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Abstract

The detection of non-Abelian exchange statistics is an open challenge which
holds important promises for the advent of topological quantum computation. A
recent work proposes to rely on the edges to reveal the braiding statistics of non-
Abelian anyons in the bulk, in an entirely deterministic dynamical process. A
time-dependent gap in a Josephson junction couples two co-propagating Majorana
fermions, and as the gap closes, a pair of edge-vortices is injected into the edges.
Because these defects have the same non-Abelian statistics, they are braided with
vortices in the bulk. Conveniently, the fusion of the edge-vortices results in a quan-
tized unit of charge at the exit. However, this process is so far only predicted in the
adiabatic limit. In this work, this assumption is relaxed by means of a full many-
body evolution of the superconducting ground state in the Bogoliubov-de-Gennes
formalism. Beyond revealing the collective nature of the edge-vortex excitation, we
demonstrate that the quantization of charge still holds if the system does not re-
turn to the ground state. Furthermore, the effect of path length difference between
the edge-vortices confirms the theoretical predictions done in another work on the
subject. At fast injections, we reveal weak oscillations in current contributed by the
bound states in the junction which average to zero and are removed in the short
junction limit. This work is concluded with a preliminary evaluation of the many-
body parity operator, which indicates that the edge-vortex may encode the parity
of the bulk vortices. This opens the possibility for sequential qubit manipulations
on the edge-vortex.
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■ Chapter I
Introduction

1. Background

The existence of non-Abelian anyons underlies the formulation of topological
quantum information processing [1–3]. The adiabatic motion of non-Abelian anyons
results in unitary operations between them, which is in particular true when they
are exchanged. This is known as braiding. Strikingly, transformations achieved
by braiding naturally lend themselves to a number of quantum computing opera-
tions on the topologically protected qubit [1]. Majorana zero-modes (MZMs) are
zero-dimensional midgap states which belong to a particular class of non-Abelian
anyons: one pair of MZMs can encode a qubit as it may or may not share an un-
paired fermion [4].

While experimental efforts are at the stage of detection of MZMs [5–7], a num-
ber of theoretical proposals have been formulated for the detection of their braiding.
Because MZMs arise at the ends of one-dimensional topological superconductors or
at the core of vortices in p-wave superconductors [8–11], mobile braiding schemes
require setting vortices in motion, which is a difficult task [12]. Therefore, most
efforts have been focused on immobile braiding schemes in 1D nanowire systems
using tri-junction configurations [2, 13–17]. However, a recent study [18] proposes
a strategy to achieve mobile braiding: by injecting vortex-like defects through a
Josephson junction into the chiral edge modes – referred to as edge-vortices –, the
latter can be braided with static vortices in the bulk because they share the same
exchange statistics [19]; the pair of edge-vortices thus encodes a flying qubit which
may exchange parity with the bulk vortices. Ramifications of this proposal have
been studied as a result [20–23].

Most remarkably, the fused edge-vortices produce a quantized unit of charge at
their readout depending on whether they were braided with bulk vortices. The
theory relies on the central assumption that a time-dependent gap in the junction
is inverted adiabatically, so that the process returns to the ground state after the
evolution. In this thesis, this assumption is addressed by means of a dynamical
simulation in the Bogoliubov-de-Gennes formalism, of a system which satisfies the
proposal. In particular, one may question the role of Andreev bound states in the
Josephson junction, known for leaking charge into fermionic edge states when the
junction is excited [24, 25] or interfering with the detection of MZMs in a number
of different proposals [26–29]. Furthermore, we perform preliminary calculations of
the many-body parity operator dynamically, which allows us to assess whether the
edge-vortex is a good qubit.

In the remainder of this chapter, we introduce the notions of braiding in more

1



Ch.I.2. Injection and braiding of edge-vortices

detail. In Ch. II the relevant results obtained in previous works is summarized. A
model for the Hamiltonian of the system is developed in Ch. III and followed by
the numerical model for the time-dependent system in Ch. IV. After treating the
description of time-evolved ground state expectation values in Ch. V, we assess the
quantization of charge dynamically. Before concluding in Ch. VIII, we present the
results on the parity of the edge-vortex in Ch. VII.

2. Injection and braiding of edge-vortices

2.1. Parity qubits and braiding of Majorana zero-modes
Before a formal treatment in the next chapter, we introduce the notions of

particle-hole symmetry, Majorana zero-modes and braiding in general terms. This
serves as a background to introduce the edge-vortex braiding setup in the next
subsection. For a detailed overview we refer to the reviews in Refs. [1–3].

Particle-hole symmetry.— Superconductivity in the mean-field BCS theory
is described with the potential ∆ = |∆|(r)eiϕ(r) which couples pairs of electrons. In
the Bogoliubov-de-Gennes formalism, this is equivalently described as a coupling
between an electron and a hole. The allowed excitations of the superconducting
ground state which results from the presence of the gap ∆ are called Bogoliubov
quasiparticles and satisfy particle-hole symmetry. If γ† (γ) denotes the creation
(annihilation) operator for such an excitation, then this condition is:

γ†(E) = γ(−E).

Crucially, given a ground state of N electrons, the Bogoliubov excitation does not
necessarily change the number of electrons to N ± 1; it may also change it to e.g.
N + 3. Nevertheless, the number of electrons is only allowed to change by an odd
number of electrons to N ± k with k odd. We say the Bogoliubov excitation has a
well defined contribution to the ground state parity.

Majorana zero-modes.— If one finds a state which exists at E = 0, then
this level must satisfy γ† = γ by particle-hole symmetry. The operator is therefore
real and corresponds with a quasi-particle which is equal to its anti-particle known
as a Majorana fermion. The latter obeys unusual anti-commutation relations as
γnγm+γnγm = 2δnm for two Majorana operators γn, γm [3]. In particular, a Majorana
zero-mode is the state which arises when a Majorana fermion is unpaired into two
zero-dimensional states [2]. Note that by definition, the MZM is in a superposition
of even and odd parity contributions to the ground state. If such a state exists,
then it forms a qubit of electron number parity which is protected from other states
by particle-hole symmetry. Concretely, given a fermion ψ† (odd parity) or ψ (even
parity) it can be unpaired into two zero-modes γ1 and γ2 such that its operators are:

ψ = γ1 + iγ2 and ψ† = γ1 − iγ2

so we label the state of even parity (+) and odd parity (−) in the remainder.
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Figure I.1: Illustration of an injection, braiding and fusion process which implements an
exchange operation σx on the parity qubit degree of freedom; illustration based on Ref. [2]. The
world lines are indicated with solid curves. The braiding process can be though of in terms of
branch cuts in the phase of the superconductor (dashed lines). The energy levels throughout the
process are shown on the right.

Braiding statistics.— In the fermionic expressions above it is clear that if
γ2 → −γ2, this will induce ψ → ψ†. This is a change in parity. It turns out that a
change in the sign of a MZM can be achieved by a 2π phase increase of the pairing
potential ∆, i.e. an adiabatic transformation ϕ → ϕ + φ results in a MZM gaining
a phase γ → eiφ/2γ [30]. This is the root of their non-Abelian anyonic nature. To
illustrate this let us consider two fermions – say one ψ = γ1 + iγ2 with even parity
(+) at energy −ε and the other one ψ† = γ3 − iγ4 with odd parity (−) at +ε. Then
suppose there is a mechanism by which the fermions are unpaired into zero modes
back in the ground state manifold E = 0 as shown in Fig. I.1. That mechanism
here is the presence of vortices: two vortices will ”split” the fermion into two zero
modes which bind to the cores of the vortices. If γ2 performs a closed loop in space
around γ3, they will mutually induce a phase sign on each other. When γ1 and γ2
fuse again into their fermionic state, they now correspond to the state of opposite
parity because of that sign difference. This exchange is entirely non-local since it
happens through the phase of the superconductor, so that the vortices never came
near each other. It is possible to visualize this: the vortex corresponds with a phase
winding of 2π which means a π phase for the MZM. The π jump can be seen as
a discontinuity which occurs at the branch-cut of the superconducting phase ϕ. It
naturally follows that when two branch-cuts cross each other, this will cancel the
π discontinuity which occurs there. In Fig. I.1 the locations of the branch cuts in
the phase around the vortices are shown so that the entire braiding process can
be thought of in terms of crossing branch-cuts. The resulting braiding operation
between γ2 and γ3 can be described in terms of the unitary transformation [30]:

Û23 = e
π
4
γ2γ3 =

1√
2
(I + γ2γ3).
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2.2. Deterministic injection and braiding of edge-vortices
Edge-vortices.— The local phase ϕ(r) of the superconductor also affects a

fermion that exists on its boundaries. If the edge state of a superconductor is
a Majorana fermion χ(x) then a 2π increase of the phase in the superconductor
results in a π increase of the Majorana wave function on the edge. The resulting
π jump on the edge is the edge-vortex. In particular, if the 2π phase increase
is due to the presence of a vortex, then the edge and the vortex share a state
of parity which imposes the existence of an edge-vortex. Given a closed path of
length L parametrized by x ∈ [0, L) and denoting the number of vortices inside the
superconductor by Nvortex, this results in anti-periodic boundary conditions on the
Majorana fermion at the edge [19]:

χ(x = 0) = (−1)Nvortex+1χ(x = L).

This local boundary condition is analogous to the branch-cut of the MZMs intro-
duced in the previous subsection and it therefore follows the same braiding statistics.
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Figure I.2: (Left) Setup representation. MZMs with their branch-cuts (dashed lines), and
Majorana fermions χ1, χ2 (red, blue) such that the pair π3, π4 is braided with the pair γ1, γ2 after
their injection in the junction. (Right) Spacetime diagram of the braiding scheme in the setup
showing charge and parity with (−) and without (+) vortices.

Injection and braiding setup.— We now consider the case where Josephson
junctions are used to create a 2π phase increase of the superconducting phase [29,
31–33]. Consider three superconductors separated by two Josephson junctions such
that the phase in the middle superconductor differs by a phase φ(t) with the other
superconductors, as shown in Fig. I.2. Then, suppose that two co-propagating
Majorana fermions χi(y − vt), i ∈ {1, 2} with constant velocity v enter the middle
superconductor at its bottom and top edges respectively. This can be realized at the
interface of a topological superconductor with a trivial insulator and a topological
insulator [34] as shown in Fig.I.2. Following a 2π increase of φ(t), the Majorana
fermions experience the expected phase flip χi(y − vt) → e±iπχi(y − vt) at each
Josephson junction, say during a characteristic time tinj. More precisely, this phase
flip occurs exactly in the junction: at φ = 0 a small gap ∆0 separates the edges
modes at opposite sides of the junction, and this gap closes at φ = π and inverts
following ∆0 cos(φ(t)/2). In analogy with the Kitaev chain [10], this gap inversion
has to produce unpaired fermions in the junction which propagate as phase defects
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on the edges (the edge-vortices), which travel towards the exit with a velocity v.
The gap ∆0 is shown in the band structure in Fig. I.3. The resulting is the creation
of four co-propagating edge-vortices: two at the front junction π1, π2 and two at the
back junction π3, π4. Note that since the Josephson pump cannot create an unpaired
fermion, the parity values are P34 = iπ3π4 = 1 is even and so is P12 = iπ1π2 = 1 [20].
At their fusions, the zero modes produce a charge +e/2 and −e/2 respectively,
thereby resulting in a net zero charge transfer. However, if a vortex is present in
the bulk, the second pair π3, π4 collectively crosses the branch cut of the bulk vortex
γ2. Therefore, the pair π3, π4 changes sign relative to the pair γ1, γ2. The braiding
scheme is shown in the spacetime diagram in Fig. I.2. When the edge-vortices fuse,
both pairs now produce an e/2 charge carrying defect so that the net transferred
charge is that of an electron e.

3. Dynamical considerations

The braiding process of edge-vortices was predicted in an adiabatic approxima-
tion [18, 22]. In the dynamical picture, the injection of edge-vortices is entirely
governed by the Josephson junctions. If the superconducting coherence length
ξ0 = ℏv/∆0 is small compared to the width of the junction W , the junction cou-
ples the co-propagating Majorana fermions χ1 and χ2 at values near φ = π. In
Fig. I.3 the band structure of the junction is shown. The superconducting gap is
|∆| = 0.95ℏv/a which results in an effective gap of 0.116ℏv/a. The time during
which the injection takes place is [18]:

tinj =
ξ0
W

(
dφ

dt

)−1

.

In particular, if the Josephson phase is increased linearly from 0 to 2π over a duration
τ , the injection time is tinj = τ/∆0W in units where ℏ = 1, v = 1. One might be
interested in an injection time that is shorter than the propagation time vL and
shorter than the coherence time of hybridized edge states or states which participate
in the excitation otherwise [28, 29]. In particular, the possible role of higher bound
states of the junction in the injection can be investigated.

−0.50 −0.25 0.00 0.25 0.50

kx [π/a]

−1.0

−0.5

0.0

0.5

1.0

E
(k
x
)

[t
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2∆0

Figure I.3: Band structure of an infinitely long junction in the x direction for a system of 50
sites in the y direction, realized by a topological insulator of thickness 2 unit cells which
separates two topological superconductors with no phase difference φ = 0. The chiral edge states
in the junction couple, which opens an effective gap ∆0. The gap closes with φ as ∆0 cos(φ/2).
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■ Chapter II
Effective theory

This chapter briefly introduces the effective models obtained in Refs. [18, 22] as
they will be used in our discussion as comparison. This also introduces the coupling
ranges in the dynamical problem.

1. Scattering phase of the junction

Scattering of co-propagating Majorana edge states.— Following Ref. [18]
(supplemental material), consider a point Josephson junction with a phase difference
φ. If the amplitudes of incoming bottom and top Majorana edge states have respec-
tive amplitudes ψin = (a1, a2)

⊺ (denoted χ1 and χ2 in Fig. I.2) then the outgoing
amplitudes are:

ψout =

(
b1
b2

)
= Sp(φ)

(
a1
a2

)
(2.1)

where Sp(φ) = eiφσy is the scattering matrix. If the junction has width W then the
scattering matrix is:

SJ = eiασy with α(φ) = sgn(φ) arccos

(
cos(φ/2) + tanh β

1 + cos(φ/2) tanh β

)
where β = W/ξ0 cos(φ/2) and ξ0 = ∆0/ℏv the superconducting coherence length
corresponding to the effective gap in the junction. α(φ) is the scattering phase.
Thus the junction couples both edges for a select range of α near values of π, which
we show in Fig. II.1 (left part). This range is given by the ratio W/ξ0 and the
ratio tinj/τ must be equal to W/ξ0 as well. These scattering phases were confirmed
numerically in Ref. [18] as well.

Spatial model.— Following Ref. [22] consider two such junctions separated by
a distance L. Then the effective Hamiltonian for the edge is:

H = iv

(
−∂y −h(y)α(t)

h(y)α(t) −∂y

)
(2.2)

where h(y) = δ(y)−δ(y−L) are the positional terms for the infinitely thin junctions
so that the Schrödinger equation i∂tψ = Hψ yields solutions of the form:

ψ(y, t) = ψ0(y − vt)eiσyΛ(y,t)

where Λ(y, t) is the phase profile seen in Fig. I.2 and given by (in units of v = 1):

Λ(y, t) = (−1)Nvortex(L)α(t− y + L)θ(y − L)− (−1)Nvortex(0)α(t− y)θ(y)

where θ(y) denotes the Heaviside step function andNvortex(y0) the number of vortices
in the range y > y0.
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Ch.II.2. Charge quantization

2. Charge quantization

The model [18] results in a perfect charge quantization due to a scattering phase
difference which is exactly π: SJ(2π) = SJ(0) + π independent of W/ξ0. In the
frozen scattering approximation (i.e. time dependence is only explicitely considered
in S(φ) = S(φ(t))) the current at the exit of the superconductor produced by the
braiding process be shown to be:

I(t) = j(t) + (−1)NvortexJ(t− L/v) where J(t) :=
e

2π
∂tα(t) (2.3)

which also holds when L = 0. Ref. [22] studied the case where the edge-vortices
have a path-length difference δ which instead results in:

Iδ(t) = Jδ(t)+(−1)NvortexJδ(t−L) where Jδ(t) :=
e

2π

sin(α(t+ δ)− α(t))

δ
. (2.4)

Both approximations are shown in Fig. II.1 (right part) for W/ξ0 = 3, 8 and as-
suming that the Josephson phase increases linearly from 0 to 2π over a duration τ .
When integrated, the current pulse Q(t) =

´ τ
0
dtI(t) gives exactly e/2 or less if a

path-length difference exists between the edge-vortices.
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Figure II.1: (Left) Scattering phase α(φ) of two co-propagating Majorana fermions at a
Josephson junction as a function of the Josephson phase φ, for two ratios W/ξ0. The scattering
phase is 4π periodic. (Right) Two current pulses corresponding to the ratios W/ξ0 in the left
plot. The injection time is given by tinj = τ/(W/ξ0). A dashed line shows the predicted current
when a path-length difference δ (here vτ/20) is induced. The unit of current density here
assumes a distance unit a.
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■ Chapter III
Continuum model

This chapter serves as an introduction to the Bogoliubov de Gennes theory. The
Dirac Hamiltonian used to describe the edge fermions in the setup is introduced.
The chapter ends with the continuum model for vortices and how they are integrated
in the superconducting Hamiltonian while preserving gauge invariance.

1. Bogoliubov-de-Gennes approach

1.1. Mean-field superconductivity Hamiltonian
The mean-field Bardeen-Cooper-Schrieffer (BCS) Hamiltonian for superconduc-

tivity is given by [35]:

Ĥ =
∑
k,σ

(εk − µ) ĉ†kσ ĉkσ +
∑
k

∆k ĉ
†
k↑ĉ

†
−k↓ +∆∗

k ĉ−k↓ĉk↑ (3.1)

where ĉkσ (ĉ
†
kσ) is the annihilation (creation) operator of an electron with momentum

k and spin σ ∈ {↑, ↓} acting on the Fock space. We refer to Ch.2-3. in Ref. [36] for an
introduction to second quantization notation. Here, εk is a single electron dispersion,
µ is the chemical potential and ∆k is the superconducting pairing potential which
follows from the mean-field approximation. Note that the last two terms violate
electron number conservation but not the electron number parity.

Background. Mean-field approximation.

The starting point is an effective Hamiltonian [37]

Ĥ =
∑
k,σ

(εkσ − µ)ĉ†kσ ĉkσ +
1

N

∑
k,k′

Vkk′(ĉ−k↓ĉk↑)
†(ĉ−k′↓ĉk′↑)

where the left part is the usual electronic Hamiltonian and the right part now contains the
creation of a Cooper pair at momentum k and annihilation at k′ with an effective potential
Vkk′ . If one performs the mean field approximation:

⟨ĉ†k↑ĉ
†
−k↓ĉ−k′↓ĉk′↑⟩ − ⟨ĉ†k↑ĉ

†
−k↓⟩ ⟨ĉ−k′↓ĉk′↑⟩ ≈ ⟨ĉ†k↑ĉ

†
−k↓⟩ ĉ−k′↓ĉk′↑ + ĉ†k↑ĉ

†
−k↓ ⟨ĉ−k′↓ĉk′↑⟩

so that if we define ∆k = 1
N

∑
k′ Vk,k′ ⟨ĉ−k′↓ĉk′↑⟩ the above Hamiltonian becomes:

ĤMF =
∑
k,σ

(εkσ − µ)ĉ†kσ ĉkσ +
∑
k

∆k ĉ†k↑ĉ
†
−k↓ +∆∗

k ĉ−k↓ĉk↑ −
∑
k

∆k ⟨ĉ†k↑ĉ
†
−k↓⟩

1.2. Electron-hole doubling
It is possible to transform the above quadratic Hamiltonian into a single-particle

Hamiltonian. One essentially makes a new artificial Hilbert space which has twice

9



Ch.III.1. Bogoliubov-de-Gennes approach

the size of the single-electron Hilbert space. For this, all the terms above are written
twice with a factor 1/2 in front and one uses the commutation relations:

{ĉ†kσ, ĉk′λ} = δkk′δσλ and {ĉkσ, ĉk′λ} = 0 (3.2)

where δ denotes the Kronecker delta, to rewrite the Hamiltonian (3.1) as:

Ĥ =
∑
k,σ

1

2
(εk − µ)(ĉ†kσ ĉkσ − ĉkσ ĉ

†
kσ + 1)

+
∑
k

1

2
(∆kĉ

†
k↑ĉ

†
−k↓ −∆−kĉ

†
k↓ĉ

†
−k↑) +

1

2
(∆∗

kĉ−k↓ĉk↑ −∆∗
−kĉ−k↑ĉk↓).

Define the two component spinor containing the electron spins as ĉk = (ĉk↑, ĉk↓)
⊺

and the four component spinor Ψ̂k = (ĉk, ĉ
†
−k)

⊺ = ((ĉk↑, ĉk↓), (ĉ
†
−k↑, ĉ

†
−k↓))

⊺. Note
that this is not a proper spinor as it takes electron creation and annihilation as
two separate degrees of freedom. This redundancy is a central consideration here.
For now electron annihilation in the bottom part of the spinor is thought of as the
creation of a hole. Then the above can easily be rewritten as:

Ĥ =
1

2

∑
k

Ψ̂†
khBdGΨ̂k +

∑
k,σ

εk (3.3)

where we have defined the matrix:

hBdG(k) =

(
εk − µ iσy∆k

−iσy∆∗
k µ− ε−k

)
where σy is one of the Pauli matrices. This is the Bogoliubov-de-Gennes (BdG)
Hamiltonian matrix, where we assumed ∆k = ∆−k. This assumption corresponds
with the case of singlet spin pairing [38]. So far we have done nothing but rewriting
the mean-field Hamiltonian. The top left block is the single electron Hamiltonian,
the bottom right block is the single hole Hamiltonian, and the other terms pair the
electron and holes.

1.3. Bogoliubov quasiparticles
The above Hamiltonian can be diagonalized as a single-particle Hamiltonian. In

fact, the diagonal form can be achieved by substituting the (unitary) Bogoliubov
[39,40] transformations: (

ĉk↑
ĉ†−k↓

)
=

(
u∗k vk
−v∗k uk

)(
d̂k↑
d̂†−k↓

)
(3.4)

into equation (3.3) for some functions uk, vk with |uk|2 + |vk|2 = 1. After some
algebra to find the values of uk, vk which diagonalise the equation (3.3) such that
the new operators d̂k↑, d̂

†
−k↓ satisfy anti-commutation relations can be simplified

into [38]:

Ĥ =
∑
k,σ

Ekd̂
†
kσd̂kσ + EGS
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where EGS :=
∑

k εk − Ek is the energy of the ground state up to a constant

shift and Ek are the positive eigenvalues. The operators d̂kσ satisfy fermionic anti-
commutation relations. Thus they are referred to as Bogoliubov quasiparticles. As
seen above, they correspond with energy excitations of the ground state. Therefore,
the latter is the vacuum state for the Bogoliubov quasiparticle operators:

d̂kσ |Ω⟩ = 0. (3.5)

This is the starting point for reconstructing the wave-function of the well known
BCS ground state |Ω⟩ [38]. A Hamiltonian which includes spin pairing leads to
similar operators. We will treat these operators in more detail after discretizing
momentum in Ch. IV.

1.4. Particle-hole symmetry
The Bogoliubov transformations can also be inverted:(

d̂k↑
d̂†−k↓

)
=

(
uk −vk
v∗k u∗k

)(
ĉk↑
ĉ†−k↓

)
.

The states d̂k↑ and d̂†−k↓ have opposite energy. They are respectively referred to as
electron and hole excitations (because when ∆ = 0 they correspond to electrons and
holes w.r.t. the Fermi level). They are related by particle-hole symmetry. Thus the
particle-hole operator has to satisfy:

P :
(
uk −vk

)⊺ 7→ (
v∗k u∗k

)⊺
which is achieved by the operator P = −iτyK. Here τy is the second Pauli matrix and
K the operator of complex conjugation. The particle-hole operator is anti-unitary
such that PiP−1 = −i.

2. Model of the topological insulator

We are interested in a platform which supports chiral Majorana fermions. Fol-
lowing the numerical model in Ref. [18], we adopt the Qi-Wu-Zhang Hamiltonian for
a quantum anomalous Hall (QAH) insulator [34, 41] for a two-dimensional system.
We first introduce the Hamiltonian, briefly describe its topological invariants, and
derive its edge state spinors.

2.1. Hamiltonians
Topological insulator.— The electronic Hamiltonian for the QAH insulator

is given by:

ĤQAH =
∑
k

ĉ†kheĉk (3.6)

where ĉ†k := (ĉk↑, ĉk↓)
⊺ the spinors for electron spin as defined before, with [41]:

he(k) =

(
m(k) v(px − ipy)

v(px + ipy) −m(k)

)
= m(k)σz + vk · σ (3.7)

11



Ch.III.2. Model of the topological insulator

with m(k) = m0k+m1k
2. Here, m0 is a mass term, m1 is a higher order mass term

which will also be required to be nonzero in the real space discretization, and v is
the velocity of the fermions. When m1 = 0 this is the Dirac equation. On the right
hand side we have abbreviated the matrix using the notation σ = (σx, σy)

⊺.

Topological superconductor.— When the QAH insulator is brought in prox-
imity with a superconductor, it becomes a topological superconductor: it supports
propagating states at its boundaries which are protected by the symmetries of the
bulk, as we discuss in the next subsection. The superconducting Hamiltonian can
be described in the BdG formalism analogous to equation (3.3) [34]:

ĤBdG =
1

2

∑
k

Ψ̂†
kheΨ̂k +

1

2
Trhe (3.8)

where again Ψ̂ := (ĉk, ĉ
†
−k)

⊺ is the four component electron-hole spinor and:

hBdG(k) =

(
he(k)− µ iσy∆k

−iσy∆∗
k µ− h∗e(−k)

)
.

Basis change.— Another choice of basis is the one in which the electron-hole
spinor is arranged differently as Ψk = ((ĉk↑, ĉk↓), (ĉ

†
−k↓,−ĉ†−k↑))

⊺ (Nambu represen-
tation) [42]. In this basis, the BdG Hamiltonian matrix has the more natural form:

hBdG(k) =

(
he(k) ∆
∆∗ −T he(k)T −1

)
=

(
m(k)σz + vk · σ ∆

∆∗ m(k)σz − vk · σ

)
(3.9)

where we set µ = 0 as we will only consider zero Fermi energy in the future and have
introduce the time reversal operator T = iσyK and the pairing potential blocks are
proportional to the identity matrix. Abbreviating Kronecker products by τiσj := τi⊗
σj the particle-hole operator is now given by P = τyσyK. We use this representation
when discretizing the Hamiltonian in Ch. IV.

2.2. Topological phases
The topological invariant of the Hamiltonian (3.8) is the Chern number [34]:

N =
1

2π

∑
En<0

dkxdky (∂xa
n
y − ∂ya

n
x)

with anj = ⟨n k| − i∂kj |n k⟩ the Berry phase connection in k-space and n the band
index. In the parameter range m0 > 0 and |∆| < |m0|, N = 0 and the bulk is
a trivial insulator (Ins). If m0 < 0 and |∆| < |m0|, then N = 2 and the bulk
is a topological insulator (TI). If |∆| > |m0| the region, N = 2 and the bulk
is a topological superconductor (TSC). This is summarized in the phase diagram
Fig. III.1. The Chern number counts the number of edge states that exist at a
domain wall between two regions in different phases: if N = N1 for a region in
space and N = N2 for another region, then at their interface there exist |N2 −N1|
edge states. As shown in Fig. I.2 and Fig. III.1 the edge spinors which correspond
to the co-propagating states in the edge-vortex setup are denoted by χ1 and χ2.
Notice that when ∆ > 0 the spinor χ1 corresponds with the TI/TSC interface while
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for ∆ < 0 (i.e. φ = π in |∆|eiφ) it corresponds with the Ins/TSC interface as we
show in the next subsection. Thus, if the superconducting gap is slowly inverted,
the Majorana spinors are exchanged between the interfaces TI/TSC and Ins/TSC
respectively, as shown in color between the edge-vortices in Fig. I.2. The edge-vortex
can be pictured as the domain wall between these two fermionic spinors on a 1D
boundary.

Δ

m00
N=0

N=1

N=2
TI Ins

TSC

χ1 χ2

Figure III.1: Phase diagram of the QAH Hamiltonian with respective Chern numbes N for the
topological insulator (TI), the trivial insulator (Ins) and the topological superconductor (TSC).
The zero energy spinors at the boundaries are denoted χ1 and χ2 (blue and red lines). Diagram
extended for ∆ < 0 based on Ref. [34]. The same color scheme as in the setup Fig. I.2 was used.

Toy model. The Kitaev chain.

The Kitaev chain [10] model illustrates well how a gap closing in the presence of particle-
hole symmetry is related to the creation of unpaired Majorana zero-modes. We briefly
summarize the introduction given by Ref. [43] where more details can be found. If one
considers a superconducting Hamiltonian for a 1D chain of N spinless sites given by:

ĤBdG = −
N∑

n=1

µτz ĉ†nĉn −
N−1∑
n=1

(tτz + i∆τy) ĉ
†
nĉn+1 + h.c.

then, when the above Hamiltonian is expressed in terms of Majorana operators ĉ†n = γ2n−1+
iγ2n (which is just a change of basis so far), the parameter range µ < 2t corresponds with
the Majorana states being paired into their regular fermionic states as shown on the left:

no unpaired Majoranas unpaired Majorana modes

which is referred to as the trivial phase (images from [43]). However as soon as µ > 2t it
becomes energetically favorable for Majoranas to pair with different neighbors, as shown in
the right picture. This leaves two unpaired Majoranas at the edges: MZMs. These localized
states are forced to stay there, otherwise violating particle-hole (PH) symmetry and are at
E = 0. This is referred to as the topologically nontrivial phase. This same phenomenon
can be described in a periodic Hamiltonian without boundaries. Then each bulk phase
correspond with a different topological invariant Q = ±1 respectively (here related to the
Pfaffian of the Hamiltonian) which does not change under continuous transformations of the
Hamiltonian parameters within a phase. The only way to go from one topological invariant
to another (a topological phase transition) i.e. the only way of bringing back / separating
a pair of MZMs without breaking PH symmetry is to close the energy gap. At a spatial
boundary between two regions with Q = 1 and Q = −1 respectively, an unpaired fermion
must live at this domain wall (in the 1D case).
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Ch.III.2. Model of the topological insulator

2.3. Matching edge-spinor solutions
Interface equation.— Here we solve for the spinors on the edges of the topo-

logical superconductor in the setup of Fig. I.2. We use these spinors as projectors
in Ch. VI. Assuming ∆ homogeneous and m1 = 0, the Hamiltonian matrix (3.9) is:

hBdG(k) = m0σz + vτzk · σ + |∆|e−φτy .

We adopt units of ℏ = 1 and v = 1. If ky is a good quantum number and kx = −i∂x
is dissolved in the spatial basis then the time-independent Schrödinger equation for
zero energy solutions hBdGψ(x) = 0 can be simplified as:

∂xψ(x) =Mψ(x) (3.10)

where M := −m0τzσy + kyσz +∆(cosφτy + sinφτx)σx.

Zero momentum solutions.— For ky = 0 and φ = 0 so that ∆ = ±|∆|, the
eigenvectors and eigenvalues of M are respectively given by:

χ1 = 1/2
(
−i 1 i 1

)⊺
λ1 = ∆−m0

χ2 = 1/2
(
i −1 i 1

)⊺
λ2 = −∆−m0

χ3 = 1/2
(
i 1 −i 1

)⊺
λ3 = −∆+m0

χ4 = 1/2
(
i 1 i −1

)⊺
λ4 = ∆+m0

with the general solution:

ψ(x) =
4∑

i=1

aiχi exp(λix), ai ∈ C.

Considering the three different interfaces Ins/TI, TI/TSC and TSC/Ins in Fig.I.2
(the first one of these interfaces is not shown there as it corresponds with the two
counter propagating edge states) we can verify which of these basis states has a
bounded solution at both sides of the interface. For example, assuming ∆ > 0, for
the TSC/Ins interface ∆ > |m0|,m0 < 0 at the left – so the only growing solutions
correspond to λ1, λ4 – and ∆ = 0,m0 > 0 at the right – so the only decaying solutions
correspond to λ1, λ2. Thus the only (unnormalized) basis solution allowed at that
interface is, setting its location at x = 0, χ1f1(x) := χ1[exp((∆−m0)x)θ(−x) +
exp(−m∞x)θ(x)] with θ(x) the Heaviside step function andm∞ > 0 the mass term in
the trivial insulator. Using a similar procedure we find that χ2 is the only low energy
spinor at the TI/TSC interface and χ3, χ4 are both located at the Ins/TI interface.
Note that the localization lengths depend on the energy scales. In particular inside
the TSC, χ1 has a localization length ℏv/(∆ + |m0|) which is always smaller than
the localization length ℏv/(∆− |m0|) of χ2 (since m0 < 0 in the TSC). As we point
out later, a large difference between these localization lengths induces path-length
differences between the propagating edge-vortices. Finally, if ∆ < 0 the solution of
the matching problem is such that χ2 replaces χ1 at the TSC/Ins interface, while
the localization lengths are not affected by this. Finally, the edges correspond with
the Bogoliubov operator (for ±k = 0) γ1 =

´
dxf1(x)χ

†
1Ψ0 for which – if we include

a phase e−iπ/4 in χ1 – it is easy to verify that γ†1 = γ1. This is similar for the other
spinors, showing that these edges indeed describe Majoranas. The above can be
easily done for ky ̸= 0 to reconstruct the Majorana field on the edge (an effective
edge description can be studied as in e.g. Refs. [29,32,34]).
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Phase dependence.— The eigenvalues of M are real (it is Hermitian) and
since φ = 0, π yield opposite signs of ∆ in the above eigenvalues, the eigenvalues
cannot depend on φ in general. This is highly expected since φ is a gauge quantity
(we study the case without vortices here). It is thus more general to include the
phase in the spinors and now denote ∆ = |∆| so that solving (3.10) yields:

χφ
1 = 1/2

(
−ieiφ eiφ i 1

)⊺
λ1 = ∆−m0

χφ
2 = 1/2

(
ieiφ −eiφ i 1

)⊺
λ2 = −∆−m0.

The matching problem now always yields χφ
1 at the TSC/Ins interface and χφ

2 at the
TI/TSC interface as opposed to the previous formulation. The geometric (Berry)
phase on the edge of a translation invariant system under a change of φ(t) can be
calculated from these spinors which (for j ∈ {1, 2}) yields:

i

ˆ φ(t)

0

dθ χθ
j

†
∂θχ

ϕ
j = (−1)j

φ(t)

2

so the Majorana χ2 on the top edge accumulates a phase φ/2 and χ1 at the bottom
edge a phase −φ/2, consistent with the theory (2.1).

3. Phase equations for superconducting vortices

In this section, we present the continuum equations for the phase which describes
the vortices in the superconductor. We discuss the boundary conditions and include
the vortices in the Hamiltonian.

3.1. Phase equations
Formulation in phase.— Let C be a simple closed contour in the supercon-

ductor (the latter described by ∆eiϕ where ϕ : Ω → R and Ω ⊆ R2). Then the
increment of the phase ϕ in the superconductor along the contour depends on the
number of vortices inside the contour (see Background box below):

˛
C
∇ϕ · dℓ =

¨
S
∇×∇ϕ · ẑdS = 2πNS

vortex (3.11a)

∇ · ∇ϕ = 0

(
or

˛
C
∇ϕ · n dℓ = 0

)
(3.11b)

by Stokes’ theorem and the divergence theorem, for all simply connected surfaces
S ⊆ Ω in the superconductor containing NS

vortex ∈ {0, 1, 2, ...} vortices, where the
unit vector ẑ points upwards and the contour is counterclockwise. In the second
line, we have included the continuity equation for the supercurrent, verified for all
r ∈ Ω, so that the above set fully describes the phase in the superconductor. For
the vortices, we will assume that their core is infinitely small i.e. for all S with˜

S ∇ ×∇ϕ · ẑdS = 2πN there exists S ′ ⊂ S such that this equality holds over S ′

too.

Formulation in supercurrent.— For a more natural treatment of boundary
conditions, the above equations for the phase ϕ can be written in terms of the
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Ch.III.3. Phase equations for superconducting vortices

supercurrent j(r) from (3.13). For simplicity let us define v(r) := A + 1
2
∇ϕ ∝ j(r)

in units of ℏ = e = 1. Then substitution results in analogous equations:

¨
S
∇× vs · ẑdS = π(NS

vortex −NΩ
vortex) (3.12a)

∇ · vs = 0 (3.12b)

where we used ∇×A = B, the fact that the total flux is quantized with the number
of vortices in Ω and the fact that

¸
∂Ω

j · dℓ = 0. Here it is clearer that vortices are
vorticity sources in the current field. For the magnetic field we will use the Landau
gauge: A = B0xŷ corresponding to B = B0ẑ = −πNΩ

vortexẑ/|Ω| where |Ω| denotes
the area of Ω.

Background. Vortices in superconductors.

Vortices are defects in type II superconductors where a magnetic field is allowed to locally
penetrate and where superconductivity breaks down within a radius which corresponds
with the penetration length. The supercurrent encircles a vortex. They were predicted to
exist in the form of lattices by Abrikosov (Nobel prize 2003 [44]).

The supercurrent in the Ginzburg Landau theory is given by [45,46]:

j(r) = − 2e

m∗ |∆|2(2eA+ ℏ∇ϕ) = −4e2

m∗ |∆|2
(
A+

Φ0

2π
∇ϕ

)
(3.13)

with |∆| the ground state wave function, e the elementary charge, m∗ the effective
Cooper pair mass, A the vector potential, Φ0 = 2πℏ/e is the quantum of flux and
ϕ the phase of the superconductor. Note that the gauge transformation which keeps
this invariant is nowA → A+∇f and ϕ → ϕ−2πf/Φ0 for a continuous function f : R2 → R.

Consider a hole with contour C in the superconductor pierced by a magnetic flux
(a vortex, cf. picture below). Then the flux is quantized: taking the path integral of (3.13)
along the entire boundary ∂Ω (which is zero) we get Φ0

¸
∂Ω

∇ϕ · dℓ =
¸
∂Ω

A · dℓ = 2πΦ.
By singlevaluedness of the order parameter ∆, closed contours can only increase ϕ by 2π
multiples so that

´
C ∇ϕ · dℓ = 2πn for n ∈ Z. Therefore, the flux caused by the magnetic

field is quantized Φ = nΦ0 in units of the magnetic flux quantum. Finally, if we require
∇ · j = 0 (stationary continuity equation with no sources) and assume the Coulomb gauge
∇ ·A = 0 we obtain ∇ · ∇ϕ = 0 as an extra condition on the phase.

Φ

jϕ(r) C
Ω

3.2. Boundary conditions

Closed (or Neumann).— For a closed system we require that no current goes
through the boundary so that for any boundary vector n we have vs ·n = 0. Assume
that the domain Ω = (0, Lx)× (0, Ly) is rectangular. Then the requirements on vs

are trivial in solving (3.11). Note that if one instead solves (3.12) the requirements
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on ∇ϕ are more complicated as they contain the vector potential terms:
∂xϕ |r=(0,y) = 0 ∀y ∈ (0, Ly)

∂xϕ |r=(Lx,y) = 0 ∀y ∈ (0, Ly)

∂yϕ |r=(x,0) = 2B0x ∀x ∈ (0, Lx)

∂yϕ |r=(x,Ly) = −2B0x ∀x ∈ (0, Lx)

. (3.14)

Periodic.— Periodic boundary conditions for vs in (3.12) are again trivial. To
formulate boundary conditions in (3.11) first consider a periodic loop along the y
direction i.e. vs(x, 0) = vs(x, Ly) ∀x ∈ (0, Lx). Since A does not depend on y, the
resulting condition on ϕ is also trivial: ∇ϕ(x, 0) = ∇ϕ(x, Ly) = −2B0x ∀x ∈ (0, Lx).
For a periodic loop in the x direction however, ϕ(x, y) cannot be periodic. Indeed, if
we require that vs(r) is periodic, then ∇ϕ naturally has to compensate for the fact
that A = B0xŷ is not periodic. This problem can be corrected by using magnetic
translations, which we introduce in the next subsection.

3.3. Hamiltonian description
Minimal coupling.— The newly introduced parameters are the phase ϕ of

the vortices and the vector potential A (they together make up the only gauge
invariant quantity associated with vortices which is the supercurrent j(r) as seen in
(3.13)). Because we now introduce position dependent parameters in the momentum
description, we treat ϕ,A as operators so that ϕ = ϕ(r̂),A = A(r̂) where r̂ is the
position operator. Then (3.8) becomes:

hBdG(k) =

(
he(k+A) ∆eiϕ

∆∗e−iϕ −T he(k−A)T −1

)
(3.15)

by minimal coupling. An extra homogeneous phase φ may still be allowed in ∆
(later the Josephson phase).

Anderson gauge transformation.— Following Anderson [47] it is also pos-
sible to introduce the gauge transformation:

Uϕ =

(
eiϕ 0
0 1

)
or Uϕ =

(
1 0
0 e−iϕ

)
. (3.16)

These are the only single valued transformations of that type for an arbitrary branch
cut of ϕ. Applying the (left) gauge transformation on (3.9) gives:

h′BdG(k) := U−1
ϕ hBdG(k) Uϕ =

(
e−iϕhe(k+A)eiϕ ∆

∆∗ −T he(k−A)T −1

)
.

This transformation removed the phase of the vortices from the pairing potential,
and moved it to the electron block of the Hamiltonian. It is easy to verify that
the second Anderson transformation results in the phase being moved to the hole
block. We now use the fact that for any operator Â, B̂ such that [Â, [Â, B̂]] = 0
we have [f(Â), B̂] = [Â, B̂] ∂f(Â)/∂Â. Furthermore the electron Hamiltonian can
be expanded in k (this is the case explicitly in our Hamiltonian (3.7) and true in
general). Then it follows that:

he(e
−iϕ(r̂)k̂eiϕ(r̂)) = he([e

−iϕ(r̂), k̂] eiϕ(r̂) + k̂) = he([r̂, k̂](∇e−iϕ)eiϕ + k̂) = he(∇ϕ+ k)
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Ch.III.3. Phase equations for superconducting vortices

where we used the space-momentum commutator [r̂, k̂] = i1 (with 1 a vector of
ones). Thus we are left with a new Hamiltonian:

h′BdG(k) =

(
he(k+A+∇ϕ) ∆

∆∗ −T he(k−A)T −1

)
(3.17)

where, conveniently, knowledge of the gradient ∇ϕ is sufficient to treat vortices.
Furthermore, the branch-cut becomes irrelevant. However, this comes at the sacrifice
of resolving the symmetry operators (particle-hole, charge conjugation, etc.) in a
spatial basis.

Gauge invariant form.— It is worth noting that the U(1) transformation for
an electron ĉ†k → ĉ†ke

iθ results in the following requirements:

A → A+∇θ and ϕ→ ϕ− 2θ

to preserve the gauge invariance of the Hamiltonian, following a similar calculation
as above. From this, it is immediately clear that the quantity A + 1

2
∇ϕ is gauge

invariant, which is consistent with our definition of vs. Then the only remaining
gauge quantity in the Hamiltonian is A:

h′BdG(k) =

(
he(k−A+ 2vs) ∆

∆∗ −T he(k−A)T −1

)
. (3.18)
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■ Chapter IV
Discrete model

The BdG Hamiltonian is discretized in the tight-binding approximation. The
phase equations for the vortices are also solved on a lattice as a result. Finally,
the time-dependent problem is introduced. Spatial Bogoliubov operators are intro-
duced in the stationary as well as the time-dependent cases. We conclude with the
description of the ground state in the time-dependent problem.

1. Tight-binding discretization

1.1. General method

The basis transformation from momentum space to real space is given by the
(inverse discrete Fourier) transform:

ĉk =
1√
N

N∑
j=1

ĉje
−ikxj

where we assume a 1D system and no spin without loss of generality and ĉj denotes
the annihilation of a particle at site xj. Suppose these discrete sites are separated
by a lattice constant a so that xj = aj with j ∈ {1, ..., N} := [N ] (we will use
this set notation in the future). To go to a spatial representation of our Hamilto-
nian (3.8) note that the Hamiltonian contains terms O(1),O(k),O(k2). The basis
transformation of a constant term is trivial and exact since:

O(1) :
∑
k

ĉ†kĉk =
1

N

N∑
j,l=1

ĉ†j ĉl
∑
k

eik(xj−xl) =
1

N

N∑
j,l=1

ĉ†j ĉlNδjl =
N∑
j=1

ĉ†j ĉj

so the transformation of the terms such as µ and m0 in real space is completely
analogous to the terms in momentum. The real space transformation of the super-
conducting terms with ∆ also results to analogous terms with the momentum space
representation [48] provided ∆ does not depend on k. Now let us consider terms of
higher order in k. First, recall that the discretness of real space implies a periodic
momentum space as eikxj = eikaj = ei(ka+2π)j so that values of k ∈ [−π/a, π/a]
are sufficient to describe the discretized Hamiltonian. The tight-binding approxi-
mation consists of approximating k by the periodic function sin(ka)/a and k2 by
2(1− cos(ka))/a2 which are the most natural periodic approximations in that inter-
val for small k. To see why this corresponds with a real space discretization let us
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Ch.IV.1. Tight-binding discretization

expand the order k term similarly:

O(k) :
∑
k

k ĉ†kĉk ≈
∑
k

sin(ka)

a
ĉ†kĉk

=
1

N

N∑
j,l=1

ĉ†j ĉl
∑
k

1

2ia

(
eika − e−ika

)
eik(xj−xl)

=
1

2ia

N∑
j,l=1

ĉ†j ĉl(δj+1,l − δj,l+1)

=
1

2ia

N−1∑
j=1

ĉ†j ĉj+1 + h.c.

where in the last step we have recognized the second term as the Hermitian conjugate
of the first term. This term moves an electron from site j to site j + 1 (and vice-
versa) which is the well known real-space tight-binding Hamiltonian. In fact, this
corresponds with the finite-difference approximation k̂ψ(x) = −i∂xψ(x) ≈ −i(ψ(x+
a)−ψ(x−a))/(2a) of the momentum operator k̂. For the term of order k2 a similar
procedure follows and results in:

O(k2) :
∑
k

k2 ĉ†kĉk ≈
∑
k

2(1− cos(ka))

a2
ĉ†kĉk

=
2

a2

N∑
j=1

ĉ†j ĉj −
1

a2

N−1∑
j=1

ĉ†j ĉj+1 + h.c.

1.2. Tight-binding BdG Hamiltonian
We can now consider the direct space formulation of the BdG Hamiltonian (3.8).

Let the Hilbert space consist of 2N electrons corresponding with N coordinates and
2 spins. Using a proper ordering of the spatial and spin coordinates we label ĉjσ the
electron annihilation operator of a spatial coordinate labeled j and spin σ. Then
the second-quantized BdG Hamiltonian in real space is:

ĤBdG − 1

2
Trhe =

1

2
Ψ̂†HBdGΨ̂ =

1

2

N∑
i,j=1

Ψ̂†
iHBdG(i, j)Ψ̂j (4.1)

where HBdG is the 4N×4N matrix which results after the momentum to space basis
transformation, and Ψ̂ := (Ψ̂1, ..., Ψ̂N)

⊺ is the 4N -dimensional particle-hole spinor
of the BdG theory with Ψ̂j := (ĉj↑, ĉj↓, ĉ

†
j↓,−ĉ†j↑)⊺ following the Nambu representa-

tion introduced in (3.9). After the tight-binding approximation for the real space
formulation described in the previous subsection, it immediately follows that the
matrix elements of HBdG are (we only specify the upper diagonal part considering
that HBdG is Hermitian):

HBdG(i, j) =


h(i) ∀i, j with i = j,

t(i, j) ∀i, j with j = i+ 1,

0 else,

(4.2)
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where the small 4× 4 matrices are given by:

h(j) = (m0 + 2m1/a
2)σz +∆eiτzφ (4.3)

t(j, j + 1) =
v

2ia
σx/yτz −

m1

a2
σz (4.4)

for all i, j ∈ [N ] and where σx/y = σx if rj+1−rj = ax̂, σx/y = σy if rj+1−rj = aŷ, and
σx/y = 0 else (there are no next-nearest neighbor terms). For the implementation of
our tight-binding Hamiltonian we use the Kwant [49] library. Note that if our system
consists of a domain with 100 × 100 = 104 sites, the Hamiltonian has dimensions
4N × 4N = 4 · 104 × 4 · 104 so a non-sparse array would store 1.6·109 complex floats
against at most 3 · 42 · N2 = 4.8 · 105 for a sparse array. To treat closed boundary
conditions the hopping elements t are simply defined as above for all interior sites
i → i + 1 (and h.c.) for i ∈ [N − 1]. To treat periodic boundary conditions,
we provide the matrix with an additional condition ”t(N, 1)” along the periodic
direction, identical to (4.4).

1.3. Peierls substitution
The above discretization does not include vortices yet. We have ignored the

presence of terms A and ∇ϕ (or vs) obtained in equation (3.17) (or (3.18) respec-
tively). The presence of these fields breaks the tight-binding approximation intro-
duced before. Nevertheless they can instead be included via Peierls substitution in
the Hamiltonian without vortices [50]:

ĉ†j ĉl → ĉ†j ĉl e
−i
´ rj
rl

A(r)·dr := ĉ†j ĉl e
−iθjl

where the integral goes over the shortest path from site j to site l. A number
of demonstrations exist. To motivate this substitution with no ad-hoc argument
consider an example where the field would be conservative: A = ∇θ for some θ(r).
Then by the gradient theorem θ(r)− θ(0) =

´ r

0
A(r′) ·dr′ say over the shortest path

from 0 to r. Similar to the procedure used in simplifying the gauge transformation
(3.16), we can write the problematic term k +A(r̂) (again, we adopt the operator
form of r in the momentum basis) as e−i(θ(r̂)−θ(0))kei(θ(r̂)−θ(0)) = e−iθ(r̂)keiθ(r̂) instead.
The Peierls substitution then naturally shows up in the tight-binding Hamiltonian:∑

k

ĉ†k (k + A) ĉk =
∑
k

ĉ†k (e−iθ(x̂)keiθ(x̂)) ĉk

≈ 1

N

N∑
j,l=1

∑
k

e−iθ(xj) ĉ†j
sin(ka)

a
ĉl e

iθ(xl)

=
1

2ia

N−1∑
j=1

ĉ†j ĉj+1 e
−iθj+1,j + h.c.

where we went back to 1D for the sake of simplicity. Applying this substitution to
other vector quantities results in the 4× 4 hopping matrices from (4.4) modified. If
we express everything in A and ∇ϕ this becomes:

t(j, j + 1) =
v

2ia
σx/y

(
e−i

´ rj+1
rj

(A+∇ϕ)·dr 0

0 −ei
´ rj+1
rj

A·dr

)
− m1

a2
σz
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Ch.IV.2. Discretization of the superconducting phase

for the Hamiltonian (3.17) and expressed in terms of A and vs this becomes:

t(j, j + 1) =
v

2ia
σx/y

(
ei
´ rj+1
rj

(A−2vs)·dr 0

0 −ei
´ rj+1
rj

A·dr

)
− m1

a2
σz

for the Hamiltonian (3.18).

2. Discretization of the superconducting phase

2.1. Discretized form
Both Peierls substitutions above are equivalent. Let us work with the first one

so we solve the equation of the superconducting phase (3.11). Consider the phase
ϕ : Ω → R as before but now Ω a discrete domain identical to the one used in
the tight-binding Hamiltonian. Let it have N = nx × ny sites, such that (xi, yj) =
((i− 1)a, (j − 1)a) for i ∈ [nx] and j ∈ [ny]. Then define:

s(xi, yj) :=

(ˆ xi+1

xi

dx ∂xϕ

∣∣∣∣
yj

,

ˆ yj+1

yj

dy ∂yϕ

∣∣∣∣
xj

)⊺

:= (sx(i, j), sy(i, j))
⊺ (4.5)

for all i ∈ [nx − 1] and j ∈ [ny − 1], which correspond with the Peierls phase of
vortices. If we define the oriented contour Cij around a lattice cell a × a then the
curl equation (3.11a) has to hold for each one of these contours. Similarly, evaluate
the divergence integral (3.11b) over each closed contour. Thus, we simply evaluate
(3.11a) and (3.11b) over each unit cell Cij which results in the system:{

sx(i, j) + sy(i+ 1, j)− sx(i, j + 1)− sy(i, j) = 2πN
Sij

vortex

sx(i, j)− sx(i− 1, j) + sy(i, j)− sy(i, j − 1) = 0

for all i ∈ [nx − 1], j ∈ [ny − 1] and where N
Sij

vortex is the number of vortices inside
the unit cell with index i, j. The contours are represented in Fig. IV.1. Note that,
although the solutions are obtained on a discrete domain, they are exact.

a

Figure IV.1: Vortex phase equations in terms of curl (red) and divergence (blue). The sum of
the directed arrows gives the left hand side in the system of equations. The green dot represents
a vortex, always in the middle of a unit cell.

2.2. Boundary conditions
To form a complete set, the above equations must be supplemented with bound-

ary conditions. For periodic boundary conditions the curl equations above are used
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again (with no vortices) but on the unit cell at the boundary (including opposite
edges). This is similar for the divergence. For closed boundary conditions one im-
poses zero current through the boundary for which we refer to (3.14). For example
at the boundary x = nx we require sx(nx, j) = 0 ∀j ∈ [ny] in our gauge. For the
boundary y = ny however, since the vector potential A is in the ŷ direction the zero
current condition is sy(i, ny) = −2B0xi ∀i ∈ [nx]. One should be careful though
that the set is not overspecified. For example there are 2nxny unknowns, the bulk
equations solve 2(nx − 1)(ny − 1) but the periodic boundaries give 2(nx + ny) − 1,
so one equation must be removed.

2.3. Peierls phase integration
It is also possible not to perform the Anderson gauge transformation. Then, the

Hamiltonian which includes the vortices is specified by (3.15): the phase ϕ(r) is a lo-
cal quantity in the pairing potential and the vector potential enters the Hamiltonian
by minimal coupling as usual. For this, we need to calculate ϕ(r). Naively one would
sum up the integrals following the gradient theorem: ϕ(r) − ϕ(0) =

´ r

0
∇ϕ(r′) · dr′

along any path. However ∇ϕ is not conservative as it is path-dependent; a path
which encircles the vortex will gain a phase of 2π and another path might avoid
a vortex. Therefore, the choice of integration paths defines the location of the 2π
jump. In Fig.IV.2 we show different paths associated with different phase accumu-
lations. These simply correspond with different conventions applied consistently.
Consider for example the left figure with ϕ(0) = 0 so that by telescoping:

ϕ(xi, yj) =
i−1∑
k=1

sx(k, 1) +

j−1∑
k=1

sy(xi, k).

−2 −1 0 1 2

φ(x, y) [π]

0 50 100 150 200

y [a]

0

50

100

x
[a

]

(i, j)

0 50 100 150 200

y [a]

(i, j)

Figure IV.2: Different vortex 2π jumps as a function of the integration path.

3. Dynamical perturbation of the ground state

3.1. General time-dependent problem
So far we have considered a stationary problem governed by the time-independent

Schrödinger equation. As introduced in Ch. I, the dynamical problem includes a
homogeneous time-dependent Josephson phase φ(t) in one of the superconducting
regions. The latter is simply summed with the phase ϕ that describes the vortices
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Ch.IV.3. Dynamical perturbation of the ground state

in the stationary Hamiltonian. Upon adding the dynamical phase φ(t), the states
are governed by the time-dependent Schrödinger equation:

i∂tψ(t) = ĤBdG(t)ψ(t), t > 0

where the initial conditionψ(0) is an arbitrary normalized vector of the 4N -dimensional
Hilbert space. The general solution of this time-dependent problem is given by:

ψ(t) = exp

(
−i
ˆ t

0

ĤBdG(s)ds

)
ψ(0) := U(t)ψ(0) (4.6)

where we have defined the time-evolution operator U(t) (in matrix form correspond-
ing with the above basis, or denoted Û(t) in operator form) which is unitary.

3.2. Time evolution of Bogoliubov-de-Gennes states
Stationary quasiparticles.— In Ch. III equation (3.4) we have introduced

the Bogolibuov quasiparticle operators in momentum space which diagonalize the
BdG Hamiltonian. We now define them in direct space. Again, the tight-binding
Hamiltonian BdG matrix (4.2) is diagonalized by the Bogoliubov transformation V :

HBdG = VEV∗

with E the diagonal matrix containing the eigenvalues and V the eigenvectors of
HBdG of the form:

V =

(
u v∗

v u∗

)
(4.7)

where u, v ∈ CM×M where we define M := 2N . As a result, the eigenvalues come in
positive/negative eigenvalue pairs which correspond to the particle/hole excitations
respectively. It is simpler to introduce the following index notation:

Notation: Negative indices for negative eigenvalues.

Suppose the eigenvalues Ei are ordered along the diagonal of E . Then define negative indices
−i with i ∈ [M ] or i ∈ [−M ] such that E−i := EM−i the negative eigenvalues, and redefine
the positive indices as Ei := EM+i the positive eigenvalues. Then E−i = −Ei ∀i ∈ [M ].
Define Z∗

M = [−M ] ∪ [M ] = {−M, ...− 1} ∪ {1, ...,M}.

The diagonalization may also be written in the operator form (4.1):

ĤBdG − 1

2
Trhe =

1

2
Ψ̂†VEV∗Ψ̂ =

1

2
d̂†Ed̂. (4.8)

where we defined d̂ := V∗Ψ̂. Note that by unitarity, Ψ̂ = Vd̂. The individual
stationary Bogoliubov creation operators are then given by the elements of d̂ which
can be expanded1:

d̂†α =
M∑
j=1

uαj ĉ
†
j + vαj ĉj and d̂α =

M∑
j=1

u∗αj ĉj + v∗αj ĉ
†
j ∀α ∈ [M ]. (4.9)

1Because of the redundancy d̂α = d̂†−α ∀α ∈ [M ], anti-commutation cannot hold across the whole

spectrum: {d̂α, d̂β} = {d̂†−α, d̂β} = δ−α,β ̸= 0 if α = −β. We can extend the anti-commutations to

the whole spectrum to account for this: {d̂†α, d̂β} = δαβ and {d̂α, d̂β} = δα,−β ∀α, β ∈ Z∗
N .
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Note that we have chosen α only positive. We have discarded all negative energy
states because they are redundant. It is straightforward to show that the Bogoliubov
operators again satisfy fermionic anti-commutation relations:

{d̂†α, d̂β} = δαβ and {d̂α, d̂β} = 0 ∀α, β ∈ [M ].

Time-evolved quasiparticles.— Note that the columns of V are orthonormal
and that the evolution operator (4.6) is unitary so preserves the orthonormality. It
can be easily shown [51] that the time-dependent operators:

â†α := Û(t)d̂†αÛ
†(t) (4.10)

satisfy equal-time anti-commutation relations:

{â†α, âβ} = δαβ and {âα, âβ} = 0 ∀α, β ∈ [M ]

where the restriction to only positive indices is less evident but still true. Most
importantly each one obeys the time-dependent Schrödinger equation i∂tψα(t) =
HBdG(t)ψα(t) with ψα(t) = (uα,−M(t), ..., uα,−1(t), vα,1(t), ..., vα,M(t))⊺ the coefficients
in â†(t). Therefore, the full many-body evolution (4.6) requires solving the single-
particle Schrödinger equation M times.

3.3. Construction of the ground state
As introduced in Ch. III equation (3.5) in momentum space, the stationary

ground state is the vacuum state of the positive energy Bogoliubov quasiparticles:

d̂α |Ω⟩ = 0, ∀α ∈ [M ] or d̂†α |Ω⟩ = 0, ∀α ∈ [−M ] (4.11)

where |Ω⟩ denotes the ground state of the Hamiltonian at t = 0, which is the
initial state of the evolution. In Ch. V we will see that the complete knowledge
of single-particle expectation values in the evolved state is provided by the evolved
negative energy eigenstates, without explicitly knowing the wave function of |Ω⟩.
Nevertheless in Ch. VII it will be useful to introduce another vacuum state |vac⟩
which satisfies:

d̂α |vac⟩ = 0, ∀α ∈ [−M ] or d̂†α |vac⟩ = 0, ∀α ∈ [M ] (4.12)

which is the exact opposite of (4.11). This allows us to write the ground state as:

|Ω⟩ =
∏

α∈[−M ]

d̂†α |vac⟩ . (4.13)

We will refer to this description as the Fermi picture since it corresponds with filling
a vacuum with negative energy excitations. Then, the evolved state has the more
intuitive form:

Û(t) |Ω⟩ = Û(t)
∏

α∈[−M ]

d̂†α |vac⟩ =
( ∏

α∈[−M ]

a†α(t)

)
Û(t) |vac⟩ (4.14)

which follows by inserting identities Û †Û in the product and using the definition
(4.10), so that this is a product of (mutually anti-commuting) time-evolved quasi-
particles. The definition of |vac⟩ is unusual however as it consists of the state which
is completely filled with the positive energy excitations. However it can be used to
describe e.g. transitions more intuitively while remaining entirely correct [52].
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Ch.IV.3. Dynamical perturbation of the ground state

3.4. Numerical time-evolution scheme
The time evolution is done using the library Tkwant [53] and each single-particle

evolution is done in parallel, consisting of typically between 30 and 100 single-
particle evolutions per simulation, done on nodes of each 9.6 TFLOPS. Tkwant uses
the Dormand-Prince 5(4) Runge-Kutta variation [54] provided by the SciPy library.
The relative tolerance is set at 10−9.
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■ Chapter V
Operators in the evolved ground state

This chapter treats the evaluation of single-particle observables in the evolved
ground state. This is a many-body problem which requires a careful treatment of
the BdG redundancy. The necessary operator decompositions are introduced first,
and applied to the evolved ground state in the second part.

1. Stationary expectation values

1.1. Spectral decompositions

In the standard electron basis.— Let Q̂ be an arbitrary single-electron Her-
mitian operator (such as charge or current density). Then it can be dissolved in the
electronic basis:

Q̂ =
N∑

i,j=1

Qe
ij ĉi

†ĉj (5.1)

where Qe
ij is the matrix element ⟨i|Q̂|j⟩ of the operator known for electrons. For the

operator of charge, this is just the constant elementary charge Qe
ij = e · δij. Note

that the sum goes until N ; we neglect spin in this chapter because we only discuss
the particle-hole part here.

In the redundant electron-hole basis.— We can apply the same method as
when we introduced the BdG Hamiltonian in Ch.III to write the above operator Q̂
in the particle-hole basis by using anti-commutation relations:

Q̂ =
N∑

i,j=1

Qe
ij

1

2
(ĉi

†ĉj + δij − ĉj ĉi
†)

=
N∑

i,j=1

1

2

(
ĉ†i
ĉi

)⊺(Qe
ij 0
0 −Qe

ji

)(
ĉj
ĉ†j

)
+

1

2
TrQe

=
N∑

i,j=1

1

2
Ψ̂†

iQBdG
ij Ψ̂j +

1

2
TrQe

Q̂ =
1

2
Ψ̂†QBdGΨ̂ +

1

2
TrQe (5.2)

where the spinors are Ψ̂ = (Ψ̂1, ..., Ψ̂2)
⊺.

In the redundant quasi-particle basis.— The expression above allows us to
substitute the Bogoliubov transformations (4.9) Ψ̂ = Vd̂:

Q̂− 1

2
TrQe =

1

2
d̂†(V∗QBdGV)d̂ :=

1

2
d̂†Q̃d̂ (5.3)
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Ch.V.2. Dynamical expectation values

where we have brought the constant trace to the left. This can also be expanded as:

Q̂− 1

2
TrQe =

1

2

2N∑
α,β=1

Q̃αβd̂
†
αd̂β.

If we denote the columns of V (i.e. the eigenvectors of HBdG) by ψα = (uα, vα)
⊺ (for

α ∈ [N ]) with eigenvalue Eα then the matrix elements of Q̃ can be written more
intuitively as ψ∗

αQBdGψβ (a common inner product through QBdG).

In a non-redundant quasi-particle basis.— The above decomposition in-
volves quasi-particle creation operators which do not mutually anti-commute. We
remove this redundancy by expressing the above in only positive indices α, β ∈ [N ].
For this note the particle-hole symmetry of the twiddled charge:

Q̃ =

(
Q̃++ Q̃+−

Q̃−+ Q̃−−

)
=

(
Q̃++ Q̃+−

Q̃∗
+− −Q̃⊺

++

)
The above can be shown by substituting the Bogoliubov transformation V (4.7)

in the definition of Q̃ = V∗QBdGV . Expanding the blocks of the Q̃ matrix in the
operator and simplifying using anti-commutation relations yields:

Q̂− 1

2
TrQe =

N∑
α,β=1

Q̃++

αβ d̂
†
αd̂β −

1

2
Tr
{
Q̃++

}
+

1

2

(
N∑

α,β=1

Q̃+−
αβ d̂

†
αd̂

†
β + h.c.

)
(5.4)

which is reminiscent of the quadratic BdG Hamiltonian in its original form (3.1).

1.2. Ground state expectation value
If we now consider the stationary ground state |Ω⟩ one immediately gets:

⟨Q̂⟩ = ⟨Ω|Q̂|Ω⟩

=
1

2
TrQe −

1

2
Tr
{
Q̃++

}
from the above (5.4), since it is annihilated by the leftmost and rightmost terms by
construction of the vacuum. For example, for the total charge in the system this is
Ne/2−∑N

α=1ψ
∗
αQBdGψα/2 the sum over each excitation’s charge expectation.

2. Dynamical expectation values

We now consider observables ⟨Q⟩ (t) = ⟨Ω|Û †Q̂Û |Ω⟩ in the time-evolved ground
state. Because we treat operators in the Heisenberg picture it is convenient to intro-
duce the operator d̂(t) = Û †(t)d̂Û(t). Note that this is different from â(t) (4.10) by
the fact that the unitary operator is now on the right of the creation operator. This
is still simply a rotation of the basis – which preserves anti-commutation relations
– which we write:

d̂α(t) =
∑
β∈Z∗

N

Rαβ(t)d̂β or d̂(t) = R(t)d̂. (5.5)
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The latter transformation is related to the time evolution operator by conjugate-
transposition i.e. its elements αβ are given by the inner products ⟨ψα(0),ψβ(t)⟩
which we denote ⟨ψ0

α,ψ
t
β⟩ for simplicity. After some algebra it is possible to show

that:

R = V∗V(t)V (5.6)

where V(t) is the matrix whose columns α satisfy the time-dependent Schrödinger
equations.

2.1. In the electron-hole basis
Consider the time-dependent equivalent of the completeness relation (5.3) by

applying Û on both sides and inserting identities:

Û †Q̂Û − 1

2
TrQe =

1

2
Û †d̂†(V∗QBdGV)d̂Û

=
1

2
Û †d̂†(Û Û †)(V∗QBdGV)(Û Û †)d̂Û

=
1

2
d̂†(R∗(t)V∗QBdGVR(t))d̂

=
1

2
d̂†(V∗V∗(t)QBdGV(t)V)d̂

One readily sees that the only terms which do not annihilate the vacuum are the
ones with negative eigenvalues. Furthermore, the columns α of V(t)V are the time-
dependent solutions ψα(t). Thus, the dynamical expectation of Q̂ may be written:

⟨Q̂(t)⟩ − 1

2
TrQe = ⟨Ω|Û †Q̂Û |Ω⟩ = 1

2

∑
α∈[−N ]

ψ∗t
αQBdGψ

t
α

so that the net change over time – written in a first quantized notation – is:

⟨Q̂(t)⟩ − ⟨Q̂(0)⟩ = 1

2

∑
α∈[−N ]

⟨αt|Q̂|αt⟩ − ⟨α0|Q̂|α0⟩ . (5.7)

This expression is intuitive as it is completely analogous to the expectation value
in conventional (semi-)conductors, where the expectation value is the sum over all
single-particle expectations below the Fermi surface E = 0. In the case of the
redundant BdG theory however, this result is not trivial. We will see that if one
introduces a cut-off in the index α ∈ [−Ncutoff ] with Ncutoff < N – which is usually
a cut-off in energies far from the Fermi surface – this sum does not converge for
increasing values of Ncutoff . We propose an alternative in the next subsection.

2.2. In the stationary basis
Consider the stationary spectral decomposition (5.4) applied to the evolved vac-

uum. This results in the expression:

Û †Q̂Û − 1

2
TrQe +

1

2
Tr
{
Q̃++

}
=

N∑
α,β=1

Q̃++

αβ Û
†d̂†αd̂βÛ +

1

2

(
N∑

α,β=1

Q̃+−
αβ Û

†d̂†αd̂
†
βÛ + h.c.

)

:= Â(t) +
1

2
(B̂(t) + h.c.)
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where we have labeled the terms Â and B̂. We develop individual terms by substi-
tuting (5.5) and split the sums in four energy sectors (analogous to in (5.4)):

Û †d̂†αd̂βÛ =
∑

i,j∈Z∗
N

R∗
αiRβj d̂

†
i d̂j

=

 ∑
i,j∈[N ]

+
∑

i,j∈[±N ]

+
∑

i,j∈[∓N ]

+
∑

i,j∈[−N ]

 (R∗
αiRβj d̂

†
i d̂j). (5.8)

Clearly, the only nonzero contribution in the vacuum is the last term over negative
indices, which yields ⟨Ω|d̂†i d̂j|Ω⟩ = δij so that:

⟨Ω|Â(t)|Ω⟩ =
∑

α,β∈[N ]

Q̃++

αβ

∑
γ∈[N ]

R∗
α−γRβ−γ

=
∑

α,β,γ∈[N ]

Q̃++

αβ ⟨ψt
−γ,ψ

0
α⟩ ⟨ψ0

β,ψ
t
−γ⟩ .

Note that the only terms which contribute here are the evolved states that are below
E = 0 at t = 0. Therefore, we only need to evolve negative energy eigenstates which
is consistent with (5.7). For the case of charge in our system this will be the main
contribution. Let us now consider the second order term B̂(t) and its Hermitian
conjugate. Again substituting (5.5) and splitting in energy sectors as in (5.8) only
allows for terms of the form ⟨d̂†i d̂†j⟩ with i ∈ [−N ] and j ∈ [N ] to be nonzero, which
yields δij and thus:

⟨Ω|B̂(t)|Ω⟩ =
∑

α,β,γ∈[N ]

Q̃+−

αβ ⟨ψt
−γ,ψ

0
α⟩ ⟨ψ0

β,ψ
t
γ⟩

=
∑

α,β,γ∈[N ]

Q̃+−

αβ ⟨ψt
−γ,ψ

0
α⟩ ⟨ψ0

−β,ψ
t
−γ⟩

where we used particle-hole symmetry in the last step. Similarly for its Hermitian
conjugate, but now only ⟨d̂†i d̂†j⟩ with i ∈ [N ] and j ∈ [−N ] it is trivial to show that
it is identical to the above. Thus we finally obtain:

Û †Q̂Û − 1

2
TrQe +

1

2
Tr
{
Q̃++

}
= ⟨Ω|Â(t)|Ω⟩+ 2 ⟨Ω|B̂(t)|Ω⟩

and the net change of the observable over time (conveniently, the right hand side is
zero at t = 0) is:

⟨Q̂(t)⟩ − ⟨Q̂(0)⟩ =
∑

α,γ∈[N ]

∑
β∈Z∗

N

Q̃αβ ⟨ψt
−γ,ψ

0
α⟩ ⟨ψ0

β,ψ
t
−γ⟩

where remarkably, the sum over β covers the entire energy spectrum, the sum over
α only the positive part and γ only the negative part. Also note that the factor 1/2
from the BdG redundancy is not present anymore. For better readability:

⟨Q̂(t)⟩ − ⟨Q̂(0)⟩ =
∑
α∈[N ]

∑
β∈Z∗

N

∑
γ∈[−N ]

⟨γt|α0⟩ ⟨α0|Q̂|β0⟩ ⟨β0|γt⟩ . (5.9)

We will see that this operator converges much better when one substitutes N by
some Ncutoff < N and is representative of the actual cut-off in energy with respect
to the Fermi level.
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■ Chapter VI
Signatures of braiding

In this chapter, the measurement of current-density at the exit of the super-
conductor is addressed. This is the only way of locally observing whether braiding
has taken place inside the superconductor beforehand. The dynamical exit current
density is studied here and we conclude which regime is best suited for the detection
of braiding.

1. Adiabatic crossings and diabatic transitions

1.1. Domain wall in terms of overlaps
We analyze the edge-vortex excitations. The time-evolution of a single excitation

can be written in terms of the initial eigenbasis:

|βt⟩ =
2N∑
α=1

Uαβ |α0⟩ (6.1)

with Uαβ = ⟨α0|Û(t)|β0⟩. In Fig. VI.1 we represent the values of Re{Uαβ} for the
lowest energy edge mode. The π-jumps in the overlap represent the position of the
edge-vortices. A similar behaviour can be found in higher energy excitations, which
contain nonzero dynamical phases and couple more with the junction.
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Figure VI.1: Local overlap Re{Uαα(t)} for the lowest energy edge state (summed with vortices
for the sake of representation) at two different times. (Left) during the injection which occurs
around φ = π or values of t around τ/2. (Right) After the injection the π-domain walls (in green)
represent the edge-vortices which fuse at the exit of the superconductor. Here τ = 75a/v.

1.2. Global E = 0 crossing of the edge states
We represent the values of the overlap with instantaneous eigenstates of HBdG(φ)

(denoted by |αφ⟩) with the size of the dots in Fig. VI.2, in a system where the junc-
tion width is W = 40a and the characteristic time is τ = 200 [a/v]. The discretiza-
tion of momentum results in a high folding of the Brillouin zone thereby making
making the spectrum dense around zero energy and generating an important num-
ber of avoided crossings. Thus, under a linear time-evolution, diabatic transitions
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Ch.VI.1. Adiabatic crossings and diabatic transitions

occur necessarily. In the leftmost plot, the fermionic pair of bulk vortices slightly
below zero energy evolves towards its counterpart at a slightly positive energy. This
unambiguously corresponds with a change in parity since it is an adiabatic crossing
isolated from other states.
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Figure VI.2: Instantaneous spectrum of HBdG(φ) (gray curves) and squared overlap of an
evolved state – ψvortices or ψedges– with instantaneous eigenstates |αφ⟩ (size of the dots). Positive
(negative) states are shown in blue (red), and dynamical crossings with zero energy are
represented by a green dot. The bottom shows the wave function amplitudes at t = 0 for these
energies. System with W = 40a and τ = 200a/v.

Now turning to the lowest edge mode excitation in the middle plot, it spreads
across the spectrum throughout the evolution. In particular, the crossing through
zero energy event cannot be isolated; it occurs in a large number of different excita-
tions as well. This is for example shown in the rightmost plot. This begs for a more
elaborate description of the parity exchange for which we refer to Ch. VII.

Finally, note that near φ = π the effect of the gap closing inside the Josephson
junctions is visible on the entire spectrum. This is indeed visible on a scale which
corresponds with the effective gap in the junction ∆0 = 0.116 ℏv/a and it is the only
variable energy scale in the system as anticipated previously [18]. Second, one notes
the (adiabatic) band crossings observed between φ ∈ [π, 3π/2]. In fact, at higher
states they correspond with states localized at each opposite edges of the junction.
It is clear that the junction lowers the energy of one edge state more than the other
(this comes from the fact that the junction is entirely in the topological phase).
After this process, the state at one edge finds itself exchanged with the opposite
edge as their respective bands were inverted.

1.3. Forbidden transition without vortices
In the absence of vortices, the gap inversion cannot imply a change of parity

for the edges, unless the edges can exchange parity with the bulk. It seems more
likely that both gap inversions will only affect the edge. We consider this situation
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in Fig. VI.3. Clearly, the tendency of the system is not to cross the E = 0, which
indicates that the parity remains the same. The lowest energy state does not cross
the E = 0 level at all during the process and globally stays at E = −10−7 in
amplitude. On the right side we show the two lowest energy excitations, which
correspond with the two respective edge states. With the gap inversion, these states
most remarkably do cross the E = 0 level, and end up in an equal superposition
of the lowest energy states at energies ±10−7 (shown in green). This suggests that,
despite the fact that we do not see an overall transition through the E = 0 level, the
injection process at both junction has produced Majorana-zero modes in the zero
energy subspace.
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Figure VI.3: Instantaneous spectrum of HBdG(φ) (gray curves) and squared element of the
evolution matrix without vortices. Here the green state is one where the evolved state is in an
equal amplitudes superposition of the states at ±10−7ℏv/a. The bottom shows the wave function
amplitudes at t = 0 for these energies. System with W = 40a and τ = 200a/v.

2. Convergence of charge

Before analyzing the current density at the exit of the system, we address the
methodical point developed in Cha. V namely the evaluation of the current density
in the electron-hole basis in (5.7) or in the spectral decomposition of stationary
states (5.9). In Fig. VI.4 we show the convergence of each method as a function
of the cutoff energy Ecutoff . The operator evaluated is the local current density
ρ = −τzσy ˆprojyexit at the exit of the superconductor (contained in the projector).
We then define the quantities:

I(t) := ⟨ρ̂(t)⟩ − ⟨ρ̂(0)⟩

Q(t) :=

ˆ t

0

I(s)ds

and denote by Q(∞) the value of Q(t) after the quench. The system used here has
W = 40a, L = 40a and τ = 350a/v. It is immediately clear that the eigenbasis
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Ch.VI.3. Quantization of charge

method results in a much more stable convergence. It is still worth noting that the
oscillation in energy seen in the electron-hole basis are associated with the bound
states in the junction. Indeed, they only appear at energies higher than ∆0. In fact,
it was seen that the frequency of these oscillations is controlled by the width W of
the junction; they become more frequent with increasing W , which shows that an
increasing number of excitations populate the junction for a fixed energy range as
W is increased. One might therefore expect that, in the absence of bound states,
the electron-hole decomposition of charge works reasonably well.
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Figure VI.4: Evaluation of the net charge increase as a function of the energy cutoff in the
(Left) electron-hole basis and (Right) stationary basis methods. The convergence is shown as a
function of time (Top), and the final converged value Q(∞) as a function of energy too (Bottom).
We also show the bands as a function of φ of a related system in the right plot.

3. Quantization of charge

As observed in the previous convergence plot, it is possible to reach a quantized
value of charge dynamically. We consider a number of different limits in which the
theoretical result is obtained.

3.1. Time-separated current pulses
First, consider the limit where the the junction separation is large L compared

to the injection time. We consider the system with L = 350a, τ = 300a/v and
W = 25a. Thus the estimated injection time is tinj = 103a/v. The simulated
net current density and charge are shown in Fig. VI.5 along with the theoretical
prediction from (2.3) (dashed lines). The similarity with the simulation is remarkable
in the case with and without vortices, in terms of current and in terms of quantized
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charge which produces values of ±e/2. It is clear that the presence of vortices only
affects the second pair of edge-vortices as expected.
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Figure VI.5: Local current density pulses (left) and integrated local current density pulse
(right) at the exit of the superconductor, where the distance L = 350a between the injection
events is large compared to the duration of the injection vtinj = 103a. Both numerical (solid
lines) and analytical (dashed lines) results are shown for the cases with (black) and without (red)
vortices. Time origin is arbitrary.

3.2. Merging into a single pulse
Now progressively changing the inter junction distance L until the charge pulses

are merged is done in Fig. VI.6. Here we recover the theory from Ref. [18] of a single
pulse achieved by close junctions. Nevertheless the current shows some deviation
from the theory in its shape; it is not symmetric. This could for example be caused
if the second pair of edge-vortices experienced the junctions differently than the first
pair.
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Figure VI.6: Net current density (left) and accumulated charge (right). The charge is shown
for different values of L (in units of a) shown on top of the lines. Here vtinj = 103a and the time
origin is arbitrary.

4. Path-length difference effects

In Ref. [22] the effect of path-length difference between the fusing vortices on
the quantization of charge was studied. As one expects, if the edge-vortices arrive
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Ch.VI.4. Path-length difference effects

at the exit with a relative time-delay, their fusion cannot produce unit charge.

The system studied here naturally contains path-length differences. The differ-
ences in localization length between the edges (see Sec. 2.3 of Ch. III) induces a small
path-length difference between the top and bottom edges (namely, at corners the
edge with the largest localization length ”cuts” the corners). The main contributor
to path-length differences is the junction, which is a topological insulator such that
only the top edge may penetrate far in the junction at most values of φ. Finally,
the top edge states hybridize with the junction at higher energies. This is shown in
Fig. VI.7 on the right where velocity expectation values are calculated as a function
of energy in a short system where this effect is exacerbated. The latter is a minor
consideration since this is not the actual velocity of the edge state; all states on
the edge have velocity v. These three mechanisms combined result in a small path-
length being present in the system, which can be neglected for large enough τ as we
have done so far. For illustration the local complex phase of the top (denoted χ2)
and bottom (χ1) edge fermions is shown in Fig. VI.7. The phase is evaluated near
the exit of the superconductor so that both π jumps are observed. This corresponds
with the τ = 20a/v case and the energy of the shown state is E = −0.08ℏv/a which
is below the effective gap ∆0. It is clear that the junction only affects the phase of
the top edge χ2. We come back to the related effects in the next subsection.
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The constant path-length difference is used to our advantage here to study its
effect on quantization. By increasing the time τ and considering the constant path-
length difference δx, the ratio δx/vtinj will decrease, thus improving the quantization
of charge. We consider vτ/a = 20, 40, 80, 150 (higher values here recover the theory
discussed above) for a junction length W = 25a as before so the estimated injection
times are vtinj/a = 7, 14, 28, 52 respectively. Finally, the inter junction distance L
is taken to be equal to vτ so that the pulses are separated in time. The results are
shown in Fig. VI.7 (left) with and without vortices. The theoretical expectation
(2.4) was shown with dashed lines. For the theoretical expectation, it was assumed
that δx = 7a for the first pulse based on the inspection of the phase and on the
goodness of the fit. This is of the same order as the injection time for the case
τ = 20a/v. Clearly, the theoretical expectation matches the simulation for the first
plateau below e/2 for all values of τ , whereas the theoretical expression was evaluated
at a constant δx. This strongly suggests that path-length difference governs the
charge quantization here and that the accumulated path-length by the first pair of
edge vortices is indeed constant. For the second pulse however, a variable path-
length was used of δx/a = 7, 10, 11, 13 for τv/a = 20, 40, 80, 150 respectively to
accommodate with the theory. This suggests that faster injections exacerbate path-
length difference effects for the second pair of edge vortices which passes near both
junctions. Finally, note the discrepancy between the case with and without vortices
for the second pulse, where a small drop is seen after reaching the quantized value.
In the next section, we explore the possibility of higher order interference effects due
to the junction.

5. High order interference

In this section the role of the bound states in the junction is investigated. The
existence of bound states is expected above the gap ∆0. At subgap energies, the
edges may not couple through the junction at φ = 0. This is shown in the wave
function amplitude in Fig. VI.8. Above the gap however, the junction allows for
bound states to exist, which couple both edges at higher energies. Different modes
of the junction are shown in Fig. VI.8.
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Figure VI.8: Wave function amplitudes of negative energy excitations at t = 0 for different
energy values shown in units of ℏv/a. The leftmost state is at E = −0.07. The system shown
corresponds with W = 70a.

The junction may be populated by increasing its width W . This will simulta-
neously reduce the injection time however, so τ is chosen such that the estimated
injection time tinj remains constant. In Fig. VI.9, the local current density is shown
for two estimations of the injection time and for five values of the junction length
W . The estimation of the injection time is reasonable since the main peaks have
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Ch.VI.5. High order interference

approximately the same width given an injection time. The discrepancies seen in
charge quantization which could not be accounted for by the theoretical expressions
are attributed to higher order interferences. The oscillations in charge produced
after the injection indeed suggest that the bound states in the junction were ex-
cited. In fact the period of these oscillations – for the tinj = 40a/v case – have
a period of approximately T = 50a/v. This corresponds with a characteristic en-
ergy E = ℏ2π/T ≈ 0.13 ℏv/a which is the energy of the lowest bound state of the
junction. The fundamental period seen in the case tinj = 10a/v is also around 50a.
However, the signal contains higher frequencies as well, which we attribute to the
excitation of higher energy bound states at shorter injections. Finally, these oscilla-
tions tend to be suppressed as W is decreased as shown in the case of tinj = 40a/v.
They are completely suppressed at large values of τ as shown in the ideal results
of Sec. 3. The use of a point junction eliminates this consideration altogether.
One should note that the effect of these high order oscillations on the plateau values
Q(∞) is small, as observed in Fig. VI.7 before. The same interference were observed
in the absence of vortices, which suggests that this behavior is a characteristic of
the junctions rather than that of vortices.
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38



■ Chapter VII
Parity protection of the edge-vortex

Thus far, braiding was only discussed through its signature in charge. The edge-
defects produced in the junction are expected to carry the parity qubit of the bulk
vortices. After escaping into the edges, they propagate to the exit, as studied before.
Here, we address the question whether the edge-vortices carry the parity lost by the
bulk. Because this part is still a work in progress, results are at an early stage. We
first present a method which is true in some approximation. The second section
presents an exact approach currently studied in parallel.

1. Fermi-sea picture

1.1. Introduction
Parity protection above the ground state.— If we denote the Majorana

operators by πi for the edge-vortex zero modes and γi for the bulk vortices – identical
to the convention in Fig. I.2 – then the parity operator of the vortices and bulk
vortices in the idealized description is given by:

P̂ = iγ1γ2 · iπ1π2 · iπ3π4
which holds for an infinitely long junction and infinite time; under these conditions
the braiding process takes place entirely in the ground state manifold and:

iγ1γ2 · iπ3π4 → (−iγ1γ2) · (−iπ3π4)
describes the braiding process. The total parity is conserved but each pair gains
a different parity. In the non-idealized theory however, the edge-vortices are ex-
citations above the ground state and the zero-modes contain fermionic excitations
(albeit without interacting with them). One can prove that leaving the ground state
does not compromise parity protection under these conditions [55] and that instead,
we consider the edge-vortex as the total edge collection i.e.:

P̂ = iγ1γ2 · P̂edge → (−iγ1γ2) · (−P̂edge)

is the total parity of the excited state. Note that P̂edge also contains π1 and π2 so
one cannot separate the two pairs of edge-vortices anymore; local contributions to
the parity along the edge cannot be treated trivially.

Parity operator.— As mentioned in Ch. I, a Bogoliubov quasiparticle is a
parity-conserving excitation. Therefore, the parity of BdG excitations is the elec-
tronic parity so that the following formulations of the parity operator are equivalent:

P̂ = (−1)n̂ =
N∏
i=1

(1− 2ĉ†i ĉi) =
N∏

α=1

(1− 2d̂†αd̂α)
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Ch.VII.1. Fermi-sea picture

where n̂ is the electron number operator. In our description, the vortices are also
calculated in a fermionic basis, so that the eigenstate which contains the vortices has
a well defined parity. Note that when applied on the ground state |Ω⟩ this operator
always gives 1, which is the initial ground state parity (up to a minus sign). For
future reference we expand the product of the operator in a sum of ordered sums:

P̂ = 1− 2
∑
i1

d̂†i1 d̂i1 + 4
∑
i1<i2

d̂†i1 d̂i1 d̂
†
i2
d̂i2 − 8

∑
i1<i2<i3

d̂†i1 d̂i1 d̂
†
i2
d̂i2 d̂

†
i3
d̂i3 + ...

= 1 +
N∑
α

(−2)α
∑

i1≤...≤iα

d̂†i1 d̂i1 d̂
†
i2
d̂i2 ...d̂

†
iα
d̂iα (7.1)

so that we only treat products of d̂α operators. Furthermore, this product can be
normal ordered using anti-commutation relations.

1.2. Time-dependent parity expectation
Approximation.— The approach essentially consists of ”counting” the parity

of the evolved quasiparticles as seen from the stationary quasiparticles from the bot-
tom or top parts of the spectrum. By adopting the Fermi sea picture introduced in
Sec. 3.3 of Ch. IV we use the vacuum |vac⟩ annihilated by the negative energy an-
nihilation operators (or positive energy creation operators) so that the time-evolved
state is:

Û(t) |Ω⟩ =
∏

α∈[−N ]

a†α(t) |vac(t)⟩

where we denoted |vac(t)⟩ := Û(t) |vac⟩ so the ground state parity is:

⟨P̂ (t)⟩ = ⟨Ω| Û †(t)P̂ Û(t) |Ω⟩ .
We now present a demonstration which relies on the assumption that this vacuum is
still the same vacuum under time evolution: d̂†α |vac(t)⟩ = 0 ∀α ∈ [N ] or d̂α |vac(t)⟩ =
0 ∀α ∈ [−N ]. I.e. the state filled with all positive energy excitations – when evolved
– is still a vacuum for a stationary positive energy excitation. At t = 0, this
assumption is naturally correct but at t > 0, it may seem reasonable but since we
will consider truncated values of N this is difficult to assess.

Application of exchange rules.— Let us consider the parity operator ex-
pressed in terms of d̂†α, α ∈ [−N ]. Then consider the exchange rule between a
stationary state d̂α and an evolved state â†β with α, β ∈ [−N ]. Then their exchange
rule is given by the anti-commutator:

{d̂α, â†β} =
∑
γ∈Z∗

N

Uγβ{d̂α, d̂†γ} = Uαβ(t) (7.2)

where we used the quadratic evolution between d̂-operators, with Uαβ := ⟨α0, βt⟩
the overlap. Note that this expression correctly takes care of the redundancy. Fur-
thermore, one has to be careful with the fact that {d̂α, â†β} ̸= {d̂α, â†β}†. Then we
calculate all the k-th order terms of the expansion (7.1) as:

⟨vac(t)|
( ∏

α∈[−N ]

aα

)( ∏
β∈[−k]

d̂†βd̂β

)( ∏
α∈[−N ]

a†α

)
|vac(t)⟩ (7.3)
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where the leftmost product is ordered the opposite of the rightmost product. Then,
using the exchange rule (7.2) it is possible to ”normal order” the entire expression:
bringing all terms d̂β to the far right and all d̂†β to the far left. If the parity operator
is expressed in positive energy eigenstates, the procedure is entirely equivalent, but
the terms must be anti-normal ordered. We show the details of the derivation in the
next subsection, for now this yields:

⟨P̂ (t)⟩ =
N∑

K=0

(−2)K
∑

i1<...<iK

∑
α1<...<αK

∣∣∣∣∣∑
P

sgnPP(Ui1α1 ...UiKαK
)

∣∣∣∣∣
2

(7.4)

where P denotes the set of all permutations of the product of terms in the overlap
matrix.

Complexity and truncations.— Before evaluating the above we note its fac-
torial complexity due to the two ordered sums of permutations of increasing order:

O
(
0!

(
N

0

)2

+ 1!

(
N

1

)2

+ 2!

(
N

2

)2

+ ...+N !

(
N

N

)2
)

= O
(
(N/2)!

(
N

N/2

)2
)
.

Thus, we are looking for a way to truncate the expression. The first truncation we
introduce is that over N : the number of states included in the calculation, which
we denote Ncutoff . If we consider the bottom part of the spectrum - where we evolve
all the states – the expression is highly problematic, because each state evolves
to a number of neighboring states which need to be exchanged. In terms of the
positive part of the spectrum the truncation is much more reasonable. The second
truncation one can make is the order of the product of overlaps which we denote k.
One might expect that k is related to the number of dynamical crossings, so that
this approximation will work for slow evolutions.
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Figure VII.1: Overlap matrix Uαβ(t) absolute values for α ∈ [N ] positive energy eigenstates
and β ∈ [−N ] negative energy evolved states, at two values of φ(t) at t = 250a/v and t = 500a/v.

Parity evolution.— We consider a system with a long junction W = 50a and
with τ = 500a/v. We minimize the length of the system as much as possible to min-
imize the number of states in the discretization. Then the overlap matrix between
the positive energy eigenstates and the evolved negative energy eigenstates is shown
in Fig. VII.1. On the left in the middle of the injection, the energy range is large
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Ch.VII.1. Fermi-sea picture

which shows the extent to which the bands are lowered. At the end of the evolution,
only a select range of states has a nonzero overlap with the eigenstates as shown in
the right figure. A checkerboard pattern is observed in the matrix, where we clearly
see that states from one edge χ1 have evolved into the other edge χ2, which is in
agreement with what was observed in Fig. VI.2. Furthermore, the vortex state is
completely isolated in energy from the other states, as expected.

We now evaluate equation (7.4) numerically at 50 values of time corresponding
with φ(t) ∈ [0, 2π] using overlap matrices as the ones in Fig. VII.1. The result
is shown in Fig. VII.2 (left). In the case where Ncutoff = 1 only the vortex state
is included. The vortex changes in parity very clearly. Ncutoff is then increased
in the approximation of k = 5 order terms, such that it includes a range of energy
excitations of the edges, until the parity expectation returns to even. This establishes
that no parity is lost in the states of the bulk and that all states contributing are
near ∆0. The bound states in the junction are also included. However, it is not clear
at this moment if the contribution comes from the bound state or from the edges,
since these states are hybridized junction and edge states. Thus we are currently
studying:

P̂ = iγ1γ2 · (P̂edgeP̂junction).

It is possible to project out the junction positions from the overlaps in order to
verify this further, which we do not present here. Note that the recovered value
is not exactly one, as observed in Fig. VII.2 (right) which seems to have reached
convergence. This is still under investigation and the case without vortices is also
under investigation. Also note that curiously the parity switch does not occur at
ϕ = π. This could be attributed to asymmetries in the system which were observed
separately in the adiabatic bands as well, where the crossing occurs for values of
φ > π.
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Figure VII.2: (Left) Time evolution of the parity expectation value for different values of
Ncutoff here shown in energy. Here 12 edge excitations are added to compensate for the parity loss
in the vortices. (Right) Convergence of parity as a function of Ncutoff and the order of products k.
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1.3. Calculation details
Let us consider the expression (7.3) with the first order k = 1. The right side

acting on the ket is then simply given by:

d̂1
∏
α

â†α |vac⟩ = ({d̂1, â†1} − â†1d̂1)â
†
2...â

†
N |vac⟩

= U11

∏
x̸=1

â†x |vac⟩ − U12

∏
x ̸=2

â†x |vac⟩+ ...

=
∑
α

(−1)αU1α

∏
x ̸=α

â†x |vac⟩ .

Here the product state on the right is removed each state which was exchanged
into the evolution matrix. The left side acting on the bra is exactly the Hermitian
conjugate, and because all the states in the above sum are mutually orthogonal we
obtain the first order estimation of ⟨P̂ (t)⟩:

⟨P̂ (t)⟩ = 1− 2
∑
i1

∑
α

|Ui1α|2 + ... .

Note that this approximation so far only makes sense for a single particle in the
ground state. If this particle is evolved into any orthogonal state, the parity goes
from odd to even. If the overlap remains constant in time, the parity remains odd.
This approximation is completely false when one considers more than one particle.
For second order terms, note that d̂†1d̂1d̂

†
2d̂2 = d̂†1d̂

†
2d̂2d̂1 and:

d̂2d̂1
∏
α

â†α |vac⟩ =
∑
α

(−1)αU1α d̂2
∏
x ̸=α

â†x |vac⟩

=
∑
α ̸=β

(−1)α+β+1β>αU1αU2β

∏
x ̸=α,β

â†x |vac⟩

where 1α>β is an indicator function which is one if α > β and zero else. It arises
because the number of permutations to achieve normal ordering will differ by one
depending on whether â†α was already excluded from the product state or not, which
results in a sign flip if β > α. The key idea is that we want to write this sum as a
linear combination of different mutually orthogonal states. This is not the case here
since the same state is present on the right e.g. when α = 1, β = 2 and α = 2, β = 1
with coefficients U11U22 and −U12U21 respectively. Those two states differ by a
minus sign because in one case β > α which in other terms is a manifestation of the
anti-symmetrization condition. This is resolved by splitting the sum in two parts:∑

α

(
∑
β<α

+
∑
β>α

)(−1)α+β+1β>αU1αU2β

∏
x ̸=α,β

â†x |vac⟩

=

[∑
α>β

(−1)α+βU1αU2β

∏
x ̸=α,β

â†x |vac⟩
]
−
[∑
α<β

(−1)α+βU1αU2β

∏
x ̸=α,β

â†x |vac⟩
]

=
∑
α>β

(−1)α+β(U1αU2β − U1βU2α)
∏

x ̸=α,β

â†x |vac⟩ (relabeling indices)
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Ch.VII.2. Heisenberg picture

which is now a linear combination of mutually orthogonal states, so the second order
approximation of the parity expectation is:

⟨P̂ ⟩ = 1− 2
∑
i1

∑
α

|Ui1α|2 + 4
∑
i1<i2

∑
α<β

|Ui1αUi2β − Ui1βUi2α|2 − ... .

Before considering the N -th order term, let us consider the third order term:

d̂3d̂2d̂1
∏
α

â†α |vac⟩ =
∑

α ̸=β ̸=γ

(−1)α+β+γ+f(α,β,γ)U1αU2βU3γ

∏
x ̸=α,β,γ

â†x |vac⟩

where f(α, β, γ) = (1β>α + 1γ>α + 1γ>β) mod 2 by the same reasoning, where now
the coefficients corresponding to all permutations of e.g. α, β, γ ∈ {1, 2, 3}, i.e. 6
permutations, are factors of the same product state, so the sum is decomposed into
6 sums with indices α < β < γ, α < γ < β, ... with alternating minus signs for each
permutation. One can work out that the third order approximation is now:

d̂3d̂2d̂1
∏
α

â†α |vac⟩ =
∑

α<β<γ

(−1)α+β+γ

[(∑
P

sgnPP(U1αU2βU3γ)

) ∏
x ̸=α,β,γ

â†x |vac⟩
]

where P(U1αU2βU3γ) denotes each of the six permutation of the α, β, γ indices and
sgnP the sign of the permutation. Again, we wrote the sum as a linear combination
of mutually orthogonal Fock states. If we apply the same reasoning for the N -th
terms, we obtain N ! permutations and the full parity expectation can be written as:

⟨P̂ ⟩ (t) =1− 2
∑
i1

∑
α

|Ui1α|2 + 4
∑
i1<i2

∑
α<β

|Ui1αUi2β − Ui1βUi2α|2

− 8
∑

i1<i2<i3

∑
α<β<γ

|Ui1αUi2βUi3γ − Ui1βUi2αUi3γ + Ui1βUi2γUi3α − ...|2

+ 16
∑

i1<...<i4

∑
α<...<δ

∣∣∣∣∣∑
P

sgnPP(Ui1α...U4δ)

∣∣∣∣∣
2

− ... .

2. Heisenberg picture

The alternative approach to the one used above is to include the unitary operators
in the parity operator, similar to what we did with single particle operators. This
approach was not developed in this thesis but we present it for future discussion.
Consider the Heisenberg parity operator:

P̂ (t) = Û †(t) ·
∏

α∈[N ]

(1− 2d̂αd̂α) · Û(t)

=
∏

α∈[N ]

(1− 2d̂α(t)d̂α(t))

where d̂†α := Û †(t)d̂†αÛ(t) which was defined in (5.5). The sum in (5.5) may be
written exclusively in the positive part of the spectrum:

d̂†α(t) =
∑
β∈[N ]

Rαβd̂
†
β +Rα,−βd̂β (7.5)

44



such that all terms here mutually anti-commute. The single particle expectation
number d̂†α(t)d̂α(t) of evolved particles can then be written by simply taking the
product:

n̂α(t) =
∑
i,j>0

(
RαiR∗

αj · â†i âj +RαiR∗
α−j · â†i â†j+

Rα−iR∗
αj · âiâj +Rα−iR∗

α−j · âiâ†j
)
.

Referring to the expansion of the parity product (7.1), each K-th order product
term of the form n̂i1n̂i2 ...n̂iK where n̂α := d̂†α(t)d̂α(t) will expand into a sum of
4K terms of combinations of â†i , âi. However, only a few of the 4K terms have
nonzero contribution. For example, in the case K = 3 one example term would be
of the form ⟨Ω|â3â†1â†2â1â2â†3|Ω⟩ which is clearly zero in the stationary ground state.
The selection rule for the terms which are nonzero can be understood with Wick’s
theorem introduced below.

Wick’s theorem for time-independent operators.

Wick’s theorem allows one to simplify products of creation and annihilation operators
in time-dependent or stationary problems. We consider the case with stationary
operators. Let

∏2K
i=1 α̂i be an arbitrarily ordered product of K creation and K

annihilation operators i.e. α̂i ∈ {ĉ†i , ĉi} with i = 1, ...,K. Define a pair contraction:

αiαj = ⟨α̂iα̂j⟩ .

Then Wick’s theorem states [56]:

⟨α̂1α̂2...α̂2P ⟩ = α1α2α3α4...α2P−1α2P

+ α1α2α3α4...α2P−1α2P

+ ...

for the vacuum expectation value, i.e. normal ordered terms are taken to have an
expectation value of zero, where the right hand side contains all the possible pairwise
contractions. Thus there exist

(
2K
2

)
contractions, the large majority of which will

be zero given fermionic commutation relations. Finally, interchanging contractions
produces a sign η:

αiαjαkαl = −η αiαkαjαl

where η = 1 for fermions and η = −1 for bosons.

After some algebra one realizes that an arbitrary product ⟨n̂1n̂2...n̂K⟩ can be
written as a sum over 2K indices with 4K terms. After applying Wick contractions,
one is able to factorize the sums, where each sum groups the prefactors of a con-
tracted pair. As contractions are only nonzero between an annihilation operator on
the left and a creation operator on the right, the only terms that can be involved
are the elements of the following matrix:

Θαβ =

(
Θαβ

00 Θαβ
01

Θαβ
10 Θαβ

11

)
≡
(∑

x∈[N ] Rα−xRβx

∑
x∈[N ] R∗

αxRβx∑
x∈[N ] Rα−xU

∗
β−x

∑
x∈[N ] R∗

αxR∗
β−x

)
Let us illustrate this with a second order term. For this case there exist three nonzero
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Ch.VII.2. Heisenberg picture

terms:

⟨n̂αn̂β⟩ =
∑

i,j,p,q∈[N ]

(
Rα−iR∗

αjRβpR∗
β−q(aiaja

†
pa

†
q + aiaja

†
pa

†
q)

+Rα−iR∗
α−jRβ−pR∗

β−q(aia
†
japa

†
q)
)

=
∑

i,j,p,q∈[N ]

(
Rα−iR∗

αjRβpR∗
β−q(δjpδiq − δipδjq) +Rα−iR∗

α−jRβ−pR∗
β−q(δijδpq)

)
= Θαβ

01 Θ
αβ
10 −Θαβ

00 Θ
αβ
11 +Θαα

01 Θ
ββ
01

where the sums corresponding to a respective contracted pairs were factorized in the
last step and expressed in terms of Θαβ. The entire procedure can be generalized in
a computer program for higher order terms.
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■ Chapter VIII
Conclusion

The proposal of Ref. [18] has opened a novel route towards the measurement of
the parity of bulk vortices by exploiting the edges of the superconductor. Unlike
most current alternatives, this proposal leaves the vortices completely unaffected by
the measurement. In this thesis, it was demonstrated that the measurement of the
quantized charge holds in a fully dynamical description even as the system does not
return to the ground state manifold.

The BdG Hamiltonian was evolved in the absence and presence of bulk vortices
– which were introduced by a separate calculation for the phase in the superconduc-
tor. The redundancies in the BdG theory were considered in evaluating expectation
values of single-particle observables in the time-evolved many-body ground state,
and the convergence of two basis decompositions in energy was studied. The theo-
retical predictions were found to hold despite the coupling of edge fermions with the
bound states in the junction and they hold remarkably well in the presence of path-
length differences. Fast injections of the edge-vortices have shown small oscillations
in current density which integrate to at most 10% of the expected unit charge at
the exit, for injection times as fast as 10a/v. On the whole, this work has shed light
on the collective nature of the edge-vortex excitation and on its relationship to the
superconducting ground state under time-evolutions.

Finally, promising results were obtained towards the characterization of the edge-
vortex as a good qubit by a dynamical calculation of the many-body parity operator.
As a consequence, edge-vortices can potentially be braided sequentially, which opens
the possibility for elaborate qubit manipulations on the edge-vortex in the future.
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