeToWork)∨ C(large)∨ C(¬(affordable∨ closeToWork∨

large)))
3. C(¬(affordable ∨ closeToWork ∨ large)) <∀∀ C(large) <∀∀ C(closeToWork) <∀∀

C(affordable)
4. Eb(affordable) ∧ Eb(closeToWork) ∧ ¬Eb(large)
5. Ed(affordable) ∧ ¬Ed(closeToWork) ∧ ¬Ed(large)
6. ¬Ee(affordable) ∧ Ee(closeToWork) ∧ Ee(large)
A model of this theory is shown in Figure 7.2. Although only objects b, d and e are

specified in the theory, for illustrative reasons this model contains all possible objects
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(there is a world, and hence an object, for every possible valuation of the three
propositional atoms). Every property has its own cluster, which means that every
object satisfying that property has a world in that cluster, and that every world in
that cluster satisfies that property. No worlds exist outside the four specified clusters,
and the order among clusters is fixed. The only ways a model of this theory can be
structurally different from the one shown are by removing objects that are not b, d
or e (but then all worlds belonging to that object have to be removed at once), or by
adding more worlds, but only at the same ‘places’ as the worlds shown.

Theorem 7.1 shows that every multi-attribute preference model that is a model of
the translation of a particular RKB yields the same preference ordering as the original
RKB.

Theorem 7.1. m1 ≥K
s m2 iff ⊧ τ(K)∧τ(m1)∧τ(m2)→ prefs∼(τname(m1),τname(m2))

where s ∈ {⊺,κ, #}.

Proof. Assume that τname(m1) = i and τname(m2) = j, and observe that the transla-
tion of K = ⟨F,≥⟩ is equivalent to:

(1) C(¬( f1 ∨ . . . ∨ fn)) <∀∀ C( f1) <∀∀ . . . <∀∀ C( fn),
(2) ∀ f ∈ F ∶ E(C( f )) and
(3) U(C( f1) ∨ . . . ∨ C( fn) ∨ C(¬( f1 ∨ . . . ∨ fn))).

For brevity, we only prove the left to right direction for the case m1 >K
κ m2. Then we

have maxunsatK(m1) < maxunsatK(m2) and maxunsatK(m2) > −∞, so there is a
formula fk in F such that

(4) m2 /⊧ fk,
(5) m1 ⊧ fk and
(6) ∀ f ′ > fk ∶ m1 ⊧ f ′ & m2 ⊧ f ′.

Applying the translation function τ, we then get:
(4) ¬E j fk,
(5) Ei fk and
(6) ∀ f ′ > fk ∶ Ei f ′ ∧ E j f ′.

From (5), (2) and Prop. 7.3.3 it then follows that
(8) EiC( fk).

From (8), (4) and Prop. 7.3.2 it follows that
(9) Ei¬◇= j ∧ C( fk).

And from (6) and Prop. 7.3.1 it follows that
(10) ∀ f ′ > fk ∶ ◇=i ∧◇= j.
Using (1) and (3) we obtain
(11) C( fk)→ ◻<(C( fk+1) ∨ . . . ∨ C( fn)).
From (10) and (11) we obtain
(12) C( fk)→ ◻<◇= i ∧ ◻<◇= j.
Then (9) and (12) can be combined into E(i ∧¬◇= j ∧◻<(◇=i ∧◇= j)), which is the
definition of prefκ(i, j).



150 CHAPTER 7. MULTI-ATTRIBUTE PREFERENCE LOGIC

Example 7.5. We now show how to formally derive a preference statement from the
formulae obtained by translating a ranked knowledge base in Example 7.4. As an
illustration, we show that prefκ(b, d) can be derived.

From (7.4.4) Eb(closeToWork), (7.4.1) E(C(closeToWork)) and Proposition 7.3.3
we obtain

(1) EbC(closeToWork).
From (7.4.5) ¬Ed(closeToWork) and Proposition 7.3.2 it follows that
(2a) C(closeToWork)→ ¬◇= d.
From 7.4.3 and 7.4.2 we can derive that
(2b) C(closeToWork)→ ◻<C(affordable).
By combining (1), (2a) and (2b) we derive

(3) Eb(¬◇= d ∧ ◻<C(affordable)).
Now, from Proposition 7.3.1, (7.4.4) Eb(affordable) and (7.4.5) Ed(affordable), we
derive
(4a) C(affordable)→◇=b and
(4b) C(affordable)→◇=b.
Using (3), (4a), and (4b), we obtain Eb(¬ ◇= d ∧ ◻<(◇=b ∧ ◇=d)), which is the
definition of prefκ(b, d).

7.5 Conclusion

In this paper we introduced a modal logic for qualitative multi-attribute preferences.
The logic is based on Girard’s binary preference logic [58], but extends this logic with
objects and clusters that introduce the possibility to reason explicitly about multiple
attributes. We showed that Multi-Attribute Preference Logic is expressive enough
to define various natural preference orderings based on property rankings [33, 44].
The additional value of the logic is that it is possible to reason about these different
preference orderings within the logic. This means we cannot only reason about which
objects are preferred according to a certain ordering, but also about the relation
between different orderings as is shown in Proposition 7.4.

One possible extension to Multi-Attribute Preference Logic is the introduction of
indices for different agents. In this way, distinct preference orderings for several
agents can be expressed. This introduces the possibility to reason about properties
such as pareto-optimality of objects (an object is pareto-optimal if there is no other
object that is better for at least one agent and not worse for the other agents), which
is useful in the context of e.g. joint decision making or negotiation.

We have made the assumptions that attributes are binary, and that priority order-
ings are total linear orders. In future work we plan to investigate how we can loosen
these assumptions. For example, if multiple attributes can have the same importance,
the # and ⊆ orderings will differ and we will be able to encode trade-offs between
attributes.

Our main concern in this paper has been the expressiveness of Multi-Attribute
Preference Logic. Other questions such as a complete axiomatization of the logic,
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succinctness and complexity remain future work. We plan to develop a reasoning
system in which agents can reason about qualitative multi-attribute preferences in
various settings. In our future work we will focus more on the reasoning mechanism
and how different domains can be modelled accurately in our approach.

A more detailed comparison of Multi-Attribute Preference Logic with other pref-
erence logics such as Qualitative Choice Logic [34] is planned. Other areas for future
work concern the representation of dependent properties and the relation of Multi-
Attribute Preference Logic to e.g. CP-nets [29].



Chapter 8

Conclusion

8.1 Results

In this thesis we have developed a framework for the representation of, and reason-
ing about qualitative multi-criteria preferences. In the Introduction we specified the
particular research questions that this thesis addresses. In this section we discuss the
results for every question in turn.

1. How can argumentation be used to reason about qualitative multi-criteria prefer-
ences?

Several argumentation frameworks, each including a logical language, a set of in-
ference rules, and a defeat relation, have been defined in this thesis. In Section 2.3
of Chapter 2 we presented a basic argumentation framework to reason about quali-
tative multi-criteria preferences. This framework uses a simple definition of objects
and preferences between them. Objects are defined as value assignments to a set of
attributes which are all binary. For preference, a version of the lexicographic ordering
is used where the criteria are the same as the attributes that define the objects, and
the importance between them is a total preorder. This basic framework provides the
‘proof of concept’ that argumentation is a suitable tool to reason about qualitative
multi-criteria preferences. All other argumentation frameworks in this thesis build
on this first framework.

In Section 2.5 in Chapter 2 we presented an argumentation framework that im-
plements the proposed strategy to derive preferences in case of incomplete informa-
tion about the objects to be compared. In Section 2.6 in Chapter 2 we proposed
an epistemic argumentation framework to reason about background knowledge with
different degrees of certainty. Such information is used in the two argumentation
frameworks presented in Section 2.7 in Chapter 2 that implement the proposed
strategies to derive preferences in case of uncertain information about the objects
to be compared.
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In Section 3.6 in Chapter 3 we presented an argumentation framework for rea-
soning about qualitative multi-criteria preferences that uses a definition of preference
that is more abstract compared to the one used in the basic framework in Chapter
2. Here, criteria can also be derived attributes (in particular underlying interests),
and the importance between them can be any preorder, thus generalizing both the
lexicographic variant used in Chapter 2 and ceteris paribus preference. This argu-
mentation framework also offers a basic means of reasoning about facts by providing
an inference scheme for defeasible modus ponens.

Finally, in Chapter 5 we defined an argumentation framework to reason about
Qualitative Preference Systems, the general framework for the representation of
qualitative, multi-criteria preferences that was introduced in Chapter 4. Here, the
variables that define outcomes are no longer assumed to be binary but can have ar-
bitrary domains. The definition of preference is also more general than before, with
three types of criteria that can be combined in a layered structure. Moreover, this
chapter proposed an extension of the argumentation framework in which it is possi-
ble to reason with background knowledge to derive information about the values of
variables by default. This is a useful feature for which argumentation is especially
suitable.

2a. How can qualitative multi-criteria preferences be derived when information about
the outcomes is incomplete?

In Section 2.4 in Chapter 2 we discussed some naive strategies of dealing with pref-
erences between objects for which it is not known for every attribute whether it
is true or false. From the limitations of these strategies, we identified two desired
properties for strategies handling preferences based on incomplete information: de-
cisiveness and safety. We then proposed an adequate strategy that is both decisive
and safe, based on the notion of least and most preferred completions of objects.
This definition generalizes the simple preference definition used in the first part of
the chapter: if all information is complete, it results in the same preferences.

2b. How can qualitative multi-criteria preferences be derived when information about
the outcomes is uncertain?

In Section 2.6 in Chapter 2 we explored how uncertain (defeasible) information can
be represented ordinally using certainty levels (degrees of belief). In Section 2.7
we discussed some purely qualitative strategies to reason about preferences between
objects for which the truth or falsehood of attributes is uncertain. We then defined
a compensatory strategy and a safer compensatory strategy, which are based on the
notion of subjective probability. The safer compensatory strategy generalizes both
the compensatory strategy and the decisive and safe strategy for handling incomplete
information from Section 2.4.

3. What kind of attributes should be chosen as criteria?

In Chapter 3 we argued that instead of issues (the attributes that define negotiation
outcomes), the negotiators’ underlying interests should be chosen as criteria, espe-
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cially if the issues are not preferentially independent. We showed that using interests
as criteria is more flexible than modelling conditional preferences, and provides a
better explanation of the derived preferences. In Chapter 3 all attributes are binary,
but in Section 4.3.1 in Chapter 4 we illustrated some possibilities to model interests
when attributes have arbitrary domains.

4a. How can a general framework for the representation of qualitative multi-criteria
preferences over multi-attribute domains be defined?

In Section 4.2 in Chapter 4 we presented a general framework for the representa-
tion of qualitative, multi-criteria preferences, called Qualitative Preference Systems
(QPS). The model is more general than the ones presented in the previous chap-
ters, in which attributes and criteria were assumed to be binary. Here, outcomes
are defined as value assignments to a set of variables which can have arbitrary do-
mains. The framework includes a knowledge base that serves two purposes: to im-
pose (hard) constraints and to define new (abstract) concepts. Three types of criteria
are defined. Simple criteria derive a preference relation over outcomes from a prefer-
ence relation on the values of a single variable. Multiple criteria can be combined in
a cardinality criterion, which is based on counting the number of criteria that support
a preference, or in a lexicographic criterion, which is based on priority. Together, all
used criteria form a layered structure called a criterion tree.

4b. How expressive is the proposed framework?

In Section 4.3 in Chapter 4 we showed that QPS can model conditional preferences
and underlying interests, goal-based preferences, and bipolar preferences. We also
compared the QPS framework in detail with two other, well-known approaches that
are representative for a large number of purely qualitative approaches to modelling
preferences, namely Logical Preference Description language [33] and CP-nets [29].
We showed that the Logical Preference Descriptions can be translated to the QPS
framework (with the exception of the disjunction operator which is not natural as
it does not satisfy independence of irrelevant alternatives and unanimity with ab-
stentions [8]), and provided an order preserving translation of acyclic CP-nets into
QPSs which satisfies the ceteris paribus condition. In addition, we showed that these
translations are size preserving, i.e. the resulting QPSs provide a representation that
is as succinct as the LPD or CP-net representation.

4c. How expressive are binary goals as criteria?

In Section 4.4 in Chapter 4 we showed that any QPS (including simple criteria rang-
ing over multi-valued variables) can be translated to an equivalent and just as suc-
cinct goal-based QPS where all simple criteria have been replaced by goals. Moreover,
in Section 4.5 we showed that goal-based QPSs allow more fine-grained updates of
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the criterion tree because goals relating to different variables can be interleaved.

5a. How can a preference model be explained?

In Section 6.3 in Chapter 6 we proposed to use the structure of a QPS criterion tree
to generate explanations for the resulting preferences between outcomes. We used
the intuition that preferences can be explained by the criteria that are deciding in
the overall preference. Explanations were proposed for every kind of preference by
every type of criterion.

5b. How can explanations of preference provided by a user be used by a system to
update the preference model?

In Section 6.4 in Chapter 6 we provided detailed interaction diagrams that specify
how the system should react to an explanation, given by the user, of a preference that
does not follow from the current model. There are basically two possibilities: to ask
the user a follow-up question or to update the preference model. In the latter case,
the updated preference model will not only support the same preference as stated by
the user, but also generate the same explanation for it.

6. How can modal logic be used to reason about qualitative preferences and the rela-
tions between preference orderings?

In Chapter 7 we introduced a modal logic, called Multi-Attribute Preference Logic
(MPL), that provides a language for expressing several strategies to qualitatively de-
rive a preference between objects (outcomes) from property (attribute) rankings.
Objects here are defined as specific sets of possible worlds (propositional models)
that share the same truth assignments. Preferences are derived from a set of desired
properties (propositional formulas) that are ranked according to importance. Three
different strategies from the literature on prioritized goals [44, 33] to derive prefer-
ences from property rankings are modelled. The additional value of the logic is that
it is possible to reason about these different preference orderings within the logic.
This means we cannot only reason about which objects are preferred according to a
certain ordering, but also about the relation between different orderings.

8.2 Directions for future research

First of all, we would like to implement the Qualitative Preference Systems frame-
work, together with the proposed argumentation framework and the explanation
facility. An important issue that we would have to deal with is computational com-
plexity, and the design of efficient algorithms. When an implementation of the sys-
tem is available, this would provide the opportunity to perform user experiments
to test how well the framework can represent human preferences and how natural
the generated explanations are. To this end, preference elicitation methods specifi-
cally tailored to the QPS framework have to be developed. One approach to update
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preference models was proposed in Chapter 6, but it needs to be developed further.
Specifically, some issues of consistency have to be investigated. For example, priori-
ties have to remain partial orders, value preferences have to remain preorders, and
previous preferences and explanations expressed by the user should remain valid.
We also believe that the argumentation-based approach can be usefully applied in
the preference elicitation process. It allows the user to extend and refine the system
representation of his preferences gradually and as he sees fit. To facilitate this elic-
itation process, more research is needed on how our framework can support a user,
e.g. by indicating which information is still missing.

Next, the nature of argumentation as a form of defeasible reasoning can be ex-
ploited more. In Chapter 4, the elements of a QPS were always completely specified.
In Chapter 5, we showed how factual information about outcomes can be derived
by default in an argumentation framework, thus making it more flexible in case of
incomplete outcome specifications. The framework can be made even more flexible
if also preferential information about criteria, value preferences and priorities can
be derived from other information. This would be especially useful when modelling
preferences of others (e.g. the opponent in negotiation), where it is not realistic that
all relevant information is available, but some of it may be inferred by default.

Also, the explantation facility introduced in Chapter 6 can be developed further.
In some instances it may be necessary to explain facts about the outcomes involved
in a preferential comparison, e.g. to explain why they do or do not satisfy a par-
ticular goal. Explanation of knowledge and reasoning is a separate field of study
that may provide solutions to this issue. Also, the explanation of preferences may be
part of a larger picture, for example in recommendation, decision making or plan-
ning. It would be interesting to investigate how the proposed preference explanation
mechanism can be embedded in other explanation mechanisms that explain a certain
decision or recommendation in terms of the underlying preferences.

The ultimate goal of the Pocket Negotiator project is to develop a negotiation
support system. To incorporate qualitative preferences in this system, qualitative ne-
gotiation strategies have to be developed, as opposed to the utility-based approaches
currently in use. One option is to use qualitative preferences as input, but transform
them into a quantitative representation that is used in the negotiation strategy, as
is done for example in [10] for incomplete preferences expressed by a CP-net. An-
other option is to develop new negotiation strategies that deal with qualitative, and
possibly incomplete, preferences directly. Different protocols and strategies can be
defined, for example only exchanging offers or also communicating through argu-
ments. Simulation experiments have to show which strategies perform best in dif-
ferent settings, which could vary with e.g. the kind of preferences of the agents, the
distribution of knowledge among the agents, or the trustworthiness of agents. In par-
ticular, it is interesting to look at how the exchange of information about (qualitative)
preferences, background knowledge and underlying interests affects the performance
of an agent negotiating on behalf of a human user.



Summary

Qualitative multi-criteria preference representation and reasoning

The research reported on in this thesis is part of a larger research project that aims
to develop a negotiation support system called the Pocket Negotiator. This thesis
focuses on the question how such a system can represent and reason about a user’s
preferences between the possible outcomes of a negotiation. In real-world nego-
tiations, there are many negotiation issues which can have many different values,
resulting in a large space of complex outcomes. A negotiation support system needs
to have a model of the user’s preferences over this outcome space. Although most
current negotiation support systems use numerical measures such as utility to repre-
sent preferences, such quantitative preferences are hard to specify for human users,
and so it would be more natural to model the user’s preferences in a qualitative way.
Moreover, due to the exponential size of the outcome space, it is not feasible to spec-
ify a preference ordering directly. Therefore, we aim to represent the preferences
in a more compact way by aggregating multiple evaluation criteria that influence
preference.

The main research objective of this thesis is to develop a framework for the rep-
resentation of, and reasoning about such qualitative multi-criteria preferences. The
thesis makes the following contributions.

• We propose strategies to derive preferences from incomplete or uncertain in-
formation about the objects to be compared. The decisive and safe strategy
for incomplete information is based on the notion of least and most preferred
completions of objects. The strategies for uncertain information are based on
an ordinal representation of the certainty levels of facts.

• We argue that instead of negotiation issues, the negotiators’ underlying inter-
ests should be chosen as criteria, especially if the issues are not preferentially
independent. We show that the use of interests as criteria is more flexible than
modelling conditional preferences, and provides a better explanation of the
derived preferences.

• We present a general framework for the representation of qualitative, multi-
criteria preferences, called Qualitative Preference Systems (QPS). The frame-
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work defines outcomes as value assignments to a set of variables which can
have arbitrary domains, includes a knowledge base that can impose (hard) con-
straints and define new (abstract) concepts, and defines three types of criteria
that can be combined in a tree structure. We show that the QPS framework
is expressive, as it can model conditional preferences and underlying inter-
ests, goal-based preferences, bipolar preferences, and preferences represented
in two other well-known approaches that are representative for a large num-
ber of purely qualitative preference modelling approaches. Moreover, we show
that the goal-based variant of QPS is just as expressive.

• For all proposed preference representation frameworks we define correspond-
ing argumentation frameworks that include a logical language, a set of infer-
ence rules, and a defeat relation. Some of the argumentation frameworks also
provide the possibility to reason with background knowledge to derive infor-
mation about the values of variables by default.

• We propose a mechanism to generate explanations for preferences represented
in a QPS. We use the intuition that preferences can be explained by the criteria
that are deciding in the overall preference. Moreover, we show how a system
can use user-provided explanations to update its current preference model.

• Finally, we introduce a modal logic, called Multi-Attribute Preference Logic
(MPL), that provides a language for expressing several strategies to qualita-
tively derive a preference between objects from property rankings. Three such
strategies from the literature on prioritized goals are modelled. The additional
value of the logic is that it is possible to reason not only about which objects are
preferred according to a certain ordering, but also about the relation between
different orderings.



Samenvatting

Kwalitatieve multi-criteria voorkeuren - representatie en redene-
ren

Het onderzoek waarvan in dit proefschrift verslag wordt gedaan is onderdeel van
een groter onderzoeksproject met als doel de ontwikkeling van een onderhandelon-
dersteuningssysteem, genaamd de Pocket Negotiator. Dit proefschrift concentreert
zich op de vraag hoe zo’n systeem de voorkeuren van een gebruiker tussen de mo-
gelijke uitkomsten van een onderhandeling kan representeren en hoe het daarover
kan redeneren. In realistische onderhandelingen zijn er veel onderhandelingskwes-
ties, die veel verschillende invullingen kunnen krijgen, wat resulteert in een grote
ruimte met complexe uitkomsten. Een onderhandelondersteuningssysteem moet een
model hebben van de voorkeuren van de gebruiker wat betreft deze uitkomstruim-
te. Hoewel de meeste huidige onderhandelondersteuningssystemen gebruik maken
van numerieke maten zoals utiliteit, zijn zulke kwantitatieve voorkeuren moeilijk te
formuleren voor menselijke gebruikers. Het is natuurlijker om de voorkeuren van de
gebruiker op een meer kwalitatieve manier te modelleren. Verder is het, vanwege
de exponentiële grootte van de uitkomstruimte, niet haalbaar om een voorkeursor-
dening direct te specificeren. Daarom willen we de voorkeuren op een compactere
wijze representeren door meerdere evaluatiecriteria die de voorkeur beïnvloeden te
combineren.

Het hoofdonderzoeksdoel van dit proefschrift is de ontwikkeling van een frame-
work voor de representatie van, en het redeneren over zulke kwalitatieve voorkeuren
die gebaseerd zijn op meerdere criteria. Het proefschrift levert de volgende bijdra-
gen.

• We stellen strategieën voor om voorkeuren af te leiden uit onvolledige of onze-
kere informatie over de te vergelijken objecten. De besluitvaardige en veilige
strategie voor onvolledige informatie is gebaseerd op het concept van minst
en meest geprefereerde vervolledigingen van objecten. De strategieën voor
onzekere informatie zijn gebaseerd op een ordinale representatie van de ze-
kerheidsniveaus van feiten.

• We betogen dat in plaats van de onderhandelingskwesties, de onderliggende
belangen van de onderhandelaars gekozen moeten worden als criteria, vooral
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als de voorkeuren betreffende de onderhandelingskwesties niet onafhankelijk
van elkaar zijn. We laten zien dat het gebruik van belangen als criteria flexibe-
ler is dan het modelleren van voorwaardelijke voorkeuren, en een betere uitleg
biedt van de afgeleide voorkeuren.

• We introduceren een algemeen framework voor de representatie van kwalita-
tieve voorkeuren die gebaseerd zijn op meerdere criteria, genaamd Qualitative
Preference Systems (QPS). Dit framework definieert uitkomsten als waardetoe-
kenningen aan een verzameling variabelen met willekeurige domeinen, bevat
een kennisbank die (harde) beperkingen op kan leggen en nieuwe (abstrac-
te) concepten kan definiëren, en definieert drie typen criteria die gecombi-
neerd kunnen worden in een boomstructuur. We laten zien dat het QPS-frame-
work expressief is, aangezien het voorwaardelijke voorkeuren en onderliggen-
de belangen kan representeren, alsook doelgebaseerde voorkeuren, bipolaire
voorkeuren, en voorkeuren die gerepresenteerd zijn in twee andere beken-
de frameworks die representatief zijn voor een groot aantal puur kwalitatieve
voorkeursrepresentatieframeworks. Bovendien laten we zien dat de doelgeba-
seerde variant van QPS net zo expressief is.

• Voor alle voorgestelde voorkeursrepresentatieframeworks definiëren we bijbe-
horende argumentatieframeworks, die een logische taal, een verzameling in-
ferentieregels en een overwinningsrelatie bevatten. Enkele van de argumenta-
tieframeworks bieden ook de mogelijkheid om te redeneren met achtergrond-
kennis om informatie over de waardes van variabelen af te leiden.

• We introduceren een mechanisme om uitleg te genereren voor voorkeuren die
gerepresenteerd zijn in een QPS. We gebruiken de intuïtie dat voorkeuren uit-
gelegd kunnen worden aan de hand van de criteria die doorslaggevend zijn in
de globale voorkeur. Bovendien laten we zien hoe een systeem een door de
gebruiker gegeven uitleg kan gebruiken om zijn huidige voorkeursmodel bij te
werken.

• Tenslotte introduceren we een modale logica, genaamd Multi-Attribute Prefer-
ence Logic (MPL), die een taal biedt om verscheidene strategieën uit te druk-
ken die voorkeuren tussen objecten kwalitatief afleiden uit een rangorde van
eigenschappen. Er zijn drie van zulke strategieën uit de literatuur over doel-
gebaseerde voorkeuren gemodelleerd. De toegevoegde waarde van de logica
is de mogelijkheid om niet alleen te redeneren over welke objecten geprefe-
reerd worden volgens een bepaalde ordening, maar ook over de relaties tussen
verschillende ordeningen.
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