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Abstract. This thesis introduces the FrameVM virtual machine and the
Framed language. This language gives developers a target to compile to
which concisely follows the scopes-as-frames model. This model allows
language developers to derive the memory model based on the scope
graphs. The core building blocks of Framed are frames, which contain all
data including code. To demonstrate the viability of this model this paper
also introduces a compiler from Scheme to Framed, focussing on complex
control structures such as call-with-current-continuation and closures. As
a result we aim to show that Framed is usable as a target language for
compiling, even though it does not have a stack nor registers.

Keywords: Virtual Machines · Scopes-as-frames · Memory Manage-
ment · Scheme · Control Flow

1 Introduction

Choosing the right programming language for a project is a non-trivial task.
Not every language tailors for every type of work, giving us the expression that
Python is ”the second best language for everything” as you can perform any
task with it, with relative ease.

It is desirable to use a language which is the best suited for the project at
hand. This can take the form of a domain-specific language (DSL), a program-
ming language which specialises a specific domain, such as the one in the project.
We might even have separate parts of a project where we would benefit from
different programming languages.

Unfortunately, it is currently not possible to create a DSL for every relevant
domain. To create a DSL there are numerous parts we need to implement, such
as the type checker and the parser. The Spoofax language workbench[16] is a
workbench which strives to provide tools to create both of these parts, among
others. It provides SDF3[23] to define the syntax of the language, Statix[4] to de-
fine the static semantics, and Stratego[27] to perform program transformations,
and DynSem[25] to make writing interpreters easier.

Even though the Spoofax language workbench provides DynSem, we can only
use it to write an interpreter for our language. Furthermore, DynSem falls flat

https://pl.ewi.tudelft.nl/
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on one major detail: We still need to manually design the memory model of our
language.

The introduction of the scopes-as-frames[21] by Poulsen et al. allows us to
reuse our Statix specification to automate our memory model. The scopes-as-
frames model makes use of scope graphs[3,20] to determine where data should
reside in memory. Scope graphs describe the scope of names, and as a result
variables, of a program. This maps to the memory model needed by the program,
in the form of a frame graph which contains the memory needed to store the
variables.

For example, if we look at Figure 1 we can see the scope graph for a Scheme
program. Scope 0 contains the declarations of the two lambdas foo and bar.
Scope 1, the scope belonging to the lambda bar, in turn contains the declaration
of variable x. We can create a graph of frames which contain the data needed to
store the corresponding variables. If we reach a program state where a scope is
no longer accessible we can garbage collect the frame storing the variable.

(letrec

(

(bar (lambda () (foo 41)))

(foo (lambda (x) (+ 1 x))))

(bar))

s0

s1 s2

bar

bar

x

x foo

foo

P P

Fig. 1. An example program written in Scheme and the corresponding scope
graph

Vergu et al. introduced an extension to DynSem which makes use of this
scopes-as-frames paradigm[26]. Even though this brings the speed of interpreta-
tion within an order of magnitude of hand written interpreters, it still does not
allow for us to easily write a compiler instead of an interpreter.

As a continuation of this Bruin introduced Dynamix[8], which started out as
a new target for the DynSem language which would allow for compilation instead
of interpretation. However, Bruin introduced Dynamix as a new language as he
deemed DynSem did not have good mechanisms for writing down control flow.

The Dynamix language Bruin introduced makes use of a new language called
Roger as its compilation target. Roger uses continuations to model control flow
such as call/cc. Roger encapsulates the scopes-as-frames paradigm as its main
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language feature, allowing developers to store data in data frames and control
flow constructions in control frames.

We believe this distinction is also one of the main problems with the Roger
language, as it is no longer clear to developers in what frame type they should
store data. Roger also suffers from a lack of abstraction, forcing the language
developer to manually perform complex operations on continuations. An example
where we believe Framed drastically improves the readability of compiled code
is the ”Hello World!” example. We show the example program and the compiled
Roger code in Figure 2. We see that we manually need to handle the continuation
needed to exit the program, whereas in the Framed example in Figure 3 we do not
need to take this into account. This becomes even more complicated when we try
to model complex control flow such as exceptions. Bruin himself mentions this
as well: ”Writing a program that showcases exception handing [sic] mechanics is
one of the most mind-bending programs when the Frame VM is not completely
understood yet.”. The final downside is the fact that Roger is a register machine,
resulting in memory allocations which are not part of the frame graph.

Fig. 2. A ”Hello World!” program, and the corresponding Roger code[8]
.

To resolve all the mentioned problems with Roger we introduce a new virtual
machine called the FrameVM. The goals of this machine are as follows:

1. Allow for a direct encoding of the scopes-as-frames paradigm.
2. Do not have any data, including code, outside of frames. This negates the

need for the registers used by Roger, while also removing the need for the
two distinct frame types.

3. Provide a minimal and complete instruction set. This resolves the problem
of us having to manually perform complex operations on continuations.



4 B.Crielaard

The FrameVM provides only four possible native data types, namely Integers,
Strings, Frames, and Code Pointers. There is no distinction between code and
data in this machine, as they all live in the same frames. Frames themselves
consist of a number of named slots.

The FrameVM does not allow us to store any data outside of frames. This
means we need to split operations which create intermediate values, such as
9 + 10 + 23, and explicitly store their intermediates in a frame. The first of
these two operations performs the first addition and stores it in a slot, while the
second addition uses the result stored by the previous operation. By using this
intermediate slot we will be able to know the number of slots we will need while
compiling the program, as there is no unaccounted data in our memory model.

The last goal was to provide a minimal language which we can use to express
a wide set of control operations. As a result, we introduce the Framed language
which runs on the FrameVM. This language only provides four instructions.

Two research questions guided the design of this language, and in turn this
research. The first of these is whether we could create a usable language without
either a stack or registers based on the scopes-as-frames paradigm. The second
question is whether we can model complex control flow operations using such a
language, such as call/cc and exceptions.

This paper provides the following contributions:

– We introduce Framed, a new frame-based language (section 2). We also pro-
vide an interpreter of the language (section 3), as well as a formal definition
(section 4).

– In order to demonstrate the usefulness of this language, we provide a com-
piler from Scheme to Framed (section 5). Our compiler handles complex
control flow operations such as call-cc as well as exceptions. We describe
the internals of the compiler in the form of compilation schemata.
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2 Framed

We use Framed to interact with the FrameVM. This language allows us to per-
form branching instructions, and assigning values to slots. Framed differs from
traditional programming languages as it does not differentiate between data and
code.

In this section we will discuss how we can make use of the language and
show its syntax in subsection 2.1. Furthermore, to demonstrate the use-cases of
Framed we will provide a list of example programs in subsection 2.2.

2.1 Using The Language

We write a Framed program as a frame containing slots, as we show in Figure 3.
These slots contain all the code needed to evaluate the program, as well as all
data needed by the program. In order for us to write an executable program,
we need to populate at least one slot in this frame, namely the Main slot, with
a frame. We then need to store a code pointer in the start slot of this frame.
The code in this start slot is the code where we will begin execution of the
program. In the previously mentioned example we see the two frames, as well as
the aforementioned code pointer. Something we have not previously mentioned
is what we can actually store in this code pointer. A code pointer consists of
a list of instructions. These instructions allow us to evaluate expressions and
assign the result to slots, as well as perform (conditional) jumps and write to
the output. In this example we show a base expression, namely the string ”Hello
World”.

1 frame: [

2 Main := frame: [

3 start := code {

4 show "Hello World!";

5 },

6 ],

7 ]

Fig. 3. A ”Hello World” program written in Framed

The Framed language consists of a basic syntax, as we can see in Figure 4.
Here we can see that the instructions take base expressions as their argu-

ments. These base expressions can either be an integer, a string, a code pointer,
or a path. When we evaluate a path, we are not interested in the actual path
itself, but in the value stored at the location which the path resolves to. There
are four values on the FrameVM, namely integers, strings, code pointers, and
frames.
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r ::= f program

b ::= z base expression
| s
| c
| p

c ::= code {i+} code pointers

i ::= instruction
| p := e;
| ifeq b b b;
| jump b b;
| show b;

f ::= frame: [d∗] frame

d ::= x := e, slot

e ::= b expression
| f
| !b
| b ⊕ b

p ::= self path
| u
| p.x

u ::= ^ path up
::= u.u

z ∈ Z s ∈ String x ∈ Identifier ⊕ ∈{+, -, /, *, <, #, ==, &&, ||}

Fig. 4. Syntax specification of Framed

We designed the language in this manner as a compilation target which
concisely follows the scopes-as-frames paradigm, without having to manually
generate the frame graph or a structure to represent it. We believe that writing
programs as a nested collection of frames provides a good compromise on read-
ability and expressiveness. A downside of this representation is the fact that it
is impossible to write a program where a frame refers to two different frames.
However, we believe this trade-off drastically improves the usability of the lan-
guage, as reasoning about paths becomes much more straightforward than in a
language were we could refer to multiple frames.

Paths are one of the main building blocks of the Framed language, we should
focus on how we can write them down. There are two main types of paths, namely
paths which are relative to the current frame, and paths which are relative to the
current self. When a program executes, it creates an empty frame, accessible
via the self keyword1. We can use this frame to store any intermediate data
we create, meaning we can treat this frame as we would a stack in traditional
programming languages. This frame will also become necessary when we discuss
the branching instructions.

The other types of paths are relative to the frames in the program. We can
access these frames using ^, which refers to the encapsulating frame in the source
program relative to the current code pointer. The interpreter resolves all paths
which contain a ^ before running the program. This means that if we change
the frame which encapsulates the code pointer during execution, we might try
to access paths which no longer exist.

1 This language was originally inspired by the programming language SELF[24]. How-
ever, the keyword is the only real trace of this inspiration which still remains.
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We can find an example of where we use both paths relative to self as well as
paths relative to the current encapsulating frame in Figure 5. In this example we
see the first of the two branching instructions, namely unconditional jumps, on
line 5. We also see the assignment instruction on line 4. An assignment stores a
value at a specific path, in this case the slot value in the current self. If a slot
does not already exist when writing to it, it is automatically created. We then
perform a jump instruction, which takes two arguments. The first of this is the
path that we want to jump to, which in this case is the branch slot. This path
should resolve to a code pointer, as we would otherwise not be able to execute
it. The second argument is the frame which should become the new self after
we have performed the jump. This is useful in the case of function calls, as we
want to change the current evaluation context when jumping to a block of code.
We show how we can use these in our example programs in subsection 2.2.

1 frame: [

2 Main := frame: [

3 start := code {

4 self.value := 0;

5 jump ^.branch self;

6 },

7 branch := code {

8 show self.value;

9 },

10 ],

11 ]

Fig. 5. A branching program written in Framed

It is worth noting that we also enforce a limitation when writing down paths.
It is only possible to define paths in expressions which are part of a code pointer.
This means the following program is not valid:

1 frame: [

2 x := 42,

3 Main := frame: [

4 start := code {},

5 y := 42 + ^.x,

6 ],

7 ]
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The final instruction to discuss is the ifeq instruction, which we can use to
perform a conditional jump. If we look at Figure 6 we can see that the ifeq

instruction takes three arguments, namely a base expression and two paths.
We evaluate the base expression to a value, and if that value is 0 we perform
the jump. The two paths work in the exact same manner as the ones for the
unconditional jump instruction.

1 frame: [

2 Main := frame: [

3 start := code {

4 ifeq 0 ^.branch self;

5 show "not branched";

6 },

7 branch := code {

8 show "branched";

9 },

10 ],

11 ]

Fig. 6. A conditionally branching program written in Framed

If we do not perform the jump we fall through to the next instruction in the
current code pointer. In the case of the example, we show the string ”branched”.
If we were to change the 0 to a 1 we would instead show the string ”not
branched”.

2.2 Example Programs

To give a more complete overview of how the Framed language works we will
show a number of Scheme programs as well as their Framed counterpart, showing
how we can encode language constructs.

Functions We will start with an example of compiling a lambda, without in-
voking it. We can see a Scheme expression which does this here:

(lambda (x) (+ x x))

Compiling this program gives us the following output:

1 frame: [

2 Main := frame: [

3 start := code {

4 self.ref := frame: [
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5 function := ^.^.lambda.start,

6 parent := self,

7 ];

8 show self.ref;

9 },

10 ],

11 lambda := frame: [

12 // the lambda body

13 start := code {

14 self.x := self.arg1;

15 self.intermediate := self.x + self.x;

16 self.caller.callee_result := self.intermediate;

17 jump self.return self.caller;

18 },

19 ],

20 ]

We store the body of the lambda in a new frame, named lambda in this example.
The body loads the argument from the arg1 slot of the self frame and stores
it in the named slot x. After this it performs the operation in the body of the
lambda, (+ x x), and stores this value in the callee result of the caller

frame. After this it jumps to the return slot and passes the caller frame as
the new same frame.

We store a reference to this lambda in a slot in the current frame, named
ref in this example. This frame contains two slots, namely the function slot
which contains the reference to the code, and the parent slot which contains a
reference to the lexical parent of the lambda.

What might not be immediately obvious is why we show self.ref at the
end of the program. Scheme evaluates all programs to a value, and prints that
value at the end of the execution. As such our compiler also prints the compiled
lambda, even though this is in itself not a sensible value to show.

The names of these slots are important, as they are also used by the compiler
which we will introduce in section 5. As such we will enumerate them again, and
explain their function within a Framed program2.

A list of these names is as follows:

– arg1

The slot which contains the argument of a function call. Set when in-
voking a function, and recalled in the body of a function.

– caller

The slot which contains the self frame of the caller of the function.
We set the current self frame to the frame contained in this slot when
exiting the function.

2 Do keep in mind that these names are only a convention, and not an inherit part of
Framed. As such it is not required to make use of them.
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– callee result

The slot which will contain the result of a function call. This slot is part
of the caller frame, which means that self.callee result will always
be available after returning from a function.

– return

The slot which contains a reference to the code pointer which we will
return to when exiting a function.

– function

The slot which contains a reference to the code pointer which contains
the start of a function.

– parent

The slot which contains the lexical parent of a function.

Now that we know how we can compile a function, we will want to evaluate
it. As such, let us call the function we previously defined with the number 21 as
input:

((lambda (x) (+ x x)) 21)

Compiling this expression gives us the following Framed program:

1 frame: [

2 Main := frame: [

3 start := code {

4 self.ref := frame: [

5 function := ^.^.lambda.start,

6 parent := self,

7 ];

8 // set up the environment needed in the lambda body

9 self := frame: [

10 return := ^.end_pointer,

11 caller := self,

12 arg1 := 21,

13 parent := self.ref.parent,

14 ];

15 // invoke the lambda

16 jump self.caller.ref.function self;

17 },

18 end_pointer := code {

19 self.res := self.callee_result;

20 show self.res;

21 },

22 ],

23 lambda := frame: [

24 // the lambda body

25 start := code {

26 self.x := self.arg1;
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27 self.intermediate := self.x + self.x;

28 self.caller.callee_result := self.intermediate;

29 jump self.return self.caller;

30 },

31 ],

32 ]

We invoke a function by creating a new self frame. This frame consists of
four slots:

– return

We set this slot to the code pointer located in the end pointer slot. This
makes sure we can return to the correct code after the execution of the
lambda has finished.

– caller

We set this slot to the current self frame. We do this, as the current
self is the caller of the function. This ensures we can return control to
the correct frame after executing the lambda.

– arg1

We set this slot to the argument we pass to the lambda, which in this
case is the integer 21.

– parent

We set this slot to self.ref.parent, which is the frame which represents
the parent scope of the lambda.

We then invoke the lambda with the newly created self frame. We do this by
jumping to the start code pointer of the lambda. As we have already set up our
environment when creating the new self frame, we return control to the correct
frame and in the correct pointer once we have finished executing the lambda.

Exceptions An extension to this construct is the encoding of exceptions. In
Scheme we can raise any value as an exception. We start by looking at an ex-
pression which only raises an exception with the value 42, without handling
it:

(raise 42)

Compiling this expression gives us the following Framed program:

1 frame: [

2 Main := frame: [

3 start := code {

4 // set the initial exception handler

5 self.exc_handler := frame: [

6 handler := frame: [

7 function := ^.^.default_handler.start,

8 parent := "INVALID",
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9 ],

10 caller := "INVALID",

11 return := "INVALID",

12 call_exc_frame := "INVALID",

13 ];

14 // set up the environment needed in the exception handler

15 self := frame: [

16 return := self.exc_handler.return,

17 parent := self.exc_handler.handler.parent,

18 caller := self.exc_handler.caller,

19 exc_handler := self.exc_handler.call_exc_frame,

20 exc_intermediate := self.exc_handler.handler.function,

21 arg1 := 42,

22 ];

23 // raise the exception

24 jump self.exc_intermediate self;

25 },

26 ],

27 default_handler := frame: [

28 // the default exception handler

29 start := code {

30 self.res := "uncaught exception: " # self.arg1;

31 show self.res;

32 },

33 ],

34 ]

In this example we see that exceptions are an extension of functions. In order for
a single raise expression not to crash we set an initial exception handler. This
handler consists of four slots:

– handler

We set this slot to the function that we will use for our exception handler.
As such it in itself is a frame consisting of the two slots which make up
functions.

– caller

We set this slot to the caller of the current exception handler, which we
need in the case of nested exceptions. As we are currently setting the
initial exception handler there is no valid value for this slot, so we set it
to "INVALID".

– return

We set this slot to the return address of the current exception handler,
which is also needed in the case of nested exceptions. Just like caller

before, there is no valid value at this point in the compilation. As a
result, we also set it to "INVALID".
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– call exc frame

We set this slot to the exception handler of our caller. As there cur-
rently is no caller, we set this to "INVALID".

The reason we need to set all of these slots, even though they are all invalid, is
because we do expect them to exist. We can see this when we raise the exception.
Raising an exception works similarly to calling a function, but with different slots
in the frame. The frame consists of the following slots:

– return

The return code pointer of the exception handler.

– parent

The parent of the current exception handler.

– caller

The caller of the current exception handler.

– exc handler

The exception handler under which we evaluate our current exception
handler.

– exc intermediate

We use this slot to store an intermediate reference to the current excep-
tion handler. We need this as we directly set our current self frame to
the frame we create here. If we do not set this intermediate we would lose
access to the current exception handler, as we lose access to the self

frame.

– arg1

The value we want to raise, 42 in the case of this example.

Now that we know how we can raise an exception, we will want to catch it.
We can see a Scheme program which does this here:

(with-handlers (((lambda (x) #t) (lambda (x) x))) (raise 42))

This exception handler consists of three parts:

1. The matching function, (lambda (x) #t)

2. The function which we will call to handle the exception, (lambda (x) x)

3. The expression we are evaluating under the handler, (raise 42)

Scheme uses the matching function to see if we should use the current handler,
or if we should traverse the stack to find a different one3. We invoke the second
function with the item we are raising, which is 42 in this case.

Compiling this program gives us the following output:

3 We force this function to always return true, and as a result we do not actually
compile it.
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1 frame: [

2 Main := frame: [

3 start := code {

4 // set the initial exception handler

5 self.exc_handler := frame: [

6 handler := frame: [

7 function := ^.^.default_handler.start,

8 parent := "INVALID",

9 ],

10 caller := "INVALID",

11 return := "INVALID",

12 call_exc_frame := "INVALID",

13 ];

14 // create the function frame for the new exception handler

15 self.intermediate := frame: [

16 function := ^.^.handler.start,

17 parent := self,

18 ];

19 // set the current handler to the newly created handler

20 self := frame: [

21 parent := self,

22 exc_handler := frame: [

23 return := ^.done,

24 caller := self,

25 handler := self.intermediate,

26 call_exc_frame := self.exc_handler,

27 ],

28 ];

29 // set up the environment needed in the exception handler

30 self := frame: [

31 return := self.exc_handler.return,

32 parent := self.exc_handler.handler.parent,

33 caller := self.exc_handler.caller,

34 exc_handler := self.exc_handler.call_exc_frame,

35 exc_intermediate := self.exc_handler.handler.function,

36 arg1 := 42,

37 ];

38 // raise the exception

39 jump self.exc_intermediate self;

40 },

41 done := code {

42 self.res := self.callee_result;

43 show self.res;

44 },

45 ],
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46 handler := frame: [

47 // the with-handlers exception handler

48 start := code {

49 self.x := self.arg1;

50 self.caller.callee_result := self.x;

51 jump self.return self.caller;

52 },

53 ],

54 default_handler := frame: [

55 // the default exception handler

56 start := code {

57 self.res := "uncaught exception: " # self.arg1;

58 show self.res;

59 },

60 ],

61 ]

In this example we see that before we raise our exception we first create a
new exception handler. This exception handler sets all the slots we discussed
previously to sensible data, namely the slots of the current default exception
handler. After we have created this new handler the program continues as before
by creating the environment needed by the raise exception, and then raising the
exception.

As we actually have an exception handler now, we enter its body and directly
return the value we were raising. As previously mentioned, all Scheme expressions
resolve to a single value which is then printed. In our case that is the value we
are also raising, as that is the value returned by the exception handler. We can
see that the done code pointer performs this action.

With the introduction of exceptions and its related slots, we also introduce
the following three slots to the convention:

– exc handler

The slot which contains all the information needed by the exception
handler, relative to self.

– handler

The slot which contains the function which we will use as the exception
handler.

– call exc frame

The slot which contains the exception handler which encapsulates the
current exception handler.
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3 Implementation

We implemented the Framed language, as well as the FrameVM machine used
to run it, using the Spoofax language workbench. We will show how we desugar
relative paths to absolute paths in subsection 3.1. Furthermore, the FrameVM
includes a garbage collector, which we will present in subsection 3.2.

3.1 Path Sugar

As we intend the language to be as minimal as possible there is only one in-
stance of sugar in the syntax, namely the ^ or ”up” for paths. Before a program
executes, these paths are statically resolved and rewritten to a top-down access
of the slot. In the case of Figure 6, the show ^.branch will be rewritten to show

Main.branch. The reason for this static resolving is the fact that it is possible
to change the memory layout of the program during execution. For example we
can reference the Main frame from two other frames, making the reference am-
biguous. This would make resolving the request to go up a frame impossible, as
it would suddenly result in two frames being accessible. We show an example of
this in Figure 7. In this example both the outer most program frame, as well as
the someSlot slot in the frame Other refer to the same Main frame. As a result,
the show instruction on line 13 would either refer to the program frame, or the
Other frame, resulting in an ambiguity.

1 frame: [

2 Main := frame: [

3 start := code {

4 ^.^.Other.someSlot := ^.^.Main;

5 show ^.^;

6 },

7 ],

8 Other := frame: [],

9 ]

Fig. 7. An example where ^ would become ambiguous if we resolve during run-
time

A keen reader will probably have noticed that it is not possible for a pro-
grammer to use this top-down access method directly. This is by design, as the
path could change if the program is, for example, loaded as a module by a differ-
ent program. If we were to include a program as a frame in a different program
all absolute paths would no longer resolve, as they are now encapsulated by the
extra frame. By disallowing absolute paths this problem will never occur.
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3.2 Garbage Collection

The FrameVM makes use of a basic mark-and-sweep[6] garbage collection algo-
rithm. For every frame we initialise, we save a reference in the machine. When-
ever we initialise a new frame, or assign a new slot, we check if we have not yet
reached the maximum amount of memory. We do this by passing all currently
known visible frames to the garbage collector, which in our case are the cur-
rent self frame as well as the top level program frame. We can configure the
maximum amount of memory by three different metrics, namely the following:

– MAX FRAMES: The total number of frames which may exist at the same time.
– MAX SLOTS: The maximum number of slots which may exist in a single frame.
– MAX TOTAL SLOTS: The maximum number of slots which may exist over all

frames.

Furthermore, we can configure at which percentage of the MAX TOTAL SLOTS or
MAX FRAMES we should invoke the garbage collector. It is not sensible to also
check for a limit of MAX SLOTS, as it is not possible to garbage collect slots in a
frame. This is the case because whenever a frame is accessible, all slots within
it are also accessible.

The garbage collector works by intercepting all calls which deal with mem-
ory. Whenever we assign to a slot or initiate a new frame the garbage collector
checks if this action follows the conditions. It can check this by keeping track of
all frames when we initialise them. When it finds we are at capacity it recursively
traverses all visible frames, and marks these as accessible. After we have iterated
over all visible frames and marked them we iterate over all frames which exist,
deleting all unmarked frames and unmarking all marked frames. All these oper-
ations are also logged, so we can see the number of frames the garbage collector
has collected when a program has finished running.
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4 Formal Semantics of Framed

In this section we will present the formal definition of Framed. We will discuss
how we can evaluate base expressions to values in subsection 4.1, and how we can
evaluate expressions to values in subsection 4.2. After this we will discuss how
we perform instructions in subsection 4.3, and entire programs in subsection 4.4.

A difference between the formal definition of Framed and the Framed dis-
cussed in section 2 is the fact that relative paths are not a part of the formal
definition, as these would cause ambiguities (subsection 3.1). As such we need to
access all slots by traversing the program frame top-down, changing the syntax
for paths. We also introduce the syntax for our heap (denoted with the symbol
h). We place all frame values (denoted with the symbol σ) we introduce on this
heap. If a frame refers to a different frame it makes use of a frame pointer. This
frame pointer refers to a location on the heap, which allows us to use frames
without copying them.

We provide this altered syntax in Figure 8. The rest of the syntax remains
the same.

p ::= self

|
| p.x

h ::= ∅
| x = σ; h

σ ::= ∅
| x = v; σ

x, y ∈ Identifier σ = a frame value v ∈ {c, s, x, z}

Fig. 8. The updated syntax for Framed

To improve readability we do not show the ∅ as part of our heap or frame
value if it is not empty. Also note that frames are not included in the valid list
of values. Instead we use the previously introduced frame pointers, which take
the form of identifiers. In all judgments Σ and Π are values, that typically are
frame pointers to the self frame and program frame respectively.

We define the abstract function getH(h, x), which returns the value located
at location x on the heap. For our frame values we define the abstract function
getF(σ, x), which gets the value stored in slot x of the frame value σ. Both
getH and getF are undefined in case the location or slot we are resolving does
not exist.

We also define the abstract function setH(h, x, σ), which assigns the frame
value σ to the location x on the heap. This function returns an updated heap
h′. For our frame values we define the abstract function setF(σ, x, v), which
assigns the value v to the slot x in frame value σ. This function returns the
updated frame value σ’. Both setH and setF introduce a new location or slot it
does not already exist. Otherwise, they overwrite the existing one.
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Lastly we introduce the abstract function initFrame(h). This function ini-
tialises a frame value on the heap, and returns the tuple 〈h′, x〉, where h′ is the
updated heap and x is the frame pointer and unique.

4.1 Base Expressions

In order to discuss how we evaluate expressions, we need to know how we evaluate
base expressions. We define the evaluation of basic expressions by means of the

judgment 〈b,Σ,Π, h〉 B
=⇒ v, where b is a base expression, Σ is the current value

representing the self frame, Π is the current value representing the program
frame, h is the heap, and v is a value.

For integer, string, and code pointer base expressions the values are identical
to the base expressions themselves. As such, we can evaluate these without any
precondition and we resolve to the base expression itself without altering it.

The way we evaluate path base expressions is more complicated. As we can
see in Figure 9 there are two rules which evaluate a path. We use the first of
these rules, B-Path1, to resolve slots in self (Σ). We use the second of these
rules, B-Path2, to resolve paths in the program itself (Π).

B-Int

〈z,Σ,Π, h〉 B
=⇒ z

B-String

〈s,Σ,Π, h〉 B
=⇒ s

B-Code

〈c,Σ,Π, h〉 B
=⇒ c

B-Path1

〈Σ, h, [x1, . . . , xn]〉 Fetch
====⇒ v n ≥ 0

〈self.x1.· · · .xn, Σ,Π, h〉
B
=⇒ v

B-Path2

〈Π,h, [x1, . . . , xn]〉 Fetch
====⇒ v n ≥ 0

〈 .x1.· · · .xn, Σ,Π, h〉
B
=⇒ v

v ∈ {c, s, x, z} Σ = value representing the self frame
Π = value representing the program frame h = the heap

Fig. 9. Semantics for base expressions

To resolve paths we make use of the fetch rule, which we define in Figure 10.

We define the evaluation of fetch by means of the judgment 〈v, h, xs〉 Fetch
====⇒ v′,

where v and v′ are values, h is the heap, and xs list of identifiers.
Fetch resolves the path relative to the frame pointer we are querying. This

means that for a path such as self.value we resolve in Σ, while for a path such
as ^.branch we resolve in Π.

4.2 Expressions

Expressions make use of the rules we have introduced in subsection 4.1. They
evaluate the base expressions that are part of the expression, and perform the
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Fetch1

〈v, h, []〉 Fetch
====⇒ v

Fetch2

〈getF(getH(h, v), x), h, xs〉 Fetch
====⇒ v′

〈v, h, [x|xs]〉 Fetch
====⇒ v′

x ∈ Identifier v ∈ {c, s, x, z}

Fig. 10. Semantics for fetch

accompanying operation on the resulting values. We define evaluation of expres-

sions by means of the judgment 〈e,Σ,Π, h〉 E
=⇒ 〈v, h′〉, where e is an expression,

Σ is the current value representing the self frame, Π is the current value rep-
resenting the program frame, h is the current heap, v is a value, and h′ is the
updated heap. The reason for we produce an updated heap is because of the
E-Frame rule, which creates new frames on the heap. We present the rules in
Figure 11.

In the case of negation (as we can see in E-Not1 and E-Not2) we treat every
value other than the integer value 0 as truthy. As such we can negate any base
expressions, regardless of what type of value it resolves to. A benefit of this is
the fact that we can use any value when performing a branching instruction, as
we will show in subsection 4.3.

E-BinOp

〈b1, Σ,Π, h〉
B
=⇒ v1 〈b2, Σ,Π, h〉

B
=⇒ v2 v = v1 ⊕ v2

〈b1 ⊕ b2, Σ,Π, h〉
E
=⇒ 〈v, h〉

E-Not1

〈b,Σ,Π, h〉 B
=⇒ 0

〈!b,Σ,Π, h〉 E
=⇒ 〈1, h〉

E-Not2

〈b,Σ,Π, h〉 B
=⇒ v v 6= 0

〈!b,Σ,Π, h〉 E
=⇒ 〈0, h〉

E-Frame

〈h0, x〉 = initFrame(h) ∀1 ≤ i ≤ n. 〈ei, Σ,Π, hi - 1〉
E
=⇒ 〈vi, hi〉

h′ = setH(hn, x, (x1 = v1; ...; xn = vn;))

〈frame: [x1 := e1, ..., xn := en], Σ,Π, h〉
E
=⇒ 〈x, h′〉

v ∈ {c, s, x, z} ⊕ ∈{+, -, /, *, <, #, ==, &&, ||}
Σ = value representing the self frame Π = value representing the program frame

h = the heap

Fig. 11. Semantics for expressions
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The E-Frame rule applies when we introduce a new frame. When creating a
frame, we need to evaluate all expressions which we will store in the frame. As
such we loop over all expressions, evaluate them to values, and then store these
values in a new frame. In the case where we create an empty frame, we will not
evaluate any expressions and as a result will not store any of them. This rule
adds a new frame to the heap.

4.3 Instructions

All instructions resolve to a tuple, containing an updated list of instructions, an
updated self value Σ, an updated program value Π, and an updated heap h. We

define the evaluation of instructions by means of the judgment 〈i, cs,Σ,Π, h〉 I
=⇒

〈cs′, Σ′, Π ′, h′〉, where i is an instruction, cs is a list of instructions, Σ is the
current value representing the self frame, Π is the current value representing
the program frame, and h and h′ are heaps. We need the list of subsequent
instructions cs in order to perform branching operations, as these instructions
alter the list.

In the case of the assign rules we make use of the put rule, where we define
put in Figure 12. We define the evaluation of put by means of the judgment

〈v, h, xs, v′〉 Put
===⇒ h′, where v and v′ are values, h and h′ are heaps, and xs is a

non-empty list of identifiers.

Put1

〈v, h, [x], v′〉 Put
===⇒ setH(h, v, setF(getH(h, v), x, v’))

Put2

〈getH(v, x), h, xs, v′〉 Put
===⇒ h′

〈v, h, [x|xs], v′〉 Put
===⇒ h′

x ∈ Identifier v ∈ {c, s, x, z}

Fig. 12. Semantics for put

We can see in the rules I-IfEq1 and I-Jump in Figure 13 that we alter the
previously mentioned list cs in the return value. As mentioned in subsection 4.2,
we treat all values except for the integer 0 as truthy. As such, we can see in the
rules for ifeq that we only perform a jump when the condition evaluates to this
zero value.
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I-Show

〈show b, cs,Σ,Π, h〉 I
=⇒ 〈cs,Σ,Π, h〉

I-Jump

〈b1, Σ,Π, h〉
B
=⇒ cs′ 〈b2, Σ,Π, h〉

B
=⇒ Σ′

〈jump b1 b2, cs,Σ,Π, h〉
I
=⇒ 〈cs′, Σ′, Π, h〉

I-IfEq1

〈b1, Σ,Π, h〉
B
=⇒ 0 〈b2, Σ,Π, h〉

B
=⇒ cs′ 〈b3, Σ,Π, h〉

B
=⇒ Σ′

〈ifeq b1 b2 b3, cs,Σ,Π, h〉
I
=⇒ 〈cs′, Σ′, Π, h〉

I-IfEq2

〈b1, Σ,Π, h〉
B
=⇒ v v 6= 0

〈ifeq b1 b2 b3, cs,Σ,Π, h〉
I
=⇒ 〈cs,Σ,Π, h〉

I-Assign1

〈e,Σ,Π, h〉 E
=⇒ 〈v, h′〉 〈Σ, h′, [x1, . . . , xn], v〉 Put

===⇒ h′′ n ≥ 1

〈self.x1.· · · .xn := e, cs,Σ,Π, h〉 I
=⇒ 〈cs,Σ,Π, h′′〉

I-Assign2

〈e,Σ,Π, h〉 E
=⇒ 〈v, h′〉

〈self := e, cs,Σ,Π, h〉 I
=⇒ 〈cs, v,Π, h′〉

I-Assign3

〈e,Σ,Π, h〉 E
=⇒ 〈v, h′〉 〈Π,h, [x1, . . . , xn], v〉 Put

===⇒ h′′ n ≥ 1

〈 .x1.· · · .xn := e, cs,Σ,Π, h〉 I
=⇒ 〈cs,Σ,Π, h′′〉

I-Assign4

〈e,Σ,Π, h〉 E
=⇒ 〈v, h′〉

〈 := e, cs,Σ,Π, h〉 I
=⇒ 〈cs,Σ, v, h′〉

v ∈ {c, s, x, z} Σ = value representing the self frame
Π = value representing the program frame h = the heap

Fig. 13. Semantics for instructions

4.4 Programs

In order for a program to be executable we need to create at least two frame
values. The first frame must contain a slot named Main, which contains another
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frame with a slot named start. This slot must in turn contain a code pointer,
which is the code that we execute to start the program. When we invoke a
program we apply the rule P-Run, as described in Figure 14. The result of a
program is a tuple, containing the final program value Π, final self value Σ,
and the final heap h. We define the evaluation of programs by means of the
judgment r ⇒ 〈Σ,Π, h〉 where r is the program frame, Σ is the resulting self

value, Π is the resulting program value, and h is the resulting heap.
The code pointer we resolve and run consists of a list of instructions. We de-

scribe the running of these instructions in the rules C-Empty and C-NotEmpty.
We apply the former of these rules in case there are no instructions in the code
pointer, or if there are no more instructions to execute. We apply the latter rule
when there is at least one instruction still available. In this case, we evaluate the
first instruction in the list. Because it is possible to jump to a different block of
instructions, evaluating an instruction returns the list of instructions which we
need to evaluate after the current one has finished. We define the evaluation of
code pointers by means of the judgment cs,Σ,Π, h

C
=⇒ 〈Σ′, Π ′, h′〉 where cs is

a list of instructions, Σ is the self value, Π is the program value, and h is the
heap.

C-Empty

〈[], Σ,Π, h〉 C
=⇒ 〈Σ,Π, h〉

C-NotEmpty

〈c, cs,Σ,Π, h〉 I
=⇒ 〈cs′, Σ′, Π ′, h′〉 〈cs′, Σ′, Π ′, h′〉 C

=⇒ 〈Σ′′, Π ′′, h′′〉

〈[c|cs], Σ,Π, h〉 C
=⇒ 〈Σ′′, Π ′′, h′′〉

P-Run

〈r, ∗, ∗, ∅〉 E
=⇒ 〈Π,h〉 〈Σ, h′〉 = initFrame(h)

〈Π,h′, [Main, start]〉 Fetch
====⇒ c 〈c,Σ,Π, h′〉 C

=⇒ 〈Σ′, Π ′, h′′〉

〈r〉 ⇒ 〈Σ′, Π ′, h′′〉

c = code pointer Σ = value representing the self frame
Π = value representing the program frame ∗ is any value, as it is never used

r = the program, which takes the form of a frame

Fig. 14. Semantics for entire programs

The P-Run rule needs further explanation, as it uses a magic value *. It
is impossible for path expressions to be part of the program frame itself, as
mentioned in section 2. As a result we will never access Σ nor Π, meaning we
can pass any value to the E-Frame for either of these. The E-Frame rule in turn
evaluates all program slots and creates our heap and program frame pointer Π.
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By reusing this rule we do not alter the behaviour of top level frames from frames
defined during execution, making the behaviour of Framed more consistent.
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5 Compiling Scheme to Framed

In order to test the usability of the Framed language, we developed a compiler
for Scheme. We chose Scheme as it contains the three main interesting control
flow constructs we wanted to compile: closures (subsection 5.4), call/cc (sub-
section 5.5), and exceptions (subsection 5.6). There are numerous dialects of
Scheme, such as MIT-Scheme[15] and Racket[12], which have behavioural differ-
ences. Because of this we chose a specific dialect as reference for the compiler,
namely Racket.

The compilable subset consists of the following expressions, which we chose
to cover a wide range of control operations:

1. Binary Expressions (+, *, >, equal?)
2. Unary Expressions (not)
3. Variables (let, letrec, set!)
4. Exceptions4 (raise, with-handlers)
5. Conditionals (and, or, if)
6. Continuations (call-with-current-continuation)
7. Procedures5 (lambda)
8. Literals (#t, #f, integers)
9. Miscellaneous (writeln, begin)

The compiler makes use of an internal language called FrameFlat. This lan-
guage differs from Framed by allowing programmers to ignore one of its defining
features, namely slots. Instead of having to define slots we can define labels,
which we use to indicate the boundaries of slots. Because of this we can cre-
ate a flat list of instructions in a frame, which compile to slots containing code
pointers.

The reason for this distinction is the fact that branching logic can generate
instructions for multiple code pointers. This in itself is not a major issue, however
the problem manifests when we try to compile an expression after a branching
expression. This compilation step either needs to be aware of its context in order
to store the instructions in the correct code pointer, or it needs to be able to
return a list of instructions which we need to append to the aforementioned list.
As a result the introduction of the FrameFlat language makes it a lot easier to
develop compilers for Framed. We show an example of a FrameFlat program and
the corresponding Framed program in Figure 15.

We will give an explanation of how we can compile FrameFlat to Framed
in subsection 5.1. After this we will present how we can compile Scheme to
FrameFlat, starting with a number of base expressions in subsection 5.2. Once
we have explained this, we will present how we compile closures in subsection 5.4.
This in turn will more easily allow us to explain how we compile call/cc in
subsection 5.5, and how we compile exceptions in subsection 5.6.

4 Again, the only valid guard allowed for with-handlers is the lambda (lambda (x)

#t). We believe this is a fair limitation, as we can still emulate the behaviour of
different guards in the handler body. As such we believe being able to compile guards
was not important for this research.

5 Lambdas only accept a single argument.
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self.value := 0;

jump ^.branch self;

lbl branch;

show self.value;

⇒

frame: [

Main := frame: [

start := code {

self.value := 0;

jump ^.branch self;

},

branch := code {

show self.value;

},

],

]

Fig. 15. A FrameFlat program and the corresponding Framed program

5.1 Compiling FrameFlat

We make use of an intermediate language when compiling Scheme to Framed,
the syntax of which we can find in Figure 16. This language does not have code
pointers, but instead has labels. We can generate a list of instructions in our
compiler without having to explicitly know where code pointers begin and end.
However, we are still able to generate frames directly as part of an expression. We
need this to, for example, generate a function frame as we describe in section 2.

r ::= i+ program

b ::= z base expression
| s
| p

i ::= instruction
| p := e;
| ifeq b b b;
| jump b b;
| show b;
| lbl x;

f ::= frame: [d∗] frame

d ::= x := e, slot

e ::= b expression
| f
| !b
| b ⊕ b

p ::= self path
| u
| p.x

u ::= ^ path up
::= u.u

z ∈ Z s ∈ String x ∈ Identifier ⊕ ∈{+, -, /, *, <, #, ==, &&, ||}

Fig. 16. Syntax specification of FrameFlat

In order to convert this flat representation of the slots to an actual frame
we introduce the transformation fromFlat. This transformation takes a list of
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instructions as input, and returns a list of slots as output. We can find the
definition of this function in Figure 17.

fromFlat([]) ⇒

fromFlat([lbl x; | ii]) ⇒ x := code {

ii

},

where lbl _; 6∈ ii

fromFlat([lbl x; | ii]) ⇒ x := code {

ii'

},

res

where ii' ← takeUntil(?lbl _;) ii

res ← fromFlat(dropUntil(?lbl _;) ii)

Fig. 17. The fromFlat function needed to convert FrameFlat to Framed

In these rules, the ?lbl refers to us iterating through the list until we find
a label. So in other words we divide the list into parts, starting with labels. We
then use the labels as the name for a slot, and we use the rest of the instructions
as the body of the slot. As such, compiling an entire program works as follows:

[[ e ]]prog ⇒ frame: [

Main := frame: [

s

],

f,

]

where [[ e ]] ⇒ (v, i, f)

i' ← appendShow(i, v)

s ← fromFlat([lbl start; | i'])

In these rules appendShow appends a show v instruction if v is not the string
#<void>. Invoking a writeln expression returns this string, but it will not be
automatically printed if it is the resulting value of a program. As such, the com-
piler should not automatically generate code to print it. We define the judgment
for compilation as [[ e ]] ⇒ (v, i f), where e is the expression to compile,
v is the value this expression generates (so either the slot where we can find the
result of the expression, or the value itself), i is the list of instructions needed
to evaluate the expression, and f is a list of frames the expression generates.
This list of frames is useful in case we compile, for example, a lambda. Being
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able to move the code belonging to a lambda to a separate frame increases the
readability and understandability of the generated Framed program.

This compilation schema also shows us that compiling an expression returns
more than just a list of instructions. When compiling an expression, we return
the value of that expression, the instructions that expression generates, and the
frames that expression generates. The reason why we return all of these, will
become clearer in the next subsection.

For examples of how all these schemata work in practice we recommend down-
loading the compiler introduced in this paper, and going through the example
programs provided.

5.2 Compiling expressions

In this section we will present three expressions, namely integers, binary ex-
pressions, and if expressions. These three cover the main techniques which the
compiler makes use of.

Integers We start off by showing how we compile an integer:

[[ i ]] ⇒ (

i,

< >,

< >

)

As we can see compiling an integer returns a tuple. This tuple, as mentioned
in subsection 5.1, contains the value of the expression, the instructions needed
to evaluate the expression, and the frames this expression generates. We see
an integer directly returns its value without generating any code, meaning we
directly inject this value into further expressions in the program. If we look at
the Scheme program (begin 1 2) we see that the value 2 is the only value we
actually use, as this is the resulting value of the program. As we directly inject
the values we will only inject this value into a show expression, meaning there
is no reference to the 1 in the compiled program. A downside of this is that
decompilation to the exact program becomes impossible, as we have lost the
information that there was a sequence in the source program.

Binary Expressions In scheme binary operations take the form of the op-
erator, followed by two expressions. We can see an example of this previously
mentioned value injection when compiling these expressions:
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[[ (⊕ e1 e2) ]] ⇒ (

self.ρ,
<

i1

i2

self.ρ := v1 ⊕ v2;

>,

<

f1

f2

>

)

where [[ e1 ]] ⇒ (v1, i1, f1)

[[ e2 ]] ⇒ (v2, i2, f2)

ρ ← fresh

In order to perform a binary expression on two values we first need to evaluate
the expression which generates them. This means we first perform the instruc-
tions to evaluate e1, followed by the instructions to evaluate e2. We then store
the resulting value of the binary operation in an intermediate value, which is
the resulting value of the binary expressions. If we perform a binary expression
on two integers, both i1 and i2 will be empty, as we do not actually generate
any instructions. This means we will end up with a single line of code in order
to evaluate the binary expression, where we have injected the integers into the
expression itself. The following example shows how this happens:

[[ (+ 1 2) ]] ⇒ (

self.ρ,
<

self.ρ := 1 + 2;

>,

< >

)

where [[ 1 ]] ⇒ (1, < >, < >)

[[ 2 ]] ⇒ (2, < >, < >)

ρ ← fresh

Branching Expressions Now that we have presented the compilation of prim-
itive values and base expressions, we can look at how we compile branching
expressions. We start by presenting the compilation of if. The method with
which we compile branching expressions exemplifies the need for the distinction
between FrameFlat and Framed. We jump from one code pointer to another, so
we need to introduce labels we can jump to. If we instead generated slots directly
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we would never be able to add more code to an existing slot, or we would have
to generate partial slots resulting in invalid Framed code.

In Scheme if expressions take the form of the keyword if, followed by three
expressions. The first of these expressions, e1, is the condition. The following
expression, e2, is the expression that we evaluate in case the condition is true.
The last expression, e3, is the expression that we evaluate in case the condition
is false.

Compiling an if expression to FrameFlat is similar to how we would tra-
ditionally compile it to a language such as JVM bytecode. We perform the in-
structions needed to evaluate the condition, and jump if the condition evaluates
to false. If it does not, we fall through and evaluate the true branch of the if
statement. If we had jumped, we would have ended up in a code pointer where
we would instead evaluate the false branch. The compilation works as follows:

[[ (if e1 e2 e3) ]] ⇒ (

self.ρ1,
<

i1

ifeq v1 ^.ρ2 self;

i2

self.ρ1 := v2;

jump ^.ρ3 self;

lbl ρ2;
i3

self.ρ1 := v3;

jump ^.ρ3 self;

lbl ρ3;
>,

<

f1

f2

f3

>

)

where [[ e1 ]] ⇒ (v1, i1, f1)

[[ e2 ]] ⇒ (v2, i2, f2)

[[ e3 ]] ⇒ (v3, i3, f3)

ρ1 ← fresh

ρ2 ← fresh

ρ3 ← fresh

A detail which might stand out is the fact that we jump to relative paths.
We do this because there are constructs which introduce new frames. This forces
us to use a relative path in order to jump to the correct code pointer. Therefore
using paths such as ^.ρ2 makes sense.



Framing Programming Languages 31

5.3 Let Bindings

In Scheme we can bind multiple variables in the same let binding. A let binding
takes the following form:

(let ((x e1)) e2)

In this example we bind the result of the expression e1 to the variable x. We
then evaluate e2 in an environment where x exists. The reason for the duplicate
brackets in the let binding is because we can bind multiple variables in the same
binding:

(let ((x1 e1) (x2 e2)) e3)

A notable limitation to these bindings is the fact that we can not directly refer to
a previously bound variable this way. An example of such an invalid expression
is as follows:

(let ((x1 1) (x2 x1)) x2); <- invalid

However, if we bind a variable to lambda which references a different variable
this works fine, such as in this example:

(let ((x1 e1) (x2 (lambda () x1))) e3)

Scheme does provide a variation of the let bindings, letrec, where it is possible
to refer to previously bound variables directly. However, the evaluation order of
these bindings differs from implementation to implementation. As our compiler
follows the definition as provided by Racket we evaluate these bindings from left
to right. We provide the compilation schema for letrec in appendix A.

When we compile a let binding we want to reassign the current self in such a
way that it contains all the variables defined in the let binding. We first evaluate
all bindings, after which we introduce a new self frame which has a slot that
points to the old self frame, which we call the parent frame. The new frame
will also contain all variables which we are binding. We then evaluate the body
of the expression, and store the result of the evaluation in a slot in the parent
frame. We do this as the value would otherwise become inaccessible. After we
have finished evaluating the body of the let binding, we reset self to the parent
frame and leave the current scope.

We show this in the following compilation schema:
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[[ (let ((x1 e1) ... (xn en)) e2) ]]

⇒ (

self.ρ,
<

i1

...

in

self := frame: [

parent := self,

x1 := v1,

...,

xn := vn,

];

i2

self.parent.ρ := v2;

self := self.parent;

>,

<

f1

...

fn

f2

>

)

where [[ e1 ]] ⇒ (v1, i1, f1)

...

[[ en ]] ⇒ (vn, in, fn)

[[ e2 ]] ⇒ (v2, i2, f2)

ρ ← fresh

We pass along the value self.ρ to the next compilation step, as the previous
parent frame is now our self frame. An important detail of how we compile let
bindings is the fact that self is immediately overwritten with a new frame. If
we were to first create the frame and store it in an intermediate slot in the self

we would be unable to let it go out of scope, resulting in the garbage collector
being unable to free it.

However, just being able to store variables is not entirely useful as we would
also like to be able to retrieve them. Fortunately, this is trivial because we follow
the scope-as-frames model. When resolving a variable in the scope graph we
determine the number of parent edges we need to follow in order to reach the
declaration. Afterwards we inject the correct number of parent retrievals in the
path. It is noteworthy that this is not how we resolve variables if there is a call/cc
in the program. We will explain how this differs in subsection 5.5.

5.4 Compiling Closures

Closures in Scheme take the following form:
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(lambda (x) e)

Here x is the parameter which refers to the argument we pass to the lambda,
and e is the body of the lambda. To compile a closure there are two things we
need to keep track of: the code pointer which contains the body of the lambda,
and in which scope we defined it. We show this in the following schema:

[[ (lambda (x) e) ]] ⇒ (

self.ρ1,
<

self.ρ1 := frame: [

function := ^.^.ρ2.start,
parent := self,

];

>,

<

f

ρ2 := frame: [

s

],

>

)

where [[ e ]] ⇒ (v, i, f)

ρ1 ← fresh

ρ2 ← fresh

s ← fromFlat(<

lbl start;

self.x := self.arg1;

i

self.caller.callee_result := v;

jump self.return self.caller;

>)

Here we see that, for the first time, we introduce a new frame on which we
invoke fromFlat directly. This frame makes up the closure itself. By convention
this frame consists of a slot start, which is the slot we jump to when we invoke
the lambda. The first thing we do in the body of the closure is copy the value
of the argument to the named variable in the body. After this we append the
instructions which make up the body of the lambda. In order to be able to
return from the closure we store the result of the body in a slot in the caller. By
convention this is the callee result slot. After this, we jump to the return code
pointer as provided in the frame which we created when invoking the closure,
and set the self frame to the self frame of the caller.

The instructions the compilation generates create a type of ”function frame”.
This frame consists of a function and a parent slot. The function slot contains
a reference to the start slot of the closure frame we discussed previously. The
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parent slot contains the current self at the time of compilation. The reason for
this parent slot is the fact that we can reference variables outside of the lambda
body in the lambda. In order for us to be able to find them in our scope-graph
we need access to the parent scope at the time we compile the closure.

Invocation In order to invoke a closure, we first need to retrieve the ”function
frame” which defines it. We create a new frame which will be the ”call frame”
for the closure. This ”call frame” contains the return address of the closure, the
caller to which we should return control, the argument passed to the closure,
and the parent scope of the closure.

After we have created this ”call frame” we jump to the code pointer which
contains the instructions belonging to the closure. After we have jumped back
from the closure, we copy the result value to a temporary slot, potentially wasting
a slot. We perform this copy because in the case of recursive functions this slot
could be overwritten, but this is not always needed. It is possible to optimise
this by performing data flow analysis on the source program. For the purpose of
this compiler we have not implemented this.

We show how we compile a closure call in the following schema, where e1 is
the closure and e2 is the argument:

[[ (e1 e2) ]] ⇒ (

self.ρ1,
<

i1

i2

self := frame: [

return := ^.ρ2,
caller := self,

arg1 := v2,

parent := v1.parent,

];

jump self.caller.v1.function;

lbl ρ2;
self.ρ1 := self.callee_result;

>,

<

f1

f2

>

)

where [[ e1 ]] ⇒ (v1, i1, f1)

[[ e2 ]] ⇒ (v2, i2, f2)

ρ1 ← fresh

ρ2 ← fresh



Framing Programming Languages 35

Because of the way we compile closures we can reuse this invocation code
when invoking a continuation. As such, all the complexity when compiling a
call-with-current-continuation lies in the setup needed to create a closure
which correctly sets up the environment when invoked. We will show how we
actually achieve this in subsection 5.5.

5.5 Compiling call/cc

In Scheme call-with-current-continuation is an operator which takes a sin-
gle expression6. This works as follows:

(call-with-current-continuation (lambda (x) e))

Here the lambda receives the continuation of the call/cc as its argument. The
body of the lambda can then choose to call this continuation, or ignore it. This
leads to interesting control flow behaviour, as in the case of the following exam-
ple:

(+ 1 (call-with-current-continuation (lambda (x) (+ 2 (x 3)))))

In this program the lambda receives the continuation (+ 1 tu), where the result
of its evaluation fills the hole in the binary expression. In the case of our example
we call the continuation with the value 3. That means the expression we evaluate
to will be equal to (+ 1 3). This means that by invoking the continuation we
can ”break out of” the expression (+ 2 (x 3)).

We can also decide to not invoke the continuation:

(+ 1 (call-with-current-continuation (lambda (x) (+ 2 3))))

In the case of this example we return to the continuation (+ 1 tu) when we
exit the lambda body. This means that the expression we evaluate is equal to
(+ 1 (+ 2 3)). As we show here we can model complex control flow using just
call/cc.

As previously mentioned, compiling call-with-current-continuation is
not too different from compiling a closure, as we show in the following schema:

6 In the case of our compiler this expression has to be a lambda, as for all other
programs we can remove the call/cc as the continuation is not used.
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[[ (call-with-current-continuation e) ]]

⇒ (

self.ρ1,
<

i

self := frame: [

return := ^.ρ3,
caller := self,

arg1 := frame: [

function := ^.ρ2,
parent := self,

]

parent := v.parent,

];

jump self.caller.v.function self;

lbl ρ2;
self.parent.callee_result := self.arg1;

self := self.parent;

jump ^.ρ3 self;

lbl ρ3;
self.ρ1 := self.callee_result;

>,

<

f

>

)

where [[ e ]] ⇒ (v, i, f)

ρ1 ← fresh

ρ2 ← fresh

ρ3 ← fresh

isPath(v)

In order to invoke the handler of the call/cc we need to pass it a continuation.
This continuation contains the same two slots as the ”call frame” we introduced
when discussing closures. In this case the arg1 slot contains the continuation.
This continuation is equal to the ”function frame” in the case of closures. The
function slot in this frame is a link to a slot containing the next expression after
evaluating the call/cc, in the case of our examples this is equal to (+ 1 tu). In
general this is the code pointer we would jump to after we have evaluated the
call/cc.

We see that ρ3 is where we will continue after the call/cc, as we set this as
the return code pointer for our call frame. ρ2 is the continuation we pass to the
lambda. The need for distinction between these two code pointers exists because
we need to correctly set up our environment when we invoke the continuation
manually. In the case where we do not invoke the continuation, the lambda we
invoked will return control itself. If we invoke the continuation with a value we
still need to return control the correct frame. We do this in the ρ3 slot.
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As all data on the FrameVM is mutable it is also possible to model delimited
continuations using the current compiler[22]. However, a direct implementation
of delimited continuations would be beneficial, but we left this as an exercise to
the reader.

A difference from normal compilation which we have not yet discussed, but
is important when compiling call/cc, is how we retrieve variables. Normally
we access variables directly. If we were to do that for programs which make
use of call/cc, it is possible that they return an incorrect result. This is the
case as all variables are mutable, meaning it is possible to overwrite the variable
when invoking the continuation. As such, whenever a program contains a call/cc
instruction, we store the retrieval of all variables in intermediate slots.

5.6 Compiling Exceptions

Now that we have discussed how closures and continuations work, we can see
that exceptions are a straightforward expansion of these two. Before we discuss
how we can compile them, we need to discuss a limitation to Scheme which our
compiler imposes.

In Scheme, exceptions take the following form:

(with-handlers (((lambda (x) #t) e1)) e2)

In this example the lambda (lambda (x) #t) is a guard. We can use this guard
to determine whether the current handler should handle the exception. If the
guard returns true we will use the current handler, otherwise we will raise the
exception again. We do not allow the guard to return false, which means we can
only use the lambda used in the example. We decided on this limitation as we
can model the behaviour of a guard in the body of the exception handler, which
in our example is the expression e1. This expression takes the form of a lambda,
which takes the value we raise as an argument. The last expression e2 is the
expression we are evaluating under the handler.

If a raise exists in the program we add a slot named exc handler to the
self frame. This slot contains a frame which stores all information needed to
raise an exception. Because of this we need to copy over this exception handler
every time we introduce a new self frame. As a result the way closures and
let bindings work changes when we introduce a raise expression to the source
program. The way we actually compile an entire program also differs. If we
raise an exception without setting a handler we want the program to still exit
”cleanly”. As a result, if we have a raise in the program we add the following
instruction to the Main.start slot:
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self.exc_handler := frame: [

handler := frame: [

function := ^.^.ρ1.start,
parent := "INVALID",

],

caller := "INVALID",

return := "INVALID,

call_exc_frame := "INVALID",

];

This instruction sets the initial exception handler. We set a lot of the slots
to the value "INVALID". This is because there is no valid value to assign to these
slots at this point in time. If these are ever used by any other part of the code
the program would crash, which is what we expect to happen, since there is no
valid program which accesses these values. However, we still must set these slots,
since we copy these values. As such not setting them will not solve the problem
of the program exiting cleanly, as we will still be addressing non-existent slots.

A keen reader will also have noticed that we reference a frame here which
we have not yet introduced. This is the case because we also introduce a new
frame at the top level of the program, which contains the handler code for the
exception. This handler makes sure we exit the program cleanly, and print the
same error message Racket prints. This frame works as follows:

ρ1 := frame: [

start := code {

self.ρ2 := "uncaught exception: " # self.arg1;

show self.ρ2;
},

],

This handler takes the value we are raising, and appends it to the string
uncaught exception:, after which it prints that string.

Now that we know how the base case works, the way that we compile the
with-handlers and the raise becomes straightforward. First we will show the
schema for how to compile a raise expression:
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[[ (raise e) ]]

⇒ (

"INVALID",

<

i

self := frame: [

return := self.exc_handler.return,

parent := self.exc_handler.handler.parent,

caller := self.exc_handler.caller,

exc_handler := self.exc_handler.call_exc_frame,

ρ := self.exc_handler.handler.function,

arg1 := v,

];

jump self.ρ self;

>,

<

f

>

)

where [[ e ]] ⇒ (v, i, f)

ρ ← fresh

From this schema it becomes clear that raising an exception is, again, the
invocation of a closure with some setup. An interesting aspect is the intermediate
slot which contains the handler function. The reason we copy this function is
because we set the self to a new frame. If we did not copy this value the
handler would go out of scope before we could call it. Another important detail
is the value that we pass as the result of the raise expression. This is, as seen
previously, the "INVALID" string. We can not write a valid program where we
use this value, but we must return a value.

Raising an exception changes the exception handler. This becomes necessary
in case we have nested handlers, as this would be the handler of the current
handler. We show how this works, and how we compile with-handlers, in the
following schema:
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[[ (with-handlers (((lambda (x) #t) e1)) e2) ]]

⇒ (

self.ρ1,
<

i1

self := frame: [

parent := self,

exc_handler := frame: [

return := ^.ρ2,
caller := self,

handler := v1,

call_exc_frame := self.exc_handler

]

];

i2

self.parent.callee_result := v2;

jump ^.ρ2 self.parent;

lbl ρ2;
self.ρ1 := self.callee_result;

>,

<

f1

f2

>

)

where [[ e1 ]] ⇒ (v1, i1, f1)

[[ e2 ]] ⇒ (v2, i2, f2)

ρ1 ← fresh

ρ2 ← fresh

isPath(v1)

This setup creates a new self frame which contains the new exception han-
dler. It then executes the expression e2 which we evaluate under the handler,
after which it will jump to a new block of code. The reason for this is because
we need to end up in a join point, as it is not certain if we raise an exception.
Because of this we need to be able to guarantee we end up at the same block
of code whether we raise an exception or not. As such, we create the ρ2 label
which will be the return point of the exception handler as well as the jump of
the aforementioned expression e2, which gives us the join point we want.

5.7 Optimisations

There are three optimisations we apply when compiling the code:

– We do not copy variables to intermediate slots if there is no call/cc in the
program

– We do not inject handler code if there is no raise in the program
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– We combine nested let/letrec where possible

As mentioned in subsection 5.5, whenever we reference a variable in a program
which contains a call/cc we copy the variable to an intermediate slot. As it is
impossible to end up in a case where this is necessary without a call/cc in the
program, we do not do this if there is none in the program.

As seen in subsection 5.6, we inject a lot of instrumentation code when we
want to raise an exception. This consists of the exc handler slot, the frame
with the values for the default exception handler, as well as the default exception
handler itself. As all of these are not necessary when we do not raise an exception,
we do not include these when there is no raise in the program. We give an example
of the resulting code this generates in Figure 31.

(+ (with-handlers (((lambda (x) #t) (lambda (x) 1337))) 10) 32)

1 frame: [

2 Main := frame: [

3 start := code {

4 self.s_0 := 10 + 32;

5 show self.s_0;

6 },

7 ],

8 ]

Fig. 31. An example of a Racket program which makes use of an exception
handler, but will never raise an exception

As we see in this example, the handler is not part of the code. Neither are
all the frames needed to keep track of the current exception handler. This cleans
up the compiled code a lot, but does make decompiling of the original code
impossible, as this exact program is also produced if we were to compile (+ 10

32).

The last optimisation is not specific to this compiler, but it is a useful one.
If we have a let/letrec bind which only contains another let binding as its body,
we merge them if allowed. This means that instead of introducing two new
scopes, which both need a frame, we only introduce a single scope. We show an
example of this optimisation in Figure 32. This of course is not always possible,
for example in the case the inner let bind refers to the variable declared in the
outer let bind. In such a case we do not apply the optimisation, as it would
create an invalid program.
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(let ((x 1)) (let ((y 2)) y))

; gets optimised to

(let ((x 1) (y 2)) y)

Fig. 32. An example of how the compiler optimises a let bind

5.8 Testing

In order to test the compiler, we wrote 154 example programs in Scheme. We use
a script to run all these programs using the official Racket interpreter and capture
the output. We then combine the input programs and the output the Racket
interpreter generates to create a Spoofax test suite in SPT, which compiles and
runs all the programs using the Scheme to Framed compiler. This gives us a
reasonable indication that the compiler we introduce in this paper compiles
common programs correctly.

Furthermore, we wrote a separate test suite to test the optimisations de-
scribed in subsection 5.7. These test that applying the optimisations actually
changes the code that we generate. This is helpful, as we otherwise only test the
behaviour of the generated code and ignore the generated code itself.

5.9 Known Limitations

There are three known limitations of the current implementation.

Boolean Conversion The first of these is that we convert booleans to integers
in the generated Framed code. This means that we can compile certain invalid
Scheme programs such as the one seen in Figure 33, even though they are not
valid Scheme code. We could solve this by wrapping all values in a frame, con-
taining an integer representing the value and a second value representing the
type. However, this would be memory intensive and difficult to work with.

(+ 1 #t) ; prints 2 when compiled and ran

Fig. 33. An invalid Racket program which we can compile

Incorrect writeln Output The second known issue is the fact that we do
not always handle the (writeln e) instruction correctly. We convert this call
to a show e instruction in Framed. This is not always correct, as it does not
take into account how Scheme prints things such as lambdas. For example, the
program shown in Figure 34 crashes when executed. This would be non-trivial
to fix, as we would need to write instrumentation code in Framed to handle the
conversion of a lambda to the correct string. For the purpose of this research we
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only implemented the writeln instruction for debugging purposes. As such, we
deemed it a fair compromise for it to work most but not all of the time.

(writeln (lambda (x) x))

Fig. 34. A Racket program which crashes when executed

Exceptions Affect Compilation Schemata The last known issue is the fact
that exceptions change the way we compile other expressions. As we currently
copy the exception handler whenever we introduce a new self frame, we need to
be aware of exceptions when compiling. This means that the compilation schema
for raise and with-handlers might break if we add more expressions to the
compiler. As such, a rewrite of the way we compile exceptions is desirable.
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6 Evaluation of Framed

In this paper we introduced a new language, Framed, with the main goal of
providing a DSL which allows for a direct encoding of the scopes-as-frames
paradigm. In this section we will evaluate whether we have achieved this goal,
as well as the goal of allowing the compilation of complex control flow.

6.1 Encoding of scopes-as-frames

In section 1 we outlined the following two goals for the Framed language, with
regards to the scopes-as-frames paradigm:

– Allow for a direct encoding of the scopes-as-frames paradigm.
– Do not have any data, including code, outside of frames.

In Framed we write all programs as a flat representation of our frame graph.
It does not make use of a heap or registers, but instead requires developers
to store all data in frames. Furthermore, all code is also stored in the frames,
making it clear which parts of source programs produce which frames and slots.

A downside of our encoding of the scopes-as-frames paradigm, which we
have previously addressed in section 2, is the fact that it is not possible to nest
frames under multiple frames. While it is possible to introduce a scope graph
where this is necessary, we do not provide a direct encoding of this in Framed.
However, we believe the increase in readability we have achieved by this trade-
off makes it worthwhile. Furthermore, it is still possible to encode these graphs
in Framed, but not directly. At runtime it is possible to build a frame graph
where a frame nests under multiple frames, allowing us to still provide a suitable
language for these edge cases.

Because of this we believe we have achieved our goal of providing an encoding
of the scopes-as-frames paradigm without the need to manually create the
frame graph, except for the situation previously outlined.

6.2 Encoding Complex Control Flow

In order to demonstrate the ability of Framed to compile complex control flow we
introduced a compiler from Scheme to Framed (section 5). This compiler focusses
on the compilation of call/cc as well as exceptions. We have demonstrated that
it is possible to model these operations, even though we explicitly limited the
instruction set available in Framed.

The existence of this compiler demonstrates the usability of Framed as a com-
pilation target for real program languages. Furthermore, the compiler demon-
strates that a large part of the scope graph is reusable when generating Framed
code, making it a well suited compilation target.

Because of this we believe we have achieved our goal of providing a compila-
tion target which allows for the encoding of complex control flow.
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7 Related Work

We have introduced a new virtual machine and corresponding language in order
to concisely work with the scopes-as-frames model. We will discuss the previous
work which tried to achieve this by Bruin in subsection 7.1. Furthermore, our
work on trying to provide a generalised target language for compilation is not
unique. As such, we will discuss the current state of the art of compilation targets
in subsection 7.2.

We will also discuss work on compiling Scheme in subsection 7.3, using con-
tinuation passing style (CPS) in subsection 7.4, and a possible usage of Framed
as a backend language for dynamic semantic specifications in subsection 7.5.

7.1 Frame VM by Bruin

Bruin developed a virtual machine which makes use of scopes-as-frames[8]. In
this machine there are two types of frames, namely control frames and data
frames. As the names suggest the data frames contain all data needed to evaluate
a program such as variables, while the control frames contain information such
as the program counter.

This machine has seen usage as part of two research projects aside from the
original work by Bruin[9,19]. Unfortunately, there are difficulties when develop-
ing for it.

First of all, the distinctions between the aforementioned two types of frames
are not explicitly clear. For example, it is possible to store all data in a control-
frame, meaning we can write an entire program without using a single data
frame.

Second of all, the semantics of the machine are complex. In order to write a
valid program numerous intricate operations such as getting and setting contin-
uations need to be manually written by the programmer.

The third pain point of the machine implemented by Bruin is the fact that
there is data which exists outside of the frame graph. There are registers avail-
able which can store intermediate values such as computation results which can
transcend frames, meaning there is data which is not accounted for by the scopes-
as-frames model. These registers are unfortunately not the only way data can
exist outside of the model. All the code which makes up a program also exists
outside of the frame graph, making it unclear where it should exist.

We address these issues in our language Framed. All data in our language
exists in the same frames, negating the need for the differentiation between con-
trol and data frames. We address the complex semantics by providing a machine
with fewer instructions and without registers. By doing this we force developers
to split complex operations and make their intermediates explicit, making them
part of the frame graph.
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7.2 Generalised Compilation Targets

There are numerous compilation targets available. In this subsection we will dis-
cuss three common known ones, and explain how they differ from the FrameVM
introduced in this paper.

LLVM LLVM (Low-Level Virtual Machine)[17] is a compiler framework, which
provides a low-level code representation. LLVM is a lot more low level than the
FrameVM, and requires direct interaction with the memory we abstract over. It
does not specify a runtime model, or object model. LLVM makes use of a stack
and virtual registers, where the FrameVM does not make use of either. It aims
to be complementary to high level virtual machines such as the JVM we will
discuss later.

As a result, LLVM does not fit the purpose of the FrameVM we have in-
troduced in this paper. Where the LLVM allows for a lot more freedom, the
FrameVM restricts developers to the scopes-as-frames paradigm. One could
see this as a downside, but we believe this is instead a benefit of using the
FrameVM. The FrameVM forces a pragmatic approach to developing compilers
for it.

However, we do believe that LLVM can be a useful target for the FrameVM to
compile to. This would provide the best of both worlds: We enforce the scopes-as-
frames paradigm, but still achieve the speed possible with a low-level language.

WebAssembly Haas et al. introduced WebAssembly[14]in 2017 as a target
for binary code, focussing on usage in web browsers. Like the FrameVM, We-
bAssembly is defined in terms of formal semantics. A WebAssembly binary takes
the form of a module, which handles the memory for that binary. WebAssembly
makes use of linear memory, which takes the shape of a large array of bytes.
This memory has a defined length, but can be dynamically extended by using
special instructions. This differs from memory on the FrameVM, where memory
is implicitly created by the form of the program. This means the developer does
not have to take it into account, which they do when using WebAssembly.

WebAssembly also differs from the FrameVM in the way it handles control
flow. WebAssembly does not provide a jump instruction, but instead makes use
of structured control flow. This takes the form of more high level functions, which
guarantee safety when branching. A downside of this approach is the fact that
complex control flow such as continuations are not natively possible[2]. We can
see that this is a current issue, as the Scheme to WebAssembly compiler Schism
by Google[13] does not provide call/cc[1]. However, workarounds are available
to make it possible on WebAssembly.

As a result, even though there is a lot of merit in WebAssembly we believe
it does not fill the void that the FrameVM attempts to fill. FrameVM aims to
provide a memory agnostic way to model complex control flow operations, which
WebAssembly currently does not provide. Again, just like LLVM, we do believe
that WebAssembly could be an interesting target for the FrameVM itself.
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JVM The JVM[18] is a virtual machine currently developed by Oracle. Pro-
grams on the JVM take the form of class files, similar to programs in the Java
language itself. The JVM itself is a stack machine, with access to a constant
pool which can be used for fields. It provides abstractions for function calls, and
even provides a goto statement if needed.

A downside of the JVM is the fact that modelling frames is cumbersome.
It would either have to take the form of a class, in which case it is impossible
to introduce a new slot at runtime, or use a generic data-type to contain the
frames7. This means that a lot of memory is potentially wasted when modelling
the scopes-as-frames paradigm. While it is possible to write a compiler which
follows the scopes-as-frames paradigm with the JVM as a target, a lot of
boilerplate code is needed. Framed and in turn the FrameVM negate the need
for this boilerplate code, making programs easier to read and write.

7.3 Compiling Scheme

There are numerous active research projects related to compiling Scheme. Two
noteworthy examples of these are Pycket which introduces JIT compilation[7],
and the reimplementation of Racket in Chez Scheme by Flatt et al.[11].

While these compilers focus on speed and coverage of the Scheme language,
our compiler focusses on neither of these. We focus on a new way of represent-
ing all data needed by Scheme in memory, with speed and coverage being an
afterthought.

7.4 Continuations

The main principles behind how our compiler compiles closures and contin-
uations are not novel. Appel has discussed the main ideas behind Continua-
tion Passing Style (CPS) and using this principle in a compiler[5]. Furthermore,
Danvy[10] has also written about the usage of CPS conversion for compilation
and interpretation.

As CPS is already a major part of Scheme itself it was not needed for this
compiler to perform a CPS transformation of the source language. However,
the concepts described in these papers still provide valuable information when
compiling a program in CPS.

7.5 DynSem and Dynamix

DynSem[25,26] and Dynamix[8] are two languages which are part of the Spoofax
Language Workbench[16]. Vergu and Bruin introduced these languages to make
it easier for language designers to write interpreters and compilers for their
DSLs. These languages both support the scopes-as-frames principle. With the
introduction of the Framed language these languages could both use Framed
as its backend. As such, we believe the language introduced in this paper is a
valuable asset to make DSL creation easier.
7 This is how the current implementation works, as it makes use of HashTables on the

JVM.
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8 Future Work

As with any research project there are things which were out of the scope of this
research. In this section we will discuss six of these items, which we would still
like to implement in the future.

8.1 Rewrite Interpreter

We wrote the current implementation of the FrameVM in Stratego[27] using
the Spoofax language workbench. A downside of this is the fact that we run on
the Java Virtual Machine (JVM). This means we do not have direct access to
memory. To still be able to interact with them we modelled them using hash-
tables. In our future work we would like to rewrite the interpreter in a lower level
language. This would allow us to create an actual data object which represents
our frames.

Furthermore, this would also make our garbage collector actually useful. In
its current form we could remove the entire garbage collector without leaking
any data. This is the case because the JVM garbage collector already collects all
the frames which go out of scope. With the introduction of our custom garbage
collector this no longer works, meaning we have to manually flag frames for
collection. This means that the added benefit of the garbage collector is purely
theoretical. Reimplementing it in a lower level language would mean we have
full control of it, making it an actual useful addition to the interpreter.

An alternative approach would be compiling Framed to either LLVM or We-
bAssembly, as hinted towards in section 7. Both of these would allow for Framed
to be usable in a wider setting, and broaden its appeal.

8.2 Improve Tooling

In order to compile Scheme we have written tooling related to the compilation
of the scopes. Even though these make use of a Statix definition, they are still
not language agnostic in their current form. As a result, if we were to compile
a different language to Framed we would need to reimplement these tools. In
the future we would like to rewrite all this tooling to become language agnostic,
meaning this issue should no longer arise for future compilers. This would allow
us to more easily compile more languages in the future, without having to redo
part of our previous efforts.

8.3 Delimited Continuations

As mentioned in section 5 it is theoretically possible to compile delimited continu-
ations using just the control structures we currently have. However, in the future
we would like to implement delimited continuations into the Scheme compiler.
This would further demonstrate the power of Framed, and would be a useful
reference for further control structures.
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8.4 Rework Exceptions

In section 5 we mention that we should compile exceptions in a different manner,
and we should implement this in the future. The way this should be possible
includes two changes, one to the Framed language itself and another to the
compiler.

Changes to Framed First of all, the Framed language will need a new ex-
pression. This expression will check whether or not a certain slot exists in a
frame. We can then use this to conditionally perform instructions based on the
condition that we can find a specific slot.

Changes to the Compiler Using the aforementioned expression we can, in-
stead of copying our exception handler, unwind our caller stack until we find
our handler. This means that the compilation of expressions such as let no
longer needs to be aware of the fact that there is a raise in the program.

Another benefit of this change would be the fact that we no longer need-
lessly duplicate data, as we will only store the exception handler once instead of
duplicating it every time we introduce a new self frame.

8.5 Reduce Slot Count

Currently we always create a new slot when we introduce a new intermediate
variable. This is, naturally, not technically necessary. We use all intermediate
variables (at most) once. This means that we should be able to reuse a lot of
the intermediate slots we create. This would lower the memory footprint of our
programs, while not bringing on any downsides.

Furthermore, we also create intermediate slots which are never accessed. As a
result, we should be able to not generate these. However, actually implementing
this would mean we would need to perform data-flow analysis on the code after
compilation.

Another reason as to why we have not implemented these is the fact that
they should both be part of the Framed language itself, and not of the Scheme
compiler. However, this language currently only consists of a syntax definition
and an interpreter. Implementing the aforementioned data-flow analysis to re-
solve these two problems is non-trivial, especially as all the setup to create this
is also not yet implemented. As such, we have left this to future work.

8.6 Self-Modifying Code

Even though it is currently possible to modify the contents of slots at runtime, it
is not possible to generate new code pointers. This means that it is not possible
to specialise a program during execution. In the future we would like to research
a way for Framed to be able to alter and generate code pointers during execution.
We believe this would be a powerful tool, as code pointers are the last pieces of
memory which can not be altered during execution.
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9 Conclusion

In this research we set out to create a minimal language based on the scopes-
as-frames model which gives us the ability to model complex control flow. With
the introduction of the new FrameVM and the accompanying Framed language
we believe we have achieved our goal of creating such a language. Furthermore,
with our introduction of a Scheme to Framed compiler we also believe we have
demonstrated the ability of the Framed language to model complex control flow.

As our Framed language does not make use of stacks nor registers we also
believe we have answered our first research question, whether we could create
a usable language without either a stack or registers, and that it is possible to
create a functional language with these restrictions.

Furthermore, we believe our Scheme compiler answers our second research
question, whether we can model complex control flow operations using such a
language, and shows us that this is possible in our language.

In conclusion we believe we have achieved our goals outlined in this paper,
and have introduced a new programming language which can serve as an impor-
tant building block for future research.
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25. Vergu, V.A., Néron, P., Visser, E.: Dynsem: A DSL for dynamic semantics specifi-
cation. In: Fernández, M. (ed.) 26th International Conference on Rewriting Tech-
niques and Applications, RTA 2015, June 29 to July 1, 2015, Warsaw, Poland.
LIPIcs, vol. 36, pp. 365–378. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2015), http://dx.doi.org/10.4230/LIPIcs.RTA.2015.365

26. Vergu, V.A., Tolmach, A.P., Visser, E.: Scopes and frames improve meta-
interpreter specialization. In: Donaldson, A.F. (ed.) 33rd European Conference on
Object-Oriented Programming, ECOOP 2019, July 15-19, 2019, London, United
Kingdom. LIPIcs, vol. 134. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2019), https://doi.org/10.4230/LIPIcs.ECOOP.2019.4

27. Visser, E.: Program transformation with Stratego/XT: Rules, strategies, tools, and
systems in Stratego/XT 0.9. In: Lengauer, C., Batory, D.S., Consel, C., Odersky,
M. (eds.) Domain-Specific Program Generation, International Seminar, Dagstuhl
Castle, Germany, March 23-28, 2003, Revised Papers. Lecture Notes in Com-
puter Science, vol. 3016, pp. 216–238. Springer (2003), https://doi.org/10.1007/
978-3-540-25935-0 13

A Compilation Schemata

[[ (not e) ]] ⇒ (

self.ρ,
<

i

self.ρ := !v;

>,

<

f

>

)

where [[ e ]] ⇒ (v, i, f)

ρ ← fresh
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[[ #t ]] ⇒ (

1,

< >,

< >

)

[[ #f ]] ⇒ (

0,

< >,

< >

)

[[ (letrec ((x1 e1) ... (xn en)) e2) ]]

⇒ (

self.ρ,
<

self := frame: [

parent := self,

];

i1

self.x1 := self.v1;

...

in

self.xn := self.vn;

i2

self.parent.ρ := v2;

self := self.parent;

>,

<

f1

...

fn

f2

>

)

where [[ e1 ]] ⇒ (v1, i1, f1)

...

[[ en ]] ⇒ (vn, in, fn)

[[ e2 ]] ⇒ (v2, i2, f2)

ρ ← fresh
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[[ (writeln e) ]] ⇒ (

"#<void>",

<

i

show v;

>,

<

f

>

)

where [[ e ]] ⇒ (v, i, f)

[[ (begin e1 e2) ]] ⇒ (

v2,

<

i1

i2

>,

<

f1

f2

>

)

where [[ e1 ]] ⇒ (v1, i1, f1)

[[ e2 ]] ⇒ (v2, i2, f2)

[[ (and e1 e2) ]] ⇒ (

self.ρ1,
<

i1

ifeq v1 ^.ρ2;
i2

ifeq v2 ^.ρ2;
self.ρ3 := 1;

lbl ρ2;
self.ρ1 := 0;

jump ^.ρ3;
lbl ρ3;

>,

<

f1

f2

>

)

where [[ e1 ]] ⇒ (v1, i1, f1)

[[ e2 ]] ⇒ (v2, i2, f2)

ρ1 ← fresh

ρ2 ← fresh

ρ3 ← fresh
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[[ (or e1 e2) ]] ⇒ (

self.ρ1,
<

i1

ifeq v1 ^.ρ2;
self.ρ1 := 1;

jump ^.ρ4;
lbl ρ2;

i2

ifeq v2 ^.ρ3;
self.ρ1 := 1;

jump ^.ρ4;
lbl ρ3;

self.ρ1 := 0;

jump ^.ρ4;
lbl ρ4;

>,

<

f1

f2

>

)

where [[ e1 ]] ⇒ (v1, i1, f1)

[[ e2 ]] ⇒ (v2, i2, f2)

ρ1 ← fresh

ρ2 ← fresh

ρ3 ← fresh

ρ4 ← fresh


