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 A B S T R A C T

This survey paper examines recent advancements in low-resolution signal processing, emphasizing quantized 
compressed sensing. Rising costs and power demands of high-sampling-rate data acquisition drive the interest 
in quantized signal processing, particularly in wireless communication systems and Internet of Things sensor 
networks, as 6G aims to integrate sensing and communication within cost-effective hardware. Motivated by 
this urgency, this paper covers novel signal processing algorithms designed to address practical challenges 
arising from quantization and modulo operations, as well as their impact on system performance. We begin 
by introducing the framework of one-bit compressed sensing and discuss relevant theories and algorithms. We 
explore the application of quantized compressed sensing algorithms to sensor networks, radar, cognitive radio, 
and wireless channel estimation. We highlight how generic methods can be tailored to an application using 
specific examples from wireless channel estimation. Additionally, we review other low-resolution techniques 
beyond one-bit compressed sensing along with their applications. We also provide a brief overview of the 
emerging concept of unlimited sampling. While this paper does not aim to be exhaustive, it selectively 
highlights results to inspire readers to appreciate the diverse algorithmic tools (convex optimization, greedy 
methods, and Bayesian approaches) and sampling techniques (task-based quantization and unlimited sampling).
1. Introduction

Quantization of signals is a critical aspect of modern digital signal 
processing applications, including sensing, communication, and infer-
ence. Ideally, measurements should have high resolution, but imple-
menting such analog-to-digital converters (ADCs) in practical systems 
presents significant challenges. These devices often become bottlenecks 
due to their power consumption, size, and manufacturing costs, which 
increase exponentially with the number of bits [1–3]. This complexity 
has sparked a growing interest in quantized signal processing, particu-
larly for applications such as 6G wireless communication and sensing 
systems [4,5].

∗ Corresponding author.
E-mail address: G.Joseph@tudelft.nl (G. Joseph).

In 6G applications, high sampling rates pose significant challenges. 
For instance, millimeter-wave (mmWave) multiple-input and multiple-
output (MIMO) technology demands large bandwidths, requiring in-
creased sampling rates for ADCs. However, manufacturing high-resolu-
tion (e.g., over 8 bits) and fast ADCs is expensive and power-hungry. 
Similarly, in applications like spectral sensing and cognitive radio 
networks, which also require high sampling rates, the cumulative costs 
and power consumption of the high-resolution fast ADCs can be pro-
hibitive and impractical. Furthermore, these applications involve edge 
intelligence that demands low-power hardware and signal processing 
capabilities. One immediate solution to these challenges is to employ 
low-resolution ADCs, which offers robustness, memory efficiency, and 
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simplicity in hardware implementation, particularly in sensor design. 
However, coarse quantization in ADCs can undermine the performance 
of traditional signal processing techniques that assume high-resolution 
quantization and often require customized algorithms to achieve ade-
quate system performance. Motivated by these challenges, this paper 
studies low-resolution signal processing techniques, particularly the 
low-rate signal acquisition method of compressed sensing (CS), with an 
emphasis on their applications in wireless communication and sensing.

CS is a signal acquisition technique that requires fewer samples 
than the Nyquist rate [6–10]. It exploits the sparsity or compressibility 
of natural signals, such as images, audio signals, and communication 
signals, which can be expressed using a few nonzero coefficients in a 
suitable basis. For example, images are sparse in a Fourier or wavelet 
basis [6]. Without loss of generality, in the rest of the paper, we 
assume that the coefficient vector is sparse in the standard canonical 
basis unless otherwise specified. The sparsity of a coefficient vector 
is measured using the 𝓁0-norm, which counts the number of nonzero 
entries, 

‖𝒙‖0 = |{𝑖 ∶ 𝒙[𝑖] ≠ 0}|. (1)

A vector 𝒙 ∈ R𝑛 is said to be sparse if ‖𝒙‖0 ≪ 𝑛 and 𝑠-sparse if 
‖𝒙‖0 = 𝑠 < 𝑛. The compressive sensing measurements 𝒚 are acquired by 
projecting the sparse vector onto a set of basis vectors, called a dictio-
nary matrix or measurement matrix 𝑨 ∈ R𝑚×𝑛. Here, 𝑨 has fewer rows 
than columns 𝑚 < 𝑛, leading to compression. Thus, the CS problem is

argmin
𝒙∈R𝑛

‖𝒙‖0 s.t. 𝒚 = 𝑨𝒙. (2)

Since the above problem is NP-hard, the sparse signal 𝒙 is estimated 
from 𝒚 using various algorithmic approaches, including convex relax-
ation, greedy algorithms, and Bayesian methods. The quality of the 
reconstruction depends on the signal’s sparsity (or compressibility), the 
reconstruction algorithm used, and the properties of the measurement 
matrix. One of the celebrated results in CS is that randomly generated 
dictionaries are likely to be incoherent with any fixed sparsity basis, 
making them ideal for CS in terms of the measurements 𝑚 required for 
successful recovery of an 𝑠-sparse 𝑛-length 𝒙. For more details on CS 
theory and algorithms, see [11,12].

CS achieved via random projections at the sampling stage is valu-
able in several resource-constrained systems. However, in many appli-
cations like Internet of Things (IoT), which operate under severe re-
source limitations, further compression and quantization of compressed 
measurements may be necessary. Implementing coarse quantization 
can significantly reduce bandwidth requirements and computational 
costs at local nodes, making it desirable in highly resource-scarce en-
vironments. Low-bit quantization results in information loss, making it 
challenging for the traditional CS methods to perform effectively. Early 
works on CS assume that quantization error is negligible, treating it as 
a noisy CS problem. This approach implicitly assumes high-resolution 
quantizers, which are often unrealistic or inefficient. Moreover, it yields 
pessimistic reconstruction error estimates that cannot exceed the noise 
floor, particularly the quantization error. To address the challenges 
posed by coarse quantization, the field of quantized CS has advanced 
significantly, showing that tailored algorithms can substantially im-
prove performance over traditional methods [13] to solve the quantized 
CS problem, 

argmin
𝒙∈R𝑛

‖𝒙‖0 s.t. 𝒚 = 𝐵(𝑨𝒙), (3)

where 𝐵 represents 𝐵-bit quantization. These efficient schemes have 
demonstrated that quantized CS-based systems can significantly en-
hance processing speeds for large volumes of sparse data while si-
multaneously lowering communication costs and simplifying hardware 
2 
implementation. Quantized CS has recently found widespread use in 
a range of applications, including wireless sensor networks [14–17], 
cognitive radio [18–23], wireless communication [24–27], radar [28–
33], image processing [34,35], and medical technologies [36,36,37]. 
This paper consolidates various results from the literature, focusing on 
applying low-bit quantized CS in wireless communication and sensing.

This survey is not exhaustive and aims to strike a balance between 
theoretical rigor and practical insights. The key results and solution 
strategies presented in this paper are as follows. We start by dis-
cussing one-bit compressed sensing (1bCS), the most widely studied 
form of quantized CS. One-bit quantization is especially attractive for 
hardware implementations and has demonstrated resilience to non-
linear distortions, as well as dynamic range limitations. Section 2 
presents the general framework of 1bCS, detailing the conditions on 
the measurement matrix required for the successful recovery of sparse 
vectors. Notably, the results demonstrate that the minimal number 
of measurements required scales linearly with the sparsity level and 
logarithmically with the size of the sparse vector. Additionally, this 
section explores extensions and connections to efficient machine learn-
ing frameworks. While Section 2 emphasizes the underlying theoretical 
principles, Section 3 of the paper shifts to practical applications in 
wireless communications and sensing. We cover applications across 
various domains such as IoT, wireless sensor networks, radar, cognitive 
radio, and wireless channel estimation. Section 3 also delves into 
the specific application of MIMO channel estimation, showing how 
quantized CS algorithms can be adapted to enhance performance. For 
example, quantized CS algorithms used for channel estimation can be 
integrated with data decoding or can be combined with task-based 
quantizers that optimize the quantizer based on the estimation task. 
In Section 4, we examine alternative low-resolution signal processing 
techniques beyond CS. This section introduces non-sparse techniques 
in IoT, wireless sensor networks, and radar with an emphasis on 
localization and tracking algorithms that use low-bit quantization in 
conjunction with maximum likelihood (ML) approaches. It also covers 
low-resolution techniques in cognitive radio networks and wireless 
channel estimation. We also present the unlimited sensing framework
(USF), a new paradigm designed to address saturation issues in digital 
acquisition systems. The paper concludes by highlighting several av-
enues for future research. The roadmap of the paper is given in Fig. 
1.

Notation

Notation is usually introduced when it first appears. Boldface small 
letters denote vectors, and boldface capital letters denote matrices. The 
symbols 𝒂[𝑖], 𝑨𝑖, and 𝑨[𝑖, 𝑗] represent the 𝑖th entry of vector a, the 𝑖th 
column of matrix A, and the entry on the 𝑖th row and 𝑗th column of 
matrix A, respectively. The operator 𝐵 represents 𝐵-bit quantization.

We denote the all-one vector of length 𝑎 as 1𝑎 and the all-zero 
vector as 0. The symbol 1{⋅} represents the indicator function, which 
takes the value one if the condition in the argument is true and zero 
otherwise. The sets of 𝑀×𝑁 real and complex matrices are represented 
by R𝑀×𝑁  and C𝑀×𝑁 , respectively. The symbol I denotes the identity 
matrix. Also, Z represents the set of integers.

We use ‖ ⋅ ‖0 and ‖ ⋅ ‖ to denote the 𝓁0 norm and the 𝓁2 norm, 
respectively. For any signal 𝒂 ∈ R𝑛, let supp(𝒂) ≜ {𝑖 ∈ {1, 2,… , 𝑛} ∣
a[𝑖] ≠ 0} denote the support of a. The symbols (⋅)−1, (⋅)⊤, (⋅)∗, (⋅)H, 
tr(⋅), and | ⋅ | are the matrix operations of inverse, transpose, conjugate, 
conjugate transpose, trace, and determinant respectively. Also, ⊗, ⋄, 
and ⊙ represent the Kronecker, Khatri–Rao, and Hadamard products 
respectively. The operator diag(⋅) returns a (block) diagonal matrix with 
the argument along the diagonal.

We use  (a,A) and  (a,A) to denote the real and complex 
Gaussian distributions respectively, with mean a and covariance A. 
Also, Re(⋅) and Im(⋅) denote the real and imaginary parts, respectively.
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Fig. 1. Roadmap of the paper.
2. Quantized compressed sensing: Theory and general algorithmic 
approaches

As discussed in Section 1, quantized CS seeks to recover a sparse 
vector from its quantized linear measurements.  While increasing the 
bit-depth reduces the quantization error, the improvement in recon-
struction accuracy saturates beyond 3–5 bits per measurement. The 
findings in [13] suggest that dithering can enhance low-bit quantization 
performance and that the optimal bit-depth depends on the task; lower 
bit-depths are sufficient for classification, while full reconstruction 
requires higher bit-depths. For scalar quantization, the primary focus of 
3 
this survey, [38] presents a trade-off between bit-depth and measure-
ment rate. They recommend using fewer bits with more measurements 
in low-signal-to-noise ratio (SNR) settings and higher bit-depth with 
fewer measurements in high-SNR conditions. Notably, among low-bit-
depth methods, the most extreme form, 1bCS, has gained significant 
attention due to its superior performance guarantees across a wide 
range of scenarios. The popularity of 1bCS also arises from its simple 
and cost-effective quantizer, as well as the reduced bit requirements 
for storage and transmission. In this section, we present results on 
the performance of sparse signal reconstruction and parameter esti-
mation using noisy one-bit measurements, highlighting the theoretical 
foundations.
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1bCS acquires 1-bit measurements of the form, 
𝒚 = 1(𝑨𝒙) ≜ sign(𝑨𝒙) ∈ {−1, 1}𝑚, (4)

where the sign(⋅)1 function is applied coordinate-wise to the linear 
measurements 𝑨𝒙 ∈ R𝑚 for a chosen measurement matrix 𝑨 ∈ R𝑚×𝑛. 
Since the prescribed quantization function is invariant under positive 
scaling of the signal 𝒙, the magnitude information of the signal is 
lost. Hence, without loss of generality, we assume that 𝒙 lies on the 
unit sphere, and the recovery algorithms usually focus on obtaining an 
estimate �̂� on the unit sphere.

The main goal in 1bCS is to accurately recover the underlying 𝑠-
sparse signal 𝒙 ∈ R𝑛 given 𝑚 (< 𝑛) well-chosen 1-bit measurements 
such that the recovered vector �̂� satisfies a given error bound 𝜖, 
i.e., ‖𝒙 − �̂�‖ ≤ 𝜖. To address noise during signal acquisition and 
post-quantization errors, we adopt a generalized measurement model, 
𝒚 ≜ 𝜼⊙ sign(𝑨𝒙 +𝒘) ∈ {−1, 1}𝑚, (5)

where 𝒘 ∈ R𝑛 is the additive noise, usually considered to be inde-
pendent and identically distributed (iid) Gaussian entries with a fixed 
variance of 𝜎2, and 𝜼 ∈ {−1, 1}𝑚 is the bit-flip noise with bounded 
number of negative entries applied coordinate-wise to the quantized 
output.

2.1. Measurement bounds and algorithms

In recent decades, the impressive recovery guarantees achievable 
even under extreme quantization have spurred extensive research into 
1bCS. These results have led to the development of efficient recov-
ery algorithms that require an optimal number of measurements and 
remain robust to noise. Some of the key approaches in 1bCS include 
convex program-based methods [39–41], greedy or iterative methods, 
including binary iterative hard thresholding (BIHT) [42–45], Bayesian 
techniques [46–51], generative model-based methods [34,52–56] (see 
Table  1). For a comprehensive review, we direct readers to an excellent 
survey on this topic [57]. The following sections present recent ad-
vancements and new directions beyond this survey, emphasizing their 
provable recovery guarantees.

One of the early works established that any 𝜖-approximate recovery 
algorithm for an 𝑠-sparse signal 𝒙 requires at least 𝛺(𝑠 log 𝑛

𝑠 +
𝑠
𝜖 − 𝑠3∕2)

measurements [42]. This bound is subsequently refined in [72] to 
𝛺(𝑠 log 𝑛

𝑠 + 𝑠
𝜖 ). Following this result, research has focused on design-

ing efficient and theoretically robust recovery algorithms that achieve 
this improved measurement bound. In pursuit of provable recovery 
guarantees, a class of consistent reconstruction algorithms is developed 
in the 1bCS literature that finds a unit-norm vector �̂� with minimal 
sparsity that aligns with the measurement outcomes [42]. Specifically, 
the underlying optimization problem for recovery can be defined as 
follows: 
min ‖�̂�‖0 s.t. sign(𝑨�̂�) = 𝒚 and ‖�̂�‖ = 1. (6)

This work also demonstrates that random Gaussian measurement ma-
trices, where each entry of 𝑨 is chosen independently from a standard 
Gaussian distribution with 𝑚 = 𝑂( 𝑠𝜖 log

𝑛
𝑠 ) rows, can achieve an 𝜖-

approximate solution to (6). Similar results are also known to hold with 
sub-Gaussian [73] and partial circulant matrices [74].

To ensure robustness against noise, both in the form of random 
additive noise before quantization and bounded bit-flip errors after 
quantization, it has been shown that 𝑚 = 𝑂

(

𝑠
𝜖2

log 𝑛
𝑠

)

 Gaussian mea-
surements are sufficient to achieve a uniform embedding of 𝑠-sparse 
unit vectors onto the vertices of the Boolean hypercube {−1, 1}𝑚 [42]. 
The uniform embedding property implies that the pairwise 𝓁2 distances 
(equivalent to spherical or angular distances) between any two 𝑠-sparse 

1 For any 𝑎 ∈ R, sign(𝑎) = 1 if 𝑎 ≥ 0, and sign(𝑎) = −1 if 𝑎 < 0.
4 
Table 1
Summary of sparse recovery methods in Section 2.
 Approach Key algorithms  
 

Optimization-based methods

𝓁1-norm based program [39,58]  
 Sparse logistic regression [40]  
 Penalized 𝓁1-norm [59]  
 Weighted 𝓁1-norm [60]  
 Smoothly clipped absolute deviation,  
 minimax concave penalty [61,62]  
 Schur-concave functions [63]  
 𝑘-support norm [64]  
 Pinball loss minimization [65]  
 𝓁2-constrained least squares [41]  
 𝓁1-total variation norm [66]  
 
Greedy or iterative methods

Matched sign pursuit [44]  
 Gradient support pursuit [43]  
 BIHT[42,67]  
 Adaptive outlier pursuit [45]  
 Normalized BIHT and variants [67]  
 
Bayesian techniques

Message passing algorithm [68]  
 Approximate message passing [46–48]  
 Sparse Bayesian learning [50,51]  
 
Generative model-based methods

Rectified linear unit (ReLU) with dithering [69] 
 Extension of BIHT [52]  
 Non-convex optimization [34,70]  
 Diffusion models (score-based) [71]  

unit vectors are approximately preserved when mapped to {−1, 1}𝑚. 
Therefore, the original distances on the unit sphere can be estimated 
by Hamming distances in the Boolean hypercube, allowing a stable 
recovery of sparse vectors using a small number of measurements. This 
approach extends beyond 𝑠-sparse vectors; uniform tessellation results 
have also been generalized to arbitrary subsets of the unit sphere. 
These generalizations involve using measurement matrices with entries 
drawn from Gaussian, sub-Gaussian, and heavy-tailed distributions, 
allowing for flexibility in applications, though they often require affine 
measurements [75–77].

While the above-mentioned results establish the theoretical guaran-
tees for signal recovery, they do not resolve the algorithmic challenge 
of provable and efficient recovery. To tackle the intractability of (6) 
due to the 𝓁0 minimization objective and the unit norm constraint, 
several works have focused on solving a relaxed version of this prob-
lem [39,40,44,58,65,78]. An early approach uses a greedy algorithm 
called matched sign pursuit, which combines the principle of consistent 
reconstruction with compressive sampling matching pursuit from the 
standard CS literature [44]. Using a similar approach, 1bCS algorithm 
robust to random noise added pre-quantization is also devised [43]. An 
alternative approach uses convex relaxation that reformulates the prob-
lem as a linear program, yielding an efficient 𝜖-approximate recovery 
algorithm that requires 𝑚 = 𝑂( 𝑠

𝜖5
log2 𝑛

𝑠 ) Gaussian measurements [39], 

min ‖�̂�‖1 s.t. sign(𝑨�̂�) = 𝒚 and ‖𝑨�̂�‖1 = 𝑚. (7)

To address adversarial bit-flip errors occurring after quantization, a 
variant of (7) has been developed, 
min −𝒚⊤𝑨�̂� s.t. ‖�̂�‖1 ≤ 𝑠 and ‖�̂�‖2 ≤ 1, (8)

that ensures reliable recovery using 𝑚 = 𝑂
(

𝑠
𝜖6

log 𝑛
𝑠

)

 Gaussian mea-
surements [40]. This approach seeks to find a signal �̂� within the 
convex hull of all 𝑠-sparse unit vectors that maximizes consistency 
between 𝒚 and sign(𝐴�̂�).

Further, various regularization techniques enhanced the convex 
programming approach by promoting sparsity and improving model 
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robustness. Penalized 𝓁1-norm methods [59] leads to an efficient al-
gorithm with a closed-form solution: 
min −𝒚⊤𝑨�̂� + 𝜔‖�̂�‖1 s.t. ‖�̂�‖2 ≤ 1, (9)

where 𝜔 is the weight parameter. The weighted 𝓁1-norm techniques
[60] extend this approach to a weighted 𝓁1-norm formulation and de-
rive analytical solutions under specific weights. Non-convex penalties, 
such as the smoothly clipped absolute deviation and minimax concave 
penalty, further enforce sparsity [61,62]. One example is [61] 
min −𝒚⊤𝑨�̂� + ℎnon-convex(�̂�) +

𝜔
2
‖�̂�‖22 s.t. ‖�̂�‖2 ≤ 1, (10)

where ℎnon-convex represents the minimax concave penalty, and 𝜔 ≥
0 controls the smoothness. Further extensions to other non-convex 
penalties with analytical solutions are explored in [62]. Another non-
convex penalty is normalized 𝓁1 Shannon entropy function, a Schur-
concave measure of concentration, which achieves sparse solutions at 
its minima [63]. This nonconvex problem is reformulated as weighted 
𝓁1-norm subproblems, solved iteratively using a generalized fixed-
point continuation algorithm. Moreover, other regularization include 
𝑘-support norm, pinball loss minimization [65], 𝓁2-constrained least 
squares [41], 𝓁1-total variation norm [66]. The 𝑘-support norm-based 
method demonstrates that the new estimator admits a closed-form solu-
tion, eliminating the need for optimization. The paper also establishes 
its consistency and provides recovery guarantees for both Gaussian 
and sub-Gaussian random measurements. The alternative approach 
based on pinball loss minimization is a convex approach, solved using 
dual-coordinate ascent algorithms. The 𝓁2-constrained least squares 
approach in [41] recovers solutions with higher sparsity levels and the 
resulting optimization problem is solved using weighed primal and dual 
active set algorithm. Recently, an 𝓁1-total variation method for 1bCS 
estimates signals that are both element and gradient sparse, providing 
a closed-form solution and an adaptive dither vector quantization 
scheme [66].

Although these methods achieve efficient recovery with a near-
optimal number of measurements, their dependence on the error pa-
rameter 𝜖 is not optimal [39,40]. To address this issue, an alternative 
approach based on projected gradient descent, specifically designed 
for 1bCS is introduced [42]. This algorithm, called BIHT, is the 1bCS 
version of the iterative hard thresholding algorithm [79]. Starting with 
a random point �̂�0 on the unit sphere, every iteration of the BIHT 
algorithm takes a small step in the negative (sub)gradient direction, 
followed by projection onto the set of 𝑠-sparse vectors through thresh-
olding. This algorithm has shown excellent empirical performance and 
is detailed in Algorithm 1, where the function Threshold(⋅) retains the 𝑠
largest-magnitude entries and sets the remaining entries to zero. Later, 
adaptive outlier pursuit extends BIHT to handle noisy measurement, 
and it reduces to BIHT when measurements are noiseless [45]. In this 
algorithm, every iteration estimates the sparse signal like BIHT but 
excludes potentially corrupted measurements, and then updates the list 
of likely corrupted measurements.

Algorithm 1 BIHT Algorithm
Initialize �̂�0 to have unit norm 
for 𝑡 = 1, 2,… , 𝐿 do 

�̃�𝑡 ← �̂�𝑡−1 +
√

2𝜋
2𝑚 𝑨⊤(𝒚 − sign(𝑨�̂�𝑡−1))

�̂�𝑡 ← Threshold(�̃�𝑡).
end for
Return �̂�𝐿

‖�̂�𝐿‖
.

It has been shown that the BIHT algorithm converges within an 
𝜖 radius of the true signal in just one step given 𝑚 = 𝑂( 𝑠

𝜖2
log 𝑛)

Gaussian measurements [13,42]. A later study shows that this estimate 
remains close to the true signal and does not diverge in subsequent 
5 
iterations [80]. The first formal convergence result for BIHT is based 
on a modified version, known as the normalized BIHT algorithm [67]. 
This algorithm, in every iteration, normalizes the projected vector to 
obtain a unit norm vector. This approach achieves convergence within 
an 𝜖 ball of the true signal with 𝑚 > max{(𝑠 log 𝑛

𝑠 )
10, 2448 1

𝜖 (𝑠 log
𝑛
𝑠 )

7∕2}
measurements. While its dependence on 𝜖 is optimal, the constant fac-
tors and the dependence on 𝑠 are quite far from optimal. In a sequence 
of recent groundbreaking works, convergence and robustness of the 
normalized BIHT variant is proven using an optimal 𝑂( 𝑠𝜖 log 𝑛) Gaus-
sian measurements [81,82]. The convergence proof relies on a finer 
property of measurement matrices known as the restricted approximate 
invertibility condition, ensuring that the sign measurements behave 
similarly to scaled linear measurements. The core of the convergence 
proof involves demonstrating that Gaussian matrices with an optimal 
number of rows satisfy this condition with high probability [81].

Another algorithmic approach that offers a promising alternative 
is Bayesian inference methods, especially under the assumption of 
Gaussian-distributed measurement matrices and noiseless outputs. In a 
Bayesian framework, the goal is to maximize the posterior distribution 
given the observed value 𝑝(𝒙|𝒚). When the true signal distribution is 
known, the Bayesian inference is theoretically optimal [68]; however, 
it often suffers from high computational complexity. To handle the 
computational difficulty of exact Bayesian inference, generalized ap-
proximate message passing algorithms have been developed, building 
on belief propagation techniques assuming a hierarchical prior struc-
ture on the signal 𝒙 such as the Gaussian-inverse Gamma prior that 
promotes sparsity [46,49]. For signals corrupted by Gaussian noise, 
variational inference techniques, like variational message passing [48] 
with a two-layer hierarchical prior, are adopted to encourage the 
sparsity of the signal. Alternatively, [47] provides a robust approach 
by modeling quantization noise explicitly and optimizing the posterior 
distribution of the signal via variational expectation maximization. 
Another approach uses Bussgang-like decomposition using which the 
1bCS problem can be approximated as a standard linear model and 
use the standard sparse Bayesian learning (SBL) algorithm for sparse 
vector recovery [51]. Further, [50] uses the SBL framework where 
the correlation matrix is approximated using the arcsin law. These 
innovations collectively enable Bayesian methods to effectively address 
signal recovery challenges, even in cases complicated by quantization 
and noise. However, the sample complexity of Bayesian algorithms 
is largely unknown. Table  2 summarizes the known measurement 
bounds together with the bounds of generative models discussed in 
Section 2.2.2.

While the above-described techniques have mostly focused on the 
sparse signal recovery problem, they have also extended the 1bCS 
framework to address a broader range of learning problems, which we 
discuss next.

2.2. Connections to broader learning problems

Recent works have expanded the 1bCS framework to accommodate 
other low-dimensional structures and learning problems. We discuss 
a new two-stage algorithmic paradigm for signal recovery in Sec-
tion 2.2.1, explore extensions for recovering non-sparse signals gener-
ated by a deep neural network in Section 2.2.2, and examine various 
extensions of 1bCS for efficient machine learning in Section 2.2.3 and 
Section 2.2.4.

2.2.1. Support recovery
The two-stage algorithmic paradigm has recently been investigated 

for the recovery of sparse signals from a small number of one-bit 
measurements. In these algorithms, the first stage focuses on recovering 
the approximate support set of the sparse signal, which is limited to a 
size of at most 𝑂(𝑠). In the second stage, the algorithm employs ad-
ditional 𝑂

(

𝑠
𝜖 log

𝑛
𝑠

)

 Gaussian measurements to approximately recover 
the magnitudes of the nonzero entries of the sparse vector, based on 
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Table 2
A comparison of sample complexities 𝑚 of 1bCS algorithms to recover an 𝑠-sparse vector 
in R𝑁 within an error of 𝜖 (for generative models, 𝑟 is the radius of latent space and 
𝜅 is the number of layers).
 Approach Measurement ComplexityRemarks and References  
 Lower Bounds
 𝛺(𝑠 log 𝑛

𝑠
+ 𝑠

𝜖
− 𝑠3∕2) Early result [42]  

 𝛺(𝑠 log 𝑛
𝑠
+ 𝑠

𝜖
) Improved bound [72]  

 Upper Bounds
 

Optimization

𝑂
(

𝑠
𝜖5

log2 𝑛
𝑠

)

𝓁1-optimization (noiseless) [39]  
 𝑂

(

𝑠
𝜖4

log 𝑛
)

Sparse logistic regression [40,73,74]  
 

𝑂
(

𝑠
𝜖2

log 𝑛
) Penalized 𝓁1-norm [59]  

 Nonconvex penalty [61]  
 𝑂

(

𝑠
𝜖2

)

Nonconvex penalty (strong signals) [61] 
 BIHT 𝑂

(

𝑠
𝜖
log 𝑛

) BIHT (noiseless) [42]  
 Normalized BIHT [81,82]  
 
Generative models

𝑂( 𝑠𝜅
𝜖2

log 𝑛 log2( 1
𝜖
)) ReLU network with dithering [83]  

 𝑂( 𝑠𝜅
𝜖2

log(𝑟∕𝜖)) Generic generative model [52,54]  
 𝑂( 𝑠

𝜖2
(𝑟2 + 𝜅)) Optimization-based [34]  

the identified support. It is important to note that while the algorithm 
operates in two stages, the entire measurement matrix is designed 
in advance and is not adaptively modified during the measurement 
process. The required number of measurements for these algorithms is 
largely determined by the first stage, which is discussed next.

For any signal x ∈ R𝑛, let supp(𝒙) ≜ {𝑖 ∈ {1, 2,… , 𝑛} ∣ x[𝑖] ≠ 0}
denote the support of x. The goal of the support recovery problem is 
to identify supp(𝒙) using a minimal number of one-bit measurements. 
For this problem, one approach uses techniques derived from the 
heavy-hitters streaming algorithm to obtain a sign-sketch that accurately 
recovers the support of a fixed signal x using 𝑂(𝑠 log 𝑛) measurements 
with high probability [84]. The result also holds in the presence of 
pre-quantization noise and for compressible signals. However, these 
techniques necessitate modifications to the measurement matrix for 
each new signal, which is impractical.

In contrast, a universal measurement matrix for 1bCS is a single set 
of measurements that can be applied to all sparse signals. Universal 
support recovery is initially explored using techniques from coding 
theory and group testing, establishing sufficient conditions for exact 
support recovery [85]. Later advancements refine these conditions to 
achieve improved bounds for both exact and approximate support 
recovery [72,86–88]. These results all build upon the union-free prop-
erty of the measurement matrices, which plays a key role in support 
recovery.

Definition 1 (Robust Union Free Family (RUFF)). A binary matrix 𝑬 ∈
{0, 1}𝑚×𝑛 is said to be (𝑑, 𝑠, 𝛼)-robust union free if each column of 𝑬
has weight exactly equal to 𝑑, and for every set of 𝑠 + 1 columns of 𝑬
indexed by {𝑖0, 𝑖1,… , 𝑖𝑠} ⊂ {1, 2,… , 𝑛}, there exist at least (1−𝛼)𝑑 rows 
indexed by  ⊂ {1, 2,… , 𝑚} such that 𝑬[𝑖0, 𝑗] = 1, and 𝑬[𝑖𝑙 , 𝑗] = 0 for 
all 𝑙 and 𝑗 ∈  .

A Robust union free family (RUFF) measurement matrix ensures 
that each support set of size at most 𝑠 generates a unique outcome 
signature. Existence of (𝑑, 𝑠, 𝛼)-RUFFs with 𝑚 = 𝑂( 𝑠

2

𝛼2
log 𝑛) rows, and 

𝑑 = 𝑂( 𝑠𝛼 log 𝑛) is known using random constructions [89,90].
The use of RUFF properties in measurement matrices, particularly 

with 𝛼 = 1 enables exact recovery of non-negative sparse vectors [72]. 
Further, they show the resilience of the algorithm to ( 12−𝛼)𝑑 adversarial 
bit-flips when using RUFF with 𝛼 < 1. To handle all 𝑠-sparse signals, an 
expander-based measurement matrix construction with 𝑚 = 𝑂(𝑠2 log 𝑛)
rows is also introduced in this work. The same recovery algorithm 
6 
is later shown in [72] to work for all 𝑠-sparse signals using RUFF 
with 𝛼 = 1

2 , thereby establishing an upper bound of 𝑚 = 𝑂(𝑠2 log 𝑛). 
Furthermore, the authors also show a lower bound of 𝑚 = 𝛺(𝑠2 log 𝑛

log 𝑠 )
measurements for exact support recovery by establishing that (𝑑, 𝑠−1, 1)
RUFF property is necessary.

Furthermore, to reduce the dependence of 𝑂(𝑠2) for the approximate 
recovery problem using a two-stage algorithm, several works have 
investigated the approximate support recovery problem [86–88]. In 
particular, it is shown that 𝑂((𝑠3∕2 + 𝑠

𝜖 ) log
𝑛
𝑠 ) measurements from a 

generalization of RUFFs (called list-RUFF) are sufficient if one needs to 
recover a small superset of the true support of size 𝑂(𝑠), and 𝑂( 𝑠𝜖 log

𝑛
𝑠 )

measurements are sufficient if the algorithm is allowed to return sup-
port with 𝜖𝑠 errors (both false positives and false negatives) [88]. 
This work also establishes a nearly matching lower bound of 𝑚 =
𝛺( 𝑠𝜖 (log

𝑠
𝜖 )

−1 log 𝑛
𝜖𝑠 ) for approximate support recovery.

In a non-universal setting, exact support recovery achieves a tight 
bound of 𝑚 = 𝛩(𝑠 log 𝑛) measurements [91] whereas 𝜖-approximate 
support recovery needs 𝑚 = 𝛩( 𝑠𝜖 log 𝑛) measurements [87] for signals 
with a bounded dynamic range, max𝒙[𝑖]≠0 |𝒙[𝑖]|

min𝒙[𝑖]≠0 |𝒙[𝑖]|
. Additionally, when the 

support of the signal is restricted to certain small groups of indices, 
only 𝑂(𝑠 log 𝑛) measurements are necessary [92].

2.2.2. Generative priors
The study of 1bCS has been extended to recovering structured 

signals that go beyond the standard sparsity assumption. An early ap-
proach inspired by the success of deep generative models is to explore 
the recovery of signals within the range of a 𝛬-Lipschitz continuous 
generative model [93]. Formally, let x be a signal in the range of 𝐺 ∶
𝑠
2(𝑟) → R𝑛, where 𝐺 is a generative model that is 𝛬-Lipschitz, and 𝑠

2(𝑟)
denotes an 𝓁2 ball of radius 𝑟 > 0 centered at zero in R𝑠. We note that 𝜅-
layer deep neural networks with ReLU, Hyperbolic tangent, or sigmoid 
activation functions are known to be 𝛬 = 𝑛𝛩(𝜅)-Lipschitz continuous. 
Recovering such signals can use a gradient descent approach in the 
latent space that aims to minimize an empirical recovery error function. 
This approach needs roughly 𝑚 = 𝑂( 𝑠

𝜖2
log(𝛬𝑟)) random Gaussian mea-

surements for 𝜖-approximate signal recovery, and relies on a stronger 
variant of the restricted eigenvalue condition which is satisfied by 
random Gaussian matrices. Several follow-up works have provided bet-
ter algorithmic guarantees and established tight information-theoretic 
lower bounds on the number of measurements necessary for accurate 
recovery. See [94] for a survey on related results. Several works built 
upon this approach achieve results comparable to classical sparsity-
based methods while requiring significantly fewer measurements [52–
56,70,71,83,95–98].

Generalizing the recovery conditions for sparse signals discussed 
earlier [42], recent work extends the results to provide an information-
theoretic characterization for the recovery of signals with generative 
priors [34,52]. The authors of [52] establish an upper bound, demon-
strating that 𝑂( 𝑠𝜖 log

𝛬𝑟
𝜖2
) independent Gaussian measurements are suf-

ficient with high probability to distinguish any two signals that are 
𝜖 separated. The lower bounds indicate that at least 𝑂( 𝑠𝜖 + 𝑠 log(𝛬𝑟))
measurements are necessary for 𝜖-approximate recovery of the signal. 
Furthermore, a modified BIHT algorithm archives excellent empirical 
performance, where the hard threshold function is replaced by a pro-
jection operation onto the range of the generative model. However, the 
measurement bound in [52] is generic and not directly connected to 
BIHT version. Concurrently, [34] introduces an optimization-based al-
gorithm combined with the generative model, which achieves a similar 
measurement complexity.

Provable recovery algorithms with an almost optimal number of 
measurements are first introduced for ReLU-based generative models 
without an offset [83]. In particular, the authors design an empiri-
cal risk minimization algorithm that recovers bounded target vectors 
produced by the model from 𝑂( 𝑠𝜅

𝜖2
log 𝑛 log2( 1𝜖 )) quantized noisy sub-

exponential measurements with a uniform dither. The analysis re-
lies on the piecewise linearity of ReLU networks that allows for a 
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more efficient tessellation of the range space using affine hyperplanes. 
The authors also establish an information-theoretic lower bound that 
matches the achievability up to 𝜖−1 factor for shallow networks. Subse-
quent works have extended the provable recovery algorithms to signals 
generated using 𝛬-Lipschitz generative models with 𝑂( 𝑠

𝜖2
log𝛬𝑟) mea-

surements [34,53–56]. Notably, a least absolute shrinkage and selection 
operator (LASSO)-based approach for non-uniform recovery is first 
introduced [53], which is later extended to obtain uniform recovery 
guarantees [56]. This approach circumvents the need for Gaussian 
measurements by using structured partial Gaussian circulant matrices 
for recovery. Additionally, a one-shot projection algorithm for non-
uniform recovery of generative signals is developed, utilizing an almost 
optimal number of Gaussian measurements [55]. These results also 
hold for more general single-index measurement models with minimal 
assumptions on the quantization function. Another study investigates a 
diffusion-based generative model, which shows promise but is limited 
by the large training dataset and high computational cost, leading to 
latency issues, especially on edge devices [71]. The study also lacks 
theoretical analyses of reconstruction performance and measurement 
requirements. Finally, since generative models generally require a large 
volume of training data, algorithms based on untrained deep neural 
networks are also available in the 1bCS literature [70].

2.2.3. Compressive learning with one-bit measurements
In many practical applications, such as in IoT, exact reconstruction 

of signals is not necessary. Instead, the focus is on computing some 
function of the original signal rather than recovering it. This approach 
allows for a substantial reduction in implementation complexity by 
inferring information directly from compressed measurements without 
the need for reconstruction. This area of research, known as compres-
sive learning, has recently gained significant attention [99,100]. One of 
the first studies in this direction estimates the 𝓁2 norm of a 𝑠-sparse sig-
nal x with 𝑟2 ≤ ‖𝒙‖2 ≤ 𝑅2 using only 𝑂(𝑅

4

𝑟2
) affine measurements [101]. 

Random linear projections onto low-dimensional subspaces, which are 
well-studied in the context of CS and dimensionality reduction, are 
known to preserve certain properties of high-dimensional datasets, such 
as pairwise Euclidean distances between data points. Consequently, 
compressed datasets – often referred to as sketches – retain sufficient in-
formation that many compressive learning algorithms utilize to achieve 
efficient signal classification and clustering [102–105]. Numerous stud-
ies have also extended these techniques to develop effective learning 
algorithms from one-bit quantized sketches.

In one-bit quantized learning, the goal is to infer properties of sig-
nals (that are not necessarily sparse) using a few one-bit measurements 
given by (4). Geometrically, each one-bit measurement depicts the side 
of the chosen hyperplane in which the data point (signal) lies. This 
binary embedding preserves pairwise angular distances between data 
points, making it useful for developing efficient learning algorithms. 
One technique is to train an algorithm using a few labeled and one-
bit quantized data points, enabling efficient classification of newly 
acquired signals. The algorithm computes a ‘‘score function’’ based on 
binary measurements during the training phase and classifies new data 
by maximizing a class probability function. A separate but related line 
of work provides an upper bound on the misclassification error when 
the signals follow a Gaussian mixture model [106]. This work designs 
an accurate correlation estimator using a few one-bit sign measure-
ments that are utilized by the classification algorithm. Fundamental 
performance limits are investigated, extending analogous works in the 
compressive sensing setting to the one-bit quantized setting. Further, 
extending the analogous works of [105] in CS setting to the one-bit 
quantized setting, techniques are designed to estimate the Chernoff 
and KL divergence distances between the probability density func-
tions (PDFs) of measurements based on their membership in different 
classes [107]. It is noted that the misclassification error, bounded using 
these distance measures, decreases exponentially with an increasing 
number of measurements.
7 
Another important area of study focuses on clustering, which aims 
to extract patterns from a set of unlabeled data points. Compressive 
clustering algorithms seek to provide efficient clustering solutions us-
ing compressed datasets without the need for reconstruction [104]. 
However, the one-bit quantized variant of clustering is less explored. 
The existing research investigates this problem by estimating data 
distribution through random sampling of its characteristic function at 
randomly drawn frequencies [108] and its extension also demonstrate 
differential privacy [109].

2.2.4. Mixture of sparse linear classifiers
The signal recovery in the 1bCS model is equivalent to learning a 

sparse linear classifier in the active query model. Here, each designed 
measurement can be considered as querying the classifier for its label, 
and the goal is to recover the linear classifier using a minimal number 
of such queries. The mixture of sparse linear classifiers generalizes 
this problem to simultaneously recover 𝐿 sparse signals using a min-
imal number of queries. In such a model, the output of a query 
(or measurement) is derived stochastically from one of the signals at 
random.

Let  = {𝒙1 … ,𝒙𝐿} ⊆ R𝑛 be the set of sparse signals with ‖𝒙𝑖‖0 ≤ 𝑠, 
and the outcome with respect to a query (or measurement) vector 
𝒂 ∈ R𝑛 is derived as: 

𝑦𝑗 = sign(⟨a,𝒙𝑗⟩), 𝒙𝑗 ∼  , (11)

for some fixed distribution  (usually taken to be uniform) over the set 
of unknown signals  . Mixtures of simple machine learning models, 
such as mixtures of distributions [110] and regression [111], have 
been extensively studied over decades to address heterogeneous data 
in areas like machine translation [112], health [113], medicine [114], 
and object recognition [115], etc. Mixtures of classifiers, in particular, 
are well-suited for modeling categorical data prevalent in these appli-
cations. The mixture of linear classifiers has been studied rigorously 
in the literature, providing algorithms for approximating the subspace 
spanned by component classifiers and for making predictions based on 
feature and label inputs [116].

In the active query model, some researchers have looked at the 
approximate recovery of 𝐿 signals that are 𝑠-sparse within the mixture 
model [117]. The authors provide a two-stage non-adaptive algorithm 
that first recovers the support of all the signals using combinatorial 
matrices related to RUFFs (see Section 2.2.1 for details) and then 
approximately recovers the non-zero entries of each 𝑠-sparse signal 
using additional Gaussian queries. Note that similar to the two-stage 
recovery algorithms discussed in Section 2.2.1, the queries are com-
pletely non-adaptive, while the recovery algorithm proceeds in two 
stages. The algorithm uses 𝑚 = 𝑂(𝜖−1𝐿𝐿+3𝑠𝐿+2 log2 𝑛) measurements 
for 𝜖-approximate recovery under the assumption that each signal 
contains one unique identifying feature. Other approaches forego this 
assumption and provide recovery with 𝑚 = 𝑂(𝐿2(𝐿𝑠)log𝐿 log2 𝑛) and 
𝑂(𝐿3𝑠(𝑠)𝐿 log2 𝑛) measurements, respectively, and are also tolerant to 
noise in the query outputs [118,119]. One method uses tensor decom-
position based on queries [118], while another provides both single-
stage and two-stage algorithms [119]. However, these sample com-
plexities remain distant from a basic counting-based lower bound of 
𝛺(𝑠𝐿 log 𝑛

log(𝐿+1) ) and require runtime exponential in 𝐿 and 𝑠. Moreover, in 
a different model, where queries cannot be designed but samples are 
drawn from a fixed distribution, approximate recovery can be achieved 
with as few as 𝑂(𝐿3 log(𝐿𝑠log𝐿𝑛)) samples [120].

In addition to signal reconstruction and learning from a single mea-
surement vector, 1bCS has also been extended to the recovery of multi-
ple sparse vectors and adapted to accommodate various sparsity struc-
tures, incorporating both centralized and decentralized algorithms. 
These advancements are particularly significant for distributed sensor 
networks (DSNs). The following section explores this topic further.
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Fig. 2. Acquisition of compressed measurements of observations with temporal sparsity 
(from [121]), where PoI refers to the phenomenon of interest. These measurements are 
quantized to address communication constraints.

2.3. Centralized and decentralized multi-agent algorithms

1bCS has emerged as a promising approach for handling high-
dimensional sparse signals in DSNs to reduce communication and ex-
tend network lifetime in power-constrained sensor networks monitor-
ing various phenomena. In this section, we discuss some algorithms for 
quantized CS, motivated by resource-constrained DSNs.

One immediate application of quantized CS in DSNs is compressive 
data acquisition. When merging quantized CS and data acquisition 
from distributed sensing nodes, one needs to design processing at the 
compression side as well as at the reconstruction side, under com-
munication constraints. On the compression side, the practical design 
of compression schemes via random projections depends on how the 
sparsity is exploited. On the reconstruction side, suitably extended 
quantized CS techniques for single and multiple measurement vector 
models to account for communication-related aspects are used. The 
quantized CS-based data acquisition problem can be formulated as a 
sparse signal reconstruction problem that may exploit temporal, spatial, 
and spatiotemporal sparsity. Here, we only briefly discuss the temporal 
sparsity case, and for other cases, the reader may refer to [121].

2.3.1. Temporal sparsity-aware algorithms
Consider a DSN shown in Fig.  2, where 𝐿 sensor nodes observe 

the phenomenon of interest. The time samples collected at the 𝑖th 
node are represented by the vector 𝒙𝑖 ∈ R𝑛. These time samples are 
assumed to be sparse in a suitable orthonormal basis. CS is applied to 
compress temporal sparse data in that only a small number of random 
projections are obtained via 𝒚𝑖 = 𝑨𝑖𝒙𝑖 at the 𝑖th node for 𝑖 = 1,… , 𝐿, 
where 𝑨𝑖 ∈ R𝑚×𝑛 with 𝑚 < 𝑛 is the measurement matrix used at 
the 𝑖th node. This compression via random projections is carried out 
independently at each node. The goal is to reconstruct [𝒙1,… ,𝒙𝐿] based 
on their 1-bit quantized compressed versions 𝒛𝑖 = 1(𝒚𝑖) communicated 
through the network where the reconstruction techniques depend on 
the specific communication architecture, centralized or decentralized, 
used to combine 𝒛𝑖’s. For the sake of simplicity, only noiseless cases are 
considered in this section.

Using matrix notation, we consider recovering 𝑿 ≡ [𝒙1,… ,𝒙𝐿]
jointly based on quantized observations 𝒁 = 1(𝒀 ) with 𝒀 =
[𝒚1,… , 𝒚𝐿]. The multiple measurement vector model can be repre-
sented in matrix form with the same projection matrix, such that 𝑨𝑖 = 𝑨
for 𝑖 = 1,… , 𝐿, 
𝒁 = 1(𝒀 ) = 1(𝑨𝑿). (12)

One may also consider the more general case with different projection 
matrices at the individual nodes, the observation matrix at the fusion 
center can then be expressed as 
𝒁 = 1(𝒀 ) = 1([𝑨1𝒙1 …𝑨𝐿𝒙𝐿]). (13)

When considering the simultaneous sparse approximation framework, 
𝑿 needs to be reconstructed when 𝒀  and 𝑨 (with the same projection 
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matrix) or 𝑨1,… ,𝑨𝐿 (with different matrices) are given. Joint estima-
tion of 𝑿 can leverage joint or structured sparsity common in sensor 
networks [122].

A widely used sparsity model is the joint sparsity model [122]. In 
this model, the sparse signals observed at multiple nodes, 𝒙𝑖’s, have 
the same but unknown sparsity pattern with respect to the same basis. 
However, the corresponding amplitudes can be different in general. 
The joint sparsity model with the same measurement matrix as in (12) 
is commonly termed as the multiple measurement vector model [123,
124]. While developing algorithms and evaluating performance with 
the joint sparsity model, several measures have been defined. To rep-
resent the number of nonzero elements of 𝑿, we can use ‖ ⋅‖row-0 norm 
where 
‖𝑿‖row-0 = {𝑖 ∈ {1,… , 𝑛} ∶ ∃𝑗 s.t.𝑿[𝑖, 𝑗] ≠ 0}. (14)

The natural approach to solve for sparse 𝑿 from 𝒁 in (12) is to solve 
the following optimization problem 
min
𝑿

‖𝑿‖row-0 s.t. 𝒁 = 1(𝑨𝑿). (15)

Centralized algorithms
This setting assumes that the nodes transmit their compressed mea-

surements to a central fusion center with single-hop communication, 
and the fusion center solves the problem in (15). One approach to 
solving the problem is to use the ML decoder developed for sparsity 
pattern recovery [125]. The minimum number of one-bit compressive 
measurements that should be obtained per node to perform sparsity pat-
tern recovery with a vanishing probability of error is determined via the 
ML approach. The results in [125] establish that 𝑚𝐿 = 𝛺

(

𝐶𝑠𝑠 log
(

𝑛
𝑠

))

measurements are necessary for the noiseless setting, where 𝐶𝑠 is 
a function of the sparsity level. Interestingly, the bound is on 𝑚𝐿, 
implying that only a single measurement (𝑚 = 1) from some sparse 
vectors is enough to reliably recover the joint sparsity pattern if 𝐿
is large enough. The implementation of the ML decoder becomes in-
tractable as the signal dimension and the number of sensors increase. 
Yet, the performance bounds obtained through the ML algorithm serve 
as a benchmark for comparing suboptimal, computationally tractable 
algorithms.

Since the ML decoder is not computationally feasible, tractable 
algorithms for sparsity pattern recovery in a centralized setting are 
proposed in the literature [125]. In one algorithm, an optimization 
problem is formulated that minimizes the ML function and the 𝑙1,∞
quasi-norm of a matrix and uses the iterative shrinkage-thresholding 
algorithm. Specifically, it solves 
argmin

𝑿
𝑓ML(𝑨𝑿) + �̄�‖𝑿‖row-0, (16)

where 𝑓ML is the negative log-likelihood function (without imposing the 
sparsity constraint), �̄� is the penalty parameter, and ‖ ⋅‖row-0 is defined 
in (14). Since optimizing ‖ ⋅ ‖row-0 is hard, one often solves it by using 
the mixed norm approach. The relaxed convex problem is 
argmin

𝑿
𝑓ML(𝑨𝑿) + �̄�‖𝑿‖1,∞, (17)

where ‖𝑿‖1,∞ =
∑𝑛

𝑖=1 max1≤𝑗≤𝐿 𝑿[𝑖, 𝑗] is the 𝓁1,∞ quasi-norm of a 
matrix. Here, both 𝑓ML(𝑨𝑿) and �̄�‖𝑿‖1,∞ are convex functions and (17) 
can be solved using the standard convex solvers, such as the iterative 
shrinkage-thresholding algorithms.

The other algorithm extends the BIHT algorithm to the multiple 
measurement vector model available at the fusion center. Similar to 
BIHT discussed earlier in Section 2, in each iteration, the gradient of 
the cost function is evaluated using the previous iterate, and a step 
proportional to the gradient norm is taken in the negative direction 
to minimize the cost function. This process continues until a stop-
ping criterion is met, with the final iteration providing the estimated 
support.
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While centralized solutions discussed above are attractive in terms 
of performance, their power consumption due to direct communication 
with the fusion center may be high. So, they may not be practical in 
large or resource-constrained networks and we explore decentralized 
approaches for sparsity recovery.

Decentralized algorithms
In a decentralized setting, all the nodes in the network send their 

one-bit quantized measurement vectors to their one-hop neighbors. 
To define the notion of neighborhood, the decentralized network is 
modeled as an undirected graph, where the vertices represent the 
sensor nodes and the communication links correspond to the edges of 
the graph. Consequently, a node 𝑖 can send its measurements to another 
node only if there is an edge connecting the 𝑖th node to the other node.

Two decentralized algorithms have been proposed in the literature, 
each featuring distinct stages that strategically embed the fusion of 
measurement information and decisions among nodes [125]. These col-
laborations among the nodes can be structured into two distinct stages, 
namely the information fusion stage and the index fusion stage. During 
the information fusion stage, each node estimates the support set using 
any centralized algorithm, convex relaxation- or BIHT-based methods 
described earlier. Because each node only has access to measurements 
from its neighbors, the problem size is smaller than that of fusion 
center-based recovery. In the index fusion stage, the nodes send their 
estimates to all other nodes in the network, which then arrive at the 
final support estimate using simple fusion methods, such as the major-
ity fusion rule, which counts the 𝑠-most frequently occurring indices 
among the estimates. These algorithms assume the prior knowledge of 
the sparsity level of the signal. If the sparsity levels of signals are not 
known in advance, they need to be estimated using methods proposed 
in the literature. A comparison of the performance of these proposed 
decentralized algorithms with those of centralized ones and their real-
valued counterparts shows excellent performance, demonstrating their 
value in resource-constrained environments.

2.3.2. Distributed inference
DSNs are also employed in various inference problems. In such ap-

plications, 1bCS techniques can again be used as a means of data com-
pression where the goal is to solve an inference problem and not signal 
reconstruction. In inference problems such as detection [126–128], 
classification [61,91,106], and parameter estimation [129–131], it is 
sufficient to construct a reliable decision statistic based on compressed 
data without recovering the original signal. Beyond the standard 1bCS 
framework, this requires the investigation of different metrics for per-
formance analysis and quantification of the amount of information 
preserved under compression to obtain a reliable inference decision. In 
this section, we briefly discuss the compressive detection problem with 
one-bit measurements. For discussion on classification and parameter 
estimation problems, see [121].

Event or object detection is an important task performed by DSNs
[132]. In order to solve a detection problem efficiently in a multi-
sensor setup, one needs to process the signals at the sensing nodes 
that maximally contribute to the overall decision-making prior to the 
transmission of its processed information to the fusion center. In order 
to minimize the amount of information to be transmitted, we may 
employ quantized CS. When the number of active events is much less 
than the number of all possible events (rare events), the event detection 
problem can be formulated as a sparse recovery problem. Consider the 
scenario shown in Fig.  3, where there are 𝑛 sources scattered over a 
region out of which 𝑠 are active simultaneously. The scenario can arise 
in various applications such as radar surveillance [133] and cognitive 
radios [134]. The quantized measurement vector at 𝑚 active sensors 
has the following form 

𝒛 =  (𝑨𝒙 +𝒘), (18)
1
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Fig. 3. Sparse event monitoring; [135], dark stars-active sources, void stars-inactive 
sources, circles-sensor nodes.

where 𝒙 is a sparse vector with 𝒙[𝑖] ∈ 0, 1. The (𝑖, 𝑗)th element of 𝑨 is 
given by 
𝑨[𝑖, 𝑗] = 𝑟−�̄�∕2𝑖,𝑗 |ℎ𝑖,𝑗 |, (19)

where 𝑟𝑖,𝑗 denotes the distance from the 𝑖th sensor to the 𝑗th source, 
�̄� is the propagation loss factor and ℎ𝑖,𝑗 is the fading coefficient of the 
channel between the 𝑖th sensor and the 𝑗th source. In this framework, 
the sparse event monitoring problem reduces to estimating the sparse 
vector 𝒙 from (18) when the elements of 𝑨 are as given in (19). Here, 𝑨
is not a user-defined random matrix satisfying restricted isometric prop-
erties as the standard CS framework desires. Rather, the randomness 
arises due to the random locations and fading coefficients.

The problem of distributed detection of sparse stochastic signals can 
be framed as a binary hypothesis testing problem as
0 ∶ 𝒛 = 1(𝒘), (20)

1 ∶ 𝒛 = 1(𝑨𝒙 +𝒘). (21)

The study in [126] has introduced a one-bit detector using the Gen-
eralized Likelihood Ratio Test for distributed detection of sparse de-
terministic signals, which requires full signal reconstruction. Mean-
while, [127] presents a one-bit detector based on the Locally Most 
Powerful Test for distributed detection of sparse stochastic signals, 
where sparse signals are modeled using a Bernoulli-Gaussian distribu-
tion. This work avoids the need for full signal reconstruction, making 
it more efficient. The approach in [128] improved this distributed 
detector by quantizing the likelihood ratios to generate the one-bit data 
instead of directly quantizing the analog observations.

This concludes our discussion on generalized quantized CS algo-
rithms. So far, we have examined the theory and algorithms for 1bCS, 
exploring various approaches. Over the last decade, quantized CS has 
gained traction across various fields, including medical imaging, ma-
chine learning, computer science, and statistics. These general theories 
and algorithms can be further refined and adapted for specific ap-
plications, with additional enhancements through the integration of 
application-specific tasks. The next section focuses on the customized 
quantized CS approaches for wireless communication and sensing ap-
plications.

3. Quantized CS algorithms for wireless communication and sens-
ing

In wireless sensing, quantized CS is commonly used, with 1bCS 
standing out for its simplicity, cost-effectiveness, low resource require-
ments, and robustness to certain linear and nonlinear distortions, such 
as saturation errors. This section explores its diverse applications in 
both wireless communication and sensing, highlighting key advance-
ments, methodologies, and their impact on system performance and 
efficiency.
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Table 3
Summary of different 1bCS algorithms discussed in Section 2 applied to wireless 
communication and sensing applications.
 Domain Methods  
 
IoT/Sensor Networks

𝓁1-normed based [16,136]  
 Log-sum penalty function-based [15]  
 Blind BIHT [14]  
 
Radar Imaging

Sparse logistic regression [137,138]  
 BIHT variants [30,139,140]  
 Bayesian method [28]  
 
Radar Direction Finding

Norm optimization [141–143]  
 BIHT variants [144,145]  
 Bayesian methods [146,147]  
 Cognitive Radio Networks Norm minimization [23]  
 BIHT variants [18,148,149]  
 
Wireless Channel Estimation

Norm optimization [150,151]  
 Approximate message passing [25,152,153] 
 SBL [154–156]  
 Feedback-based Channel Estimation BIHT variants [26,157–159]  
 Bayesian methods [24]  

3.1. Generic quantized CS algorithms

Quantized CS is widely used in wireless sensor networks, cognitive 
radio, radar, and direction of arrival estimation, to address bandwidth 
constraints, energy efficiency, and reliable sensing under limited re-
sources. Its ability to operate with low-resolution measurements while 
maintaining useful signal recovery makes it particularly valuable in 
these applications. Below, we review the relevant literature, summa-
rized in Table  3, that focuses on adapting the general framework of 
quantized CS algorithms across these domains.

3.1.1. IoT and wireless sensor networks
IoT and wireless sensor networks consist of small, low-power sen-

sors that monitor the environment, periodically collecting data and 
transmitting it to the fusion center via shared wireless channels. Since 
sparsity is a common feature of many signals (temperature, humidity, 
illumination, etc.) monitored by the sensors, CS frameworks are widely 
used in wireless sensor networks. Given the limited computational and 
energy resources of sensor nodes, 1bCS is particularly suitable as it 
enables accurate signal reconstruction while minimizing storage costs 
and hardware complexity.

One of the earliest works to apply 1bCS for data gathering in 
sensor networks appears in [14]. This work adapts BIHT to estimate 
the sparsity level of unknown data by analyzing the variance among 
solutions of the BIHT algorithm at different sparsity levels and selecting 
the best one. This modified version, called blind BIHT, improves com-
pression efficiency and reduces communication costs. In [15], 1bCS is 
utilized for source localization in wireless sensor networks, by intro-
ducing a Gaussian entropy (log-sum penalty function)-based method 
for sparse signal recovery. A memory-efficient 1bCS algorithm using a 
circulant random bipolar measurement matrix is proposed in [136], to 
demonstrate that 1bCS can lead to less data traffic in sensor networks. 
Additionally, [16] examines 1bCS in noisy wireless sensor networks 
affected by channel-induced bit-flipping errors. To mitigate these er-
rors, an amplitude-aided signal reconstruction scheme is proposed, 
improving accuracy in low-SNR conditions or when the number of 
sensors is limited.

Another important aspect of using quantized CS in wireless sensor 
networks is analyzing how efficiently sparse signals are represented, 
particularly from an information-theoretic perspective. This involves 
determining whether quantized CS measurements provide an effective 
representation and how to optimize the quantizers themselves. Early 
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works in quantized CS, such as [152,160,161], optimize scalar quan-
tizers for CS reconstruction, while quantization-aware decoding algo-
rithms for fixed encoders are proposed in [162]. Although these meth-
ods improve performance over quantization-unaware versions, they are 
suboptimal for minimizing the mean squared error in signal reconstruc-
tion. The issues include optimizing only the encoder or decoder, using 
scalar quantization instead of vector quantization, and minimizing 
measurement quantization distortion, which does not always minimize 
reconstruction distortion due to non-linearities. To address this, joint 
optimization of vector quantization-based encoder–decoder pairs is 
proposed in [163,164], aiming to minimize the mean squared error 
in quantized CS. However, these methods are computationally expen-
sive, hindering practical implementation. Furthermore, the early results 
in [165] and further analysis in [166] explore lossy CS, while addi-
tional work on distortion–rate bounds and remote compression appear 
in [167,168]. Further, [169] analyzes the rate–distortion performance 
of quantized CS measurements in wireless sensor networks using three 
reconstruction methods: 𝓁1-norm minimization, A*OMP, and LASSO. 
This study presents an incremental transmission scheme that refines 
sensor measurements at the fusion center on demand, reducing energy 
consumption and achieving rate–distortion performance close to the 
optimum. Later, [170] studies the rate–distortion performance of vari-
ous single-sensor quantized CS schemes for compressing sparse signals 
using noisy quantized measurements. They propose three practical 
methods: compress-and-estimate, estimate-and-compress, and support-
estimation-and-compress. Further, [171] presents practical symbol-by-
symbol quantizer-based methods for different compression strategies, 
assessing the compression limit of quantized CS through an analyti-
cal lower bound and numerical approximation. Using high-resolution 
functional scalar quantization, they show noticeable improvements in 
operational distortion–rate performance.

3.1.2. Radar systems
In synthetic aperture radar systems, low-bit encoding is used to 

reduce transmission costs through quantized CS. Early research on 
one-bit radar imaging with conventional methods, such as matched 
filtering [172,173], shows that one-bit quantization can lead to ghost 
targets due to the loss of magnitude information from fixed threshold 
ADCs. Since targets with strong scattering coefficients are sparsely 
distributed, 1bCS methods provide an alternative for improved one-bit 
radar imaging by leveraging the sparse representation of radar echoes 
without increasing hardware complexity. These methods either com-
pensate for information loss caused by quantization through random 
and adaptive quantization thresholds [129,174] or leverage additional 
information during the imaging process [28]. For example, a maximum 
a posteriori approach in [28] effectively suppresses ghost targets and 
artifacts. In [30], an enhanced one-bit radar imaging algorithm based 
on the BIHT framework exploits two-level block sparsity to account for 
clustering and joint sparsity patterns. However, this method’s perfor-
mance is often degraded by noise in the data sampling and transmission 
process. To address this, robust 1bCS algorithms based on BIHT are 
developed to handle sign flip errors effectively [139]. These algorithms 
introduce an adaptive quantization level, iteratively updated with the 
imaging result using a relaxed quantization consistency condition to 
reduce noise and improve reconstruction quality. Additionally, an ad-
versarial sample-based BIHT method [140] uses adversarial samples to 
train and adapt quantization level parameters, ensuring quantization 
consistency. However, for large-scale one-bit imaging, these approaches 
are time-consuming, and so, sparse logistic regression-based one-bit 
synthetic aperture radar imaging is introduced [137]. This approach 
combines efficient sparse logistic regression-solving techniques with CS 
imaging constraints to achieve good results with low run time and 
excellent convergence. More recently, this framework has been en-
hanced by utilizing two-level structured sparsity [138] that encourages 
clustered sparsity patterns and suppresses high-intensity artifacts and 
clutter caused by sign flips.
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Direction estimation is another key problem that leverages quan-
tized CS. The sparse vector recovery-based direction of arrival esti-
mators, such as fixed-point continuation [58,141] and BIHT, perform 
well even with limited snapshots. BIHT has been extended to complex-
valued and multi-snapshot cases, leading to the complex-valued BIHT 
algorithm [144]. Another work exploits the generalized linear model 
inference problem and extends the generalized SBL algorithm for mul-
tiple snapshots, achieving better estimation accuracy than BIHT by ex-
ploiting the joint sparsity of the real and imaginary components [146]. 
More recently, deep learning-inspired algorithms like the deep unfolded 
version of fixed point continuation [142] have been proposed for one-
bit direction-of-arrival estimation. These approaches are categorized 
as on-grid methods since they determine the direction by searching 
within predefined grid points. However, they suffer from errors when 
the actual direction of arrival falls between grid points (off-grid), ne-
cessitating denser grids, which increase computational complexity and 
reduce stability. To address this, off-grid DOA estimation techniques 
have been developed. One approach enhances the complex BIHT algo-
rithm with gradient descent for signal estimation and bases-updating 
and backtracking strategies to enhance off-grid estimation accuracy and 
convergence [145]. Other approaches include atomic norm minimiza-
tion using the alternating direction method of multipliers [143], and 
an off-grid iterative Bayesian algorithm within the block successive 
upper-bound minimization framework [147].

3.1.3. Cognitive radio networks
Cognitive radio networks consist of wireless users equipped with 

sensing capabilities to improve the efficiency of spectrum utilization. 
It enhances spectrum efficiency by allowing secondary users to trans-
mit on unused portions of the spectrum. However, the secondary 
users must vacate the spectrum when the primary user reoccupies 
it. The key feature of cognitive radios is spectrum sensing, which 
enables them to accurately determine the availability of spectrum [175,
176]. In many applications, wideband channels must be monitored, 
requiring high-speed sampling. However, traditional spectrum sensing 
methods typically rely on high-precision quantization for optimal per-
formance, which leads to significant energy consumption, motivating 
low-resolution (particularly one-bit) spectrum sensing.

Several studies have demonstrated that quantized CS can reduce 
spectrum sensing costs [23]. For example, [23] examines the tradeoff 
between computation cost and compression performance, highlighting 
the communication cost savings of 1bCS in spectrum sensing for net-
worked systems. It also proposes a block reconstruction algorithm that 
leverages the block sparsity of the signals. Further, to tackle the high 
sampling rate challenges in cognitive radio devices, a modulated wide-
band converter is typically used to sample sparse multiband signals. 
Using the 1bCS framework, [18] proposes an alternative sub-Nyquist 
sampling system using comparators for efficient space utilization and 
low bit-budget, demonstrating its advantages over modulated wideband 
converter (especially at low input SNR).

The framework has also been extended to distributed collaborative 
spectrum sensing, where secondary users share their measurements 
and make a common decision [148,149]. These approaches leverage 
joint sparsity and spatial diversity through average consensus, guiding 
local signal reconstruction with the weighted BIHT algorithm [149]. 
Here, local reconstruction and fusion alternate until reliable spectrum 
detection is achieved. Additionally, sub-Nyquist sampling at the output 
of wide receive front-end filters, combined with group testing concepts, 
has been explored for wideband spectrum sensing [177]. In this con-
text, the combinatorial group testing problem parallels 1bCS, with the 
unknown sparse spectrum occupancy and measurement matrix approxi-
mated as a binary vector and matrix, respectively. Further, in wideband 
spectrum sensing scenarios where multi-user cooperation is infeasible 
and prior sparsity information is unavailable, non-cooperative spectrum 
sensing is needed. In this context, [178] uses a multicoset sampling 
framework to achieve sub-Nyquist sampling without requiring spar-
sity knowledge and introduces a subspace-aided 1bCS algorithm for 
spectrum support estimation without signal reconstruction.
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3.1.4. Wireless channel estimation
In wireless communications, massive MIMO is a key enabling tech-

nology to meet the increasing demand for data rate and energy effi-
ciency [179,180]. However, the advantages of massive MIMO come 
at the cost of increased power consumption and hardware complexity 
due to the large number of radio frequency (RF) chains, high preci-
sion ADCs, etc. In particular, the power consumption of ADCs grows 
exponentially with the number of quantization bits per sample [181–
183]. Also, full precision ADCs require correspondingly high rate data 
processing at the receiver. This has spurred interest in employing low-
resolution ADCs in the base station (BS) of a massive MIMO system 
[5,151,184–186]. In such systems, quantized CS has paved the way for 
innovative applications that capitalize on signal sparsity, such as in-
terference cancellation, angle-of-arrival estimation, channel estimation, 
and symbol detection.

An example of a quantized sparse estimation problem in wireless 
communication is channel estimation, which is arguably the most 
extensively studied application in the field. Channel estimation with 
low-resolution ADCs explores the sparse representation of the wireless 
channel in either the delay domain or angular domain. One algo-
rithmic technique involves approximating the nonlinear quantization 
effects of one-bit ADCs into a linear form using the Bussgang de-
composition, enabling linear minimum mean squared error (MMSE) 
channel estimation [25,150,151]. Another approach is the generalized 
approximate message passing algorithm, initially developed in CS to 
handle quantized measurements [152], which has been adapted for 
channel estimation [153]. Additionally, some studies have explored the 
SBL framework for channel estimation [154] and time-varying channel 
tracking [155,156].

Furthermore, in frequency division duplex massive MIMO systems, 
channel reciprocity is unavailable due to the uncorrelated uplink and 
downlink spectral bands. Therefore, the downlink channel state infor-
mation (CSI) is fed back to the BS through the uplink channel [187]. 
While initial codebook-based methods reduce feedback overhead, 1bCS 
approaches have enhanced CSI accuracy by exploiting channel sparsity 
and user correlation. Notable methods include complex 1-bit Bayesian 
CS [24] and BIHT-based distributed 1bCS, where received symbols are 
quantized to one bit per dimension [157]. The method in [157] is 
enhanced using partial amplitude information with algorithms such as 
quantized partially joint orthogonal matching pursuit and quantized 
partially joint iterative hard thresholding [158]. It is further extended 
to off-grid channel estimation in [159]. To save uplink bandwidth, a 1-
bit CS-based CSI feedback method assisted by superimposed coding is 
proposed. In this method, downlink CSI is superimposed on uplink user 
data sequences and fed back to the BS. The 1bCS channel estimation 
algorithms at the BS with superimposed coding include BIHT-based 
recovery [26] and deep learning enhancements [188,189].

3.2. Application-tailored quantized CS algorithms

While several studies have explored quantized CS for wireless sens-
ing and communication applications, most of them are limited to 1bCS. 
This is not surprising, as the general theory of quantized CS has often 
gravitated toward one-bit quantization. A notable exception is wireless 
channel estimation, where low-resolution CS techniques, beyond one-
bit quantization, are also widely explored. Many of these studies do 
not employ generalized algorithms for quantized CS, as the unique 
characteristics of each context demand more tailored approaches. In 
the following, we investigate two distinct flavors of MIMO channel 
estimation problems with low-resolution (more than one-bit) ADCs. 
Section 3.2.1 delves into the integrated challenges of channel esti-
mation and data decoding in multi-user MIMO-orthogonal frequency-
division multiplexing (OFDM) systems, while Section 3.2.2 focuses on 
channel estimation for reconfigurable intelligent surfaces (RIS)-aided 
MIMO systems in narrowband scenarios. Each problem presents its 
own formulation, motivating the need for specialized algorithms that 
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address the domain-specific needs of the underlying application. The 
aim of this section is not to provide a comprehensive survey on quan-
tized CS algorithms in wireless communication but to illustrate how 
generalized theories and approaches can be enhanced through the use 
of tailored algorithms, optimizing performance based on the particular 
requirements of each application.

3.2.1. Example 1: Channel estimation and soft symbol decoding
In this subsection, we present an iterative delay domain sparse 

channel estimation and soft symbol decoding algorithm for a massive 
MIMO-OFDM system with low-resolution ADCs. Three challenges arise 
in using low-resolution ADCs in multi-user MIMO-OFDM systems: de-
graded performance of traditional detectors due to non-linearities of 
coarse quantization [190], the need for long pilot sequences for ac-
curate channel estimation reducing spectral efficiency as pilot signals 
are also quantized [151,182,191], and the requirement for bit log 
likelihood ratio (LLR)s for channel decoders, necessitating the compu-
tation of posterior beliefs of data symbols (also known as soft symbols) 
based on the quantized observations. We exploit the sparsity of the 
channels in their time-domain representation to obtain the posterior 
distributions of the channels. We also present a quantized variational 
Bayesian (QVB) soft symbol decoding procedure that uses the estimated 
channels to obtain the posterior beliefs of the data symbols. We iterate 
between channel estimation and soft-symbol detection to further refine 
the channel and soft-symbol estimates.

Description of the massive MIMO-OFDM system and problem statements
We consider the uplink of a single cell massive MIMO-OFDM system 

with 𝑀 antennas at the BS and 𝐾 single antenna user equipments
(UEs), where 𝑀 ≥ 𝐾. Each UE encodes its information bits and maps 
them to constellation symbols. The symbols are then mounted onto 
subcarriers and OFDM modulated using an inverse discrete Fourier 
transform (DFT). The OFDM modulated data symbols are parallel-
to-serial converted, a cyclic prefix is added, RF up-converted to the 
passband, and transmitted over a frequency-selective wireless channel 
to the BS. At the BS, the received RF signal is down-converted to 
baseband, sampled, and quantized using 𝐵-bit ADCs to obtain the 
received complex baseband signal.

Each UE transmits 𝜏p pilot OFDM symbols followed by 𝜏d data 
OFDM symbols. We assume that the coherence interval of the channel is 
at least 𝜏p+𝜏d OFDM symbols. We denote the number of subcarriers by 
𝑁c. After some algebra, it can be shown that the received time-domain 
pilot OFDM symbols 𝒁(p) ∈ C𝜏p𝑁c×𝑀  can be expressed as [192]2

𝒁(p) =

⎡

⎢

⎢

⎢

⎣

(1⊤𝐾 ⊗ 𝜳H
𝑁c

)𝑿(p)(1)
(

𝑰𝐾 ⊗ 𝜳𝑁c ,𝑛

)

,
⋮

(1⊤𝐾 ⊗ 𝜳H
𝑁c

)𝑿(p)(𝜏p)
(

𝑰𝐾 ⊗ 𝜳𝑁c ,𝑛

)

⎤

⎥

⎥

⎥

⎦

𝑯 +𝑾 (p) ≜ 𝜱(p)𝑯 +𝑾 (p),

(22)

where ⊗ denote the Kronecker product, 𝜱(p) ∈ C𝜏p𝑁c×𝐾𝑛, 𝜳𝑁c  is 
the DFT matrix, 𝜳𝑁c ,𝑛 and the 𝑛 column truncated DFT matrix. Also, 
𝑯 = [𝒉1,… ,𝒉𝑀 ] ∈ C𝐾𝑛×𝑀  is a row-sparse channel matrix in the 
time domain with the channel between each user and each receive 
antenna represented as an 𝑛-tap, 𝑠-sparse complex vector, 𝑿(p)(𝑡) =
diag(𝑿(p)

1 (𝑡),… ,𝑿(p)
𝐾 (𝑡)) ∈ C𝐾𝑁c×𝐾𝑁c , with 𝑿(p)

𝑘 (𝑡) is a diagonal matrix 
with the pilots loaded on the subcarriers as its entries, and 𝑾 (p) is the 
additive white Gaussian noise matrix. The channel matrix 𝑯 has 𝐾𝑛
rows, with each set of 𝑛 consecutive rows representing the 𝑛 potential 
delay taps per user. Only 𝑠 taps have nonzero coefficients, making 𝑯
row-sparse, which we exploit in the channel estimation procedure.

2 The interested reader is referred to [192] for complete details on the 
material presented in this subsection. Further results on variational Bayesian 
channel estimation and data detection can be found in [193–199].
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The received signal is quantized using a uniform quantizer with 
intervals 𝜉(𝑙) = (−𝐵∕2 + 𝑙)𝛥 for 𝑙 = 1,… , 𝐵 − 1, and quantization levels 
at (𝜉(𝑙) + 𝜉(𝑙+1))∕2. The dynamic range is set using the expected signal 
power 𝑃𝑅, with 𝜉(0) = −2.5

√

𝑃𝑅∕2 and 𝜉(𝐵) = 2.5
√

𝑃𝑅∕2. The values 
outside this range are clipped to ±(𝐵 − 1)𝛥∕2. The received pilots are 
quantized using 𝐵-bit ADCs as 
𝒀 (p) = 𝐵(𝒁(p)) = 𝐵(𝜱(p)𝑯 +𝑾 (p)) ∈ C𝜏p𝑁c×𝑀 . (23)

Our first goal to estimate 𝑯 given 𝒀 (p) and 𝜱(p) in (23). After estimating 
𝑯 , our goal is to decode the data symbols in the data transmission 
phase.

In the data transmission phase, we can vectorize and stack the signal 
received over the 𝑀 receive antennas and 𝜏d OFDM data symbols to 
obtain the frequency-domain received data symbols 𝒁(d) ∈ C𝑀𝑁c×𝜏d  as

𝒁 (d) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(1⊤𝐾 ⊗ 𝜳H
𝑁c
)𝑯 freq

1

(1⊤𝐾 ⊗ 𝜳H
𝑁c
)𝑯 freq

2

⋮ ⋱ ⋮

(1⊤𝐾 ⊗ 𝜳H
𝑁c
)𝑯 freq

𝑀

⎤

⎥

⎥

⎥

⎥

⎥

⎦

[

𝒙(d)(𝜏p + 1) … 𝒙(d)(𝜏p + 𝜏d)
]

+𝑾 (d) = �̄�𝑿(d) +𝑾 (d),

(24)

where �̄� ∈ C𝑀𝑁c×𝐾𝑁c  is the measurement matrix for data detection, 
𝑯 freq

𝑛𝑟 ∈ C𝐾𝑁c×𝐾𝑁c  is a diagonal matrix containing the frequency-
domain representation of the channel between the 𝐾 users and the 𝑛𝑟th 
receive antenna, 𝑿(d) ∈ C𝐾𝑁c×𝜏d  is the transmit data matrix, and 𝑾 (d)

is the additive white Gaussian noise matrix during the data phase. Now, 
we quantize the received signal (24) using the 𝐵-bit ADCs to obtain 
𝒀 (d) = 𝐵(𝒁(d)) = 𝐵

(

�̄�𝑿(d) +𝑾 (d)) . (25)

Our goal in this part is to decode the data symbols 𝑿(d) given 𝒀 (d) and 
�̄�. Once we estimate the posterior posterior distribution of 𝑿(d), we will 
perform data-aided channel estimation to refine the channel estimates, 
as described next.

Recall that the unquantized received pilot signal can be expressed 
as 𝒁(p) = 𝜱(p)𝑯 + 𝑾 (p). Similar to the pilot reception phase, if we 
consider the decoded data as known virtual pilot symbols, then we can 
write the received data signal as 

𝒁(d)(𝑡) = (1⊤𝐾 ⊗ 𝜳H
𝑁c

)
⟨

𝑿(d)(𝑡)
⟩

(

𝑰𝐾 ⊗ 𝜳𝑁c ,𝑛

)

𝑯 +𝑾 (d)(𝑡), (26)

where 𝑡 = {𝜏p + 1,… , 𝜏p + 𝜏d} with 
⟨

𝑿(d)(𝑡)
⟩

∈ C𝐾𝑁c×𝐾𝑁c  given by 
⟨

𝑿(d)(𝑡)
⟩

= diag
(⟨

𝑿(d)
1 (𝑡)

⟩

,… ,
⟨

𝑿(d)
𝐾 (𝑡)

⟩)

. (27)

Here, 
⟨

𝑿(d)
𝑘 (𝑡)

⟩

= diag
(⟨

𝒙(d)𝑘 (𝑡)
⟩)

∈ C𝑁c×𝑁c  with 
⟨

𝒙(d)𝑘 (𝑡)
⟩

 being the 
posterior means of the decoded data symbols of the 𝑘th user during the 
𝑡th OFDM symbol. We stack 𝒁(p) and 𝒁(d)(𝑡) to obtain an expression for 
the unquantized received signal over one coherence interval as 

𝒁 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝒁 (p)

𝒁 (d)(𝜏p + 1)
⋮

𝒁 (d)(𝜏p + 𝜏d)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜱(p)

(1⊤𝐾 ⊗ 𝜳H
𝑁c
)
⟨

𝑿(d)(𝜏p + 1)
⟩ (

𝑰𝐾 ⊗ 𝜳𝑁c ,𝑛
)

⋮

(1⊤𝐾 ⊗ 𝜳H
𝑁c
)
⟨

𝑿(d)(𝜏p + 𝜏d)
⟩ (

𝑰𝐾 ⊗ 𝜳𝑁c ,𝑛
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑯 +𝑾 ≜ 𝜱𝑯 +𝑾 ,

(28)

where 𝜱 ∈ C(𝜏p+𝜏d)𝑁c×𝐾𝑛 is the augmented measurement matrix and 
𝑾 ∈ C(𝜏p+𝜏d)𝑁c×𝑀  is the additive white Gaussian noise matrix. The 
𝐵-bit quantized received signal is given by 
𝒀 = 𝐵(𝒁) = 𝐵(𝜱𝑯 +𝑾 ) ∈ C(𝜏p+𝜏d)𝑁c×𝑀 . (29)

Our goal is to estimate 𝑯 given 𝒀  and 𝜱. Once we estimate 𝑯 , we use 
it to obtain �̄� as in (25), which in turn is used to refine the posterior 
beliefs of the 𝐷-quadrature amplitude modulated data symbols in the 
following data decoding iteration.

In the next three subsections, we present a QVB-based solution to 
the above channel estimation and data detection problem.
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Quantized variational Bayesian algorithm
To develop the algorithm, we first derive the channel estimation 

and soft symbol decoding algorithms, and then combine them into 
an iterative algorithm for joint channel estimation and soft symbol 
decoding.

Quantized variational Bayesian channel estimation. Our goal is to in-
fer the posterior distributions of the channels and the LLRs of the 
data symbols, given the quantized pilot and data observations. We 
adopt a probabilistic graphical model for this statistical inference, but 
exact posterior computation is intractable due to high-dimensional 
integrals over the channels and data symbols. So, we use approximate 
inference techniques, replacing the exact posterior distribution with a 
tractable distribution close to the original. An excellent introduction to 
variational Bayesian inference can be found in [200].

In order to exploit the lag-domain sparsity in the channel, as in [50], 
we use a two-stage hierarchical prior on 𝑯 , i.e., ∀ 𝑖, 𝒉𝑖 ∼  (𝒉𝑖;0,𝑷 −1), 
where the precision matrix 𝑷  is diagonal and contains the hyper-
parameters 𝜶 = [𝜶[1],… ,𝜶[𝐾𝑛]]⊤ as its diagonal elements. Further, 
we impose a Gamma hyperprior on 𝜶. This results in a Student’s 𝑡-
distributed prior on 𝒉𝑖, which is known to promote sparse channel 
estimates [201]. We express the logarithm of the joint probability 
distribution of the observations and latent variables as
ln 𝑝(𝒀 (p),𝒁 (p),𝑯 ,𝜶;𝜱(p), 𝜎2

𝑤, 𝑎, 𝑏)

= ln 𝑝(𝒀 (p)
|𝒁 (p)) + ln 𝑝(𝒁 (p) ∣ 𝑯 ;𝜱(p), 𝜎2

𝑤) + ln 𝑝(𝑯|𝑷 ) + ln 𝑝(𝜶; 𝑎, 𝑏), (30)

where the prior distributions of 𝑯 and 𝜶 are given by

𝑝(𝑯|𝑷 ) =
𝑀
∏

𝑖=1

|𝑷 |

𝜋𝐾𝑛 exp
(

−𝒉H
𝑖 𝑷𝒉𝑖

)

and

𝑝(𝜶; 𝑎, 𝑏) 𝐹 =
𝐾𝑛
∏

𝑘=1

𝑏𝑎

𝛤 (𝑎)
𝜶[𝑘]𝑎−1 exp (−𝑏𝜶[𝑘]) ,

(31)

and 𝛤 (⋅) is the Gamma function. We set 𝑎 and 𝑏 to small values 
(say, 10−4) such that the hyperprior 𝑝(𝜶; 𝑎, 𝑏) is non-informative. We 
approximate the posterior distribution of the latent variables as the 
factorized distribution:
𝑝(𝒁(p),𝑯 ,𝜶 ∣ 𝒀 (p);𝜱(p), 𝜎2𝑤, 𝑎, 𝑏) ≈ 𝑞𝑯 (𝑯)𝑞𝒁 (𝒁(p))𝑞𝜶(𝜶), (32)

=
𝑀
∏

𝑖=1
𝑞𝒉𝑖 (𝒉𝑖)

𝑀
∏

𝑖=1
𝑞𝒛𝑖 (𝒛

(p)
𝑖 )

𝐾𝑛
∏

𝑘=1
𝑞𝜶[𝑘](𝜶[𝑘]),

(33)

where we define 𝒁(p) ≜ [𝒛(p)1 ,… , 𝒛(p)𝑀 ]. Next, we express the conditional 
probability distributions of the observations and latent variables that 
are needed to compute the posterior distributions under the factorized 
structure as

𝑝(𝒀 (p)
|𝒁(p)) ≜

𝑀
∏

𝑖=1
I
(

𝒛(p)𝑖 ∈
(

𝒛(lo)𝑖 , 𝒛(up)𝑖

))

, (34)

𝑝(𝒁(p)
|𝑯 ;𝜱(p), 𝜎2𝑤) =

𝑀
∏

𝑖=1

1
(𝜋𝜎2𝑤)

𝜏p𝑁c
exp

(

− 1
𝜎2𝑤

‖𝒛(p)𝑖 −𝜱(p)𝒉𝑖‖2
)

, (35)

where I(⋅) is the indicator function, 𝒛(lo)𝑖  and 𝒛(up)𝑖  are the lower and 
upper quantization thresholds corresponding to the 𝑖th column of 𝒀 (p), 
respectively. The posterior distributions of the latent variables are 
computed by finding the expectations of the logarithm of the joint 
distribution (30) with respect to the latent variables, and are provided 
in closed form in the following.

The posterior distribution 𝑞𝑯 (𝑯) is complex normal with the covari-
ance matrix of each of its columns and mean given by 

𝜮𝑯 =

(

1
𝜎2𝑤

𝜱(p)H𝜱(p) + ⟨𝑷 ⟩

)−1

and ⟨𝑯⟩ = 1
𝜎2𝑤

𝜮𝑯𝜱(p)H ⟨

𝒁(p)⟩ ,

(36)
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respectively. Here, ⟨𝑷 ⟩ = diag(⟨𝜶⟩), and ⟨𝒁(p)⟩ and ⟨𝜶⟩ are the 
posterior means of 𝑞𝒁 (𝒁(p)) and 𝑞𝜶(𝜶), respectively. The posterior 
distribution 𝑞𝒁 (𝒁(p)) is truncated complex normal with mean 

⟨

𝒁(p)⟩ = 𝜱(p)
⟨𝑯⟩ +

𝜎𝑤
√

2

𝑓
(

𝒁(lo)−𝜱(p)
⟨𝑯⟩

𝜎𝑤∕
√

2

)

− 𝑓
(

𝒁(up)−𝜱(p)
⟨𝑯⟩

𝜎𝑤∕
√

2

)

𝐹
(

𝒁(up)−𝜱(p)
⟨𝑯⟩

𝜎𝑤∕
√

2

)

− 𝐹
(

𝒁(lo)
𝑛 −𝜱(p)

⟨𝑯⟩

𝜎𝑤∕
√

2

) , (37)

where 𝒁(lo) and 𝒁(up) are the lower and upper quantization levels 
corresponding to the observation 𝒀 (p), respectively, and ⟨𝑯⟩ is the 
posterior mean of 𝑞𝑯 (𝑯). Also, 𝑓 (⋅) and 𝐹 (⋅) are the PDF and cu-
mulative distribution function of a standard normal random variable, 
respectively, computed element-wise on the real and imaginary parts of 
the argument. The division operation in (37) is also performed element-
wise. Finally, the posterior distribution 𝑞𝜶[𝑘](𝜶[𝑘]) follows a Gamma 
distribution with mean, shape and rate parameters given by 

⟨𝜶[𝑘]⟩ = 𝑎 +𝑀
𝑏 +

∑𝑚
𝑖=1⟨|𝑯[𝑘, 𝑖]|2⟩

, 𝑎𝑘 = 𝑎 +𝑀, and �̃�𝑘 = 𝑏 +
𝑀
∑

𝑖=1
⟨|𝑯[𝑘, 𝑖]|2⟩. (38)

Quantized variational Bayesian soft symbol decoding. Next, we develop a 
QVB algorithm for soft symbol decoding in MIMO-OFDM systems using 
the model in (25). We consider the unquantized received data signal 
as a latent variable and express the logarithm of the joint probability 
distribution of the observations and the latent variables as 

ln 𝑝
(

𝒀 (d),𝒁 (d),𝑿(d)
|�̄�, 𝜎2

𝑤

)

= ln 𝑝(𝒀 (d)
|𝒁 (d)) + ln 𝑝

(

𝒁 (d)
|𝑿(d), �̄�, 𝜎2

𝑤

)

+ ln 𝑝(𝑿(d)). (39)

We factorize the posterior distribution of 𝒁(d) and 𝑿(d) as 

𝑝
(

𝒁(d),𝑿(d)
| 𝒀 (d), �̄�, 𝜎2𝑤

)

≈ 𝑞𝒁
(

𝒁(d))
𝜏p+𝜏d
∏

𝑡=𝜏p+1

𝐾𝑁c
∏

𝑘=1
𝑞𝑥𝑘𝑡

(

𝑥(d)𝑘𝑡

)

, (40)

where 𝒁(d) = [𝒛(d)𝜏p+1
,… , 𝒛(d)𝜏p+𝜏d

], and 𝑥(d)𝑘𝑡  is the 𝑘th component of 𝒙(d)(𝑡). 
We write the conditional probability distributions in (39) as follows:

𝑝(𝒀 (d)
|𝒁 (d)) = I

(

𝒁(d) ∈ (𝒁(lo),𝒁(up))
)

, (41)

𝑝(𝒁(d)
|𝑿(d); �̄�, 𝜎2𝑤) =

𝜏p+𝜏d
∏

𝑡=𝜏p+1

1
(𝜋𝜎2𝑤)

𝑀𝑁c
exp

(

− 1
𝜎2𝑤

‖

‖

‖

𝒛(d)(𝑡) − �̄�𝒙(d)(𝑡)‖‖
‖

2

2

)

,

(42)

where 𝒁(lo),𝒁(up) are the entry-wise lower and upper quantization 
intervals of the real and imaginary components of 𝒀 (d).

The posteriors, in this case, are given as follows. The posterior 
𝑞𝑥𝑘𝑡

(

𝑥(d)𝑘𝑡

)

 follows a Boltzmann distribution with the probability mass 
function 

𝑞𝑥𝑘𝑡
(

𝑥(d)𝑘𝑡 = 𝜁𝑖
)

=
exp

(

𝑓𝑘𝑡(𝜁𝑖)
)

∑

𝜁 ′∈D exp
(

𝑓𝑘𝑡(𝜁 ′)
) , (43)

for 𝑖 = 1,… , 𝐷, where 𝑘 ∈ {1,… , 𝐾𝑁c}, 𝑡 ∈ {𝜏p + 1,… , 𝜏p + 𝜏d}, 
D = {𝜁1,… , 𝜁𝐷} is the signal constellation set of cardinality 𝐷, and 

𝑓𝑘𝑡(𝜁 ) = − 1
𝜎2
𝑤

(

‖

‖

�̄�𝑘
‖

‖

2
|𝜁 |2 − 2Re

[

�̄�H
𝑘

(

⟨

𝒛(d)(𝑡)
⟩

−
𝐾𝑁c
∑

𝑘′=1
𝑘′≠𝑘

�̄�𝑘′

⟨

𝑥(d)𝑘′ 𝑡

⟩)

𝜁∗
])

+ ln 𝑝(𝑥(d)𝑘𝑡 = 𝜁 ),

(44)

where Re(⋅) and (⋅)∗ denote the real part and complex conjugate op-
erators, respectively, �̄�𝑘 is the 𝑘th column of �̄�, 

⟨

𝒛(d)(𝑡)
⟩ and 

⟨

𝑥(d)𝑘′𝑡

⟩

are the posterior means of 𝑞𝒛𝑡 (𝒛(d)(𝑡)) and 𝑞𝑥𝑘′ 𝑡 (𝑥
(d)
𝑘′𝑡), respectively. We 

compute the mean and mean square value of 𝑞𝑥𝑘𝑡 (𝑥𝑑,𝑘𝑡) as 
⟨

𝑥(d)𝑘𝑡

⟩

=
∑

𝜁 𝑞𝑥𝑘𝑡 (𝜁 ), and
⟨

|𝑥(d)𝑘𝑡 |
2⟩

=
∑

|𝜁 |2 𝑞𝑥𝑘𝑡 (𝜁 ). (45)

𝜁∈D 𝜁∈D
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Also, the posterior distribution 𝑞𝒁
(

𝒁(d)) is truncated complex normal, 
with mean 

⟨

𝒁(d)⟩ = �̄�
⟨

𝑿(d)⟩ +
𝜎𝑤
√

2

𝑓
(

𝒁(lo)−�̄�⟨𝑿(d)
⟩

𝜎𝑤∕
√

2

)

− 𝑓
(

𝒁(up)−�̄�⟨𝑿(d)
⟩

𝜎𝑤∕
√

2

)

𝐹
(

𝒁(up)−�̄�⟨𝑿(d)
⟩

𝜎𝑤∕
√

2

)

− 𝐹
(

𝒁(lo)−�̄�⟨𝑿(d)
⟩

𝜎𝑤∕
√

2

) , (46)

where 𝒁(lo) and 𝒁(up) are defined in (41), ⟨𝑿(d)⟩ contains the posterior 
means of 𝑞𝑥𝑘𝑡 (𝑥

(d)
𝑘𝑡 ) ∀𝑘, 𝑡 as its entries.

The QVB algorithm starts by randomly initializing the latent vari-
ables. It iteratively computes the posterior distributions of data symbols 
in (43), which in turn yields the bit LLRs. Next, we describe the 
data-aided channel estimation procedure.
Iterative quantized variational Bayesian channel estimation and soft symbol 
decoding. Here, we merge the channel estimation and soft symbol 
decoding into an iterative algorithm. We utilize the data-aided channel 
estimation system model to refine the channel estimates in an iterative 
fashion. We first compute an initial channel estimate using the pilot 
symbols. Then, we utilize the posterior means of the decoded data 
symbols to form a new measurement matrix 𝜱 that is input to the chan-
nel estimation block. Following a procedure similar to that described 
for channel estimation, we obtain the posterior statistics of the latent 
variables as shown below:

𝜮𝑯 =

(

1
𝜎2𝑤

𝜱H𝜱 + ⟨𝑷 ⟩

)−1

, ⟨𝑯⟩ = 1
𝜎2𝑤

𝜮𝑯𝜱H
⟨𝒁⟩ , (47)

⟨𝜶[𝑘]⟩ = 𝑎 +𝑀
𝑏 +

∑𝑀
𝑛=1⟨|ℎ𝑘𝑛|

2
⟩

, 𝑘 = 1,… , 𝐾𝑛, (48)

⟨𝒁⟩ = 𝜱 ⟨𝑯⟩ +
𝜎𝑤
√

2

𝑓
(

𝒁(lo)−𝜱⟨𝑯⟩

𝜎𝑤∕
√

2

)

− 𝑓
(

𝒁(up)−𝜱⟨𝑯⟩

𝜎𝑤∕
√

2

)

𝐹
(

𝒁(up)−𝜱⟨𝑯⟩

𝜎𝑤∕
√

2

)

− 𝐹
(

𝒁(lo)−𝜱⟨𝑯⟩

𝜎𝑤∕
√

2

) , (49)

where 𝒁(lo) and 𝒁(up) are the lower and upper quantization thresholds 
corresponding to 𝒀 . We repeat this process of channel estimation 
and data decoding for a fixed number of iterations. Finally, we use 
the posterior distribution of the transmit symbols to obtain the bit 
LLRs, which are deinterleaved and input to the channel decoder. The 
pseudocode for the iterative QVB channel estimation and soft symbol 
decoding explained above can be found in [192].

Numerical evaluation
In this subsection, we show the coded bit error rate (BER) per-

formance of the iterative QVB channel estimation and soft symbol 
decoding algorithm described above. The data bits are generated iid 
uniformly distributed from the unit-energy 4-quadrature amplitude 
modulation constellation distribution. At each UE, the data bits are 
encoded with an LDPC channel code as per 3GPP 5G New Radio 
specifications [202]. We use the parity check matrix from LDPC base 
graph 0 with a lifting size 𝑍𝑐 set to 8 and set index 0, which results 
in 176 message bits and 544 coded bits per block. The coded bits are 
interleaved by a random interleaver known to both the UE and the BS, 
mapped to the constellation, OFDM modulated, and transmitted over 
frequency-selective wireless channels. We define the SNR as 1∕𝜎2𝑤. We 
set the maximum number of iterations for QVB channel estimation and 
data detection algorithms to 25, and the total number of outer iterations 
to four.

The left plot in Fig.  4 shows the coded BER of the QVB algorithm 
with the ADC resolution set to {1, 2, 3} bits. The system bandwidth is 
set to 2 GHz, so the sampling period 𝑇𝑠 is 0.5 ns. We set the cyclic prefix 
length to the maximum delay spread of 𝑛 = 32 symbols. The number 
of nonzero taps 𝑠 is set to 8, with the corresponding delays generated 
uniformly at random between 0 and (𝑛−2)𝑇𝑠. The channel gains of the 
nonzero taps are iid complex normal with zero mean and unit variance. 
The figure shows that the performance dramatically improves as the 
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number of quantization bits is increased. While not shown in the plot, 
the improvement in further increasing the number of quantization bits 
is marginal.

The right plot in Fig.  4 compares the coded BER performance of 
the QVB algorithm with that of the MMSE channel estimator and soft-
detector [203]. For the quantized MMSE receiver, we compute the DFT 
after the quantization and perform the equalization. An advantage of 
the QVB algorithm is that it can recover the channel with only one 
pilot OFDM symbol. However, for a fair comparison, we set 𝜏p = 8
because the conventional OFDM receiver cannot estimate the channel 
in an underdetermined setting. We see that, at a BER of 10−4, the 
QVB algorithm (labeled ‘‘QVB 𝜏p = 8, EstCSIR’’) outperforms the con-
ventional OFDM receiver with unquantized observations and channels 
estimated using 𝜏p = 8 pilot OFDM symbols by around 13 dB. In fact, 
it even outperforms the conventional OFDM receiver with unquantized 
observations and perfect CSIR by 2.5 dB, underscoring the importance of 
directly inferring the posterior distributions of the data symbols.

To summarize, this section presented a flexible variational Bayesian 
algorithm for pilot-based channel estimation and soft symbol decod-
ing, achieving superior performance by leveraging channel sparsity in 
the lag/delay domain, even with minimal pilot symbols and coarsely 
quantized samples. We next look at RIS-aided channel estimation with 
quantized measurements.

3.2.2. Example 2: Reconfigurable intelligent surface-aided channel estima-
tion

5G New Radio serves the demand for high data rate use cases by 
using the mmWave band in the 30–300 GHz range, typically known as 
FR2 [204]. However, the severe path loss experienced in the mmWave 
band significantly limits the coverage compared to the lower bands. To 
compensate for the severe path loss, RIS is recently proposed in [205], 
an array of metamaterial-based passive reflecting elements capable of 
adjusting the amplitude and phase of the impinging signal as intended. 
The RIS is attractive due to the low power consumption resulting from 
a large number of passive reflecting elements.

To further lower the power consumption of RIS-aided mmWave 
massive MIMO systems, some RF components can be replaced with 
energy-efficient components. For example, the BS can be equipped 
with a large number of low-resolution ADCs that coarsely quantize the 
received signal [206]. In case the RIS is equipped with a small number 
of active sensors capable of receiving the impinging signal unlike the 
passive reflecting elements, the RF chains of the active sensors can 
be equipped with low-resolution ADCs as well. The motivation for 
deploying a small number of active sensors at the RIS is to observe 
and estimate the UE-RIS and RIS-BS links separately [207,208].

For the RIS to generate a favorable propagation condition by align-
ing the reflection amplitude and phase shift with the channel, accurate 
CSI is necessary. The distinct feature of RIS channel estimation is 
that the channel is composed of the UE-RIS link of size 𝑁𝐾 and 
RIS-BS link of size 𝑀𝑁 , which in turn form a UE-RIS-BS link of size 
𝑀𝑁𝐾 where 𝑀 , 𝑁 , and 𝐾 are the numbers of the BS antennas, RIS 
elements, and single-antenna users, respectively. Since the size of the 
UE-RIS-BS link is proportional to 𝑀 and 𝑁 , the channel estimation 
overhead is typically large, which necessitates an efficient yet accurate 
channel estimator. RIS channel estimation becomes more challenging 
when RIS-aided mmWave massive MIMO systems are equipped with 
low-resolution ADCs, which coarsely quantize the received signal.

To accurately estimate the channel of RIS-aided mmWave massive 
MIMO systems in the presence of low-resolution ADCs, the prior knowl-
edge of the channel sparsity in the mmWave band should be exploited. 
Furthermore, the cascaded channel structure composed of the UE-RIS 
and RIS-BS links should also be taken into account, which calls for a 
quantized CS approach designed explicitly for quantized RIS mmWave 
channel estimation. Since there are various scenarios on where to 
deploy low-resolution ADCs, the quantized RIS mmWave channel es-
timation problem yields many challenging yet exciting topics.
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Fig. 4. Coded BER as a function of SNR (dB), with 𝑀 = 32, 𝐾 = 8, 𝑁c = 256, 𝑛 = 32, 𝑠 = 8, 𝜏d = 10. The left plot shows the performance for three values of the number of 
quantization bits. The right plot shows the performance of conventional OFDM processing (curves labeled ‘‘UQOFDM’’ and ‘‘QOFDM’’) [203], the QVB algorithm where curves 
labeled ‘‘EstCSIR’’ use the estimated channel while those labeled ‘‘PerfCSIR’’ assume perfect channel estimates.
Fig. 5. The uplink of an RIS-aided mmWave massive MIMO system with low-resolution 
ADC-based active sensors.

This section addresses two related quantized RIS-aided mmWave 
channel estimation problems: one using fixed low-resolution ADCs and 
the other utilizing a task-based quantizer. We begin by discussing the 
quantized RIS mmWave channel estimation problem where the RIS 
is equipped with a small number of low-resolution ADC-based active 
sensors [209].

Quantized reconfigurable intelligent surface-aided channel estimation
Consider the uplink of an RIS-aided mmWave massive MIMO system 

with an 𝑀-antenna BS and 𝐾 single-antenna users as depicted in 
Fig.  5. The RIS is equipped with 𝑁 elements, which are partitioned 
into 𝑁p passive reflecting elements and 𝑁a = 𝑁 − 𝑁p ≪ 𝑁 active 
sensors. The passive reflecting elements are dedicated to reflecting 
the impinging signal as intended to generate a favorable propagation 
condition [210–212]. Meanwhile, the active sensors are capable of 
receiving the impinging signal, which is forwarded to the BS for chan-
nel estimation. Since deploying high-resolution ADCs at the RIS is not 
practical due to the high power consumption, the active sensors are 
implemented by connecting the RIS elements to 𝑁a RF chains with 
𝐵-bit ADCs that coarsely quantize the received signal [207].

In essence, our goal is to estimate the UE-RIS and RIS-BS links 
separately based on the received signal at the BS and additional in-
formation acquired from the low-resolution ADC-based active sensors 
at the RIS. Then, the BS can avoid estimating the UE-RIS-BS link of size 
𝑀𝑁𝐾 and only estimate the UE-RIS link of size 𝑁𝐾 in the subsequent 
coherence blocks because the RIS-BS link remains constant across 
multiple coherence blocks in practice [213]. As a result, the channel 
estimation overhead is reduced by estimating the UE-RIS and RIS-BS 
links separately in the first coherence block and replacing UE-RIS-BS 
link estimation with UE-RIS link estimation in the subsequent blocks. 
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Here, we focus on the first coherence block, where all the links are 
unknown. In addition, we assume that the UE-BS link is blocked.

As a preliminary to formulating the system model, let 𝜴 ∈ {0, 1}𝑁×𝑇

and 𝜴c = 1𝑁×𝑇 − 𝜴 denote the index matrices of the active sensors 
and passive reflecting elements that constitute the RIS over the channel 
estimation phase of length 𝑇 . For example, the 𝑁a rows of 𝜴 that 
correspond to the active sensors are all-one vectors, while the 𝑁p
remaining rows that correspond to the passive reflecting elements are 
all-zero vectors.

Then, the received signal 𝒀 ∈ C𝑀×𝑇  at the BS over the channel 
estimation phase of length 𝑇  is 

𝒀 = �̄�
⎛

⎜

⎜

⎜

⎝

𝜴c ⊙ 𝑽
⏟⏟⏟

=𝑺

⊙�̄�𝑿
⎞

⎟

⎟

⎟

⎠

+𝑾 B, (50)

where ⊙ is the Hadamard product, �̄� ∈ C𝑁×𝐾 and �̄� ∈ C𝑀×𝑁  are 
UE-RIS and RIS-BS links. Meanwhile, 𝑽 ∈ C𝑁×𝑇  is the passive reflection 
matrix with the reflection amplitude |𝑽 [𝑖, 𝑗]| ≤ 1 and phase shift 
∠𝑽 [𝑖, 𝑗] ∈ [0.2𝜋), 𝑿 ∈ C𝐾×𝑇  is the reference signal, and 𝑾 B ∈ C𝑀×𝑇  is 
the Gaussian noise with iid  (0, 𝜎2B) elements. Likewise, the quantized 
received signal 𝒁 ∈ C𝑁×𝑇  at the active sensors forwarded to the BS is 

𝒁 = 𝐵(𝑼 ) = 𝐵(𝜴 ⊙ �̄�𝑿 +𝑾 R), (51)

where 𝑼 ∈ C𝑁×𝑇  is the unquantized received signal at the active 
sensors, while 𝑾 R ∈ C𝑁×𝑇  is the Gaussian noise with iid  (0, 𝜎2R)
elements. The 𝐵-bit quantizer 𝐵(⋅) is applied to the real and imaginary 
parts elementwise as 

𝒁[𝑖, 𝑗] = 𝐵(𝑼 [𝑖, 𝑗]) ⟺

{

Re(𝒁 (lo)[𝑖, 𝑗]) ≤ Re(𝑼 [𝑖, 𝑗]) < Re(𝒁 (up)[𝑖, 𝑗])

Im(𝒁 (lo)[𝑖, 𝑗]) ≤ Im(𝑼 [𝑖, 𝑗]) < Im(𝒁 (up)[𝑖, 𝑗]),

(52)

where 𝒁(lo) ∈ C𝑁×𝑇  and 𝒁(up) ∈ C𝑁×𝑇  are the lower and upper 
thresholds associated with 𝒁. In other words, the real and imaginary 
parts of 𝒁, 𝒁(lo), and 𝒁(up) correspond to one of the 2𝐵 quantization 
thresholds. Before moving on, note that the 𝑁p rows of 𝒁 that corre-
spond to the passive reflecting elements are dummy variables that have 
no meaningful information due to the 𝑁p all-zero rows of 𝜴.

To take the channel sparsity in the mmWave band into account, the 
virtual channel representation is adopted, which transforms the dense 
channel {�̄� , �̄�} into the sparse channel {𝑭 ,𝑮} by [214] 

�̄� = 𝑨R𝑭 , and �̄� = 𝑨B𝑮𝑨H
R , (53)

where 𝑨B ∈ C𝑀×𝑀g  and 𝑨R ∈ C𝑁×𝑁g  are the overcomplete dictionaries 
that satisfy 𝑀g ≥ 𝑀 and 𝑁g ≥ 𝑁 . In practice, the overcomplete 
dictionaries are selected based on the array geometry of the BS and 
RIS. Finally, applying the virtual channel representation to (50) and 
(51) gives 

𝒀 = 𝑨 𝑮𝑨H(𝑺⊙𝑨 𝑭𝑿)+𝑾 , and 𝒁 =  (𝜴⊙𝑨 𝑭𝑿+𝑾 ). (54)
B R R B B R R
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Fig. 6. The Bayesian network of a hierarchical Bayesian model where {𝒀 ,𝒁} is the 
measurement and {𝑭 ,𝑮,𝑼} is the hidden variable. The arrows represent the conditional 
dependence between two random variables.

Our goal is to estimate sparse {𝑭 ,𝑮} from {𝒀 ,𝒁}, which can be 
interpreted as a combination of low-rank matrix factorization [215] and 
low-rank matrix completion [216] problems. Here, the high-level idea 
of the SBL approach is introduced for tackling the problem, which is a 
Bayesian approach to the quantized CS problem. The interested readers 
are referred to [209] for a deep dive into SBL-based channel estimation 
for RIS-aided mmWave massive MIMO systems with low-resolution 
ADC-based active sensors.

In the SBL approach [201,217–219], the goal is to perform ap-
proximate posterior inference on {𝑭 ,𝑮} so that the posterior mean 
of {𝑭 ,𝑮} can be computed, which is the MMSE estimate. To capture 
the interaction between {𝑭 ,𝑮,𝑼 , 𝒀 ,𝒁}, all the variables are treated 
as random variables that constitute a hierarchical Bayesian model as 
illustrated in Fig.  6. The conditional distributions of {𝒀 ,𝑼 ,𝒁} that 
define the hierarchical Bayesian model are

𝑝(vec(𝒀 )|𝑭 ,𝑮) =  (vec(𝒀 )|vec(𝑨B𝑮𝑨H
R (𝑺 ⊙𝑨R𝑭𝑿)), 𝜎2

B𝑰), (55)

𝑝(vec(𝑼 )|𝑭 ) =  (vec(𝑼 )|vec(𝜴 ⊙𝑨R𝑭𝑿), 𝜎2
R𝑰), (56)

𝑝(vec(𝒁)|𝑼 ) = I(Re(𝒁 (lo)) ⪯ Re(𝑼 ) ≺ Re(𝒁 (up))) × I(Im(𝒁 (lo)) ⪯ Im(𝑼 ) ≺ Im(𝒁 (up))),
(57)

which are obtained from the measurement model defined in (52) 
and (54). Here,  (𝒙|𝝁,𝑪) is the PDF of a complex Gaussian ran-
dom vector 𝒙 with mean 𝝁 and covariance 𝑪. The prior distributions 
of {𝑭 ,𝑮} are assumed to be the Student’s-𝑡 distributions, which are 
sparsity-promoting prior distributions that make approximate poste-
rior inference tractable [220]. Then, approximate posterior inference 
is carried out by finding the posterior distributions of {𝑭 ,𝑮} that 
maximize the negative variational free energy based on the conditional 
distributions of {𝒀 ,𝑼 ,𝒁} defined in (55)–(57) and prior distributions 
of {𝑭 ,𝑮}. After obtaining the posterior distributions, computing the 
MMSE estimates of {𝑭 ,𝑮} is straightforward.

The SBL approach is approximate posterior inference in the sense 
that (1) the prior distributions of {𝑭 ,𝑮} are assumed to be the
Student’s-𝑡 distributions, (2) posterior distributions of {𝑭 ,𝑮} are as-
sumed to be independent, which is known as the mean-field approx-
imation, and (3) the posterior distributions of {𝑭 ,𝑮} that maximize 
the negative variational free energy are found in an alternating fashion 
instead of jointly. These are the key assumptions that make the negative 
variational free energy maximization problem tractable at the expense 
of attaining a local maximum of the negative variational free energy.

To demonstrate that the UE-RIS and RIS-BS links can be estimated 
separately by deploying low-resolution ADC-based active sensors at the 
RIS, a simulation result is provided in Fig.  7. The simulation setup is 
such that there are 𝑀 = 16 antennas at the BS, 𝑁 = 8 × 8 elements at 
the RIS with 𝑁a active sensors quantized by 𝐵 = 4-bit ADCs, and 𝐾 = 4
users in the 28 GHz band, while the length of the channel estimation 
phase is 𝑇 = 400 symbols. The system parameters are configured as 
specified in the Dense Urban-eMBB scenario in ITU-R M.2412-0 [221].
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Fig. 7. Normalized mean squared errors (NMSEs) of all the links as a function of the 
number of active sensors 𝑁a.

In Fig.  7, the normalized mean squared error (NMSE) of the UE-RIS 
link decreases as 𝑁a increases, which is not as surprising. In contrast, 
the NMSE of the RIS-BS link increases, unlike the UE-RIS link. The 
reason for such a phenomenon is that the RIS-BS link can only be 
observed through the reflected signal. Therefore, more active sensors 
mean less passive reflecting elements or equivalently less RIS-BS link 
measurements. In addition, another interesting point is that the NMSE 
of the UE-RIS-BS link composed of the UE-RIS and RIS-BS links is lower-
bounded by the worst NMSE of the UE-RIS and RIS-BS links. The figure 
clearly shows that it is possible to obtain sufficiently low NMSE results 
with not-so-large 𝑁a, making the SBL-based channel estimation for 
RIS-aided mmWave massive MIMO systems highly practical.

Up to this point, we have discussed the quantized channel estima-
tion problem with a fixed quantizer. Next, we delve into task-based 
quantization, where the quantizer is custom-designed to extract the 
information relevant to the specific task at hand.

Task-based quantized reconfigurable intelligent surface-aided channel esti-
mation

Task-based quantization [222–226], allows for jointly designing a 
quantizer with hybrid analog and digital architectures to minimize task 
recovery errors. The key idea of this approach is to extract lower-
dimensional information from the signals in the analog domain based 
on a specific system task, which can dramatically reduce the overall 
number of bits required, thereby minimizing memory requirements 
and power consumption. Now, we discuss how the task-based quan-
tization approach can be applied to channel estimation in RIS-aided 
mmWave massive MIMO systems, specifically for estimating the cas-
caded UE-RIS-BS link channel [227]. Note that, although the dimension 
of the cascaded channel would be large, using the task-based quan-
tization approach, it is feasible to project the received signals onto a 
lower-dimensional space whose size can be determined by the number 
of propagation paths. By leveraging the sparse nature of mmWave 
channels, which have a limited number of propagation paths, this 
dimensionality can be significantly reduced.

In the case of cascaded channel estimation, deploying active sensors 
at the RIS is not necessary. Therefore, we consider the system shown 
in Fig.  5 without active sensors, i.e., 𝑁 = 𝑁p and 𝑺 = 𝑽 , while we 
consider finite-resolution ADCs at the BS in this case. In the considered 
setup, the total number of time slots 𝑇  for the channel estimation 
phase is divided into 𝑇s blocks, with each block consisting of 𝜏 time 
slots. Within each block, the RIS configurations remain unchanged, 
and all UEs transmit repeated orthogonal pilot sequences, e.g., DFT 
sequences, throughout the 𝑇s blocks. Let 𝒚[𝑡, 𝑢] = 𝒚[(𝑡 − 1)𝜏 + 𝑢] be the 
uplink received signal at the BS in the 𝑢th time slot of the 𝑡th block. 
The measurement matrix at the BS, obtained by stacking the received 
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Fig. 8. An illustration of the hardware-limited task-based quantization system to estimate the vectorized cascaded channel 𝒄(𝑘).
signals during 𝜏 time slots of the 𝑡th block, is given by 

𝒀 [𝑡] = [𝒚[𝑡, 1],… , 𝒚[𝑡, 𝜏]] =
𝐾
∑

𝑘=1
�̄�diag(𝑺 𝑡)�̄�𝑘

√

𝑃𝑘𝒙(𝑘)
T +𝑾 B[𝑡], (58)

where 𝒙(𝑘)T = [𝑥𝑘[𝑡, 1],… , 𝑥𝑘[𝑡, 𝜏]] ∈ C1×𝜏 is the pilot sequence from the 
𝑘th UE satisfying ‖𝑥𝑘[𝑡, 𝑢]‖2 = 1, 𝑃𝑘 is UE transmit power, and 𝑾 B[𝑡] =
[𝒏B[𝑡, 1],… ,𝒏B[𝑡, 𝜏]] ∈ C𝑀×𝜏 is the Gaussian noise. Right multiplying 
1
𝜏 𝒙

(𝑘)∗ by (58) and collecting these signals over 𝑇s blocks leads to 

𝒀 (𝑘) = 1
𝜏
[𝒀 [1]𝒙(𝑘)∗,… , 𝒀 [𝑇s]𝒙(𝑘)

∗] =
√

𝑃𝑘�̄�diag(𝒇𝑘)𝑺 +𝑾 (𝑘), (59)

where 𝑾 (𝑘) = 1
𝜏 [𝑾 B[1]𝒙(𝑘)

∗,… ,𝑾 B[𝑇s]𝒙(𝑘)
∗] ∈ C𝑀×𝑇s . Using the 

identity vec(𝑱𝑲𝑳) = (𝑳T ⊗ 𝑱 )vec(𝑲), we can vectorize 𝒀 (𝑘) in (59) 
as 

vec(𝒀 (𝑘)) =
√

𝑃𝑘(𝑺T ⊗ 𝑰)vec(�̄� ⋄ �̄�T𝑘 ) + vec(𝑾
(𝑘)) = 𝑺(𝑘)𝒄(𝑘) + 𝒏(𝑘) ≜ 𝒚(𝑘),

(60)

where ⋄ denotes the Khatri–Rao product, 𝑺(𝑘) =
√

𝑃𝑘(𝑺T ⊗ 𝑰) is the 
training matrix, 𝒄(𝑘) = vec(�̄� ⋄ �̄�T𝑘 ) is the vectorized cascaded channel 
for the 𝑘th UE, and 𝒏(𝑘) = vec(𝑾 (𝑘)).

Here, our goal is to design a channel estimator for 𝒄(𝑘) from 𝒚(𝑘)
using task-based quantization with identical scalar ADCs, referred to 
as hardware-limited task-based quantization [222]. The considered 
channel estimator is depicted in Fig.  8, where 𝒚(𝑘) is first projected 
onto a lower-dimensional space C𝐺𝑘×1 satisfying 𝐺𝑘 ≤ 𝑀𝑇s using an 
analog combining matrix 𝑩(𝑘) ∈ C𝐺𝑘×𝑀𝑇s . Subsequently, the real and 
imaginary parts of each element in 𝑩(𝑘)𝒚(𝑘) are quantized using 𝐵𝑘-bit 
identical scalar ADCs, denoted as 𝐵𝑘

(⋅), with the support 𝛾𝑘. Denoting 
the output of the scalar ADCs as 𝝅(𝑘) = [𝜋𝑘,1,… , 𝜋𝑘,𝐺𝑘

]T ∈ C𝐺𝑘×1, 𝒄(𝑘)
is reconstructed by a digital processing matrix 𝑫(𝑘) ∈ C𝑀𝑁×𝐺𝑘 , with 
its estimate given by �̂�(𝑘) = 𝑫(𝑘)𝝅(𝑘). The objective in this system is 
to design 𝑩(𝑘), 𝑫(𝑘), and 𝛾𝑘 to minimize the mean square error distor-
tion between 𝒄(𝑘) and its quantized estimate, leading to the following 
optimization problem: 

min
𝑩(𝑘) ,𝑫(𝑘) ,𝛾𝑘

E
[

‖𝒄(𝑘) − �̂�(𝑘)‖2
] (𝑎)
= E

[

‖𝒄(𝑘) − �̃�(𝑘)‖2
]

+ min
𝑩(𝑘) ,𝑫(𝑘) ,𝛾𝑘

E
[

‖�̃�(𝑘) − �̂�(𝑘)‖2
]

,

(61)

where (𝑎) follows from the orthogonality principle denoting �̃�(𝑘) =
E[𝒄(𝑘)|𝒚(𝑘)] as the MMSE estimate of 𝒄(𝑘) from 𝒚(𝑘), and �̂�(𝑘) is the 
quantized representation. Since explicitly deriving �̃�(𝑘) is challenging, 
we approximate �̃�(𝑘) as the linear MMSE estimate, which can be derived 
in a closed-form expression as in [227]. Based on this approximation, 
𝑩(𝑘), 𝑫(𝑘), and 𝛾𝑘 for the problem in (61) can be derived according to 
Lemma 1 and Theorem 1 from [222].

The NMSE performance according to the overall number of quan-
tization bits available at the BS 𝐵T is depicted in Fig.  9 with 𝑀 =
16, 𝑁 = 8 × 8, 𝐾 = 4, and 𝑇s = 5 with 𝜏 = 𝐾 in the 28 GHz 
band. The digital-only approach, which is task-ignorant, applies the 
linear MMSE estimator to quantized observations in the digital domain 
with the fixed ADC resolution ⌊2

𝐵T
2𝑀𝑇

⌋. It is observed that the channel 
estimator using hardware-limited task-based quantization effectively 
approaches the linear MMSE estimate achievable without quantization 
17 
Fig. 9. NMSE comparison of UE-RIS-BS link channels as a function of number of 
quantization bits 𝐵T.

with a small number of bits compared to the digital-only approach, 
suggesting that incorporating system tasks in the analog domain can 
significantly enhance the system performance.

4. Other low-resolution signal processing techniques

The previous sections discussed the capabilities and accomplish-
ments of low-resolution CS, addressing scenarios from the extreme case 
of one-bit resolution to multi-bit quantization. Low-bit quantization 
is a broad field that extends beyond CS techniques, and not all low-
resolution signal processing methods are based on CS principles. So, 
we turn our attention to two other low-resolution signal processing 
techniques. First, we explore low-bit quantization algorithms (without 
necessarily leveraging sparsity) in the context of localization and track-
ing applications. Next, we examine the emerging paradigm of unlimited 
sampling, which aims to address the saturation challenges commonly 
encountered in digital signal acquisition.

4.1. Signal recovery with low-bit quantization

Non-sparse signal recovery with low-bit quantization is a broad and 
diverse field with applications across a broad range of applications. 
Several studies have examined this problem from a classical statis-
tical perspective, with the ML-based recovery being a key approach 
for non-sparse signal recovery from quantized measurements [228–
230]. An example area of interest is the recovery of the frequency 
and phase of temporal and spatial sinusoidal signals using only 1-bit 
information with fixed quantization thresholds, which is thoroughly 
explored in [231,232]. Also, the recovery of general signals with high-
dimensional parameters based on sign comparison information is ex-
amined [233,234]. A more recent study has looked at an efficient 
signal estimation and threshold design algorithm for recovering signals 
from 1-bit noisy measurements, handling both time-varying and fixed 
signals under various noise conditions [235–237]. The deep learning-
aided models using techniques like deep unfolding and architectures 
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Fig. 10. Target localization architecture using low-bit quantized measurements.

like multi-layer perceptron and long short-term memory are also ex-
plored and shown near-optimal performance compared to traditional 
methods [96,238].

Extensive surveys on low-bit quantization in various areas, includ-
ing image processing [239–241], audio processing and language mod-
els [242–244], model quantization in deep neural networks [245,246], 
are available in the literature. However, the resulting algorithms dif-
fer significantly and do not share obvious commonalities. Given the 
breadth of this field and the need to adapt techniques to specific 
structures, we focus on some concrete applications in wireless com-
munication and sensing areas, reviewing some of the state-of-the-art 
algorithms.

4.1.1. IoT, wireless sensor networks, and radar
Parameter estimation algorithms based on low-resolution data in 

wireless sensor networks and radar is a well-studied topic. While 
parameter estimation benefits from more signal samples and sen-
sors [247], they also increase power, storage, and transmission band-
width requirements [248]. Low-resolution quantization reduces pro-
cessing costs by using fewer bits per sample, lowering data volume
[249–251]. We review target localization and tracking algorithms, 
though this framework easily extends to parameter estimation and 
parameter tracking, respectively.

Parameter estimation: Target localization
Target localization determines a target’s position using signals from 

multiple sensors connected to a fusion center via wireless channels, 
each collecting signal from the target source. Low-bit quantization in 
target localization is categorized into two-step localization [250–253] 
and direct localization [254–258]. In two-step localization, sensors first 
estimate measurement parameters such as time of arrival or received 
signal strength and transmit these estimates to a fusion center, which 
then solves geometric equations to determine the target’s location. Low-
bit quantization reduces bandwidth by compressing these parameters 
before transmission. In contrast, direct localization bypasses measure-
ment association, estimating the target’s location directly from the 
quantized received signals from the target. By leveraging the constraint 
that all signals originate from the same target, it offers higher ac-
curacy and robustness under low SNR conditions. The key difference 
lies in estimator construction: two-step localization uses only mea-
surement parameters, while direct localization processes full signals. 
Consequently, two-step localization is more computationally efficient 
at the fusion center. Fig.  10 summarizes low-bit quantized localization 
methods.

We now present a generalized low-bit localization formulation. Con-
sider joint localization with 𝑚 sensors that are connected to a common 
fusion center through wireless communication channels. Each sensor 
observes 𝑛 samples of the signal from the target source.3 We define 
𝒁 = �̄�+𝑾 ∈ C𝑚×𝑛 as the observed sample matrix, where �̄� represents 
noise-free measurements and 𝑾  is an iid noise matrix with elements in 

3 In direct localization, 𝑛 denotes discrete baseband signal samples, while 
in two-step localization, it represents measurement parameters (e.g., time of 
arrival, signal strength) and is typically 𝑛 = 1, requiring less communication 
bandwidth.
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its 𝑖th row drawn from  (0, 𝜎2𝑖 ). The 𝐵-bit quantized observed sample 
matrix 𝒀 ∈ C𝑚×𝑛 is4

Re(𝒀 [𝑖, 𝑗]) = 𝐵(Re(𝒁[𝑖, 𝑗])) =

⎧

⎪

⎨

⎪

⎩

𝑉1 if 𝜉(0)[𝑖, 𝑗] < Re(𝒁[𝑖, 𝑗]) < 𝜉(1)[𝑖, 𝑗]

⋮ ⋮

𝑉�̄� if 𝜉(�̄�−1)[𝑖, 𝑗] ≤ Re(𝒁[𝑖, 𝑗]) < 𝜉(�̄�)[𝑖, 𝑗],

(62)

where 𝐵 = log2 �̄�. We can quantize the imaginary part of the signal sim-
ilarly, replacing Re(⋅) with Im(⋅). The terms 𝜉(𝑙)[𝑖, 𝑗] for 𝑙 = 0,… , �̄� are 
the quantization thresholds and {𝑉𝑙 , 𝑙 = 1,… , �̄�

} denotes the output 
binary code words with length 𝐵.

Assuming the real and imaginary parts of the elements in 𝒀  are 
independent, the probability mass function of the low-bit quantized 
data 𝒀 [𝑖, 𝑗] can be expressed as
𝑝 (𝒀 [𝑖, 𝑗]) = 𝑝 (Re(𝒀 [𝑖, 𝑗])) 𝑝 (Im(𝒀 [𝑖, 𝑗])) (63)

=
�̄�
∏

𝑙=1
𝑝
(

Re(𝒀 [𝑖, 𝑗]) = 𝑉𝑙
)I

(

Re(𝒀 [𝑖,𝑗])=𝑉𝑙
)

𝑝
(

Im(𝒀 [𝑖, 𝑗]) = 𝑉𝑙
)I

(

Im(𝒀 [𝑖,𝑗])=𝑉𝑙
)

,

(64)

Since 𝒁 is typically assumed to follow a Gaussian distribution [254–
256], we have

𝑝
(

Re(𝒀 [𝑖, 𝑗]) = 𝑉𝑙
)

= 𝐹

(
√

2(𝜉(𝑙−1)[𝑖, 𝑗] − Re(�̄�[𝑖, 𝑗]))
𝜎𝑖

)

− 𝐹

(
√

2(𝜉(𝑙)[𝑖, 𝑗] − Re(�̄�[𝑖, 𝑗]))
𝜎𝑖

)

, (65)

where the term 𝐹 (⋅) is the complementary cumulative distribution 
function of the standard normal distribution. Similar results can be 
derived for the probability 𝑝 (Im(𝒀 [𝑖, 𝑗]) = 𝑉𝑙

) by replacing the term 
Re(𝒀 [𝑖, 𝑗]) with Im(𝒀 [𝑖, 𝑗]). Invoking the independence between ob-
served samples, the ML estimate of the unknown target location 𝜽 is

�̂�𝑀𝐿 = argmax
𝜽

ln 𝑝(𝒀 ) = argmax
𝜽

ln

[ 𝑚
∏

𝑖=1

𝑛
∏

𝑗=1
𝑝 (Re(𝒀 [𝑖, 𝑗])) 𝑝 (Im(𝒀 [𝑖, 𝑗]))

]

.

(66)

The estimator that maps observations to the location differs for two-
step or direct localization based on sensor capabilities and obser-
vation types, such as time of arrival [251,252] or received signal 
strength [250,253]. They represent localization as the intersection of 
localization lines or surfaces in the location state space corresponding 
to the observation information and the resulting optimization prob-
lem is solved via methods, such as semidefinite programming [251], 
majorization–minimization [257], and exhaustive search [254,255].

The position estimator in (66) depends on quantization thresholds, 
which significantly impact performance due to information loss. Based 
on threshold generation, quantizers are classified as uniform (evenly 
spaced thresholds) or non-uniform (designed based on specific crite-
ria). Non-uniform quantization generally outperforms uniform quanti-
zation by minimizing quantization distortion, often modeled as Gaus-
sian noise. A well-known example is the Lloyd-Max quantizer [259], 
which jointly designs thresholds and outputs. This approach has been 
explored in two-step localization methods [260]. Another approach 
optimizes quantization based on performance metrics. For target lo-
calization, given the likelihood function in (66), quantization aims to 
maximize localization accuracy. The Cramér–Rao lower bound (CRLB), 
a lower bound on estimation accuracy, is closely tied to quantiza-
tion thresholds [250,254,255]. Thus, an effective strategy is to select 

4 In two-step localization, quantization applies to real-valued scalars. For 
direct localization, which involves phase information, real and imaginary parts 
are quantized separately. Thus, the two-step quantizer is a special case of the 
direct localization quantizer.
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Fig. 11. Comparison of low-bit localization performance under different quantization 
bit depths, where the unquantized CRLB is used as a benchmark.

thresholds that minimize the CRLB or maximize Fisher information,
𝝃 = argmin

𝝃
tr
{

𝑪𝜽
}

s.t. −∞ < 𝜉1[𝑖, 𝑗] < 𝜉2[𝑖, 𝑗] < ⋯ < 𝜉�̄�−1[𝑖, 𝑗] < +∞,∀𝑖,∀𝑗

𝝃 =
[

𝜉(1)[1, 1],… , 𝜉(1)[𝑚, 𝑛],… 𝜉(�̄�−1)[𝑚, 𝑛],… , 𝜉(�̄�−1)[𝑚, 𝑛]
]

, (67)

where 𝑪𝜽 is the CRLB of the localization performance of the sys-
tem and the estimate �̂� of 𝝃 represents the optimized quantization 
thresholds. Saturated quantization is commonly assumed in the liter-
ature [254,255,261], meaning these extreme thresholds are not opti-
mized with 𝜉0[𝑖, 𝑗] = −∞ and 𝜉�̄�[𝑖, 𝑗] = +∞. The problem in (67) is a 
high-dimensional optimization problem, typically solved using particle 
swarm optimization [254,255] or heuristic optimization methods [250,
251].

We next show a numerical example to demonstrate the localization 
performance gap between low-bit and full-precision quantization. We 
consider a target at (−1,−0.5) km that emits linear frequency-modulated 
signals, detected by four receivers at (−1.5,−1.5) km, (−0.75,−1.75) km, 
(0.75,−1.75) km, and (1.5,−1.5) km. The source signal has a 1 MHz 
bandwidth and a 40 MHz sampling rate. Taking direct localization 
as an example, Fig.  11 shows a comparison of the CRLB for low-bit 
target localization algorithms with different quantization bits and full-
precision quantization. We see that 3-bit quantization nearly matches 
full-precision performance, a trend also observed in two-step localiza-
tion. This highlights the benefits of low-bit quantization in maintaining 
accuracy while reducing communication overhead. However, a detailed 
quantitative analysis of performance loss across different quantiza-
tion levels remains unexplored. The low-bit position estimator in (66) 
is formulated for the localization problem, but it extends to other 
settings. For example, incorporating transmission uncertainty in 𝒀  en-
ables channel-aware localization for imperfect channels [251,253,254]. 
Additionally, performance analysis in (67) can go beyond quantiza-
tion thresholds. By varying quantization bit depths across sensors, 
(67) transforms into a bit allocation optimization problem [262,263]. 
Overall, these methods establish a foundational framework for low-bit 
parameter estimation, adaptable to more complex scenarios. 

Parameter monitoring: Target tracking
In multi-sensor data fusion problems in wireless sensor networks, 

low-bit parameter tracking is a significant area of research. We ex-
plore this area, focusing on multi-sensor target tracking scenarios. 
Mathematically, target tracking can be viewed as a nonlinear Bayesian 
state filtering problem. Consider 𝑛 sensors collaboratively tracking one 
target. At a given discrete time 𝑘 = 0, 1, 2,…, the state of the target 𝒙𝑘
and the measurement 𝒛𝑘 of each sensor 𝑖 = 1, 2,… , 𝑛 is given by the 
tracking kernel functions [264], 
𝒙𝑘 = 𝑓

(

𝒙𝑘−1,𝒏𝑘
)

and 𝒛𝑖𝑘 = ℎ𝑖
(

𝒙𝑘,𝒘𝑖
𝑘
)

. (68)

Here, the target state 𝒙𝑘 is updated as a first-order Markov process 
with the state transition function 𝑓 (𝒙 ,𝒏 ) and process noise 𝒏 . The 
𝑘−1 𝑘 𝑘
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measurement 𝒛𝑖𝑘 at the 𝑖th sensor is obtained from the target state 𝒙𝑘
through function ℎ𝑖, contaminated by the measurement noise 𝒘𝑖

𝑘.
To estimate 𝒙𝑘 over time, target tracking implements a Bayesian 

estimation framework consisting of predict and update processes given 
by [265]

𝑝
(

𝒙𝑘|𝒛1∶𝑘−1
)

= ∫ 𝑝
(

𝒙𝑘|𝒙𝑘−1
)

𝑝
(

𝒙𝑘−1|𝒛1∶𝑘−1
)

d𝒙𝑘−1, (69)

𝑝
(

𝒙𝑘|𝒛1∶𝑘
)

=
𝑝
(

𝒛𝑘|𝒙𝑘
)

𝑝
(

𝒙𝑘|𝒛1∶𝑘−1
)

𝑝
(

𝒛𝑘|𝒛1∶𝑘−1
) . (70)

The state estimate is characterized by the posterior PDF 𝑝(𝒙𝑘|𝒛1, 𝒛2,
… , 𝒛𝑘). During the update process indicated in (70), the likelihood 
function 𝑝(𝒛𝑘|𝒙𝑘) updates the a prior PDF given by 𝑝(𝒙𝑘|𝒛1, 𝒛2,… , 𝒛𝑘−1), 
yielding the posterior PDF. Assuming the measurements are condition-
ally independent, the likelihood function becomes the product of local 
likelihoods 

𝑝
(

𝒛𝑘|𝒙𝑘
)

=
𝑛
∏

𝑖=1
𝑝
(

𝒛𝑖𝑘|𝒙𝑘
)

, (71)

where the local likelihood 𝑝(𝒛𝑖𝑘|𝒙𝑘) corresponds to the PDF of the 
measurements from the 𝑖th sensor indicated in (68). To implement 
the update process in a sensor network, local sensors send their mea-
surements 𝒛𝑖𝑘 for 𝑖 = 1, 2,… , 𝑛 to a fusion node to establish the 
global likelihood. The primary difference between low-bit tracking and 
traditional approaches lies in the type of measurement data transmitted 
to the fusion node and the subsequent filtering and fusion processes. 
Traditional multi-sensor target tracking assumes analog measurements 
are transmitted over ideal channels, achieving ‘‘what you send is what 
you get’’. However, practical limitations, such as limited communica-
tion bandwidth and bit errors, necessitate bit quantization in low-bit 
target tracking.

In low-bit tracking, measurements from each sensor 𝒛𝑖𝑘 are quan-
tized into discrete bit data. Consider a log2 �̄� bit quantizer, character-
ized by [261] 

𝑚𝑖
𝑘 =

⎧

⎪

⎨

⎪

⎩

0 𝜉(0),𝑖𝑘 < 𝑄
(

𝒛𝑖𝑘
)

< 𝜉(1),𝑖𝑘
⋮ ⋮

�̄� − 1 𝜉(�̄�−1),𝑖𝑘 < 𝑄
(

𝒛𝑖𝑘
)

< 𝜉(�̄�),𝑖𝑘 ,
(72)

where 𝑄(𝒛𝑖𝑘) is a quantization function converting the measurement 
into a scalar, and we define 𝝃𝑖𝑘 = [𝜉(0),𝑖𝑘 , 𝜉(1),𝑖𝑘 ,… , 𝜉(�̄�),𝑖𝑘 ]⊤ as the data quan-
tizer. Channel fading and noise may introduce bit errors, resulting in 
transmitted measurements �̄�𝑖

𝑘 = (𝑚𝑖
𝑘). These quantized measurements 

�̄�𝑖
𝑘 (𝑖 = 1, 2,… , 𝑛) are used to reconstruct the quantized measurement-

based likelihood functions 𝑝(�̄�𝑖
𝑘|𝒙𝑘, 𝝃

𝑖
𝑘) to replace 𝑝(𝒛𝑖𝑘|𝒙𝑘) for state 

filtering and data fusion.
Fig.  12 illustrates the low-bit target tracking framework, where 

the key design components are likelihood function and filter design. 
The likelihood function is influenced by the statistics of quantized 
measurements, the quantization process, and CSI, and these nonlinear 
effects complicate the filter design. Currently, most research focuses on 
single-time state estimation problems like target detection and localiza-
tion [266–270]. For tracking, some work has established a likelihood 
function for one-bit tracking under a simple binary symmetric channel 
model [271], extending it to generalized asymmetric channels and 
multi-bit quantization scenarios [272]. For filter design, particle filters 
are commonly used due to the nonlinear effects of bit quantization. 
Another approach uses a channel-aware particle filter algorithm [272], 
offering improved accuracy but increased complexity. Further, some 
researchers explore fitting the Gaussian error function as a closed-form 
to accelerate the process [273].

Performance metrics are essential for evaluating and guiding track-
ing system design [274,275]. The work in [272] provided the posterior 
CRLB for low-bit tracking, showing that the tracking performance de-
pends on the number of bits and quantizer thresholds. This insight has 
led to research optimizing quantization bits and thresholds [273,276,
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Fig. 12. Network configuration and data processing flow of the low-bit target tracking (From Fig. 1 of [273]).
Fig. 13. Comparison of position RMSEs and posterior CRLBs.
277]. For example, Fig.  13(a) shows that threshold optimization signif-
icantly improves the tracking accuracy for one-bit tracking compared 
to fixed quantizer thresholds. Fig.  13(b) illustrates that increasing the 
number of bits allows low-bit tracking to approach ideal non-quantized 
tracking results.

4.1.2. Cognitive radio networks
Spectrum sensing in cognitive radar networks has been explored 

through various non-sparse approaches. One such method is an
autocorrelation-based wideband sensing technique, where a single-
bit quantizer is employed to preserve spectrum occupancy, as shown 
in [278,279]. Extending this idea, one-bit quantizers are used in [280] 
to reduce the power consumption of a fast Fourier transform-based 
wideband sensing approach, where the power spectral density is es-
timated using DFT. This approach is further extended to multi-antenna 
cognitive radio receivers and hard-decision cooperative sensing, where 
local hard decisions are shared with a fusion center [281,282]. The 
framework is also adapted for uncoordinated environments, supporting 
both synchronous and asynchronous networks [283,284].

Furthermore, the above methods assume prior knowledge of param-
eters such as noise power, channel characteristics, or signal properties, 
which may not always be practical. To address this, one-bit spec-
trum sensing in the absence of prior information, also known as blind 
spectrum sensing, has been explored. Designing detectors under this 
constraint often requires numerical techniques, such as the generalized 
likelihood ratio test [266]. However, numerical methods increase com-
putational time and complexity, undermining the goal of simple and 
efficient spectrum sensing [285]. To overcome this, some algorithms 
rely on the arcsine-based method for reconstructing the covariance 
matrix, which links the autocorrelation function of an unquantized 
stationary signal to its quantized counterpart through a nonlinear, 
invertible arcsine function. This approach led to a closed-form one-bit 
eigenvalue moment ratio detector proposed in [286]. It is shown that 
this detector suffers a 3 dB performance loss compared to its infinite-
bit counterpart, though the degradation reduces to 2 dB at low SNR. 
Another study introduced a detector for one-bit observations based 
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on Rao’s test, leveraging circularity to enhance performance [287], 
leading to the second-order eigenvalue moment ratio of the one-bit 
complex-valued sample covariance matrix. However, these techniques 
are vulnerable to model inaccuracies and may fail in analytically in-
tractable noise scenarios. More recently, a data-driven approach has 
been proposed, utilizing Gustafson–Kessel fuzzy c-means clustering for 
detecting primary user signals in white and correlated noise. This 
method identifies quantization-invariant features to form decision vec-
tors, which are then clustered to estimate model parameters and classify 
channel occupancy.

4.1.3. Wireless channel estimation
Wireless channel estimation from low-resolution measurements pre-

dates CS and evolves significantly from early pilot-based methods to 
more advanced techniques such as adaptive quantization and joint es-
timation. Initially, pilot-based channel estimation focuses on ML-based 
expectation–maximization approaches, explored using both paramet-
ric and non-parametric methods [288,289]. A simpler least squares 
channel estimation method is also studied in [182,290], providing 
an alternative to more complex approaches. Additionally, channel es-
timation using the maximum a posteriori approach is investigated 
in [291,292]. Other models, such as one-bit channel estimation with 
an unknown threshold, are considered in [293], highlighting the chal-
lenges associated with threshold uncertainty. On the theoretical front, 
the CRLB for channel estimation in one-bit quantized MIMO systems is 
examined in [294].

While many of these methods primarily focus on point-to-point 
communication, it is possible to extend these algorithms to distributed 
reception or multi-user scenarios. In distributed settings, channel es-
timation algorithms achieve near-optimal performance with relatively 
simple receiver operations as the training length increases, even with-
out assuming sparsity [295]. However, these estimators often rely 
on ML algorithms or high-complexity iterative methods. To overcome 
these challenges, the ML estimators are extended to near-ML estima-
tors in [296], providing lower complexity while offering theoretical 
guarantees for performance.
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For one-bit massive MIMO systems, obtaining reliable CSI typi-
cally requires a long training sequence [182]. To address this issue, 
a Bayes-optimal joint channel and data estimation scheme is intro-
duced in [297], where the estimated data symbols assist in channel 
estimation. This scheme shows performance comparable to that with 
perfect CSI, but the computational complexity of the joint technique 
remains too high to be practical for commercial systems. To reduce 
complexity, low-complexity estimators that model quantization noise 
as independent noise are proposed in [298], significantly lowering the 
computational burden. Later, more generalized models of quantization 
noise are incorporated into the Bussgang linear MMSE estimator, which 
reduces the complexity of ML-based methods but is initially limited to 
Gaussian-distributed channels in OFDM systems [151]. The generalized 
Bussgang linear MMSE estimator is further explored in [299], and 
the equivalence between Bussgang linear MMSE and optimal MMSE 
channel estimators for noisy and noiseless single input multiple output 
systems is established in [300]. In [301], these results extend to optimal 
MMSE estimation for Rayleigh fading MIMO channels with additive 
white Gaussian noise, with the findings also applicable to multi-user 
uplink systems.

A key challenge in low-resolution channel estimation is the design 
of an optimal quantizer. Many of the above studies assume a fixed or 
typically zero quantization threshold, which, while convenient, may 
not be optimal for all scenarios [182,297]. To address this, [302] 
develops an optimal design for quantization thresholds, introducing 
two schemes: an adaptive quantization scheme that adjusts thresh-
olds dynamically based on the channel characteristics, and a random 
quantization scheme that generates thresholds using statistical knowl-
edge of the channel. Both of these schemes result in a significant 
performance improvement compared to fixed quantization, while also 
reducing training overhead and maintaining high estimation accuracy.

In summary, non-sparse signal recovery with low-bit quantization 
spans diverse applications in wireless communication and sensing, 
using approaches from classical statistical methods and ML estimation 
to deep learning models and optimal quantizer design.

So far, we have focused on quantization error, which arises when 
real-valued measurements are mapped to a finite set of digital bit 
strings. In practice, low-resolution ADC also lead to saturation error
when measurements exceed the quantizer’s range, causing clipping. 
While 1bCS is unaffected by saturation error,5 all other low-bit quan-
tization methods are vulnerable to it. Scaling down signals to prevent 
saturation increases quantization noise, degrading signal quality. Al-
though some work addresses CS and low-bit signal recovery under 
saturation, existing architectures face a trade-off between dynamic 
range and resolution due to a fixed bit budget [303,304]. Recently, un-
limited sensing has emerged as a promising alternative, which we discuss 
next. While one-bit sampling is indifferent to dynamic range, unlimited 
sampling offers a natural way to generate time-varying thresholds for 
ADCs to handle dynamic range limitations. 

4.2. Unlimited sensing: Pushing the limits of low-resolution acquisition

USF is a radically different approach to digital acquisition, recently 
introduced in [305–308]. The USF is based on a simple yet powerful 
observation that,

signals can be recovered from quantization noise.

5 In multi-bit quantization, saturation errors occur due to a limited dynamic 
range. However, one-bit sampling remains unaffected by these limitations since 
it records only the sign of the signal. Beyond the comparison bit, it does not 
capture additional information, such as the distance between the signal value 
and the threshold.
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The starting point of the USF is a novel representation of measurements 
defined by: 

𝑦 = 𝑔 −𝐵(𝑔) (Quantization Noise). (73)

Note that in conventional literature, digital representation of a discrete-
time signal, say 𝑔 ∈ R, is obtained by restricting its range; this is done 
by quantizing it via 𝐵(𝑔) (e.g., (51), (23) and (25)). In contrast to 
this strategy, the USF advocates quantization of 𝑦. As we shall see, this 
approach addresses and overcomes fundamental limitations present in 
conventional digital sensing methods.

We begin our discussion with some context. Conventional ap-
proaches assume that the signal being quantized is ideal or that the ADC 
functions without imperfections. However, in practice, a fundamental 
limitation of ADCs is their dynamic range [181], denoted by 𝜆, which 
represents the maximum voltage range the ADC can record or handle. 
When the input signal exceeds this threshold, the ADC saturates, lead-
ing to a permanent loss of information as the signal is clipped. This has 
been a widely reported challenge in literature [309–314]. In such cases, 
even in the absence of noise, the resulting measurements are distorted, 
thereby compromising the performance of recovery algorithms that rely 
on the assumption of ideal quantization.

When designing ADCs, there is an inherent trade-off  between dy-
namic range and digital resolution within a given bit-budget6 [181]. 
Given the pervasive use of digital acquisition in today’s world, this 
trade-off has significant implications. While it is possible to achieve 
both high dynamic range (HDR) and high dynamic resolution (HDRes) 
by designing high-resolution ADCs, this approach is typically unde-
sirable and unsustainable due to the exponential increase in power 
consumption with the number of bits [181,315].

The HDR-HDRes trade-off in ADCs is frequently put to the test 
in various scenarios and applications. For example, in the design of 
communication systems, co-located transmitter and receiver setups in 
full-duplex systems experience severe self-interference, reaching up to 
100 dB [316]. Similarly, balancing receiver saturation and power con-
sumption in the RF chains of massive MIMO systems imposes stringent 
design constraints. These challenges have driven the development of 
low-resolution ADC-based solutions [5,317]. However, low-resolution 
ADCs in massive MIMO systems face significant challenges in sig-
nal detection due to quantization noise and the non-linearity intro-
duced by low-resolution quantization, leading to sub-optimal system 
performance7.

The innovative approach at the core of the USF, depicted in
Fig.  14(a), involves transforming HDR signals into a low dynamic range 
representation by intentionally folding them in the analog domain (see 
Fig.  14(b).8), prior to sampling or quantization. This process, similar to 
winding a thread on a spool or twirling spaghetti on a fork, is accom-
plished using specialized hardware. Mathematically, this amounts to 
injecting modulo non-linearity in the hardware. By folding the signals 
before quantization, the USF effectively prevents clipping and satura-
tion. In scenarios with a fixed bit budget and HDR input, conventional 
signals may suffer from coarse quantization or even clipping, but the 
folded samples in the USF maintain HDRes However, these folded 
signals require a decoding process to be unfolded, introducing a new 
class of inverse problems. Depending on the folding non-linearity and 

6 This, in turn, controls the quantization noise floor. The higher the number 
of bits, the lower the quantization noise.

7 A common approach to mitigate these issues is to use low-order modu-
lation schemes (e.g., binary phase shift keying) to increase the inter-symbol 
distance in the constellation diagram, simplifying signal detection. However, 
when higher symbol rates are required, higher-order modulations must be 
employed, which complicates signal detection and further degrades system 
performance.

8 A live YouTube demonstration is available at https://youtu.be/
prV40WlzHh4

https://youtu.be/prV40WlzHh4
https://youtu.be/prV40WlzHh4
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Fig. 14. USF in a nutshell with an illustration and architecture.
the input signal characteristics (e.g., sparse, smooth, bandlimited, or 
parametric), specific signal priors are employed to guide the unfolding 
process in a mathematically principled manner.

Thus by leveraging a co-design of hardware (for folding) and al-
gorithms (for unfolding), the USF is able to recover HDR signals with 
HDRes. For a given bit budget, the USF’s ability to achieve both HDR 
and HDRes simultaneously presents a promising low-power solution to 
digital signal representation challenges. Essentially, the folding non-
linearity incorporated into the hardware lowers the quantization noise 
floor, thereby improving the quality of the measurements.

The pipeline underlying the USF is shown in Fig.  14(c). The funda-
mental principles are similar to the conventional setting of point-wise 
sampling except for the presence of non-linear modulo mapping in the 
analog domain. A breakdown of the steps is as follows. We begin with 
an input signal 𝑔 to be sampled.

Using innovative folding hardware [308,318], the input function 𝑔
is folded in the range [−𝜆, 𝜆] via centered modulo non-linearity defined 
by, 

M𝜆 ∶ 𝑔 ↦ 2𝜆
([[ 𝑔

2𝜆
+ 1

2

]]

− 1
2

)

, (74)

where we define 

[[𝑔]] ≜ 𝑔 − ⌊𝑔⌋ , with ⌊𝑔⌋ = sup {𝜌 ∈ Z| 𝜌 ⩽ 𝑔} . (75)

This results continuous-time folded signal (see Fig.  14(b)), 𝑧(𝑡) =
M𝜆(𝑔(𝑡)). Note that one may equivalently write 𝑧 = 𝑔 − 𝜆′ (𝑔), for 
some 𝜆′ related to 𝜆, establishing the fact that modulo representation is 
essentially the quantization noise in conventional digital representation.

The folded function 𝑧(𝑡) is sampled using impulse-train, ⊕𝑘𝑇 =
∑

𝑘∈Z 𝛿 (𝑡 − 𝑘𝑇 ), with sampling rate 𝑇 > 0 yielding uniform samples,

𝑦[𝑘] ≜ 𝑧 (𝑘𝑇 ) = M𝜆(𝑔(𝑘𝑇 )), 𝑘 ∈ Z. (76)

as shown in Fig.  14(c). When considering the case of signal quan-
tization with a budget of 𝐵 bits per sample, each modulo sample 
𝑦[𝑘] is rounded to the closest element in the set  =
𝐵,𝜆
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{

± (2𝑛+1)
2𝐵 𝜆 |

|

|

𝑛 ∈
{

0,… , 2𝐵−1 − 1
}

}

. The resulting quantized measure-
ments are defined by, 

𝑦𝜂[𝑘] ≜ 𝐵(𝑦[𝑘]). (77)

4.2.1. Recovery guarantees and methods
Since introducing the USF, various signal classes have been studied. 

Some notable examples include, (a) bandlimited [305,306,308,319,
320] and bandpass [321] signals, (b) sparse signals [322–324], (c) 
sinusoidal mixtures [325,326], and (d) splines [327].

To maintain backward compatibility with the Shannon–Nyquist 
sampling theory, we begin our discussion with bandlimited signal 
classes [328]; the case of square-integrable functions, compactly sup-
ported in the Fourier with maximum frequency 𝛺. We denote such 
functions by 𝑔 ∈ PW𝛺 (Paley–Wiener Space). For such functions, it 
is natural to ask: under what sampling density conditions do modulo 
samples uniquely characterize a bandlimited function? The answer to 
this question is that any sampling rate faster than critical sampling, 
i.e., 0 < 𝑇 < 𝜋∕𝛺 allows for a one-to-one mapping between a 
bandlimited function, 𝑔 ∈ PW𝛺 and modulo samples 𝑦[𝑘] = M𝜆(𝑔 (𝑘𝑇 )). 
Without loss of generality, normalizing the bandwidth such that 𝛺 = 𝜋
with the critical sampling rate is 𝑇 = 1 allows us to use oversampled 
representations. In that case, we denote the sampling rate by 𝑇𝜖 =
𝜋

𝜋+𝜖 , 𝜖 > 0, implying that 0 < 𝑇𝜖 < 1. A formal statement of the in-
jectivity conditions is presented in [329], and a subsequent alternative 
form of proof can be found in [319].

For any 𝑔 ∈ PW𝛺, the unlimited sampling theorem proven in [305,
306] provided the first sampling criterion for recovery from modulo 
samples. The formal statement is as follows.

Theorem 2 (Unlimited Sampling Theorem [305,306]). Let 𝑔 (𝑡) be a 
continuous-time function with maximum frequency 𝛺. Then, a sufficient 
condition for the recovery of 𝑔 (𝑡) from its modulo samples (up to an additive 
constant) taken every 𝑇  seconds apart is 𝑇 ⩽ 1∕ (2𝛺𝑒) where 𝑒 is Euler’s 
number. 



G. Joseph et al. Signal Processing 235 (2025) 110020 
Fig. 15. Hardware experiments demonstrating the practical advantages of USF. (a) An input signal (sine wave) with amplitude swing of 20.1925 V is folded within the range 
[−𝜆, 𝜆], 𝜆 ≈ 2.01 using the modulo ADC presented in [308]. HDR reconstruction is then performed using the algorithm (US-Alg) detailed in [306]. (b) Both signals are quantized 
using the same number of bits. Reconstruction from modulo samples results in an improvement in the quantization noise floor by approximately 13.7 dB, enhancing the digital 
precision of the system. This improvement translates to better detection and reconstruction accuracy across various applications, including communication systems [330,331], 
tomography [332,333] and radars [334].
The above theorem establishes a recovery principle similar to the
Shannon–Nyqvist theorem. Specifically, a constant factor of oversam-
pling is sufficient for recovery, regardless of 𝜆. It is well established 
that bandlimited signals cannot be recovered if the spectrum is aliased
[328]. However, counter-intuitively, even though modulo samples cor-
respond to a non-bandlimited function, i.e., M𝜆(𝑔) ∉ PW𝛺, which 
results in an aliased spectrum, a bounded time-bandwidth product 
𝛺𝑇 ≤ (2𝑒)−1 ensures the inversion of M𝜆(⋅).

Further, in the case of quantization, the modulo samples 𝑦[𝑘] are 
affected by noise 𝜂 of amplitude bounded by a some constant 𝑏0 > 0. 
That is, 
∀𝑘 ∈ Z, 𝑦𝜂 [𝑘] ≜ 𝐵(𝑦[𝑘]) ≡ 𝑦[𝑘] + 𝜂 [𝑘] , |𝜂 [𝑘]| ⩽ 𝑏0. (78)

In the presence of noise, it is possible that 𝑦𝜂[𝑘] ∉ [−𝜆, 𝜆]. How-
ever, for 𝑏0 below a certain fixed threshold, the USF recovery method 
can provably reconstruct the noisy bandlimited samples ̃𝛾[𝑘] from the 
corresponding noisy modulo samples 𝑦𝜂[𝑘], albeit up to an unknown 
constant. In this scenario, the noise present in the reconstructed sam-
ples matches the noise affecting the modulo samples on an entry-wise 
basis, or, ̃𝛾 [𝑘] = 𝛾 [𝑘] + 𝜂 [𝑘] + 2𝜌𝜆 with 𝜌 ∈ Z.

Theorem 3 (Unlimited Sampling Theorem with Quantization).  Let 𝑔 (𝑡) ∈
PW 𝛺 and assume that 𝛽𝑔 ∈ 2𝜆Z is known with ‖𝑔‖∞ ⩽ 𝛽𝑔 . For the dynamic 
range, we work with the normalization DR = 𝛽𝑔∕𝜆. Let the noisy modulo 
samples be of the form (78) with a noise bound given in terms of the dynamic 
range as 

‖𝜂‖∞ ⩽ 𝜆
4
(2 ⋅ DR )−

1
𝜈 , 𝜈 ∈ Z, 𝜈 > 0. (79)

Then a sufficient condition for recovery of ̃𝛾 [𝑘] = 𝛾 [𝑘] + 𝜂 [𝑘] + 2𝜌𝜆 with 
𝜌 ∈ Z is that 
𝑇 ⩽ 1

2𝜈𝛺𝑒
. (80)

The proofs of Theorems  2 and 3 are constructive and led to the 
reconstruction algorithm, US-Alg, introduced in [306]. For further re-
sults on quantization and rate–distortion analysis in the USF context, 
we refer to [320].

Recovery from folded samples can also be performed in the Fourier 
domain via the Fourier-Prony method [308]. Beyond the time and fre-
quency domain approaches, alternatives such as Wavelet-based recon-
struction [335], reconstruction method with sampling slightly above 
23 
the Nyquist rate [319], optimization-based recovery [336,337], have 
been considered in the literature.

Furthermore, the hardware experiment illustrated in Fig.  15 clearly 
demonstrates how USF can simultaneously achieve HDR and HDRes 
capabilities. The USF strategy results in an improvement of the quan-
tization noise floor (≈ 13.7 dB). This improvement allows for the 
implementation of low-resolution sensing approaches without com-
promising HDR signal features and translates to better detection and 
reconstruction accuracy across various applications. Concrete examples 
include communication systems [330,331], tomography [332,333] and 
radars [334].

Given the pivotal role played by digital sensing pipelines, the simple 
yet powerful USF philosophy of folding before sampling can be applied 
in various ways. Specifically, USF can be combined with different 
signal models (e.g., sparse, smooth, parametric, and time-invariant) or 
integrated with various architectures (e.g., compressive, one-bit, time-
encoded, and multi-channel sensing). In this context, we briefly discuss 
two variations that align with the theme of this paper, namely, (i) 
low-resolution sensing and (ii) sparse priors.

4.2.2. Low-resolution sensing
As illustrated by the hardware example in Fig.  15 and the ex-

periments considered in [330–334], the USF naturally serves as a 
low-resolution sensing technique; for a fixed bit-budget, it offers clear 
advantages over traditional samplers. When considering the extreme 
case of 1-bit quantization, USF can be combined with existing ap-
proaches to prevent distortion in such methods. We consider three 
different architectures for 1-bit sensing.

• Sigma-Delta of 𝛴𝛥 Quantization: Conventional 𝛴𝛥 converters take 
advantage of the fact that oversampling with fewer bits is more 
cost-effective to implement in hardware. The 𝛴𝛥 scheme operates 
on the principle of ‘‘noise shaping’’. By oversampling the input 
signal [338,339], noise arising from the coarse quantization can 
be pushed to higher parts of the Fourier spectrum, thus encoding 
the input bandlimited function with minimal distortion. As in the 
conventional setting, if the input signal’s dynamic range signif-
icantly exceeds a preset threshold, the 𝛴𝛥 quantizer saturates, 
leading to a breakdown of the pipeline. However, by combining 
USF with 𝛴𝛥, this limitation is overcome because the folded 
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signal remains within the sensing threshold. For further details, 
we refer to [340].

• Time-Encoding or Event-Driven Sampling: Time encoding [341] pro-
vides an alternative to conventional uniform sampling by trans-
forming continuous-time signals into streams of trigger times, 
which form the basis of Event-Driven Sampling (EDS) models. 
Since one only records the trigger time stamps, the resulting 
signal can be considered as a one-bit stream of data. EDS offers 
significant advantages in reducing power consumption and en-
hancing time resolution, drawing inspiration from how biological 
nervous systems encode information. However, if an analog signal 
surpasses a predefined dynamic range, EDS may not produce 
the required distribution of trigger times, leading to recovery 
distortion due to aliasing. This is the equivalent of ‘‘saturation’’ 
in conventional ADCs. As shown in [342], by injecting modulo 
non-linearity prior to EDS, this pitfall can be avoided. Hard-
ware validation of USF inspired EDS indeed demonstrates the 
advantages of this approach.

• Sign-Based One-Bit: One of the simplest one-bit architectures
records only the sign of the measurement, but this approach 
can result in significant information loss. In their recent work,
unlimited one-bit sampling [343], the authors introduce a one-
bit architecture where the input signal is first modulo folded 
and then converted into a one-bit stream. Instead of using a 
fixed threshold9 for comparison, the authors employ time-varying 
sampling thresholds, leading to improved signal estimation.

4.2.3. Sparse priors
Over the past two decades, the concept of sparsity and the appli-

cation of sparse priors have proven to be highly effective data models. 
Sparse priors play a vital role in efficiently capturing key features and 
signatures within a signal. This naturally makes the interaction between 
USF and sparse signal models very interesting, and it has been explored 
in various flavors.

• Compressive Sensing: CS with modulo measurements is first applied 
in HDR imaging systems, limited to noiseless modulo folding with 
two periods [344,345]. Later, this model has been expanded to 
general noisy modulo folding, introducing approximate message-
passing algorithms for Bernoulli-Gaussian distributed sparse sig-
nals with known parameters [346,347]. The modulo-CS model 
is applied to line spectral estimation using a two-stage recov-
ery algorithm combining dynamic programming and orthogonal 
matching pursuit [348]. Convex relaxation-based methods are 
also studied, developing a mixed integer linear program for sparse 
signal recovery from modulo measurements [349]. Here, the 
authors derive conditions on the minimum number of measure-
ments necessary for the unique recovery of sparse vectors. How-
ever, mixed integer programming is computationally intensive to 
solve and becomes even more complicated with mixed integer 
quadratic programming in the presence of noise. Therefore, [350] 
presents a variant of iterative hard thresholding, which has linear 
complexity and is robust to noise.

• Sparse Super-Resolution: Recovering spikes or Dirac-impulses from 
filtered measurements is a classic problem in engineering [351,
352]. In this context, the interaction of spikes with pulses leads to 
pulsating behavior, often resulting in signals with HDR features. 
To address this, one can either allocate bits to capture the full 
dynamic range or focus on recording measurements with high dig-
ital resolution, as the accuracy of spike recovery depends on data 
quality [351,352]. However, USF can effectively overcome this 
trade-off. Both time-domain [322] and frequency-domain [323] 
methods for sparse super-resolution have been explored in this 

9 For instance, for the usual sign-based one-bit, the threshold is zero.
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context. A hardware example based on time-of-flight imaging, 
as detailed in [323], offers a compelling demonstration of the 
practical benefits of USF. Furthermore, by leveraging the sparsity 
of input signals, it is possible to design recovery strategies that 
are independent of any sampling rate criteria [324].

• Fourier-Domain Sparsity: Estimating the parameters of a sparse 
mixture of sinusoids is a well-known problem with numerous 
applications. This model corresponds to a sparse signal in the 
Fourier domain. The earliest solution to this problem dates back 
to Prony’s work [353], which laid the foundation for the field 
of spectral estimation [354]. Utilizing USF for the estimation of 
sinusoidal parameters offers significant benefits, as it can detect 
both strong and weak components by enhancing digital resolu-
tion while preventing clipping [325]. For instance, in the case 
of radars, which follow a sinusoidal model, a 10 dB improve-
ment in sensitivity has been demonstrated in real-world exper-
iments [334]. Additionally, when combined with multi-channel 
measurements, USF enables the implementation of sub-Nyquist 
sampling schemes [326] without compromising dynamic range.

5. Concluding remarks and future directions

In this paper, we explored low-resolution signal processing theory, 
algorithms, and applications in wireless communication and sensing. 
The first part was dedicated to 1bCS, where we presented information-
theoretic measurement bounds and various algorithmic tools, along 
with extensions and connections to related areas such as mixture mod-
els and recovery methods. We then discussed customized quantized CS 
algorithms for wireless communication systems. We first introduced 
a simple and flexible QVB algorithm for channel estimation and soft 
symbol decoding. This algorithm achieved accurate estimates using 
a minimal number of pilot symbols, even from coarsely quantized 
samples. Additionally, we examined SBL algorithms for channel estima-
tion aided by RIS with fixed low-resolution ADCs as well as cascaded 
channel estimation utilizing task-based quantizers. Our discussion also 
covered low-resolution signal processing techniques beyond CS. We 
analyzed an ML approach for target localization, showing that non-
uniform quantization improves performance. Using the CRLB, we found 
that low-bit quantization reduces communication overhead while pre-
serving localization accuracy. We also explored the new concept of USF, 
which enabled ADCs to reset instead of saturating, producing modulo 
samples and facilitating sub-Nyquist sampling without compromising 
dynamic range. Overall, this paper consolidated various results spread 
out in the literature and emphasized algorithmic tools and sampling 
strategies for low-resolution signal processing and applications.

This discussion opens up several exciting research possibilities in 
low-resolution signal processing. We list a few possible directions here.

1. Cross-pollination of ideas: Promising directions include com-
bining algorithmic tools like convex relaxation, QVB, and sparse 
Bayesian learning with sampling techniques such as task-based, 
CRLB-optimized, and modulo quantization, as well as processing 
strategies like centralized, decentralized, and distributed ap-
proaches. These could be applied to areas like wireless channel 
estimation, distributed sensing, target localization, and tracking.

2. Limitations of traditional CS methods: Most quantized CS ap-
proaches rely on conventional CS frameworks, which limits their 
ability to handle more complex signal structures beyond spar-
sity. Furthermore, many algorithms primarily exploit sparsity, 
while other forms of structured sparsity, such as block, hier-
archical, and piecewise sparsity, remain underexplored [355–
357]. Developing new algorithms that address these challenges
presents a significant opportunity for future research.

3. Theoretical gaps: Recent studies on 1bCS utilizing generative 
priors and deep unfolding are generally agnostic to sparse struc-
tures, allowing them to accommodate various forms of structure. 
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However, they lack robust theoretical guarantees. Similarly, em-
pirically effective and computationally simpler algorithms, such 
as those based on QVB and SBL, also need to establish theoret-
ical guarantees, which remains an open challenge. Moreover, 
the asymptotic and complexity analyses of these algorithms 
have not been effectively translated into practical system design 
guidelines.

4. Channel-aware algorithms and federated learning: Research 
on quantization, driven by bandwidth constraints in systems like 
IoT and wireless sensor networks, demands the development 
of algorithms that can account for channel impairments that 
often degrade performance. The development of channel-aware 
algorithms and decentralized schemes for distributed sensing 
networks is a promising avenue. For example, task-based quanti-
zation could be integrated with distributed CS in wireless sensor 
networks. Additionally, further exploration is required to create 
communication-efficient schemes for federated learning with 
1bCS in decentralized sensing networks.

5. Extension to 𝐵-bit quantized measurements and mixed
ADCs: While 1bCS is the most extensively studied problem 
within the quantized CS framework, most 1bCS algorithms are 
not easily extendable to higher-bit quantization. Thus, a signif-
icant gap exists between 1bCS and 𝐵-bit quantized CS. Devel-
oping theory and algorithms for a quantization-agnostic setting 
remains an open challenge. Another important area is CS with 
a mixed-ADC architecture, combining high- and low-resolution 
ADCs to improve system performance. However, a key chal-
lenge lies in determining the optimal ratio of high- to low-
resolution ADCs, considering that low-resolution ADCs perform 
better in low SNR regions but struggle in high SNR scenar-
ios. This architecture must balance energy efficiency, signal 
detection performance, and SNR conditions.

6. Modulo ADC integration: The introduction of USF and modulo 
ADCs shows great promise in handling the limited dynamic 
range of ADCs. However, the integration of modulo ADCs with 
CS remains underdeveloped, with few algorithms effectively 
addressing noise handling and limited theoretical progress. The 
impact of finite-bit quantization in modulo CS also presents a 
new research direction.

In summary, CS-aided low-resolution signal processing is a rapidly ad-
vancing field from theoretical, algorithmic, and practical standpoints, 
presenting numerous challenges and opening intriguing avenues for 
future research.
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