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Abstract

Compliant mechanisms have found their way in more and more applications in recent years, particularly
in the aerospace and micro-systems sectors. The benefits of compliant mechanisms stretch far, and
can be exploited for large scale applications as well. Little research has been performed on the use
of compliant mechanisms in large scale structures, where large deflections are in play. This while the
interest in foldable structures is increasing, take for example the foldable container concept and origami
inspired structures. The required hinges can be made compliant, such a hinge is called a flexure.

The aim of this research is to give insight in the design of flexures for large scale applications and
large deflections, to aid researchers when designing large foldable structures. The research question
that is answered in this report is: how can flexure design be optimized for foldable structures? To
answer the research question a Pseudo-Rigid Body Model (PRBM) is made in Python, along with a
multi-objective optimization.

Compliant mechanisms can offer increased performance, however, the design of compliant mech-
anisms is more complicated than rigid body mechanisms. Therefore, an intuitive method for designing
compliant mechanisms is required. The Finite-Element Method is considered for this purpose, but is
too complex and not suited for initial design stages. Therefore, a PRBM is selected for the design
analysis, as it is less complex and well suited for large deflection members and ideal for initial design
stages. A PRBM with two revolute joints is used, because it provides a higher accuracy than a model
with one revolute joint and it simplifies the iterative process of a model with three revolute joints, while
maintaining a similar level of accuracy. The load case that is evaluated in this research is a moment
end load.

A sensitivity analysis is performed for the flexure behaviour regarding the flexure’s Young’'s mod-
ulus, length, width, thickness and end moment load. This analysis shows that the flexure length and
moment load, linearly influence the flexure deflection, i.e. twice the length, gives twice the deflection.
Furthermore, the flexure deflection is reverse linearly dependant on the Young’s modulus and width,
i.e. twice the width, gives a twice as small deflection. The flexure is most sensitive to a change in
thickness. For a thickness increase of factor n, the deflection decreases by a factor n3.

Furthermore, the design of the flexure is evaluated for three material types, being aluminium, rubber
and a Nickel-Titanium Shape Memory Alloy (SMA). The material changes the behaviour of the flex-
ure because of the material’s Young’s modulus and yield strength, which prescribes the allowed load.
Therefore, it is shown that the measure of flexibility, F = %y is a good indicator for suitable flexure
materials.

When taking the results from the sensitivity analysis and implementing the importance of the flexure
material’s yield strength, a design constant can be deduced for viable and intuitive flexure design. This
constant considers all the variables influencing the flexure design and assumes maximum allowable
load on the flexure. With this constant researchers can quickly identify feasible flexure designs and the
result of parameter changes are made more intuitive.

The multi-objective optimization for the flexure design is performed with Non-dominated Sorting
Genetic Algorithm Il. The optimization can find the Pareto-optimal solutions for the objectives of shape
error, stress and volume, while varying the flexure thickness. The evaluated configurations are for
a single flexure and for flexures implemented in a large scale compliant mechanism. For the single
flexure target shape, a clear Pareto-front is found, depicting the required trade-off between the objective
functions. Furthermore, the optimization visualizes the super elastic properties of the SMA and its
effect on the deflection when actuated optimally. The results for the use of SMA flexures in a compliant
mechanisms are shown as well. It shows that with the right boundary conditions the superelasticity
properties of the SMA can be exploited for optimal compliant structure design. From this it can be
concluded that this optimization can be used for design of complicated foldable structures, while taking
into account the accuracy of the compliant mechanism’s motion.

For future research it is proposed to visualize the behaviour of a flexure with a different cross-section
than a rectangular beam-like cross-section. Furthermore, more research is required into the practicality
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of flexures for large scale applications, since the out of plane stiffness can become too low, risking the
planar motion of flexures. Other directions that require more research, are the influence of micro slip
and unloading effects on the flexure behaviour.
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Introduction

Compliant mechanisms have found their way in more and more applications in recent years, particularly
in the aerospace and micro-systems sectors. Better understanding of their behaviour and technological
developments have accelerated this growth and have increased the awareness of the benefits [11].
Where previously compliant mechanisms needed to be designed through trail and error stages, or
computationally intensive finite-element methods, now techniques exist to approximate the elastomeric
structure and forces, making the calculations for analysis simpler [3].

Most of the compliant mechanism applications have been in the high-tech, small scale and light
weight applications. This is because compliant mechanisms offer excellent properties for these areas,
such as high precision, low part counts and the lack of need for lubrication. However, the benefits of
compliant mechanisms stretch further, and can be exploited for larger scale applications as well. For
example the lower cost, ease of fabrication and reduced need for maintenance, are properties that
benefit every scale of application.

Little research has been performed on the use of compliant mechanisms in large scale structures,
where large deflections are in play. This while the interest in foldable structures is increasing, take for
example the foldable container concept [12] and origami inspired structures [17]. In applications like
these the required hinges can be made compliant, thereby making it a compliant mechanism. Such a
compliant hinge is called a flexure. The focus of this research is on this type of compliant mechanisms,
particularly on the large scale application of flexures.

The aim of this research is to give insight in the design of flexures for large scale applications and
large deflections, to aid researchers when designing large foldable structures. With these insights fold-
able structure design is made more intuitive. Furthermore, an optimization will be presented for large
deflection flexure design in a foldable structure application.

The research question that is answered in this report is: how can flexure design be optimized for
foldable structures? To get to a quantifiable answer, a model of a flexure is constructed in Python
and evaluated for different parameters. Furthermore, an optimization for flexure thickness is made to
demonstrate optimization in foldable structure design.

In the context of this research assignment, the term small scale applications refers to applications
with a size ranging from millimeters up to several centimeters. Large scale application refers to sizes
ranging from several centimeters up to multiple meters.

The structure of the report is as follows: firstly, in chapter two, the general concept of compliant
mechanisms is introduced and their characteristics. Secondly, in chapter three, the method in which
the research question is answered will be discussed. Subsequently, in chapter three the model that is
used to model a flexure is described along with the optimization. Thereafter, the results are presented
in chapter four. Lastly, in chapters five and six the discussion and conclusions are presented.






Introduction to Compliant Mechanisms

In this chapter the concept of compliant mechanisms is further introduced. First the general defini-
tion of compliant mechanisms is established, after which the application possibilities are discussed.
Subsequently, the advantages and disadvantages surrounding compliant mechanisms are described.
Thereafter the difficulties surrounding the design of compliant mechanism are discussed.

A single definition of compliant mechanisms is not universally utilized, commonly when talking about
compliant mechanisms, the definition boils down to a mechanism which gets mobility through defor-
mation of elastic components [11]. The mobility can come from flexible structural members or from an
elastically flexible slender region, a flexure hinge, in between rigid bodies [13]. According to Lobontiu
[13], flexures are the main type of compliant mechanisms and they perform a similar function to a bear-
ing whilst having limited rotation capability. This research is focused on this specific compliant hinge
subset of compliant mechanisms.

The idea of using compliant mechanisms instead of rigid-link devices is inspired by nature. Although
early mechanisms already implemented compliant mechanisms, like hunting bows [11], the concept did
not find its way into later structural and technological applications. Mechanisms with simple and more
conventional joints and rigid links got preferred over the compliant mechanisms because of the more
straightforward design and analysis [11]. In the last twenty years researchers have become better in
analysing and designing compliant mechanisms due to improvements in computational software and
hardware. This enabled better analysis of the mechanism motion and stresses. Furthermore, new
materials and production techniques, well suited for use in compliant mechanisms, are available [11].

Currently compliant mechanisms are used in all sorts of industries. Compliant mechanisms feature
a lot of properties that are attractive to the field of micro- and nano-engineering, opto-mechatronics,
aerospace, semiconductor and health-care [6]. These properties come from the fact that compliant
mechanisms are monolithic, which gives them high precision, ideal for mechanisms that require fine
alignment [6].

Lobontiu [13] describes in his book much more applications, a few applications are mentioned here
to give an idea of the broad applicability and scale of compliant mechanisms. In the automobile industry
compliant mechanisms can be used as sensors and suspension systems, while the biomedical industry
utilizes compliant mechanisms as vascular catheters. In fiberoptics and microdevices the compliant
mechanisms are used as disc drive suspension, laser systems, load cells and optical switches [13].

It can be noted that all these applications are small scale implementations of compliant mechanisms,
the largest of these mechanisms are several centimeters in size. Compliant mechanisms are being
used in small scale applications for good reason, the benefits of compliant mechanisms are particularly
useful in tight spaces and precision applications. However, the use of compliant mechanisms and its
benefits are not limited to these scales. In the following sections the advantages and disadvantages
are discussed in further detail.

2.1. Advantages of Compliant Mechanisms

There are multiple advantages associated with compliant mechanisms which makes their use case
really attractive. One of them is the potential for increased performance [11]. This can be achieved be-
cause of reduced surface and adhesive forces which are dominant at small scales, making compliant
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mechanisms predictable, ideal for high precision applications [13]. Furthermore, the increased per-
formance comes from the reduced wear, eliminating the need for lubricants, which is ideal for space
applications, where lubricants can evaporate [4]. Reduced wear also means reduced maintenance,
which saves cost and is beneficial for hard to reach locations. Then there is the benefit of reduced part
count, which leads to easier assembly and fewer parts to stock [4]. Less parts, lead to more compact
and light weight mechanisms as well.

2.2. Disadvantages of Compliant Mechanisms

There are some drawbacks associated with compliant mechanisms as well. The motion of compliant
mechanisms is complex to define and is often non linear [4, 11]. For example, the rotation center of
a compliant hinge is not fixed. Also, axial shearing and torsion loading ask for complicated equations
to fully understand the motion [13]. Another drawback is their sensitivity to fatigue, due to repeated
motion and large deflections fatigue can occur, compromising the mechanism’s operation and lifetime.
Furthermore, the range of motion of compliant mechanisms is much more constraint than their rigid
body counterparts, only allowing for infinite rotations. Other disadvantages are their sensitivity to tem-
perature variations [13] and their perceived flimsiness [11].

When these drawbacks can be overcome, compliant mechanisms are a promising design direction
to be considered, for small scale and large scale applications. The design of compliant mechanisms is
more complicated than rigid body mechanisms however. Components of compliant mechanisms often
have to combine certain functions, that could earlier be assigned to multiple components. The linear
paths and well defined guided motion of rigid body mechanisms have to be replaced by bending, non
linear, unclear axis of rotation mechanisms. In chapter 3, the way to model these complexities for the
design of compliant mechanisms is discussed, along with a method to optimize the design for large
scale foldable structure applications.



Methods

In order to answer the research question, first a model needs to be selected to represent the flexure.
This model needs to be as close to reality as possible without being too computationally complex. With
the model it is possible to see how changes on certain parameters, change the behaviour of the flexure.
These insights lead to efficient flexure design by making the influence of material choice and design
parameters directly visible and intuitive.

Subsequently the parameters influencing the design need to be identified. A look is taken into
the sensitivity of the flexure behaviour, to these parameters. When the sensitivity is known, one can
predict what designs or materials are worth investigating further. To investigate the influence of the
flexure material on the flexure behaviour, three materials are selected to be used in the model. These
three materials are selected because they are commonly used in structural and bending applications.

Inherent to a change in material is the change in yield strength. The yield strength is an important
property of a material, as it indicates the stress limit to where a material can be deformed until it deforms
plastically. For flexures this is important because flexures need to be able to withstand multiple load
cycles without losing its functionality. The yield strength has a significant influence on the flexure design
because it is a direct measure of how much load the flexure of a particular material can carry. When
the yield strength of a material is low, it means the flexure can not bare much load, so the deflection
for a flexure of that material can be much lower.

After the model has been selected and the important parameters are identified, an optimization
is performed for the flexure design. This is done through a multi-objective target shape optimization,
where the optimal design is determined for a certain predefined shape. With this optimization the
Pareto-optimal thickness of the flexure is determined. The thickness is optimized while taking into
account the stresses and flexure volume.

3.1. Flexure model

As mentioned in chapter 2, compliant mechanisms are more complicated to design than conventional
rigid body mechanisms. The complex motion of bending parts and the ability to perform multiple tasks
with fewer parts, are the source for this complexity. The model that will be used to approximate this
behaviour needs to capture these behaviours as accurately as possible. The main methods, of model-
ing flexure behaviour, are Finite Element Method (FEM) and Pseudo-Rigid Body Models (PRBM). Both
methods are discussed below and the most suitable method is selected to be implemented for the use
case.

3.1.1. Finite Element Method
The Finite Element Method (FEM) is a numerical technique used in multiple engineering industries. It
can be used for solid mechanics, fluid dynamics, heat transfer and electromagnetic problems [7]. A
large benefit of the FEM is that it can be used for all sorts of problems, for complex materials, loads
and geometries. The basic working principle is that a complex geometry can be divided into a finite
set of discrete elements, in that way equilibrium requirements only have to be satisfied for the simple
elements instead of entire complex geometries, making the equations simpler whilst still accurately
representing the complex geometry.

The discretization of complex geometries has the benefit of being able to account for changes in
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material properties along a structure, also, it can easily deal with changing geometries in a structure,
for example a varying cross section of a beam. The changes in material properties and geometries can
be modeled by assigning different properties per element.

The equilibrium requirements for each element make up the stiffness matrix for the element. This
matrix gives the relation between the forces and displacements of the element. By combining the
matrices of every element in the correct way, the global stiffness matrix can be defined. With the
global stiffness matrix, the forces and displacements of the entire geometry can be determined, while
capturing local effects.

The FEM method is very flexible, it provides a wide choice of analysis types and several levels
of complexity to choose from [13]. A FEM model is useful when the geometry and loads are exactly
known and an initial design is available. With a highly complex FEM model, very complex shapes and
load types can be studied very accurately. This requires a lot of knowledge about FEM and multiple
complex equations, which are integrated in commercially available software. When doing these equa-
tions yourself, a lower level of complexity is practically reachable, enabling for less accurate models.
A depiction of an element made by software and a simpler equivalent element can be seen in figure
3.1a.

!i with several 2D -]

1 Flexure meshed (777717
3 y
] finite elements

element

Ny S——— y U3y
AT Unx s U3y
rl NNEEN <
2 5 3

zZ 3z
One equivalent !
3-node line 1

|

(a) Simple element to replace commercial

software element (b) Three-node, three-degrees-of-freedom-per-node FEM

Figure 3.1: FEM for single axis beam element flexure[13]

According to Lobontiu [13], the FEM model for a beam element flexure has to include three nodes
per element to accurately describe the nonlinear behaviour of a flexure undergoing large deformation.
Such a model is represented in figure 3.1b. Because of the third node, a fifth degree polynomial is
required to provide continuity for the bending conditions, i.e. per node a boundary condition must
be enforced for the deflection and for the slope. So already for such a simple element, complicated
calculations are required.

3.1.2. Pseudo-Rigid Body Model

Another method of modeling the nonlinearities introduced by large deflections is through a Pseudo-
Rigid Body Model (PRBM). A PRBM is a well suited for evaluation, optimization and visualization of
compliant mechanism designs [10]. The PRBM is highly efficient in early design stages where many
different designs need to be trialed, since it does not require an accurate initial design. Resulting
designs can be refined by using other analysis types [4].

The PRBM simplifies the analysis of complex motion by replacing the flexible elements by rigid
segments and torsion springs. Rigid segments and springs are easier to analyse and can be used to
predict the force-deflection relationships. In a PRBM the classical rigid-body mechanism and compli-
ant theories are unified [4]. Instead of modeling point by point variations, PRBMs only describe the
behaviour of whole compliant segments [11]. A simple use case and its equivalent PRBM are depicted
in figure 3.2. Here it is clearly visible how a flexible element can be replaced by a torsion spring and a
rigid element to deduce the behaviour of the flexible element.

Through an optimization process, the exact force-deflection relationships are used to determine
the model parameters for a specific use case. The exact relationships can be determined through
elliptical integrals or other numeric methods [11]. The model parameters have to be selected so that
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Figure 3.2: Simplification of large deflection compliant mechanisms[11]

the rigid links, connected by a characteristic pivot, approximate the flexure displacement, while the
spring stiffness has to approximate the flexure stiffness. The location of the characteristic pivot is
different for every load-case and geometry, just as the spring stiffness, these parameters need to be
recomputed for every change in boundary conditions. This makes a PRBM difficult to use for dynamic
simulations [19].

Shearing effects and axial loading are aspects that complicate the construction of PRBMs. These
types of loading can not be modeled by a simple torsion spring. To account for this, mitigating additions
have to be implemented in the model, such as extension springs. A beam geometry factor can give
insight in the accuracy of the PRBM in complex load cases. The factor relates the extension of the
beam element along the neutral axis with respect to the deformation due to bending [18].

The PRBM is developed under the assumption of flexures undergoing large deformations. However,
oftentimes flexures are not used in large deflection situations, therefore the models are less accurate
when the deflections are small [13]. Other limiting factors of the PRBM are, they currently only exist for
constant cross section elements and can only describe planar motions [19].

3.1.3. Selected model

A PRBM has been chosen to be used in order to answer the research question. The main reason be-
ing its ease of use, visualization abilities and appropriateness for optimization purposes. Furthermore,
local variations are not relevant for this research and boundary conditions are fixed. Also, the intended
application of the model is to examine flexure behaviour for large deformations, eliminating inaccura-
cies of the model at small deformations. The insights of this research are meant to be used in early
design stages when initials designs still feature simple geometries, making the exact and complicated
equations of the FEM superfluous.

To accurately represent the flexure behaviour during the analysis, a suitable PRBM needs to be se-
lected. A multitude of models exist, ranging from simple to complex and from inaccurate to accurate.
Some models can be more accurate than others depending on the load case. For this research as-
signment, a PRBM with two revolute (2R) joints and three rigid segments is selected [21]. At the joints
a torsion spring is implemented to simulate the flexure stiffness. A depiction of the model can be seen
in figure 3.3. The flexure model will be based on a beam configuration.

The 2R model is selected because the added degree of freedom over a model with one revolute joint,
leads to a significant reduction in error between the model and the exact solution [21]. Furthermore,
the model with one revolute joint can only describe the path of the flexure tip, not the deflection angle.
On the other hand, more degrees of freedom lead to higher computational cost, which at a certain point
increases too much, without decreasing the error significantly. The 2R model strikes a good balance,
since it provides a higher accuracy than a model with one revolute joint and it simplifies the iterative
process of a model with three revolute joints, while maintaining a similar level of accuracy [22].

When extension effects are in play, the accuracy of a PRBM without a prismatic joint decreases.
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Figure 3.3: Cantilever beam with end moment and corresponding 2R PRBM [21].

The revolute joints with torsion spring are not able to account for the longitudinal forces in a flexure [19].
These effects are more significant when evaluating short, soft flexures, which are not being considered
in this research [20]. Furthermore, the 2R model is accurate for long beam configurations.

The 2R model parameters are dependant on the load case. For this research the selected load case
is a moment end load on the flexure. The model parameters associated with such a load case are dis-
played in table 3.1. These values are found through parametric approximations to the exact deflection
path and by linear regression for the spring stiffness coefficients [21].

Table 3.1: Model parameters 2R PRBM with moment end load

Yo 0.16
Y1 0.66
Vs 0.18
Kgq | 2.0571
Kg, | 1.9175

Here y; stands for the characteristic radius factor. The length of each rigid link is y; * [, where [ is the
length of the flexure, as can be seen: y, + y; + v, = 1. Kp;, is a nondimensionalized torsion spring
constant, called the stiffness coefficient.

Via the 2R PRBM the deflection of a flexure can be approximated in the following way: first the spring
constants, K;, need to be determined, that can be done through the characteristic radius factors and
the stiffness coefficients, as follows:

El
Ki =viKei 7, (i=12) (3.1)

Here E, stands for the Young’s modulus of the flexure material. I, stands for the moment of inertia of a

flexure, for a beam being “i—t: where w stands for the width of the beam and ¢ for the thickness.

After the spring constants are determined, the deflection angles of the torsion springs can be de-
termined, ©; respectively, via:

_ My(1 —vo)
Ky
_ Moy,
2 KZ
Here M,, is the moment end load applied to the flexure. The numerator in equations 3.2 gives the torque

at the respective joint locations. The total deflection of the model can be calculated by the summation
of both deflection angles, i.e. ; + 6, = 0.

0,
(3.2)
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Subsequently, with both deflection angles known, the coordinates of the flexure tip can be calcu-
lated, being P;, and Ps,:

P3 = (¥ + 71 cOS 04 + ¥, cos 0)1 (3.3)
P3y = (]/1 Sin @1 + ]/2 Sin @)l (34)

3.2. Design parameters

To make the design of flexures intuitive, it is useful to perform a sensitivity analysis for the behaviour
of the flexure. With the sensitivity analysis it is possible to see how the flexure reacts when certain
parameters are changed. Several parameters have been identified to be of influence on the flexure
behaviour, being: the flexure length, thickness and width, the moment end load and the flexure mate-
rial. All of these parameters can be seen back in the equations forming the model. Another parameter
of importance, not used in the model, is the yield strength of the flexure material.

The materials that are being used to research the flexure behaviour are aluminium, rubber and a
Nickel-Titanium (NiTi) Shape Memory Alloy (SMA). Aluminium has been chosen because it is a com-
mon material in structural applications and widely available, furthermore, aluminium is a relatively stiff
material and intuitively not best suited for large deflection applications. Table 3.2 shows the properties
of the selected aluminium.

Rubber has been selected because of its flexible nature, it forms a contrast with aluminium in terms
of the bending capability. It will be interesting to see how this influences the flexure design. The selected
rubber type is polyurethane, since it is the strongest of the elastomers [8]. Its properties are listed in
table 3.2.

The NiTi SMA has been selected because it has different properties than regular materials. The
stress-strain curve is highly non-linear and includes a variation in Young’s modulus. SMAs get their
name from their shape memory properties, but next to that they exhibit unusual elastic properties, the
superelastic properties. The superelasticity is related to the material phase transformation, from austen-
ite to martensite. Due to the superelastic properties, SMAs can withstand large deformations relative
to its weight. Furthermore, the SMA damping properties can be exploited for new design directions in
flexures [2].

The SMA properties are interpreted according to the model of Auricchio et al. [1], and feature a
stress value for the forward and reverse phase transformation of the SMA, defining the superelastic
regime. This model is depicted in figure 3.4. The NiTi alloy properties are highly sensitive to the
fabrication process, values used for this research are from Machado et al. [15], shown in table 3.2. For
this research only the loading phase is considered. The yield strength values are obtained through lab
tests on 50Ni50Ti at Delft University of Technology.

Table 3.2: Flexure material properties

Material Young’s modulus, | Yield strength,
E [GPa] g, [MPa]
Aluminium 70 276
Rubber (Polyurethane) 0,03 51
NiTi SMA 60 1200
Young’s modulus, | Superelastic regime,
E [GPa] o [MPa]
NiTi SMA Superelastic 25 500-580

3.3. Optimization

When the model for flexure design has been established for quick and preliminary flexure design, the
design can be optimized. An optimization can be made for a single flexure use case and for an use case
in a structure. A target shape optimization is used to identify the optimal design. With this optimization
it is possible to see for what value of the variables the target shape is best met. As a results, a design
can me made, where for a given actuation load, the desired deflection is met as closely as possible.
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Figure 3.4: SMA material model. red dots represent stress levels of phase transformation

The optimization needs to be able to function when a desired deflection is given, and an initial
configuration. The optimization has to take into account allowable stresses in the flexure and the flexure
volume. The stresses need to be considered in the flexure because the resulting design has to be
feasible, the flexure should not deform plastically under the desired deflection. Also, the volume needs
to be considered, because design space is limited and less material means less costs. Moreover, the
design should meet the target shape as close as possible. To satisfy these objectives a multi-objective
optimization is required.

The algorithm used, is a Non-dominated Sorting Genetic Algorithm, called NSGA Il [5]. NSGA
Il can find a large spread of solutions while converging near the true Pareto-optimal front, thereby
representing the trade-off between multiple objectives. The way the algorithm works is by minimizing
each objective function at the same time, giving a Pareto front. The optimal design is somewhere on
the Pareto-optimal front, depending on the trade-off the user wants to make. A trade-off has to be made
because a solution where the shape error is minimal and the stress in minimal, does not exist. The
optimum lays somewhere in between.

The optimization is setup in such a way, that the thickness of the flexure is variable, so the algo-
rithm will output an optimal thickness. Furthermore, in the case of the SMA, the Young’s modulus is
variable, depending on the stress levels in the flexure, as seen in figure 3.4. The thickness is set as
the variable because the behaviour of the flexure is most sensitive to it. Moreover, implementing the
flexure length as variable would give complications for determining the target shape. For the algorithm
to be able to work, it requires the material properties, flexure length, flexure width, end moment and
target coordinates as input. A flowchart of the used optimization algorithm can be seen in figure 3.5.

3.3.1. Objectives

For a flexure design to be optimal it has to satisfy multiple objectives. The first objective, f;, accounts
for the minimization of the shape matching error, S, ,,. S ,, is defined as the distance between the target
point, specified by the target shape, and the corresponding model output point. The second objective,
f2, accounts for the minimization of the maximum overall bending stress, o,,,,,. The final objective,
f3, accounts for the minimization of the total flexure volume, V;,.
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Figure 3.5: Flowchart of the flexure thickness optimization algorithm

The mathematical formulation of the algorithm is as follows:

Minimize(fi, f2, f3)

Where,
p
fl = Z Se,p (35)
p=1
2= Z Omax,n (3.6)
n=1
=) @3.7)
n=1

Here p, stands for the number of target points, and n, stands for the number of flexures. The algorithm
is subject to a predefined maximum and minimum allowable flexure thickness, t,,. The allowable values
are determined based on the geometry continuity and fabrication limitations, being one millimeter as
minimum thickness and ten millimeter as maximum. This constraint is formulated as follows:

1(mm) < t, < 10(mm) (3.8)

3.3.2. Target Shape

For the optimization a target shape is chosen which reflects a potential application in a foldable struc-
ture. The target shape is set to represent a large flexure undergoing a large deformation. Hereby the
behaviour of a flexure in extreme situations is simulated. In this way the model covers a multitude of
application possibilities. In order to represent the design for a larger structure, multiple flexures are con-
nected with rigid members in between. This structure shape will also be evaluated by the optimization
in order to find the optimal design for the structure.

The target shape for a single flexure is set to represent a deflection of 180° upwards, a schematic
depiction can be seen in figure 3.6a. In addition to the desired deflection, the flexure length influences
the target shape coordinates. For every material the feasible deflection changes, since the material’s
Young’s modulus influences the amount of deflection, and the yield strength limits the feasible de-
flection. Therefore, the material choice influences the flexure length, which influences the target shape
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coordinates. The target coordinates are set as the end point of the flexure. Figure 3.6b, represent a one
meter long flexure, with a width of twenty centimeters. This depiction can only be used to get a rough
idea of what the target shape looks like and is not an exact representation of the flexure behaviour,
since the center of rotation is not fixed for an actual flexure.

(a) Schematic single flexure target shape (b) Single flexure target shape (fixed center of rotation)

Figure 3.6: Target shape 180° deflection

Figure 3.7a and 3.7b visualize the implementation of flexures in a potential mechanism application.
The mechanism represents a compliant arm which can extend or detract under influence of an applied
moment load to the end of the flexures. For this configurations it is assumed that the moment loads
are equal at every flexure tip point. Furthermore, the flexures have the same length, except for the
first flexure, connected to the ground, which is half the length of the other flexures. In figure 3.7b, the
flexures have a length of one meter. The segments connecting the flexures are assumed rigid and
have a length of two meters. This configuration is evaluated by the optimization as well, to get to an
optimal design. The start and end point of every rigid segment are set as the target coordinates.

D N

(a) Schematic connected flexures target shape (b) Connected flexures target shape

Figure 3.7: Compliant structure target shape



Results

The results of the sensitivity analysis and the optimization are presented in this chapter. First the
functionality of the model is shown, with a depiction of how the model generates the total deflection when
multiple bodies are connected. Thereafter, the model response is shown for the different variables.
From these results the sensitivity can be analyzed. Subsequently, the model deflections are presented
while taking into account the yield strength of the material. This gives the feasible deflection per material
type. When combining this with the sensitivity analysis, a constant can be deduced, which can be used
for intuitive design of flexures.

Furthermore, the optimization results of a flexure design for a specific use case are presented. First
the results are shown for the design of a single flexure, thereafter, the results are shown for the flexure
design in a structure application. To determine the best design a trade-off has to be made between the
different objective functions, this process is discussed as well.

4.1. Model output

Figure 4.1, shows the output of the model, the complete code can be found in appendix A. What can be
seen is the behaviour of a flexure for varying positive end moment loads. The red lines represent the
configuration of the flexure at different loads, the start load, the end load and, where applicable, a load
in between. The red dots represent the location of the characteristic pivots for each configuration and
the end point of the flexure. As can be seen, since the model is a 2R PRBM, there are two characteristic
pivots per flexure. The blue line represents the locus of the flexure tip, where each dot represents a
discrete load level. As can be seen, each configuration has the first rigid member in common, starting
from the origin.

Figure 4.1b shows in what way the model gets to the overall deflection when multiple flexures are
connected. The blue and orange lines depict the local behaviour of a single flexure. The green line
shows the global behaviour of the system, where it combines the deflections of both local solutions.

Figure 4.1c shows the output of the model for the compliant structure use case, the code for this
model can be found in appendix B. In this depiction the flexure length is one meter, except for the first
flexure, which is half that. For this figure the material properties of aluminium are used, E = 70 (GPa)
and a flexure width of 20 centimeters. For this configuration for the flexure to reach 180° deflection, a
moment end load of 184.2 (Nm) is required.

4.1.1. SMA flexure

Figures 4.1a-4.1c, show the model results for materials with a constant Young’s Modulus, i.e. materials
with a linear stress-strain curve. The Young’s modulus is not constant for NiTi SMAs, resulting in a
nonlinear deflection curve. Figure 4.1d shows the nonlinear deflection path of a NiTi SMA subject to
varying loads. Since the Young’s modulus of NiTi depends on the bending stress it changes under
specific loads.

In figure 4.1d, the red lines represent the flexure deflection in the first austenite phase, here the
Young’s modulus is equal to 60 (GPa). Then the bending stress reaches the limit where the NiTi
SMA phase changes from austenite to martensite, reducing the Young’s modulus to 25 (GPa), the
changeover phase is depicted by the green lines. The moment end load in the changeover phase
ranges from 17-19 (Nm). Subsequently, when the bending stresses become too high, the NiTi SMA

13
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Figure 4.1: 2R PRBM output

reaches the martensite phase, depicted by the magenta lines, where the Young’s modulus is equal to
60 (GPa) again. In this phase the material behaves like any other material, since the Young’s modulus
is constant.

As can be seen, the NiTi SMA has a superelastic property in a certain load range. This can be
exploited in compliant mechanisms when the flexure is designed so that it operates in this region.

4.2. Sensitivity Analysis

In this section the results of the sensitivity analysis are presented. The sensitivity of the flexure deflec-
tion to each variable is analyzed. For each plot in figure 4.2, the variables are the same, except for the
variable of which the sensitivity is being investigated. The model variables used for the plots are listed
in table 4.1. For the plots where the variables are not fixed, the range and step size are denoted in
table 4.1 as well.

From the plots and the step sizes some interesting insights can be gained. Firstly, from the end mo-
ment and flexure length sensitivity, figures 4.2a and 4.2c, it can be seen that for larger values, the
deflection is larger in a linear way. It is good to note that figure 4.2c represents the relative deflection
of the flexure. The Young’s modulus and the flexure width, figures 4.2b and 4.2d, are revers linearly
related to the flexure deflection, i.e. when the values become larger, the deflection decreases linearly.
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The influence of the flexure thickness on the deflection is more complicated however. It can be seen
that when the thickness increases with a factor n, the deflection decreases by a factor of n3.
These results correspond with the expected behaviour of the model. The model behaviour can be
3
predicted by combining equations 3.1 and 3.2, and taking for I the moment of inertia of a beam, %
When removing the constants from the equations, the formulation of the deflection boils down to:

Mo! 4.1
= Tl (4.1)
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Figure 4.2: 2R PRBM sensitivity analysis

From the sensitivity analysis results it can be seen that for a change in flexure material, i.e. a change
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in Young’s modulus, the moment end load has to scale equally to reach the same deflection of the
flexure. Furthermore, when the material properties allow a low moment end load, due to the material’s
yield strength, a large deflection can still be reached by enlarging the flexure length. Therefore, the
yield strength plays a significant role for the design of flexures. Currently no measure exists which
combines the flexure material’s yield strength, Young’s modulus, flexure length and thickness for the
design of flexures.

Table 4.1: Model variable values

Fixed value | Value range | Step size
End moment, My [Nm] 100 0-250 10
Young’s modulus, E [GPa] 70 25-200 5
Flexure length, [ [m] 1 0-2.5 0.1
Flexure width, w [cm] 20 9-60 1
Flexure thickness, t [mm] 1 0.74-1.5 0.02

4.3. Flexure Design

For actual flexure design the sensitivity analysis alone is not enough. For a flexure design to be actually
feasible, the yield strength of the flexure material needs to be considered as well. The yield strength
plays a significant role for the design of flexures, because it sets a limit for the allowable stress in the
flexure. When the yield strength is surpassed, the flexure will deform plastically, making the deformation
permanent. To mitigate surpassing the yield strength at a certain deflection, other flexure parameters
can be changed. For example, the length of the flexure can be increased, causing the required moment
end load to be decreased, lowering the bending stress in the flexure.

4.3.1. Material influence

When considering the materials mentioned in table 3.2, the feasible flexure length for a desired de-
flection of 180° varies quit significantly. The required length for a flexure of any of those materials to
reach a deflection of 180°, with a thickness of one millimeter, a width of twenty centimeters, without
surpassing the yield strength, is denoted in table 4.2. The allowable moment is directly related to the
material’s yield strength, as can be seen through equation 4.2. The feasible deflection for a flexure of
one meter is also denoted in table 4.2. The values are not exact, because they only serve an indication
purpose.

Table 4.2: Feasible values of length and moment for deflection of 180°, and feasible deflection for length of 1m and moment of
100Nm, here t=1mm, w=20cm

Material Allowable moment, | Required length, | Feasible deflection,
M, [Nm] (approx.) | ! [m] (approx.) 0 [°] (approx.)
Aluminium 10 20 9.7
Rubber (Polyurethane) 1.72 0.05 3954
NiTi SMA 38 4.5 43
NiTi SMA (Superelastic) 18 4 49
MOE
Omax = I (4.2)

4.3.2. Design constant

As can be seen from table 4.2, there are enormous differences in required lengths and feasible deflec-
tions. For people who are not accustomed to working with flexure design and the influence of material
properties on flexures, the results may look completely random. Actually it is possible to deduce a re-
lation between the material properties, deflection angle, flexure length and thickness. Such a relation
can be used to design flexures fast and intuitively.
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First, itis necessary to distinguish the importance of the flexure material’s yield strength and Young'’s
modulus to the flexure design. Moreover, the ratio between them. This ratio can be used as an indicator
for the flexibility of materials [16]. With a higher ratio of strength to Young’s modulus, being better [11].
The best suited materials are both flexible and strong. To quickly identify what materials meet this
criteria, an Ashby plot can be used, as seen in figure 4.3, a larger example of the figure can be found
in appendix E. An Ashby plot is a scatter plot which can be used to display multiple material properties
of all sort of materials. It is ideal for finding materials with a good strength to Young’s modulus ratio,
where the best materials are positioned at the top left.

Along the diagonal index lines, in figure 4.3, the materials have an equal strength to Young’s mod-
ulus ratio. As can be seen the index lines associated with polyurethane rubber and aluminium are
represented. The material properties for the NiTi SMA are added manually in the plot, represented by
the two orange circles, according to the material properties from Machado et al. [15]. What can be
seen from this is that the NiTi SMAs perform extremely well, compared to other alloys. Furthermore,
the SMA in the martensite phase, performs slightly better on the material index, than the SMA in the
austenite phase. This corresponds with the difference in required length for 180° deflection from table
4.2.

Yield strength (elastic limit) (MPa)

Young's modulus (GPa)

Figure 4.3: Ashby plot ratio yield strength to Young’s modulus (enlarged in appendix E)

Next to the measure for flexibility, the deflection angle, flexure length and thickness are important to
the flexure design. When combining equations 4.1 and 4.2 with the deflection angles acquired through
the 2R PRBM, the following relation can be found:

Fxl
t*x0

Where F = %y the measure for the flexibility of the material, [, is the flexure length, t, is the flexure
thickness and ©, is the desired/feasible deflection. Here o, and E, stand for the flexure material’s yield
strength and Young’s modulus respectively. The flexure width has no influence on the constant, since a
larger flexure width results in a lower stress, but also a smaller deflection. The applied moment end load
M,, also has no influence on this design constant because the allowed moment is already accounted
for by the value of the yield strength, assuming maximum allowable load. The flowchart depicted in
figure 4.4a, shows how the design constant can be determined, regardless of the PRBM that is used.

With this constant it is possible to determine what the flexure length needs to be in order to safely
facilitate a desired deflection when the material properties and flexure thickness are known. Similarly
the flexure thickness and reachable deflection can be determined when the other variables are known.
An example design workflow is presented in figure 4.4b, where the desired deflection and flexure length
are known.

= 0.438 (4.3)
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(a) Flowchart for finding the design constant (b) Example of design process

Figure 4.4: Design flowcharts

4.4. Optimization results

The outputs from the 2R PRBM model and the design constant, serve as ideal basis for the optimization
of the flexure design. With the design constant it can be determined what realistic input values are for
the optimization. The inputs required for the optimization are: the target shape, the applied moment,
Young’s modulus, flexure length and width.

The optimization results for aluminium flexures and for SMA flexures will be shown. For materials
with a constant Young’s modulus the results will be the same as for the aluminium flexure, when the
inputs are scaled to allow for the change in material properties, i.e. length scaled for the strength to
Young’s modulus ratio.

The optimization results make little sense when the target shape can not even be matched, due
to a too little moment or too large thickness. The input variables are taken so that the material’s yield
strength is not surpassed when reaching zero shape error, furthermore, for the lowest possible thick-
ness the target shape can be surpassed. While keeping this in mind the following inputs are used, seen
in table 4.3. For the optimization the population size was set to 100, and the number of generations
was set to 100 as well.

Table 4.3: Optimization variable values

NiTi SMA

Aluminium . NiTi SMA
(superelastic)
Target deflection [°] 180 180 180
End moment, M, [Nm] 10 18 38
Young’s modulus, E [GPa] 70 25 60
Flexure length, I [m] 20 4 4.5
Flexure width, w [cm] 20 20 20
Flexure thickness range, t [mm] 1-10 1-10 1-10

4.4.1. Single flexure

The optimization results for a single flexure of aluminium can be seen in figure 4.5, the code for this
optimization can be seen in appendix C. The blue dots represent the Pareto-optimal front. The other
colored dots represent extreme optimal points and can be used to describe the trade-off between the
multiple objectives. The significance of the extremes and the corresponding optimization results are
denoted in table 4.4a. The target coordinates are from the tip of the flexure, as seen in the configuration
of figure 4.1a, where the maximum deflection is 180°.
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Figure 4.5: Single aluminium flexure thickness optimization

The trade-off that has to be made here is: either the shape error is zero (black solution), but the
flexure is stressed to its yield limit, or the stress stays well below the yield limit (yellow solution), but
the shape error is large. Both the shape error and the bending stress can not be optimal for the same
configuration. The optimal solution can be in between these extreme solutions as well, since all solu-
tions on the Pareto-front are optimal. To help in this trade-off, the volume is considered as well. The
red solution represent the optimal solution between the volume and stress objectives. What solution

is chosen in the final design of a flexure, depends on the needs of the user. The optimal thickness for
each extreme solution is presented in table 4.4a.

The optimization results for the NiTi SMA flexure are presented in figure 4.6. The inputs to the
optimization for this material are a little more complicated than for a material with constant Young’s
modulus, since for both material phases (normal and superelastic) the ideal length for 180° deflection
is different, as seen in table 4.2. This has an influence on the target coordinates for the optimization.

When considering both the ideal lengths for the NiTi SMA when a deflection of 180° is required,
some interesting results are seen in the optimization. First, when the bending stress is such, that it is
between the stress boundaries for superelasticity, a jump in flexibility can be seen in the optimization,
figure 4.6a. When this superelasticity can be exploited in a structure, it can be ensured that the target
shape is met while maintaining low levels of stress in the flexure.

Furthermore, in figure 4.6b, the jump in flexure performance is visible as well. Here the flexure
is stressed past the superelastic phase, to the martensite phase. Apart from the jump in the Pareto-
front the material behaves like any other material, the material only behaves superelastically when the
thickness is between 1.42013 and 1.49162 (mm). The closest the target shape can be approached,

while utilizing the superelastic property is 0.56316(m). The thickness optimization values are given in
tables 4.4c
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Table 4.4: Optimization results

(a) Single aluminium flexure optimization results (b) Single superelastic SMA flexure optimization results

Color Significance Thickness [mm] Color Significance Thickness [mm]
Black | Min. shape error 1.02791 Black | Min. shape error 1.03055
Yellow | Minimum stress 10 Yellow | Minimum stress 10
Red Optimal trade-off 2.52404 Red Optimal trade-off 2.58259
(c) Single SMA flexure optimization results

Color Significance Thickness [mm]

Black Minimum shape error 1.02692

Yellow Minimum stress 10

Red Optimal trade-off 2.42931

Cyan End superelastic phase 1.42013

Magenta | Start superelastic phase 1.49162
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Figure 4.6: Single SMA flexure thickness optimization

4.4.2. Connected flexures

The results are presented here below for the connected flexure use case, as seen in figure 4.1c, the
code for this optimization can be seen in appendix D. The results are presented for the NiTi SMA
flexures since these results show the ability of the optimization to take into account the phase change
of SMAs.

As input for the optimization the values are set to allow for a 180° deflection of a SMA flexure without
deforming plastically, i.e. without the yield strength being surpassed. The end moment and flexure
length are set to 28 (Nm) and 4.5 (m) respectively. The end moment differs from the value given in
table 4.2, because the new value allows a set of fully superelastic flexures to be the optimal solution.
For this configuration the target coordinates shape is depicted in figure 4.7a. The target coordinates
are taken from the start and end points of the rigid segments, which are taken to be 2 meters long.

The Pareto-optimal solution for the thicknesses is presented in figure 4.7b. The highlighted points
represent solutions with a significance and are listed and evaluated in table 4.5. The numbers one
to four, stand for the respective flexures, where the first flexure is the most left one. In the phase
column, the letters stand for the phase the associated flexure is in, where N stands for normal (austen-
ite/martensite) and S stands for superelastic.

From these results it can be seen that with the right boundary conditions the superelasticity proper-
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Figure 4.7: Single SMA flexure thickness optimization

ties of the NiTi SMA can be exploited for optimal flexure design. As a matter in fact the solutions with
the lowest error, being magenta and cyan, utilize the superelasticity of the martensite phase to reach
the target objective. With this optimization it is possible to find solutions for the best thickness, while
considering nonlinear material behaviour. That is something which is hard to achieve since multiple
objectives need to be considered and the flexure behaviour is highly sensitive to material thickness.
Therefore, this optimization can be used for design of complicated foldable structures, while taking into
account the accuracy of the compliant mechanism’s motion.

Table 4.5: Multiple SMA flexures results

Color Significance Thickness [mm] Shape error [m] Phase
. 1: 9.97033 2: 9.97184 "N 2:N
Black Minimum stress 3:0.08600 4: 9.9852 62.6871 3N 4N
Maximum stress 1: 1.00003 2: 1.00103 18.4879 TN 2:N
3: 1.0001 4: 1.00022 ’ 3:N 4:N
. 1: 1.23009 2: 1.23703 1:S 2:S
Macenta Minimum error 3: 1.25118 4: 1.26127 1.17185 3:S 4:S
g Maximum error 1:1.94103 2: 1.28957 83.332 TN 2:S
3:1.69898 4: 1.61986 ' 3:N 4:N
1:1.73472 2: 1.21301 "N 2:8
Red Low volume, med. error 3- 123825 4: 13594 51.0493 33 4N
1: 9.17153 2: 9.20635 "N 2:N
Yellow Low stress, med. error 3 10847 4 8.91481 38.7499 38 4N
1: 1.2463 2: 1.23874 1:.S 2:8
Cyan Low error, med. stress 3. 195315 4- 993703 14.9009 35 4 N







Discussion

When analysing the results some remarks can be made. Firstly, the proposed target deflection of 180°
brings some difficulties with it. This large deflection was chosen because it represents an extreme
use case and by choosing a large deflection, a lot of use cases are covered. However, it resulted in
infeasible flexure designs, when considering aluminium and rubber flexures.

For an aluminium flexure the large target deflection resulted in unrealistically long flexures. Beside
the fabrication difficulties this brings, it introduces instability in the flexure when forces are not perfectly
planar. The stiffness in the plane perpendicular to the deflection becomes too low, allowing for sideways
deflection, which is undesirable. Furthermore, the PRBM can only describe planar deflections.

The results for the polyurethane rubber flexure were in practical as well, when the shortest feasible
flexure length is assumed. The flexure could be as short as 5 (cm), which causes difficulties for large
deflection. Because the flexure is only 5 (cm) long, the connected rigid members would collide when
facilitating 180° deflection. Moreover, for short flexures, the 2R PRBM becomes less accurate, since
extension effects weigh in more than for long flexures [20]. To model such short soft flexures accurately,
a model with a prismatic joint should be considered.

Lastly on the large deflection assumption, the selected 2R PRBM becomes less accurate for high
deformations. The authors of the 2R PRBM paper have identified a maximum parametric angle, for
which the error between the exact tip deflection and the model output is less than 1%, to be 124.7° [21].
To accurately model deflection beyond this point, another more complex model should be selected, al-
though even then, the results for large deflections will be limited by an allowable error.

For the material choice and description some remarks can be made as well. The choice for the
polyurethane rubber type was based on it being the strongest rubber type. In hindsight it is not the
best suited rubber type material for flexures. When looking at the Ashby plot, figure 4.3, it can be seen
that natural rubber has a better index on the strength to Young’s modulus scale. Therefore, it is able to
reach the same deflection for a smaller flexure length.

When considering the SMA, it is good to evaluate the assumptions that are made. The material
behaviour model has been taken from Auricchio et al. [1]. This model assumes an isotropic material
which is subject to an uniaxial tensile stress, therefore, only two phases exist, the austenite and the
martensite phase. Furthermore, temperature differences have an influence on the SMA properties,
however, in this research, temperature changes are not considered.

The unloading of the flexures are also not considered. Along with the hysteresis and damping ef-
fects of SMAs. These elements are outside the scope of this research and can be considered in future
research.

To evaluate on the found design constant, equation 4.3, it has to be considered that the constant
value is derived from results gained with the 2R PRBM. When another model is used to find the design
constant, the value can differ. Furthermore, the constant is derived from configurations with a large
deflection. As previously mentioned the model accuracy decreases at large deflections, therefore the
inaccuracy is carried over to the design constant. That leads us to conclude that the design constant
can only be used as an initial indication for the dimensions of a feasible flexure or to get a feel for the
consequences of varying certain flexure parameters.

Furthermore, the evaluated flexure configurations are assumed to be loaded up to their yield strength.
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In theory this is a save limit because no plastic deformations should show up. However, when actuated
frequently beyond 20% of the yield strength, micro slip can occur [9]. This can influence the accuracy
and safety of the flexure. More research is required to investigate the exact consequences of micro
slip. Moreover, fatigue is a danger to flexure operation, even when staying below the yield strength of
materials, because flexures can have imperfections where fatigue failure can propagate.

The PRBM used for this research is based on the assumption that the flexure is only loaded with a
pure moment end load. In reality this is hard to achieve, since there will always be axial loads present.
These axial loads influence the accuracy of the model. For loads other than pure moment loads, dif-
ferent models exist. These models have a smaller accuracy range however, since the load cases are
more complex [21].

For the system configuration, where multiple flexures are connected by rigid links, it is assumed
that the moment end load on each flexure is equal. For practical applications this does not have to be
the case. When different loads are considered the structure can have multiple functionalities, next to
the extending and retracting functionality.

The rigid members in the system configuration are taken to be two meters long. This has influence
on the results because an inaccuracy of the flexure tip angle, gets exaggerated by the connected rigid
member, since the position of the end of the rigid member is determined by the angle multiplied by the
member length. When the rigid members are short the model is more forgiving, since inaccuracies
are not enlarged. This dependency of the model accuracy should be considered when evaluating a
configuration, especially when the structure is to be used in high accuracy applications.

The optimization considered in this research can only evaluate the optimal flexure thickness. It
would be ideal if flexure length could be evaluated as well. However, this is extremely difficult with a
target shape optimization because the target coordinates are dependant on the length of the flexure.
When the length would be integrated, the optimization would become too complex. When it would be
possible to integrate the length in the optimization, it is possible to design flexure mechanisms only with
a given desired deflection, making the optimization more flexible and versatile.

For the connected flexures optimization only the case of the SMA is considered. Materials with a
constants Young’s modulus behave similarly in the optimization, except for the outlier values seen at
the SMA results. The results for aluminium show a more compact cloud, while having the same trend
as the SMA results.

Finally it should be noted that this PRBM only assumes beam like, straight flexures, with a con-
stant cross-section. In reality the sharp edges at the start and end point of the flexure, can introduce
high stress concentrations. For real world applications, corner-filleted flexures should be considered.
Corner-filleted flexures are more bending compliant and induce lower stresses, however they are harder
to model and are less accurate in rotation [14].



Conclusions

This research optimizes the design for foldable structures by introducing a design constant which re-
lates flexure material’s yield strength, Young’s modulus, flexure length and thickness with the desired
deflection, equation 6.1. Thereby making the design of flexures for certain use case more intuitive.
With the design constant it is immediately visible what feasible flexure designs are, and how parameter
changes influence the other flexure parameters. Moreover, the design constant accounts for the flex-
ure material’s yield strength, which only leads to feasible and safe flexure designs. This offers an ideal
basis for efficient flexure design and can aid researchers in early design stages when trialing multiple
starting configurations when designing foldable compliant structures.

Fxl

t*x0

=0.438 (6.1)

Where F = ‘;—y the measure for the flexibility of the material, [ is the flexure length, t is the flexure
thickness and 0 is the desired/feasible deflection. Here o,, and E stand for the flexure material’s yield
strength and Young’s modulus respectively.

The results from the model and optimization cover a large range of application possibilities because
an extreme target shape is evaluated and materials with superelastic properties are used. It is shown
how these superelastic properties can be exploited to facilitate large deflections while stresses are low.
Moreover, an Ashby plot is presented, by which suitable flexure materials can quickly be identified.
The measure for material flexibility is presented, which plays a big role in flexure design. The design
constant can be used to directly identify the influence of the material choice to the flexure behaviour.

Furthermore, with an optimization for a foldable structure design, it is shown how an optimization
can be used to utilize certain flexure material properties and flexure thickness to facilitate a desired con-
figuration. The trade-off between safe stresses and large deflections is discussed for the optimization,
where the optimal solution depends on the needs of the user. With a foldable structure configuration it
is shown how an optimization can be used for the design of flexures for foldable structures, while taking
into account the accuracy of the compliant mechanism’s motion.

For future research it is interesting to visualize the behaviour of a flexure with a different cross-section

than a rectangular beam-like cross-section, for example a rod configuration. For a rod the moment of

. L. d* . . . .
inertiais I = "6—4, which influences the deflection and the stresses. Furthermore, more research is re-

quired into the practicality of flexures for large scale applications. When not designed properly, the out
of plane stiffness of large scale flexures can become too low, risking the planar motion of flexures. The
unloading of SMAs is not considered in this research while it could have a significant effect on flexure
behaviour in real world applications, therefore, more research is required into the unloading effects.
Future research should be focused on the influence of micro slip for large scale flexure applications as
well.
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# 2R Pseudo-Rigid-Body Model

from math import cos, sin, radians
import numpy as np

import matplotlib.pyplot as plt

# Model parameters for specific load case (Moment load)
gammal = 0.66 # characteristic radius factor

gamma2 = 0.18
gamma0 = 0.16

kthetal = 2.0571 # spring stiffness coeffi
ktheta2 = 1.9175

# Specify external moment load on tip

m0 = 100 # [Nm]

# Specify flexure properties

E = 70e9 # young's modulus [Pa]
18 =0 # length [m]

w = 0.2 # width [m]

h = 0.001 # height [m]

# Create empty lists for storage of data
angles = []
tipcoordinates = []

# Calculate tip coordinates for each value of the variable

cient, nondimensionalized torsion spring constant

for mO0 in np.arange (0, 260, 10): # h:(0.00074,

# E:(25e€9,

I = (w*h**3) /12

205e9,
# Moment of inertia of beam with rectangular cross section

bending stress [MPa]

sigma = ((m0 * (h / 2)) / I) / le6 # max
#
# if 500e6 < (mO * (h / 2)) / I < 580e6:
# E = 25e9
# else:
# E = 60e9
#

29

0.00002), mO: (0,
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# Determine spring constants
k1l = gammal * kthetal * ((E * I) / 1)
k2 = gamma2 * ktheta2 * ((E * I) / 1)

# Determine resulting angles with torque
thetal = m0 * (1 - gammaO) / k1

theta2 = m0 * gamma2 / k2

theta = thetal + theta2

# Resulting tip coordinates
p3x = 1 * (gammaO + gammal * cos(radians (thetal)) + gamma2 * cos(radians (theta)))
p3y = 1 * (gammal * sin(radians(thetal)) + gamma2 * sin(radians(theta)))

# Create lists to store data

angles.append (thetal)

tipcoordinates.append ((p3x, p3y))

print('t:', theta, 'tl:', thetal, 't2:', theta2, 'x:', p3x, 'y:', p3y, 'sigma:', sigma)

# Determine orientation last iteration rigid flexure link 1
p2x = 1 * (gammaO + (cos(radians(thetal)) * gammal))
p2y = 1 * (sin(radians(thetal)) * gammal)

# Determine orientation first iteration rigid flexure link 1
p2lx = 1 * (gammaO + (cos(radians(angles[0])) * gammal))

p2ly = 1 * (sin(radians(angles[0])) * gammal)

# Determine orientation middle iteration rigid flexure link 1

c = 10 # Number of iteration
p22x = 1 * (gamma0 + (cos(radians(angles[c])) * gammal))
p22y = 1 * (sin(radians (angles[c])) * gammal)

# Make arrays to plot x and y coordinates of the tip
x = np.array([x[0] for x in tipcoordinates])
y = np.array([x[1] for x in tipcoordinates])

# Plot tip coordinates
plt.plot(x, y, '.-")

# Plot flexure orientation last iteration
plt.plot ([0, 1 * gammaO], (0,01, '-r')
plt.plot ([l * gammaO, p2x],[0, p2yl, 'o-r')
plt.plot ([p2x, p3x],[p2y, p3yl, 'o-r')

# Plot flexure orientation first iteration
plt.plot ([l * gammaO, p2lx],[0, p2ly], 'o-r'")

plt.plot ([p2lx, tipcoordinates[0][0]], [p2ly, tipcoordinates[0][1]], 'o-r'")
# Plot flexure orientation middle iteration

plt.plot ([l * gammalO, p22x],[0, p22y], 'o-r')

plt.plot ([p22x, tipcoordinates[c][0]1], [p22y, tipcoordinates[c][1]], 'o-r')

plt.axis([-0.4, 1, 0, 0.85])
plt.title('Flexure tip coordinates')
plt.xlabel ('p3x")

plt.ylabel ('p3y")

plt.show ()
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# Pseudo-Rigid-Body Model with two rotary joints
from math import cos, sin, radians

#import numpy as np

import matplotlib.pyplot as plt

# Model parameters for specific load case (Moment load), same moment at every hinge

gammal = 0.66 # characteristic radius factor

12
13
14
15
16
17
18

19

20
21

22
23
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28
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31
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gamma2 = 0.18

gamma0 = 0.16

kthetal = 2.0571 # spring stiffness coefficient, nondimensionalized torsion spring constant
ktheta2 = 1.9175

# Specify external moment load on tip
# [Nm]

m0 = 40.93

# Specify flexure properties

E = 70e9 # young's modulus [Pa]

11 = 2.25 # length flexurel[m]

13 = 11*2 # length other flexures
w=0.2 # width [m]

h = 0.001 # height [m]

# Rigid beam properties
# length [m]

12°=22

# Calculate FLEXURE 1 tip coordinates for each value of the variable

# Moment of inertia of beam with rectangular cross section

I = (w* h ** 3)

/ 12

# Determine spring constant flexurel

k1 = gammal
k2 = gammaZ2

# Determine spring constant other flexures

k3 = gammal * kthetal *

* kthetal *
* ktheta2 *

((E * 1)
(B * I)

(B * 1)

/ 11)
/ 11)

/ 13)
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k4 = gamma2 * ktheta2 * ((E * I) / 13)

# Determine resulting angles with torque
thetal = (m0 * (1 - gammaO) / k1)

theta2 = (m0 * gamma2 / k2)

theta = thetal + theta2

thetal0 = (m0 * 13) / (E * I)

# Resulting tip coordinates flexurel

p3x = 11* (gammaO + gammal * cos(radians(thetal)) + gamma2 * cos(radians(theta)))
p3y = 1l1* (gammal * sin(radians (thetal)) + gamma2 * sin(radians (theta)))
print('t:', theta, 't0:', thetalO, 'tl:', thetal, 't2:', theta2, 'x/L:', p3x, 'y/L:', p3y)

# Coordinate start point flexure 2
sx = p3x + 12 * cos(radians (theta))
sy = p3y + 12 * sin(radians (theta))

# Calculate FLEXUREZ2 tip coordinates

# Determine resulting LOCAL angles

thetad = -m0 * (1 - gammaO) / k3 # thetal 2nd flexure
theta5 = -m0 * gamma2 / k4 # theta2 2nd flexure
theta3 = theta4d4 + thetab

# Determine GLOBAL angles
THETA1l = theta4 + theta
THETA2 = thetab + theta
THETA = theta3 + theta

# Resulting global tip coordinates
s3x = sx + 13* (gammaO*cos (radians (theta)) + gammal*cos(radians (THETAl)) + gammaZ2*cos (radians (THETA)))
s3y = sy + 13* (gammaO*sin(radians (theta)) + gammal*sin(radians (THETAl)) + gamma2*sin(radians (THETA)))

# Determine start point flexure 3
tx = s3x + 12 * cos(radians (THETA))
ty = s3y + 12 * sin(radians (THETA))

# Calculate FLEXURE3 tip coordinates
# Global angles flexure 3

THETA13 = -thetad4 + THETA
THETA23 = -thetab5 + THETA
THETAO3 = -theta3 + THETA

# Resulting global tip coordinates
t3x = tx + 13* (gammaO*cos (radians (THETA)) + gammal*cos (radians (THETA13)) + gamma2*cos (radians (THETA03)))
t3y = ty + 13* (gammaO*sin (radians (THETA)) + gammal*sin(radians (THETA13)) + gamma2*sin(radians (THETA03)))

# Determine start point flexure 4
fx = t3x + 12 * cos(radians(theta))
fy = t3y + 12 * sin(radians(theta))

# Calculate FLEXURE4 tip coordinates

# Resulting global tip coordinates

f3x = fx + 13* (gammaO*cos (radians (theta)) + gammal*cos(radians (THETAl)) + gamma2*cos (radians (THETA)))
f3y = fy + 13* (gammaO*sin (radians (theta)) + gammal*sin(radians (THETAl)) + gamma2*sin (radians (THETA)))

# Determine end point
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ex = f3x + 12 * cos(radians (THETA))
ey = f3y + 12 * sin(radians (THETA))

print('sx',sx,'sy',sy, 's3x',s3x, "'s3y"',s3y, 'tx',tx, 'ty',ty, 't3x"',t3x, 't3y"',t3y
,Ex, fx, " Ey', £y, "£3x", £3%x, "3y, f3y, 'ex',ex, 'ey',ey)

# Plot flexurel last iteration

p2x = 11* (gammaO + (cos(radians(thetal)) * gammal))

p2y = 11* (sin(radians(thetal)) * gammal)

plt.plot ([0,1ll*gammal], [0,0], '-xr'")

plt.plot(

plt.plot(

[11*gamma0, p2x], [0, p2yl, 'o-r')
[p2x, p3x],[p2y, p3yl, 'o-r')

# Plot rigid beam

plt.plot ([p3x, sx],[p3y, syl, '-

k
plt.plot([s3x,tx], [s3y,tyl, '-k'")
plt.plot ([t3x, fx], [t3y,fy], '-k")
plt.plot ([£3x,ex], [f3y,ey]l, '-k'")

# Plot flexure? last iteration

sOx = sx + 13* (gamma0 * cos(radians(theta)))
sO0y = sy + 13* (gamma0 * sin(radians(theta)))
s2lx = s0x + 13* (gammal * cos(radians (THETAL)))
s2ly = sOy + 13* (gammal * sin(radians (THETALl)))
plt.plot([sx,s0x], [sy,s0y]l, '-r'")

plt.plot ([sOx, s21x],[sOy, s2ly]l, 'o-r'")
plt.plot([s21lx, s3x],[s2ly, s3yl, 'o-r')

# Plot flexure3 last iteration

t0x = tx + 13* (gammaO * cos(radians (THETA)))

t0y = ty + 13* (gammaO * sin(radians (THETA)))
t21lx = tOx + 13* (gammal * cos(radians (THETA13)))
t2ly = tOy + 13* (gammal * sin(radians (THETA13)))
plt.plot([tx,t0x], [ty,t0y], '-r")

plt.plot ([tOx, t21x],[tOy, t2ly], 'o-r'")
plt.plot ([t21x, t3x],[t2ly, t3y], 'o-r'")

# Plot flexure4 last iteration

fO0x = fx + 13* (gamma0 * cos(radians(theta)))
fO0y = fy + 13* (gammaO * sin(radians (theta)))
f21x = f0x + 13* (gammal * cos(radians (THETAl)))
f21ly = f0y + 13* (gammal * sin(radians (THETALl)))
plt.plot ([fx, £f0x], [fy, £0y], '-r')

plt.plot ([f0x, f21x],[f0y, f21ly], 'o-r'")
plt.plot ([f21x, f3x],[f2ly, £f3yl, 'o-r')

plt.axis('square')

plt.title('System orientation for length %1.1f m' %13)
plt.xlabel ("x[m]")

plt.ylabel ('y[m]")

plt.show ()







10
11
12
13
14
15
16
17

18

19

20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41

Single flexure thickness NSGAII
Optimization Python code

10707

@author: Jurian van Dijk

s

# Pseudo-Rigid-Body Model with two rotary joints

from math import cos, sin, radians, dist

import numpy as np
#import matplotlib.pyplot as plt

from pymoo.optimize import minimize
from pymoo.model.problem import Problem
from pymoo.algorithms.nsga2 import NSGA2

from pymoo.visualization.scatter import Scatter

# Model parameters for moment load case
gammal = 0.66
gamma2 = 0.18
gammal0 = 0.16

kthetal = 2.0571 # spring stiffness coefficient, nondimensionalized torsion spring constant

ktheta2 = 1.9175

# Specify external moment load on tip
m0 = 38 # [Nm]

# Specify flexure properties

1 =4.5 # length [m]
w = 0.2 # width [m]
E = 70e9 # young's modulus [Pa]

# characteristic radius factor

# Target tip coordinates for 180 degree rotation of model

P3x = -0.4871090400272526 # Target x-coordinate
2.943004286350274 # Target y-coordinate

P3y

# Optimization, elementwise
class MyProblem (Problem) :

def init (self):
super()._ init_ (n_var=1,
n_obj=3,

35
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n_constr=0, # Stress limit
x1l=np.array([0.001]), # lower boundary of variable
xu=np.array ([0.017), # upper boundary of variable
elementwise evaluation=True)

def evaluate(self, h, out, *args, **kwargs):
I = (w*h ** 3) / 12
if 500e6 < (m0O * (h / 2)) / I < 580e6:
E = 25e9
else:
E = 60e9
k1l = gammal * kthetal * ((E * I) / 1)
k2 = gamma2 * ktheta2 * ((E * I) / 1)
thetal = m0 * (1 - gammaO) / k1l
theta2 = m0 * gamma2 / k2
theta = thetal + theta2
p3x = 1 * (gammaO + gammal * cos(radians(thetal)) + gamma2 * cos(radians (theta)))
p3y = 1 * (gammal * sin(radians(thetal)) + gamma2 * sin(radians (theta)))
f1 = dist([P3x, P3yl, [p3x, p3yl)
f2 =w * h * 1
£f3 = (m0 * (h/ 2)) /I
gl = ((m0 * (h/ 2)) / I) - 580e6
out ["F”] = np.column stack([fl, £f2, £3])
out [”G”] = np.array(gl)

problem = MyProblem/()

algorithm = NSGA2 (pop size=100)

stop_criteria = ('n_gen', 100)

results = minimize (

problem = problem,

algorithm = algorithm,
termination = stop criteria,
seed=1,

save history=True,

verbose=True)

# Plotting

# Objective space

plot = Scatter(title =
plot.add (results.F)
#plot.add (results.F[:,[0,2]])

”Objectiv

e space”)

# O=location,

plot.add(results.F[55,:], s=100, color='m')
plot.add (results.F[92,:], s=100, color='c'")
plot.add (results.F[1,:], s=100, color='y')
plot.add (results.F[0,:], s=100, color='k')
plot.add (results.F[19,:], s=100, color='r'")
plot.show ()

1=volume,

# False/True to hide/show algorithm results

2=stress
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# Pseudo-Rigid-Body Model with two rotary joints
from math import cos, sin, radians, dist

import numpy as np

#import matplotlib.pyplot as plt

from pymoo.optimize import minimize

from pymoo.model.problem import Problem

from pymoo.algorithms.nsga2 import NSGA2

from pymoo.visualization.scatter import Scatter

# Model parameters for moment load case

gammal = 0.66 # characteristic radius factor
gamma2 = 0.18

gamma0 = 0.16

kthetal = 2.0571 # spring stiffness coefficient, nondimensionalized torsion spring constant

ktheta2 = 1.9175

# Specify external moment load on tip
m0 = 28 # [Nm]

# Specify flexure properties

11 = 2.25 # length first flexure [m]
12 = 2 # length rigid links

13 = 11*2 # length other flexures [m]
w =0.2 # width [m]

#E = 70e9 # young's modulus [Pa]

# Target tip coordinates for 90 degree rotation of first flexure

P3x = 1.3373833630856669 # Target x-coordinate
P3y = 1.522983763681005 # Target y-coordinate

# Target coordinates for 180 degree flexure rotation

Sx = 1.337234155736915 # Start second flexure
Sy = 3.5229837581152967
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S3x = 4.280536834904316 # Tip second flexure
S3y = 3.0365024759304324

Tx = 4.280387627555564 # Start third flexure
Ty = 1.0365024814961408

T3x = 7.223690306722965 # Tip third flexure
T3y = 1.5229837636810053

Fx = 7.223541099374213 # Start fourth flexure
Fy = 3.5229837581152967

F3x = 10.166843778541613 # Tip fourth

F3y = 3.0365024759304324

Ex = 10.166694571192862 # End point

Ey = 1.0365024814961408

# Optimization, elementwise

cla

ss MyProblem (Problem) :

def init (self):
super (). init (n_var=4,
n_obj=3,

n_constr=0,

xl=np.array([0.001, 0.001,

# h is variable
# location,

# Stress limit

xu=np.array([0.01, 0.01, 0.01,

elementwise evaluation=True)

def evaluate(self, h, out, *args, **kwargs):

# Values for first flexure
I = (w * h[0] ** 3) / 12

if 500e6 < (m0 * (h[0] / 2)) / I < 580e6:

E = 25e9
else:

E 60e9

k1l = gammal * kthetal * ((E * I) / 11)
k2 = gamma2 * ktheta2 * ((E * I) / 11)
thetal = m0 * (1 - gammaO) / k1l
theta2 = m0 * gamma2 / k2

theta = thetal + theta2

# Actual first flexure tip

p3x = 11 * (gammaO + gammal * cos(radians (thetal))
p3y = 11 * (gammal * sin(radians(thetal))

# Coordinate start point flexure 2
sx = p3x + 12 * cos(radians(theta))
sy = p3y + 12 * sin(radians(theta))

# Calculate FLEXUREZ tip coordinates

# Determine spring constant other flexures

I2 = (w * h[1l] ** 3) / 12

if 500e6 < (m0 * (h([1] / 2)) / I2 < 580e6:

E = 25e9

0.001,

0.011),

volume, stress

0.0011]), # lower boundary of variable

# upper boundary of variable

+ gamma2 * cos (radians(theta)))

+ gamma2 * sin(radians (theta)))
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else:
E = 60e9

k3 = gammal * kthetal * ((E * I2) / 13)
k4 = gamma2 * ktheta2 * ((E * I2) / 13)
# Determine resulting LOCAL angles

thetad = -m0 * (1 - gammaO) / k3 # thetal 2nd flexure

theta5 = -m0 * gamma2 / k4
theta3 = thetad4 + thetab

# Determine GLOBAL angles flexure 2
THETA1 = theta4 + theta

THETA = theta3 + theta

# Resulting global tip coordinates flexurel

s3x = sx + 13* (gammaO*cos (radians (theta)) + gammal*cos (radians (THETAL))
s3y = sy + 13* (gammaO*sin (radians (theta)) + gammal*sin(radians (THETAL))

# Determine start point flexure 3
tx = s3x + 12 * cos(radians (THETA))
ty = s3y + 12 * sin(radians (THETA))

# Calculate FLEXURE3 tip coordinates
# Determine spring constant other flexures
I3 = (w * h(2] ** 3) / 12

if 500e6 < (m0O * (h[2] / 2)) / I3 < 580e6:
E = 25e9

else:
E = 60e9

k5 = gammal * kthetal * ((E * I3) / 13)

# theta2 2nd flexure

k6 = gamma2 * ktheta2 * ((E * I3) / 13)

# Determine resulting LOCAL angles

theta7 = m0 * (1 - gammaO) / k5 # thetal 3rd flexure
theta8 = m0 * gamma2 / k6 # theta2 3rd flexure

theta6 = theta7 + theta8
# Global angles flexure 3
THETA13 = theta7 + THETA

THETAO3 = theta6 + THETA

# Resulting global tip coordinates flexure3

t3x = tx + 13* (gammaO*cos (radians (THETA)) + gammal*cos (radians (THETA13))
t3y = ty + 13* (gammaO*sin(radians (THETA)) + gammal*sin(radians (THETA13))

# Determine start point flexure 4
fx = t3x + 12 * cos(radians (THETAO3))
fy = t3y + 12 * sin(radians (THETAO3))

# Calculate FLEXURE4 tip coordinates
# Determine spring constant other flexures
I4 = (w * h(3] ** 3) / 12

if 500e6 < (m0 * (h[3] / 2)) / I4 < 580e6:
E = 25e9

else:
E = 60e9

+ gamma2*cos (radians (THETA)))
+ gamma2*sin (radians (THETA)))

+ gamma2*cos (radians (THETAO03) )
+ gamma2*sin (radians (THETAO3))
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158

159 k7 = gammal * kthetal * ((E * I4) / 13)

160 k8 = gamma2 * ktheta2 * ((E * I4) / 13)

161 # Determine resulting LOCAL angles

162 thetal0 = -m0 * (1 - gammaO) / k7 # thetal 4th flexure

163 thetall = -m0 * gamma2 / k8 # theta2 4th flexure

164 theta9 = thetalO + thetall

165

166 # Global angles flexure 4

167 THETA14 = thetal0 + THETAO3

168 THETAO04 = theta9 + THETAO3

169

170 # Resulting global tip coordinates flexured

171 f3x = £x+13* (gammalO*cos (radians (THETA03) ) +gammal*cos (radians (THETA14) ) +gamma2*cos (radians (THETAO4
172 f3y = fy+13* (gammaO*sin (radians (THETA03) ) tgammal*sin (radians (THETA14) ) tgamma2*sin (radians (THETAO4
173

174 # Determine end point

175 ex = f3x + 12 * cos(radians (THETAO4))

176 ey = f3y + 12 * sin(radians (THETAO4))

177

178

179 # Objectives

180 # Minimize sum of distances between target coordinates and model coordinates

181 fl = dist([P3x, P3yl, [p3x, p3yl) + dist([Sx, Syl, I[sx, syl]) + dist([S3x, S3y], [s3x, s3y])
182 + dist ([Tx, Tyl, [tx, ty]) + dist([T3x, T3y], [t3x, t3y]) + dist([Fx, Fy], [fx, fy])
183 + dist ([F3x, F3yl, [£f3x, £f3y]) + dist([Ex, Eyl, [ex, eyl])

184

185 # Minimize sum of volumes of flexures

186 f2 = (w * h[0] * 11) + (w * h[1] * 13) + (w * h[2] * 13) + (w * h[3] * 13)

187

188 # Minimize sum of maximum Stresses in flexures

189 £3= ((mO* (h([0]1/ 2)) / I) + ((mO*(h[1]/ 2)) / I2) + ((mO*(h([2]/ 2)) / I3) + ((mO*(h[3]/ 2)) / I4)
190

191 # Stress in each segment

192 gl = ((m0 * (h[0] / 2)) / I)

193 g2 = ((m0 * (h[1l] / 2)) / 1I2)

194 g3 = ((m0 * (h[2] / 2)) / I3)

195 g4 = ((m0 * (h[3] / 2)) / I4)

196

197

198 out ["F”] = np.column stack([fl, £f2, £3])

199 out[”G”] = np.column_stack([gl, g2, g3, g4])

200

201 problem = MyProblem/()

202
203 algorithm = NSGA2 (pop size=100)

204 stop criteria = ('n gen', 100)
205

206 results = minimize (

207 problem = problem,

208 algorithm = algorithm,

209 termination = stop criteria,
210 seed=1,

211 save history=True,

212 verbose=True) # False/True to hide/show algorithm results
213

214

215 # Plotting

216 # Objective space
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plot

plot.
plot.
plot.
plot.
plot.
plot.
plot.

plot.

= Scatter (title
plot.add (results.F)
#plot.add(results.F[:,[0,1]])

add (results
add (
add (
add (
add (
add (
add (

show ()

results.
results.
results.
results.

results.

LF[1,
results.

”"Objective space”)

<1,
<1,
13,
<1,

:1,

21,

21,

21,

s=100,
s=100,
s=100,
s=100,
s=100,
s=100,
s=100,

color="k"'")
color="k")
color="y'")
color="m'")
color='"c")
color="m')

color='"r")
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Figure E.1: Ashby plot ratio yield strength to Young’s modulus
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