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QUOTES 

"Say that a b l i n d man using a road bed sensor attempted to f i n d 
out what a motor v e h i c l e looked l i k e . Happening to use a road only 
traveled by a i r p o r t limousines and motorcycles, he concludes that 
the average vehicle i s a compact car with 2.4 wheels. He might 
l a t e r attempt to construct a t h e o r e t i c a l model of the mechanics of 
such a v e h i c l e , and may a t t a i n fame f o r a t e n t a t i v e model that 
looks l i k e a motorcycle with a sidecar whose wheel i s only i n con­
tact with the ground f o r t y percent of the time." 

Mollo-Christensen, E. [1971] 

"Man, i r r e s p e c t i v e of whether he i s a theologian or s c i e n t i s t , has 
a strong tendency to see what he hopes to see." 

E i s e l e y , L. [1979] 

"Turbulence researchers are very much l i k e archaeologists who seek 
the o r i g i n of man by extrapolative evaluation of b i t s and pieces 
of f o s s i l i z e d remains; we t r y to piece together experimental ob­
servations and the 'remains' which our measurement techniques a l ­
low us to obtain with the hope that we can estabish not only the 
s i z e and shape of the turbulence 'beast', but i t s modes of growth, 
death, reproduction, and i n t e r a c t i o n s with other 'beasts'. Unfor­
tunately, the b i t s and pieces of information we have f o r turbulent 
boundary layers s t i l l leave many holes i n the morphological 
puzzle; consequently, current researchers s t i l l can't agree 
whether our 'beast' i s large or small, or whether we have more 
than one beast, or i f ( l i k e the c a t e r p i l l a r / b u t t e r f l y ) we have a 
beast which passes through some metamorphosis." 

Smith, C. R. [1983] 



SUMMARY 

This thesis deals with the problem of detecting coherent structures i n t u r ­
bulent flows. 

Some E u l e r i a n detection methods were tested; v i z . the method of Ueda and 
Hinze, the method of Blackwelder and Kaplan and a modified version of 
Blackwelder and Kaplan's method. Hereto measurements were performed i n a 
turbulent boundary layer flow and a turbulent pipe flow. Results show that 
these methods are not objective; the mean time between successive detec­
t i o n s , the d i s t r i b u t i o n of time i n t e r v a l s between successive detections and 
the c o n d i t i o n a l l y averaged streamwise v e l o c i t y are very dependent on the 
parameter values used i n the methods. The d i s t r i b u t i o n of time i n t e r v a l s be­
tween successive detections and the c o n t r i b u t i o n of detections to the 
Reynolds stress are also not i n agreement with r e s u l t s of v i s u a l i z a t i o n 
studies. Therefore, the only conclusion can be that these E u l e r i a n detection 
methods are not very appropiate methods to make measurements on coherent 
structures. 

The au t o c o r r e l a t i o n technique appears also not to be very u s e f u l i n estab­
l i s h i n g properties of coherent s t r u c t u r e s , because t h i s technique can be ap­
p l i e d only part of the measuring time. 

Flow v i s u a l i z a t i o n and E u l e r i a n measurement were combined i n an i n v e s t i g a ­
t i o n of a turbulent water flow to compare v i s u a l and E u l e r i a n detection on a 
one-to-one basis. Hydrogen bubbles were used to v i s u a l i z e the flow. Only 
part of the detections of Blackwelder and Kaplan's method appears to c o i n ­
cide with v i s u a l detections. E u l e r i a n detections of the so-called second 
quadrant method, i n whicfi only the contributions to the Reynolds stress be­
longing to the second quadrant are considered, c o r r e l a t e very w e l l with v i s ­
u a l detections of e j e c t i o n s . Also bursts are detected i n t h i s way, i f detec­
tions with small time i n t e r v a l s are considered to be detections on the same 
structures. 



The quadrant analysis technique was also applied to a turbulent j e t . As t h i s 
technique does not provide information about o r i g i n and o r i e n t a t i o n of 
structu r e s , i t i s only successful i n detecting structures i n those parts of 
a jet flow where the influence of the nearby boundary i s s u b s t a n t i a l ; v i z . 
the mixing layer region and the outer part of the development region. 
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Chapter I 
INTRODUCTION 

I t i s generally accepted that the time dependent Navier-Stokes equations 
describe turbulence. 
So f ar i t has been impossible to solve these equations, because of the non-
l i n e a r i t y of the equations, the e s s e n t i a l l y three-dimensional character of 
turbulence and the wide range of scales that controls turbulence. 

Reynolds [1895] proposed the decomposition of the v e l o c i t y components and 
the pressure i n a mean and a f l u c t u a t i n g part. S u b s t i t u t i o n i n t o the Navier-
Stokes equations y i e l d s a f t e r time-averaging a system of equations almost 
i d e n t i c a l i n form to the o r i g i n a l system. However, i n the new set of equa­
tions convective stress terms a r i s e from averaging products of the v e l o c i t y 
f l u c t u a t i o n s -the so-called Reynolds stresses. Therefore, the set of equa­
tions i s not closed and an a d d i t i o n a l equation i s needed f o r the r e l a t i o n 
between the Reynolds stresses and the mean v e l o c i t y f i e l d . 

U n t i l recently much turbulence research was concentrated on f i n d i n g the 
a d d i t i o n a l equation f o r simple flow configurations hoping the equation could 
be modified so that i t would hold f o r more complex flow configurations. But 
u n t i l now i t has not been possible to construct a more general turbulence 
model to say nothing of an u n i v e r s a l model. 

In the f o l l o w i n g sections f i r s t a b r i e f summary of experimental t e c h n i ­
ques used to i n v e s t i g a t e turbulence w i l l be given. 
Further, a review of a new development i n turbulence research -the coherent 
structures i n turbulent flows- w i l l be presented. This review w i l l be d i ­
vided i n two parts, one dealing with wall-bounded turbulent flows and one 
with free turbulent flows. A more complete review of coherent structures can 
be found i n the papers of Willmarth [1975] and Cantwell [1981] -regarding 
wall-bounded turbulence- and of Hussain [1983] -concerning free turbulence. 
In the l a s t section the contents of t h i s thesis w i l l be o u t l i n e d . 
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1.1 BRIEF REVIEW OF EXPERIMENTAL TURBULENCE RESEARCH 

In the 1920 's and early 1930's mean v e l o c i t y measurement was the most im­
portant experimental method. Only pressure measuring devices (p i t o t - t u b e , 
venturi-meter) and moving-part instruments (cup anemometer, vane anemometer) 
were operational. Hot-wire anemometry s t i l l was i n development. 

With these experimental tools i t was impossible to check the phenomenologi-
c a l theories of those days. 
These theories s t a r t e d from the idea that turbulence was an e s s e n t i a l l y sto­
c h a s t i c phenomenon: 

A turbulent flow f i e l d e x i s t s of a mean v e l o c i t y f i e l d and a randomly 
f l u c t u a t i n g f i e l d . 
A l l scales smaller than the o v e r a l l dimensions of the flow are important 
f o r the turbulent flow. 

A well-known theory i s the mixing-length theory set up independently by 
Prandtl [1925] and Taylor [1915, 1932]. In t h i s theory Boussinesq's hypothe­
s i s of the eddy v i s c o s i t y i s used. In analogy with the expression f o r the 
molecular stress known from the k i n e t i c theory of gases Boussinesq [1877] 
assumed that the Reynolds stresses can be coupled to the mean flow f i e l d by 
means of an eddy v i s c o s i t y . The mixing-length theory states that t h i s eddy 
v i s c o s i t y i s equal to the product of a 'mixing' length and a s u i t a b l e veloc­
i t y , again i n analogy with the k i n e t i c theory of gases i n which the kine­
matic v i s c o s i t y i s equal to the product of the mean free path of the mole­
cules and t h e i r root- mean-square v e l o c i t y . 
(Although t h i s theory cannot be correct i n a l l d e t a i l s , i t s t i l l proves to 
be most u s e f u l i n p r e d i c t i n g the d i s t r i b u t i o n of mean qu a n t i t i e s of turbu­
lent flows i n t e c h n i c a l a p p l i c a t i o n s . ) 

In the 1940's and 1950's the hot-wire technique was developed so w e l l 
that various components of the Reynolds stress and various rate terms occur­
r i n g i n the turbulence-energy equation could be measured. 

These measurements resulted i n a r e j e c t i o n of the phenomenological theories. 

Because of the complexity of inhomogeneous turbulence many researchers 
turned t h e i r a t t e n t i o n away to the 'simpler' but more academic homogeneous 
turbulence (e.g. Taylor [1935]). 
In turbulence research the s t a t i s t i c a l theory dominated the f i e l d . 
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I t was noticed that, i f the Reynolds number i s large enough, the energy-con­
t a i n i n g structure i n homogeneous and i s o t r o p i c turbulence shows s i m i l a r i t y 
(Batchelor & Townsend [1948 a & b]) and that the small-scale motion i s i n a 
state of l o c a l e q u ilibrium (Kolmogorov [1941]). 

Hot-wire measurements showed that the outer edges of turbulent shear flows 
-wakes (Townsend [1947]) and j e t s ( C o r r s i n [1943])- are only i n t e r m i t t e n t l y 
turbulent. This phenomenon was also found i n the outer part of turbulent 
boundary layers (Corrsin & K i s t l e r [1954] and Klebanoff [1954]). 

To study the intermittent nature of turbulence a new technique was i n t r o ­
duced: s e l e c t i v e or c o n d i t i o n a l sampling. 

A new l i n e of approach was i n i t i a t e d by Favre [1946] who used an analog r e ­
corder to produce a time-delayed turbulence s i g n a l . By expanding t h i s tech­
nique -recording two signals simultaneously and reproducing them using a 
moveable head on one channel- i t was possible to measure space-time c o r r e l a ­
tions of turbulent f l u c t u a t i o n s (Favre et a l . [1957, 1958]). 

For the f i r s t time i n turbulence research Townsend [1956] attempted to draw 
a picture of a turbulent flow. He introduced a double structure to describe 
turbulent shear flow: 

Turbulent f l u i d i s moved by the convective a c t i o n of a system of large 
eddies whose dimensions are comparable to the width of the flow and the 
small-scale eddies aré responsible f o r the nearly uniform d i s t r i b u t i o n of 
the turbulence i n t e n s i t y . 

The development of a new technology - p r i m a r i l y of e l e c t r o n i c devices and 
computers- guided the experimental research i n the 1960's and 1970's. 

Using very f a s t switching c i r c u i t r i e s f o r analog and d i g i t a l computation i t 
became possible to obtain d e t a i l e d s t a t i s t i c a l information of the flow phe­
nomena w i t h i n the turbulent and non-turbulent regions of an i n t e r m i t t e n t l y 
turbulent flow (Kaplan & Laufer [1969] and Kovasznay et a l . [1970]). 

Yeh and Cummins [1964] demonstrated that a coherent l i g h t source -a l a s e r -
can be used to measure steady f l u i d v e l o c i t i e s by observing the Doppler 
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s h i f t i n the frequency of l i g h t scattered from small p a r t i c l e s moving with 
the f l u i d . The great advantage of t h i s measuring technique over hot-wire an-
emometry i s that the flow i s not disturbed by a measuring probe. 

From s p a t i a l - c o r r e l a t i o n s , averaged over long time i n t e r v a l s , a picture was 
deduced of the large-scale motion i n turbulence, r e s u l t i n g i n a double-
r o l l e r large-eddy structure for a general shear flow (Townsend [1970]) and a 
double-cone structure for a wall-bounded shear flow (Townsend [1976]). 

But these approaches did not help to answer the basic question about the 
generation and maintenance of turbulence. 

New l i g h t on the turbulence problem was shed by two important observations 
( K l i n e & Runstadler [1959] and Brown & Roshko [1974]). 
I r o n i c a l l y these observations were not made with s o p h i s t i c a t e d e l e c t r o n i c 
equipment, but v i s u a l l y with rather simple o p t i c a l techniques. 

The essence of these observations was the discovery that turbulent shear 
flows are not as chaotic as previously had been assumed: 

There i s some order i n the motion with an observable chain of events 
reoccurring randomly with a s t a t i s t i c a l l y definable mean period. 
This chain of events (large-scale vortex motions) dominates the transport 
properties. 

As a r e s u l t flow v i s u a l i z a t i o n (hydrogen bubbles, dye, smoke) was and s t i l l 
i s i n the centre of i n t e r e s t . 

1.2 STRUCTURE OF WALL-BOUNDED TURBULENCE 

I t i s d i f f i c u l t to determine when a c t u a l l y the research of organized 
structure i n turbulence started. 
C r u c i a l moments are the discovery of a r e l a t i v e l y sharp i n t e r f a c e between 
turbulent and non-turbulent f l u i d i n a jet (Corrsin [1943]), the discovery 
of the turbulent spots i n the t r a n s i t i o n stage (Emmons [1951]), the discov­
ery of the creation of a horseshoe vortex during t r a n s i t i o n (Weske & 
Plankholt [1955]) and the discovery of the streaky behaviour of the sublayer 
i n a turbulent boundary layer (Hama et a l . [1957]). 
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But beyond dispute the work of K l i n e and h i s colleagues at Stanford Univer­
s i t y i s the mainspring behind the present i n t e r e s t i n organized motion. 

In appendix A a d e s c r i p t i o n of the various regions i n a turbulent bound­
ary layer i s given. 

1.2.1 Structure of the w a l l layer 
1.2.1.1 Flow v i s u a l i z a t i o n i n the w a l l layer 

Twenty f i v e years ago, at Stanford U n i v e r s i t y , improved flow v i s u a l i z a ­
t i o n methods were developed, using dye and hydrogen bubbles as markers of a 
turbulent boundary layer along a f l a t p l a t e . 

The early attempts ( K l i n e & Runstadler [1959] and Runstadler et a l . 
[1963]) confirmed the streaky sublayer* structure of a turbulent boundary 
layer as reported by Hama et a l . [1957]. 

Kline's i n v e s t i g a t i o n s ( K l i n e et a l . [1967]) showed that w i t h i n a sub­
layer an a l t e r n a t i n g array of high- and low-speed streamwise regions, c a l l e d 
streaks, appeared at random locations and times. Some of these streaks i n ­
teracted with the outer flow. This i n t e r a c t i n g process i s now c a l l e d a 
burst. F i g . 1, from t y p i c a l side views of a dye streak as seen i n motion 
pictures ( K l i n e et a l . [1967]), shows the burst-process. The arrow follows a 
dye p a r c e l . 
The process s t a r t s with the gradual outflow and l i f t u p ( f i g . 1 a) of a low-
speed streak. When the streak reaches y + = 8 - 12, i t begins to o s c i l l a t e 
( f i g . 1 b). 
[y + i s the co-ordinate y perpendicular to the w a l l made dimensionless with 
the w a l l f r i c t i o n v e l o c i t y (Uj- = \/T

v/p , where T w i s the w a l l shear 
stress and p the density of the flow) and the kinematic v i s c o s i t y v 
( y + = yu T/v).] 

This o s c i l l a t i o n a m p l i f i e s ( f i g . 1 c) and terminates i n a very abrupt break­
up ( f i g . 1 d), mostly i n the region 10 < y + < 30. A f t e r breakup the streak 
i s contorted, stretched and ejected outwards along an i d e n t i f i a b l e t r a j e c -

The flow i n the region very near a smooth w a l l -usually c a l l e d the viscous 
or laminar sublayer- i s not laminar as observations showed (Fage & Townsend 
[1932] and Popovich & Hummel [1967]). In fa c t i n the sublayer the r e l a t i v e 
turbulence i n t e n s i t y i n streamwise d i r e c t i o n appears to be higher than ev­
erywhere else i n the boundary layer (Eckelmann [1974]). 
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Figure 1: Dye streak breakup, i l l u s t r a t i o n as seen i n side view. 
From K l i n e et a l . [1967]. 

tory ( f i g . 1 e). F i g . 2 shows the d i s t r i b u t i o n and the average t r a j e c t o r i e s 
of the contorted streaks. F l u i d from the low-speed streak can reach the 
outer part of the boundary layer. 
[6 i s the boundary layer thickness.] 

K l i n e et a l . deduced from v i s u a l data that the average spanwise streak spac­
ing for a smooth w a l l was approximately A z

+ = 100. 
[ X z

+ i s the non-dimensional spanwise streak spacing ( X z
+ = X zu T/v).] 

At Stanford U n i v e r s i t y Kim et a l . [1971] studied the process of prod­
uction and of Reynolds stress contributions during b u r s t i n g , using the hy-
drogen bubble technique. Analyzing motion pictures they showed that v i r t u ­
a l l y a l l of the net production of turbulence-energy i n the range 

From t h i s v i s u a l i z a t i o n method only v e l o c i t y information i n two d i r e c t i o n s 
i n the boundary layer can be derived. Using a platinum wire normal to the 
w a l l the hydrogen bubbles elucidate the motion i n a plane i n streamwise d i ­
r e c t i o n normal to the w a l l , a wire placed p a r a l l e l to the w a l l gives i n ­
formation about the motion i n a plane p a r a l l e l to the w a l l . 

- 6 -



0 05 1.0 1.6 2.0 
Usee) 

la) 

Figure 2: T r a j e c t o r i e s of ejected eddies - f l a t plate flow, dP/dx = 0, 
6 = 2.15 i n . From K l i n e et a l . [1967]. 

0 < y + < 100 occurred during bursts. They expected that t h i s would also be 
true f o r y + > 100. 
From t h e i r motion pictures Kim et a l . were also able to obtain instantaneous 
v e l o c i t y p r o f i l e s . A f t e r breakup there was a return to a more quiescent flow 
which completed the bursting c y c l e , creating such flow conditions that a new 
burst could s t a r t . 

At the same time Corino and Brodkey [1969] also studied the inner layer 
of a turbulent boundary layer v i s u a l l y . They used high-speed motion pictures 
of t r a j e c t o r i e s of small p a r t i c l e s suspended i n a l i q u i d flow through a tube 
at Reynolds numbers i n the range Rep = 20000 to 50000 (Re e = 900 to 2250). 
[Re^ i s the Reynolds number based on the diameter D of the tube 
(Rep = UgyD/v, where U & v i s the average flow v e l o c i t y i n the tube). 
Reg i s the Reynolds number based on the momentum thickness 6 

00 
(Re e = U a y e/v, where 9 i s defined as 9= jv/l^^ ( l - u V u ^ )dy, 

0 

with R the radius of the tube, U the mean v e l o c i t y at a p o s i t i o n y 
and U„ the mean v e l o c i t y at the tube a x i s ) . ] 
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The depth of f i e l d of t h e i r photographs was of the order of 20\>/uT, so they 
could see a s l i c e through the bursting s t r u c t u r e . The camera was mounted on 
a traversing mechanism so the bursting phenomenon could be kept i n view as 
the burst was swept downstream. 
The observations of the burst phenomena made by Corino and Brodkey are i n 
agreement with those reported by Kim et a l . [1971]. But the use of numerous 
tracer p a r t i c l e s f o r flow v i s u a l i z a t i o n enabled Corino and Brodkey to iden­
t i f y a d d i t i o n a l features of the bursting process. 
According to Corino and Brodkey the sequence of events before and a f t e r cha­
o t i c breakdown during the bursting process ( f i g . 3), began with the forma­
t i o n of a low-speed parcel of f l u i d near the w a l l i n the region 0 <_ y + <_ 30 
( f i g . 3 a). The v e l o c i t y of t h i s low-speed region was often only 50% of the 
l o c a l mean v e l o c i t y with a very small r a d i a l v e l o c i t y gradient w i t h i n t h i s 
region. The next phase which occurred a f t e r deceleration was c a l l e d acceler­
a t i o n ( f i g . 3 b). During t h i s phase a much larger high speed parcel of f l u i d 
came in t o view and began to accelerate the low-speed f l u i d by ' i n t e r a c t i o n ' . 
Repeatedly the entering high-speed f l u i d was w i t h i n the f i e l d of view but at 
a d i f f e r e n t spanwise l o c a t i o n to one side or the other of the low-speed par­
c e l of f l u i d ( f i g . 3 c ) . 
I f , i n the a c c e l e r a t i o n phase, the high— and low-speed f l u i d met at the same 
spanwise s t a t i o n , the i n t e r a c t i o n was often immediate, the low-speed f l u i d 
above a p a r t i c u l a r y + l o c a t i o n was accelerated and a very sharp i n t e r f a c e 
-shear l a y e r - between the accelerated and retarded f l u i d was formed 
( f i g . 3 d). The next phase i n the process was c a l l e d e j e c t i o n ( f i g . 3 e). 
During e j e c t i o n an eruption of low-speed f l u i d occurred immediately or short 
a f t e r the s t a r t of the a c c e l e r a t i o n . Once e j e c t i o n s t a r t e d , the process pro­
ceeded r a p i d l y to a f u l l y developed stage during which e j e c t i o n of low-speed 
f l u i d persisted f o r varying periods of time and then gradually decayed. The 
length scale of ejected f l u i d parcels was small (7 < z + < 20, 20 < x + < 40) 
and most of the ejections originated at distances from the w a l l i n the range 
5 < y + < 15. Frequently other ejections appeared at adjacent downstream pos­
i t i o n s of the f i r s t l y observed e j e c t i o n . 

[ z + i s the non-dimensional spanwise co-ordinate and x + the non-dimensional 
streamwise co-ordinate ( z + = zu,./v , x + = x i ^ / v ) . ] 

When the ejected low-speed f l u i d encountered the i n t e r f a c e between high- and 
low-speed f l u i d a v i o l e n t i n t e r a c t i o n occurred with intense, abrupt and cha­
o t i c movements, r e s u l t i n g i n the creat i o n of a r e l a t i v e l y large-scale region 
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Figure 3: Burst phenomena according to Corino and Brodkey [1969]. 

of turbulent motion. The e j e c t i o n or bursting phase ended with the entry 
from fu r t h e r upstream of f l u i d d i r e c t e d p r i m a r i l y i n the flow d i r e c t i o n with 
approximately the mean v e l o c i t y p r o f i l e as v e l o c i t y d i s t r i b u t i o n ( f i g . 3 f ) . 
The entering high-speed f l u i d c a r r i e d away the retarded f l u i d remaining from 
the e j e c t i o n process. This phase was c a l l e d the sweep. 

Both Corino and Brodkey [1969] and Kim et a l . [1971] agree that the 
bursting phenomena are important f o r turbulence-energy production. Corino 
and Brodkey estimated from a small sample of bursting events that 70% of the 
Reynolds s t r e s s , measured by Laufer [1954], was produced during e j e c t i o n s . 
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Grass [1971] studied the structure of turbulent boundary layers developed 
over smooth and rough surfaces. Motion pictures of hydrogen bubbles were 
used to c a l c u l a t e instantaneous l o n g i t u d i n a l and v e r t i c a l v e l o c i t y p r o f i l e s . 
From these d i s t r i b u t i o n s the mean v e l o c i t y U, the f l u c t u a t i n g v e l o c i t i e s u 
and v and also the contributions to the Reynolds stress were computed. 
[The decomposition of Reynolds y i e l d s : U = U+u and V = V+v, where U i s 
the instantaneous v e l o c i t y i n streamwise d i r e c t i o n , 7J the time-averaged 
streamwise v e l o c i t y and u the f l u c t u a t i n g streamwise v e l o c i t y ; V, V and v 
are the corresponding v e l o c i t i e s normal to the wall.] 

Conditional averaging indicated that not only the e j e c t i o n contributed to 
the Reynolds stress but also the sweep. However the e j e c t i o n events were im­
portant throughout the whole boundary l a y e r , while the sweeps events ap­
peared to be mainly confined to a region close to the w a l l . 

The r e s u l t s of the i n v e s t i g a t i o n of Grass [1971] agreed w e l l with a l l 
that has been reported above. However there i s some question regarding the 
precise r o l e of sublayer streaks i n the bursting process. In contrast to 
K l i n e et a l . [1967], Corino and Brodkey [1969] considered the sublayer to be 
e s s e n t i a l l y passive i n the bursting process. In the paper of Grass there i s 
some support f o r the passive r o l e because the same phenomena have been ob­
served i r r e s p e c t i v e of boundary roughness conditions. 

Smith and Schwartz [1983] performed simultaneous top- and end-view v i s u ­
a l i z a t i o n studies of the flow behaviour i n the near-wall region 
(1 < y + < 50) of turbulent boundary layers for 1000 < Re» < 2200. 
[For a boundary layer Re f l i s based on the free stream v e l o c i t y U„ and 8 

(Re e = U^e/v, where 8 i s defined as 6 = J U/U„( 1-U/UJdy). ] 
0 

Using a two-camera, high-speed video system they were able to record simul­
taneously two d i f f e r e n t f i e l d s - o f - v i e w of a plane p a r a l l e l to the w a l l v i s u ­
a l i z e d with hydrogen bubbles (top- and end-view: looking i n normal and up­
stream d i r e c t i o n r e s p e c t i v e l y ) . This v i s u a l study proved the existance of 
r o t a t i n g , streamwise structures i n the inner region of turbulent boundary 
layers frequently appearing i n counter-rotating p a i r s . Whenever counter-ro­
t a t i n g structures were v i s i b l e i n end-view, they evolved e i t h e r from or i n 
conjunction with a low-speed streak i n the corresponding top-view. 

- 10 -



Using the same experimental arrangement as Smith and Schwartz, Smith and 
Metzler [1983] studied the c h a r a c t e r i s t i c s of low-speed streaks occurring i n 
the w a l l l a y e r of turbulent boundary layers for 740 <_ Reg < 5830. 
The streaks appeared to have a tremendous persistence. In the viscous sub­
layer the s t a t i s t i c s of non-dimensional spanwise streak spacing was inde­
pendent of the Reynolds number, having an average value of 100. The streak 
spacing increased with increasing distance from the w a l l owing to a merging 
and intermittency process (apparent disappearence and reappearence of 
streaks). 

1.2.1.2 Quantitative measurements i n the w a l l layer 

The detection problem i s perhaps the most d i f f i c u l t problem that i s en­
countered i n making q u a n t i t a t i v e measurements of bursts, because the burst 
near a w a l l i s immersed i n the background turbulence. Whether one uses a 
v i s u a l method or a measurement from a probe, or probes, there are two not 
unrelated aspects of the problem of burst detection: what property (or prop­
e r t i e s ) of the burst should be used f o r detection and how does one decide 
from the selected property that a burst i s present. The l a t t e r issue i s re­
a l l y an issue of detecting a s i g n a l (or s i g n a l s ) i n noise. 

Gupta et a l . [1971] have performed an experimental i n v e s t i g a t i o n to study 
the streaks with a spanwise rake of ten hot-wires w i t h i n the sublayer. 
The long-time averaged two-point s p a t i a l c o r r e l a t i o n s of the streamwise ve­
l o c i t y did not show the 'streaky' nature of the viscous sublayer ( f i g . 4). 
[Time averaged two-point s p a t i a l c o r r e l a t i o n R u u ( A z ) i s defined as 
Ru u(A z) = u(z)u(z+ z)/u' (z)u' (z+Az) , with Az the spanwise separation and 

u' the turbulence i n t e n s i t y i n streamwise d i r e c t i o n (u' =Yu 2)-] 
But short-time averaged c o r r e l a t i o n s showed the a l t e r n a t i n g high- and low-
speed streaks ( f i g . 5). These streaks had a c h a r a c t e r i s t i c spacing of the 
order of lOOv/uj . 

Kim et a l . [1971] have used the short-time averaged a u t o c o r r e l a t i o n of 
the streamwise v e l o c i t y to measure the mean burst period. The measured pe­
r i o d agreed with the v i s u a l data f o r the small sample s i z e considered. 
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Figure 4: Two-point spanwise long-time average c o r r e l a t i o n s of u 
f l u c t u a t i o n s , (a) Reg = 2200, y + = 3.4; (b) Reg = 3300, 
y + = 18.8; (c) Re e = 4700, y + = 7.8; (d) Reg = 6500, 
y + = 10.8. From Gupta et a l . [1971]. 
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Figure 5: Ty p i c a l short-time average two-point c o r r e l a t i o n s of u 
f l u c t u a t i o n s . Averaging over 0.375 ms, Reg = 3300, 
y + = 5.4. From Gupta et a l . [1971]. 
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Blackwelder and Kaplan [1972] employed a detection scheme i n which the 
occurrence of a burst was i n f e r r e d from a d i g i t a l processing scheme devised 
by Kaplan and Laufer [1969]. Using a series of d i g i t i z e d values of the u-
s i g n a l the variance at a c e r t a i n time was computed over a short time i n t e r ­
v a l T,,, centered around the d i g i t i z e d value of the u-signal corresponding to 
that time. A burst was presumed to occur i f the short time variance was 
greater than a threshold l e v e l -the threshold l e v e l equals a threshold par­
ameter k times the variance of the t o t a l d i g i t i z e d s i g n a l . Then the c a l c u l a ­
t i o n was repeated for the next d i g i t i z e d value of the u - s i g n a l . This detec­
t i o n scheme i s s e n s i t i v e f o r large f l u c t u a t i o n s about the short time average 
of the s i g n a l . 
Blackwelder and Kaplan [1976] reported that t h e i r scheme i s not very s e n s i ­
t i v e f o r the short averaging time -they advised to use T m u r

2 / v = 10-, but 
that the scheme i s s e n s i t i v e f o r the threshold parameter k. However they 
stated that the dependence on k does not a f f e c t the measured shape of the 
detected events, because c o n d i t i o n a l l y averaged v e l o c i t y p r o f i l e s scale with 
the root of the threshold value. 
Blackwelder and Kaplan measured the instantaneous p r o f i l e s of the streamwise 
v e l o c i t y during a burst with a rake of ten hot-wires i n the w a l l region. The 
u-signal at y + = 15 was used f o r detection. 
F i g . 6 shows the c o n d i t i o n a l l y sampled v e l o c i t y p r o f i l e s . These p r o f i l e s 
show the i n f l e c t i o n a l point near the w a l l just before detection as indicated 
by the v i s u a l r e s u l t s of Kim et a l . [1971] and Corino and Brodkey [1969]. 

Willmarth and Lu [1972] used a detection scheme based upon the v i s u a l ob­
servation that f l u i d ejections near the w a l l are preceeded by a region of 
f l u i d with low streamwise v e l o c i t y . A s i n g l e hot-wire, at y + = 16.2, was 
used for detection. A burst was deemed to occur when the low-pass f i l t e r e d 
detector s i g n a l became lower than a t r i g g e r l e v e l . Again there appeared to 
be a dependency on t h i s l e v e l . 
With t h i s scheme Willmarth and Lu and Lu and Willmarth [1973] studied the 
instantaneous Reynolds stress near the w a l l . They found very large values 
during the e j e c t i o n and sweep, as observed by Corino and Brodkey [1969]. 
Lu and Willmarth measured also the downstream convection of bursts. The t r a ­
jectory of the bursts i n the x-y plane was i n agreement with the r e s u l t s of 
K l i n e et a l . [1967] ( f i g . 2). 
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Figure 6: C o n d i t i o n a l l y sampled v e l o c i t y p r o f i l e s before, T < 0, and 
a f t e r , T > 0, burst detection: ; mean v e l o c i t y p r o f i l e s : 

Re 6 = 2550. From Blackwelder and Kaplan [1972]. 

In the f i r s t studies of bursts the process was considered to be an essen 
t i a l wall-bounded phenomenon with c h a r a c t e r i s t i c scales determined from the 
w a l l parameters u T and v. Rao et a l . [1971] changed t h i s opinion. They 
showed that even i n the w a l l layer over a f a i r l y wide range of Reynolds num 
bers (600 < Re Q < 9000) the mean burst period scaled with outer (U„, <5 ) 
rather than with inner ( u x , 6) v a r i a b l e s . The mean dimensionless burst pe­
r i o d was given by U„T B/ 6 = 5 ( f i g . 7). 
[Tg i s the mean burst period.] 

This range has been extended by Narayanan and Marvin [1978] to 
600 < Reft < 95000. 
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Figure 7: Dimensionless mean burst period. From Rao et a l . [1971]. 
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However Bandyopadhyay [1982] has disproved t h i s s c a l i n g . He showed that the 
observed s c a t t e r i n measurements of ILTg/cj i s not e n t i r e l y due to the uncer­
t a i n t i e s of measurement, but that the s c a t t e r i s systematic. So Û Tg/<$ i s 
not an u n i v e r s a l constant, but i t s value depends on the flow. 

Ueda and Hlnze [1975] designed a detection scheme based on the i n t e r m i t ­
tent character of the e j e c t i o n and sweep process. They counted the burst 
rate using the high-frequency band-pass s i g n a l of ( 3 u / 3 t ) 3 . According to 
Ueda and Hinze a burst occurred when the absolute value of (3u/3t) 3 exceeded 
a given threshold value. 
They measured that the dimensionless mean burst period UraTg/6 was approxi­
mately 5 for y + 4 10, which value decreased to 2.5 f o r y + > 40 ( f i g . 8). 

1 10 xf 

Figure 8: D i s t r i b u t i o n of burst period Tg of band-pass s i g n a l . 
Re 0: A, 1244; •, 4248. From Ueda and Hinze [1975]. 

Blackwelder and Eckelmann [1979] have made a rather d e t a i l e d study of the 
structure of w a l l streaks using heated w a l l elements to measure the stream-
wise and spanwise v o r t i c i t y . 
They i d e n t i f i e d the low-speed streak observed by K l i n e et a l . [1967] as the 
accumulation region between streamwise v o r t i c e s . They measured the stream-
wise length of the v o r t i c e s to be X x

+ = 1000. 
[The superscript + indicates that the streamwise length X x of the v o r t i c e s 
i s made dimensionless with u T and v ( X x

+ = X xu T/v).] 
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1.2.1.3 Comparison between methods of burst detection 

Offen and K l i n e [1973] compared the burst detection schemes of 
Blackwelder and Kaplan [1972], Willmarth and Lu [1972] and three other 
schemes devised by Offen and K l i n e , based upon the normal v e l o c i t y , the ve­
l o c i t y - p r o f i l e slope and the u v - s ignal, with t h e i r own v i s u a l observations. 
They concluded that 

"none of the proposed detection schemes cor r e l a t e s very w e l l with 
the v i s u a l i n d i c a t i o n s of bursting or with any other scheme. 
Hence, there remain serious questions about what events are meas­
ured by each technique. Despite the poor c o r r e l a t i o n , the various 
schemes r a r e l y detect ejections that do not pass the probe i n the 
plane p a r a l l e l to the w a l l , they agree with each other to a cer­
t a i n extent i n t h e i r r e l a t i o n s h i p to v i s u a l data, they generally 
produce c o n d i t i o n a l averages and v e l o c i t y signatures which are 
s i m i l a r and agree q u a l i t a t i v e l y with the expected r e s u l t s ( i . e . , 
streamwise v e l o c i t y defect, outward motion of the f l u i d , and Rey­
nolds stresses greater than the mean), and many of them are as ef­
f e c t i v e as the v i s u a l data at detecting periods of high uv." 

1.2.2 Structure of the outer layer 
1.2.2.1 Flow v i s u a l i z a t i o n i n the outer layer 

Nychas et a l . [1973], using the same flow v i s u a l i z a t i o n technique as 
Corino and Brodkey [1969], studied the outer region of a turbulent boundary 
layer. 
They observed that the s i n g l e most important event i n the outer region was a 
large-scale motion, c a l l e d bulge, that appeared as a transverse vortex 
transported downstream with a v e l o c i t y s l i g h t l y l ess than the l o c a l mean. 
The observed large-scale motions appeared to be the r e s u l t of an i n s t a b i l i ­
ty-producing i n t e r a c t i o n between accelerated and decelerated f l u i d that i s 
believed to be c l o s e l y associated with w a l l layer e j e c t i o n s . The flow phe­
nomena associated with bulges extended a l l across the boundary layer and 
made s u b s t a n t i a l contributions to the Reynolds s t r e s s . 

Falco [1977] combined v i s u a l ( o i l dropplets) and hot-wire observations. 
Falco found two types of large-scale motion: one h a l f of the motions had a 
zone average streamwise v e l o c i t y less than the l o c a l mean (type T l ) and one 
h a l f had a streamwise v e l o c i t y greater than U (type T2). 
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In the turbulent boundary layer Falco observed a r e p e t i t i v e family of h i g h l y 
coherent motions, c a l l e d ' t y p i c a l eddies'. These eddies appeared at the back 
of the large-scale motions as s l i g h t l y f l a t t e n e d mushroom v o r t i c e s ( f i g . 9). 
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Figure 9: A model of the flow i n the outer region of turbulent 
boundary l a y e r s , showing the r e l a t i o n between t y p i c a l 
eddy scale to large-scale motion scale f o r moderate 
Reynolds numbers. From Falco [1977]. 

Hot-wire measurements showed that the Reynolds number dependent t y p i c a l ed­
dies produce most of the Reynolds st r e s s i n the outer h a l f of the layer at 
Reg = 1200. The lengths of the eddies scaled on the inner parameters and the 
frequency of occurrence of these eddies scaled on the outer parameters, sug­
gesting that there e x i s t s a r e l a t i o n between the structures i n the inner and 
the outer layer. 

Head and Bandyopadhyay [1981], using flow v i s u a l i z a t i o n (smoke) and hot­
wire measurements to study the zero-pressure gradient turbulent boundary 
layer over the Reynolds number range 500 < Re^ < 17500, obtained a d i f f e r e n t 
picture of the turbulent boundary layer. 
At high Reynolds numbers they observed many elongated h a i r p i n v o r t i c e s or 
vortex p a i r s , o r i g i n a t i n g i n the w a l l region and extended through a large 
part of the boundary layer thickness or beyond i t . For the most part they 
are i n c l i n e d to the w a l l at a c h a r a c t e r i s t i c angle i n the range of 40° to 
50°. Large scale features appear to consist mainly of random arrays of such 
h a i r p i n v o r t i c e s . 
At low Reynolds numbers (which covers about two-third of the l i t e r a t u r e on 
t h i s subject) the h a i r p i n v o r t i c e s are much less elongated and are better 
described as horseshoe v o r t i c e s * or vortex loops. Large-scale features now 
consist simply of i s o l a t e d or a few i n t e r a c t i n g vortex loops. 

The horseshoe vortex i s a vortex model postulated by Theodorsen [1955]. 
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Head and Bandyopadhyay suggest that the t y p i c a l eddies of Falco [1977] are 
i n f a c t the t i p s of the h a i r p i n v o r t i c e s . 

1.2.2.2 Quantitative measurements i n the outer layer 

Investigating the outer or i n t e r m i t t e n t region of a turbulent boundary 
layer a s i m i l a r problem a r i s e s as i n detecting structures i n the w a l l layer: 
what property of the flow must be used to decide i f the flow i s turbulent or 
not. 

The detection scheme of Kovasznay et a l . [1970] was based on the presence 
of large-amplitude f l u c t u a t i o n s of the d e r i v a t i v e 3u/3y, which i s one term 
i n the spanwise v o r t i c i t y component. 
They observed that v o r t i c i t y appeared to e x h i b i t a d i s c o n t i n u i t y across the 
turbulence i n t e r f a c e of the bulge, whereas the v e l o c i t y was continuous. 
According to Kovasznay et a l . the bulges i n the outer flow are correlated 
over 3 <5 i n the streamwise d i r e c t i o n and over § i n the spanwise d i r e c t i o n . 
They suggested that the bursts observed by K l i n e et a l . [1967] i n the near-
w a l l layer are responsible f o r the bulges i n the outer region. 
They also reported that there was a difference between the upstream-facing 
(back) and the downstream-facing ( f r o n t ) portions of the bulges i n the outer 
layer. The back of the turbulent non-turbulent i n t e r f a c e showed intense t u r ­
bulent a c t i v i t y * . 

Blackwelder and Kovasznay [1972] have reported measurements that comple­
ment t h e i r previous r e s u l t s (Kovasznay et a l . [1970]), using the same expe­
rimental set-up (turbulent boundary layer, Reg = 3000) and the same detec­
t i o n technique. They found that intense f l u c t u a t i o n s of u and v i n the w a l l 
region remained strongly c o r r e l a t e d out to y/6 = 0.5, confirming other ob­
servations that the disturbance associated with a burst extends across the 
e n t i r e boundary la y e r . 
Blackwelder and Kovasznay estimated that the large eddies contributed as 
much as 80% to the Reynolds stress i n the outer l a y e r . 

This phenomenon i s not r e s t r i c t e d to turbulent boundary layers alone. In­tense turbulent a c t i v i t y along upstream-facing i n t e r f a c e s has has been found i n the turbulent slugs and puffs i n pipe flow (Wygnanski & Champagne [19731 and Wygnanski et a l . [1975]), i n the turbulent spot (Wygnanski et ¿1. [1976]) and i n the near wake of a c y l i n d e r (Cantwell [1975]). 
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Combining measured point averages of the streamwise and normal v e l o c i t i e s at 
various locations r e l a t i v e to the detector probe they were able to construct 
an average flow pattern w i t h i n and around a turbulent bulge ( f i g - 10). This 
p i c t u r e , showing a c i r c u l a t o r y flow w i t h i n the bulge, agrees with Falco's 
observations [1977]. The outer flow i s ' r i d i n g over' the turbulent f l u i d 
w i t h i n the bulge having an average v e l o c i t y U c of 0.93U,,,. 

scale 
IUI = 0 . 0 5 U « 

Figure 10: Composite v e l o c i t y d i s t r i b u t i o n i n the outer region. 
From Blackwelder and Kovasznay [1972]. 

Antonia [1972] used the f l u c t u a t i o n s of the uv-signal to detect turbu­
lence i n the in t e r m i t t e n t region. I f (3uv/3t) 2 exceeds some a r b i t a r y thresh­
old l e v e l , turbulence i s presumed to be present. 
Except minor differences regarding the shape of the i n t e r f a c e and the 
point-averaged streamwise v e l o c i t i e s Antonia's r e s u l t s agree with those of 
Kovasznay et a l . [1970]. 
In t h i s study Antonia found that the averaged Reynolds st r e s s i n the bulges 
i s of the order of h a l f the w a l l shear s t r e s s , supporting the idea that the 
strength of the large eddy motion i s c l o s e l y r e l a t e d to the w a l l shear 
s t r e s s . 

Hedley and Keffer [1974] performed i n v e s t i g a t i o n s s i m i l a r to those of 
Kovasznay et a l . [1970], but at larges values of Reg (Reg = 9700), using the 
large amplitudes of [(3u/3t) 2 + (3v / 3 t ) 2 ] as detector. 
In general t h e i r r e s u l t s agree with those of Kovasznay et a l . Hedley and 
Keffer found that the Reynolds st r e s s strongly increased across the back of 
the bulge, as observed by Falco [1977] at higher Reynolds numbers. 
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Brown and Thomas [1977] correlated the w a l l shear str e s s with the stream-
wise v e l o c i t y across a turbulent boundary la y e r . 
They found a l i n e of maximum c o r r e l a t i o n which lay at an angle of 18° to the 
wa l l i n downstream d i r e c t i o n . They a t t r i b u t e d t h i s l i n e to some organized 
structure at an oblique angle to the w a l l moving along the w a l l at about 
0.8UO,,. For they found evidence that the large-scale motion i n the organized 
structure produces a slowly varying component i n the w a l l shear stress and 
also a high frequency large amplitude f l u c t u a t i o n occurring near the maximum 
i n the slowly varying w a l l shear s t r e s s . Brown and Thomas stated that the 
high frequency part i n the w a l l shear i s associated with the bursting phe­
nomenon. 

1.2.3 Structure i n the Reynolds stress 

Independently Wlllmarth and Lu [1972] and Wallace et a l . [1972] developed 
a method of s o r t i n g the contributions to the instantaneous Reynolds stress 
per unit density i n t o the four quadrants of the u-v plane. The reason f o r 
t h i s i s to obtain q u a n t i t a t i v e measurements of the r e l a t i v e importance of 
the e j e c t i o n and sweep. 

V i s u a l i n v e s t i g a t i o n s i n d i c a t e that during bursts, the e j e c t i o n should occur 
i n the second quadrant ( i n which u < 0 and v > 0) and that the sweep should 
occur i n the fourth quadrant (u > 0, v < 0). In a d d i t i o n to these major 
events there occur i n t e r a c t i o n s between these two events which cause a nega­
t i v e c o n t r i b u t i o n to the Reynolds s t r e s s . The f i r s t quadrant Is associated 
with a sweep being r e f l e c t e d back i n the outer la y e r (outward i n t e r a c t i o n : 
u > 0, v > 0) and the t h i r d quadrant with an e j e c t i o n deflected back to the 
wa l l (inward i n t e r a c t i o n : u < 0, v < 0). F i g . 11 shows the u-v plane. 

F i g . 12, from Brodkey et a l . [1974] shows the d i f f e r e n t contributions of 
each quadrant to the Reynolds s t r e s s . Close to the w a l l ( y + < 15) the sweep 
contributes most to the Reynolds s t r e s s , whereas f or the region further away 
from the w a l l i t i s the e j e c t i o n that i s most important f o r the Reynolds 
stress. 

Lu and Willmarth [1973] extended the technique of s o r t i n g uv contributions 
i n t o quadrants. They introduced a further c l a s s i f i c a t i o n of the uv co n t r i b -
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Figure 11: The u-v plane. 

Figure 12: The sorted Reynolds stresses normalized with the l o c a l 
average Reynolds s t r e s s , (•, •, r e s u l t s of Willmarth 
and Lu [1972]): , sweep,. , e j e c t i o n , 

, outward i n t e r a c t i o n , — , inward i n t e r a c t i o n . 
From Brodkey et a l , [1974]. 

utions to each quadrant depending upon the magnitude of the c o n t r i b u t i o n by 
drawing a 'hole' i n the u-v plane ( f i g . 13). 
Now f i v e regions can be di s t i n g u i s h e d . The hole i s bounded by curves 
|uv| = Hu'v'. 
[H i s c a l l e d the h o l e - s i z e . 

v' i s the turbulence i n t e n s i t y i n normal d i r e c t i o n (v' =\vz).] 

The four quadrants excluding the hole are the other four regions. With t h i s 
hole-technique or quadrant an a l y s i s technique large contributors to uv r e l a -
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Figure 13: Sketch of the hole i n the u-v plane. 

t i v e to the l o c a l turbulence i n t e n s i t i e s u' and v' can be extracted leaving 
the smaller f l u c t u a t i n g u v ( t ) - s i g n a l i n the hole. 
F i g . 14 i s a t y p i c a l r e s u l t of the hole-technique. From t h i s f i g u r e i t can 
be deduced that f o r most of the time the uv-signal i s small and that i n a 
short time the e j e c t i o n and sweep events make s u b s t a n t i a l contributions to 
the Reynolds s t r e s s . 

Figure 14: F r a c t i o n a l contributions to uv from d i f f e r e n t events 
at y/6 = 0.021. Quadrant 1: 0; quadrant 2: S; quadrant 
3: SB; quadrant 4: N; hole: O. Fr a c t i o n of time i n hole: 

. From Lu and Willmarth [1973]. 

Taking f o r instance a hole-size of 1 i t follows from f i g . 14 that the hole 
contributes i n 80% of the time only 18% to the Reynolds s t r e s s . The e j e c t i o n 
(72%) and the sweep (26%) account f o r the remaining p o s i t i v e Reynolds 
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s t r e s s , while the outward and inward i n t e r a c t i o n make small negative con­
t r i b u t i o n s to the Reynolds st r e s s (4% r e s p e c t i v e l y 10%). 

1.2.4 Organized motion i n a turbulent boundary layer 

A l o t of models have been suggested to describe the behaviour of the w a l l 
and outer layer and the connection between these two regions. In t h i s con­
text only the model of Hinze [1975] i s described having much i n common with 
the models of Offen and K l i n e [1973] and of Smith [1983]. J o i n i n g facts ob­
tained from experimental i n v e s t i g a t i o n s Hinze constructed the fo l l o w i n g 
q u a l i t a t i v e d e s c r i p t i o n of the turbulence mechanism i n the w a l l layer: 

" I t i s s t r i k i n g that, notwithstanding the random nature of the 
turbulence, a r e p e t i t i o n of s i m i l a r processes may be d i s t i n ­
guished, with a d i s t i n c t and recognizable average spacing i n both 
spanwise and streamwise d i r e c t i o n s . In time i t corresponds with, 
on the average, some c y c l i c process, with many features s i m i l a r to 
the laminar-turbulent t r a n s i t i o n process. When t r y i n g to give a 
d e s c r i p t i o n of t h i s ' c y c l i c ' process i n the f u l l y developed turbu­
lent flow, i t i s immaterial where the beginning of the 'cycle' i s 
fi x e d . Because of the s i m i l a r i t y mentioned with the t r a n s i t i o n 
process we w i l l begin the 'cycle' with the s i t u a t i o n where, owing 
to a large-scale disturbance already present i n the outer region 
and outer part of w a l l region, a horseshoe-shaped vortex i s begin­
ning to be formed l o c a l l y at the w a l l . This vortex i s deformed by 
the flow i n t o a more and more elongated U-shaped loop i n stream-
wise d i r e c t i o n . Because of s e l f - i n d u c t i o n processes the t i p of the 
loop moves away from the w a l l thereby coming i n t o regions of 
ever-increasing v e l o c i t i e s . Consequently the v o r t i c i t y increases 
due to s t r e t c h i n g processes. At the same time i t gives r i s e to an 
outward flow between the legs of the U-loop, with a strong v-com-
ponent near the t i p . Between the vortex moving away from the w a l l 
and the w a l l a l o c a l deceleration of the f l u i d i s effecte d . This 
process transports low-momentum f l u i d away from the the w a l l , thus 
producing a p o s i t i v e and marked c o n t r i b u t i o n to the Reynolds 
s t r e s s . Moreover, at distances y + = 5 to 30, an intense h o r i z o n t a l 
shear-layer i s formed, showing up i n the instantaneous U-velocity 
as a dent with i n f l e c t i o n points. The resultant l o c a l i n f l e x i o n a l 
i n s t a b i l i t y and breakdown of the flow surrounding the o r i g i n a l t i p 
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of the vortex produces a turbulence burst, s i m i l a r to that ob­
served during the laminar-turbulent t r a n s i t i o n process. The pres­
sure waves associated with the turbulence burst are propagated 
throughout the whole boundary layer. At the same time the blob of 
f l u i d of high turbulence i n t e n s i t y produced during the burst i s 
convected downstream and moves f a r t h e r away from the w a l l , thereby 
increasing i n scale, amongst others, by turbulent d i f f u s i o n . Since 
at the same time high-momentum f l u i d i s entering from upstream, 
the above blob of f l u i d i s convected i n an accelerated way or 
swept i n downstream d i r e c t i o n . The above pressures waves may add 
to the movement of f l u i d towards the w a l l , r e s u l t i n g i n a sweep-
inrush flow. The inrush process has already been preceded and i n i ­
t i a t e d by a negative v-component downstream of the U-looped vortex 
before i t s breakdown. The sweep-inrush flow makes a very small an­
gle (5° to 15°) with the w a l l , which at the w a l l also i s observed 
as the entry of higher momentum f l u i d i n almost h o r i z o n t a l d i r e c ­
t i o n . Both the e j e c t i o n burst process, as w e l l as the sweep-inrush 
flow contribute to the shear-stress, and consequently are respon­
s i b l e f o r the turbulent production, mainly i n the region y + = 10 
to 15 from the w a l l . 

The h o r i z o n t a l movement during the sweep-inrush period w i l l be 
strongly retarded near the w a l l . I t may eventually, i n conjunction 
with the a c t i o n of overtaking f a s t e r moving f l u i d at a greater 
distance from the w a l l develop i n t o another horseshoe-type vor­
tex. " 

In f i g . 15 an attempt i s made to show the ' c y c l i c ' process described above. 
Of course t h i s model, showing only the e j e c t i o n , i s highly i d e a l i z e d . 

Hinze and others (Rao et a l . [1971], Kovasznay et a l . [1970], Nychas et 
a l . [1973]) consider the burst process to be a r e s u l t of an i n s t a b i l i t y of 
the sublayer produced by the pressure f i e l d associated with the the large-
scale motion i n the outer l a y e r . 
According to Offen and K l i n e [1973] the sweeping motions from the logar­
ithmic region impress on the w a l l layer the temporary adverse pressure gra­
dient required to cause the streak l i f t u p that precedes an e j e c t i o n . Smith 
[1983] suggests that during bursting not one but more (2 to 5) horseshoe-
shaped v o r t i c e s are formed creating a spanwise pressure gradient which rede-
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Figure 15: Conceptual model of turbulence near the w a l l during an 
' c y c l i c ' process with averaging spacings X x and X z . 
From Hinze [1975]. 

velops the streak region by furt h e r accumulation of low-momentum f l u i d be­
tween the legs. 

Another aspect of the i n t e r a c t i o n problem regards the maintenance of the 
outer flow. The dominant view i s that the outer flow i s i n some sense the 
wake formed by merging of successive bursts near the w a l l . 

1.3 STRUCTURE OF FREE-TURBULENCE 

Not only i n wall-bounded shear layers organized structures have been ob­
served, also i n free shear layers organized motion has been found. 

In appendix B the various regions of an axisymmetric j e t are described. 

1.3.1 Plane mixing layers 

In a study of turbulent mixing l a y e r s , Brown and Roshko [1974] showed 
that the layer was dominated by large-scale spanwlse v o r t i c e s ( f i g . 16). 
Spark shadow pictures of the plane turbulent mixing layer between two 
streams of d i f f e r e n t gases (nitrogen and helium) with d i f f e r e n t speeds re­
vealed these organized flow structures. These structures o r i g i n a t e i n the 
t r a n s i t i o n a l part of the l a y e r , they do not vanish when smaller-scale turbu­
lence sets i n and they appear to remain as a permanent feature of the flow 
at a l l higher Reynolds numbers. 
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Figure 16: Shadowgraph of mixing layer i n flow between helium 
(upper, U - 10 m/s) and nitrogen (U a 4 m/s). 
From Brown and Roshko [1974]. 

In a mixing lay e r with a low Reynolds number, Winant and Browand [1974] 
ca r r i e d out a d e t a i l e d study of vortex p a i r i n g as observed by Freymuth 
[1966] i n a separated laminar boundary layer. 
By i n j e c t i n g dye through the upper side of the s p l i t t e r plate j u s t before 
the two streams of water with d i f f e r e n t v e l o c i t i e s were brought together the 
p a i r i n g process i n the mixing layer could be observed ( f i g . 17). In p a i r i n g 
adjacent v o r t i c e s rotated about each other under t h e i r mutual induced veloc­
i t y f i e l d . And as r o t a t i o n progressed they formed a s i n g l e vortex of larger 
scale. This vortex p a i r i n g process was observed to occur repeatedly, con­
t r o l l i n g the growth of the mixing la y e r . 

Brown and Roshko [1974] observed a s i m i l a r p a i r i n g process at much higher 
Reynolds numbers. 
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Figure 17: Sequence of photographs showing vortex p a i r i n g . Heavy 
dye l i n e s marks the centre of the shear la y e r . Camera 
i s moving with the mean speed U. Downstream distance 
to the centre of each frame i s indicated to the r i g h t 
From Winant and Browand [1974]. 
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1.3.2 Axisymmetric shear layers 

As the f i r s t few diameters of j e t s can be regarded as a two-dimensional 
shear layer 'wrapped around' the a x i s , i t was not s u r p r i s i n g to f i n d i n t h i s 
region a sequence of dis c r e t e vortex r i n g s . 
F i g . 18, from W i l l e [1963] using smoke-visualization, shows how ring vor­
t i c e s are formed out of the laminar shear layer shed from a nozzle. Tripping 
the boundary was shown to destroy much of t h i s order ( f i g . 19). 
[Re D = U eD/v ( with Ue the nozzle e x i t v e l o c i t y and D the nozzle diameter.] 

Figure 18: Smoke photograph of r i n g v o r t i c e s i n the i n i t i a l region 
of a c i r c u l a r j e t at Re D - 70000. From W i l l e [1963]. 

Figure 19: E f f e c t of t r i p p i n g the boundary layer at the nozzle 
e x i t on the r o l l i n g - u p of the shear layer, 
(a) Separated laminar shear layer, (b) Separated 
turbulent shear la y e r . From W i l l e [1963]. 
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However, c o n d i t i o n a l sampling techniques revealed the existence of l a r g e -
scale flow structures -vortex r i n g s - i n j e t flow i r r e s p e c t i v e of outflow 
conditions (laminar or turbulent outflow, low or high Reynolds number). A 
s i m i l a r vortex p a i r i n g process as observed by Winant and Browand [1974] was 
f ound. 

Lau et a l . [1972] proposed a vortex model which accounts f o r the observed 
flow c h a r a c t e r i s t i c s i n the mixing l a y e r region of a turbulent j e t . This 
model consists of an a x i a l array of d i s c r e t e vortex rings spaced one and a 
quarter nozzle diameter apart and being convected downstream at about 0.6 
times the nozzle e x i t v e l o c i t y . F l u i d i s transported by each vortex i n r a ­
d i a l d i r e c t i o n . The leading edge of a vortex induces an outflow of high ve­
l o c i t y f l u i d from the p o t e n t i a l core of the mixing layer region i n t o the low 
v e l o c i t y region. Low v e l o c i t y f l u i d i s transported by the t r a i l i n g edge i n ­
wards i n t o the p o t e n t i a l core. 

Using the same experimental f a c i l i t i e s but s l i g h t l y d i f f e r e n t c o n d i t i o n a l 
sampling techniques Lau and Fisher [1975] and Bruun [1977] investigated the 
structure i n the f i r s t few diameters of a j e t . 
In both studies the spikes i n the u-signal of a f i x e d hot-wire were used to 
t r i g g e r the c o n d i t i o n a l sampling of the u-signal of a moveable hot-wire. Lau 
and Fisher used a c o r r e l a t o r f o r c o n d i t i o n a l averaging, so only p o s i t i v e 
time events could be evaluated. To study also negative time events Bruun 
used a d i g i t a l computer. 
Bruun was able to i d e n t i f y the vortex rings i n a j e t at a low Reynolds num­
ber (Rep = 10000) and Lau and Fisher found large-scale flow structures at a 
higher Reynolds number (Re D = 200000). 
The r e s u l t s of Lau and Fisher and of Bruun are i n accordance with the vortex 
model of Lau et a l . [1972]. 

Because the large-scale s t r u c t u r e s , e s p e c i a l l y i n the turbulent regions 
of a j e t , are immersed i n the superimposed, large-amplitude, random f l u c t u a ­
t i o n s , and because s p e c i a l averaging techniques are necessary to reveal 
those structures even i n the developing regions of a j e t , c o n t r o l l e d e x c i t a ­
t i o n i s used to study j e t flows. 
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As demonstrated by Crow and Champagne [1971] p e r i o d i c a l l y occurring vor­
t i c e s can be observed i n a 'stimulated' j e t . P e r i o d i c e x c i t a t i o n was pro­
vided by a loudspeaker placed i n the s e t t l i n g chamber. 

Zaman and Hussain [1980] and Hussain and Zaman [1980] studied vortex 
p a i r i n g i n a c i r c u l a r j e t using a loudspeaker i n the s e t t l i n g chamber to i n ­
troduce the c o n t r o l l e d e x c i t a t i o n . 
They used hot-wire and f l o w - v i s u a l i z a t i o n (smoke) techniques. 
Zaman and Hussain discovered two p o s s i b i l i t i e s f o r vortex p a i r i n g , v i z . vor­
tex p a i r i n g of the near-exit t h i n vortex rings occurring when the Strouhal 
number based on the i n i t i a l shearlayer momentum thickness i s about 0.012 and 
vortex p a i r i n g of thick vortex rings at x/D = 1.75 happening when the 
Strouhal number based on the j e t diameter i s about 0.85. 
[x i s the a x i a l co-ordinate of a j e t , o r i g i n a t i n g at the e x i t . ] 

Hussain and Zaman found that the coherent structure Reynolds stress i s much 
larger than the background turbulence Reynolds st r e s s f o r 0 < x/D < 3. From 
zone-averaging they deduced that the Reynolds stress over the cross-section 
of a merging vortex p a i r i s much larg e r than that over a s i n g l e vortex, e i ­
ther before of a f t e r vortex p a i r i n g . 

Most of the in v e s t i g a t i o n s i n jet s have been performed i n the f i r s t few 
diameters of a j e t , because i t i s believed that the structures i n t h i s r e ­
gion play a dominant role i n the entrainment, the mixing and the aerodynamic 
noise production. 
Only a few in v e s t i g a t i o n s have been c a r r i e d out i n the regions of p a r t i a l 
and complete s e l f - p r e s e r v a t i o n . 

Chevray and Tutu [1978] measured at x/D = 15 i n a s l i g h t y heated j e t ; the 
temperature could be treated as a passive s c a l a r . The d i f f e r e n t i a t e d f l u c t u ­
a t i n g a x i a l v e l o c i t y component indicated the presence of a turbulent/non-
turbulent i n t e r f a c e . Zone averaging showed that the turbulent f l u i d moves 
fast -compared with the mean v e l o c i t y - and outwards, whereas the non-turbu­
lent f l u i d moves slow and Inwards. The turbulent f l u i d appeared to be re­
sponsible for most of the momentum and heat transport. 

At x/D - 59 Sreenivasan et a l . [1979] studied a s l i g h t l y heated turbulent 
jet w i t h i n a co-flowing j e t ( j e t : U g = 32 m/s, D = 2.03 cm; co-flowing j e t : 
U e = 4.8 m/s). 
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Using a temperature s i g n a l i t became possible to i d e n t i f y a large- scale 
pattern. Sreenivasan et a l . separated the mean shape of t h i s pattern from 
f l u c t u a t i o n s superimposed on i t . The f l u c t u a t i o n s -consistent with l o c a l 
i sotropy- appear to make the dominant c o n t r i b u t i o n to the turbulence i n t e n ­
s i t i e s and, i n regions of s u b s t a n t i a l turbulence production, to the Reynolds 
s t r e s s . As the distance from the j e t - a x i s increases, however, an increas­
i n g l y l a r g e r f r a c t i o n of the l o c a l Reynolds stress i s contributed by the 
large-scale pattern. 

In a j e t , Hussain and Clark [1981] measured the wavenumber-convection ve­
l o c i t y spectrum W(k,U) -the double Fourier-transformation of the space-time 
c o r r e l a t i o n of a x i a l v e l o c i t y f l u c t u a t i o n s - at x/D = 8 and 30; U e = 30 m/s 
and D = 2.54 cm. 
[k i s the wavenumber, defined as k = 2irf/U.] 

The spectra i n d i c a t e that the j e t i s characterized by energetic large-scale 
structures, not only at x/D = 8, but also i n the region of p a r t i a l s e l f -
preservation (x/D = 30). 
This method of analysis does not reveal the d e t a i l s of coherent struct u r e s , 
but provides s t a t i s t i c s of the most energetic eddy and the range and d i s ­
t r i b u t i o n of i t s convection v e l o c i t y . The convection v e l o c i t y of the most 
energetic eddies decreases from about 0.73Ue to 0.25Ue between x/D = 8 and 
30. The smallest eddies are e s s e n t i a l l y transported passively with nearly 
the l o c a l time-mean v e l o c i t y . 

Tso et a l . [1981] measured both long and short time-averaged space-time 
c o r r e l a t i o n s of a x i a l v e l o c i t y f l u c t u a t i o n s i n a 2.54 cm axisymmetric j e t at 
Rep = 6.8*10l+ for x/D >_ 40 i n order to i n v e s t i g a t e i f large-scale coherent 
structures e x i s t i n the region of p a r t i a l s e l f - p r e s e r v a t i o n . 
Long time-averaged space-time c o r r e l a t i o n s with probe separations i n a x i a l 
d i r e c t i o n by as much as 25D suggest the passage of large-scale coherent 
structures. The r a d i a l extent of these structures i s about one l o c a l j e t d i ­
ameter and the azimuthal extent i s about a quadrant of the l o c a l cross sec­
t i o n . 
Short time-averaged c o r r e l a t i o n s with probe separations i n a x i a l d i r e c t i o n 
e x h i b i t reoccurring quasi-periodic patterns, providing evidence f o r the ex­
istence of large-scale structures. 
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Dimotakis et a l . [1983] studied the development region and the f u l l y de­
veloped region of a water j e t , using laser-induced fluorensence and p a r t i c l e 
streak v e l o c i t y measurements. These measurements indicated that large-scale 
v o r t i c a l structures dominate the dynamics of turbulent j e t s , not only i n the 
mixing layer region but also i n the regions of p a r t i a l and complete s e l f -
preservation. 
The large-scale structures appear to be nearly axisymmetric or s p i r a l , or i n 
the t r a n s i t i o n a l state between these forms. Entrainment i s cl o s e l y associ­
ated with the kinematics of these structures and does not appear appropri­
ately describable as a gradient d i f f u s i o n phenomena. 

1.4 PRESENT INVESTIGATION 

Flow v i s u a l i z a t i o n has revealed the existence of coherent structures i n 
turbulent flows. 
Unfortunately, the description of a coherent structure i s too q u a l i t a t i v e 
when based on flow v i s u a l i z a t i o n . Consequently e f f o r t s have been made to ob­
ta i n quantitative data of coherent structures using point measurements. 
To that purpose the conditional sampling technique was applied; this means 
that only the experimental r e s u l t s were taken into account when a coherent 
structure was present at the measuring s t a t i o n . However, the success of this 
approach depends on the imagination -hence the prejudice- of the investiga­
tor. In flow v i s u a l i z a t i o n a s i m i l a r problem ari s e s . As Hussain [1983] 
points out, here l i e s the dilemma: 

"prejudices which are e s s e n t i a l f o r the success of a coherent 
structure study, can also become l i a b i l i t i e s as these can e a s i l y 
mislead one; one can usually see i n flow v i s u a l i z a t i o n what one 
wants to see as one can fi n d d i f f e r e n t structures i n the same s i g ­
nal. " 

Therefore, attempts have been made i n the past to develop objective methods 
for detecting coherent structures from measured signals. A detection method 
i s c a l l e d objective, when the detected flow structures and the results of 
conditional sampling based on the detected structures are independent of the 
parameters of the method. 

The aim of t h i s investigation i s to examine the o b j e c t i v i t y of some 
well-known detection methods and - i f necessary- to improve detection. 
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Hereto experiments have been c a r r i e d out i n wall-bounded turbulent flows and 
i n a free turbulent flow. In chapter I I the experimental f a c i l i t i e s used i n 
t h i s i n v e s t i g a t i o n are described. Also c o n v e n t i a l l y measured turbulence 
qu a n t i t i e s of the flows i n these set-ups are reported. 

In chapter I I I the r e s u l t s of t e s t i n g the o b j e c t i v i t y of the detection me­
thods of Ueda and Hinze [1975] and of Blackwelder and Kaplan [1972, 1976] 
are presented. Also the o b j e c t i v i t y of a modified version of Blackwelder and 
Kaplan's method i s examined. 
F i n a l l y the a u t o c o r r e l a t i o n technique i s inv e s t i g a t e d . 

To improve detection and to v e r i f y some r e s u l t s of the detection methods 
flow v i s u a l i z a t i o n and laser-Doppler measurements have been performed i n a 
turbulent channel flow simultaneously. The r e s u l t s are given i n chapter IV. 

In chapter V the r e s u l t s of the a p p l i c a t i o n of the quadrant analysis techni­
que to an axisymmetric j e t flow are presented. This technique i s used i n or­
der to detect structures not only i n the mixing layer region but also i n the 
region of p a r t i a l s e l f - p r e s e r v a t i o n . 

In chapter VI the r e s u l t s of t h i s i n v e s t i g a t i o n are summarized and d i s ­
cussed . 
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Chapter I I 
DESCRIPTION OF EXPERIMENTS 

In order to get a better Insight i n the problem of detecting coherent 
structures measurements have been performed i n four d i f f e r e n t flow types, 
v i z . a turbulent boundary l a y e r , a turbulent pipe flow, a turbulent channel 
flow and an axisymmetric j e t flow. 

In t h i s chapter the experimental f a c i l i t i e s are described b r i e f l y and 
usually measured turbulence q u a n t i t i e s are reported. 
More d e t a i l s concerning set-ups and experimental r e s u l t s are given 
by Boelsma [1981], Godefroy and Kunen [1984], Talmon [1984] and Vink [1984] 
r e s p e c t i v e l y . D e t a i l s about the j e t are also reported by Fondse et a l . 
[1983]. 

2.1 BOUNDARY LAYER 
2.1.1 Experimental set-up 

The f i r s t measurements concerning the detection of coherent structures 
were c a r r i e d out i n a low-turbulence windtunnel of the closed type. 
The working section i s 4.5 m long and has a rectangular cross section of 
0.9*0.7 m2. The windtunnel has a 10:1 contraction. 
At the c e n t e r l i n e of the working section a glass plate i s placed v e r t i c a l l y , 
i n streamwise d i r e c t i o n . 
By means of moveable opposite walls the streamwise s t a t i c - p r e s s u r e gradient 
was adjusted to a n e g l i g i b l y small value. 
The measurements were performed i n a centre p o s i t i o n of the boundary layer 
on one side of the glass w a l l at 4.18 m from the leading edge. T r a n s i t i o n 
from laminar to turbulent flow of the boundary layer was f i x e d at 1.27 m 
from the leading edge using a t r i p p i n g wire attached to the working surface. 
The turbulence l e v e l i n the tunnel was le s s than 0.2% at a free stream ve­
l o c i t y of 4 m/s. 

In the boundary layer only measurements of the turbulent v e l o c i t y compo­
nent i n streamwise d i r e c t i o n were performed. 
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The mean v e l o c i t y and the turbulence i n t e n s i t y were measured with a con­
stant-temperature hot-wire anemometer. Platinum plated tungsten wires with a 
length of 1 mm and a diameter of 0.005 mm were employed. The distance be­
tween the prongs of the hot-wire probe was 16 mm. 
The mean v e l o c i t y was also measured with t o t a l pressure tubes. 
The w a l l shear stress was measured using a Preston tube. 

2.1.2 Experimental r e s u l t s 

The measurements i n the boundary layer were c a r r i e d out at a free stream 
v e l o c i t y of approximately 4 m/s. 

In the viscous sublayer the hot-wire r e s u l t s were corrected for the conduc­
t i v i t y e f f e c t to the plate with W i l l s ' method ( W i l l s [1962]). 
From the d i s t r i b u t i o n s of the mean v e l o c i t y -measured with hot-wire and to­
t a l pressure tube- the boundary la y e r thickness <5ogg was derived. 
[ 6 a g 9 i s the y-po s i t i o n where the mean v e l o c i t y equals 0.99U«>. ] 

The displacement thickness 6* and the momentum thickness 8 were calculated 
by numerical i n t e g r a t i o n of the d i s t r i b u t i o n of (1-U/U,,,,) and U/U0o(l-U/U„), 
resp e c t i v e l y . 

ao 

[Displacement thickness 6* i s defined as 6* = ƒ(l-U/U^dy. ] 
0 

The w a l l f r i c t i o n v e l o c i t y u T was calcula t e d from Preston tube measurements, 
from the slope of the mean v e l o c i t y near the w a l l and from a Clauser f i t of 
the mean v e l o c i t y data (Clauser [1956]). The values agree very w e l l with 
these predicted by Ludwieg and Tillmann's e m p i r i c a l r e l a t i o n (Ludwieg & 
Tillmann [1949]). 

In table 1 the measured boundary layer parameters are given. 

Table 1. 
Boundary layer parameters. 

U T «agg «* 6 Re e 

[m/s] [mm] [mm] [mm] 

0.177 54.1 9.0 6.5 1750 

The mean v e l o c i t y and the turbulence i n t e n s i t y d i s t r i b u t i o n are shown i n 
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f i g . 20 and 21, r e s p e c t i v e l y . These d i s t r i b u t i o n s agree w e l l with those ob­
tained i n other i n v e s t i g a t i o n s on boundary layers and pipe flows. 

tyvf ! » In yut/v . «.3 

. - * ' 

U » = 4 04 m/s 

"X = 0.177 m/s 

• hot-wire anemometer 

• total pressure tube t 1mm diameter ] 

A total pressure tube [ 1.75 mm diameter ] 

y " s / \ i 

Figure 20: Time-mean v e l o c i t y d i s t r i b u t i o n i n turbulent boundary layer. 

m a x i m u m value found by Morrison and Kionauer [ 1969 ] 
at He • 1 . 7 . 1 0 ' 

— — * maximum wkje found by Lauf er [1954] at Re » 7.5.10 5 

f 
/ 'V. 

tf 

0.177 m/s 

o w n measurements at U . = 3.97 m / s 

own measurements at U~Ä - 4 09 m / s 

measurements of Ueda and Hinze [ 1975 ] 

at U - 4.10 m / s 

I I J I I 
0 25 50 75 y u ^ / j 100 

Figure 21: Turbulence i n t e n s i t y d i s t r i b u t i o n i n turbulent boundary 
layer flow and pipe flow. (Indicated Reynolds numbers 
are based on ce n t e r l i n e v e l o c i t y and tube radius.) 
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2.2 PIPE FLOW 
2.2.1 Experimental set-up 

In a pipe flow the measurements regarding the detection of coherent 
structures were continued. 
The flow system was of a r e c i r c u l a t i n g type. The working f l u i d was water. 
F i g . 22 shows the flow system used i n the experiments schematically. 

constant 

p ressure 
^ / t a n k 

perspex 

pipe b r a s s p i p e 

supply 

vessel 

c e n t r i f u g a l 
p u m p 

set t l ing 

Figure 22: Flow system of turbulent pipe flow experiments. 

Water from a 2 m 3 supply vessel was pumped by a c e n t r i f u g a l pump i n t o a con­
stant pressure tank which was also connected with the supply vessel by means 
of an overflow tube. Immediately downstream of the constant pressure tank an 
electromagnetic flowmeter was i n s t a l l e d f o r measuring the flow rate. The 
s e t t l i n g chamber had a 58:1 contraction r a t i o . 
The brass test tube had an i n s i d e diameter of 4.4 cm and a length of 5.5 m. 
Over 1.5 m of the tes t tube, beginning at 3.75 m downstream of the entrance, 
the pressure drop was measured with a d i f f e r e n t i a l pressure transducer and 
an inverted water p r e c i s i o n manometer. 
A de t a i l e d sketch of the test s e c t i o n i s shown i n f i g 23. Inside the test 
section -a rectangular vessel made of perspex- the brass pipe was replaced 
by a t h i n acetate f i l m (thickness 0.1 mm), so laser-Doppler anemometry could 
be used with an optimal o r i e n t a t i o n of the measuring volume. The test sec­
t i o n was made so that the change from brass pipe to f i l m and from f i l m to 
perspex pipe, used downstream of the test s e c t i o n , were f l u s h . On both sides 
of the c e n t r a l part of the f i l m there was water with nearly the same s t a t i c 
pressure. Therefore i t was not neccessary to glue the f i l m on the supporting 
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Figure 23: Test section of turbulent pipe flow experiments. 

perspex, but the f i l m was kept i n i t s place by the f l u i d . Because an O-ring 
was applied i n the connection between brass pipe and te s t s ection, i t was 
possible to clean or to replace the f i l m . S i m i l a r test sections were used by 
Mizushina and Usui [1977] and van Maanen and F o r t u i n [1983]. 
The flow rate i n the c i r c u i t could be adjusted with a b a l l valve. 

The measurements were performed with a laser-Doppler anemometer, operat­
ing i n the reference beam mode (see Durst et a l . [1976]). 
No a d d i t i o n a l seeding of the water was needed to carry out the measurements. 
Displacements of the laser-Doppler anemometer were accomplished by v e r t i c a l 
and h o r i z o n t a l t r a v e r s i n g devices. 
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A laser-Doppler anemometer capable of measuring the a x i a l v e l o c i t y component 
U was used f o r examining the pipe flow. 
In the o p t i c a l system a 15 mW HeNe-laser, two lenses f o r p o s i t i o n i n g the 
waist i n the measuring volume, a beam s p l i t t e r , two Bragg c e l l s , a lens ( f o ­
cus length f = 150 mm) to create the measuring volume (dimensions: length 
0.470 mm, width 0.055 mm), two lenses with a s p e c i a l diaphragm, a pinhole 
and a photodetector were incorporated ( f i g . 24). 

F 

Figure 24: O p t i c a l system of one-component laser-Doppler anemometer. 
[A l a s e r , B lenses, C beam s p l i t t e r , D Bragg c e l l s , 
E lens, F te s t s e c t i o n , G lenses with diaphram, 
H pinhole, I photodetector, J laser-Doppler s i g n a l . ] 

The use of the Bragg c e l l s resulted i n a p r e s h i f t frequency of 250 kHz i n 
the photodetector output s i g n a l . So the problem of the high s e n s i t i v i t y to 
lase r noise of an anemometer operating i n the reference beam mode could be 
overcome by f i l t e r i n g the output s i g n a l of the photodetector. 
To measure close to the w a l l i t appeared necessary to image the measuring 
volume on a pinhole using two lenses with a s p e c i a l diaphragm that blocked 
the main beam ( f i g . 25). Otherwise la s e r l i g h t scatttered by the f i l m 
reached a l s o the photodetector. 

diaphragm {6) 

Figure 25: System of lenses and diaphragm to measure close 
to pipe w a l l . 
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The f i l t e r e d photodetector signal was fed into a tracker (frequency-to-volt­
age converter). 
The mean and rms value of the a x i a l v e l o c i t y were measured analogously. 

The actual measurements were carr i e d out with a laser-Doppler anemometer ca­
pable of measuring not only the a x i a l v e l o c i t y component U but also -simul­
taneously- the r a d i a l v e l o c i t y component V. These v e l o c i t y components were 
not measured d i r e c t l y by the anemometer, but the sum and the difference of 
the two components were measured at an angle of 45° . 
There are three reasons for the choice of this measuring method. The o p t i c a l 
system i s easier to a l i g n . If measuring close to the wall introduces r e f r a c ­
t i o n a l deviations i n the beams, these deviations are the same for the two 
laser-Doppler signals. The two tracker output signals are comparable i n 
strength, so they can be processed i n the same way. 

To measure the sum and the difference of the two v e l o c i t y components the op­
t i c a l system described above was modified. The beam s p l i t t e r , the Bragg 
c e l l s and the lenses with diaphragm were rotated over 90° and the system was 
extended with a beam displacer, a beam s p l i t t e r to create two refence beams 
( f i g . 26) and with a photodetector. 

Bragg cell 

Bragg cell 

Figure 26: Extension of o p t i c a l system to measure two v e l o c i t y 
components. 

The measuring volume had the following dimensions: length 0.70 mm and width 
0.06 mm. The laser-Doppler anemometer operated now with a p r e s h i f t frequency 
of 750 kHz. 
To obtain the a x i a l and the r a d i a l v e l o c i t y component the tracker output 
signals were added and subtracted. The U- and V-signal were recorded on a 
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four channel FM recorder. But before recording the U-signal was decreased 
with approximately the mean voltage to keep enough r e s o l u t i o n i n the s i g n a l . 
Afterwards the sig n a l s were recorded with a PDP-11/34 minicomputer on mag­
net i c disk using 10 V 12 b i t a n a l o g - t o - d i g i t a l conversion and sampling rates 
of 0.5 and 1.25 kHz. (Signals measured with an average flow v e l o c i t y higher 
than 75 cm/s, were d i g i t i z e d with the highest frequency.) The recorded s i g ­
nals had a duration of 8.5 min. With the minicomputer the d i s t r i b u t i o n s of 
the mean v e l o c i t y component U, the turbulence i n t e n s i t i e s u' and v' and the 
Reynolds st r e s s -puv were ca l c u l a t e d . 

2.2.2 Experimental r e s u l t s 

In the pipe measurements were performed with average flow v e l o c i t i e s i n 
the range from 15 to 100 cm/s (Re D = 6600 to 44000). 

The pressure drop measurements agreed w e l l with the r e l a t i o n of Blasi u s 
( f i g . 27). 

0B4 • 

f 
0035 . 

0j02 -

B l a s i u s 

^—•—e— d p . t ransducer 

*—X—n— manometer 

0015 . _ , , , , , • 
t> 15 20 25 30 35 «0 45 

• R e D " l 0 - 3 

Figure 27: F r i c t i o n f a c t o r . 

The d i f f e r e n t i a l pressure transducer measurements yielded values f o r the 
f r i c t i o n f a c t o r f approximately 1.5% lower than indicated by B l a s i u s ' r e l a ­
t i o n . The manometer measurements resulted i n values f o r f some 3% too low. 
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[ F r i c t i o n f a c t o r f i s defined as f = 4T w/(spU a, 2 ). ] 

With the one-component laser-Doppler anemometer i t was checked i f the f i l m 
did not d i s t u r b the flow and i f the flow was f u l l y developed. From f i g . 28 
and 29 i t follows that the flow i s a x i a l symmetric at the measuring p o s i ­
t i o n . 

u 
U m a x 

R e p . 10500 

K - vertical 
« + horiM>ritol 
« - homantal 

01 02 03 0* 05 06 07 o e œ ID 
y / R 

Figure 28: Time-mean a x i a l v e l o c i t y d i s t r i b u t i o n i n pipe cross se c t i o n 
measured with one-component laser-Doppler anemometer. 
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Rerj- OS00 
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* - vertical 
A + horizontal 
t - horizontal 
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Figure 29: A x i a l turbulence i n t e n s i t y d i s t r i b u t i o n i n pipe cross 
section measured with one-component laser-Doppler 
anemometer. 
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From turbulence i n t e n s i t y measurements close to the w a l l no influence of the 
f i l m can be found ( f i g . 30). Because the d i s t r i b u t i o n of the turbulence i n ­
t e n s i t y u' agrees very w e l l with other measurements i n pipe and channel 
flows (Laufer [1954], Lawn [1971], Eckelmann [1970]), i t was concluded that 
the pipe flow was f u l l y developed (see f i g . 30 and 31). 

With the two-component laser-Doppler anemometer measurements were c a r r i e d 
out at three flow v e l o c i t i e s . In table 2 the pipe flow parameters corre­
sponding to these three v e l o c i t i e s are given. 

Table 2. 
Pipe flow parameters. 

u x Re D 

cm/ s ] [cm/s] 

23.3 1.45 10500 
44.9 2.56 20800 
90.2 4.75 38700 

The measurements with the two-component laser-Doppler anemometer appeared to 
be i n agreement with the r e s u l t s of the one-component anemometer ( f i g . 32 
and 33). In f i g . 34 up to and i n c l u d i n g 40 the d i s t r i b u t i o n s of the mean 
a x i a l v e l o c i t y U, of the a x i a l and r a d i a l turbulence i n t e n s i t y u' and v', of 
the Reynolds stress -pûv and of the c o r r e l a t i o n f a c t o r R are shown. 
[Co r r e l a t i o n f a c t o r R i s defined as R = -uv/(u'v').] 
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. 5600 ( E c k e l m a n n [1970 1 ) 

. « 2 0 0 ( Eckelmann [ 1970 ] ) 

- 11000 { upper wall ) 

. 11000 ( lower well ) 

15 y u T / u 

Figure 30: Comparison of Eckelmann's r e s u l t s with a x i a l turbulence 
i n t e n s i t y , measured with one-component laser-Doppler 
anemometer. (Re i s based on cen t e r l i n e v e l o c i t y and 
channel width.) 
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Figure 32: Time-mean a x i a l v e l o c i t y d i s t r i b u t i o n i n pipe cross 
section measured with one- and two- ( c i r c l e s ) 
component laser-Doppler anemometer. 
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Figure 33: Turbulence i n t e n s i t y d i s t r i b u t i o n i n pipe cross section 
measured with one- and two- ( c i r c l e s ) component l a s e r -
Doppler anemometer. 
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Figure 37: Logarithmic a x i a l and r a d i a l turbulence i n t e n s i t y 
d i s t r i b u t i o n i n pipe cross sec t i o n . 

- 47 -





2.3 CHANNEL FLOW 
2.3.1 Experimental set-up 

In the study of coherent structures an open-recirculating water channel 
was employed to be able to compare detection methods using points measure­
ments with v i s u a l detection. 
Laser-Doppler anemometry was used to measure two v e l o c i t y components of the 
flow and the hydrogen bubble technique was employed to v i s u a l i z e the flow. 

The flow system was s i m i l a r to that used f o r the pipe flow experiments. 
Again water from a supply vessel was pumped by a c e n t r i f u g a l pump into a 
constant pressure tank. By means of overflows the water could flow from 
there through an open s e t t l i n g chamber (with corner-vanes and flow s t r a i g h -
tener, contraction r a t i o of 5:1 at a water depth of 9 cm) and an open chan­
nel (dimensions: 280*150*12 cm3) back in t o the supply vessel or d i r e c t l y 
back i n t o the vessel. 
On the bottom of the channel a f a l s e f l o o r (dimensions: 210*50*1.6 cm3) was 
placed at 8 cm from the l e f t side w a l l of the channel (see f i g . 41). That 
way v i s u a l i z a t i o n could be performed without d i s t u r b i n g the flow or damaging 
the channel bottom. 
T r a n s i t i o n from laminar to turbulent flow was f i x e d at 9 cm downstream of 
the channel entrance by means of a t r i p p i n g wire with a diameter of 3 mm. 
To be sure of a c e r t a i n water depth an adjustable threshold was i n s t a l l e d 
245 cm downstream of the entrance. With valves -between constant pressure 
tank and s e t t l i n g chamber and between channel and supply v e s s e l - the water 
speed could be adjusted. 
The channel bottom and the f a l s e f l o o r were made of glass and the side-walls 
of perspex. The s e t t l i n g chamber and the channel were mounted v i b r a t i o n free 
from the rest of the system. 

Laser-Doppler measurements were performed i n the turbulent boundary layer 
along the f a l s e f l o o r 158 cm downstream of the t r i p p i n g wire and 13.4 cm 
from that s i d e - w a l l where the las e r was mounted (see f i g . 41). 

As i n the pipe flow experiments turbulence measurements were c a r r i e d out 
with a laser-Doppler anemometer operating i n the reference beam mode and ca­
pable of measuring instantaneously two mutually perpendicular v e l o c i t y com­
ponents. The two v e l o c i t y components U and V - r e s p e c t i v e l y the main flow ve­
l o c i t y component and the v e l o c i t y component normal to the w a l l 
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(see f i g . 41)- were not measured d i r e c t l y , but at an angle of 45° the sum 
and the difference of these components were measured. 
The measurements were performed with a 15 mW HeNe l a s e r . To create the main 
beam and the reference beams and to provide f o r the necessary p r e s h i f t a ro­
t a t i n g d i f f r a c t i o n grating was used ( r o t a t i o n frequency: 49.7 Hz, p r e s h i f t 
frequency: 815 kHz). With a lens (f = 120 mm) the three beams were focused 
in t o one point, the measuring volume (dimensions: 0.65*0.06 mm2). 
Because the channel was too wide to pick up the reference beams at the other 
side of the channel (too much l i g h t was scattered), two small mirrors were 
placed i n the channel at 43 cm from the si d e - w a l l which deflected down the 
two reference beams through f a l s e f l o o r and channel f l o o r ( f i g . 41). Beneath 
the channel two other mirrors deflected the beams to the photodetectors. 
The t o t a l measuring system could be translated v e r t i c a l l y . 

Before recording on magnetic disk the f l u c t u a t i n g tracker output signals 
were low-pass f i l t e r e d to remove the r o t a t i o n frequency of the grating. The 
signals were als o amplified before recording. 
From the f i l t e r c h a r a c t e r i s t i c and some spectra, given i n f i g . 42, i t f o l ­
lows that f i l t e r i n g was acceptable; the c a l c u l a t i o n of the spectra was per­
formed at a free water speed of 13.4 cm/s with s i g n a l s measured 2 mm above 
the f a l s e f l o o r and recorded with a low-pass cut-off frequency of 20 Hz, a 
sampling rate of 100 Hz and a duration of 2 hours. 

[E(f) i s the one-dimensional energy spectrum, 

Figure 41: Laser-Doppler arrangement i n channel. 
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i s the one-dimensional turbulence k i n e t i c energy ( E œ = J E ( f ) d f ) . ] 
0 
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Figure 42: Energy spectra measured i n channel flow. 

The measurements i n the turbulent boundary layer were performed with a cut­
off frequency of 20 Hz, with sampling rates of 50 and 100 Hz (to avoid a l i ­
asing i n spectrum calculations) and with a duration of 30 min. 
With the minicomputer the turbulence i n t e n s i t i e s u' and v', the skewness and 
flatness of u- and v-f luctuations (Sq , Sy , E j and Fy ) and the Reynolds 
stress -pûv" were computed. 

[F u and F v are the flatness factors of u and v respectively. 
Flatness factor F of a turbulence quantity q(t) i s defined as F = qVCq') 1*. 

and Sy are the skewness factors of u and v respectively. 

Skewness factor S of turbulence quantity q(t) i s defined as S = q 3 / ( q ' ) 3 . ] 
The mean v e l o c i t y U was calculated from the d i r e c t l y measured VCO-frequency 
(Voltage Controlled O s c i l l a t o r ) of the tracker, which equals the sum of 
Doppler, p r e s h i f t and intermediate frequency. 
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The hydrogen bubble technique was adopted to v i s u a l i z e the flow. In t h i s 
technique a f i n e platinum wire i s stretched i n the water. This wire i s the 
negative electrode of a dc c i r c u i t . At t h i s wire hydrogen bubbles are gener­
ated. These bubbles are the markers f o r flow v i s u a l i z a t i o n . By pulsing the 
voltage at regular time i n t e r v a l s bubble l i n e s are produced. 

In the channel wires were placed i n normal (y) and transverse (z) d i r e c t i o n 
to v i s u a l i z e x-y and x-z planes of the flow (see f i g . A3 and 44). 
The wires used were 0.07 mm i n diameter. The normal wire was 9 cm i n length 
and the t o t a l transverse wire 28.5 cm from which 11.5 cm was not insulated. 
The normal wire was jammed i n a small hole d r i l l e d i n the f a l s e f l o o r at a 
distance of 38 mm upstream of the measuring s t a t i o n of the laser-Doppler an­
emometer. The transverse wire was soldered to supports which could be trans­
lated v e r t i c a l l y at 9.3 mm upstream of the measuring s t a t i o n . 
The voltage applied to the wires was pulsed with a frequency of 20 Hz. 

Simultaneously flow v i s u a l i z a t i o n with hydrogen bubbles and measurements 
with laser-Doppler anemometry were performed. The measured f l u c t u a t i n g 
tracker output signals were recorded on magnetic disk and the v i s u a l i z e d 
flow was filmed with a 16 mm camera. 

In f i g . 43 and 44 the arrangements are shown f o r f i l m i n g the flow i n side 
and plan view r e s p e c t i v e l y . 
To f i l m i n side view a pe r i s c o p e - l i k e construction was made with one mirror 
i n the water and one beneath the channel. In the f i r s t mirror two notches 
were made to l e t through the two reference beams. 
I l l u m i n a t i o n of the x-y plane was accomplished using three f i l m - l i g h t s , two 
above and one beneath the channel. The l i g h t made an angle of approximately 
60 with the camera l i n e of s i g h t . 
Between channel bottom and second mirror a green f i l t e r was placed to reduce 
the l i g h t i n t e n s i t y of the las e r beams on the exposed f i l m . The camera f i e l d 
of view was 143 mm i n length (streamwise d i r e c t i o n ) and 68 mm i n width (nor­
mal d i r e c t i o n ) . 
In the plan view was filmed using a mirror and a f i l m - l i g h t beneath the 
channel. The l i g h t now made an angle of approximately 80° with the camera 
l i n e of sight . 
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Figure 43: Arrangement f o r f i l m i n g the channel flow i n side view. 
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Figure 44: Arrangement f o r f i l m i n g the channel flow i n plan view. 

In the plan view i t was impossible to f i l m and measure at the same distance 
from the w a l l , because too much las e r l i g h t was scattered by the hydrogen 
bubble 'plane'. I t appeared necessary to separate measuring point and p l a t i ­
num wire over 2 mm i n normal d i r e c t i o n . In the plan view a l l f i l m s were ex­
posed measuring 2 mm beneath the v i s u a l i z e d 'plane'. 
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Now the dimensions of the camera f i e l d of view were 70*110 mm2 ( i n stream-
wise and transverse d i r e c t i o n r e s p e c t i v e l y ) . 

The clock pulse the minicomputer used for sampling, was also used to l i n k up 
the recorded v e l o c i t y components with the corresponding f i l m frames. The 
clock pulse actuated a counter which appeared at the top of each frame. So 
the numbers on the frames correspond to the time se r i e s of the recorded s i g ­
nals. 

As i n the boundary layer measurements the f l u c t u a t i n g tracker output s i g n a l s 
were low-pass f i l t e r e d with a cut-off frequency of 20 Hz and recorded on 
magnetic disk with a d i g i t i z i n g rate of 50 Hz and a duration of 30 min. 
Because the camera magazine could contain f i l m s of maximally 30 m length and 
because f i l m i n g was performed with about 45 frames/s, only the flow could be 
filmed during approximately the f i r s t 90 s of sampling. 
An exposure time of 1/125 s was used, so r e l a t i v e l y sharp photographs could 
be made. 

2.3.2 Experimental r e s u l t s 

With the laser-Doppler anemometer traverses were made through the turbu­
lent boundary layer developed over the f a l s e f l o o r . The free stream water 
speed was 14.1 and 13.4 cm/s and the water depth was about 9 cm. Sampling 
rates of 50 and 100 Hz res p e c t i v e l y were used. 

In f i g . 45 and 46 the measured mean v e l o c i t y d i s t r i b u t i o n s are shown. 
As i n the boundary layer experiments the displacement thickness S* and the 
momentum thickness 8 were calcula t e d by numerical i n t e g r a t i o n . 
Using the em p i r i c a l v e l o c i t y d i s t r i b u t i o n = (y/<5)"n the boundary layer 
thickness 6 was computed (Hinze [1975]). 
The w a l l f r i c t i o n v e l o c i t y u T was derived by f i t t i n g the v e l o c i t y data to 
Clauser's form of the logarithmic law (Clauser [1956]). 

In table 3 the channel flow parameters are summarized. 
In f i g . 47 the d i s t r i b u t i o n s of the turbulence i n t e n s i t i e s u' and v' and of 
the Reynolds stress - i n dimensionless form- and of the c o r r e l a t i o n factor 
are shown. Also indicated are the maximum and minimum values of the 30 min. 
signals measured during and a f t e r f i l m i n g ; see the next paragraph. 
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Figure 45: Time-mean v e l o c i t y d i s t r i b u t i o n i n channel flow. 
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Figure 46: Logarithmic time-mean v e l o c i t y d i s t r i b u t i o n i n channel flow. 

At logaritmic scale the d i s t r i b u t i o n of u ' / ^ , Sjj and F u and of v'/u,-, Sy 
and F y are given i n f i g . 48 and 49 respectively. Comparison with measure­
ments of Gupta and Kaplan [1972] i n a turbulent boundary layer and with 
measurements of K r e p l i n and Eckelmann [1979] i n a turbulent channel flow 
y i e l d s a good agreement f o r the inner layer. In the outer layer of the tur­
bulent boundary layer the agreement with these measurements i s less, but the 
results show the same tendency. 
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Table 3. 
Channel flow parameters. 

U œ u T 6 5* 9 Re e 

[cm/s] [mm/s] [mm] [mm] [mm] 

14.1 7.2 45.6 8.9 5.9 770 
13.4 6.8 40.6 7.5 5.2 730 
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ure 47: D i s t r i b u t i o n of turbulence q u a n t i t i e s i n channel flow. 
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Figure 48: Logarithmic d i s t r i b u t i o n of dimensionless moments 
of u-fluctuations i n channel flow. ( K r e p l i n and 
Eckelmann based Re on cen t e r l i n e v e l o c i t y and 
channel width.) 

In t o t a l 12 times recordings of measured si g n a l s and f i l m s of the water 
flow were made simultaneously, 8 times i n side view and 4 times i n plan 
view. The flow conditions were approximately the same as i n the second t r a v ­
erse (tab l e 3, Vm = 13.4 cm/s). In table 4 the measuring p o s i t i o n s and f i l m ­
ing conditions are given. 
[ y w

+ denotes the nondimensional y- p o s i t i o n of the platinum wire and y^ + 

the p o s i t i o n of the measuring point.] 
The calculated maximum and minimum turbulence q u a n t i t i e s of the measured 30 
min. s i g n a l s are indicated i n f i g . 47. The s c a t t e r i n these r e s u l t s can be 
caused by the hydrogen bubbles which are r i s i n g slowly due to buoyancy. 
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Figure 49: Logarithmic d i s t r i b u t i o n of dimensionless moments of v-
f l u c t u a t i o n s i n channel flow (see f i g . 48 f o r symbols). 

Table 4. 
Information about f i l m s . 

f i l m no. view yw + y i + duration 
[•] 

1 side — 14 97 
2 — 14 93 
3 — 43 99 
4 — 43 99 
5 — 43 95 
6 — 72 93 
7 — 72 88 
8 — 72 93 
9 plan 29 14 78 

10 29 14 94 
11 57 43 95 
12 57 43 95 

To be able to compare flow patterns and measured signals the p o s i t i o n of 
the measuring point has to be v i s i b l e on the frames. 
In case of f i l m i n g i n side view the l a s e r beams show that p o s i t i o n . 
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Because i n the plan view the measurements were performed at approximately 
2 mm below the v i s u a l i z e d 'plane', the p o s i t i o n of the measuring point has 
to be indicated on the frames a f t e r f i l m i n g . Therefore the f i r s t meter of 
each f i l m was exposed with the platinum wire at the same distance from the 
w a l l as the reference beams. Now hydrogen bubbles were generated continu­
ously. That way the p o s i t i o n of the i n t e r s e c t i o n of the las e r beams -the 
measuring point- was marked on each f i l m . 

2.4 AXISYMMETRIC JET FLOW 
2.4.1 Experimental set-up 

In order to detect also coherent structures i n free-turbulence hot-wire 
measurements were performed i n an axisymmetric j e t , discharging a i r i n t o am­
bient a i r at re s t . 
F i g . 50 shows the j e t f a c i l i t y schematically. 

muslin 

i 1 Ian rubber . straight 

Figure 50: Sketch of j e t f a c i l i t y . 

A fan, mounted v i b r a t i o n free from the rest of the set-up, supplied the a i r . 
The entrance of the flow system was covered with muslin to remove the dust 
from the incoming flow. The a i r flowed through a pipe with flow straightener 
and a d i f f u s e r with gauzes i n t o a s e t t l i n g chamber. V i a two contractions, 
with r a t i o s of 7:1 and 18:1, and a small pipe, with a length-diameter r a t i o 
of 1, the a i r l e f t the f a c i l i t y . 
The t o t a l length of the f a c i l i t y i s 7.7 m and the e x i t diameter i s 7 cm. The 
cen t e r l i n e of the set-up i s found 1.2 m above the ground. 
Precautions were taken to avoid possible influences of the neighbourhood on 
the j e t . 

With platinum plated tungsten hot-wires measurements were performed i n 
the j e t flow. The constant temperature method was applied. The wires had a 
length of 1 mm and a diameter of 0.005 mm. 
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To e s t a b l i s h the e x i t boundary layer conditions the time-mean v e l o c i t y U and 
the turbulence i n t e n s i t y u' were measured with a s i n g l e hot-wire. 

In the development region of the j e t the a x i a l and r a d i a l v e l o c i t y component 
U and V were measured by means of X-wires. 
The v e l o c i t y c a l i b r a t i o n of the X-wires was ca r r i e d out with the wires 
placed i n the centre of the e x i t cross sect i o n and perpendicular to the ax­
i a l v e l o c i t y . A t h i r d degree polynomial was calculated by a leas t square 
f i t . 
The d i r e c t i o n - s e n s i t i v i t y was also determined at the centre of the e x i t 
cross section. Hereto the X-wires were placed at angles i n the range from 0° 
to 135° with the constant a x i a l v e l o c i t y . With the t h i r d degree polynomials 
the e f f e c t i v e v e l o c i t i e s -the normal components of the v e l o c i t y - were c a l c u ­
l a t e d . The fo l l o w i n g r e l a t i o n appeared to be the best approximation for the 
d i r e c t i o n s e n s i t i v i t y of the X-wires: 

u e f f = c l f l j a l n * . 
i n which U e f f i s the e f f e c t i v e v e l o c i t y , c a constant and cb the angle be­
tween wire and instantaneous v e l o c i t y vector IK 
During the measurements f l u c t u a t i n g output s i g n a l s of the two anemometers 
with a duration of 320 s were recorded on magnetic disk. The sig n a l s were 
low-pass f i l t e r e d and d i g i t i z e d with the same frequency, v i z . 5 kHz, because 
no Fourier transformation was applied to these s i g n a l s . Simultaneously the 
mean voltage of the anemometer output s i g n a l s was measured. To c a l c u l a t e 
turbulence q u a n t i t i e s the j o i n t p r o b a b i l i t y d i s t r i b u t i o n of the two f l u c t u ­
a t i n g signals was determined. Using t h i s d i s t r i b u t i o n and the mean voltages 
the time-mean a x i a l v e l o c i t y U, the turbulence i n t e n s i t i e s u' and v', the 
Reynolds stress -pïïv and the skewness and f l a t n e s s of the a x i a l v e l o c i t y 
f l u c t u a t i o n s were computed with the equations mentioned above. 

2.4.2 Experimental r e s u l t s 

The boundary layer experiments were performed 3 mm upstream of the j e t 
e x i t at a Reynolds number of 1.10*105. 

The measured dimensionless mean v e l o c i t y U/Ue and turbulence i n t e n s i t y u'/Ue 

are p l o t t e d i n f i g . 51 versus the dimensionless w a l l distance y*/6*. The 
displacement thickness 6* has been derived from the measured v e l o c i t y pro­
f i l e . 
[y* i s the w a l l distance (see f i g . 50), y* = R-y 
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(y i s the r a d i a l distance and R the e x i t radius).] 

0 1 2 3 4 5 6 <j*/„ 7 

Figure 51: V e l o c i t y and turbulence i n t e n s i t y p r o f i l e i n e x i t 
boundary layer. 

Also the Blasi u s p r o f i l e i s shown i n f i g . 51 As can been seen the measured 
v e l o c i t y p r o f i l e agrees w e l l with B l a s i u s p r o f i l e , i n d i c a t i n g that the e x i t 
boundary layer i s laminar. Using the shape f a c t o r of the Bl a s i u s p r o f i l e the 
momentum thickness 0 has been derived. 
The measured e x i t boundary layer parameters are summarized i n table 5. The 
maximum value and the value at the ce n t e r l i n e of the dimensionless turbu­
lence i n t e n s i t y , u m a x / U e and u e'/U e, are also i n d i c a t e d . 

Table 5. 
Results f o r je t e x i t boundary layer. 

Re D 6 9 u m a x / U e u e'/U e 

[mm] [mm] 

1.10*105 0.45 0.17 0.011 0.010 

At a Reynolds number of 1.17*105 measurements were c a r r i e d out i n the devel­
opment region of the j e t . U, u', v', -puv, S u and F u were measured at a few 
r a d i a l p o sitions at x/D = 1.5, 3, 4.5, 6, 7.5, 9 and 20. 
In f i g . 52 up to and incl u d i n g 57 the dimensionless mean v e l o c i t y U/Ue> the 
dimensionless a x i a l and r a d i a l turbulence i n t e n s i t i e s u'/Ue and v'/U e, the 
dimensionless Reynolds str e s s uv/U e

2 and the skewness and fl a t n e s s of u are 
plot t e d as function of the dimensionless r a d i a l distance y/D. 
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Figure 52: V e l o c i t y p r o f i l e s i n j e t cross sections. 
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Figure 53: A x i a l turbulence i n t e n s i t y p r o f i l e s i n j e t cross sections. 
(See f i g . 52 f o r symbols.) 
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Figure 54: Radia l turbulence i n t e n s i t y p r o f i l e s i n j e t cross sections. 
(See f i g . 52 f o r symbols.) 
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Figure 55: Reynolds stress p r o f i l e s i n j e t cross sections. 
(See f i g . 52 f o r symbols.) 
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Figure 56: Skewness p r o f i l e s of a x i a l v e l o c i t y f l u c t u a t i o n s i n j e t 
cross sections. (See f i g . 52 for symbols.) 
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Figure 57: Flatness p r o f i l e s of a x i a l v e l o c i t y f l u c t u a t i o n s i n j e t 
cross sections. (See f i g . 52 f o r symbols.) 
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Chapter I I I 
DETECTION SCHEMES 

As mentioned i n chapter I i t i s d i f f i c u l t to design a detection scheme 
for coherent structures using only v e l o c i t y information i n one, or more, d i ­
rections from one p o s i t i o n i n the flow. 

In the past a l o t of schemes have been developed making use of one v e l o c i t y 
component only. However, i t has not been proved whether these methods are 
objective (see section 1.4 f o r a d e f i n i t i o n of an objective detection me­
thod). So i t i s not clear whether results from these schemes can be a t t r i b ­
uted to coherent structures. 

In the following sections the o b j e c t i v i t y of three detection schemes w i l l 
be studied. The scheme of Ueda and Hinze (see Vink [1981]), the scheme of 
Blackwelder and Kaplan (see Boelsma [1981] and Vink [1982]) and a modified 
version of Blackwelder and Kaplan's scheme (see Vink [1982]) are examined. 
Also results of the autocorrelation technique w i l l be presented (see Vink 
[1981]). 

3.1 SCHEME OF UEDA AND HINZE 

3.1.1 Description of the scheme 

According to Ueda and Hinze [1975] high frequency parts of a d i f f e r e n t i ­
ated u-signal indicate the presence of bursts. Therefore i n the i r detection 
scheme narrow-band signals of (3u/3t) 3 were used for counting the burst 
rate. 
In the scheme a l i n e a r i z e d u-signal i s d i f f e r e n t i a t e d , raised to the t h i r d 
power, band-pass f i l t e r e d (mid-frequency equaled half the Kolmogorov f r e ­
quency, r e l a t i v e bandwidth equaled 0.24) and compared with a threshold 
l e v e l . 
So the parameters of this detection method are the mid-frequency, the r e l a ­
t i v e bandwidth and the threshold l e v e l . 
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3.1.2 Test r e s u l t s 

From the paper of Ueda and Hlnze the influence of the parameters on the 
scheme i s not c l e a r . Further i n v e s t i g a t i o n s were made therefore to ascertain 
the dependency on the parameters. 

In section 2.1 the experimental arrangement used i n t h i s i n v e s t i g a t i o n i s 
described. In f a c t , i t i s the same windtunnel Ueda and Hinze used. Only the 
boundary layer conditions, see table 1, were s l i g h t l y d i f f e r e n t because of 
an other p o s i t i o n of the t r i p p i n g wire. 
The same e l e c t r o n i c equipment was used too. In t h i s i n v e s t i g a t i o n a l s o a 
fourteen channel FM magnetic tape recorder was employed f o r recording the 
l i n e a r i z e d u-signals, recording speed 120 i n / s . So f o r t e s t i n g the scheme 
the same signals were used. 

At two w a l l distances -at y + = 15 and y + = 50- s i g n a l s were recorded with a 
duration of 12 min. A d d i t i o n a l information about the signals can be found 
i n table 6. 

Table 6. 
Turbulence q u a n t i t i e s of recorded s i g n a l s . 

y + A £ n, f K 

[mm] [m 2/s 3] [mm] [kHz] 

15 4.3 2.43 0.19 1.6 
50 3.9 1.66 0.21 2.0 

[\ i s the d i s s i p a t i o n length s c a l e , defined by 1/A2 = (3u/3x) 2/u ; 
e i s the d i s s i p a t i o n per unit mass and time, deduced from the f o l l o w i n g 
r e l a t i o n e = 15vu 2/A 2; 
n i s the Kolmogorov length s c a l e , defined as n = ( V 3 / e ) 0 - 2 5 ; 
f(( i s the Kolmogorov frequency, defined as f£ = 0/2*0. ] 

The detection scheme was applied to these two s i g n a l s . The mean time Tj 
between successive detections was determined as function of the threshold 
l e v e l . F i g . 58 shows the r e s u l t s ; the mean time between successive detec­
tions i s given i n the dimensionless form of T^V„/<5. 
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Figure 58: Dimensionless mean time between successive 
detections according to Ueda and Hinze's scheme. 
(Threshold l e v e l i n ar b i t r a r y units.) 

There appears to be a great dependency on this threshold l e v e l . Although the 
dependency on the two remaining parameters, v i z . the mid-frequency and the 
r e l a t i v e bandwidth, has not been tested, the detection scheme of Ueda and 
Hinze can not be c a l l e d objective. So results of the scheme as reported by 
Ueda and Hinze become questionable (see f i g . 8). 

3.2 SCHEME OF BLACKWELDER AND KAPLAN 
3.2.1 Description of the scheme 

Since the results of the v i s u a l i z a t i o n studies indicated that the bursts 
were associated with a high degree of v e l o c i t y f l u c t u a t i o n (Corino and 
Brodkey [1969], Kim et a l . [1971] and Grass [1971]), Blackwelder and Kaplan 
[1972,1976] designed a detection scheme which searches this condition. The 
guiding philosophy was to try to keep the scheme as simple as possible while 
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yet r e t a i n i n g the e s s e n t i a l features of the burst. This resulted i n a scheme 
using only the u-fluctuations and keeping the number of conditions, which 
have to be f u l f i l l e d , to a minimum. 

In order to concentrate on a l o c a l i z e d region i n space -or better time, 
using Taylor's hypothesis- the V a r i a b l e - I n t e r v a l Time Averaging (VITA) me­
thod was employed. The v a r i a b l e - i n t e r v a l time average of a f l u c t u a t i n g quan­
t i t y q(x,y,z,t) i s defined by: 

i n which x, y and z are the Cartesian co-ordinates and T m i s the averaging 
time. 
To obtain a l o c a l average of some phenomenon, the averaging time T m must be 
chosen of the order of the time scale of the phenomenon under study, thus of 
the order of the time scale of a coherent stru c t u r e . 
A measure of the i n t e n s i t y of v e l o c i t y f l u c t u a t i o n s of short duration i s ob­
tained by computing the VITA-variance of the streamwise v e l o c i t y component, 
defined as: 

I f the VITA-variance i s l a r g e r than a c e r t a i n threshold l e v e l ku' a coher­
ent structure i s supposed to be present, k i s the threshold parameter and u' 
i s the usual r.m.s. value of u when an i n f i n i t e large averaging time i s 
used. Blackwelder and Kaplan introduced as detection function D(t): 

F i g . 59 shows a schematic representation of Blackwelder and Kaplan's scheme. 
Blackwelder and Kaplan used a computer f o r the a p p l i c a t i o n of the detection 
scheme. 

To answer the question whether the detection can y i e l d information about 
coherent struc t u r e s , a 'pseudo-turbulence' s i g n a l was generated from a dou­
bly exponentially f i l t e r e d d i g i t a l random-number generator. 

t+T m/2 

vâ"r(x,y,z,t,Tm) - u 2(x,y, z, t,T l n)-[U(x,y, z, t,T m) ] 2. 

1 i f var > ku 
D(t) = 

0 otherwise 
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D(t) J 1 t 

Figure 59: Detection scheme of Blackwelder and Kaplan. 

This s i g n a l had almost the same spectral d i s t r i b u t i o n as the streamwise ve­
l o c i t y at y + = 15. 
When the detection scheme was applied to the pseudo-turbulence and condi­
t i o n a l averages* were computed, there was hardly a noticeable deviation from 
zero. So Blackwelder and Kaplan concluded that any c o n d i t i o n a l l y averaged 
results for r e a l turbulence were cl o s e l y related to the turbulence structure 
and not to the detection scheme. 

In Blackwelder and Kaplan's scheme two parameters are involved, v i z . the 
averaging time T m and the threshold parameter k. 
According to Blackwelder and Kaplan the scheme i s not very se n s i t i v e for 
varying T m, but the dependency on k i s greater. 
But because the conditional average of the streamwise v e l o c i t y component 
scaled with the square root of the threshold l e v e l , Blackwelder and Kaplan 
believed that v a r i a t i o n of the threshold l e v e l only affected the magnitude 
of the detected events and not i t s structure. 

In their study Blackwelder and Kaplan used a threshold parameter of 1.2 and 
an averaging time of T m u T

2 / v = 10. 

The conditional average of a turbulence quantity q i s defined by 
- i N 

<q(x,y,z,T) > = N E q(x,y,z,t +T). 
y T n=i 

The subscript y + denotes the p o s i t i o n at which detection occurred. N i s the 
number of samples added i n the ensemble average. The quantities t n are 
those positions i n time when detection occurred. The times t n were taken to 
be midway between beginning and end of the period during which detection 
occurred. With a negative and a p o s i t i v e time delay x the temporal behavi­
our of q was determined before and after detection. 
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3.2.2 Test r e s u l t s 

The detection scheme of Blackwelder and Kaplan was Investigated more ex­
t e n s i v e l y with the a i d of a PDP-11/34 minicomputer. Blackwelder and Kaplan's 
scheme was translated i n t o a Fortran program. 

To that purpose signals were used from a turbulent boundary layer i n the 
windtunnel, described i n section 2.1, and from a white noise generator. 
In table 1 the turbulence q u a n t i t i e s of the boundary lay e r are summarized. 

Two u-signals were recorded on magnetic disks of the minicomputer. The f i r s t 
u -signal was measured at y + = 17 and had a duration of 76.8 s, the second at 
y + = 15 with a duration of 1310.7 s. Before d i g i t i z i n g -sampling frequencies 
20 and 10 kHz, r e s p e c t i v e l y - the s i g n a l s were low-pass f i l t e r e d with cut-off 
frequencies of 8 and 4 kHz. In the f o l l o w i n g the two signals are denoted as 
s i g n a l A and s i g n a l B, r e s p e c t i v e l y . 
As t h i r d s i g n a l a 'pseudo-turbulence' s i g n a l was recorded from a doubly ex­
p o n e n t i a l l y f i l t e r e d white noise generator ( s i g n a l C, duration 524.3 s, sam­
p l i n g frequency 10 kHz, cut-off frequency 4 kHz). 
Signal C had a s i m i l a r s p e c t r a l d i s t r i b u t i o n as s i g n a l B ( f i g . 60). 

The tests which Blackwelder and Kaplan performed, were repeated. 
F i r s t l y , the mean time between successive detections was determined as 
function of the parameters T m and k using s i g n a l A. The averaging time T m 

was varied i n the range from 6 to 20 ms and the threshold parameter k i n the 
range from 0.8 to 1.8. 
The small dependency on T m ( f i g . 61) and the great influence of k ( f i g . 62) 
are i n agreement with the r e s u l t s of Blackwelder and Kaplan. 

Secondly, the c o n d i t i o n a l l y averaged streamwise v e l o c i t y component was c a l ­
culated. Signal B was used and the parameters had the f o l l o w i n g values: 
T m = 12 ms ( T m u T

2 / v = 25) and k = 1.0, 1.4 and 1.8 r e s p e c t i v e l y . 
The c o n d i t i o n a l l y averaged streamwise v e l o c i t y component had the same form 
as reported by Blackwelder and Kaplan ( f i g . 63). The c a l c u l a t i o n of the con­
d i t i o n a l average was done s l i g h t l y d i f f e r e n t . The point midway between be­
ginning and end of the detection was not taken as time t n i n the averaging 
process, but the f i r s t point of detection. This i s probably the reason why 
the c o n d i t i o n a l averages do not scale w e l l with the square root of the 
threshold l e v e l . 
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Figure 60: Spectrum of pseudo-turbulence ( c i r c l e s ) and boundary 
layer turbulence ( s i g n a l B). 

The c o n d i t i o n a l average of s i g n a l C, the pseudo-turbulence s i g n a l , i s shown 
i n f i g . 64. As found by Blackwelder and Kaplan there i s scarcely a dev i a t i o n 
from zero. 

The r e s u l t s mentioned above i n d i c a t e that also Blackwelder and Kaplan's 
scheme does not seem to be an objective detection method. 
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Figure 61: Dimensionless mean time between successive detections 
according to Blackwelder and Kaplan's scheme. 
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Figure 62: Dimensionless mean time between successive detections 
according to Blackwelder and Kaplan's scheme. 
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Figure 63: Con d i t i o n a l l y averaged streamwise v e l o c i t y component 
according to Blackwelder and Kaplan's scheme. 
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Figure 64: Conditional averaged pseudo-turbulence s i g n a l 
according to Blackwelder and Kaplan's scheme. 

3.2.3 Further t e s t s 

Because Blackwelder and Kaplan's scheme has been adopted by many i n v e s t i ­
gators, i t was decided to examine whether some properties of the detected 
structures are the same as observed i n v i s u a l i z a t i o n studies. 

From v i s u a l data Kim et a l . [1971] found a broad d i s t r i b u t i o n of time i n ­
t e r v a l s t j between successive structures ( f i g . 65). 
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Figure 65: D i s t r i b u t i o n of time i n t e r v a l s between succesive detections 
according to v i s u a l i z a t i o n studies of Kim et a l . 

The same d i s t r i b u t i o n was ca l c u l a t e d from the detection data of Blackwelder 
and Kaplan's scheme to the neglect of time i n t e r v a l s smaller than the aver­
aging time. The time i n t e r v a l between two successive detections was defined 
as the time passed between the end of the f i r s t detection and the beginning 
of the second, as indicated by the detection function D(t) ( f i g . 59). I t was 
assumed that detections with time i n t e r v a l s smaller than averaging time T m 

are reactions on the same structure and therefore these detections were 
treated as one detection. 

In f i g . 66 the time i n t e r v a l d i s t r i b u t i o n s are shown f o r 78.6 s of s i g n a l B 
with threshold parameters of 0.8, 1.2 and 1.6 and an averaging time of 12 ms 
( T m u T

2 / v = 25). 
Again i t can be concluded that the ca l c u l a t e d d i s t r i b u t i o n i s very dependent 
on the threshold parameter k. 
The time i n t e r v a l d i s t r i b u t i o n of pseudo- turbulence has the same form as 
the d i s t r i b u t i o n s of the turbulence signals f o r low values of k ( f i g . 67). 
Moreover, the calcula t e d d i s t r i b u t i o n d i f f e r s from the d i s t r i b u t i o n found 
during the v i s u a l i z a t i o n studies of Kim et a l . According to Blackwelder and 
Kaplan's scheme f o r low.values of k the highest p r o b a b i l i t y f o r a new detec­
t i o n to occur i s immediately a f t e r the previous one. A s i m i l a r conclusion 
was drawn by van Maanen and F o r t u i n [1983]. According to the v i s u a l i z a t i o n 
study of Kim et a l . a new coherent structure occurs most l i k e l y a f t e r a f i n ­
i t e time. With Blackwelder and Kaplan's scheme t h i s i s only found f or large 
values of k, f o r instance f o r k = 1.6 i n f i g . 66. 
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Figure 66: D i s t r i b u t i o n of time intervals between successive 
detections according to Blackwelder and Kaplan's scheme. 

Researches were made into another feature of coherent structures. As re­
ported i n v i s u a l i z a t i o n studies (Corino and Brodkey [1969], Kim et a l . 
[1971]) the major part of the Reynolds stress i s produced by coherent struc­
tures. 
Therefore the contribution of the detections of Blackwelder and Kaplan's 
scheme to the Reynolds stress was calculated, when the scheme was applied to 
the u-signal. As i n the case of the time i n t e r v a l d i s t r i b u t i o n s two detec­
tions with a time i n t e r v a l smaller than the averaging time were treated as 
one detection i n this c a l c u l a t i o n . 
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Figure 67: D i s t r i b u t i o n of time i n t e r v a l s between successive 
detections i n pseudo-turbulence according to 
Blackwelder and Kaplan's scheme. 

Hereto signals from the turbulent pipe flow, described i n section 2.2, were 
used. At a Reynolds number of 10150 u- and v-signals from two measuring 
points were recorded on magnetic disk. The dimensionless distances from the 
w a l l were 15 and 33, the sampling frequency was 500 Hz, the cut-off f r e ­
quency of the low-pass f i l t e r s was 250 Hz and the duration of the signals 
was 5222 s. 

The c a l c u l a t i o n was based on detection function D ( t ) . As i t i s not known i f 
a period of high Reynolds st r e s s f a l l s w i t h i n a detection period, the c a l c u ­
l a t i o n was performed i n three ways. 

In the f i r s t approach the duration of the uv-parts used f o r the computation 
was enlarged. 
As a f i r s t step the parts of the uv-signal indicated by the o r i g i n a l detec­
t i o n function D(t) were used i n the c a l c u l a t i o n . Next the uv-parts were en­
larged. The detection function D(t) was changed i n such a way, that the be­
ginning of each detection was assumed to have taken place nAx s e a r l i e r than 
i n the o r i g i n a l detection f u n c t i o n and the end nAr s l a t e r , where n i s the 
number of times each detection was enlarged. Pieces of the uv-signal that 
would be counted twice so (overlapping detection periods), were only counted 
once. 
In f i g . 68 and 69 the r e s u l t s of the computation are shown. In Blackwelder 
and Kaplan's scheme the fo l l o w i n g parameter values were used: T m = 5 and 
15 ms ( T m u T

2 / v = 9.8 and 29.4), k = 0.8, 1.2 and 1.6. 
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Figure 68: Contribution to Reynolds stress due to detections 
according to Blackwelder and Kaplan's scheme. 

The absciss i n these figures gives the time f r a c t i o n At^/t of the measured 
s i g n a l due to detections. The ordinate gives the f r a c t i o n uv^/uv of the 
Reynolds stress due to detections, 
[t i s the duration of the t o t a l s i g n a l . 
A t u represents the t o t a l time that detections occurred or were assumed 

t 
to occur ( A t d = ƒ D(s)ds). 

0 t 
-puv i s the Reynolds st r e s s (uv = t _ 1 ƒ uv(s)ds). 

0 
-puv^ i s the Reynolds stress due to detections 

t 

( u v d = t " 1 ƒ uv(s)D(s)ds).] 
0 

The f i r s t points i n f i g . 68 and 69 were calculated using the o r i g i n a l detec­
t i o n functions of Blackwelder and Kaplan's method. The next points apply to 
the changed detections functions with enlarged detection periods; AT equaled 
Tm/2 and Tm/4 r e s p e c t i v e l y , which means that each detection was enlarged nT m 

and nTm/2 r e s p e c t i v e l y , when no overlap was present. 
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Figure 69: Contribution to Reynolds stress due to detections 
according to Blackwelder and Kaplan's scheme. 

In the second approach the o r i g i n a l detection function D(t) was delayed with 
respect to the uv-signal. Now only the detections found with the averaging 
time of 15 ms were used and the delay time T was varied i n the range from 
-0.5 to +0.5 s. 
For the dimensionless distance y • 15 there appear to be two peaks -one 
just before and one just a f t e r detection- i n the contribution to the 
Reynolds stress ( f i g . 70). For the dimensionless distance y + = 33 the peak 
just a f t e r detection has disappeared almost completely ( f i g . 71). Comparing 
f i g . 63 and 70 i t seems that on the whole ejection events cause the f i r s t 
peak and sweep events the second. In that case the disappearance of the sec­
ond peak for y + = 33 agrees with the measurements of Brodkey et a l . [1974] 
concerning the r e l a t i v e importance of e j e c t i o n and sweep contributions to 
the Reynolds stress (see f i g . 12). 
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Figure 70: Contribution to Reynolds stress due to delayed detections 
according to Blackwelder and Kaplan's scheme. 

Figure 71: Contribution to Reynolds stress due to delayed detections 
according to Blackwelder and Kaplan's scheme. 
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In the t h i r d approach the quadrant analysis technique was used (see section 
1.2.3). Here the hole was defined by the curves |uv| = K|uv|. 
[K = Hu'v'/|uv|] 

The quadrant analysis technique was f i r s t l y applied to the complete signals. 
As function of hole-size K the f r a c t i o n a l contribution uv^/uv to the 
Reynolds stress of the four quadrants excluding the hole, and of the hole 
was computed; also the f r a c t i o n t ^ / t of the time the uv-signal spent i n 
these quadrants excluding the hole, and i n the hole, was calculated as func­
tion of K. 
[-puv^ i s the Reynolds stress due to quadrant i excluding the hole 

t 

( i = 1, 2, 3 or 4) and due to the hole ( i = 5) (uVj = t " 1 ƒ u v ^ s ) ds). 
0 

tj^ i s the t o t a l time the uv-signal spent i n quadrant i excluding the 
hole, and i n the hole. 
(See f i g . 13)] 

In f i g . 72 and 73 the results of the quadrant analysis technique are shown. 
These d i s t r i b u t i o n s agree with the results of Lu and Willmarth [1973] and of 
Brodkey et a l . [1974]. 

Figure 72: F r a c t i o n a l contribution to Reynolds stress and time f r a c t i o n 
as function of hole-size K (quadrant analysis technique). 
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Figure 73: F r a c t i o n a l c o n t r i b u t i o n to Reynolds st r e s s and time f r a c t i o n 
as function of hole-size K (quadrant analysis technique). 

The quadrant analysis technique was then applied to the detected uv-parts of 
the s i g n a l recorded at y + = 15 and found with averaging time T m = 15 ms. 
Without a hole and with a hole of s i z e 2 (K = 2) the contributions of qua­
drant 2 and 4 due to detections were calcula t e d ( f i g . 74 and 75). 
[-puv^ i s the Reynolds stress of quadrant 2 or 4 ( i = 2 or 4), 

t 
excluding the hole, due to detections (ui?^j = t - 1 Juv^(s)D(s )ds). 

0 
Atj^j i s the t o t a l time the uv-signal spent i n quadrant 2 or 4, 
excluding the hole, due to detections.] 

Again the f i r s t points i n these figures were calculated using the o r g i n a l 
detection f u n c t i o n D ( t ) . The other points were computed with enlarged detec­
t i o n periods; AT equaled T m/4. 
The two dotted l i n e s drawn i n these figures i n d i c a t e the c o n t r i b u t i o n of 
quadrant 2 and 4 of the t o t a l s i g n a l to the Reynolds st r e s s without hole 
( f i g . 74) and with a hole of s i z e 2 ( f i g . 75). 

However, from a l l these r e s u l t s ( f i g . 68 up to and inc l u d i n g 71 and f i g . 74 
and 75) i t has to be concluded that the c o n t r i b u t i o n of the detections to 
the Reynolds stress i s not much greater than could be expected on the basis 
of the time f r a c t i o n . So the major part of the Reynolds st r e s s i s not due to 
the detections of Blackwelder and Kaplan's scheme. This i s contradictory to 
the r e s u l t s of the v i s u a l i z a t i o n studies. 



05 

q u a d r a n t 2 

quadrant 4 

contr ibut ion to 

Reynolds stress 

b a s e d on time 

fract ion 

R e Q - to 150 

y * « 15 

W » ' 2 9 4 

k q 2 q 4 

ae > «. 

0.04 0 » 0.12 0.16 A t j f / t 0.20 

Figure 74: Contribution to Reynolds stress of quadrant 2 and 4 
without hole due to detections according to Blackwelder 
and Kaplan's scheme. 
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Figure 75: Contribution to Reynolds stress of quadrant 2 and 4 
with hole due to detections according to Blackwelder 
and Kaplan's scheme. 

The comparison between the r e s u l t s found with the a i d of the detection 
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method of Blackwelder and Kaplan and the r e s u l t s from the v i s u a l i z a t i o n 
studies give r i s e to doubt, whether the method detects the same flow s t r u c ­
tures as observed during v i s u a l i z a t i o n studies. 
In section 4.4 t h i s point w i l l be discussed f u r t h e r . 

3.3 MODIFIED SCHEME OF BLACKWELDER AND KAPLAN 
3.3.1 D e s c r i p t i o n of the scheme 

It was speculated that the detection scheme of Blackwelder and Kaplan did 
not work w e l l , because the v i s u a l detection process was not imitated w e l l 
enough. 
V i s u a l l y a coherent structure i s perceived, because the stucture d i s t i n ­
guishes i t s e l f from the d i r e c t neighbourhood i n the turbulent flow f i e l d . 
But i n Blackwelder and Kaplan's scheme the VITA-variance i s , however, com­
pared with the variance of the t o t a l turbulent flow. 

Therefore the scheme was changed so that a l o c a l i z e d VITA variance of the 
u-signal i s compared with the VITA variance of the u-signal i n the d i r e c t 
surroundings. The detection function DM(t) of the modified version of 
Blackwelder and Kaplan's scheme got the f o l l o w i n g form: 

where » denotes averaging over time T m and t averaging over time T mg. 
T m has to be chosen of the order of the time-scale of a coherent structure 
and T mg of the order of the time between two successive s t r u c t u r e s . 

In the modified scheme three parameters are involved, v i z . the threshold 
parameter k and the averaging times T m and T mg. 

3.3.2 Test r e s u l t s 

The dependency on the parameters was examined using the turbulent bound­
ary layer signals A and B and the pseudo-turbulence s i g n a l C (see section 

DM(t) -

3.2). 
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In f i g . 76 and 77 the results f o r si g n a l A f o r the mean time between succes 
sive detections are given as function of the parameter values. 

I f I I I 1 1 L_ 

0.8 1.0 1.2 1.4 1.6 k 1.6 

Figure 76: Dimensionless mean time between successive 
detections according to the modified scheme. 

Figure 77: Dimensionless mean time between successive 
detections according to the modified scheme. 
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As can be seen the dependency on T m i s again n e g l i g i b l e (when T m i s large 
enough, T m u T /v > 15), the influence of T mg decreases with increasing values 
for T mg and the dependency on k i s again large. 
The modified scheme reacts more often than Blackwelder and Kaplan's scheme 
for the range of parameter values i n v e s t i g a t e d . 

Also the c o n d i t i o n a l l y averaged streamwise v e l o c i t y component has been c a l ­
culated. In f i g . 78 the r e s u l t s are shown for s i g n a l B with threshold param­
eters of 0.8, 1.2 and 1.6 and averaging times of 12 and 240 ms 
(T r au T

2/v = 25, T u T 2 / v = 500). 

0 . 6 

( m / s ) 

0.4 

Figure 78: C o n d i t i o n a l l y averaged streamwise v e l o c i t y 
component according to the modified scheme. 

The modified scheme y i e l d s c o n d i t i o n a l averages of the streamwise v e l o c i t y 
component with the same shape as Blackwelder and Kaplan's scheme did. The 
maximum and minimum of the average are again very dependent on the value of 
k. The c o n d i t i o n a l average of the pseudo-turbulence again deviates scarcely 
from zero ( f i g . 79). 

F i n a l l y the d i s t r i b u t i o n of time i n t e r v a l s between successive detections was 
calculated f o r d i f f e r e n t values of k. Successive detections with time i n t e r ­
vals smaller than T m are again treated as one detection. 
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Figure 79: Conditional average of pseudo-turbulence s i g n a l 
according to the modified detection scheme. 

For s i g n a l B the r e s u l t s are shown i n f i g . 80 for the f o l l o w i n g parameter 
values: k = 1.0, 1.4 and 1.8, T m = 12 ms, T m g = 240 ms. 
Again there i s a considerable influence of k. The conclusions f o r these d i s ­
t r i b u t i o n s are the same as f o r those found with the o r i g i n a l scheme of 
Blackwelder and Kaplan. However, with the modified detection method a second 
peak appears i n the d i s t r i b u t i o n i f the threshold parameter i s large enough. 
But, i n that case the d i s t r i b u t i o n of the pseudo-turbulence shows such a 
peak ( f i g . 81) al s o . The p o s i t i o n of the second peak appears not to be con­
stant; i t depends on the value of T mg (compare f i g . 80 and 82). 
So very l i k e l y the second peak i s due to the modified scheme and not to t u r ­
bulence structures. 

I n conclusion i t can be stated that the modified scheme of Blackwelder 
and Kaplan i s not an improvement over the o r i g i n a l detection scheme of 
Blackwelder and Kaplan. 
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Figure 80: D i s t r i b u t i o n of time i n t e r v a l s between successive 
detections according to the modified scheme. 
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Figure 81: D i s t r i b u t i o n of time i n t e r v a l s between successive detections 
i n pseudo-turbulence according the modified scheme. 
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Figure 82: D i s t r i b u t i o n of time i n t e r v a l s between successive 
detections according to the modified scheme. 
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3.4 AUTOCORRELATION METHOD 

Following Kim et a l . [1971] Suzuki and Kawaguchi [1980] measured the 
burst period with the autocor r e l a t i o n method. 
In the aut o c o r r e l a t i o n method i t i s assumed that the second maximum i n a 
short-time averaged au t o c o r r e l a t i o n of an u-signal indicates the burst pe­
r i o d . 
The bursting period measured by Suzuki and Kawaguchi scattered over a wide 
range and the d i s t r i b u t i o n of the period obeyed a log-normal law. 

With a c o r r e l a t i o n and p r o b a b i l i t y analyzer the aut o c o r r e l a t i o n method 
was tested. 
The u-signal, recorded at y + = 15 from a turbulent boundary layer f o r t e s t ­
ing Ueda and Hinze's scheme (see secti o n 3.1), was used. The autocorrela­
tions were calcula t e d over 1 s with a maximum delay time of 0.2 s. 

At random 60 a u t o c o r r e l a t i o n functions were computed. 
In 30 of the autocorrelations a second maximum was per c e p t i b l e , y i e l d i n g a 
dimensionless mean burst period (U T_/6„„„ ) of 4.5. But i n the other 30 au-
t o c o r r e l a t i o n functions no second peak was v i s i b l e . 

I f the second maximum i n an aut o c o r r e l a t i o n r e a l l y i n d i c a t e s a burst pe­
r i o d , the a u t o c o r r e l a t i o n method appears not to be an adequate method of de­
termining the mean burst period, because ha l f of the time there i s not 
enough p e r i o d i c i t y to produce a second peak i n the autocorrelation. 
A s i m i l a r conclusion i s drawn i n a l a t e r paper of Kawaguchi et a l . [1983]. 
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Chapter IV 
HYDROGEN BUBBLE VISUALIZATION COMBINED WITH LASER-DOPPLER ANEMOMETRY 

As the detection methods tested i n chapter III appeared not to be objec­
t i v e , i t was attempted to design a better detection method based on combined 
flow v i s u a l i z a t i o n and point measurements (see Talmon [1984]). 

In a water channel a turbulent boundary layer v i s u a l i z e d with hydrogen bub­
bles was filmed f o r that purpose, respectively i n plan and side view. Simul­
taneously the f l u c t u a t i n g streamwise and normal v e l o c i t y components measured 
at one p o s i t i o n i n the flow with laser-Doppler anemometry were recorded on 
magnetic disk. 
In section 2.3 the set-up employed i n thi s i n v e s t i g a t i o n i s described. The 

turbulent boundary layer experiments performed i n thi s channel are reported 

i n this section. 

In the f i r s t section of th i s chapter the structures observed i n the films 
are described b r i e f l y . The structures perceived i n the wall region of the 
turbulent boundary layer are compared i n the second section with the simul­
taneously measured signals. A detection method based on the quadrant analy­
s i s technique i s tested i n the next section. In the l a s t section the detec­
t i o n method of Blackwelder and Kaplan i s studied once more to see on which 
flow phenomena the method reacts. 

4.1 OBSERVED FLOW STRUCTURES 

Studying the films made i n plan and side view a s i m i l a r flow picture ar­
ises as observed i n the v i s u a l i z a t i o n studies of Kline and his collègues at 
Stanford University (Runstadler et a l . [1963], Kline et a l . [1967], Kim et 
a l . [1971], Offen & Kline [1973]). Flow phenomena observed by others appear 
to be also v i s i b l e on the frames (Corino & Brodkey [1969]: ejection; Falco 
[1977]: bulge and t y p i c a l eddy; Head & Bandyopadhyay [1981]: horseshoe vor­
tex). 
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4.1.1 Plan view 

The most remarkable structures observed i n the plan view at y = 29 ( f i l m 
9 and 10, table 4) are the low-speed streaks, v i s i b l e on the frames as accu­
mulation areas of hydrogen bubbles - areas long i n streamwise d i r e c t i o n and 
small i n l a t e r a l d i r e c t i o n ( f i g . 83). 

Figure 83: Low-speed and high-speed streaks i n plan view. 
(Flow d i r e c t i o n i s from bottom to top. 
In t e r s e c t i o n of arrows indicates dark spot.) 

These low-speed streaks possess a tremendous persistence. Streaks are r e ­
peatedly longer than 490 x + , the maximum distance v i s i b l e on the frames i n 
streamwise d i r e c t i o n . The width of the streaks ranges from 20 to 40 z + . 
The intermittency process of the low-speed streaks - t h e i r apparent disap­
pearance and reappearance (Smith & Schwartz [1983])- i s observed a l s o . 
The disappearance of a low-speed streak i s frequently accompanied by a so-
c a l l e d dark spot. Just before disappearance there appears a dark spot at ' 
ce n t e r l i n e of a streak; a dark spot i s a small area w i t h i n a streak from 
which the hydrogen bubbles have disappeared ( f i g . 83). 
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I t i s believed that these dark spots are c l o s e l y r e l a t e d to the e j e c t i o n de­
scribed by Corino and Brodkey [1969]. 
In other hydrogen bubble v i s u a l i z a t i o n studies dark spots are not v i s i b l e . 
This i s probably due to a wrong combination of hydrogen bubble concentration 
and f i l m technique. 

The low-speed streaks are alternated by high-speed streaks ( f i g . 83). In 
high-speed streaks the hydrogen bubble concentration i s low. The width of 
these streaks i s two to four times the width of low-speed streaks and the 
high-speed streaks can also be longer than 490 x + . 

The strongly v o r t i c a l nature of a turbulent boundary lay e r i s not revealed 
by the fi l m s made i n plan view, only o s c i l l a t i o n i n l a t e r a l d i r e c t i o n i s 
v i s i b l e . 

On the f i l m s made with the platinum wire placed at y + = 57 ( f i l m 11 and 12, 
table 4) the phenomena described above are also v i s i b l e , but -as expected-
not so c l e a r . 

4.1.2 Side view 

Looking at the f i l m s made i n the side view ( f i l m 1 to 8, table 4) the a t ­
tention i s drawn by the intermittency i n the outer l a y e r . Large-scale mot­
ions, bulges (Falco [1977], most probably type T l ) , are followed by large, 
nearly undisturbed regions. These regions can reach the w a l l l a y e r . The up­
stream i n t e r f a c e between bulge and nearly undisturbed region i s often quite 

o 

sharp, making an angle of 15 to 30 i n streamwise d i r e c t i o n with the w a l l . 
At t h i s i n t e r f a c e -the back of the bulge- transverse eddies are v i s i b l e . 
Their diameter i s of the order of magnitude of 100 y +. These eddies are 
c a l l e d t y p i c a l eddies by Falco [1977], see f i g . 84. 

The presence of the l a s e r beams makes i t more d i f f i c u l t to study the motions 
i n the w a l l layer. 
As mentioned nearly undisturbed regions can reach the w a l l l a y e r . Then 
small o s c i l l a t i o n s or even a s o l i t a r y t y p i c a l eddy can be found i n the w a l l 
layer. Close to the w a l l small l o n g i t u d i n a l eddies are seen sometimes making 

o 

an angle of 0 to 10 i n streamwise d i r e c t i o n with the w a l l . These eddies can 
be accompanied by a movement of hydrogen bubbles away from the w a l l , but 
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Figure 84: Side view of turbulent channel flow. (Flow 
d i r e c t i o n i s from l e f t to r i g h t . Intersections 
of arrows i n d i c a t e t y p i c a l eddies.) 

t h i s movement can also be perceived without the presence of such eddies. The 
movement of eddies away from the w a l l takes place beneath the back of the 
bulge. Kim et a l . [1971] associated t h i s bubble movement or the appearance 
of l o n g i t u d i n a l eddies i n the w a l l layer with the e j e c t i o n of a low-speed 
streak. 

Not only i n the w a l l l a y e r but throughout the whole boundary layer l o n g i t u ­
d i n a l eddies can be observed. These eddies make an angle of 0 to 45° with 
the w a l l i n downstream d i r e c t i o n . The diameter of these eddies ranges from 
10 to 50 y +. Sometimes such an arrangement of eddies i s present on the 
frames, that these eddies can be part of a horseshoe eddy ( f i g . 85). 
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Figure 85: Side view of turbulent channel flow. ( I n t e r ­
section of arrows indicates horseshoe vortex.) 

4.2 CHARACTERISTIC SIGNALS OF FLOW STRUCTURES IN THE WALL LAYER 

Using a f i l m viewer and a graphic terminal i t i s possible to study the 
filmed structures i n the neighbourhood of the measuring point together with 
the simultaneously measured s i g n a l s . In s p i t e of i n t e r p r e t a t i o n problems 
there seem to be sig n a l s c h a r a c t e r i s t i c f o r low- and high-speed streaks. 

The fact that i n the plan view v i s u a l i z a t i o n and measurement were not per­
formed at the same w a l l distance, i s detrimental to the c o r r e l a t i o n of ob­
served structures and measured s i g n a l s . In case of a structure present at 
the measuring point as w e l l as i n the v i s u a l i z e d area above that point there 
i s no i n t e r p r e t a t i o n problem. But, i f a structure i s so small, i . e . due to 
intermittency of a low-speed streak, or i f a structure i s found i n such an 
oblique p o s i t i o n i n the flow that i t i s present e i t h e r i n the v i s u a l i z e d 
area or the measuring point, there w i l l be no c o r r e l a t i o n between image and 
sig n a l s . 
In the side view v i s u a l i z e d area and measuring point have not to take up the 
same l a t e r a l p o s i t i o n n e c e s s a r i l y , because the hydrogen bubbles are also 
moving i n l a t e r a l d i r e c t i o n . This causes i n t e r p r e t a t i o n problems too. 
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In the following i n t e r p r e t a t i o n problems w i l l be a t t r i b u t e d to t h i s s p a t i a l 
separation between v i s u a l i z e d area and measuring point. 

4.2.1 Low-speed streaks 

When i n plan view a low-speed streak i s perceived above the measuring 
p o s i t i o n , the measured v e l o c i t y component i n streamwise d i r e c t i o n correlates 
w e l l -the instantaneous streamwise v e l o c i t y component i s lower than i t s time 
averaged value- and the normal v e l o c i t y i s p o s i t i v e . So a low-speed streak 
i s moving away from the w a l l and slower than the average flow i n 
streamwise d i r e c t i o n . 
This implies a p o s i t i v e c o n t r i b u t i o n to the Reynolds s t r e s s . This c o n t r i b ­
ution i s not constant, but very i n t e r m i t t e n t due to o s c i l l a t i o n and disap­
pearance and reappearance of the streaks. I f the measuring point i s found 
fo r some time i n a low-speed streak, the streak contributes continuously to 
the Reynolds s t r e s s . In dark spots larger contributions to the Reynolds 
stress are measured, but such contributions can also be measured when no 
s t r i k i n g flow phenomena are observed. S p a t i a l separation can explain the 
phenomenon. 

The c h a r a c t e r i s t i c s i g n a l s of a low-speed streak (negative u-component and 
p o s i t i v e v-component) are also observed i n the signals measured during f i l m ­
ing i n side view. But the c o r r e l a t i o n between image and si g n a l s i s quite 
poor. Low-speed streaks are not often marked by the hydrogen bubbles, be­
cause the streaks are not wide. As these streaks move also i n l a t e r a l d i r e c ­
t i o n , the chance measurement takes places w i t h i n a marked low-speed streak, 
i s not high. 
Sometimes i t i s observed that a low-speed streak i s moving away from the 
w a l l . I f measurement i s performed i n such a streak, the streak makes a sub­
s t a n t i a l c o n t r i b u t i o n to the Reynolds s t r e s s . 

I t i s believed that s i g n i f i c a n t contributions to the Reynolds stress which 
take place i n the second quadrant of the u-v plane (see f i g . 11, section 
1.2.3) are associated with bursts and ejections i n low-speed streaks. 
Bogard [1982] draws a s i m i l a r conclusion, based on an i n v e s t i g a t i o n of dye 
motions and simultaneously measured uv-signals. 
O r i g i n a l l y a burst i s defined as the gradual outflow, l i f t u p , o s c i l l a t i o n 
and breakup of dye i n j e c t e d i n a water flow, which occurs i n a low-speed 
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streak ( K l i n e et a l . [1967]). A burst i s followed by a return to a more 
quiescent flow (Kim et a l . [1971]. This i s most probably the sweep, which 
on the average i s preceeded by the e j e c t i o n (the eruption of low-speed 
f l u i d ) as observed by Corino and Brodkey [1969]. According to Offen and 
K l i n e [1973] a burst can consist of a few ej e c t i o n s i n the breakup phase. 
Dye ejections and high contributions to the Reynolds st r e s s appear to coin­
cide (Offen & K l i n e [1973]). 

4.2.2 High-speed streaks 

Observation and measurement of high-speed streaks c o r r e l a t e w e l l i n both 
plan and side view. Perceiving a high-speed streak the measured streamwise 
v e l o c i t y i s greater than the mean v e l o c i t y and frequently the normal veloc­
i t y i s s l i g h t l y negative. This negative v—component i s measured e s p e c i a l l y 
i n high-speed streaks appearing immediately a f t e r bulges. So a high-speed 
streak i s moving f a s t e r i n streamwise d i r e c t i o n than the mean flow and the 
streak i s often moving slowly towards the w a l l . 
Not only i n low-speed streaks but also i n high-speed streaks high c o n t r i b ­
utions to the Reynolds stress are measured. But contrary to the low-speed 
streaks, i n high-speed streaks no phenomena are observed which can account 
for these c o n t r i b u t i o n s . This can be caused by the stat i o n a r y p o s i t i o n of 
the camera. Probably f i l m s made with a moving camera would reveal more de­
t a i l s i n high-speed streaks. 

Contributions to the Reynolds st r e s s by high-speed streaks take place i n the 
fourth quadrant of the u-v plane. Contributions i n t h i s quadrant are usual l y 
a t t r i b u t e d to the sweep (Lu & Willmarth [1973], Brodkey et a l . [1974]), but 
from t h i s i n v e s t i g a t i o n i t i s not cl e a r which part of the sweep i s responsi­
ble. 

4.2.3 Eddies 

Longitudinal and transverse ( t y p i c a l ? ) eddies are observed i n the w a l l 
layer. Both types are attended by high contributions to the Reynolds 
st r e s s . Regarding the t y p i c a l eddies t h i s i s i n agreement with Falco's meas­
urements (Falco [1977]). 
But no c h a r a c t e r i s t i c signals are observed during the passage of l o n g i t u d i ­
nal or t y p i c a l eddies. The contributions to the Reynolds stress do not take 
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place i n a p a r t i c u l a r quadrant, most probably because the measurements are 
not performed at the same point i n these eddies. Due to d i f f e r e n t s p a t i a l 
separation between eddies and measuring point the measurements w i l l be car­
r i e d out each time i n d i f f e r e n t parts of the eddies. 

4.2.4 Some i l l u s t r a t i o n s 

In f i g . 86 and 87 examples are given on which the above has been based. 
Some pictures of f i l m 9, made i n the plan view (table 4), and the corre­
sponding u-, v- and uv-parts are shown i n f i g . 86. The frames are not repro­
duced e n t i r e l y , but only the area around the measuring point (dimensions: 
380 x + * 190 z + ) . The flow d i r e c t i o n on the pictures i s from bottom to top. 
At the bottom of the pictures the platinum wire i s v i s i b l e generating hydro­
gen bubbles. The measuring p o s i t i o n i s marked on each p i c t u r e with a plus 
sign. The non-dimensional signals are plo t t e d against a time-axis from which 
the o r i g i n has been t r a n s l a t e d . The o r i g i n of the axis corresponds with 
framenumber 1420 of f i l m 9. Beneath each p i c t u r e the corresponding time i s 
given. On the pictures indicated with t = -0.9 to -0.2 s a low-speed streak 
i s moving towards the measuring point replacing a high-speed streak. During 
t h i s time i n t e r v a l a decrease i s observed i n the u-signal and an increase i n 
the v - s i g n a l . At t = -0.1 s the appearance of a dark spot i s perceived. In 
the corresponding uv-signal a peak i s observed (second quadrant; uv/uv = 7 ) . 
Immediately afterwards the low-speed streak i s pushed away by a high-speed 
streak. At t = 0.5 s again a low-speed streak i s perceived. On the fo l l o w i n g 
pictures the flow i s quite d i s o r d e r l y , while the signals i n d i c a t e that meas­
urement i s s t i l l performed i n a low-speed streak which makes a high c o n t r i b ­
ution to the Reynolds s t r e s s . This i s probably caused by intermittency of 
the streak. 

In f i g . 87 some pictures of f i l m 4, made i n side view (table 4), and the 
corresponding parts of the measured signals are shown. Again the frames are 
not reproduced e n t i r e l y ; the dimensions of a p i c t u r e are 580 x + * 250 y +. 
The flow d i r e c t i o n i s from l e f t to r i g h t . On the l e f t of the pictures the 
platinum wire i s v i s i b l e . The i n t e r s e c t i n g l a s e r beams mark the measuring 
p o s i t i o n . The o r i g i n of the time-axis of the plo t t e d signals corresponds now 
with framenumber 12205 of f i l m 4. L e f t of each picture the corresponding 
time i s given. 
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Figure 86: Measurement and v i s u a l i z a t i o n i n plan view. 
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On the pictures marked with t = -0.7 to 0 s the formation of a t y p i c a l eddy 
i s v i s i b l e above and downstream of the measuring point. At y + = 43 a low-
speed streak i s measured co n t r i b u t i n g to the Reynolds stress i n the second 
quadrant. The contributions at about t = -0.6 and -0.5 s can not be con­
nected to some v i s i b l e flow s t r u c t u r e . At t = 0 s the movement away from the 
wa l l causes the c o n t r i b u t i o n . Upstream of the measuring point there appears 
a high-speed streak which sweeps away the low-speed streak. Due to the 
high-speed streak a co n t r i b u t i o n to the Reynolds st r e s s i s measured at 
t = 0.3 s i n the fourth quadrant. On the following pictures not much turbu­
lence a c t i v i t y i s observed and simultaneously almost the mean v e l o c i t y com­
ponents are measured. 

4.3 SECOND QUADRANT DETECTION METHOD 
4.3.1 Description and r e s u l t s 

In section 4.2.1 a connection i s found between observed low-speed streaks 
and measured high contributions to the Reynolds stress taking place i n the 
second quadrant of the u-v plane.Especially i n plan view the perception of 
low-speed streaks i s attended by contributions to the Reynolds stress i n 
quadrant 2. In side view t h i s connection i s not so obvious due to s p a t i a l 
separation. 

Applying the quadrant analysis technique to signals measured i n a turbu­
lent w a l l layer the second and fourth quadrant of the u-v plane provide i n 
short time the major part of the Reynolds stress (see secti o n 3.2.3; Lu & 
Willmarth [1973] and Brodkey et a l . [1974]). 
As can be seen i n f i g . 88 t h i s applies also to signals measured during and 
af t e r f i l m i n g i n the turbulent channel flow. 
In f i g . 88 UV-L/UV and tsJX ( i = 2, 4 or 5) calculat e d f o r the 78 s and 30 
min. s i g n a l of f i l m 9 (measured at y + = 14, table 4) are plo t t e d as function 
of hole-size K (|uv| = K[uv|). In case of the 78 s s i g n a l the Reynolds 
stress averaged over 30 min. i s used i n the c a l c u l a t i o n of the hole-magni­
tude. The differences between the 78 s and 30 min. s i g n a l w i l l be due to the 
short measuring time of the 78 s s i g n a l . 

Studying the i n d i v i d u a l contributions i n the second quadrant of f i l m 9 i t 
appears that almost every c o n t r i b u t i o n of magnitude K|uv| with K >_ 2 i s 
caused by a low-speed streak, (uv i s again averaged over 30 min.) Due to 
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Figure 88: F r a c t i o n a l c o n t r i b u t i o n to Reynolds stress and time f r a c t i o n 
as fun c t i o n of h o l e - s i z e K of signals measured during and 
a f t e r f i l m i n g (quadrant analysis technique). 

s p a t i a l separation -measuring at y + = 14 and f i l m i n g at y + = 29- a s i n g l e 
co n t r i b u t i o n can be found without a v i s i b l e low-speed streak. With K = 2 
also not every v i s i b l e streak i s detected; a few streaks are not strong 
enough to cause a detection. 
Intermittency and o s c i l l a t i o n of low-speed streaks i s observed. Hence more 
than one c o n t r i b u t i o n can be found o r i g i n a t i n g from the same low-speed 
streak. On the average two contributions with an absolute magnitude greater 
than or equal to 2|uv| are measured f o r low-speed streaks i n f i l m 9. 

Assuming that these contributions -frequently c o i n c i d i n g with dark spots-
are c l o s e l y r e l a t e d to e j e c t i o n s and bursts, see section 4.2.1, coherent 
structures can be detected i n the second quadrant of the u-v plane with 
|uv| £ 2|uv|. 

The d i s t r i b u t i o n of time i n t e r v a l s t ^ between succesive detections of t h i s 
method i s c a l c u l a t e d . Time i n t e r v a l t ^ between two succesive detections i s 
defined as the time passed between the middle of the f i r s t and the middle of 
the second detection. For f i l m 2 and 9 ( t o t a l duration s i g n a l s : 171 s, t a ­
ble 4) t h i s d i s t r i b u t i o n i s shown i n f i g . 89). The mean time T^ between suc­
cessive detections i s 0.82 s f o r these f i l m s . 
For f i l m 9 i s observed that on the average two contributions are made to the 
Reynolds stress i n quadrant 2 by each low-speed streak. Offen and K l i n e 
[1973] perceived two ejections per burst. They assumed that dye a c t i v i t i e s 
( e j ections) with time i n t e r v a l s smaller than a theshold l e v e l belong to 
the same burst. 
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Figure 89: D i s t r i b u t i o n of time i n t e r v a l s between successive 
detections according to the second quadrant method. 

Here a s i m i l a r assumption i s made. Based on hydrogen bubble observations i t 
i s assumed that detections at y + = 14 with time i n t e r v a l s smaller than 
0.42 s are detections on the same struct u r e . Most probably t h i s structure i s 
a burst, but f o r the time being t h i s s t r u cture i s c a l l e d a coherent uv-
group. 
The v i s u a l c l a s s i f i c a t i o n of detections a r i s i n g from the same low-speed 
streak, agrees very w e l l with the numerical c l a s s i f i c a t i o n of detections be­
longing to one coherent uv-group. 
In f i g . 90 the d i s t r i b u t i o n of time i n t e r v a l s tg between successive coherent 
uv-groups i s shown. Time i n t e r v a l tg i s defined i n the same way as time i n ­
t e r v a l t ^ . To c a l c u l a t e the d i s t r i b u t i o n the sig n a l s measured during making 
f i l m 1, 2 and 9 ( t o t a l duration s i g n a l : 268 s; table 4) are used. The mean 
time Tg between successive coherent uv-groups i s 2.1 s. 
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Figure 90: D i s t r i b u t i o n of time i n t e r v a l s between 
successive coherent uv-groups. 

4.3.2 Comparison with other v i s u a l i z a t i o n studies 

This study was c a r r i e d out Independently of the study of Bogard [1982]. 
Based on dye observations and h o t - f i l m measurements Bogard designed a s i m i ­
l a r detection method. With t h i s method detection of ejections was assumed to 
occur when the instantaneous uv-signal i s found i n the second quadrant and 
when the following r e l a t i o n holds: |uv| >_Hu'v'. 
In a water flow (U«, = 14.6 cm/s, 9 = 0.27 cm, u T = 0.79 cm/s) Bogard meas­
ured a value of 1.1 s for the mean time between successive detections 
( y + = 15; s i g n a l duration: 200 s; H = 1.07) Bogard assumed that two succes­
sive e j e c t i o n s , detected with H = 1.07, belong to one burst i f the time i n ­
t e r v a l i s smaller than 0.8 s. He found a mean time between successive bursts 
of 2.2 s. These bursts were responsible f o r 80% of the co n t r i b u t i o n of the 
complete second quadrant to the Reynolds s t r e s s . 
Bogard used for h o l e - s i z e H the value 1.07, the r a t i o of the Reynolds stress 
of the second quadrant, averaged over the time the uv-signal spent i n the 
second quadrant, and the Reynolds stress of the complete s i g n a l , because 
Comte-Bellot et a l . [1979] measured that that r a t i o was nearly constant i n 
the core region of a f u l l y developed turbulent pipe flow. 
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The hole-size Bogard used i s i n the second quadrant detection method f or 
f i l m 9 comparable with K = 3 . In table 7 q u a n t i t i e s calculated f o r coherent 
uv-groups detected with K-values ranging from 2 to 5 , are given for f i l m 9 . 

[-puVg i s the Reynolds stress due to the coherent uv-groups. 
Atg represents the t o t a l time coherent uv—groups are detected.] 

I f K equals 3 , 4 7 % of the Reynolds stress i s contributed by coherent uv-
groups. This corresponds with 7 5 % of the Reynolds st r e s s due to the second 
quadrant. 

Table 7 . 

Some r e s u l t s of second quadrant analysis technique, K = 2 to 5 . 

K N T g uv g/uv A t g / t 
[s] [%] [%] 

2 3 3 2 . 4 5 5 1 9 

3 2 6 3 . 0 4 7 1 3 

4 2 0 3 . 9 3 5 7 

5 1 4 5 . 6 2 9 5 

In s p i t e of the the good agreement one should keep i n mind that both studies 
are based on short s i g n a l s , so the uncertainty i n the r e s u l t s i s quite 
large. 

In f i g . 9 1 the mean time Tg between successive coherent uv-groups (K = 2 , 

T J = 0 . 4 2 s) and the mean time T between successive bursts detected v i s u -
B 

a l l y are compared i n dimensional form, Tg ) versus u T , r e s u l t i n g i n a 
very good agreement. 

The d i s t r i b u t i o n of time i n t e r v a l s between successive detections 
(|uv| >_ 2|uv|) does not resemble the d i s t r i b u t i o n found by Kim et a l . 
[ 1 9 7 1 ] (compare f i g . 8 9 and 6 5 ) , because the detections are probably ejec­
tions and the structures observed by Kim et a l . bursts. Introducing the co­
herent uv-groups the d i s t r i b u t i o n of time i n t e r v a l s ( f i g . 9 0 ) gets the same 
form as the d i s t r i b u t i o n of Kim et a l . 

As the r e s u l t s of the second quadrant detection method agree very w e l l 
with other v i s u a l r e s u l t s , the detected coherent uv-groups w i l l be the v i s ­
u a l bursts as defined by the Stanford group. 
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Figure 91: Mean period of bursts and coherent uv-groups. 

4.4 DETECTIONS OF BLACKWELDER AND KAPLAN'S METHOD 

Using the fi l m s made i n plan view of the turbulent channel flow ( t a b l e 4) 
and the simultaneously measured signals i t i s possible to see on which flow 
phenomena the detection of Blackwelder and Kaplan [1972, 1976] reacts. 
A d e s c r i p t i o n of t h i s method i s already given i n section 3.2. 

The method i s applied to the u-signals measured at y + = 14 during making 
f i l m 9 and 10. These signals have a t o t a l duration of 172 s. With an averag­
ing time T m of 0.6 s ( T m u T

2 / v = 26) and a threshold parameter k of 0.9 37 
detections are found i n the u - s i g n a l . 
These detections can be divided i n t o detections of three flow s i t u a t i o n s : 
(1) detection of an o s c i l l a t i n g low-speed streak (60% of detec t i o n s ) , 
(2) detection of a disappearing low-speed streak, sometimes a dark spot i s 

v i s i b l e , followed by a high speed streak (30%), 
(3) detection of a high-speed streak followed by a di s o r d e r l y low-speed 

streak (10%). 
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Blackwelder and Kaplan expect th e i r method to react on bursts, but detection 
type 2 i s the flow s i t u a t i o n which c l o s e s t l y approximates a burst. In spite 
of s p a t i a l separation effects and the short duration of the investigated 
signals i t i s not l i k e l y that bursts constitute the majority of detections 
of Blackwelder and Kaplan's method. 

Results of Blackwelder and Kaplan's detection method have to be interpreted 
therefore based on o s c i l l a t i n g low-speed streaks. 
Using Blackwelder and Kaplan's method Blackwelder and Eckelmann [1979] meas­
ured on both sides of the detection point streamwise and spanwise v o r t i c i t y . 
Based on these measurements Blackwelder and Eckelmann developed a model of 
the wall layer of a turbulent boundary layer consisting of pairs of counter-
rotating streamwise vortices with low-speed streaks between them. The condi­
t i o n a l averaged v e l o c i t y p r o f i l e s of Blackwelder and Kaplan [1976] ( f i g . 6) 
were associated with the low-speed streak. According to Blackwelder and 
Eckelmann the successive p r o f i l e s were measured when a low-speed streak was 
passing the measuring point. 
But regarding the above only the p r o f i l e s measured d i r e c t l y before and after 
detection w i l l be measured within a low-speed streak. The other p r o f i l e s 
w i l l be either measured when a low-speed streak i s moving towards the meas­
uring point (before detection) or when a low-speed streak i s replaced by a 
high-speed region (after detection). 

When streak o s c i l l a t i o n i s incorporated i n Blackwelder and Eckelmann's 
model, then the sign change of streamwise v o r t i c i t y measured on both sides 
of the measuring point just a f t e r detection becomes explainable. Just a f t e r 
detection v o r t i c i t y measurement takes place i n counter-rotating streamwise 
vortices of opposite sign with a high-speed streak between them. 
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Chapter V 
APPLICATION OF QUADRANT ANALYSIS TECHNIQUE TO JET FLOW 

Not only i n the development region but a l s o i n the f u l l y developed region 
of an axisymmetric j e t coherent structures have been observed (see section 
1.3.2). 
In t h i s i n v e s t i g a t i o n point measurements have been used t r y i n g to gather 
more information about these s t r u c t u r e s . Because the quadrant analysis tech­
nique appeared to be a very u s e f u l t o o l i n studying coherent structures i n 
wall-bounded turbulence (see s e c t i o n 4.3), t h i s technique has also been ap­
p l i e d to uv-signals from the development region of a round j e t (see Vink 
[1984]). 

Contrary to the pipe and channel flow experiments the quadrant analysis 
technique was applied as defined by Lu and Willmarth [1973]. So, when a hole 
was used, i t was bounded by curves |uv| w Hu'v'. 
Signals from the j e t f a c i l i t y described i n se c t i o n 2.4, were used. The qua­
drant analysis technique was applied to most of the f l u c t u a t i n g hot-wire 
signals recorded on magnetic disk f o r c a l c u l a t i n g turbulence q u a n t i t i e s of 
the j e t flow. Therefore the u- and v-signals used i n t h i s computation were 
low-pass f i l t e r e d and d i g i t i z e d with 5 kHz. The signals had a duration of 
320 s. The recordings were performed i n the development region of the j e t at 
a Reynolds number of 1.17*105. 
S t a r t i n g with the computed j o i n t p r o b a b i l i t y d i s t r i b u t i o n s of the recorded 
signals the contributions of each quadrant -with hole-sizes equal or greater 
than zero- to the Reynolds stress were c a l c u l a t e d . 

In the fol l o w i n g s e c t i o n the r e s u l t s of the quadrant an a l y s i s technique 
applied without hole to the uv-signals are presented. 
In the l a s t section of t h i s chapter the r e s u l t s of the quadrant an a l y s i s ap­
pl i e d with hole to the turbulence uv-signals are reported. These r e s u l t s are 
compared with quadrant analysis r e s u l t s of pseudo uv-signals having a normal 
p r o b a b i l i t y d i s t r i b u t i o n . 
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5.1 QUADRANT ANALYSIS WITHOUT HOLE 

In f i g . 92 the results are shown of the quadrant analysis technique ap­
plie d without hole to uv-signals measured i n the development region of the 
je t . 
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Figure 92: Fr a c t i o n a l contribution of the four quadrants to the 
Reynolds stress i n jet cross sections. 

The measurements were performed at a few r a d i a l positions at x/D = 1.5, 3, 
4.5, 6, 9 and 20. Per quadrant the f r a c t i o n a l contribution to the Reynolds 
stress i s given. 
[n i s a dimensionless r a d i a l distance (n = (y-R)/x). 
-pïïvj i s the Reynolds stress due to quadrant j (j = 1, 2, 3 or 4; 

t 
ûvj = t uvj(s)ds).] 

0 
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In the mixing layer region (x/D < 6) the d i s t r i b u t i o n per quadrant appears 
to be nearly independent of a x i a l distance. In the inner part of the j e t 
(n < 0) the c o n t r i b u t i o n of quadrant 3 i s most important, whereas i n the 
outer part of the j e t (n > 0) quadrant 1 contributes most to the Reynolds 
s t r e s s . Throughout the jet quadrant 2 and 4 do not make very s u b s t a n t i a l 
contributions to the Reynolds s t r e s s . 

For x/D > 6 t h i s p i c t u r e changes only notably with respect to the inner part 
of the j e t . There, a l l quadrants begin to contribute s u b s t a n t i a l l y to the 
Reynolds s t r e s s , most probably r e s u l t i n g i n equally important contributions 
i n the f u l l y developed region. The c o n t r i b u t i o n of each quadrant measured at 
the centerline of the j e t support t h i s statement, see f i g . 93. In t h i s f i g ­
ure the contributions of quadrant 2, 3 and 4 are made dimensionless with the 
contr i b u t i o n of quadrant 1. 

oe 
-—I 1 1 1 1 — 

6 10 U IB k / D 22 

Figure 93: Importance of the contributions to the Reynolds stress of 
quadrant 2, 3 and 4, related to quadrant 1, at the jet a x i s . 

In the mixing layer region the model of Lau et a l . [1972] elucidates the 
contributions of each quadrant to the Reynolds stress. 
In t h i s model the flow i n the mixing layer region i s described as an array 
of d i s c r e t e vortex r i n g s . The leading edge of a vortex transports high ve­
l o c i t y f l u i d outwards, which explains the high c o n t r i b u t i o n of quadrant 1 to 
the Reynolds stress i n the outer part of the mixing layer region. The t r a i l ­
ing edge transports low v e l o c i t y f l u i d inwards, accounting f or the high con­
t r i b u t i o n of quadrant 3 i n the inner part. 
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Dimotakis et a l . [1983] observed that v o r t i c a l structures e x i s t also i n the 
region of p a r t i a l and complete s e l f - p r e s e r v a t i o n . The same mechanism as i n 
the mixing layer region can e x p l a i n therefore the high c o n t r i b u t i o n of 
quadrant 1 to the Reynolds stress i n the outer part of a j e t for x/D > 6. In 
the inner part the v o r t i c a l structures w i l l transport low and high v e l o c i t y 
f l u i d i n - and outwards, because now v o r t i c a l structures with d i f f e r e n t o r i ­
gin and o r i e n t a t i o n reach the inner part (Dimotakis et a l . ) . Because the 
quadrant analysis technique does not d i s t i n g u i s h between o r i g i n or o r i e n t a ­
t i o n of structu r e s , the four quadrants w i l l contribute almost equally to the 
Reynolds stress f o r x/D > 6. 

The quadrant analysis applied without hole appears to be only s u i t a b l e 
f o r studying coherent structures i n the mixing layer region and i n the outer 
part of the remainder of the j e t . 

5.2 QUADRANT ANALYSIS WITH HOLE 

The quadrant an a l y s i s was applied with hole to some of the recorded uv-
signals to inve s t i g a t e whether t h i s technique i s able to detect structures 
i n the inner part of a j e t . 

For two points i n the mixing layer region -one i n the outer part and one i n 
the inner part at x/D " 3- the f r a c t i o n a l c o n t r i b u t i o n of the four quadrants 
excluding the hole, to the Reynolds stress i s pl o t t e d versus h o l e - s i z e H 
( f i g . 94 and 95 r e s p e c t i v e l y ) . Also the f r a c t i o n a l c o n t r i b u t i o n of the hole 
and the time f r a c t i o n the uv-signal spent i n the hole ( t 5 / t ) , are shown. 
As i n wall-bounded turbulence most of the Reynolds st r e s s i s produced i n 
short time (H < 2) outside the hole. Quadrant 1 produces most i n the outer 
part ( f i g . 94) and quadrant 3 i n the inner part ( f i g . 95), as expected (see 
section 5.1). 

At x/D = 1.5 t h i s technique was also applied to two uv-signals -one recorded 
i n the inner part and one at the c e n t e r l i n e of the mixing layer (n = 0). For 
d i f f e r e n t hole-sizes the c o n t r i b u t i o n of each quadrant excluding the hole 
(ïïvj) and normalized with the c o n t r i b u t i o n of the p a r t i c u l a r quadrant 
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Figure 9 4 : F r a c t i o n a l contributions to Reynolds stress and f r a c t i o n of 
time spent i n hole i n outer part of mixing la y e r region. 
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Figure 9 5 : F r a c t i o n a l contributions to Reynolds stress and f r a c t i o n of 
time spent i n hole i n inner part of mixing layer region. 

without hole (uvj) i s shown as fun c t i o n of the time f r a c t i o n t ^ / t j ( f i g . 9 6 

and 9 7 r e s p e c t i v e l y ) . 
[ t j i s the t o t a l time the uv-signal spent i n quadrant j without hole 
( j = 1, 2, 3 or 4 ) ] . 

Also p l o t t e d i s the f r a c t i o n a l c o n t r i b u t i o n uv 0/uv to the Reynolds stress of 
the t o t a l area outside the hole as function of the time f r a c t i o n t 0 / t the 
uv-signal spent outside the hole. 
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[ t Q i t the t o t a l time the uv-signal spent outside the hole. 
-puv Q i s the Reynolds stress due to the t o t a l area outside the hole 

(uv 0 = I uv ±).] 
i = l 

The quadrant analysis technique was also applied to a pseudo uv-signal hav­
ing a normal p r o b a l i l i t y d i s t r i b u t i o n . For one quadrant the r e s u l t s are 
given i n f i g . 96 and 97 too. 
The differences between the r e s u l t s of the turbulence uv-signals and the 
pseudo uv-signal w i l l be caused by the structures present i n the j e t . 

1.0 

riv; 

f t / 

/ ft / 

t / •IV* 

[il 
J 

Rep = 1.17 * 10 ' 

x / 0 •= 1.5 

ij = -0 .07 6 

quadrant i 

• 1 

• 2 

à 3 

» 4 

• o u t s i d e hole ( o ) 

• n o r m a l d is t r ibut ion 

t o / t 

0.6 l i / t : 

Figure 96: Re l a t i v e contributions to Reynolds stress i n 
inner part of mixing layer region. (Succesive 
points i n d i c a t e increasing hole-size.) 

The same c a l c u l a t i o n s were performed f o r two signals recorded i n the region 
of p a r t i a l s e l f - p r e s e r v a t i o n -one i n the outer part and one at the center-
l i n e of the j e t at x/D = 20. As can be seen there i s s t i l l a s u b s t a n t i a l 
difference between the contributions of the uv-signal from the outer part 
and of the pseudo uv-signal ( f i g . 98). At the c e n t e r l i n e there appears to be 
no difference anymore ( f i g . 99). 
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Figure 97: R e l a t i v e contributions to Reynolds stress at 
centerline of mixing layer region. (Successive 
points i n d i c a t e increasing hole-size.) 

The differences between the quadrant an a l y s i s r e s u l t s of the turbulence 
uv-signals i n the inner part of the mixing la y e r region and of the pseudo 
uv-signal i n d i c a t e the existence of coherent structures i n a turbulent j e t . 
In the inner part of the region of p a r t i a l s e l f - p r e s e r v a t i o n the quadrant 
analysis technique y i e l d s no information about coherent s t r u c t u r e s , probably 
because t h i s technique does not d i s t i n g u i s h e s between structures with d i f ­
ferent o r i g i n and o r i e n t a t i o n . 

In the mixing layer region of a j e t the quadrant analysis technique ap­
p l i e d with or without hole appears to be an u s e f u l technique for studying 
coherent st r u c t u r e s . In the development region t h i s technique gives only i n ­
formation about structures i n the outer part, but i n the inner part t h i s 
technique has to be combined with v i s u a l i z a t i o n i n order to increase the 
knowledge of coherent structures. 
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Figure 98: R e l a t i v e contributions to Reynolds st r e s s i n outer 
part of region of p a r t i a l s e l f - p r e s e r v a t i o n . 
(Successive points i n d i c a t e increasing hole-size.) 
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Figure 99: Re l a t i v e contributions to Reynolds stress at center-
l i n e i n region of p a r t i a l s e l f - p r e s e r v a t i o n . 
(Successive points i n d i c a t e increasing h o l e - s i z e . ) 
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Chapter VI 
RECAPITULATION AND DISCUSSION 

During the l a s t few decades experimental research i n turbulence has been 
focused on coherent st r u c t u r e s . Coherent structures are responsible f o r a 
s i g n i f i c a n t part of the transport of mass, heat and momentum. With increased 
knowledge about coherent structures i t i s believed that modelling of turbu­
lent flows can be improved. 

The existence of coherent structures has been revealed i n v i s u a l i z a t i o n 
studies. As these studies only provide very q u a l i t a t i v e descriptions of co­
herent struc t u r e s , E u l e r i a n detection methods have been developed to gather 
q u a n t i t a t i v e information about coherent st r u c t u r e s . 

In the preceeding chapters of t h i s thesis r e s u l t s of studying the detec­
t i o n of coherent structures i n turbulent flows were presented. 

A f t e r a review of research c a r r i e d out i n t h i s f i e l d , chapter I , experiments 
were described i n chapter I I to examine detection i n w a l l bounded and free 
turbulent flows. Measurements were performed i n a turbulent boundary l a y e r , 
a turbulent pipe flow, a turbulent channel flow and a j e t flow. 

In chapter I I I i t was shown that the Eul e r i a n detection methods investigated 
i n the w a l l layer of w a l l bounded turbulent flows, v i z . the method of Ueda 
and Hinze [1975], the method of Blackwelder and Kaplan [1972, 1976] and a 
modified version of Blackwelder and Kaplan's method are not obje c t i v e ; r e ­
s u l t s of these detection methods -the mean time between successive detec­
t i o n s , the d i s t r i b u t i o n of time i n t e r v a l s between successive detections and 
the c o n d i t i o n a l averaged streamwise v e l o c i t y of the detections- appear to 
depend on the parameter values used i n the methods. Furthermore, the d i s ­
t r i b u t i o n of time i n t e r v a l s between successive detections and the c o n t r i b ­
ution of detections to the Reynolds stress are not i n agreement with r e s u l t s 
from v i s u a l i z a t i o n studies. 
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Therefore these detection methods are not most s u i t a b l e for c o l l e c t i n g quan­
t i t a t i v e data about coherent structures. 
Although only three E u l e r i a n detection methods are examined, i t seems rea­
sonable to expect that other E u l e r i a n detection methods show d e f i c i e n c i e s as 
w e l l ; e s p e c i a l l y those methods which approach the problem of detecting co­
herent structures i n a s i m i l a r way: some property, which i s a t t r i b u t e d to 
coherent s t r u c t u r e s , i s used f o r detection without examining on a one-to-one 
basis whether E u l e r i a n detection coincides with v i s u a l detection. Interpre­
t a t i o n of r e s u l t s of E u l e r i a n detection methods i s d i f f i c u l t then, because 
i t i s not known which part of the r e s u l t s Is caused by coherent structures 
and which part by detections on background turbulence. I t may not be assumed 
that the influence of the 'wrong' detections i s averaged out i n the r e s u l t s , 
i f i t not i s established to which extent coherent structures are detected. 
Results of the a u t o c o r r e l a t i o n method (Kim et a l . [1971], Suzuki and 
Kawaguchi [1980]) are questionable, because with t h i s method only part of 
the measuring time data can be c o l l e c t e d . 

In order to improve the detection techniques E u l e r i a n measurement and v i s u ­
a l i z a t i o n were combined i n a turbulent channel flow, see chapter IV. 
Hydrogen bubbles were used for v i s u a l i z a t i o n of the water flow. Not only the 
same flow phenomena as observed by Runstadler et a l . [1963], K l i n e et a l . 
[1967], Kim et a l . [1971] and Offen and K l i n e [1973] were perceived on the 
f i l m s made of the water flow, but also other phenomena appear to be v i s i b l e , 
v i z . the e j e c t i o n (Corino & Brodkey [1969]), the bulge and the t y p i c a l eddy 
(Falco [1977]) and the horseshoe vortex (Head & Bandyopadhyay [1981]). 
The quadrant an a l y s i s technique was adopted f o r the detection of structures 
i n the w a l l l a y e r , using only the uv-parts of the second quadrant with an 
absolute magnitude greater than or equal to 2[uv|. In t h i s way a high corre­
l a t i o n was achieved between v i s u a l and E u l e r i a n detection of e j e c t i o n s . As­
suming that E u l e r i a n detections with time i n t e r v a l s smaller than 0.42 s are 
detections on the same structure - t h i s assumption i s based on v i s u a l obser­
vations- the v i s u a l observed burst i s detected. 
Results of t h i s E u l e r i a n detection method are not quite free from s u b j e c t i v ­
i t y , but so i t i s c e r t a i n that coherent structures are detected. 
In contrast, the detections of Blackwelder and Kaplan's method appear not to 
coincide with bursts i n general. Mostly low-speed streaks are detected which 
pass the measuring point. 
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With the second quadrant detection method i t w i l l be possible to measure the 
properties of coherent s t r u c t u r e s . The information about coherent structures 
can then be used for modelling turbulent flows. But f i r s t the same e x p e r i ­
ments should be c a r r i e d out at higher Reynolds numbers, because the proper­
t i e s of coherent structures may change with Reynolds number; see for i n ­
stance the p u b l i c a t i o n of Head and Bandyopadhyay [1981]. 

In chapter V the quadrant an a l y s i s technique was applied to a j e t flow. The 
technique appears to give only information about structures i n those regions 
where much order i s present, v i z . the mixing layer region and the outer part 
of the development region. In the inner part of the development region the 
quadrant analysis technique i s not very s u i t a b l e f o r studying s t r u c t u r e s , 
because t h i s technique does not d i s t i n g u i s h structures with respect to o r i ­
gin and o r i e n t a t i o n . Simultaneously performed flow v i s u a l i z a t i o n could pro­
vide f o r t h i s l a c k i n g information. With t h i s a d d i t i o n a l information the qua­
drant analysis technique could be used to study coherent structures i n a j e t 
flow. 

Another approach could be quite u s e f u l i n studying coherent st r u c t u r e s . 
The t r a n s i t i o n process of a laminar flow i n t o a turbulent one i s simulated 
by introducing small disturbances i n a laminar flow near the w a l l at regular 
time i n t e r v a l s . So the o r i g i n of turbulent spots i s f i x e d and the develop­
ment of the spots can be measured. 
Perhaps i t i s possible to introduce a l s o small disturbances i n w a l l bounded 
turbulent flows at regular time i n t e r v a l s , using f o r instance sparks to gen­
erate the disturbances. With flow v i s u a l i z a t i o n i t can be examined whether 
these disturbances develop i n the same way coherent structures do. I f t h i s 
i s the case, f i x e d coherent structures can be studied. 
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Tg mean time between successive coherent uv-groups 102 
tg time i n t e r v a l between successive coherent uv-groups 102 
t ^ t o t a l time uv-signal spent i n quadrant i excluding 

hole ( i = 1, 2, 3 or 4) or i n hole ( i = 5) 80 
t j t o t a l time uv-signal spent i n quadrant j 

( j = 1, 2, 3 or 4) 101 
T m averaging time of Blackwelder and Kaplan's detection 

method 13 
Tmg averaging time of modified version of Blackwelder and 

Kaplan's detection method 83 
t n time midway between beginning and end of detection 69 

beginning of detection 70 
t Q t o t a l time uv-signal spent outside hole 112 
U, V, W E u l e r i a n Cartesian v e l o c i t y components 10 

U, V, W time-mean values 7 
U instantaneous v e l o c i t y vector 60 
u, v, w turbulence v e l o c i t y components of U, V and W 

res p e c t i v e l y 10 
u', v', w' root-mean-square turbulence v e l o c i t y 
components 11 

U a v average flow v e l o c i t y i n tube cross section 7 
"max time-mean flow v e l o c i t y at tube axis 7 
U Q average bulge v e l o c i t y 19 
U e nozzle e x i t v e l o c i t y 28 
U e f f e f f e c t i v e v e l o c i t y component X-wire 60 

free stream v e l o c i t y 10 
u ' u' at ce n t e r l i n e of jet nozzle 61 
u,^ax j e t e x i t boundary lay e r maximum of u' 61 
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u T w a l l f r i c t i o n v e l o c i t y 5 
var variance of streamwise turbulence v e l o c i t y component 68 
W(k,U) wavenumber-convection v e l o c i t y spectrum 31 
x, y, z Cartesian coordinates 5 
y l w a l l distance measuring point l a s e r 57 
y w w a l l distance hydrogen bubble wire 57 
y* jet e x i t w a l l distance 60 

-pïïv Reynolds stress 43 
-püvd Reynolds stress due to detections 77 
-pu? g Reynolds stress due to coherent uv-groups 104 
-puv i Reynolds stress due to quadrant i excluding hole 

( i = 1, 2, 3 or 4) or to hole ( i = 5) 80 
Reynolds stress of quadrant i excluding hole 
( i = 2 or 4) due to detections of Blackwelder and 
Kaplan's method 81 

-pÏÏVj Reynolds stress due to quadrant j 
( j = 1, 2, 3 or 4) 108 

-Püv0 Reynolds stress outside hole 112 

At time i n t e r v a l 6 
At d t o t a l detection time 77 
At g t o t a l detection time of coherent uv-groups 104 
A t i,d t o t a l time uv-signal spent i n quadrant i excluding 

hole ( i = 2 or 4) due to detections of Blackwelder 
and Kaplan's method 81 

Az spanwise separation 11 

3 p a r t i a l d i f f e r e n t i a l operator 15 
6 boundary layer thickness 6 
6 0.9 9 boundary layer thickness 35 
6* displacement thickness 35 
£ d i s s i p a t i o n per unit mass and time 66 
n dimensionless r a d i a l j e t distance 108 

Kolmogorov frequency 66 
e momentum thickness 7 
A d i s s i p a t i o n length scale 66 

streamwise length of low-speed streak 15 
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X z spanwise low-speed streak spacing 6 
v kinematic v i s c o s i t y 5 
p density 5 
x time delay 14 

maximum time delay between successive detections 
on one structure 101 

T W w a l l shear stress 5 
<j) angle between X-wire and v e l o c i t y vector 60 

Ax enlargment of detection time 76 

+ normalized with inner v a r i a b l e s u and 5 
VITA average 68 

^ VITA average 83 
< > c o n d i t i o n a l average 69 

- 121 -



References 

1. Antonia, R.A., [1972] 
C o n d i t i o n a l l y sampled measurements near the outer edge of a 
turbulent boundary la y e r . 
J . F l u i d Mech., 56, 1 

2. Bandyopadhyay, P.R., [1982] 
Period between bursting i n turbulent boundary layers. 
Phys. F l u i d s . , 25, 1751 

3. Batchelor, G.K. and Townsend,. A.A., [1948 a] 
Decay of i s t r o p i c turbulence i n the i n i t i a l period. 
Proc. R. Soc. London, Ser. A, 193, 539 

4. Batchelor, G.K. and Townsend, A.A., [1948 b] 
Decay of turbulence i n the f i n a l period. 
Proc. R. Soc. London, Ser. A, 194, 527 

5. Blackwelder, R.F. and Eckelmann, H., [1979] 
Streamwise v o r t i c e s associated with the bursting phenomenon. 
J . F l u i d Mech., 94, 577 

6. Blackwelder, R.F. and Kaplan, R.E., [1972] 
The intermittent structure of the w a l l region of a turbulent 
boundary la y e r . 
Rep. USCAE 1-22 
U n i v e r s i t y of Southern C a l i f o r n i a , Los Angeles 

7. Blackwelder, R.F. and Kaplan, R.E., [1976] 
On the w a l l structure of the turbulent boundary la y e r . 
J . F l u i d Mech., 76, 89 

8. Blackwelder, R.F. and Kovasznay, L.S.G., [1972] 
Time scales and c o r r e l a t i o n s i n a turbulent boundary la y e r . 
Phys. F l u i d s , 15, 1545 

9. Boelsma, G.H., [1981] 
Analoge en numerieke de t e c t i e van cohérente structuren i n een 
turbulente grenslaag. (In Dutch) 
D e l f t , U n i v e r s i t y of Technology, afstudeerverslag 

10. Bogard, D.G., [1982] 
In v e s t i g a t i o n of burst structures i n turbulent channel flows 
through simultaneous flow v i s u a l i z a t i o n and v e l o c i t y 
measurements. 
Purdue U n i v e r s i t y , t h e s i s 

11. Boussinesq, J . , [1877] 
Théorie de l'écoulement t o u r b i l l a n t . 
Mem. pres. acad. s c i . P a r i s , 23, 46 

12. Brodkey, R.S., Wallace, J.M. and Eckelmann, H., [19741 Some properties of truncated s i g n a l s i n boundary shear flows. J . F l u i d Mech., 63, 209 
13. Brown, G.L. and Roshko, A., [1974] 

On density e f f e c t s and large structure i n turbulent mixing 
l a y e r s . 
J . F l u i d Mech., 64, 775 

14. Brown, G.L. and Thomas, A.S.W., [1977] 
Large structure i n a turbulent boundary la y e r . 
Phys. F l u i d s , 20, S243 

- 122 -



15. Bruun, H.H., [1977] 
A time-domain analysis of the large-scale flow structure i n a c i r c u l a r j e t . 
Part 1. Moderate Reynolds number. 
J . F l u i d Mech., 83, 641 

16. Cantwell, B.J., [1975] 
A f l y i n g hot-wire study of the turbulent near wake of a c i r c u l a r 
c y l i n d e r at a Reynolds number of 140000. 
Ph.D. Thesis, C a l i f o r n i a I n s t i t u t e of Technology 

17. Cantwell, B.J., [1981] 
Organized motion i n turbulent flow. 
Ann. Rev. F l u i d Mech., 13, 457 

18. Chevray, R. and Tutu, N.K., [1978] 
Intermittency and p r e f e r e n t i a l transport of heat i n a round j e t . 
J . F l u i d Mech., 88, 133 

19. Clauser, F.H., [1956] 
The turbulent boundary l a y e r . Adv. i n Appl. Mech., 4, 1 

20. Comte-Bellot, G., Sabot, J . and Saleh, I . , [1979] 
Detection of intermittent events maintaining Reynolds s t r e s s . 
Proceedings of the Dynamic Flow Conference 1978. 
S i j t h o f f & Noordhoff, the Netherlands. 

21. Corino, E.R. and Brodkey, R.S., [1969] 
A v i s u a l i n v e s t i g a t i o n of the w a l l region i n turbulent flow. J . F l u i d Mech., 37, 1 

22. C o r r s i n , S., [1943] 
Investigations of flow i n an a x i a l l y symmetric heated j e t of 
a i r . 
NACA Wartime Rep. W-94 

23. C o r r s i n , S. and K i s t l e r , A., [1954] 
The free boundaries of turbulent flows. NACA Tech. Note No. 3133 

24. Crow, S.C. and Champagne, F.H., [1971] Orderly structure i n j e t turbulence. J . F l u i d Mech., 48, 547 
25. Dimotakis, P.E., Miake-Lye, R.C. and Papantoniou, D.A., [1983] 

Structure and dynamics of round turbulent j e t s . 
Phys. F l u i d s , 26, 3185 

26. Durst, F., M e l l i n g , A. and Whitelaw, J.H., [1976] 
P r i n c i p l e s and pr a c t i c e of laser-Doppler anemometry. 
Academic Press, New York 

27. Eckelmann, H, [1970] 
Experimentelle Untersuchungen i n einer turbulenten 
Kanalstroemung mit starken viskosen Wandschichten. 
Max Planck I n s t i t u t fur Stroemungsforschung, Goettingen, nr. 4 8 

28. Eckelmann, H., [1974] 
The structure of the viscous sublayer and the adjacent w a l l 
region i n a turbulent channel flow. 
J . F l u i d Mech., 65, 439 

29. E i s e l e y , L., [1979] 
Darwin and the mysterious mr. X: New l i g h t on the e v o l u t i o n i s t s . 
Dutton, E.P., New York 

30. Emmons, H.W., [1951] 
The laminar-turbulent t r a n s i t i o n i n a boundary layer. Part 1. 
J . Aerosp. S e i . , 18, 490 

31. Fage, F.A. and Townsend, H.C.H., [1932] 
An examination of turbulent flow with an ultramicroscope. 
Proc. Roy. Soc. London, Ser. A, 135, 656 

- 123 -



32. Falco, R.E., [1977] 
Coherent motions i n the outer region of turbulent boundary 
layers. 
Phys. F l u i d s , 20, S124 

33. Favre, A., [1946] 
Appareil de mesures s t a t i s t i q u e s de l a c o r r e l a t i o n dans l e 
temps. 
Proc. I n t . Congr. Mech., 6th. 

34. Favre, A., G a v i g l i o , J . and Dumas, R., [1957] 
Space-time double c o r r e l a t i o n s and spectra i n a turbulent 
boundary l a y e r . 
J . F l u i d Mech., 2, 313 

35. Favre, A., G a v i g l i o , J . and Dumas, R., [1958] 
Further space-time c o r r e l a t i o n s of v e l o c i t y i n a turbulent 
boundary la y e r . 
J . f l u i d Mech., 3, 344 

36. Fondse, H. , Leijdens, H. and Ooms, G., [ 1 9 8 3 ] 
On the influence of the e x i t conditions on the entrainment rate 
i n the development region of a f r e e , round, turbulent j e t . 
Appl. S e i . Res., 40, 355 

37. Freymuth, P., [1966] On t r a n s i t i o n i n a separated laminar boundary la y e r . J . F l u i d Mech., 26̂ , 683 
38. Godefroy, H.W.H.E. and Kunen, J.M.G., [1984] 

Meetmogelijkheden met een laser-Doppler snelheidsmeter, 
betreffende Reynoldse schuifspanningen i n turbulente 
piipstromingen. 
D e l f t , Hydraulics Laboratory, S 216-III 

39. Grass, A.J., [1971] 
S t r u c t u r a l features of turbulent flow over smooth and rough boundaries. J . F l u i d Mech., 50, 233 

40. Gupta, A.K. and Kaplan, R.E., [1972] 
S t a t i s t i c a l c h a r a c t e r i s t i c s of Reynolds stress i n a turbulent 
boundary l a y e r . 
Phys. F l u i d s , 15, 981 

4 1 . Gupta, A.K., Laufer, J . and Kaplan, R.E., [1971] 
S p a t i a l structure i n the viscous sublayer, j ; F l u i d Mech., 50, 493 

42. Hama, F.R., Long, J.D. and Hegarty, J.C., [1957] 
On t r a n s i t i o n from laminar to turbulent flow. J . Appl. Phys., 28, 388 

43. Head, M.R. and Bandyopadhyay, P.R., [ 1 9 8 1 ] 
New aspects of turbulent boundary-layer struc t u r e . 
J . F l u i d Mech., 107, 297 

44. Hedley, T.B. and Ke f f e r , J.F., [1974] 
Some turbulent/non-turbulent properties of the outer 
in t e r m i t t e n t region of a boundary la y e r . 
J . F l u i d Mech., 64, 645 

45. Hinze, J.O., [1975] 
Turbulence. 2nd ed. 
McGraw H i l l , New York 

46. Hussain, A.K.M.F., [1983] 
Coherent structures - r e a l i t y and myth. Phys. Fuids, 26, 2816 

47. Hussain, A.K.M.F. and Clark, A.R., [1981] 
Measurements of wavenumber-celerity spectrum i n plane and 
axisymmetric j e t s . 
AIAA J . , 19, 51 

- 124 -



48. Hussain, A.K.M.F. and Zaman, K.B.M.Q., [1980] 
Vortex p a i r i n g i n a c i r c u l a r j e t under c o n t r o l l e d e x c i t a t i o n . Part 2. Coherent Structure dynamics. J . F l u i d Mech., 101, 493 

49. Kaplan, R.E. and Laufer, J . , [1969] 
The i n t e r m i t t e n t l y turbulent region of the boundary la y e r . 
Proc. I n t . Congr. Mech., 12th, 236 

50. Kawaguchi, Y., Yano, T. and Suzuki, K., [1983] 
An experimental study on coherent structure i n a turbulent boundary layer disturbed by a c y l i n d e r . P r e p r i n t s f o r the Ei g t h Biennal Symposium on Turbulence. Mi s s o u r i - R o l l a 
ed. Zakin, J.L. and Patterson, G.K. 

51. Kim, H.T., K l i n e , S.J. and Reynolds, W.C., [1971] 
The production of turbulence near a smooth w a l l i n a turbulent 
boundary la y e r . 
J . F l u i d Mech., 50, 133 

52. Klebanoff, P.S., [1954] 
C h a r a c t e r i s t i c s of turbulence i n a boundary layer with zero 
pressure gradient. 
NACA Tech. Note No. 3178 

53. K l i n e . S.J., Reynolds, W.C., Schraub, F.A. and Runstadler, P.W., 
[1§67] 
The structure of turbulent boundary l a y e r s . 
J . F l u i d Mech., 30, 741 

54. K l i n e , S.J. and Runstadler, P.W., [1959] 
Some prelimary r e s u l t s of v i s u a l studies of the flow model of the w a l l layers of the turbulent boundary la y e r . J . Appl. Mech., Ser. E, 26, 166 

55. Kolmogorov, A.N. [1941] 
The l o c a l structure of turbulence i n incompressible flow f o r 
very large Reynolds number. 
Compt. rend. acad. s c i . U.R.S.S., 30, 31 

56. Kovasznay, L.S.G., Kibens, V. and Blackwelder, R.F., [1970] 
Large-scale motion i n the in t e r m i t t e n t region of a turbulent 
boundary la y e r . 
J . F l u i d Mech., 41, 283 

57. K r e p l i n , H.-P. and Eckelmann, H., [19791 
Behavior of the three f l u c t u a t i n g v e l o c i t y components i n the 
w a l l region of a turbulent channel flow. 
Phys. F l u i d s , 22, 1233 

58. Lau, J.C. and F i s h e r , M.J., [1975] The vortex-street structure of 'turbulent' j e t s . Part 1. J . F l u i d Mech., 67, 299 
59. Lau, J . C , Fi s h e r , M.J. and Fuchs, H.V., [1972] 

The i n t r i n s i c structure of turbulent j e t s . 
J . Sound and Vib., 2 2 , 3 7 9 

60. Laufer, J . , [1954] 
The structure of turbulence i n f u l l y developed pipe flow. 
NACA Rep. 1174 

61. Lawn, C.J., [1971] 
The determination of the rate of d i s s i p a t i o n i n turbulent pipe 
flow. 
J . F l u i d Mech., 4 8 , 4 7 7 

62. Lu, S.S. and Willmarth, W.W., [1973] 
Measurements of the structure of the Reynolds str e s s i n a turbulent boundary layer. J . F l u i d Mech., 60, 481 

- 125 -



6 3 . Ludwieg, H. and Tillmann, W., [1949] 
Untersuechungen ueber die Wandschubspannung i n turbulenten 
Reibungsschichten. 
ing.-Arch., 17, 288 

64. Maanen, H.R.E. van and F o r t u i n , J.M.H., [1983] 
Experimental determination of the random lump-age d i s t r i b u t i o n 
i n the boundary layer of the turbulent pipe flow using l a s e r -
Doppler anemometry. 
Chem. Eng. S c i . , 38, 399 

65. Mizushina, T . and Usui, H., [ 1 9 7 7 ] 
Reduction of eddy d i f f u s i o n f or momentum and heat i n 
v i s c o e l a s t i c f l u i d flow i n a c i r c u l a r tube. 
Phys. F l u i d s , 20, S100 

66. Mollo-Christensen, E., [1971] 
Physics of turbulent flow. 
AIAA J . , 9, 1217 

67. Morrison, W.R.B. and Kronauer, R.E., [1969] 
S t r u c t u r a l s i m i l a r i t y f o r f u l l y developed turbulence i n smooth 
tubes. 
J . F l u i d Mech., 39, 117 

68. Narayanan, B. and Marvin, J . , [1978] 
On the period of the coherent structure i n boundary layers at 
large Reynolds numbers. 
Lehigh Workshop on coherent structure i n turbulent boundary 
l a y e r s . , 380 
ed. Smith, C.R. and Abbot, D.E. 

6 9 . Nychas, S.G., Hershey, H.C. and Brodkey, R.S., [ 1 9 7 3 ] 
A v i s u a l study of turbulent shear flow. 
J . F l u i d Mech. , 61_, 513 

70. Offen, G.R. and K l i n e , S.J., [1973] 
Experiments on the v e l o c i t y c h a r a c t e r i s t i c s of 'bursts' and on 
the i n t e r a c t i o n between the inner and outer regions of a 
turbulent boundary la y e r . 
Rep. no. MD-31 
Stanford U n i v e r s i t y , Stanford, C a l i f o r n i a 

71. Popovich, A.T. and Hummel, R.L., [ 1 9 6 7 ] 
Experimental study of the viscous sublayer i n turbulent pipe 
flow. 
AIChE J . , 13, 854 

72. P r a n d t l , L., [1925] 
Bericht uber untersuchungen zur ausgebildeten Turbulenz. 
Z. angew. Math, und Mech., 5, 136 

7 3 . Rao, K.N., Narasimha. R. and Narayanan, M.A.B., [1971] 
Bursting i n a turbulent boundary la y e r . 
J . F l u i d Mech., 48, 3 3 9 

74. Reynolds, 0., [1895] 
On the dynamical theory of incompressible viscous f l u i d and the determination of the c r i t e r i u m . P h i l o s . Trans. R. Soc. London, Ser. A, 186, 123 

7 5 . Runstadler, P.W.. K l i n e , S.J. and Reynolds, W.C., [1963] 
An i n v e s t i g a t i o n of the flow structure of the turbulent boundary 
lay e r . 
Rep. no. MD-8 
Stanford U n i v e r s i t y , Stanford, C a l i f o r n i a 

76. Schraub, F.A. and K l i n e , S.J., [1965] 
A study of the structure of the turbulent boundary layer with 
and without l o n g i t u d i n a l pressure gradient. 
Rep. no. MD-12 
Stanford U n i v e r s i t y , Stanford, C a l i f o r n i a 

- 126 -



77. Smith, C.R., [19781 V i s u a l i z a t i o n ox turbulent boundary layer structure using a moving hydrogen bubble probe. Proc. of the Workshop on Coherent Structure of Turbulent Boundary Layer. 
Lehigh u n i v e r s i t y , Bethelem, Pennsylvania 

78. Smith, C.R., [1983] 
A synthesized model of the near-wall behaviour i n turbulent 
boundary l a y e r s . 
Preprints f o r the E i g t h Biennal Symposium on Turbulence. 
M i s s o u r i - R o l l a 
ed. Zakin, J.L. and Patterson, G.K. 

79. Smith, C.R. and Metzler, S.P., [1983] 
The c h a r a c t e r i s t i c s of low-speed streaks i n the near-wall region 
of a turbulent boundary l a y e r . 
J . F l u i d Mech., 129, 27 

80. Smith, C.R. and Schwartz, S.P., [1983] 
Observation of streamwise r o t a t i o n i n the near-wall region of a turbulent boundary layer. Phys. F l u i d s , 26, 641 

81. Sreenivasan, K.R., Antonia, R.A. and B r i t z , D., [1979] 
Local isotropy and large structures i n a heated turbulent j e t . J . F l u i d Mech., 94, 745 

82. Suzuki, K, and Kawaguchi. K., [1980] 
Measurement of bursting period and test of surface renewal model 
i n a turbulent boundary l a y e r d i s t r i b u t e d by a c y l i n d e r . 
ICHMI/IUTAM Symposi um on Heat and Mass Transfer and the 
Structure of Turbulence, Dubrovnik. 

83. Talmon, A.M., [1984] 
Simultane v i s u a l i s a t i e - s t u d i e en snelheidsmetingen aan coherente 
structuren i n een turbulente grenslaag. (In Dutch) 
D e l f t , U n i v e r s i t y of Technology, afstudeerverslag. 

84. Taylor, G.I., [1915] 
Eddy motion i n atmosphere. 
P h i l o s . Trans. R. Soc. London, Ser. A, 215, 1 

85. Taylor, G.I., [1932] 
The transport of v o r t i c i t y and heat through f l u i d s i n turbulent 
motion. 
Proc. R. Soc. London, Ser. A, 135, 678 

86. Taylor, G.I., [1935] 
The s t a t i s t i c a l theory of turbulence, parts I - IV. 
Proc. R. Soc. London, Ser. A, 151, 421 

87. Theodorsen, T., [1955] 
The structure of turbulence. 
In: 50 Jahre Grenzschichtforschung, 55 
ed. G o r t l e r , H. and Tollmien, W. 
Braunschweig, Vieweg & Sohn 

88. Townsend, A.A., [1947] 
Measurements i n a turbulent wake of a c y l i n d e r . 
Proc. R. Soc. London, Ser. A, 190, 551 

89. Townsend, A.A., [1956] 
The structure of turbulent shear flow. 1st ed. 
Cambridge Univ. Press., Cambridge 

90. Townsend, A.A., [1970] 
Entrainment and the structure of turbulent flow. 
J . F l u i d Mech., 141, 13 

91. Townsend, A.A., [1976] 
The structure of turbulent shear flow. 2nd ed. 
Cambridge Univ. Press., Cambridge 

- 127 -



92. Tso, J . , Kovasznay, L.S.G. and Hussain, A.K.M.F., [1981] 
Search f o r large-scale coherent structures i n the nearly s e l f -
preserving region of a turbulent axisymmetric j e t . 
J . F l u i d s Eng?, 103, 503 

93. Ueda, H. and Hinze, J.O., [1975] 
Fine structure turbulence i n the w a l l region of a turbulent 
boundary l a y e r . J . F l u i d Mech., 67, 125 

94. Vink, P.J.J., [1981] 
Coherente structuren i n turbulente stromingen. (In Dutch) 
D e l f t , U n i v e r s i t y of Technology, 3e jaa r s v e r s l a g 

95. Vink, P.J.J., [1982] 
Numerieke detectle van coherente structuren i n een turbulente 
grenslaag. (In Dutch) 
D e l f t , U n i v e r s i t y of Technology, 4e jaarsverslag 

96. Vink, P.J.J., [1984] 
Coherente structuren i n een v r i j e s t r a a l . (In Dutch) 
D e l f t , U n i v e r s i t y of Technology, MEAH-32 

97. Wallace, J.M., Eckelmann, H. and Brodkey, R.S., [1972] 
The w a l l region i n turbulent shear flow. J . F l u i d Mech., 54, 39 

98. Weske, J.R. and Plankholt, A.H., [1953] 
Discrete vortex systems i n the t r a n s i t i o n range i n a f u l l y developed flow i n a pipe. J . Aero. S c i . , 20, 717 

99. W i l l e , R., [1963] 
Beitraege zur Phaenomenologie der F r e i s t r a h l e n . 
Z. Flugwiss., 11, 222 

100. Willmarth, W.W., [1975] 
Structure of turbulence i n boundary la y e r . Adv. i n Appl. Mech., 1_5, 159 

101. Willmarth, W.W. and Lu, S.S., [1972] 
Structure of the Reynolds stress near the w a l l . J . F l u i d Mech., 55, 65 

102. W i l l s , J.A.B., [1962] 
The co r r e c t i o n of hot-wire readings for proximity to a s o l i d 
boundary. 
J . F l u i d Mech., 12, 388 

103. Winant, CD. and Browand, F.K. , [1974] 
Vortex p a i r i n g : the mechanism of turbulent mixing-layer growth 
at moderate Reynolds number. 
J . F l u i d Mech., 63, 237 

104. Wygnanski, I . J . and Champagne, F.H., [1973] 
On t r a n s i t i o n i n a pipe 
Part 1. The o r i g i n of puffs and slugs and the flow i n a 
turbulent s l u g . 
J . F l u i d Mech., 59, 281 

105. Wygnanski, I . J . , Solokov, N. and Friedman, D., [1975] 
On t r a n s i t i o n i n a pipe. Part 2. The eq u i l i b r i u m puff. J . F l u i d Mech., 69, 283 

106. Wygnanski, I . J . Solokov, N. and Friedman, D., [1976] 
On the turbulent 'spot' i n a boundary layer undergoing 
t r a n s i t i o n . 
J . F l u i d Mech., 78, 785 

107. Yeh, H. and Cummins, H.Z., [1964] 
Locali z e d f l u i d flow measurements with He-Ne las e r spectrometer. 
Appl. Phys. L e t t . , 4, 176 

- 128 -



108. Zaman, K.B.M.Q. and Hussain, A.K.M.F.,[1980] 
Vortex p a i r i n g i n a c i r c u l a r j e t under c o n t r o l l e d e x c i t a t i o n . Part 1. General j e t response. J . F l u i d Mech., 101, 449 

- 129 -



Appendix A 
DESCRIPTION OF A TURBULENT BOUNDARY LAYER 

Two regions or layers can be distinguished i n a turbulent flow along a 
smooth r i g i d w a l l : 
(1) a region close to the w a l l -the w a l l or inner l a y e r - where the w a l l d i ­

r e c t l y influences the flow through the a c t i o n of the viscous s t r e s s , 
(2) the remaining part of the boundary layer -the outer or i n t e r m i t t e n t 

layer ( i n pipe and channel flow t h i s region i s c a l l e d the core region)-
where the w a l l only i n d i r e c t l y a f f e c t s the flow through the w a l l shear 
stress x w . 

The c h a r a c t e r i s t i c length and v e l o c i t y scale i n the w a l l layer are the 
f r i c t i o n length v/u T and the f r i c t i o n v e l o c i t y u T . These scales are the so-
c a l l e d inner parameters of the turbulent boundary la y e r . 
[u T = y x w / p (p i s the density of the flow). 
v i s the kinematic v i s c o s i t y of the flow.] 

The turbulence c h a r a c t e r i s t i c s of the outer layer are dominated by the free 
stream v e l o c i t y Uro and the boundary layer thickness 6; the outer parameters 
of a turbulent boundary l a y e r . 

In the w a l l layer of the turbulent boundary layer three subregions can be 
distinguished: 
(1) the viscous sublayer, the region c l o s e s t to the w a l l where the viscous 

stresses are considerably greater i n magnitude than the Reynolds 
stresses, 

(2) the buffer l a y e r , the region beyond the viscous sublayer where the v i s ­
cous stresses and the Reynolds stresses are of the same order of magni­
tude, 

(3) the logarithmic layer, the region bounded by the buffer layer where the 
viscous stresses are n e g l i g i b l y small i n comparison with the Reynolds 
s t r e s s . 
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In the viscous sublayer (0 < y + < 5) the f o l l o w i n g r e l a t i o n holds 
U/uT = yu T/v, 

and i n the logarithmic layer ( y + > 30) 
U/uT = A 1 0 l o g y + + B. 

For the c o e f f i c i e n t s A and B many values have been proposed, Clauser [1956] 
proposed f o r boundary layer flows the values A = 5.6 and B = 4.9. 
The logarithmic layer i s supposed to be ended at the point where the veloc­
i t y d i s t r i b u t i o n does not agree anymore with the logarithmic r e l a t i o n . I f 
the Reynolds number of the flow i s great enough, the logarithmic region can 
extend to y + = 500. 

The logarithmic layer and the outer layer together are c a l l e d the veloc­
i t y defect region. 

- 131 -



Appendix B 
DESCRIPTION OF AN AXISYMMETRIC JET 

In a fr e e , round, turbulent j e t a number of regions are distinguished. 
Usually a jet i s divided i n t o two main regions ( f i g . 100): 
(1) the region of about the f i r s t 70 diameters i s c a l l e d the development re­

gion, 
(2) the remaining part of a j e t i s c a l l e d the f u l l y developed region or the 

region of complete s e l f - p r e s e r v a t i o n . 

Commonly two subregions are defined i n the development region ( f i g . 100): 
(1) the region of the f i r s t 5 diameters i s c a l l e d the mixing layer region, 
(2) the region between about 10 and 70 diameters i s c a l l e d the region of 

p a r t i a l s e l f - p r e s e r v a t i o n . 

In the mixing layer region a two-dimensional mixing la y e r i s found 
'wrapped around' the j e t a x i s . This mixing layer i s developing i n t o a 
three-dimensional flow, i n which f i r s t l y the time-mean v e l o c i t y p r o f i l e be­
comes se l f - p r e s e r v i n g (the region of p a r t i a l s e l f - p r e s e r v a t i o n ) and further 
downstream the p r o f i l e s of other turbulence q u a n t i t i e s a t t a i n the state of 
se l f - p r e s e r v a t i o n (the f u l l y developed region). 

OD - ~ 5 D " 1 0 0 - » 7 0 D 

Figure 100: Flow regions i n a turbulent j e t . 
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SAMENVATTING 

Visualisatie-onderzoek heeft i n turbulente stromingen het bestaan van zg. 
coherente structuren aan het l i c h t gebracht. Daar deze methode vooral k w a l i ­
t a t i e v e informatie over structuren geeft, wordt met Eulerse detectie-metho-
den geprobeerd om kwantitatieve gegevens over deze structuren te verzamelen. 

In d i t onderzoek i s de o b j e c t i v i t e i t van een aantal Eulerse detectie-metho-
den bestudeerd, n l . van de detectie-methode van Ueda en Hinze, van de me­
thode van Blackwelder en Kaplan en van een methode die een u i t b r e i d i n g i s 
van de methode van Blackwelder en Kaplan. Hiervoor z i j n meetsignalen u i t een 
turbulente grenslaag en een turbulente pijpstroming gebruikt. De r e s u l t a t e n 
geven echter aan dat deze methoden n i e t o b j e c t i e f z i j n . De gemiddelde tus­
s e n t i j d van opeenvolgende d e t e c t i e s , de verdeling van de tussentijden en de 
co n d i t i o n e e l gemiddelde hoofdstroomsnelheid b l i j k e n n l . sterk a f h a n k e l i j k te 
z i j n van de parameterwaarden die i n deze methoden gebruikt worden. De ver­
deling van d e t e c t i e - t u s s e n t i j d e n b l i j k t ook een andere vorm te hebben dan 
een v i s u e e l bepaalde verdeling van 'burst'-tussentijden. De bijdrage van de­
t e c t i e s aan de Reynoldsspanning b l i j k t n i e t v e e l groter te z i j n dan op grond 
van de gedetecteerde t i j d f r a c t i e verwacht mag worden. De conclusie l i j k t 
derhalve gewettigd, dat deze detectie-methoden n i e t erg geschikt z i j n voor 
het bemeten van coherente structuren. 

Daar b l i j k t , dat de autocorrelatie-methode maar een gedeelte van de meettijd 
toegepast kan worden, moet voor deze methode hetzelfde geconcludeerd worden. 

Teneinde te kunnen onderzoeken of Eulerse detecties samenvallen met v i s u e l e 
detecties van structuren i s visualisatie-onderzoek gecombineerd met l a s e r -
Doppler metingen i n een turbulente waterstroming. V i s u a l i s a t i e i s uitgevoerd 
met de zg. waterstofbelletjes-methode. Detecties volgens de methode van 
Blackwelder en Kaplan b l i j k e n slechts voor een k l e i n gedeelte samen te v a l ­
len met v i s u e e l waargenomen 'bursts'. Detecties volgens de zg. tweede kwa­
drant-methode, waarbij a l l e e n bepaalde bijdragen aan de Reynoldsspanning be­
horend tot tweede kwadrant van het u-v vlak beschouwd worden, b l i j k e n wel 
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erg goed overeen te komen met v i s u e l e detecties van 'ejections'. A ls veron­
dersteld wordt dat snel na elkaar voorkomende Eulerse detecties r e a c t i e s 
z i j n op een structuur, dan b l i j k e n z e l f s 'bursts' gedetecteerd te kunnen 
worden. 

De kwadranten-methode geeft a l l e e n i n die gebieden van een s t r a a l waar 
vooral de invloed van de naburige rand merkbaar i s , relevante informatie 
over structuren, omdat deze methode de structuren n i e t onderscheidt naar 
beginpunt en oriëntatie. 
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/ 

S t e l l i n g e n 

1. Methoden die coherente structuren detecteren i n snelheids­
signalen dienen vergeleken te worden met v i s u a l i s a t i e -
onderzoek teneinde te kunnen controleren of en zo j a welke 
structuren gedetecteeerd worden. 

2. De detectie-methode van Blackwelder en Kaplan detecteert geen 
"burts" maar langzame streepstromingen. 

3. De door Ueda en Hinze gemeten waarde voor de dimensieloze 
"burst"-periode = 4.7] i s een eigenschap van hun 
detectie-methode. 

4. In haar huidige vorm draagt ontwikkelingshulp meer b i j aan de 
ontwikkeling van het gevende dan van het ontvangende land. 

5. De bewapeningswedloop dient aangepakt te worden b i j de wortel 
van het probleem, de research en ontwikkeling. 

6. Het belang dat aan de t e l e v i s i e toegekend wordt - getuige het 
gekrakeel over s a t e l l i e t - , b e t a a l - en k a b e l t e l e v i s i e , komt i n 
een vreemd dag l i c h t te staan, a l s bedacht wordt dat de k i j k e r 
het gebodene gelaten over z i c h heen laat gaan - getuige het 
a-ritme dat de hersenen produceren t i j d e n s het t e l e v i s i e 
k i j k e n . 

7. Economisch belang gebiedt onderscheid te maken tussen 
beroepsverkeer op het water en p l e z i e r v a a r t wat voorrang op 
wegverkeer b e t r e f t . 

8. De parlementaire enquête naar het RSV-debacle l e e r t dat de 
overheid een onverantwoord r i s i c o neemt door aan een b e d r i j f 
i n moeilijkheden financiële steun te verlenen zonder 
t e g e l i j k e r t i j d toezicht op de b e d r i j f s v o e r i n g u i t te oefenen. 



9. Wetenschappelijk onderzoek van promovendi aan u n i v e r s i t e i t e n 
en technische hogescholen d r e i g t i n de verdrukking te komen 
door de invoering van de twee-fasenstructuur. 

10. In openbaar vervoer kan men n i e t zwart r i j d e n . 

D e l f t J.M.G. Kunen 






