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 A B S T R A C T

Prognostics and Health Management (PHM) is critical for predicting the Remaining Useful Life 
(RUL) of systems, a key enabler of Predictive Maintenance (PdM). This paper reviews state-of-
the-art data-driven prognostic models, emphasizing four essential characteristics: uncertainty, 
robustness, interpretability, and feasibility. While traditional research has focused on enhancing 
RUL prediction accuracy, this review argues that these additional characteristics are equally 
vital for addressing the demands of PHM applications.

The review examines Machine Learning (ML) techniques, stochastic models, and Bayesian 
filters (BFs), analyzing their strengths, limitations, and trade-offs. ML models excel in accuracy 
but often lack robust uncertainty quantification and adaptability across varying operational 
conditions. Stochastic models demonstrate greater robustness and feasibility, performing reliably 
with limited or variable data. Bayesian filters provide high interpretability and do not require 
run-to-failure data but face challenges in adapting to diverse environments.

To bridge these gaps, this paper proposes a structured Model Evaluation Framework 
that integrates users’ specific needs with key model characteristics identified in the review. 
By quantifying the importance of the four characteristics, the framework enables systematic 
evaluation and selection of prognostic models.

The findings underscore the need for advancements in uncertainty quantification, adaptive 
methods to improve robustness, and enhanced interpretability to meet practical and regulatory 
requirements. While current models offer valuable insights, further improvements are necessary 
to unlock their full potential for PHM and PdM applications, ensuring more reliable and 
actionable predictions.

ontents

1. Introduction .............................................................................................................................................................................. 2
2. Key characteristics in prognostics ................................................................................................................................................ 7

2.1. Uncertainty.................................................................................................................................................................... 8
2.1.1. Machine learning models .................................................................................................................................. 8
2.1.2. Stochastic models ............................................................................................................................................. 9

∗ Corresponding author.
E-mail address: m.salinascamus@tudelft.nl (M. Salinas-Camus).
ttps://doi.org/10.1016/j.ymssp.2025.113015
eceived 28 January 2025; Received in revised form 16 May 2025; Accepted 18 June 2025
vailable online 7 July 2025 
888-3270/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license 
 http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/ymssp
https://www.elsevier.com/locate/ymssp
https://orcid.org/0009-0008-0315-8686
mailto:m.salinascamus@tudelft.nl
https://doi.org/10.1016/j.ymssp.2025.113015
https://doi.org/10.1016/j.ymssp.2025.113015
http://creativecommons.org/licenses/by/4.0/


M. Salinas-Camus et al. Mechanical Systems and Signal Processing 237 (2025) 113015 
2.1.3. Bayesian filter models....................................................................................................................................... 9
2.1.4. Challenges in uncertainty management .............................................................................................................. 10

2.2. Robustness..................................................................................................................................................................... 10
2.2.1. Machine learning models .................................................................................................................................. 11
2.2.2. Stochastic models ............................................................................................................................................. 11
2.2.3. Bayesian filter models....................................................................................................................................... 11

2.3. Interpretability ............................................................................................................................................................... 11
2.3.1. Machine learning models .................................................................................................................................. 11
2.3.2. Stochastic models ............................................................................................................................................. 12
2.3.3. Bayesian filter models....................................................................................................................................... 13

2.4. Feasibility ...................................................................................................................................................................... 13
2.4.1. Machine learning models .................................................................................................................................. 13
2.4.2. Stochastic models ............................................................................................................................................. 14
2.4.3. Bayesian filter models....................................................................................................................................... 14

3. Case study................................................................................................................................................................................. 14
3.1. Data pre-processing ........................................................................................................................................................ 14
3.2. Baseline......................................................................................................................................................................... 16
3.3. Uncertainty.................................................................................................................................................................... 16
3.4. Robustness..................................................................................................................................................................... 19

3.4.1. Adaptation across fault modes ........................................................................................................................... 19
3.4.2. Noisy input data .............................................................................................................................................. 21

3.5. Interpretability ............................................................................................................................................................... 23
3.6. Feasibility ...................................................................................................................................................................... 24

3.6.1. Computational time .......................................................................................................................................... 24
3.6.2. Impact of available training histories ................................................................................................................. 25

3.7. Sensitivity analysis ......................................................................................................................................................... 26
4. Model evaluation framework ...................................................................................................................................................... 29
5. Potential research directions ....................................................................................................................................................... 32
6. Conclusions ............................................................................................................................................................................... 33
 CRediT authorship contribution statement ................................................................................................................................... 33
 Declaration of competing interest ................................................................................................................................................ 33
 Data availability ........................................................................................................................................................................ 33
 References................................................................................................................................................................................. 33

1. Introduction

Prognostics and Health Management (PHM) is a field that provides users with a thorough analysis of a system’s current and future 
health conditions to maximize operational availability, reduce maintenance costs, improve reliability, and guarantee predefined 
safety standards. While PHM encompasses various modules, including feature extraction, diagnostics, prognostics, and decision-
making, as shown in Fig.  1, this paper specifically focuses on the prognostics aspect of PHM. A general and brief overview 
of the complete PHM framework will be provided to give better context for understanding where prognostics fits within the 
framework.Feature extraction involves identifying and isolating relevant data from sensors and signals that indicate the health status 
of a system or component. Diagnostics is the process of analyzing these features to detect, isolate, localize, and identify faults or 
failures that have already occurred in the system. Prognostics extends this analysis to predict the future health state and Remaining 
Useful Life (RUL) of the system based on current and historical data. Finally, decision-making in PHM uses diagnostic and prognostic 
information to optimize maintenance strategies, operations, and logistics to reduce downtime, costs, and risks, ultimately improving 
system reliability and performance.

PHM is closely connected with Predictive Maintenance (PdM) since PdM uses PHM information to predict failures and plan 
maintenance tasks [1]. PdM changes the paradigm of other maintenance strategies, such as corrective and preventive. Corrective 
maintenance is performed once the fault has been detected. Preventive maintenance is scheduled at specific times, typically decided 
in the design phase.

Therefore, since PdM uses the prediction of failures to plan maintenance, prognostics becomes crucial for decision-making in 
PdM frameworks. As noted in [2], ‘‘prognostics is performed not as an objective in themselves, but for a decision-making process 
afterward’’. However, recent trends in prognostics have increasingly focused on performance metrics and minimizing prediction 
errors [3], [4]. While achieving high performance is important, focusing on the characteristics that make prognostic models effective 
for decision-making in PdM is equally vital.

In [5], it is highlighted that much of the literature emphasizes RUL prediction without addressing the subsequent health 
management tasks. Therefore, two characteristics of prognostic models are emphasized as necessary for decision-making in PdM. 
Prognostic models must provide uncertainty quantification because, as the authors describe, it is essential for effective maintenance 
planning since RUL prediction inherently has uncertainty. Additionally, the model must be feasible. A feasible model can perform 
well with the available conditioning monitor data, which is a fundamental characteristic for developing an end-to-end data-driven 
PdM framework.
2 
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Nomenclature

ANHHSMM Adaptive Non-Homogeneous Hidden Semi Markov Model
BF Bayesian Filter
Bi-GRU Bidirectional Gated Recurrent Unit
BNN Bayesian Neural Network
C-MAPSS Commercial Modular Aero-Propulsion System Simulation
CNN Convolutional Neural Network
DCNN Deep Convolutional Neural Network
DDM Data-Driven Model
DL Deep Learning
DNN Deep Neural Network
EKF Extended Kalman Filter
GAN Generative Adversarial Network
GHMM Generalized Hidden Markov Model
GRU Gated Recurrent Unit
HMM Hidden Markov Model
HSMM Hidden Semi-Markov Model
KF Kalman Filter
LIME Local Interpretable Model-Agnostic Explanations
LSTM Long Short-Term Memory
MCMC Monte Carlo Markov Chain
ML Machine Learning
MLP Multi-Layer Perceptron
NHHSMM Non-Homogeneous Hidden Semi-Markov Model
NN Neural Network
PbM Physical-based Model
PdM Predictive Maintenance
PF Particle Filter
PHM Prognostics and Health Management
RF Random Forest
RNN Recurrent Neural Network
RUL Remaining Useful Life
RVM Relevance Vector Machine
SHAP Shapley Additive Explanations
SLHSMM Similarity Learning Hidden Semi Markov Model
SM Stochastic Model
SPC Statistical Process Control
SVM Support Vector Machine
SVR Support Vector Regressor
UQ Uncertainty Quantification
WSU Weighted Spread of Uncertainty

On a similar note, a review on PHM for predictive maintenance [6] highlights robustness as a characteristic that differentiates 
preventive maintenance from PdM. Preventive maintenance strategies may lose validity given that the maintenance schedule is 
decided in the design phase, but if the operation deviates from the design, it can lead to a maintenance schedule that is no longer 
applicable.

Finally, interpretability is considered a crucial characteristic for prognostic models given legal regulations for algorithms in 
decision-making. In Europe, the General Data Protection Regulation (GDPR) entails the right to an explanation of how a decision 
was made for systems and frameworks that can affect a human being’s life [7].

Therefore, based on the available literature on PHM and PdM, it is proposed that uncertainty, robustness, interpretability, and 
feasibility be considered essential characteristics of prognostic models for effective decision-making, in addition to ensuring high 
accuracy.

Under the uncertainty characteristic, the identification and quantification of the impact of inherent uncertainty sources on RUL 
predictions, as well as the potential reduction of uncertainty in RUL predictions, are considered. Robustness is the capability of a 
3 
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Fig. 1. PHM process flow diagram.

system to maintain high performance across diverse conditions. Interpretability means connecting the model’s parameters with a 
physical aspect and explaining the predictions. Finally, feasibility is the ability of a model to be trained and perform well with a 
realistic amount of data.

It is important to note that among the four mentioned characteristics, uncertainty is crucial in prognostics. This is because 
predicting the RUL inherently involves uncertainties, and identifying and quantifying the sources of uncertainties provides critical 
information for the decision-making process. Therefore, a prognostic model should quantify uncertainty, ensure robustness, and 
provide interpretability and feasibility.

The goal of this literature review is to evaluate state-of-the-art prognostic models based on the aforementioned characteristics. 
Prior reviews in prognostics have been published, such as [8], which offers a general overview of prognostics within the PHM 
framework and is intended as a starting point for researchers in the field. Another review, [9], summarizes commonly used datasets in 
prognostics, discusses the construction and importance of health indicators, provides an overview of various prognostic approaches, 
and outlines the metrics commonly used to evaluate prognostic models. Although these papers contribute valuable insights to the 
field, the current paper provides a more focused and comprehensive examination of Data Driven Models (DDMs) in prognostics, 
while assuming familiarity with topics such as health indicators and evaluation metrics. In particular, we will analyze prognostic 
models through the lens of the four key characteristics: uncertainty, robustness, interpretability, and feasibility. In addition, this 
paper introduces a novel model evaluation framework designed to consider these characteristics and help in the selection of suitable 
DDMs for specific applications.

Before delving into the analysis of DDMs, it is essential first to understand the different prognostic approaches. For this purpose, 
the categorization from [10] is adopted, which includes three categories: Physics-based Models (PbMs), Data-Driven Models (DDMs), 
and Hybrid Models.

PbMs describe the physical process or evolution of the damage [11], which results in a complex model or in simple models 
that are unable to describe complex degradation processes. This approach has seen progress in recent years, with models developed 
for electrolytic capacitors [12,13], pneumatic valves [14], bearings [15], and metallic structures [16]. Despite good results, PbMs 
have limitations in validation, assumptions for operating conditions, and handling highly nonlinear equations, leading to increased 
computational costs. Additionally, PbMs are limited to components, constraining their application range as systems become more 
complex [17].

DDMs use historical data from sensors to identify characteristics of the damaged state of the engineering system. DDMs are 
widely used in prognostics because they can be applied without prior expert knowledge of the system and are flexible, allowing the 
same technique to be used for different systems or components [10].

Hybrid Models aim to bridge the gap between the incompleteness of PbMs and the need for data of DDMs, improving 
performance, reducing computational costs, and minimizing the data needed to train the model [18].

Most literature in the prognostic field focuses on DDMs, with a trend towards hybrid approaches, with DDMs at the core of 
the hybridization. DDMs are preferred for their flexibility and lack of need for prior system knowledge. However, when physical 
constraints are known, they can be integrated into DDMs.

Therefore, in this paper, prognostic models utilizing the data-driven approach are reviewed, with a focus on the four key 
requirements mentioned earlier. Given the extensive literature on DDMs, the techniques have been categorized into three groups: 
Machine Learning (ML), stochastic models, and Bayesian Filters (BFs).

The ML group includes models such as linear regression, decision trees, Support Vector Regressor (SVR), and Neural Network 
(NN), among others. Deep Learning (DL) is a subcategory of ML, encompassing models such as Long Short-Term Memory (LSTM), 
Convolutional Neural Network (CNN), and many others. Under the category of stochastic models, Hidden Markov Models (HMMs) 
and Wiener processes, also referred to as Brownian motion, are included. Finally, BFs include Particle Filters (PFs) and Kalman 
Filters (KFs) and their variants. BFs can be used within a PbMs approach since they need a damage evolution function that can 
4 
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Fig. 2. (a) Publications by model category, including proportion of reported UQ. (b) Top 10 most used model types.

Fig. 3. Model category per case study.

be based on physical knowledge. However, they are also used in DDMs since this damage evolution function can be characterized 
with another data-driven model. Since this literature review focuses on DDMs, it will only cover BFs that rely solely on data-driven 
approaches within prognostic frameworks, excluding those that incorporate physical knowledge of the system.

Table  1 summarizes the selected publications that propose and evaluate data-driven prognostic models. The table is organized 
first by model category (ML, stochastic models, and BFs) and then by the engineering case study used for model validation. The 
model listed corresponds to the one performing the predictive step; for instance, in the case of BFs, while an ML model might be 
used for the damage evolution estimation, the BF is responsible for producing the final RUL prediction.

To give a clearer picture of the publications reviewed, Fig.  2 illustrates how the models are spread across different categories. In 
subplot (a), the number of publications by model category is shown, with hashed bars indicating those that do not report uncertainty 
quantification (UQ). This visual emphasizes that while ML dominates in terms of volume, a significant portion of ML-based works 
omit UQ, which is a crucial aspect of reliable prognostics, and it will be discussed later. Subplot (b) displays the top 10 most 
frequently used model types. LSTM models are the most widely adopted, followed by Particle Filters and CNNs. Variants of models 
are grouped under the same label (e.g., Bayesian LSTM and standard LSTM are both counted as LSTM).

Fig.  3 further explores the application of model categories across different engineering domains. It shows the proportion of each 
model category (ML, stochastic, BF) used in case studies, offering insight into the distribution of modeling strategies per context.

It is worth noting that the prognostic models listed in the table correspond to the model performing the predictive step. For 
example, in the case of BFs, an ML model may be used for the damage evolution equation; however, it is the BF model that performs 
the predictive step and provides the RUL as an output.

The publications were selected through a Google Scholar search using the keywords: ‘‘prognostics’’, ‘‘robustness’’, ‘‘interpretabil-
ity’’, ‘‘uncertainty’’, and ‘‘feasibility’’. Publications on ML models were chosen from 2018 onwards, as the number of such publications 
5 
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Table 1
Summary of publications on the development of prognostic models included in the present literature review.
 Group Case study Prognostic model References  
 

Machine Learning

Turbofan engines

SVR [19]  
 Bayesian RNN [20]  
 Natural and extreme gradient boosting, RF, MLP [21]  
 Bayesian Dual-Input-Channel LSTM [22]  
 Bayesian LSTM [23,24]  
 RF [25]  
 MLP [26]  
 LSTM [27–32]  
 DCNN [33,34]  
 NN [35–37]  
 Concise self-adapting deep learning network [38]  
 Multi-scale DCNN [39]  
 Multicellular-LSTM [40]  
 GRU [41,42]  
 Capsule neural network [43]  
 CNN [44]  
 Transformer [45]  
 Variational autoencoder [46]  
 DNN [47,48]  
 XGBoost, RF, logistic regression, feedforward NN [49]  
 

Bearings

𝜖-SVR [50]  
 SVR [51]  
 Double-CNN [52]  
 Bi-GRU [53]  
 CNN [54]  
 Convolution-based LSTM [55]  
 GAN [56]  
 Bayesian DNN [57,58]  
 Graphical Convolutional Network [59]  
 Encoder–Decoder GRU [60]  
 MLP [61]  
 LSTM [62]  
 Self-surpervised LSTM-CNN [63]  
 

Lithium-ion batteries

SVM [64]  
 LSTM [65,66]  
 Anti-noise adaptive LSTM [67]  
 Autoencoder CNN-LSTM [68]  
 Bayesian RNN [69]  
 Ensemble-Bayesian CNN [70]  
 Bayesian LSTM [24]  
 Composite materials CNN, RF [71]  
 BNN [72]  
 Gas turbines RVM [73]  
 Proton exchange membrane 

fuel cell
LSTM [74]  

 Insulated gate bipolar 
transistor

Self-attention NN [75]  

 Bushings Naive Bayes, SVR, K-Neighbors regressor, linear 
discriminant analysis, XGBoost regressor, RF 
regressor

[76]  

 (continued on next page)
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Table 1 (continued).
 

Stochastic Models

Bearings

SPC [77]  
 MCMC [78]  
 Adaptive skew-Wiener process [1]  
 Gaussian process [79]  
 HSMM [80]  
 Duration-dependent HSMM [81]  
 

Composite materials
ANHHSMM [82]  

 NHHSMM [83]  
 SLHSMM [84]  
 

Turbofan engines
HMM [32,85]  

 NHHSMM [86]  
 Wiener process [87,88]  
 Gaussian process [89]  
 

Batteries
NHHSMM [90]  

 Gaussian process [91]  
 Nonparametric FPCA-Based 

Degradation Model
[92]  

 Tool wear HSMM [93]  
 GHMM [94]  
 Isotropic Materials Multi-Branch HMM [95]  
 Pump 

accelerometers
HSMM [96]  

 Aircraft brakes NHHSMM [97]  
 Wind Turbines Self-data-driven statistical model [98]  
 

Bayesian Filters

Turbofan engines
Rao-Blackwellized PF [99]  

 Adaptive PF [100]  
 Discrete Bayesian filter [101]  
 PF [102]  
 Batteries PF [103–105]  
 Composite materials PF [106]  
 Fatigue crack 

growth
PF [107]  

 Bearings EKF [108]  
 Planetary gear plate High-order PF [109]  
 Aviation piston 

pump
Adaptive-order PF [110]  

is significantly higher and evolving more rapidly compared to other groups. Conversely, publications on stochastic models and BFs 
are more scattered across years. This variability is due to the challenge of finding relevant publications that address the specific 
topics covered in this literature review.

The paper is organized as follows: Section 2 explores the four key characteristics —uncertainty, robustness, interpretability, and 
feasibility —that are crucial for effective decision-making in prognostic models. Section 3 presents a case study that compares three 
prognostic models with different paradigms using the C-MAPSS dataset, evaluating them against these characteristics. Section 4 
introduces a model evaluation framework designed to help users select the most appropriate prognostic model for their specific 
application. Section 5 provides an insight into the potential future research directions based on the challenges and research gaps 
found in the literature review. Finally, Section 6 discusses the findings and concludes the work.

2. Key characteristics in prognostics

Prognostic models must balance several critical characteristics to effectively support decision-making in PdM. While achieving 
high predictive accuracy is essential, it is equally important to address the inherent uncertainties in RUL predictions, ensure 
robustness under varying operational conditions, provide interpretability to comply with regulatory and practical requirements, 
and maintain feasibility for integration into real-world systems. These characteristics collectively ensure that prognostic models are 
both technically reliable and practically applicable for end-to-end PdM frameworks. The following subsections explore these key 
characteristics through a comprehensive literature review of prognostic models.
7 
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2.1. Uncertainty

Uncertainty Quantification (UQ) in prognostics refers to the process of quantifying the impact of various sources of uncertainty 
on the RUL prediction of a system. By definition, the prediction of RUL incorporates uncertainty because any prediction of the future 
is uncertain. Therefore, it is imperative to model RUL as a random variable rather than a deterministic one. The prediction of RUL 
is then used by a decision-making module, which will make health management decisions to fulfill PHM goals. Hence, to ensure the 
safety of an engineering system, it is important to have information on how uncertain the models are about the RUL predictions.

The ‘‘classical’’ categorization of sources of uncertainty divides them into aleatoric and epistemic. Aleatoric refers to the 
uncertainties that are intrinsic to the randomness of a phenomenon, hence, it is the uncertainty that the data holds. Epistemic 
refers to the uncertainty caused by a lack of knowledge, thus, the uncertainty comes from the model itself [111].

According to [112], uncertainty-related activities in prognostics are categorized into four processes: representation, quantifica-
tion, propagation, and management. Representation involves choosing methods to model uncertain parameters, while quantification 
identifies and incorporates sources of uncertainty using statistical tools like Bayesian methods. Propagation predicts future states and 
RUL by accounting for quantified uncertainties through models and thresholds. Uncertainty management [112] reduces uncertainty 
by leveraging data to characterize the inherent prognostic uncertainties better. This process can minimize their impact on RUL 
predictions when possible, which is essential for effective decision-making.

Although UQ is essential for informed decision-making in prognostics, many publications omit it, providing only point estimates 
of RUL without confidence intervals. This trend is illustrated in Fig.  2(a), where the hashed portions of the bars represent studies 
that did not report UQ. The absence of UQ is particularly common in ML models, which are inherently deterministic. In contrast, 
BFs, show the highest rate of UQ reporting. This highlights a clear divide in UQ practices across model types in the prognostics 
field.

2.1.1. Machine learning models
UQ is a significant challenge within DDMs, and the methods used to quantify uncertainty often depend on the type of model 

employed. The low percentage of ML publications that address UQ may be attributed to the deterministic nature of ML models, which 
typically produce single-value outputs. To address this, various techniques have been developed to estimate epistemic uncertainty, 
though they often only approximate the posterior distribution. The posterior distribution cannot be directly calculated because it 
is intractable to calculate the marginal distribution; thus, there is no closed form for it. For instance, Variational Inference (VI) 
offers a good approximation of the posterior distribution, but it is still challenging to implement given its computational cost [113]. 
As a result, other techniques have arisen, such as Monte Carlo (MC) dropout, Deep Gaussian Processes, and Markov Chain Monte 
Carlo [114]. For a more detailed and in-depth explanation of these methods, readers can refer to the comprehensive review provided 
in [115], which also offers foundational guidance on their practical implementation in prognostics.

MC Dropout has been introduced as a technique to quantify epistemic uncertainty and is the most used one due to its simple 
implementation [116]. This technique approximates the posterior by randomly switching off neurons, given a dropout probability. 
The same architecture is run multiple times, and each dropout configuration corresponds to a different sample from the approximate 
posterior distribution.

However, MC Dropout struggles to approximate complex posterior distributions, which may lead to good approximations only 
in certain regions of the posterior distribution but poor approximations in others [117]. Even more, it has been questioned whether 
MC Dropout is truly Bayesian. MC Dropout fails sanity checks and is a design artifact since the posterior distribution converges to 
different values depending on the dropout probability assigned by a user [118]. Hence, these techniques, although easy to implement, 
do not always provide a good approximation of the desired distribution.

Building on these methods, several studies have applied these Bayesian techniques in prognostics and RUL prediction, each with 
varying levels of detail and success in capturing and interpreting uncertainty.

Some examples in prognostics are shown in [57] and in [22], where a point estimation of the failure time is made, but not the 
prediction of RUL through the operation time. Nevertheless, [22] includes an RUL prediction during the operation time by including 
a credible interval. To account for uncertainty, this study decomposes uncertainty into aleatoric and epistemic by using a Bayesian 
approach. However, when displaying the results, the distinction between the two sources of uncertainty is not made. The results 
are promising, yet the main drawback of this approach is the complexity of the model and its optimization, as the authors have 
claimed to be ‘‘extremely intractable and time-consuming’’.

In [70], an ensemble Bayesian CNN is proposed to predict the RUL of Li-ion batteries. Each model in the ensemble is trained on 
a separate run-to-failure trajectory to encourage diversity, and their posterior distributions are combined for prediction. The study 
compares this distribution stacking approach with traditional point prediction stacking, showing results through forecasted battery 
capacity and credible intervals. However, it does not clarify which uncertainty sources are captured or how uncertainty propagates 
across the ensemble, limiting the depth of its uncertainty analysis.

Other Bayesian approaches, such as [20], perform UQ including both aleatoric and epistemic uncertainty. However, similar to 
the previously cited work, it is not reported in the results how much each source contributes to the confidence intervals. Epistemic 
uncertainty is quantified with MC Dropout with a probability dropout value of 0.25, which is considered lower than the standard 
value of 0.5 [119].

In [24], a Bayesian DL model is proposed for RUL prediction with calibrated uncertainty using concrete dropout, where dropout 
probability is learned during training. This allows for a more flexible approximation of the RUL’s probability distribution. The 
model separates aleatoric and epistemic uncertainties during calibration, leading to better performance than deterministic models 
8 
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or untuned Bayesian ones. However, the model has limitations. It assumes a Gaussian RUL distribution, which may oversimplify 
uncertainty. Variance calibration assumes uniform miscalibration across the input space, ignoring potential regional variations. The 
use of isotonic regression for empirical CDF fitting risks overfitting on small datasets, although the original study used large datasets. 
Finally, the model assumes a linear, additive separation of epistemic and aleatoric uncertainties, which may not reflect their complex 
interdependence [115].

In [69], a Bayesian RNN is used with the dropout technique, however, they use a value of dropout between 0.05 to 0.2, which 
once again is considered low given that the standard dropout value. Low dropout values lead to narrow confidence intervals, 
meaning less estimated uncertainty in the RUL predictions, as shown in [32]. Thus, the choice of low dropout values can cause 
an underestimation of uncertainty that can be prejudicial for decision-making. Similarly, in [58], a CNN with a dropout value of 
0.2 is proposed for epistemic UQ.

Beyond epistemic uncertainty, another critical aspect is aleatoric uncertainty, which many models overlook or only partially 
address. Aleatoric uncertainty in ML models is split into homoscedastic and heteroscedastic. Homoscedastic uncertainty corresponds 
to the noise in the data, and it remains constant through the whole dataset, while heteroscedastic uncertainty corresponds to the 
noise that varies with the input [115]. The few ML models that include aleatoric uncertainty include only one part of it. For 
example, in [120], a Bayesian DL framework is developed that takes into account heteroscedastic aleatoric uncertainty. In the 
already mentioned work of [20], only heteroscedastic aleatoric uncertainty is addressed. Similarly, in [24], aleatoric uncertainty is 
modeled as a simple linear decomposition of the total predictive uncertainty.

2.1.2. Stochastic models
Stochastic models inherently capture aleatoric uncertainty given that they model the randomness of the degradation process using 

a probabilistic approach [121]. Stochastic models use a prognostic measure to calculate the RUL; therefore, the RUL is represented as 
a probability density function (pdf) with a closed form for the posterior distribution. The confidence intervals of the RUL predictions 
are obtained by calculating the cumulative density function and, later, choosing the confidence level.

However, existing research on stochastic models often reveals wide confidence intervals. For instance, in [86], the NHHSMM 
model is employed, predicting a turbofan engine’s RUL of 200 cycles. While the prediction is close to the actual RUL, the confidence 
intervals span from 300 cycles in the upper bound to 80 cycles in the lower bound. A similar situation occurs in [83] when using 
an NHHSMM applied to composite specimens. However, the same author later proposed an SLHSMM [84] that uses a similarity 
approach when training the model, which reduces the confidence intervals when calculating them, even when faced with unseen 
test data. The reduction of the confidence intervals is caused by the model leveraging data to manage and reduce RUL uncertainty, 
therefore, this model performs an uncertainty management step.

In a similar approach, [98] introduces a statistical/stochastic framework that addresses uncertainty arising from ‘‘unit-to-unit’’ 
variability. Wind turbines in operation often show different degradation patterns due to varying environmental and operational 
conditions. To manage this, the proposed framework selects the most appropriate model from a set of candidates, which helps 
reduce prediction uncertainty. By adapting to variability between units, the framework provides a more accurate representation of 
turbine behavior under diverse conditions.

It is important to remember that stochastic models include, by nature, only the aleatoric uncertainty. Epistemic uncertainty can be 
included through a time-consuming sensitivity analysis, Bayesian approaches, or imprecise probabilities. From the stochastic models 
reviewed, only [121] provides a model where epistemic uncertainty is quantified. The model called the Generalized Hidden Markov 
Model (GHMM) can identify both epistemic and aleatoric uncertainties by using imprecise probabilities. The results show that the 
GHMM can make more reliable decisions because the uncertainties can be differentiated. Yet, it is a computationally expensive 
model. Reliability refers to a model’s or algorithm’s ability to consistently deliver accurate and trustworthy outcomes. [122]. For 
instance, in the case of the GHMM, quantifying and differentiating the various sources of uncertainty enhances the reliability of the 
predictions, providing more detailed information.

2.1.3. Bayesian filter models
BFs can handle nonlinearity and non-Gaussian noise. A PF, which is a numerical approximation of a BF, estimates the system 

state by propagating a set of particles, each representing a possible condition. At each update step, particle weights are adjusted 
based on the similarity between predicted and observed sensor data. High-weight particles are more likely to be selected during 
resampling, focusing the estimate on the most probable states [123]. This iterative process is depicted in Fig.  4.

Additionally, as previously mentioned, PFs are combined with a model that characterizes the degradation evolution equation. 
In the case of a deterministic degradation model, such as an ML model, uncertainty is absent due to the deterministic nature of the 
model. However, part of the aleatoric uncertainty can be captured as new sensor data is used to update the weights of each particle. 
In the case of a stochastic degradation model, then aleatoric uncertainty is already present, and the output of a PF accounts for all 
the aleatoric uncertainty.

The fact that PFs, and BFs in general, by definition are updated based on new online data allows for the calculation of subjective 
uncertainty instead of population uncertainty, a characteristic that is preferred in prognostics [112]. Subjective uncertainty can 
be included in other frameworks, such as in the SLHSMM previously mentioned, however, these frameworks need modifications to 
achieve it, while BFs inherently include it. A key advantage of subjective uncertainty is that it accounts for the unique characteristics 
of each engineering system, given the specific conditions of its manufacture and operation. Therefore, the uncertainty should be 
calculated for the specific engineering system rather than relative to the population, as the goal in prognostics is to predict the RUL 
of an individual system based on the conditions under which it was operated [112].
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Fig. 4. Particle filter phases.

To improve efficiency in scenarios with slow or nonlinear fault progression, Lebesgue sampling has been proposed as an 
event-driven alternative to uniform time-based sampling [105]. Sampling is triggered when the fault indicator crosses predefined 
thresholds. An extension, Adaptive Lebesgue Sampling (ALS), dynamically adjusts these thresholds based on fault growth rate. When 
integrated with a PF under a Bayesian framework, ALS enables prediction along the fault state axis instead of time. This interaction 
reduces computational demands and long-horizon uncertainty, enabling efficient, real-time fault tracking and RUL estimation. In 
high-noise scenarios, however, ALS may revert to near-uniform sampling.

Furthermore, [102] proposed a hybrid approach combining PFs with a Wiener process to model unit-to-unit variability, referring 
to differences in degradation across systems due to varying conditions. A unit-specific parameter is inferred through the PF, enabling 
individualized RUL predictions while leveraging the stochastic properties of the Wiener process.

2.1.4. Challenges in uncertainty management
Given these considerations, it is clear that significant challenges persist in prognostics when it comes to quantifying uncertainty, 

especially in quantifying the contribution of each source of uncertainty in RUL predictions. Despite the challenges of DDMs, assume 
that all models can quantify the contribution of epistemic and aleatoric sources of uncertainty to RUL. Even in that ideal scenario, 
can uncertainty management be effectively performed? It is important to remember that epistemic uncertainty, stemming from a 
lack of knowledge, is reducible, but aleatoric uncertainty is irreducible. However, aleatoric and epistemic uncertainties often coexist, 
making it difficult to separate them [115]. In particular, for classification tasks, it was found that the rank correlations between both 
sources of uncertainty are within 0.8 to 0.99 [124]. Even more, when epistemic uncertainty is identified separately from aleatoric 
uncertainty, what kind of data is necessary to acquire to reduce the epistemic uncertainty? Is it just a matter of gathering more 
degradation histories? Some prognostic models were trained in big datasets, yet the confidence intervals of the RUL predictions 
remain wide. Consequently, managing uncertainty may not always be feasible under this categorization of uncertainty.

Therefore, a different categorization of uncertainties is needed to facilitate differentiation and enable uncertainty management. 
This categorization should be based on time, an inherent variable in prognostics. In addition, it should be subjective and focus 
on characterizing uncertainties specific to the system under study [84,98,102], rather than uncertainties in the population, as 
already mentioned. The need for a different categorization of uncertainty sources has been discussed in [112], where four sources of 
uncertainty were identified: present, future, model, and prognostic measure. This was further extended in [125] with the addition 
of a fifth source, past uncertainty.

The five proposed sources of uncertainty are as follows:

1. Past Uncertainty: Stemming from the manufacturing or assembly process and material quality.
2. Present Uncertainty: Arising from the lack of knowledge about the true state of health of an engineering system.
3. Future Uncertainty: The most difficult and important to address, as the future is unknown and it is impossible to foresee 
precisely environmental conditions, loading profiles, etc.

4. Model Uncertainty: Encompassing several aspects, such as model initial parameters and biases.
5. Prediction Method Uncertainty: Related to the uncertainty arising from the prognostic measure itself. In supervised 
techniques, such as ML models, model uncertainty and prediction method uncertainty become a single source.

It is important to note that past uncertainties are not uncertainties in the present once uncertainty management is performed. 
For example, if sufficient data is gathered about the manufacturing process, it is possible to manage past uncertainties and reduce 
their impact on RUL uncertainty.

2.2. Robustness

Robustness refers to the ability of a model to consistently provide accurate and consistent predictions, despite variations in 
operational conditions, environmental factors, and input data variability. This includes the model’s ability to handle unexpected 
disturbances, sensor noise, incomplete data, and unseen data without a significant decline in performance.
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In prognostics, the most concerning part comes with changes in the operational conditions or fault modes that cannot be taken 
into account in the training process. In addition, the operational conditions of the testing engineering system may differ from 
those observed in the training set. These issues can affect the performance of a prognostic model. Multiple publications on DL 
models [4,27,56] address robustness with ‘‘Domain Adaptation’’, referring to the techniques that reduce the negative effects in the 
performance of a prognostic model when dealing with domain shifts.

Nonetheless, despite the importance of robustness to ensure safety and reliability in the operation of a system, there are still big 
challenges to developing techniques that guarantee robustness to prognostic models.

2.2.1. Machine learning models
In [4], a review of ML models is provided, highlighting the challenges in these models. A consistent challenge with ML models is 

their tendency to exhibit higher errors under varying operational conditions. Nevertheless, several efforts have been made to address 
this problem. In [33], a Deep Convolutional Neural Network (DCNN) is used to estimate the RUL under different fault modes for 
turbofan engines. To do so, an adaptive batch normalization is integrated into the model. The results show an improvement when 
using adaptive normalization, however, the results still have high errors and are volatile. In [27,56], a domain adversarial neural 
network is validated under two case studies for turbofan engines and bearings. The same problems remain, with higher error rates 
and noisy results. One limitation that is highlighted is that better performance could be achieved with these models when training 
with more data; however, in industrial scenarios, data is scarce.

Transfer Learning has also been used to tackle robustness [47]. An important part of this framework is data alignment. However, 
it assumes a straight degradation trace pattern. This is a strong assumption, as the degradation process can be more complex and 
may not accurately capture the behavior of different fault modes. In addition, the authors mention that a main limitation of this 
framework is the availability of ‘‘no healthy’’ state data in industrial applications.

2.2.2. Stochastic models
Moving onto different prognostic models, stochastic models, in particular, HMMs, have been able to provide a methodology 

when testing the model with unseen data. In [82], an Adaptive Non-Homogeneous Hidden Semi-Markov Model (ANHHSMM) is 
used, which is an extension of the Non-Homogeneous Hidden Semi-Markov Model (NHHSMM). The model is trained with the 
degradation histories of 8 open-hole specimens that experienced fatigue loading and tested with 3 open-hole specimens that went 
under the same fatigue loading and in-situ impact loading. Impact loading can influence the lifetime of specimens, either reducing 
it or, counterintuitively, increasing it. To address this change in the lifetime of the specimens, the model adapts its parameters after 
the impact and, therefore, reports better results than non-adaptive models. The significance of this model lies in its ability to adapt 
without requiring a large amount of data, thus, a stochastic model can overcome the limitations of ML models. Nonetheless, the 
ANHHSM has its limitations, the most prominent being that it has not been tested under changes to the primary loading condition. 
Instead, it has only been applied when operating conditions change for a few seconds, such as during impact loading.

Another publication addresses this related problem by using an SLHSMM [84,126], which is another extension of the NHHSMM. 
The proposed framework characterizes the similarity between a testing degradation history and training data to perform a re-
estimation process. The SLHSMM can provide good results when facing outliers (in this case, specimens that experienced impact 
loading) when compared to other frameworks, such as Gaussian process regression and NHHSMM. Even more, SLHSMM can reduce 
the confidence intervals and computational cost. The main limitation of this framework is the dependency that it has on the outliers 
present in the training set, meaning that for the SLHSMM to provide good results, it needs diverse data in the training set.

2.2.3. Bayesian filter models
In [104], a framework combining PFs and neural networks is developed to adapt to different scenarios by automatically detecting 

anomalies in a battery’s expected behavior. The framework is not computationally expensive, and it can be run online. Another 
advantage of the framework is that it does not need physical knowledge or huge amounts of experimental data. The results show 
the capabilities of the framework to detect anomalies; however, RUL predictions tend to be volatile, and convergence to the true 
RUL is reached in the last cycles of the batteries.

2.3. Interpretability

Interpretability refers to the ability to understand and explain the predictions or results generated by prognostic models, meaning 
also that it is possible to relate the model parameters to a physical meaning [127]. Interpretability is an important aspect of 
prognostics because it helps users make an informed decision based on the predictions by knowing how the predictions were derived. 
Even more, based on European regulations, the General Data Protection Regulation (GDPR) [7] entails the right to explanation when 
it comes to algorithms in decision-making. Therefore, if a decision was made based on an algorithm and this decision can affect a 
person, then the person has the right to know how that decision was made. In terms of PHM, some components are critical and can 
compromise the safety of people, hence, PHM can also be affected by this regulation.

2.3.1. Machine learning models
The aspect of interpretability has gained attention over the years in the PHM community due to the increased use of ML models, 

which are mostly considered a ‘‘black box’’. However, within the ML community, the term ‘‘explainability’’ is frequently mentioned 
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and sometimes is used as a synonym for interpretability. Nonetheless, explainability refers to creating a model that can explain its 
actions, and interpretability refers to interpreting and comprehending the model’s results [128]. In a review of DL applications 
for PHM [129], interpretability is considered a significant challenge, with current approaches often falling short in providing 
interpretability for physical systems. Consequently, most papers in prognostics that explicitly address interpretability are related 
to ML models.

Local Interpretable Model-Agnostic Explanations (LIME) and Shapley Additive Explanations (SHAP) are widely used tools for 
interpretability. LIME focuses on local explanations by analyzing a single prediction through perturbations applied to the specific 
data point in question. Conversely, SHAP focuses on both local and global explanations. Global explanations in SHAP are used to 
understand the overall importance of each feature across the entire dataset, while local explanations are given by calculating how 
each feature contributes to predictions on a specific instance. Both of these tools have been applied to prognostic models based on 
ML in a few studies [42,48,76], primarily focusing on feature selection and feature importance.
Limitations of LIME and SHAP. Both LIME and SHAP exhibit notable limitations, particularly in their robustness and consistency. 
LIME’s primary drawback lies in the unreliability of its generated explanations. Studies such as [130,131] highlight that LIME can 
produce significantly different explanations for inputs that are either identical or nearly identical. This inconsistency is a serious 
challenge, especially in prognostic models where stable and reliable explanations are essential for informed decision-making.

SHAP, similarly, has been shown to assign misleading relative feature importance in certain scenarios. To achieve computational 
efficiency, SHAP relies on approximations of Shapley values, but these approximations can diverge substantially from exact SHAP 
scores, particularly in models with a large number of features [132]. Exact SHAP scores aim to provide a precise measure of feature 
importance by evaluating all possible coalitions of features, yet their computation is impractical in most real-world applications due 
to exponential complexity. While approximations, as implemented in tools like SHAP, use heuristic or sampling-based methods, they 
can fail to preserve the true ranking of feature importance. Compounding this, exact SHAP scores themselves are not immune to 
issues; they may assign non-zero importance to irrelevant features or undervalue critical ones. This stems from the fact that not all 
feature subsets are equally relevant for interpretability in machine learning, contrasting with the assumptions of game theory [6]. 
Such limitations in both exact and approximate SHAP methods raise significant concerns about their reliability, particularly in 
high-stakes prognostic models where inaccuracies can compromise safety and outcomes.

In addition to the previously discussed issues, tools like LIME, SHAP, and similar methods often face a ‘‘disagreement problem’’, 
where they produce conflicting feature rankings. For example, if LIME and SHAP yield significantly different rankings for the same 
prediction, it can lead to confusion in interpreting the behavior of an engineering system. This ambiguity complicates decision-
making, particularly in critical PHM applications, where understanding the root cause of a failure is essential for determining the 
appropriate corrective actions. Such inconsistencies result in unstable explanations that can have serious repercussions.

To mitigate this challenge, a metric called the ‘‘trust score’’ was proposed in [49] as a way to identify the most suitable 
explanation tool for a given scenario. While promising, the trust score has notable limitations. It has only been validated on simple 
DL architectures and does not address the root cause of biases in the generated explanations. Consequently, these tools and metrics 
still fall short of achieving the level of interpretability required for DL models, especially in high-stakes applications.
Alternative interpretability methods. Other approaches have been used to provide interpretability to ML models. In [35], variational 
Bayesian inferences were used to create a framework called a structured-effect neural network that quantifies how a change in 
a sensor measurement affects RUL predictions. In [46], a variational encoder is used to create a latent space that groups the 
degradation histories into different clusters. Once this latent space is created, it can be used to make a visual representation that 
is used for ‘‘interpretable diagnosis’’. When new unseen data is used as input, then the encoder will place this data in proximity 
to data points whose diagnosis is already known, in this way giving a visual interpretation of the data. Another approach for 
interpretability for data-driven prognostics is Relevant Vectors Machines [73], however, it only provides information about whether 
the degradation histories are linear, smooth, or stationary. Therefore, a more complete framework is needed to interpret the model 
and its predictions.

Many attempts have been made to give some explanation to RUL predictions about the features used by using methods such as 
LIME or SHAP to assess the importance of the features. However, DL and ML models are black boxes by nature, and even though 
there is a research area dedicated to providing interpretability to them, this area still has many challenges of its own.

2.3.2. Stochastic models
In [72], an NHHSMM, an extension of the HMM, is utilized to model the physical degradation process of composites. The model 

employs four hidden states intended to reflect the stages of composite degradation: matrix cracking, delamination, fiber breakage, 
and failure stage. While these hidden states have the potential to align with the aforementioned stages, this correlation has not been 
strictly defined.

In prognostics, HMMs are often constrained to a left-to-right transition structure, reflecting the irreversible nature of most 
degradation processes, except in cases of self-healing materials or maintenance. This structural restriction ensures that the model 
accurately represents systems that deteriorate progressively over time. Additionally, once state transition probabilities are estimated, 
metrics such as the average time spent in each damage state can be directly computed, providing intuitive insights into the physical 
degradation process. The observation distributions further clarify the behavior of sensor measurements or health indicators within 
each damage state.

A notable advantage of HMMs, derived from their unsupervised learning nature, is their ability to predict both the RUL and the 
current damage state, alongside estimating the time a system will spend in each damage state. Enhanced variants further improve 
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interpretability. For instance, the SLHSMM [84] provides an online estimation of similarity between the testing system and training 
systems, while the ANHHSMM [82] identifies when a testing system is an outlier. These advancements equip users with a deeper 
understanding of both the model’s predictions and the underlying data, increasing trust and usability in critical applications.

2.3.3. Bayesian filter models
Finally, interpretability has not been addressed explicitly for BFs, similar to stochastic models. However, the nature of BFs 

provides interpretability, depending on the level of complexity. Consider the example of PFs to understand how these models can 
provide interpretability.

In this process, particles represent potential scenarios, making understanding and interpreting the model’s predictions easier. 
When the particles are updated with new sensor data, it becomes clear which particles are assigned higher weights. This allows for 
the visualization of probability distribution functions, providing insights into the algorithm’s behavior and the system’s dynamic 
evolution. Additionally, a comparison can be made between the current estimated observation of the BF and the actual sensor data, 
enabling users to evaluate whether the BF accurately estimates the current observations.

2.4. Feasibility

Feasibility is defined as a model’s ability to be trained and achieve accurate results with the available data, which varies by 
industry. Available data may be limited in number, contain missing or poor-quality entries, include noise, lack diversity, or present 
challenges in labeling.

For example, in the aviation industry, most of the data available corresponds to nominal operations and healthy states. The lack of 
diversity in the data leads to a challenge when predicting in different scenarios [133]. However, in general reviews of PHM [3,134], a 
challenge that is persistently found is the amount of data available to train the models, since in many industrial applications, there 
is no labeled data or missing measurements which makes it harder to create training datasets for prognostic models. To better 
understand the current state-of-the-art in prognostics on this topic, first examine the most commonly used datasets for validating 
prognostic models.

As shown in Table  1, a large number of publications validate their models using the case study of turbofan engines, coming from 
the C-MAPSS dataset [135]. The C-MAPSS dataset corresponds to simulated data on turbofan engines and is made of 4 sub-datasets, 
each one with more than 100 degradation histories for the training phase. These 4 sub-datasets have different conditions and fault 
modes, however, most papers only focus on the first sub-dataset, as it only has one condition and one fault mode.

This dataset has become a benchmark in the prognostic field, and as a consequence, it has helped to establish a comparison 
between models. However, it has had negative effects in the community since several publications only use C-MAPSS to test their 
models without taking into account the fact that in real-life scenarios there is not that amount of available degradation histories to 
train a model, and the data are artificially generated since it comes from a simulator that has its simplifications.

For the models that were validated with a case study on bearings, the majority use data from PRONOSTIA (also called 
FEMTO) [136]. PRONOSTIA is an experimental platform that can provide real data on the accelerated degradation of bearings 
for diagnostic and prognostic purposes. PRONOSTIA was used to generate the dataset ‘‘IEEE PHM 2012 Prognostic Challenge’’, 
which is composed of real data of bearings with accelerated degradation under three different conditions. The dataset has a training 
set of 6 degradation histories and a testing set of 11 degradation histories.

Another important case study that has a strong prevalence in prognostics is lithium-ion batteries, which have gained attention 
in PHM since they can play an important role in current technologies, from cell phones to electric cars and aircraft. Therefore, 
batteries will play a key part in the transition to sustainable transportation and renewable energy storage. But to do so, there is a 
need for reliability, which can be obtained via the accurate estimation of the state of health and the state of charge [137].

Given the importance of batteries in PHM, there are more than 20 datasets available for prognostics. However, the most popular 
ones are the Prognostic Center of Excellence (PCoE) Battery Dataset, Randomize Battery Usage Dataset, and CALCE Dataset. In 
PCoE, with 34 batteries that are cycled to 70% or 80% of the initial capacity, and are being charged and discharged at different 
temperatures [138]. In the Randomized Battery Usage Dataset, 28 cells are continuously cycled with current profiles generated by 
random walks, providing a benchmark for state of health estimation [139]. Finally, the CALCE Dataset has been used primarily for 
the state of health estimation. The dataset contains different discharge profiles and cutoff voltages to simulate real-life scenarios.

2.4.1. Machine learning models
ML models need large and labeled datasets for training and validation, which has been pointed out in reviews for prognostic [4] 

as a particular challenge since in industrial applications, datasets with those characteristics might not be available. In publications 
in the prognostic field, it is not addressed how the model’s performance is affected by changes in the amount of data. However, 
there are attempts to address this issue, usually under the name ‘‘few-shot prognostics’’, which will be detailed below.

In [60], a Bayesian approximation enhanced probabilistic meta-learning (BA-PML) algorithm is used for prognostics with limited 
data. BA-PML integrates variational inference techniques within a meta-learning framework, enabling the estimation of uncertainty 
and the generation of probabilistic predictions. Unlike traditional ML approaches that rely on point estimates, BA-PML provides 
interval estimates, thereby offering a more comprehensive understanding of prediction uncertainty. By adopting an encoder–decoder 
architecture as its base predictor, BA-PML is capable of handling variable-length predictions, crucial for degradation prediction tasks 
common in machinery prognostics. Furthermore, the algorithm’s episodic training stage facilitates cross-domain adaptation through 
fine-tuning to ensure robust performance in real-world applications where data distributions may vary.
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The model was tested with bearings. The few-shot prognostics are referred not only to a limited amount of degradation histories 
but also to a limited number of samples within a degradation history. The results are promising, although for some cases the 
predictions are extremely noisy, and the RMSE of the predictions is higher when the amount of available samples increases. One of 
the limitations and future work for this study is the development of a more concise episodic training to reduce the computational 
cost of the framework.

A graph neural network is used in [59] in the context of few-shot prognostics. Instead of using traditional methods based on 
Euclidean measures, this approach creates dynamic graphs that show how different factors interact over time. By analyzing these 
graphs, the model can uncover hidden patterns and predict the remaining lifespan of the machines more accurately. First, it organizes 
the data into these graphs, considering various information channels. Then, it uses a smart method to decide how different parts of 
the machine relate to each other in these graphs. Finally, it trains a special kind of network called GSDeMLN, which learns from 
the graphs to make predictions about machine health, even when conditions change.

Another issue that ML models face when using supervised techniques is the need for labeled data. In [69], this challenge is 
addressed with a Bayesian DL-based approach. The proposed method preprocesses historical equipment monitoring data and field 
data to create samples labeled with degradation information. It then employs an RNN and incorporates a variational inference 
technique to quantify uncertainty in RUL prediction. By converting degradation uncertainty into RUL uncertainty from a reliability 
theory perspective, this approach helps make more informed maintenance decisions since it provides a probabilistic understanding 
of when a system or component is likely to fail.

In [63], the authors propose a self-supervised LSTM-CNN framework to tackle the challenges of sparse and unlabeled data 
in bearing prognostics. The model leverages contrastive learning during pretraining to extract discriminative temporal-frequency 
features from raw sensor signals, significantly reducing the dependence on labeled data. A subsequent supervised fine-tuning stage 
enables effective application to downstream tasks. This approach improves the practicality of predictive maintenance in label-
scarce environments. However, the authors acknowledge that the method incurs high computational overhead, which may limit 
its deployment in resource-constrained settings.

2.4.2. Stochastic models
For stochastic models, feasibility is not a critical issue, as they can be trained with small datasets. For instance, in [83], an 

NHHSMM was trained using only 8 degradation histories. Stochastic models do not require large datasets, nor do they need labeled 
data. Moreover, models such as ANHHSMM or SLHSMM are particularly well-suited for few-shot prognostics, as they can adapt 
to or utilize just a single degradation history, respectively. Furthermore, [92] presents a nonparametric model based on functional 
principal component analysis and stochastic modeling to handle fragmented data. Fragmented data is defined as cases where sensor 
readings are missing during random periods of the degradation process due to monitoring interruptions or data loss. The model is 
tested under different levels of missing data and shows that RUL predictions remain accurate even with up to 25% of data missing.

2.4.3. Bayesian filter models
Finally, BFs have also proved to be feasible since they can have a good performance when trained with a small dataset. It is 

worth mentioning that BFs need an equation that describes the evolution of degradation of the engineering system. In the case of 
BFs with a DDM approach, it is important to take into account which models characterize the evolution of degradation and how 
much data is needed for this purpose. However, if only the prediction part is considered, BFs have the substantial advantage that it 
is not necessary to have a complete run-to-failure trajectory. Therefore, BFs are particularly feasible for applications where there is 
missing data.

3. Case study

In this case study, three models are compared based on the four key characteristics discussed throughout the paper. For the ML 
models, an LSTM is employed, as it is widely recognized in the prognostics field and typically delivers the best accuracy, inspired 
by the model developed in [28]. For stochastic models, the Adaptive Hidden Semi-Markov Model (AHSMM) is utilized, notable for 
its adaptability to unseen data, drawing inspiration from the framework presented in [82]. Finally, for BFs, a PF is applied, chosen 
for its popularity and proven performance across various engineering systems, based on the approach described in [99].

This comparison spans different paradigms of DDMs, with data sourced from the C-MAPSS dataset. The accuracy of the models is 
evaluated using the Root Mean Square Error (RMSE) metric complemented by the standard deviation (SD) of RMSE values across all 
test set predictions. Multiple experiments are conducted to evaluate each model’s performance across the four key characteristics.

3.1. Data pre-processing

All three prognostic models are trained on data from a single sensor to ensure a fair comparison under identical input conditions. 
This deliberate simplification isolates each model’s learning capability by minimizing confounding effects from feature engineering 
or data fusion. Although DL models typically perform better with rich, multivariate inputs, this study prioritizes a controlled 
evaluation of model behavior over maximizing predictive accuracy. As a result, the use of a single sensor intentionally limits absolute 
performance but enables a clearer analysis of RUL prediction characteristics.

The baseline case utilizes data from the first sub-dataset, FD001, with Sensor 11 chosen for its superior scores in prognosability, 
trendability, and monotonicity. These scores, along with the fitness value (calculated as the average of the three scores), are 
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Table 2
Prognosability, trendability, and monotonicity score per sensor data.
 Sensor Prognosability Trendability Monotonicity Fitness 
 2 0.81 0.39 0.66 0.62  
 3 0.76 0.31 0.63 0.57  
 4 0.87 0.58 0.77 0.74  
 7 0.84 0.46 −0.75 0.68  
 8 0.66 0.01 0.67 0.45  
 9 0.33 0.01 0.42 0.25  
 11 0.87 0.7 0.81 0.79  
 12 0.85 0.55 −0.78 0.73  
 13 0.66 0.01 0.68 0.45  
 14 0.31 0.01 0.26 0.19  
 15 0.84 0.46 0.71 0.67  
 17 0.79 0.34 0.64 0.59  
 20 0.83 0.43 −0.7 0.65  
 21 0.81 0.47 −0.7 0.66  

Fig. 5. Lifetime distribution for baseline case.

presented in Table  2. These characteristics are considered desirable for inputs in prognostic applications [140]. To process the sensor 
data, it is discretized into 20 clusters using the K-Means algorithm. The number of clusters is determined based on the Monotonicity 
Index (MI) [141], which helps identify the optimal number of clusters that can effectively represent the degradation process.

The C-MAPSS dataset provides 100 complete run-to-failure trajectories in the training file and 100 partial trajectories in the test 
file. For this study, we chose to work exclusively with the complete run-to-failure trajectories, splitting the original training set into 
64 training and 16 testing instances. This approach ensures that true RUL labels are available for the full operational lifespan of each 
engine, which is essential for accurately computing evaluation metrics that require knowledge of the true EOL (e.g., coverage of 
uncertainty intervals across the entire life cycle). Using the provided test set would not allow for this level of evaluation consistency, 
as the trajectories are incomplete. Therefore, this split better supports the study’s focus on model behavior and UQ. Fig.  5 presents 
a histogram showing the lifetime distributions of the training and testing sets.

Using the baseline training data, the hyperparameters of the three models were optimized. The architecture of each model and 
the corresponding training process are explained below.

The input for the LSTM consists of windows of three samples. This choice is driven by the need for the LSTM to receive inputs 
of consistent length and to be utilized in an online manner, necessitating the data to be windowed. The window length was selected 
based on its superior performance during validation.

The architecture of the LSTM is illustrated in Fig.  6. The model incorporates dropout to enhance accuracy and, subsequently, to 
account for uncertainty in the predictions through the use of the MC Dropout method. The number of neurons per LSTM layer and 
the dropout probability were determined via a random search.

The AHSMM used in this case study is based on the model proposed in [82]. It features an HSMM with 7 damage states, selected 
using the BIC criterion [86]. While adding more states could have slightly improved the BIC, the increased computational cost 
outweighed the benefit, leading to the choice of 7 states. In this HSMM the sojourn times are defined using a Weibull distribution. 
The Weibull distribution is determined by two parameters, shale and scale. An adaptive module modifies these sojourn times by 
adjusting the scale parameter after a transition between hidden states occurs. The scale parameter is adjusted based on the ratio 
of the expected sojourn time from the trained parameter to the actual time spent in a particular hidden state, considering the 
degradation history (see Fig.  7).
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Fig. 6. LSTM architecture for prognostics.

Fig. 7. HSMM with 7 states (last state observable) and Weibull-distributed sojourn time with adaptation mechanism.

Table 3
Results of prognostic models for baseline case.
 Model RMSE SD  
 LSTM 38.05 8.91  
 AHSMM 34.48 9.34  
 PF 24.05 15.69 

The PF used in this case study is inspired by the work presented in [99]. Specifically, a PF employing a similarity approach is 
utilized. The degradation model is represented by a degree 4 polynomial, chosen for its ability to capture nonlinear degradation 
trends while avoiding overfitting. This degree provides adequate flexibility without introducing unnecessary complexity. The 
similarity metric applied is the Maximum Mean Discrepancy (MMD) [142].

The framework operates as follows:

• Training Phase: Each training history is fitted to a polynomial, and the polynomial parameters are saved.
• State Transition Function: A particle, which is a set of parameters defining a curve, is perturbed with random noise.
• Observation Function: This function evaluates the value of the curve defined by a particle’s parameters at a given time step.
For the testing phase, sensor data up to the current time step is collected. The MMD is used to identify which training histories 

are most similar to the current data. Training histories with an MMD value below a specified threshold (set to 0.01 in this paper) 
are considered. If no training histories meet this threshold, only the history with the best MMD value is used.

The PF is initialized using parameters derived from the fitted polynomials of the most similar training histories. Identifying 
these similar training histories requires access to some samples of the testing data. As a result, the PF can only begin providing 
predictions after a predefined number of samples, which in this study was selected to be 10 data points, have been observed during 
online operation. Consequently, in the upcoming prediction plots, the PF is the only model that does not generate predictions from 
the start. Using 150 particles, the PF achieves the desired particle count by randomly perturbing each set of parameters.

The PF operates until the mean value of all particles reaches the failure threshold, indicating that the predicted sensor values 
have reached a failure state. At this point, the PF is stopped. Fig.  8 summarizes the training and testing process for the PF.

3.2. Baseline

The results of the baseline case are summarized in Table  3. Among the three models, the PF outperforms the others with the 
lowest RMSE, although it has the highest standard deviation. The AHSMM model achieves an RMSE of 34.48, while the LSTM model 
shows a slightly higher RMSE of 38.05. Notably, the PF’s superior performance is particularly impressive given its simplicity, relying 
on a fitted polynomial as the degradation model.

The results are visually represented by presenting the predictions for each model for three selected engines, as shown in Fig.  9. 
These engines were chosen based on their lifetimes: engine #37, which has the shortest lifetime in the test set; engine #81, which 
represents the median lifetime; and engine #2, which has the longest lifetime. For clarity, only the mean predicted RUL is shown, 
as including confidence intervals would complicate the visualization.

The visualization reveals that the predictions from both the PF and the LSTM models exhibit volatility, particularly in the case 
of LSTM. In contrast, AHSMM predictions are more stable, although they include noticeable jumps corresponding to transitions 
between hidden states. All three models perform better during the final cycles of the system’s life. While this is beneficial for safety, 
as it indicates when the system needs to be decommissioned, it is less advantageous for predictive maintenance.

3.3. Uncertainty

As discussed in Section 2.1, dealing with uncertainty is a significant challenge in prognostics. Comparing models that capture 
different sources of uncertainty is even more difficult. In this section, an effort is made to draw such a comparison using two metrics: 
coverage and Weighted Spread of Uncertainty (WSU).
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Fig. 8. Similarity PF algorithm.

In this paper, the coverage metric is established to quantify how well the predicted intervals encapsulate the true outcomes over 
a series of observations or time steps. Therefore, it provides insight into whether the model’s confidence intervals appropriately 
capture the variability in the data.

The coverage metric is defined as the proportion of true values that fall within the predicted confidence intervals. For a given 
predictive model, if 𝑦𝑡 represents the true value at the time step 𝑡, and [𝑙𝑡, 𝑢𝑡] represents the predicted lower and upper bounds at 
the same time step, then the coverage for a single prediction can be expressed as: 

𝐶𝑡 =

{

1, if 𝑙𝑡 ≤ 𝑦𝑡 ≤ 𝑢𝑡
0, otherwise

(1)

The coverage metric for predicting a complete degradation history of length 𝑇  is calculated as the average of 𝐶𝑡. Hence, a 
coverage value of 1 indicates that all true values fall within their respective predicted intervals. 

Coverage = 1
𝑇
∑

𝐶𝑡 (2)

𝑇 𝑡=1
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Fig. 9. Results from prognostics model for three different engines in the baseline case.

Table 4
Results of prognostics models in terms of uncertainty for baseline 
case.
 Model Coverage WSU  
 LSTM 0.33 680357.55  
 AHSMM 0.97 3194276.47 
 PF 0.17 385141.6  

The WSU metric [32] is shown in Eq.  (3). The expression calculates the area between the confidence intervals while penalizing 
wider confidence intervals at the end of the lifetime. The penalization is considered because the longer the time that has passed, 
the more information is available. Therefore, it is expected that the predictions hold less uncertainty as time passes. 

𝑊𝑆𝑈 =
𝑇−1
∑

𝑡=1
(𝑡 − 𝑡0)

(

𝑢𝑡+1 + 𝑢𝑡
2

−
𝑙𝑡+1 + 𝑙𝑡

2

)

(3)

Table  4 presents the average coverage and WSU for the baseline test set. It is worth noting that the confidence intervals represent 
the 95% confidence level of the RUL probability density functions. The results indicate that AHSMM achieves the best coverage, with 
nearly perfect results. However, this high coverage comes at the cost of wide confidence intervals, as evidenced by AHSMM’s highest 
WSU value. This trade-off becomes apparent when visualizing the confidence intervals in Fig.  10, where AHSMM’s intervals are 
excessively wide, making them non-informative from a decision-making standpoint. This pattern is consistent with other stochastic 
models discussed earlier in Section 2.1.

In contrast, both the LSTM and the PF models exhibit low coverage percentages, making their predictions unreliable for decision-
making since their confidence intervals fail to contain the true RUL values, leading to overconfident or inaccurate predictions that 
could lead to failures for PdM frameworks and a decrease in their trustworthiness.

It is advisable to consider the coverage metric when calibrating uncertainty to develop more reliable models, ensuring it reaches 
a threshold that supports informed decision-making. In the case of LSTM and PF, this calibration is relatively straightforward since 
the depicted uncertainty depends on user-defined parameters: dropout probability for LSTM and process and observation noise 
for PF. However, adjusting these parameters can affect the accuracy and uncertainty coverage of the models. For example, using 
different dropout values can cause noticeable changes in coverage as shown in [32]. However, for this work, the parameters chosen 
were selected for their optimal accuracy. The critical question then becomes: How reliable do the models need to be for effective 
decision-making?
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Fig. 10. Comparison between prognostics models for uncertainty case.

However, AHSMM faces the opposite challenge: reducing confidence intervals without significantly compromising coverage. 
For example, a similarity-based approach, as demonstrated in [84], has been shown to reduce confidence intervals. Furthermore, 
exploring alternative prognostic measures could further aid in narrowing the spread of these intervals.

This analysis does not explore the complexities of uncertainty categorization, as implementing such mechanisms in these models 
would require further development beyond what is covered in the reviewed literature. Instead, the focus is on understanding the 
capabilities of state-of-the-art models and assessing whether the calculated confidence intervals, along with the RUL predictions, are 
reliable for decision-making purposes. Moreover, the analysis may not provide a completely fair comparison, as the models capture 
different sources of uncertainty; for instance, LSTM captures epistemic uncertainty, while AHSMM addresses aleatoric uncertainty. 
Consequently, the results presented in Table  4 could vary significantly if all models accounted for both types of uncertainty.

3.4. Robustness

The robustness of the prognostic models is evaluated through two experiments. The first assesses performance when training and 
testing on data with different fault modes. The second introduces noise into the input data from the baseline case study to evaluate 
its impact on performance.

3.4.1. Adaptation across fault modes
This experiment evaluates the models’ ability to generalize by comparing their performance on data with differing fault modes. 

Specifically, the models are trained on the FD001 dataset, which features a single fault mode (HPC degradation) under consistent 
operational conditions, and tested on the FD003 dataset, which introduces an additional fault mode (fan degradation) under the 
same conditions. As illustrated in Fig.  11, the testing dataset includes degradation histories that are outliers in terms of lifetime 
compared to the training dataset. This setup provides a rigorous test of the models’ robustness in handling diverse fault modes and 
degradation patterns.

The results presented in Table  5 indicate a significant decrease in accuracy across all models when applied to the robustness 
test set. This drop is expected given the discrepancy between the fault modes present in the training and testing datasets. Among 
the models, AHSMM demonstrates the best performance with the lowest RMSE, suggesting that its adaptive mechanism allows it to 
handle variations in fault modes more effectively. In contrast, the PFs shows the worst performance, which aligns with expectations 
since PF heavily depends on the training data and struggles when exposed to unfamiliar degradation patterns.

Table  6 further examines the models’ performance in terms of coverage and WSU. AHSMM, despite the significant drop in 
coverage, still outperforms the other models in this metric. However, its WSU increases substantially, indicating that while the model 
can maintain some predictive capability, the uncertainty in its predictions grows considerably under these challenging conditions. 
19 



M. Salinas-Camus et al. Mechanical Systems and Signal Processing 237 (2025) 113015 
Fig. 11. Lifetime distribution for robustness case.

Table 5
Results of prognostic models for robustness case.
 Model RMSE % change RMSE SD  
 LSTM 94.32 +147.88% 63.42 
 AHSMM 81.88 +137.47% 51.60 
 PF 109.52 +355.38% 84.69 

Table 6
Results of prognostics models in terms of uncertainty for baseline case.
 Model Cov. % change coverage WSU % change WSU 
 LSTM 0.26 −21.21% 2047416.9 +200.93%  
 AHSMM 0.82 −15.46% 12219343.39 +282.53%  
 PF 0.08 −52.94% 829690.81 +115.42%  

The PF model suffers the most in terms of coverage, further underscoring its limitations in handling diverse fault modes, while LSTM 
maintains a middle ground between AHSMM and PF in both coverage and WSU. 

To visualize some of the predictions on the testing set, Fig.  12 displays the predictions of the three models for three selected 
engines. These engines were chosen based on their lifetimes: engine #99, which has the shortest lifetime in the test set; engine #94, 
which represents the median lifetime; and engine #55, which has the longest lifetime.

AHSMM’s predictions improve when a transition occurs, thus the adaptation mechanism is triggered. This is due to the model’s 
design, which accounts for discrepancies between the expected and actual sojourn times in a particular hidden state for a given 
testing engine.

However, for PF, the predictions for engines #94 and #55 are significantly inaccurate because the lifetimes of these engines differ 
greatly from those in the training set, leaving the model with little basis for comparison. One possible improvement is to implement a 
mechanism similar to AHSMM’s, where the model adjusts by generating more particles that represent different degradation processes, 
or in other words, different polynomial curves, based on how far off the predictions are. This suggests that in stochastic models 
and BFs, adaptation based on current testing data is feasible since these models simulate the degradation process and can adjust 
individually to the online test degradation history.

In contrast, LSTM directly maps sensor values to RUL labels, making it more challenging to adapt predictions when confronted 
with unseen data. This issue is common in supervised ML models, as mentioned in Section 2.2 since supervised ML models need 
labeled data across all the health conditions of the system to perform more accurately when dealing with data from different fault 
modes, which might not be available in industrial application. LSTM predictions tend to improve toward the end of the engine’s 
life, where sensor values are more consistent across engines.

This experiment highlights the challenges faced by prognostic models when applied to datasets with different fault modes 
than those they were trained. The AHSMM model, due to its adaptive nature, performs better than the LSTM and PF models 
but still experiences a considerable decline in accuracy and increased uncertainty. These findings underscore the importance of 
developing models that can adapt to diverse operating conditions and fault modes, as real-world applications often involve varying 
and unpredictable degradation patterns. The significant decrease in model performance also suggests that further improvements in 
model generalization are necessary to ensure reliable prognostics across a wide range of scenarios.

Models like LSTM could benefit significantly from incorporating techniques such as transfer learning or domain adaptation, 
which were discussed earlier in Section 2.2. These approaches allow the model to leverage knowledge from related tasks or datasets, 
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Fig. 12. Results from prognostics model for three different engines in the robustness case.

enabling it to perform better in situations with limited training data or when there are shifts in the operating conditions. Transfer 
learning could help the LSTM model adapt to new fault modes or degradation patterns by fine-tuning it with a smaller set of labeled 
data from the target domain. Similarly, domain adaptation could improve its robustness to variations in the testing data, ensuring 
more reliable performance across different operational environments. Implementing these techniques could enhance the LSTM’s 
generalization capabilities, making it more effective in real-world applications where data may vary significantly from the training 
set.

3.4.2. Noisy input data
This experiment is designed to evaluate the models’ ability to handle noisy input data. For this purpose, the data from the 

baseline case is used, where both the training and testing datasets contain the same fault mode. Gaussian noise, with a mean of 0 
and a standard deviation of 0.25, is added to all degradation histories in both the training and testing sets. The addition of noise 
simulates real-world scenarios where sensor inaccuracies or data corruption may occur. A comparison between the original and 
noisy data is visually represented in Fig.  13, demonstrating the effect of the noise on the degradation histories. This setup tests the 
models’ robustness and their ability to maintain accuracy despite the introduction of perturbations in the input data.

The results presented in Tables  7 and 8 highlight the varying performance of the prognostic models when faced with noisy input 
data. The PF shows a significant degradation in performance, with a dramatic increase in RMSE of +179.66%, resulting in an RMSE 
of 67.26. This indicates that the PF model is highly sensitive to the added Gaussian noise, leading to a notable loss in prediction 
accuracy. Similarly, the LSTM model experiences an increase in RMSE of +23.86%, resulting in a value of 47.13, showing that while 
the LSTM is impacted by noise, its performance degradation is less severe compared to the PF. The AHSMM model, on the other 
hand, exhibits a much smaller increase in RMSE of +7.83%, reaching 37.18, which suggests that it is more resilient to noise and 
better able to maintain prediction accuracy under challenging conditions.

In terms of coverage, the AHSMM model performs the best, with a coverage of 0.92, despite experiencing a small decrease 
of −5.15% compared to its performance with clean data. This indicates that the AHSMM model continues to capture the most true 
values within the predicted intervals, even in the presence of noise. The LSTM model, however, shows a significant drop in coverage, 
suggesting that the LSTM struggles to maintain accurate predictions when noise is added to the data, leading to a reduced ability to 
capture true values within the prediction intervals. The PF model shows the lowest coverage at 0.16, which aligns with its already 
limited performance observed in the baseline case.

Similar to the previous experiment with different fault modes, AHSMM demonstrates superior robustness, emerging as the most 
resilient model. It maintains relatively high prediction accuracy and coverage despite the presence of noise. In contrast, the PF 
and LSTM models are more sensitive to noise, leading to significant performance degradation and a reduced ability to handle 
uncertainty effectively. This highlights AHSMM’s strength in managing challenging conditions, while the PF and LSTM models 
struggle to maintain reliability under noisy data inputs.

In Fig.  14, the predictions for the three selected engines are presented with noisy data. These results can be compared to those in 
Fig.  9, where the predictions are based on clean data. By examining both sets of results, the impact of noise on the RUL predictions 
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Fig. 13. Input noise data.

Table 7
Results of prognostic models with noisy data.
 Model RMSE % change RMSE SD  
 LSTM 47.13 +23.86% 9.09  
 AHSMM 37.18 +7.83% 13.61 
 PF 67.26 +179.66% 29.71 

Table 8
Results of prognostics models regarding uncertainty with noisy data.
 Model Cov. % change coverage WSU % change WSU 
 LSTM 0.24 −27.27% 747704.15 +9.89%  
 AHSMM 0.92 −5.15% 3280421.27 +2.69%  
 PF 0.16 −5.88% 567215.79 +47.27%  

Fig. 14. Results from prognostics model for three different engines with noisy data.
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Fig. 15. Sojourn time Weibull distributions for hidden states 5 and 6 for engine #37 RUL prediction.

can be observed, highlighting how the accuracy and reliability of the predictions are affected when noise is introduced into the 
data.

3.5. Interpretability

Given the literature discussed in Section 2.3, most of the efforts done in prognostics in terms of interpretability are focused on 
feature importance. However, the three models under study were trained with only one feature, therefore, the relation between 
input and predictions is straightforward. This is why a qualitative analysis of the models for interpretability is conducted.

The AHSMM is a relatively interpretable model for RUL prediction, primarily due to its structured approach and the Weibull 
distribution, which is used extensively in reliability analysis. The parameters of the Weibull distribution, particularly the scale 
parameter, are dynamically adjusted based on real-time data, which allows the model to adapt to the actual degradation trajectory 
of the system. This adaptive mechanism provides a clear and understandable way to link the model’s predictions to observed data, 
enhancing its interpretability. A visualization is offered in Fig.  15, the sojourn time Weibull distributions for hidden states 5 and 6 
are shown for engine #37, which has a lifetime of 170 cycles. This short lifespan makes it a left outlier in the lifetime distribution 
previously depicted in Fig.  5. To account for the reduced time spent in each hidden state, the adaptive mechanism (illustrated by 
the dashed lines) shifts the Weibull distributions to the left.

Moreover, the AHSMM has clearly defined transitions and sojourn times, and offers a visual representation of the degradation 
process, making the model’s operation more transparent. Each damage state corresponds to a different degradation level, and the 
transitions between states can be easily explained and tracked, providing an understanding of the model’s predictions. While the use 
of hidden states and the complexity of the adaptive mechanism add some layers of abstraction, the overall structure of the model 
and the ability to visualize its predictions help maintain a high level of interpretability. Fig.  16, illustrates the estimated hidden 
states based on the sensor data from engine 37. These estimated hidden states can serve as a diagnostic tool to assess the system’s 
level of damage, offering users a clearer understanding of the system’s condition.

Understanding how these parameters influence predictions can be challenging for LSTM models, which have a total of 20,043 
trainable parameters. With so many parameters and limited input data, the model may learn complex patterns that are difficult to 
interpret and trace back to specific factors in the data. Additionally, disentangling the temporal patterns or trends learned by the 
model can be problematic. One approach to address this black-box nature is to simplify the model, but this simplification often 
comes at the cost of reduced accuracy. In such cases, the performance of a simplified DL model may be comparable to or worse 
than other approaches that offer better interpretability, potentially negating one of the key advantages of DL models.

Fig.  17 illustrates a UMAP projection of the hidden states from the second LSTM layer. The plot shows a clear relationship between 
the projected hidden states and the RUL. Notably, for lower RUL values, the projections are more tightly clustered, suggesting that 
the model develops more consistent representations in the later stages of engine life. This is also reflected in improved prediction 
accuracy for low RUL values. In contrast, higher RUL values also form a relatively cohesive cluster, while mid-range RUL values 
(e.g., 100–200) appear more scattered. This dispersion may indicate less stability in the model’s internal representation during this 
phase, leading to greater uncertainty and variance in its predictions.

For PF, interpretability will be analyzed step by step, beginning with the degradation model, which, in this case, is a polynomial. 
Polynomials are inherently interpretable as mathematical models with coefficients that indicate how they influence the shape of 
the degradation curve. Even more, since the state transition function involves perturbing the polynomial parameters with random 
noise, it is possible to interpret how changes in these parameters might affect the model’s predictions. This gives insight into the 
model’s sensitivity to variations in the degradation process.
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Fig. 16. Diagnostics of engine #37’s degradation levels based on hidden state estimates.

Fig. 17. UMAP projections for LSTM hidden states.

The similarity metric used is a transparent and interpretable method for identifying relevant training histories. MMD is a well-
defined statistical measure that quantifies the difference between distributions, so its role in selecting the most similar training 
histories can be explained and understood in terms of matching historical degradation patterns to current observations. Finally, the 
PF nature mimics the possible variations in the degradation process over time.

Overall, the model’s foundation on fitting and perturbing polynomial curves makes its predictions relatively easy to explain. Both 
the measured and estimated degradation curves can be visualized, aiding in the interpretation of how the system’s current state aligns 
with the model’s estimations. This visual interpretability is particularly valuable when communicating results to decision-makers. 
For instance, in Fig.  18, the observed sensor data is represented by the orange line, while the model’s estimation is shown in green. 
The PF tracks the degradation fairly well, although, near the end of the system’s lifetime, the estimated degradation progresses 
faster than the actual observations.

3.6. Feasibility

The analysis of the feasibility aspect is divided into the computational time of the training and testing for the baseline data and 
the effect that the number of available training histories has on the accuracy for the testing set.

3.6.1. Computational time
Table  9 shows the training time when the models are trained with the baseline data, as well as the testing time per sample. The 

testing time per sample is a critical factor to consider, particularly in real-time prognostic applications, where predictions must be 
made rapidly for each new sample during online operation.
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Fig. 18. Observed sensor data and PF estimated observation for engine #37.

Table 9
Computational time of training and testing per sample for each prognostic model.
 Model Training time [s] Testing time 

(per sample) [s]
 LSTM 8.57 0.39  
 AHSMM 1417.31 0.03  
 PF 0.02 0.41  

Table 10
Results of prognostic models for feasibility case (training with two degradation histories).
 Model RMSE % change RMSE SD  
 LSTM 59.86 +57.31% 29.24  
 AHSMM 38.99 +13.08% 7.05  
 PF 132.21 +449.72% 104.21 

The results in Table  9 show the computational times for training and testing each prognostic model. The training time for 
the LSTM model is 8.57 s, which is relatively fast considering the complexity of the deep learning architecture. However, it is 
worth noting that the LSTM model requires 0.39 s per sample for testing. In contrast, the AHSMM model has a significantly longer 
training time of 1417.31 s, which can be attributed to the complexity of training a semi-Markov model. However, it demonstrates 
an impressive 0.03 s per sample for testing, indicating its efficiency when making predictions after training is completed. The PF 
model, which is simpler in structure, achieves an exceptionally fast training time of 0.02 s, due to the computational simplicity of 
polynomial fitting. However, its testing time per sample is 0.41 s, slightly longer than that of LSTM.

It is important to highlight that these models are not fully optimized, as the codes were developed internally without a primary 
focus on computational efficiency. Consequently, the time results may reflect some inefficiencies in the implementation, especially 
for the PF and AHSMM models. With further optimization, such as employing more efficient coding practices or utilizing specialized 
hardware, the computational times could potentially be reduced. Despite this, the results provide a useful comparison of how 
the models perform in terms of computational demands. They offer valuable insights into the models’ feasibility for real-time 
applications, where prediction speed is crucial, even though further optimizations could lead to improved performance.

3.6.2. Impact of available training histories
Each model was trained using only two degradation histories, as opposed to the full training set used in the baseline case. This 

setup allows for a comparison of how the models perform with limited training data, providing insight into their ability to generalize 
and maintain reliability under constrained conditions.

The results in Table  10 show the metrics for accuracy, with the mean RMSE and SD. Table  11 shows the results when evaluating 
confidence intervals by using the coverage and WSU metrics. In Fig.  19, a visualization of the predictions for three engines is 
presented when training the models with only two degradation histories of the baseline degradation histories.

For accuracy, the LSTM model showed a 57.31% increase in RMSE, indicating a substantial drop in performance. This suggests 
that LSTM models, which depend on large datasets to capture temporal patterns effectively, struggled with the limited data, 
resulting in increased prediction instability, as reflected by their high standard deviation of 29.24. The AHSMM model demonstrated 
remarkable robustness, with only a 13.08% increase in RMSE and the lowest standard deviation. This minimal increase in error 
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Table 11
Results of prognostics models in terms of uncertainty for feasibility case (training with two degradation histories).
 Model Cov. % change coverage WSU % change WSU 
 LSTM 0.2 −39.39% 766143.51 +12.60%  
 AHSMM 0.62 −36.08% 1321686.13 −58.62%  
 PF 0.19 +11.76% 971103.24 +150.14%  

Fig. 19. Results from prognostics model for three different engines in the feasibility case.

indicates that AHSMM is better suited for situations with limited training data, likely due to its effective modeling of state transitions 
even with sparse input.

The PF model experienced the most severe performance decline, with a 449.72% increase in RMSE and an enormous standard 
deviation of 104.21. This sharp decline underscores the PF model’s high sensitivity to reduced training data because the model 
heavily relies on the similarity approach. This result highlights the challenges PF faces in maintaining accuracy under data 
constraints.

In terms of uncertainty performance, the LSTM model’s coverage decreased by 39.39%, suggesting that its confidence intervals 
cover the true RUL less frequently. The WSU increased by 12.60%, indicating wider confidence intervals that did not enhance 
coverage, reflecting inefficient uncertainty quantification. Conversely, AHSMM maintained a more balanced approach, with a 
36.08% reduction in coverage and a 58.62% decrease in WSU. This shows that while the confidence intervals became narrower, 
AHSMM still provided reasonable coverage.

The PF model improved slightly in coverage by 11.76%, but this was offset by a drastic increase in WSU by 150.14%, indicating 
that while its confidence intervals became broader, they did not effectively enhance reliability. This inefficiency in handling 
uncertainty further illustrates the PF model’s limitations when trained on minimal data. Overall, AHSMM stands out as the most 
resilient model for few-shot prognostics, maintaining more stable performance despite the reduction in available training data.

This observation is further supported by Fig.  20, which illustrates the relationship between RMSE and the number of degradation 
histories used for training. As shown in the figure, the PF model’s performance significantly deteriorates when only two histories 
are used, confirming the earlier conclusion. However, when the PF is trained with four or more histories, its performance stabilizes. 
Notably, when the PF is trained with nine or more histories, its performance consistently outperforms that of the AHSMM model. 
This suggests that while AHSMM remains more robust in few-shot settings, the PF model can achieve competitive performance with 
small training sets.

3.7. Sensitivity analysis

To ensure fairness and reliability in the evaluation of the four key characteristics, a sensitivity analysis is conducted. This analysis 
verifies that the outcomes and conclusions are not overly dependent on the initialization parameters of the prognostic models, 
ensuring robustness and validity in the results.
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Fig. 20. Impact of number of training histories in accuracy.

Table 12
LSTM sensitivity analysis.
 Dropout RMSE SD Coverage WSU  
 0.21 37.88 8.29 0.29 586083.18  
 0.3 38.05 8.91 0.33 3194276.47 
 0.39 38.04 8.58 0.41 850447.05  

For the LSTM model, the dropout probability is selected as the parameter to be varied. This parameter is essential because it helps 
regularize the model, preventing overfitting by randomly dropping connections during training. The dropout probability directly 
influences both the accuracy of the predictions and the uncertainty of the model’s estimates. The baseline dropout value is 0.3, and 
in this sensitivity analysis, it will be varied by ±30%, resulting in a lower limit of 0.21 and an upper limit of 0.39. The model will 
then be trained with three configurations: dropout = 0.21, dropout = 0.3 (baseline case), and dropout = 0.39.

For the AHSMM model, the number of hidden states is chosen as the parameter for sensitivity analysis. The number of states 
directly influences the model’s ability to capture the underlying degradation process and its predictive accuracy. The baseline number 
of states is taken from the original model, and it is varied by ±30%, with the number of states rounded to integer values. This results 
in a lower limit of 5 and an upper limit of 9.

Finally, for the PF model, the number of particles is selected as the parameter to be altered. The number of particles determines 
the model’s ability to approximate the system’s state, and varying this number can influence both the accuracy and the spread of 
the predictions. In this case, the baseline number of particles is set to 150, and the number of particles is varied by ±30%, giving a 
lower limit of 105 and an upper limit of 195.

To evaluate the impact of these parameter changes, two key performance metrics — RMSE and coverage — are used. RMSE 
measures the accuracy of the predictions, while coverage assesses how well the prediction intervals capture the true values. By 
performing this sensitivity analysis, a deeper understanding of the models’ behavior under different parameter settings is gained, 
which can aid in optimizing performance and ensuring robustness in real-world applications.

In Table  12, the results for the three configurations of the LSTM model are shown. It can be observed that the RMSE for all three 
dropout configurations is very similar, which suggests that varying the dropout probability (in this given range) has little effect on 
the prediction accuracy of the model. However, the standard deviation fluctuates slightly, with a decrease in SD when the dropout 
probability is reduced from 0.3 to 0.21, and an increase when it is raised to 0.39. This indicates some minor changes in the model’s 
stability, but the RMSE remains largely unaffected.

Regarding UQ, the coverage increases as the dropout probability is raised, from 0.33 at a dropout of 0.3 to 0.41 at 0.39. This 
suggests that with higher dropout rates, the model’s prediction intervals become wider, capturing more of the true values. However, 
this increase in coverage comes at a cost, as the WSU also increases substantially, from 3194276.47 at 0.3 to 850447.05 at 0.39.

To better understand the effects of varying the value of the dropout parameter, the pdf of the RUL obtained with the LSTM model, 
the mean predicted values and the true RUL are illustrated in Fig.  21. Due to challenges in visualizing all distributions, the RUL 
probability distributions are presented for two representative timesteps (cycles 100 and 200). For both timesteps, it is evident that 
the pdf corresponding to the model with the highest dropout value exhibits the largest standard deviation, resulting in a wider and 
flatter pdf. This highlights how increased dropout impacts uncertainty, aligning with the discussion in Section 2.1, which mentions 
that the uncertainty captured with MC Dropout is a design artifact and provides a partial representation of the epistemic uncertainty.

The sensitivity analysis for the AHSMM model, summarized in Table  13, demonstrates that increasing the number of hidden states 
significantly enhances the model’s predictive accuracy. This improvement is evident in the sharp decrease in RMSE, from 39.05 at 
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Fig. 21. RUL probability distribution obtained with LSTM for engine 81 at time steps 100 and 200 cycles.

Table 13
AHSMM sensitivity analysis.
 N◦ of states RMSE SD Coverage WSU  
 5 39.05 8.91 0.97 3792994.09 
 7 34.48 9.34 0.97 3194276.47 
 9 22.68 7.41 0.98 3248370.73 

Table 14
PF sensitivity analysis.
 N◦ of particles RMSE SD Coverage WSU  
 105 30.08 8.85 0.18 379971.91 
 150 24.05 9.34 0.17 385141.6  
 195 31.96 12.67 0.17 450366.9  

5 states to 22.68 at 9 states, indicating that a higher number of states allows the model to capture the underlying degradation 
process better. Additionally, the SD of the predictions stabilizes as the number of states increases, reflecting greater consistency in 
performance. Notably, the coverage metric remains robust across all configurations, with values between 0.97 and 0.98, underscoring 
the model’s reliable uncertainty quantification regardless of the parameter setting. Furthermore, the configuration with 7 states 
achieves the lowest WSU, indicating its superior ability to manage uncertainty while maintaining the same high coverage as the 
other configurations.

While a configuration with 9 hidden states achieves the best accuracy, the baseline configuration with 7 states offers a more 
practical balance between performance and computational efficiency. Training the model with 9 states is computationally intensive, 
making the 7-state configuration a better choice. This trade-off ensures an improvement in accuracy over the 5-state configuration 
while maintaining manageable computational demands. The RUL probability distributions at timesteps 100 and 200, displayed in 
Fig.  22, further demonstrate that the 7-state configuration exhibits less uncertainty, aligning with its lower WSU value from Table  13. 
In terms of accuracy, the mean predicted RUL values across configurations for these examples show minimal differences, highlighting 
that the 7-state configuration offers a reliable and efficient option for accurate predictions with reduced uncertainty.

At cycle 200, the RUL probability density function (pdf) for the AHSMM with five damage states shows a small initial peak, 
which is caused by an algorithm artifact. To improve efficiency, the way the model is programmed can occasionally result in pdfs 
with this shape. If the maximum time were set higher, requiring more computational time, the pdf would appear smoother like the 
others. However, this artifact is rare and does not affect the mean RUL prediction, and the changes to the confidence intervals are 
negligible.

The sensitivity analysis for the PF model, summarized in Table  14, reveals that varying the number of particles has a 
notable impact on the model’s predictive performance and UQ. The configuration with 150 particles achieves the lowest RMSE 
of 24.05, indicating superior predictive accuracy compared to 105 and 195 particles, which have RMSE values of 30.08 and 31.96, 
respectively. Interestingly, the SD of the predictions increases with the number of particles, ranging from 8.85 (105 particles) to 
12.67 (195 particles), suggesting that higher particle counts may lead to less consistent predictions. The coverage metric, which 
remains consistently low across all configurations, indicates that the model struggles to quantify uncertainty effectively, regardless 
of the number of particles. The WSU metric also highlights this trend, with higher values observed for configurations with more 
particles. (See Fig.  23)
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Fig. 22. RUL probability distribution obtained with AHSMM for engine 81 at time steps 100 and 200 cycles.

Fig. 23. RUL probability distribution obtained with PF for engine 81 at time steps 100 and 200 cycles.

4. Model evaluation framework

From the previous sections, it is evident that a wide variety of prognostic models are available, each with distinct strengths 
tailored to specific applications. Selecting the appropriate model is therefore crucial for optimizing performance and reliability. 
However, this selection process often involves navigating trade-offs between multiple characteristics. For instance, models with 
high interpretability may sacrifice computational efficiency, whereas models offering adequate UQ might be impractical when data 
or resources are constrained. To navigate these challenges, this section introduces a systematic methodology for prioritizing model 
characteristics based on organizational and operational needs.

Therefore, a decision-support tool is proposed to quantify the relative importance of uncertainty, robustness, interpretability, 
and feasibility in prognostic model selection. This approach incorporates stakeholder inputs and operational requirements into a 
weighted scoring system, enabling the systematic evaluation and ranking of candidate models.

First, it is necessary to understand the needs and priorities of key stakeholders. These priorities are evaluated across three 
dimensions:

• Strategic Priorities: Alignment with high-level organizational goals, such as enhancing reliability and availability, reducing 
operational costs, or meeting regulatory standards.

• Operational Constraints: Practical limitations, such as computational resources, time-to-deploy, or data availability.
• Technical Requirements: Specific performance criteria, such as accuracy, interpretability, or robustness, are needed to ensure 
reliable RUL predictions.

Second, each key characteristic — Uncertainty, Robustness, Interpretability, and Feasibility — is evaluated on a scale from 1 to 
5, where 1 represents the least importance and 5 the greatest. These scores are assigned based on the following criteria:
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Table 15
Decision matrix for selecting prognostic models.
 Priority Group of Models SOTA Metrics for Evaluation  
 
Uncertainty

ML [20,22] Coverage,
WSU

 
 SMs [84,121]  
 BFs [99]  
 
Robustness

ML [27,47] Accuracy on noisy data 
and different operational 
conditions

 
 SMs [82,95]  
 BFs [104]  
 
Interpretability

ML [35,46,73] Alignment with known 
failure modes, 
assessment on explainability

 
 SMs [72]  
 BFs [143]  
 
Feasibility

ML [59,60,69] Computational cost,
accuracy on small datasets

 
 SMs [82]  
 BFs *  

Uncertainty.

• How crucial is the precise quantification of uncertainty in predicting RUL for safety-critical systems, where early failure could 
have catastrophic consequences?

• Are high-stakes decisions dependent on confidence levels in RUL estimates?
Robustness.

• Will the model operate under varying environmental or operational conditions?
• To what extent is the degradation process affected by environmental or operational conditions?

Interpretability.

• How essential is the ability to explain model predictions to stakeholders or regulators?
• Is model transparency required for decision-making or regulatory approval?

Feasibility.

• Are there sufficient computational resources and expertise to implement complex models?
• Is the available data adequate (e.g., in terms of volume, labeling, or consistency)?
Third, when scores are assigned by an individual stakeholder, raw scores are generally sufficient to determine the relative 

importance of each characteristic. However, when multiple stakeholders are involved, normalization becomes necessary. In such 
cases, the weight of each characteristic must be normalized using the expression shown in (4), where 𝑊𝑖 represents the normalized 
weight of characteristic 𝑖, 𝑆𝑖,𝑘 is the raw score assigned to characteristic 𝑖 by stakeholder 𝑘: 

𝑊𝑖 =
∑

𝑘 𝑆𝑖,𝑘
∑

𝑖
∑

𝑘 𝑆𝑖,𝑘
(4)

The decision-support tool provides a structured framework for selecting prognostic models that align with stakeholder priorities 
and operational requirements. For instance, a safety-critical system might prioritize robustness and interpretability, while a 
resource-constrained application may emphasize feasibility and UQ.

The decision matrix presented in Table  15 offers a practical framework for aligning model types with the key characteristics 
(uncertainty, robustness, interpretability, and feasibility), while suggesting appropriate metrics for their evaluation. It highlights the 
most suitable models within each group of prognostic approaches reviewed. By providing a structured and systematic methodology, 
the matrix empowers stakeholders to efficiently identify models that align with their operational and technical priorities.

Notably, Table  15 highlights the absence of state-of-the-art papers for BFs concerning feasibility. This omission is primarily due 
to the inherent capacity of BFs to predict RUL while using limited degradation histories or even incomplete ones, making them 
naturally suitable for scenarios where data availability is a constraint.

To evaluate and rank candidate models, a fitness function is proposed. This function quantifies the performance of candidate 
models by considering the key characteristics of uncertainty, robustness, interpretability, and feasibility, which are weighted 
according to stakeholder(s) priorities.

The fitness function is designed to maximize the overall score that reflects how well a model aligns with organizational 
and operational needs. For characteristics such as uncertainty, robustness, and interpretability, higher values of relevant metrics 
(e.g., coverage probability, model accuracy under varying conditions, or transparency in predictions) positively contribute to the 
fitness score. Conversely, for metrics that need to be minimized, such as error performance (e.g., RMSE), computational cost, or 
memory usage, the fitness function incorporates inverse scaling. This ensures that models with lower values for these metrics — 
indicating better performance or lower resource demands — are prioritized.
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Table 16
Performance metric per model.
 Characteristic Metric LSTM AHSMM BF  
 Uncertainty Coverage 0.85 0.75 0.9  
 Robustness RMSE (1/x) 0.75 0.92 0.8  
 Feasibility Computational Cost (1/x) 0.60 0.80 0.70 
 Interpretability Explainability assessment 0.60 0.75 0.85 

Table 17
Metric normalization for each characteristic.
 Characteristic LSTM AHSMM BF  
 Uncertainty 0.94 0.83 1.0  
 Robustness 0.75 1.0 0.87 
 Feasibility 0.75 1.0 0.88 
 Interpretability 0.71 0.88 1.0  

Table 18
Fitness calculation for each candidate model.
 Model Fitness calculation Fitness score 
 LSTM 0.35*0.94 + 0.30*0.75 + 0.25* 0.75 + 0.10*0.71 0.852  
 AHSMM 0.35*0.83 + 0.30*1.00 + 0.25*1.00 + 0.10*0.88 0.915  
 BF 0.35*1.00 + 0.30*0.87 + 0.25*0.88 + 0.10*1.00 0.906  

It is worth noting that interpretability often lacks a straightforward, quantifiable metric. Instead, it is assessed qualitatively or 
based on compliance with regulatory requirements. In this paper, stakeholders are encouraged to provide a percentage score (0 to 
100%) reflecting how well interpretability needs are met. This score is normalized to a range of 0 to 1 for use in the fitness function.

The fitness function is then computed as follows: 
𝐹 (𝑀) =

∑

𝑖
𝑊𝑖 ⋅ 𝑉𝑖(𝑀) (5)

where 𝑊𝑖 represents the normalized weight for characteristic 𝑖, derived from stakeholder inputs, and 𝑉𝑖(𝑀) is the normalized value 
of the metric for characteristic 𝑖 in model 𝑀 .

By employing this method, models can be objectively compared based on their performance across all key characteristics. The 
model with the highest fitness score, considering both the prioritized characteristics and the operational constraints, is the one that 
best meets the needs of the organization.

The fitness function offers a transparent way to navigate trade-offs between conflicting priorities. For example, a model excelling 
in UQ but with high computational costs can be compared against another offering a better balance between performance and 
resource efficiency. This ensures that the final selection optimally aligns with organizational goals while adhering to operational 
constraints.

To illustrate the applicability of this framework, consider the following example. An airline operator wants to implement 
a prognostic model to predict the RUL of primary aviation structures. The primary organizational priorities are as follows: 
uncertainty quantification, which is crucial for safety-critical applications; robustness, accounting for variable operational conditions 
(e.g., environmental factors, pilot operational behavior); feasibility, given the limited availability of full-scale catastrophic data; and 
interpretability, as some level of model transparency is necessary for regulatory compliance.
Step 1: Prioritization. Stakeholders assign weights to each characteristic based on their importance. After input and normalization, 
the following normalized weights are assigned: Uncertainty = 0.35, Robustness = 0.30, Feasibility = 0.25, and Interpretability = 
0.10.

Step 2: Evaluate candidate models. Three models are shortlisted: an LSTM with MC Dropout, an AHSMM, and a BF. Performance 
metrics are collected for each characteristic, as shown in Table  16:

The RMSE metric assesses how well the models predict the RUL under different environmental conditions. Both robustness and 
feasibility metrics are inversely scaled, meaning lower values are preferred. Interpretability is assessed through a qualitative score 
based on user feedback, with higher values indicating greater model explanability.
Step 3: Normalize metric values. Each metric is normalized to ensure comparability across models. The normalized values are shown 
in Table  17:
Step 4: Fitness calculation. The fitness score for each candidate model is calculated as a weighted sum of the normalized values. 
Table  18 shows the fitness calculation for each model:

Based on the fitness scores, the AHSMM model ranks highest, closely followed by the BF model. However, if model explainability 
becomes a more critical factor in the future, the BF model may be preferred due to its superior interpretability score.

After model selection, its implementation and deployment typically proceed in phases to minimize risks and ensure practical 
effectiveness. A recommended approach involves the following steps:
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Pilot testing. Initially, the selected model is deployed in a controlled, small-scale environment. The pilot phase allows for testing 
its performance on real-world data while minimizing potential disruptions to operations. This step is critical for identifying gaps 
between theoretical expectations and practical outcomes. For instance, unexpected variability in data quality or computational 
demands can emerge during this phase.
Evaluation and adjustment. During the pilot test, the model’s predictions are evaluated against benchmark datasets or historical 
ground truth. The pertinent metrics are monitored closely. Insights from this evaluation phase guide refinements in the model, such 
as parameter tuning, algorithmic adjustments, or preprocessing enhancements.
Scaling deployment. Once the pilot demonstrates satisfactory performance, the model can be scaled for full operational use. At this 
stage, additional considerations like integration with existing systems, user interfaces, and automation pipelines come into play. 
Robust error-handling mechanisms are also implemented to manage anomalies or system failures.
Continuous optimization. The deployment of a prognostic model is not a one-time process. Over time, the operational environment, 
system conditions, or data characteristics may change, potentially impacting the model’s performance. Regular monitoring and 
periodic retraining using updated datasets are essential to maintaining the model’s accuracy and reliability. Advanced methods 
such as online learning or dynamic domain adaptation can further enhance long-term performance.
Stakeholder feedback and adaptation. Engaging with end-users, engineers, or decision-makers provides critical insights into the 
model’s usability and practical value. For example, stakeholders might request additional interpretability features or improved 
integration with diagnostic workflows. Incorporating this feedback ensures that the model remains aligned with organizational 
priorities.

By combining the decision matrix and the fitness function, organizations can systematically select, implement, and optimize 
prognostic models. This structured approach simplifies trade-offs, balances technical and operational demands, and ensures long-
term success. The methodology enables actionable insights delivered with accuracy, reliability, and efficiency, supporting both 
immediate and strategic goals.

5. Potential research directions

Based on the findings of this review and the case study, future research directions are proposed to improve prognostic models 
for RUL prediction. These directions are grouped by the four key characteristics discussed: uncertainty, robustness, interpretability, 
and feasibility.
Uncertainty. For BFs and stochastic models, future research should aim to improve the reliability of confidence intervals, as existing 
methods often produce intervals that are overly wide and may result in uninformative predictions. Another area is the development 
of adaptive techniques that adjust uncertainty estimates based on system dynamics. For ML models, specifically DL models, future 
work should explore Bayesian DL approaches (e.g., variational inference, deep ensembles) to replace methods such as MC Dropout. 
Across all model types, a key direction is the management of uncertainty, not just its quantification. This includes using a more 
practical uncertainty categorization (past, present, future, model, and prediction method uncertainty), which enables uncertainty 
management by leveraging data to better characterize the sources of uncertainty, thereby reducing their impact on RUL prediction. 
Additionally, emphasis should shift toward subject-specific uncertainty rather than population-level uncertainty, a critical direction 
for all DDMs.
Robustness. Stochastic models could benefit from research into more flexible state-transition architectures that can capture non-
stationary and multi-modal degradation behavior. BFs offer promise through online learning strategies that continuously adapt their 
degradation model for new conditions without requiring full retraining. For ML models, future work should prioritize self-supervised 
and unsupervised approaches to enhance generalization across domains. Across all model types, hybrid approaches that combine 
physics-based knowledge with data-driven learning warrant further exploration to improve adaptability and fault tolerance.
Interpretability. Stochastic models are generally interpretable, but their accessibility could be improved through visual tools that 
help practitioners understand state transitions and probabilistic outcomes. For BFs, interactive visualization techniques that show 
how belief states evolve could support explainability in practice. For DL models, interpretability remains a challenge. Future research 
should develop reliable explanation tools that avoid inconsistencies common in existing techniques like SHAP and LIME. Another 
important direction is quantifying the trade-off between interpretability and performance, particularly in contexts where regulatory 
or operational transparency is required.
Feasibility. For stochastic models and BFs, future research should investigate how to automatically configure models (e.g., selecting 
the number of states, particles, or distributions) when data is limited or noisy. In ML, promising directions include few-shot learning, 
self-supervised learning, and physics-informed learning to reduce data requirements, as mentioned in [144]. For all model types, 
better methods for handling missing data are essential. Lastly, developing lightweight implementations of these models for use in 
embedded or edge environments remains a research need.
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6. Conclusions

This paper reviewed data-driven prognostic models for Remaining Useful Life (RUL) prediction, evaluating Machine Learning 
(ML) models, stochastic models, and Bayesian Filters (BFs) across four key characteristics: uncertainty, robustness, interpretability, 
and feasibility. A case study using the C-MAPSS dataset compared the performance of LSTM, AHSMM, and PF models, highlighting 
their strengths and limitations in addressing these characteristics.

Uncertainty quantification (UQ) remains a significant challenge in RUL prediction. Stochastic models and BFs are effective in 
reporting uncertainty but suffer from overly wide confidence intervals and computational complexity. ML models, while accurate, 
often overlook UQ, leading to potentially unreliable predictions. The findings underscore the need for better calibration and methods 
that balance accuracy with uncertainty management.

Robustness is crucial to ensure an adequate model performance under varying operational conditions. While ML models have 
shown promise through techniques like domain adaptation, challenges persist in industrial settings. Stochastic models and BFs, like 
AHSMM, demonstrated adaptability in unseen and noisy conditions, with AHSMM performing particularly well in the case study. 
However, PF models faced limitations due to degradation model constraints.

Interpretability is essential for safety-critical applications, with regulatory frameworks demanding transparency. AHSMM offers 
clear degradation representations, while LSTM models are more difficult to interpret. PFs provide some interpretability but depend 
heavily on the underlying degradation model. Balancing interpretability and performance remains a challenge across industries.

Feasibility is influenced by data availability, with scarcity and noise common in industries like aviation and machinery. 
Approaches like few-shot learning and Bayesian methods address these challenges. The case study showed that AHSMM performed 
well with limited data, while PF excelled with moderately sized datasets. This highlights the need for models that can adapt to 
varying data conditions.

The paper introduced a model evaluation framework, helping users select the most suitable model based on operational needs. 
It is emphasized that no one-size-fits-all solution exists; model choice depends on system-specific constraints and objectives. 
Implementing prognostic models requires ongoing retraining and stakeholder feedback.

In conclusion, this review highlights the progress and challenges in data-driven prognostics. Future research should focus on 
models that are not only accurate but also adaptable to real-world complexities, handling uncertainty, noisy data, and dynamic 
conditions. By aligning emerging techniques with industry-specific needs, the field can move towards creating reliable, transparent 
prognostic solutions for better decision-making and operational improvements.
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