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Abstract

Billions of wireless devices are interconnected to provide services to many
aspects of life and form The Internet of Things. These devices which are
often battery-powered and energy efficient can benefit greatly from an ac-
curate localisation service that does not consume extra energy. Several loc-
alisation methods have been developed for Low-Power Wide-Area Networks
(LPWANs), with LoRa being of particular interest thanks to its long range
and cost effectiveness. Time Difference of Arrival (TDoA) is a common way
to find location in a LoRa network which works well in open areas but poorly
in the harsh radio environment of cities. In indoor settings where the radio
environment is more complicated than outdoor, RSSI fingerprinting tech-
niques have been sucessfully used for positioning using WiFi and Bluetooth,
with state-of-the-art solutions employing Artificial Neural Networks (ANN).

This work aims to provide accurate localisation in an urban LoRa network,
using an ANN-based fingerprinting approach. Two publicly available data
sets collected in the cities of Utrecht and Antwerp are used to evaluate our
method. We show that the ANN model can be trained on these data sets to
predict location with mean errors between 411m and 581m. We determine
that the presence of gateways in the fingerprint plays a major role in the
ANN’s estimation but RSSI information is crucial in improving the accuracy.
To realistically compare the ANN approach to TDoA, we train and test the
neural network with chronologically split data. Our ANN approach achieves
a mean error of 500m with 90% of cases having errors below 1070m. This
RSSI fingerprinting method is more effective than TDoA at limiting large
localisation errors in cities.
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Chapter 1

Introduction

As frequently stated in literature, the Internet of Things (IoT) has seen
steady growth in the number of connected devices in recent years, with
many more expected in the near future. Some have even predicted over 20
billion devices will make up the IoT by the year 2020 [30, 44, 57]. These
devices provide us with a multitude of applications, ranging from industrial
and agriculture automation to smart light bulbs and toothbrushes. With
this growth comes a demand for accurate localisation of wireless devices in
both indoor and outdoor environment [17]. Not only will providing accurate
localisation open the doors to a great number of new applications, doing so
with existing technology is an attractive feature for the billions of devices
already on the market. Many current solutions for IoT localisation are
using GNSS, WiFi, and Bluetooth [38, 71] but these technologies all have
significant drawbacks.

IoT devices are typically wireless and deployed in large quantities, thus
they are generally required to be low cost and to consume little energy for
extended lifetime. Both of these requirements make GNSS unsuitable for
many IoT applications. The addition of a GNSS module also brings higher
cost, so solutions that utilise the existing communication signal to provide
localisation are preferred. Systems of this type have been developed for a
range of wireless technologies.

LoRa is a long range, low power communication technology that is de-
signed for IoT devices. Coupled with its low cost, this technology has been
gaining popularity among the IoT landscape. With more than 100 LoR-
aWAN network operators in over 100 countries, localisation using LoRa can
benefit a large number of devices and applications.

1.1 Problem Statement

There has been much research in providing accurate localisation with a wide
range of wireless technologies, all having their strengths and weaknesses.
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Solutions using LoRa and other long-range protocols are typically using ran-
ging methods such as RSSI-ranging or Time-difference of Arrival (TDoA)
to estimate distance and infer location. Ranging methods work well when
devices have a clear line-of-sight but their accuracy deteriorates in urban
locations. At the same time, RSSI fingerprinting techniques have been suc-
cessful in overcoming the harsh radio environment found inside buildings,
with state-of-the-art solutions using Artificial Neural Networks. An RSSI
fingerprinting solution for outdoor localisation could therefore overcome the
challenges that ranging methods face.

While some research has been done on localisation with Low-Power Wide-
Area Networks (LPWAN) using RSSI fingerprinting or machine learning,
many of these works were able to report low errors by limiting their solution
to specific settings (e.g. small area, stationary devices, etc.). Few works
have attempted to create a solution for more general use such as localisation
in a city-wide area. The algorithm k-nearest neighbours is popular among
these works and more powerful techniques such as Artificial Neural Networks
(ANN) have been left largely unexplored.

This thesis aims to: Investigate the feasibility of using Artificial Neural
Networks to estimate the location of devices in a LoRa Wide-Area Network
in an urban environment.

This work made use of two data sets that are publicly available. One was
provided by TTN Mapper, a community effort to map the global coverage
of The Things Network’s LoRaWAN. The other was published as part of a
study, collected in a LoRa network operated by Proximus in Belgium [1].

1.2 Contributions

The key contributions of this thesis are:

• Development of Neural Network models for LoRa node localisation
with data sets gathered in the cities of Utrecht and Antwerp (Chapter
4). The ANNs can learn from these sets and estimate locations with
mean errors of 581m and 381m for Utrecht and Antwerp, respectively.

• Comparison of accuracy between our approach and TDoA, using a
chronological split of our data sets (Chapter 5). We train the models
with data in the past and evaluate their performance with data nearer
to the present. With the Antwerp data set, the ANN achieves a mean
error of 480m.

1.3 Organisation

Chapter 2 presents the background knowledge and research works related
to this thesis. Specifically, the LoRa communication protocol and the LoR-
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aWAN network protocol are discussed, then an overview of existing local-
isation solutions is provided, and finally background knowledge on Artificial
Neural Networks is given. Chapter 3 provides details of the software and the
data sets that are used in this thesis. Chapter 4 delves into the steps taken to
pre-process the data and selecting a suitable model for an ANN. In chapter
5, we study how different aspects of a LoRaWAN can influence the ANN
performance. We also provide a better comparison between our approach
and TDoA, by chronologically splitting our data sets. Finally, chapter 6
provides conclusions and potential future work related to this thesis.
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Chapter 2

Background and Related
work

2.1 LoRa and LoRaWAN

This section provides an overview of LoRa communication which consists
of the LoRa physical layer and the LoRa Wide-Area Network (LoRaWAN)
protocol. LoRa is a modulation technique developed by Cycleo and acquired
by Semtech in 2012 [66]. LoRaWAN is a network protocol that allows LoRa
devices to connect with applications over the Internet[47].

LoRa is a radio modulation scheme that utilises Chirp Spread Spectrum
(CSS) to be robust against noise and reference, extending its range [56]. The
current record for the longest distance a LoRa packet has been received is
766km, set on the 13th of July, 2019 [65]. Its low power consumption makes
it even more attractive to IoT applications.

The LoRa Alliance of over 500 member companies developed the LoR-
aWAN specification to allow LoRa devices to connect with the Internet and
its applications [47]. LoRaWAN defines the network architecture and the
communication protocol used in the network [63]. Figure 2.1 illustrates the
network topology of a LoRaWAN.

A message from a LoRa node is broadcasted and can be received by mul-
tiple LoRa gateways. These gateways forward the message, along with some
metadata recorded by the receiver, to the network server. Via the network
server, users of the LoRaWAN can have their application server access the
data from their nodes. It is thanks to the metadata and the fact that mes-
sages can be received by multiple gateways that localisation is at all possible
in a LoRaWAN. With TDoA methods, the timestamps at which different
gateways receive the same message is crucial. For fingerprinting, the RSSI is
the most important metric. Thanks to its long range, LoRa messages may
be received by many gateways; the more gateways that receive the same
message, the better a localisation algorithm can estimate its location, re-
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gardless of methodology [6]. The star topology of a LoRaWAN is similar to
that of GNSS. Where a GNSS uses satellites as anchor points to calculate
positions, a LoRaWAN solution can use gateways as anchors.

Figure 2.1: Topology of a LoRaWAN.

The Spreading Factor (SF) is an important parameter in LoRa that con-
trols the data rate. A lower SF shortens the symbol duration and brings
higher data rate as well as lower power consumption. The trade-off is that
the signal becomes harder to decode. This trade-off effectively limits the
range of devices that use lower SF. In a LoRaWAN, the SF can be used to
provide Adaptive Data Rate (ADR). The ADR algorithm selects the lowest
SF that still allows at least one gateway to receive messages from a LoRa
device [53]. Therefore, LoRa devices with ADR enabled have a potential
trade-off between data rate or battery life, and localisation accuracy.

2.2 Current solutions for localisation without GNSS

Satellite-based localisation technologies are currently the front-runner in ac-
curacy for outdoors applications, with errors of less than 10m with GPS [14]
and less than 4m with Galileo’s Open Service [14]. On top of this, these
systems utilise satellites and can thus provide continuous global coverage.
This combination makes GNSS a very attractive solution for most applica-
tions. Unfortunately, for many devices in the IoT, GNSS modules consume
too much energy. To give some perspective, a 250mAh battery can transmit
20000 LoRa messages, but will be depleted after 1000 GPS measurements
[55]. Furthermore, IoT devices are often designed to be deployed in large
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quantities; an additional GNSS module can drive up the cost significantly.
A localisation solution which can use the communication modules already
embedded in IoT designs is therefore highly desirable.

2.2.1 Range-based localisation

In the IoT, as well as in wireless sensor networks in general, many localisation
techniques have been researched. A large number of these algorithms can be
categorised as range-based, where distances are calculated using quantities
such as Time-of-Arrival (ToA), Time-Difference-of-Arrival (TDoA), RSSI
ranging, etc. Using multiple anchor points with known coordinates, the
location of the transmitting node can be calculated using Trilateration, Tri-
angulation, or multilateration [12, 43]. In an LPWAN such as LoRaWAN,
the gateways may be used as anchor points.

Figure 2.2: Different types of losses in a wireless communication
channel[19].

In RSSI ranging, the distance between transmitter and receiver is es-
timated using the received signal strength and a signal propagation model.
Figure 2.2 shows the effects of different types of losses in a wireless channel.
In an ideal line-of-sight situation with no interference, the signal is attenu-
ated following the path-loss curve. However, in realistic scenarios, shadow
fading and multipath fading make the loss profile much more complicated
and unpredictable [20, 52]. For example, in an ideal channel, an attenuation
of −70dB to the signal power means the transmitter is about 60m away
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from the receiver. Due to multipath fading, this distance can vary between
30m and 90m. Therefore, RSSI ranging localisation does not achieve high
accuracy except for in open areas. Sigfox implements this method and could
achieve an accuracy of less than 10km for 80% of cases with static devices.

ToA and TDoA methods require accurate time-synchronisation between
devices. TDoA only requires that gateways have accurate timestamps and
not the node which makes it better suited for IoT devices. Accurate and
synchronised timing between gateways are essential in this scheme, because
a small error of 1µs may correspond to an error of 300m[6].

Another common method for ranging is using Time-Difference of Arrival
(TDoA). When a LoRa node transmits, several gateways can receive the
same message. Since each gateway is at a different distance away from
the node, they will receive the message at different times. For each pair
of gateways, we can get a measurement of this time difference. From this
measurement, a collection of possible node locations can be calculated. If at
least 3 gateways received the same transmission, we can form multiple hy-
perbolae that ideally would intersect at the position of the node [24]. Figure
2.3 shows a simulation of this method in measuring the distance difference
and inferring a location using multiple measurements. TDoA requires ac-
curate timestamps at the gateways. In a practical setting, interference such
as error in timing can introduce many uncertainties. A timing error of 1µs
may lead to an additional 300m localisation error [6].

Figure 2.3: Left: a pair of gateways (black) that received the same
message, the hyperbola of possible node locations can be found
from the TDoA measurement of this pair. Right: With multiple
gateway pairs, resulting hyperbolae intersect at the node’s posi-
tion [6].

The LoRa Alliance provides several case studies where TDoA has been
used in LoRaWANs [46]. Many of these achieved good accuracy of under
100m in most cases. However, most of these only considered nodes that are

8



strictly inside a boundary created by the gateways used as anchor points.
The cases that studied nodes beyond this perimeter found that performance
degrades significantly. Accuracy is also better in all cases where the node is
stationary.

Kim, S et al. applied TDoA method to a LoRaWAN and reported error
above 300m [40]. Fargas et al. later achieved a significant improvement, with
an error of about 100m for static nodes, using an iterative algorithm [15].
Podevijn et al. used TDoA to estimate location in the city of Eindhoven
when 3 different modes of transport were used: walking, cycling, and driving
[51]. A median error 200m was reported and significant improvements can
be achieved when they applied an algorithm which takes map details such
as roads into account.

Median error Setting

Fargas et al.[15] 100m
Stationary nodes,
private LoRaWAN

Podevijn et al.[51] 200m
Mobile nodes, accuracy
improved by using road details

KPN[6] 174m Mobile nodes, large service area

Bissett[6] 500.4m Mobile nodes, large service area

Table 2.1: Comparison of median error and settings of TDoA re-
search.

In the Netherlands, the network operator KPN has deployed a proprietary
solution using TDoA in their LoRaWAN [41]. KPN claims this algorithm
offers accuracy within 100m for 90% of cases with static devices, in the
Netherlands. Bissett used the KPN network to develop a modified TDoA
approach for localisation and compared their result with what KPN’s solu-
tion achieved [6]. Figure 2.4 shows the performance of these methods, using
data gathered in the same study. For up to 75% of cases, KPN’s algorithm
is better, but Bissett’s method is more effective in limiting the higher errors.
Table 2.1 summarises the results of these works on TDoA with LoRA.

Similar to RSSI ranging, a major challenge for TDoA methods is the
environment surrounding the location, especially with multipath. While a
multipath channel varies the received signal strength in RSSI ranging, it
affects TDoA measurements in a different manner. TDoA assumes a direct
line-of-sight between the transmitter and receiver; in an urban area, this
line-of-sight path may be completely blocked and the signal reaches the
receiver after reflecting off a surface. Since this signal would take longer
to reach the receiver, TDoA can overestimate the distance. A potential
solution for this issue is to model the environment and take that model
into account. Works such as those presented in [4] attempt to map the
coverage of wireless technologies can provide a good basis for this. Another
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Figure 2.4: Localisation error of Bissett (2018) compared with
KPN’s proprietary algorithm. [6]

method that may overcome this challenge is RSSI fingerprinting, where a
large number of transmissions are pre-recorded with known position, and
localisation is achieved by matching a new reception with the record.

2.2.2 RSSI Fingerprinting

Much research has been done on using RSSI data to perform localisation but
the wireless technologies and algorithms varies. A fingerprinting-based solu-
tion typically consists of an offline training phase and an online phase[13].
In the training phase, signal samples are collected in the area where local-
isation should be provided and an algorithm is then trained using this data.
This area where data is collected shall be referred to as the service area
throughout the rest of this thesis. In the online phase, the location of a new
data point can be estimated by the algorithm using the signal characterist-
ics. The first phase of this process where a lot of data needs to be collected
presents a major challenge for this approach, especially for outdoor local-
isation because much time and effort are required to gather data for a large
area. This is a reason why this method has mainly been used for indoor
applications. Another reason is that the radio environment inside building
is complicated, so ranging methods do not work well. If RSSI fingerprinting
can overcome the multipath challenge inside building, it may be able to do
so for an urban environment as well.

WiFi has been a popular choice for localisation thanks to its ubiquity[67,
26, 27, 7]. Many handheld devices are equipped with a WiFi interface and
WiFi access points can be found all around, especially inside buildings. Fur-
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thermore, the WiFi protocol makes data collection a simple task in public
networks thanks to its Beacon Frame. Access points periodically send out
a beacon frame to announce its presence and can be received by any device
with a WiFi interface[36]. The fingerprint is made up of RSSI values from
these beacon frames as received by the device. This differs from networks
such as LoRaWAN, where the RSSI fingerprint is made up of receptions from
multiple gateways. In a WiFi network with a fingerprinting localisation, a
smartphone can record the fingerprint and find its own location via a web
service for example. In a LoRaWAN, only the network server has the fin-
gerprint data and can determine the node’s location. This is not necessarily
a limitation as many IoT applications do not require the device to know its
location. Figure 2.5 visualises this difference between WiFi and LoRa.

Figure 2.5: The difference between WiFi (left) and LoRa (right)
fingerprinting. In a WiFi network, the RSSI fingerprint can be
recorded by the device, such as a smart phone. In a LoRaWAN,
the fingerprint is compiled by the network server, from RSSI val-
ues at all gateways that received the same message.

Many machine learning algorithms have been used to provide RSSI fin-
gerprinting localisation for WiFi networks such as: k-nearest neighbours
[67, 3, 29, 70], Artificial Neural Networks [68, 8], Support Vector Machines
[69], Random Forest [54], etc. Other technologies that have been researched
for indoor localisation using RSSI fingerprinting include Bluetooth[16, 45],
RFID [11], etc. There are also works on hybrid solutions such as [34] which
is based on WiFi and sound signals.

Thanks to the recent rise in popularity of LPWANs, there has been more
research in outdoor localisation. However, many of these works focus on
specific settings and applications. Gotthard et al. developed an RSSI finger-
printing method with LoRa to locate used cars in a dealership and reported
an error within 10 to 20 meters [22]. While this is good result, their applic-
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ation is limited to stationary objects and the small area of a car park. Choi
et al. generates fingerprint maps from sample points, then using these maps
to predict location [13]. They reported a mean error of 24.1m in an experi-
ment covering an area measuring 340m×340m with 4 LoRa gateways. Bibb
et al. simulated the signals using a ray-tracing algorithm the authors de-
veloped [5]. They considered a building map of a part of Singapore for their
experiment. While they reported a very low mean error of 2.8m, this result
is unlikely to be representative of a real scenario, where other interference
such as cars, trees and other signal sources may be present.

More recently, there have been research efforts in general-purpose RSSI
fingerprinting applications. Aernouts et al. published three data sets gathered
for LPWAN in and around the city of Antwerp [1]. Two of these data sets
were gathered with Sigfox and the third used LoRa. Janssen et al. reported
a mean error of 340m using a k-Nearest Neighbours algorithm on one of
the Sigfox data sets [31]. In this work, we used the LoRa data from [1] as
one of two data sets to apply our method. Because results for LoRa RSSI
fingerprinting are limited in literature, we will compare the performance of
our solution with that of TDoA methods. During the final month of this
thesis, a preprint [2] was made available that used ANN technique on the
Antwerp data set, we will also discuss this work in later chapters. Table 2.2
summarises the results of research on RSSI fingerprinting in LPWAN.

Error Setting

Gotthard et al.[22] 10m - 20m
Stationary nodes,
small area

Choi et al.[13] 24m mean
Fingerprint map generation,
small area

Bibb et al.[5] 2.8m mean Data from ray-tracing

Janssen et al.[31] 340m mean Large area, Sigfox data set

Table 2.2: Accuracy of RSSI fingerprinting in LPWAN from related
research.

Like every system, RSSI fingerprinting methods have certain limitations.

• Ground-truth inaccuracy: RSSI fingerprints gathered for training
an algorithm use GNSS solutions to provide the ground-truth coordin-
ates. Since GNSS have inaccuracies, RSSI fingerprinting may never
perform better than satellite-based systems.

• Requires large data sets: For an RSSI fingerprinting algorithm to
learn and perform well, large data sets are needed. Collecting data
samples to train a solution in a large service area is a task that can
take a lot of time and effort.
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2.3 Neural Network for RSSI fingerprinting

As discussed in section 2.2.2, the first phase of a fingerprinting method is
collecting sample data and training an algorithm. Since this data must
have the ground-truth location determined by GNSS, a supervised learning
algorithm is a suitable choice. The fingerprints will serve as inputs to the
algorithm which should learn to predict the output as a representation of
geographical position. A supervised learning algorithm can tackle two sets
of problems: classification and regression.

• Classification: The algorithm learns to predict the right categorical
label for an input. An example of a classification application is a spam
filter for emails which labels each email as ‘spam’ or ‘not spam’. An-
other example is predicting in which room of a building a mobile phone
is, based on its WiFi fingerprint. In the case of outdoor localisation,
the service area can be divided with a grid, and the algorithm predicts
which grid cell the device is in.

• Regression: In a regression problem, the algorithm learns to predict
the outputs as continuous values. For example, a machine learning
algorithm can be trained to predict the value of a house given the loc-
ation, size, and age of the property. Another example is an algorithm
that predicts coordinate values, given the RSSI fingerprint from LoRa
gateways, which is the goal of this thesis.

An Artificial Neural Network (ANN) can be used as a supervised learning
algorithm. An ANN consists of many artificial neurons, an example of these
neurons is shown in figure 2.6. The inputs and output of the neuron are
numerical values and each input connection is associated with a weight.
The neuron computes the weighted sum of its inputs and applies a function,
called the activation function, to that sum which produces the output [23].
By connecting many artificial neurons, we can create an ANN.

Figure 2.6: An Artificial Neuron. The output of the neuron is calcu-
lated with the activation function of the neuron and the weighted
sum of its inputs.
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There are different ANN architectures but we only consider the Multilayer
Perceptron (MLP) in this work. An example of this is shown in figure 2.7;
each neuron in one layer is connected to every neurons in the next layer.
MLP is a simple but flexible architecture and can generally be used for
a wide range of classification and regression problems [10]. If MLP can
perform well, future works may focus on using other ANN architecture to
further improve this approach.

Training the ANN is done by providing it an example input as well as
the expected output. The ANN outputs a prediction and we can measure
the error between this prediction and the expected output. The weights of
the connections are then changed to reduce this error. With a large volume
of training data, the ANN can learn and model patterns between the input
and output so that it can reliably predict new data [23]. For localisation
using ANN, we would provide the RSSI fingerprint at the input layer and
the ANN should output an estimated position.

Figure 2.7: A Multi-Layer Perceptron (MLP).

We can influence the neural network’s performance by tuning its hyper-
parameters. These include the number of hidden layers and neurons, the
learning algorithm, the learning rate, etc. A larger network may offer better
performance but will also take more time to train. In selecting the number
of hidden layer and neurons, we can start with the smallest network that can
provide a reasonable performance. Then, more neurons and layers can be
added until the neural network begins to overfit [50]. This mean the neural
network has memorised the training samples and it is unable to predict new
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fingerprints accurately. Now, we can focus on limiting the overfitting, by
using regularisation.

Two common methods of reducing overfitting are: L1 or L2 regularisa-
tion and dropout. L1/L2 regularisation encourages the network to keep its
weights small by penalising large weights [32]. Dropout excludes a number
of neurons during each training step, making the neurons less reliant on each
other, thus becoming less sensitive to small changes in their input [28, 58].

When we train a large ANN, the increased training time may pose a
challenge. We can limit this time by using early stopping. This technique
simply monitors the performance of the ANN after each training epoch and
stops the training if the performance has not improved after some time. The
best weights encountered during the training are then restored.

For training and evaluating an ANN and other supervised learning al-
gorithms, it is recommended to split the available data into several sets [48].
These sets are typically: the training set, the validation set, and the test
set. As the name suggest, the training set is the data used by the ANN to
learn. The performance of a trained ANN can then be assessed using the
validation set and design choices can be made to modify the ANN so that
it performs better on the validation set. The final model can then be tested
on the test set to provide a fair assessment of the model’s performance. In
other words, we use the validation set to select the architecture and tune our
model and once a good model is trained, we evaluate its error using the test
set. If we only had a training set and a test set, changing the architecture
to perform well on the test set may produce a biased result since the test
set was used as part of the design process [25].
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Chapter 3

Tools and Data sets

Section 3.1 provides details on the tools used for developing the neural net-
work models as well as the method for calculating the distances between
points on the Earth’s surface. The two data sets that were used in this work
are discussed in section 3.2. The pre-processing steps performed on these
data sets are discussed in details in chapter 4.

3.1 Toolkits used

Developed by Google for internal use and released publicly in 2015, Tensor-
Flow is an open-source software library that is currently widely used for
machine learning applications [60]. Running on top of TensorFlow, Keras is
a library that provides high-level Application Programming Interfaces that
allow for fast prototyping of neural network models [37]. These two pieces
of software are used in this work to build and test the neural networks that
will be discussed in chapter 4. The free machine learning library scikit-learn
was also used for several of its useful functions.

geopy is a client for popular geocoding web services, aimed to simplify
the process of locating the coordinates of addresses, cities, countries, and
landmarks[18]. Geocoding is converting an address or landmark into geo-
graphical coordinates[21]. geopy contains a method to calculate the distance
between two points on the surface of the Earth, which we used to calculate
the localisation errors in this work. geopy provides two ways to calculate
the distance between two points, using the geodesic distance or using the
great-circle distance. The geodesic method uses an ellipsoidal model of the
Earth, while the great-circle assumes the Earth is spherical. The geodesic
distance is therefore, more accurate but takes more time to compute as it
uses a more complicated model. Although the maximum error introduced
by a spherical model is only 0.5% [49], the difference in computation time
is insignificant. Thus, we used the geodesic distance for all of our error
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analyses in this work. Specifically, we use the default geodesic algorithm in
geopy which is given by Karney, Charles F.F. [35].

3.2 Datasets

Two data sets were used in this work. The first was acquired from TTN
Mapper - a global community effort to map The Things Network’s LoR-
aWAN coverage. The second was a data set collected and published by
[1].

3.2.1 TTN Mapper - Utrecht

The Things Network (TTN) provides open-source tools as well as a global,
open, and crowd-sourced network for IoT applications using LoRaWAN [61].
Currently there are around 8400 gateways across 141 countries connected to
TTN. In The Netherlands alone, there are 869 gateways connected. Thanks
to the country’s relatively small size, these gateways provide a good LoRa
coverage to the whole country, with many cities having over 100 gateways.
TTN Mapper is an application that attempts to map the coverage of TTN
gateways globally [64]. Users of TTN gateways can contribute to this effort
by using LoRa devices with a GPS module or smartphones to measure the
gateway’s performance within its vicinity. All this data is aggregated and a
global coverage map can be found on https://ttnmapper.org/.

The data on TTN Mapper is available for download. From them, we
acquired a data set of LoRa transmissions in the city of Utrecht, The Neth-
erlands for the period between August 2016 and April 2019. It should be
noted that this data was gathered by many people for different applications,
many of whom likely needed to measure the coverage for their own gateway
in a specific area. Thus, this data may not fully and uniformly cover the
area of the city. Furthermore, certain aspects are unknown such as the spe-
cific hardware used and the mode of transport. The data set also spans a
rather long period of time (32 months) and the landscape of the city may
have changed significantly. Nonetheless, this data is publicly available and
provides a good basis to study RSSI fingerprinting in a LoRaWAN. If a good
solution can be created for this data set, it can more easily be applied to
other cities or regions since the data already exist.

Figure 3.1 shows a subset of data points from this data set on the city
map. Due to limitations in the hardware and plotting software, this subset
consisted of half the data points, selected at random. The entire data set
is contained within an area of 160km2. Several interesting elements can be
seen from this map.

• Clusters of data: As expected, the data is not evenly distributed
around the city. A large cluster of data points can be seen near the
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central train station. Many data points were also gathered along the
ring-road surrounding the city. Surprisingly, while the train station
appears to be a hot-spot, not many data points were gathered along
the railways. There are several smaller clusters of data around the
city, indicating that many users measured the coverage in a small area
of interest for their application only.

• Lack of data for inner city: In general, this data set lacks coverage
of inner city streets and residential areas. Since most of the data
points are clustered together, the fingerprinting algorithm may adapt
very well to predicting data points near these clusters. The points that
are scattered around the map will introduce some noise in the training
phase, and are unlikely to predicted will high accuracy.

• LoRaWAN outage: The Leidsche Rijn tunnel along the west side
of the ring-road shows a limitation of LoRa. Many data points can be
seen at either exit of this tunnel, but very few are on the tunnel itself.
While LoRa can provide long range communication, obstructions such
as this can cause outage.

Chapter 4 discusses this data set in further details as well as describes the
pre-processing steps used.

Figure 3.1: A random subset of data points in Utrecht, acquired
from TTN Mapper. The data is contained within an area of 160km2

3.2.2 Antwerp

Aernouts et al. [1] published three data sets collected in and around the
city of Antwerp. One of these was collected with a LoRaWAN. The author
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gathered this data by attaching LoRa nodes to postal service vehicles for
three months. During the collection period, these nodes were able to send a
message every minute, giving a total of 123,529 data points. This is a similar
amount of data compared to the Utrecht data set, which contains 140,593
messages after some pre-processing. Since this period is much shorter than
the time frame of the Utrecht data set, the variation in the environment
may not be significant between the data points.

The LoRaWAN used was deployed by a company called Proximus. Figure
3.2 shows a subset of this data on the map of Antwerp. This data set encap-
sulates a smaller area than that of the Utrecht dataset, covering only 52km2.
Thanks to the methodological way of collection, this data set appears to be
more evenly distributed between inner city streets.

Figure 3.2: A random subset of data points in Antwerp, published
by [1].
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Chapter 4

Data Pre-Processing and
ANN Model Selection

In this chapter, we first detail our approach to pre-process the data into a
suitable format for training neural networks in section 4.1. Then, section 4.2
discusses the process of selecting, training and validating a suitable neural
network model.

4.1 Data Pre-Processing

Utrecht

The data set for the Utrecht area from TTN Mapper contained a list of
messages that were received by gateways in this region. Each line in this file
is one reception of a message and contains several fields. The most important
ones for our work are: the unique ‘message ID’; the ‘timestamp’ at which
this message was received; the ‘node ID’ of the LoRa device that sent the
message; the ‘gateway ID’ that received the message; the ‘received signal
strength indicator’ (RSSI); and the latitude and longitude of the LoRa node.
From this file, we compiled a dataset that is suitable for neural networks
and this process is detailed below.

Firstly, the data needed to be filtered from any message that was not
useful for our neural networks. We removed two types of inconsistencies
from the data:

1. Many messages with the same timestamp: a large number
of messages all had the same timestamp at 2016-01-08 00:00:00. We
discarded all of these receptions.

2. Multiple locations for the same message: There are groups of
messages coming from the same nodes that have the same timestamp
while also so having different locations. As a node cannot be in several
locations at once, these groups were also discarded.
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From the resulting data, we created the fingerprint dataset of this area.
This dataset contains, for every message, the RSSI value at each gateway
that received the message as well as the ground-truth coordinates. For every
gateway that did not receive this message, we inserted the value of −200
as the RSSI. This step was done by sorting the data in time, then iterating
through the data and finding groups of messages that were received at the
same time by different gateways, while having the same ‘node ID’ and the
same ground-truth coordinates.

Overall, 155 gateways were seen in this dataset and 140,593 data points
were gathered.

Antwerp

The dataset for Antwerp from [1] had already been pre-processed into a
similar format as the Utrecht dataset. Incidentally, the authors have also
used a value of −200 to indicate when a gateway did not receive a message.
This dataset contains 68 gateways and 123,528 data points.

Figure 4.1 shows the number of receptions for various number of gateways
in both data sets. while some messages in the Utrecht data set were received
by more than 7 gateways, the highest number of gateways that received the
same message in Antwerp is only 6. Most of the receptions in Antwerp
(92%) were also received by only 3 gateways. This surprising feature may
be due to some selection process that is implemented by the network provider
Proximus. In both data sets, most of the messages were received by only
a small fraction of all the gateways in the service area. Apart from the
possible limitation at the network server, this shows the effects that urban
environments have in limiting the range of LoRa.

Figure 4.2 shows the distribution of RSSI values in our datasets. In section
3.2, we could see on the map that the Utrecht data set contains clusters of
points. This is also reflected in this plot, where a portion of the data has
RSSI values between −80dBm and −50dBm. This suggests that some of
the data was collected closer to gateways than the rest, showing again that
some users were focused on gathering data for a small area.

For the neural network, we wish to use the ReLU activation function
because it offers fast training using gradient-based training algorithms [42].
This activation function returns 0 for input values below 0, and returns the
input value otherwise. Our raw RSSI data of negative values is thus not
suitable. Furthermore, the absolute values of our data are large which can
result in the weights of our network growing large and making the network
unstable [9]. We rescaled the data to the range 0 to 1, using Min-Max
Normalisation, shown in equation 4.1.

xi =
RSSIi −RSSImin
RSSImax −RSSImin

(4.1)
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Where xi is the normalised value, RSSIi is the raw RSSI value, andRSSImin
and RSSImax are the minimum and maximum values of RSSI in the whole
data set.

Figure 4.1: Number of messages received by N gateways in Utrecht
(left) and Antwerp (right).

Figure 4.2: RSSI Distribution of Utrecht (left) and Antwerp (right)
datasets.

Finally, for selecting and evaluating the performance of using Neural Net-
works on these data sets, we split the data into a training, a validation, and a
test set containing 60%, 20%, and 20% of the data respectively. As discussed
in chapter 2, the training set is used to train the neural network models and
the performance of the trained model is evaluated with the validation set.
The architecture of the neural network is altered based on its performance
on the validation set. Once a model that can predict the validation set well
is achieved, we can judge its performance on the test set.

At this stage, these data sets allowed us to study the use of ANN in
learning and predicting RSSI fingerprint data. The process of designing the
neural networks are discussed in section 4.2.

Splitting the data set in this manner does not take into account the fact
that data was collected throughout an extended period of time. A real-
world realisation of these algorithms would likely be trained on a set of
data collected in the past, and be expected to predict new data points in
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the present. In the next chapter, we will investigate the feasibility of using
these methods in a real-world setting. For this, we split the data into subsets
using timestamp instead. This way, the models can be trained with data in
the past and tested with data collected later.

4.2 ANN Model Selection

In this section, the selection of the Neural Network model and hyperparamet-
ers is discussed. We consider the problem of localisation as both a regression
and a classification problem. A Multilayer Perceptron (MLP) architecture
where each layer is fully connected to the previous one was used. Figure
4.3 shows an example of the loss function over the training set, achieved by
a selection of different network sizes for the regression problem. Adding a
second hidden layer had a larger impact on the network’s ability to learn
from the training data than increasing the size of the first hidden layer.
Networks larger than those shown in this plot did not achieve significantly
better learning performance while taking much more time to train. Thus,
we prioritise adding more layers instead of using very large layers.

Figure 4.3: Mean-squared error loss on the training set for different
neural network sizes with Antwerp dataset.

We start with training and evaluating a small network, then increasing
the size by adding more neurons and layers until the network can learn the
training data very well. The resulting neural network would not be able to
predict the validation set well because it overfits the training set. In other
words, the network simply memorises the training set and thus, not be able
to correctly predict new data. Then we attempt to limit this overfitting so
that it can predict the validation data.
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To reduce overfitting, we use dropout. This technique selects a random
set of neurons in a layer to be ignored during each training phase. This
makes the neurons less reliant on each other as the connection between
them are not always present during training time [59]. The dropout rate is
the probability of a neuron to be ignored during a training phase and is a
hyperparameter to be set for the model. A too high dropout ratio makes
the network take longer to train and may not offer improved performance
on the validation set.

We also employed early stopping in training our models. This technique
simply stops the training if performance has not increased after a certain
amount of time and restores the best weight values to the model. It monitors
performance based on a loss function or a metric which can be calculated on
the training or the validation set. The number of epoch to wait for before
stopping is called the patience and we used a value of 50.

Table 4.1 shows the hyperparameter we selected for the classifier and
regressor. In the rest of this section, we discuss other details surrounding
our trained networks as well as their performance.

Classifier Regressor
Hidden layers’ sizes 512/256/256 1024/512/256
Activation ReLU with softmax output ReLU
Loss Function Cross-Entropy Mean-squared Error
Optimizer Adam Adam
Dropout rate 0.15 0.2

Table 4.1: Hyperparameters selected for classifier and regressor.

Classification

For a classification model, the area covering the data points was divided
with a grid into zones. These zones were numbered and the data points
were labelled with the zone they are in. The trained classifier will output
the predicted location of a node as its zone. We can expect the classifier to
have lower prediction error with larger zones. As the result reported in [6]
has median error of about 500m, we can select a grid size that corresponds
to this distance as a starting point. This means that the Utrecht area can be
divided by a 20× 20 grid, and Antwerp by a 10× 10 grid. These correspond
to zone sizes of 780m× 510m and 940m× 550m respectively. The classifier
thus contains 400 output neurons for the case of Utrecht and 100 neurons
for Antwerp.

In order to assess the performance of a classification model, we needed a
way to measure the localisation error of each prediction. Instead of returning
the predicted zone number, our classifier returns the centre location of the
grid cell. The localisation error is then the distance between the actual
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Figure 4.4: Localisation error of classifier. The error is measured
from the centre of the predicted zone (black) to the actual po-
sition of the point. r1 and r2 are the errors for points a and b,
respectively.

position and the centre of the cell. Figure 4.4 shows a visualisation of this
error calculation. Figure 4.5 shows the classification error of this classifier
on the two datasets, compared with results of KPN and [6].

Figure 4.5: CDF of localisation error, shown for Classifier Neural
networks on both datasets and results from [6].

The classifier appeared to perform well on the Antwerp dataset compared
to the other methods from the 75th percentile. It should be noted that the
data for Antwerp was gathered inside a relative small area (of about 50km2)
and thus, the maximum error that the classifier can get is limited by this
size. The same is also true for the Utrecht dataset, although this set is inside
a larger area (about 160km2).
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Regression

In the regression neural network, the label used for each data point consisted
of its latitude and longitude. The softmax layer is not needed. As the
regressor predicts the output as latitude and longitude, the localisation error
is simply the distance between the predicted location and the actual position.

Figure 4.6: CDF of localisation error, shown for Regression Neural
networks on both datasets and results from [6].

Figure 4.6 shows the error of our regressor on the two datasets, compared
with results of KPN and [6]. Both the classifier and regressor achieved very
low error for up to 80% of the test cases in Utrecht. The reason for this low
error is due to the distribution of data in Utrecht:

• A large number of data points were collected in clusters and thus, the
network was trained on a lot of data points from these clusters. This
results in the network being able to predict points in and around these
clusters very well.

• When the data set is split to make the test set, we randomly select
the data points to be included. This means that a significant portion
of the test set also came from these clusters. Because the network
has learnt these clusters well, they can predict these points with high
accuracy.

Figure 4.7 shows a comparison in accuracy between the classifier and
regressor methods for both of our datasets. An overview of the performance,
based on the median, mean, and 80th percentile error of these models are
given in table 4.2.

These models have provided us with a good basis to assess neural net-
works’ performance in localisation. Both the regressor and classifier were
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Figure 4.7: Comparison of Classifier and Regressor performance.

Classification (m) Regression (m) TDoA (m)
Utrecht Antwerp Utrecht Antwerp KPN Bissett

Median 216.4 419.9 66.4 277.4 174.2 500.4

Mean 779.2 553.9 581.1 411.4 6008.4 1667.1

80% 580.1 730.9 753.4 628.9 1557.1 924.7

Table 4.2: Performance summary of the trained classifier and re-
gressor compared to TDoA solutions.

able to learn from the training data and predict the test data with adequate
accuracy. Overall, the regression model offers better performance than the
classifier.

The comparisons here only tell us that the neural network can learn to
make predictions with these data sets. As the TDoA performances were
evaluated with a different data set, and we cannot perform TDoA with our
data due to inaccurate timestamps, our comparison may not be indicative
of real-life performance. Furthermore, we expect that in a realistic setting,
the accuracy of our method would not be the same, because a real system
would learn from a data set in the past to predict location in real-time.
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Chapter 5

Performance Assessment

This chapter discusses some characteristics of a LoRaWAN and how they
contribute to the neural network’s performance. First, we investigate how
well the ANN can perform if we only provide the set of gateways that re-
ceived a message and no RSSI is measured. Then, we consider two different
methods of scaling the data that are more suitable for RSSI values than
Min-Max Normalisation. We also look at the effect of using the Spreading
Factor, a unique parameter of LoRaWAN, as an additional input. Finally,
we split the training and test sets chronologically to more realistically assess
our approach.

5.1 Reception without RSSI

Considering the fact that most of the receptions in our data sets were re-
ceived by a small fraction of gateways as seen in figure 4.1, we wish to
investigate whether the combination of gateways alone may provide a good
location estimate with ANN. Pre-processing the data for this step is simply
replacing every RSSI value with 1 and all non-receptions are set to 0. Table
5.1 summarises the result of this task for the Antwerp data set. Figure 5.1
shows a comparison between this result and TDoA performance.

Median (m) Mean (m) 90th Percentile (m)

RSSI 277.4 411.4 907.4

Reception only 331.1 452.4 973.1

Error increase 16.2% 9.1% 6.7%

Table 5.1: Performance of ANN when no RSSI is known, only which
gateways received the message.

For the Antwerp data set, there is a a 9% increase in mean error when only
the reception of a message is considered, compared to when RSSI is used.
The maximum error increased by almost 2000m. In the case of Utrecht,
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the mean error increases by 21%. This result using the Antwerp data set
still appears better than the TDoA method proposed by Bissett [6]. The
combination of gateways that received a message plays a major role in the
decision of the network, but the RSSI at these receptions are crucial in
improving the accuracy. By providing only the reception as input, the neural
network may learn the coverage of each gateway and the prediction is made
based on the intersecting coverage areas. Providing RSSI values in addition
allows the network to learn a relationship between RSSI and distance, as
well as patterns that may arise from the urban environment.

Figure 5.1: Performance of ANN with and without RSSI informa-
tion. Also shown are TDoA results from Bissett [6].

5.2 RSSI Scaling

In many previous works with RSSI fingerprinting, researchers simply use
the raw RSSI values as input to their algorithms[67]. In chapter 4, we
have treated the RSSI in a similar way, simply normalising the values to
be in the range between 0 and 1. A drawback of this normalisation is that
the data is linear and thus does not represent the logarithmic nature of
RSSI. For example, considering RSSI values between 0dBm and −10dBm.
A difference of −3dBm is a 50% reduction in power, but with normalised
RSSI, this reduction is only 30%. In this section, we explore two different
methods of scaling RSSI data that are proposed by Torres-Sospedra et al.
[67].

RSSI is an indicator of signal power at the receiver reported in dBm. It
is calculated from the signal strength with equation 5.1.
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RSSIdBm = 10 × log10(
PowermW

1mW
) (5.1)

Torres-Sospedra et al. concluded that researchers should consider the
scaling of RSSI values as input when proposing fingerprinting techniques for
localisation [67]. The scaling methods proposed by them showed improve-
ments when used with a k-nearest neighbours classifier with WiFi data.
They provided two representations named exponential and powed which are
shown in equations 5.2 and 5.3.

Exponentiali(x) =
exp(Positivei(x)α )

exp(−minα )
(5.2)

Powedi(x) =
(Positivei(x))β

(−min)β
(5.3)

Where min is the minimum RSSI in the data minus 1, this it to take into
account gateways that did not receive a transmission, in which case their
corresponding value in the data set is some out-of-range value. In both of our
data sets the out-of-range value is −200. The representation Positivei(x)
is used for both of these equations, which sets out-of-range values to 0,
otherwise: Positivei(x) = RSSIi −min; where i is the gateway identifier.
α and β are parameters to be set for specific settings.

Figure 5.2 shows a comparison between Min-Max normalisation and us-
ing the two proposed representations, for RSSI values in the range of 0dBm
to −140dBm. With these new representations, small fluctuations of high
signal values will result in a large changes in processed value, and small dif-
ferences of weaker signals make little difference. For example, the difference
between −10dBm and −20dBm is much larger than between −110dBm and
−120dBm, whereas in the Normalised data, this difference is the same. In
this manner, the processed data can better represent the logarithmic nature
of measured RSSI.

However, the authors considered these representations for WiFi which typ-
ically has higher RSSI than LoRa. They also did not consider the highest
RSSI value seen in the data set, so a maximum of 0dBm was assumed.
Since the maximum RSSI in our data sets are lower than that, using these
representations as they are will effectively constrain our data to a section of
the curves in figure 5.2. We made a minor modification to include the max-
imum RSSI by changing the way Positivei(x) is calculated. The equation
to calculate this quantity, which we will refer to as ModPositive, is shown
in equation 5.4.

ModPositivei(x) = RSSIi −min−max (5.4)

Effectively, this makes the highest RSSI take on the absolute value of the
lowest RSSI and vice versa. The effect of using ModPositive can be seen in
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Figure 5.2: Comparison between different RSSI representations
after scaling, as proposed by Torres-Sospedra et al. [67].

figure 5.3. By using ModPositive, the whole range between 0 and 1 is used,
and the curves look much more similar to what was originally proposed. The
next step is to select the parameters α and β. We find the values such that
the scaled data set fully fits in the range 0 and 1. The parameters chosen
for our data sets are shown in table 5.2.

α β

Antwerp 15 4

Utrecht 40 2.5

Table 5.2: Selected values of α and β for our data sets.

Figure 5.3: Exponential and Powed representation with (right) and
without (left) using ModPositive.
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Using these representations, we gained a minor improvement in perform-
ance with the Antwerp data set. The difference between using Powed and
Exponential is minute. Table 5.3 presents the improvement with Powed
compared to normalised RSSI values when used for Antwerp.

Median error (m) Mean error (m) 90th Percentile (m)

Normalised RSSI 277.4 411.4 907.4

Powed RSSI 276.5 395.1 877.2

Improvement 0.3% 3.97% 3.3%

Table 5.3: Summary of improvement when the Powed scheme is
used with ModPositive to scale the Antwerp input data.

In the Utrecht data set however, performance deteriorates. The reason
for this can be explained with figure 4.2 of the RSSI distribution in this
data. We can see that a large portion of the data points have RSSI values
between −140dBm and −80dBm, another group of data points have RSSI
in the range −80dBm to −40dBm. Also, there is a small number of data
points with very high RSSI. When we scale the data with these methods,
most of the data are scaled to values very close to zero, because these RSSI
values are much smaller than the maximum. In turn, the neural network
will have difficulties in learning this data set because most of the data it
sees is so close to zero.

We did not consider adapting this task to the Utrecht data set further in
this work, but two ways to improve the performance may be:

• Remove high RSSI values: The fact that so few data points
had RSSI values as high as −5dBm indicates that these values are
highly unlikely to appear in a realistic setting. A likely reason for
these data points is because the user wished to test a gateway right
after installation, standing very close to it with a LoRa node.

• Use a different scaling method: instead of using a scaling scheme
that emphasizes on large RSSI, perhaps one that focuses more on
smaller values may suit this application better. This new scheme would
not take into account the logarithmic nature of RSSI, but we might
expect that most LoRa messages are received with low power thanks
to the long range capability.

5.3 Spreading Factor

The reception information and RSSI scaling techniques discussed so far are
common to many LPWAN, or any wireless network with a similar architec-
ture to LoRaWAN. In this section, we consider a detail that is unique to
LoRa, that is, the Spreading Factor.
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In LoRa, the Spreading Factor (SF) is used to provide Adaptive Data Rate
(ADR). A lower SF means a shorter symbol duration which gives a higher
data rate. The trade-off is that the minimum SNR required to decode the
symbol is higher which lowers the range of the signal [56, 39]. Conversely, a
high SF brings lower data rate but longer range.

The SF can potentially be used as an additional input for our method.
As not all data points in the Utrecht set contained a Spreading Factor this
step was only done for the Antwerp data set. There are certain technical
aspects to consider when using the Spreading Factor. As the data set for
Antwerp was collected over a proprietary network by Proximus in Belgium,
the specific technical details of the ADR algorithm are not publicly available.
However, we could use the ADR implementation of The Things Network to
gain some insight since it is based on Semtech’s recommended algorithm.

Spreading Factor One-hot encoding

SF7 1 0 0 0 0 0
SF8 0 1 0 0 0 0
SF9 0 0 1 0 0 0
SF10 0 0 0 1 0 0
SF11 0 0 0 0 1 0
SF12 0 0 0 0 0 1

Table 5.4: One-hot encoding of Spreading Factor for use as Neural
Network input.

In this ADR scheme, the network takes measurements for the 20 most
recent messages. The SNR at the gateway that had the best reception is
used to calculate a margin which determines how much the data rate can
be increased. Devices in a LoRaWAN typically should follow guidelines on
the duty cycle, or how much time in a day the device can transmit. In The
Things Network, this duty cycle is 30 seconds per day per node. With a
message size of 10 bytes, this translates to about 20 messages per day at SF12
or 500 messages per day at SF7. This means that LoRa devices gathering
data continuously may not be able to send a message often. If these devices
are constantly travelling, the data rate may not change fast enough to adapt
to the channel. Therefore, The Things Network recommends that ADR be
enabled for static nodes, while mobile devices should only use ADR when
they are stationary for an extended amount of time [62]. According to
the authors of the Antwerp data [1], the LoRa nodes used can send a new
message every minute without violating duty cycle regulations. If the same
ADR algorithm as discussed before was used, the SF may change every
20 minutes. However, because the nodes are often moving, the changing
environment may not allow the ADR algorithm to change the SF. Only
when the postal service vehicle is stationary for a while should we expect a
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change. While this is not the recommended way to use ADR, the Spreading
Factor in this data set may still give us some insights.

Neural networks is a machine learning algorithm that operates on numeric
data and requires all input and outputs to be numeric. Since the spreading
factor can take one out of six possible values, it can be considered a categor-
ical variable. A suitable way to represent this variable as a numerical input
to the neural network is by using One-hot encoding [33]. Six more inputs
were added to the neural network, each representing a spreading factor. For
each data point, one of these six inputs, corresponding to the SF, will take
the value of 1 and the others are 0. This encoding scheme is shown in table
5.4.

There was a small reduction in the median and mean error when SF was
used which is shown in table 5.5. This result indicates that the spreading
factor could be an important input to providing RSSI fingerprinting local-
isation with higher accuracy. As discussed, the data was gathered by mobile
LoRa nodes, which are not recommended to have ADR enabled. The SF
may provide an even better result if this data was taken by static nodes.

In chapter 3, we discussed how the SF can affect the range of LoRa and
thus, can perhaps be used as a range indicator. This improvement may
correspond to the fact that the Neural Network has learned some relationship
between SF and distance. For example, with a low SF (high data rate, short
range), the neural network may attach great importance to the gateway with
the highest RSSI. While with higher SF values, it may add more weight to
several gateways instead.

Median (m) Mean (m) 90th Percentile (m)

Normalised-No SF 277.4 411.4 907.4

Powed-No SF 276.5 395.1 877.2

Powed-With SF 260.9 381.8 878.1

Improvement 5.64% 3.37% -0.1%

Table 5.5: Comparison of error between neural networks with and
without Spreading Factor as inputs, using the Antwerp data set.

5.4 Chronological Data Split

So far, the neural networks have been trained and tested with a random
split of the whole data sets. In a realistic implementation of this approach,
the neural network would be trained on a set of data gathered in the past,
and it would be expected to estimate new data points in real-time. In this
section we investigate this implementation by dividing the test and training
set in time.
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Figure 5.4: A subset of the training and test set for Antwerp data
set after splitting in time. Training set points are shown in red
and test set points in black.

The data sets are now first sorted chronologically and then split into the
training and test sets with ratio 80:20 and with the training set being further
in the past. The training set is then randomly split to make the validation
set so that we end up with a 60:20:20 split as before. This results in a period
of 12 days being used for testing in the Antwerp data set and a period of 74
days in the case of Utrecht.

Considering these data sets, we can expect the test set for Antwerp to be
very similar in nature to the training set while it is not necessarily the case
for Utrecht. The reasons for this expectation are:

• Data collection method: postal service vehicles likely follow a sim-
ilar route every week, so data gathered on one week should be similar
to the next in the case of Antwerp. For Utrecht data set however, we
know nothing of the type of applications or method behind collect-
ing data. Many of these data points may have been collected by users
who were only interested in testing the coverage for a small area. Split-
ting this data in time will likely result in the test set containing data
gathered for completely different purposes than those of the training
set.
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• Shorter time period: the Antwerp data set was collected in a shorter
time frame of only 3 months. In this time, the landscape and environ-
ment of the city is less likely to have drastic changes compared to the
32-month data of Utrecht.

Figure 5.4 and 5.5 show these sets for Antwerp and Utrecht respectively.
Indeed, while this splitting on Antwerp produces a test set that overlaps well
with the training set, the same cannot be said about Utrecht. Although the
training data as shown in figure 5.5 is a random subset of the whole training
set, we can still see that the test data is present in some areas where there
is little training data. For example, the area around the University Medical
Centre, circled on the image, is where a large number of test data was
gathered, but has very few training points. We expect that the neural
network trained on this set will not be able to predict the test set well.

Figure 5.6 shows the result of these applications compared to when the
ANN models were trained on the whole data set. As expected, the applica-
tion performs significantly worse in Utrecht. In Antwerp, the accuracy also
worsened, although much less than in the Utrecht case.

Figure 5.5: A subset of the training and test set for Utrecht data
set after splitting in time. Training set points are shown in red
and test set points in black.
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Figure 5.6: Performance of ANN trained on chronologically split
data compared with a random split of the whole data sets.

As we discussed, the two main reasons behind the poor performance in
Utrecht are the data collection method and the difference in time between
the training and test set. Looking at the result from Antwerp, a proper
method to collect the data, such as using postal vehicles, can go a long way
in making this method better. Another benefit of using service vehicles is
that the physical size of the LoRa device is less limited. A large battery can
be used, or the device can even utilise the car’s power to collect data for a
longer period.

Providing a robust RSSI fingerprinting method for a longer time may be a
challenging task. The environment and landscape of the city will inevitably
change over time, with buildings, roads, tunnels, bridges, etc. being built
and taken down. A data set collected over one year may not reflect the city
a few years in the future. The solution may be to continuously collect new
data and continuously update the model with it.

5.5 Comparison of Results

Figure 5.7 compares the result of our approach using chronologically split
data, with TDoA results as reported by Bissett [6]. KPN offers the best
accuracy for up to about 75% of samples. Beyond that, the Antwerp ap-
plication has the best performance, with 80% of cases being located within
750m. While the accuracy of our method suffered with this application, it
provides the most realistic basis for comparing with TDoA method.

We should note that these performances were not measured with the same
set of data and this is a known limitation in our approach. On the one hand,
the TDoA data was gathered around the Netherlands, covering a much larger
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area than either of our data sets, this data set is also not large enough to
train a Neural Network. On the other hand, the data sets for our method
do not have sufficiently accurate timestamps to perform TDoA. Comparing
these two approaches using the same data set may be a good setting for
future work.

While KPN’s method gives the best accuracy for about 75% of cases,
we may assume that these were data points where the gateways had line-
of-sight with the node. The larger errors in TDoA will have arisen from
multipath effects which is very likely to be present in data points collec-
ted in cities. Since the maximum errors of TDoA methods are very large,
RSSI fingerprinting with ANN may be providing better localisation in cities
overall.

Figure 5.7: Performance of ANN with chronologically split data
compared to TDoA result reported by Bissett [6].

In using data sets that were collected in a known, we are imposing some
prior knowledge in the system, i.e. limiting the possible location of a LoRa
node to within a city. We trained and tested our models using data points
that we know are within this limit, thus limiting the maximum error we can
encounter. On the other hand, TDoA methods can be used in a large area
and can potentially have very high maximum error.

We also compare our result with that of a kNN-based approach for the
Antwerp data set. Varying k in the range between 3 and 15, we select the
value that gives the best mean validation error. For the Antwerp data set,
k = 11.

Although the ANN approach on the Antwerp data set still achieves the
best performance overall, the kNN model on this same data set comes quite
close. The mean error using ANN is 5.3% lower than using kNN. Overall,
RSSI fingerprinting methods can reduce the large errors with TDoA, but
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the added complexity of using a Neural Network may not provide significant
improvements over a simpler method like k-Nearest Neighbours. However,
the Multilayer Perceptron used in this work is a simple ANN architecture,
the size of the network and the hyperparameters selected may not be optimal
for this application. A thorough study of different architectures and an
extensive search of hyperparameters may bring much better performance.

Median Mean 90th Percentile

ANN-Antwerp 341.4 480.2 1048

kNN-Antwerp 366 507 1118

TDoA-Bissett 500.4 1667.1 1961

TDoA-KPN 174.2 6008.4 23389.2

Table 5.6: Performance overview of ANN fingerprinting, kNN fin-
gerprinting, and TDoA methods in localising devices in a LoR-
aWAN.

As mentioned in chapter 2, a preprint was published in the final month
of this thesis [2]. The authors considered an MLP of seven layers with the
following number of nodes: 1024,1024,1024,256,128,128,2. Some other para-
meters that they reported regarding the neural network such as activation
function and optimiser are identical to this thesis. With this, they achieved
a mean error of 358m and a median error of 204m. The authors claimed
that this result is reproducible and have made the specific data subsets
public, however the authors have not published the code nor the trained
model. We attempted to reproduce this result without success; there was
no improvement in performance compared to our model.
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Chapter 6

Conclusions and Future
Work

6.1 Conclusions

In this thesis, we have presented a method, based on Artificial Neural Net-
works, to estimate the location of LoRa nodes in an urban environment.
Existing solutions using TDoA perform well when gateways have line-of-
sight with devices but their accuracies deteriorate inside cities. We evaluate
the feasibility of using ANN for RSSI fingerprinting to overcome the chal-
lenges that TDoA faces in outdoor localisation.

We investigate neural network models that may be trained on the two
data sets used in this thesis. For each data set, a classifier and a regressor
are trained, and we find the regressors to perform consistently better. For
about 80% of samples, the ANN achieved better accuracy with the Utrecht
data set than with Antwerp. This is because a large portion of data in the
Utrecht data set was collected in clusters. A likely reason is that the users
who collected this data were mostly interested in testing the coverage of a
certain gateway, in a certain area.

The thesis then studies the accuracy of the neural network when RSSI
values are unknown. In this case, the mean error increases by 9% for An-
twerp data, and 21% for Utrecht data. The RSSI information is therefore
central in achieving better performance.

We consider two alternatives to Min-Max Normalisation for scaling RSSI
data as well as using the Spreading Factor as an additional input. These
changes account for a 7.2% improvement in mean error with the Antwerp
data set. The best performance ANN for Antwerp achieves a median error
of 260.9m and a mean error of 381.8m. The Utrecht model does not benefit
from the scaling method because of its data distribution and this data set
does not contain a Spreading Factor for every point.
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For a realistic comparison between our approach and TDoA, we split the
data chronologically with the test set being nearer to the present. In our
comparison, KPN’s TDoA solution is the most accurate for 75% of cases
but its mean error is up to 6008.4m. Bissett’s TDoA method achieves a
better average of 1667.1m while our ANN approach with Antwerp data
offers a mean error of 480.2m. We conclude that our ANN-based approach
can better limit the large errors that arise from an urban environment than
TDoA methods, but TDoA is more accurate in a good radio channel.

We determine that the way the Utrecht data set was collected makes it
unsuitable for RSSI fingerprinting. As this data set was gathered by many
users and applications, the data at one point in time is not representative of
the data at a later point. In implementing an RSSI fingerprinting algorithm
such as this, the method of collecting data should therefore be carefully
considered.

With the chronologically split data, we also compare the ANN perform-
ance with k-nearest neighbours fingerprinting. We find that ANN offers a
5.3% lower mean error than kNN with the Antwerp data. The ANN archi-
tecture we considered is a relatively simple one, and the hyperparameters
may not be optimal for this problem. Therefore, the reported performance
does not represent the best performance achievable by ANN. If simple ANNs
such as the ones reported in this thesis can achieve this performance, using
a different architecture as well as having an extensive search on hyperpara-
meters may bring significant improvements.

6.2 Future Work

Localisation in a LoRaWAN is still a relatively new topic. Much more
research can potentially be done to improve the accuracy of both TDoA
and RSSI fingerprinting methods further. We propose some possible research
direction to further explore this topic:

• Direct comparison of ANN and TDoA: Having a data set that
allows localisation using both TDoA and RSSI fingerprinting would
allow for a thorough and fair comparison between these two methods.

• Using map details and motion model: A lot of information can be
utilised from incorporating map details into localisation methods. For
example, if we know what a LoRa node is used for, we can constrain
its possible location: a car is more likely to be found on the street or a
parking lot than in the canal. Furthermore, if a node sends messages
in quick intervals and it is moving, we can calculate its velocity and
infer an estimation of its next position. A node that is moving is also
more likely to be on a street.
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• Hybrid solutions: TDoA methods work well in an open environment
over long range but not in cities. RSSI fingerprinting can perform
better in cities but is costly to scale to large areas. A hybrid solution
using both of these can give us the best of both worlds.

43



44



Bibliography

[1] Michiel Aernouts, Rafael Berkvens, Koen van Vlaenderen, and Maarten
Weyn. Sigfox and lorawan datasets for fingerprint localization in large
urban and rural areas. Data, 3(2), 2018.

[2] Grigorios Anagnostopoulos and Alexandros Kalousis. A reproducible
analysis of rssi fingerprinting for outdoor localization using sigfox: Pre-
processing and hyperparameter tuning, 08 2019.

[3] P. Bahl and V. N. Padmanabhan. Radar: an in-building rf-based user
location and tracking system. In Proceedings IEEE INFOCOM 2000.
Conference on Computer Communications. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies (Cat.
No.00CH37064), volume 2, pages 775–784 vol.2, March 2000.

[4] Priyanka Bhat. Analysis of remote sensing approaches for lora coverage
estimation. Master thesis, Delft University of Technology, Delft, The
Netherlands, 2019.

[5] D. A. Bibb, Z. Yun, and M. F. Iskander. Machine learning for source
localization in urban environments. In MILCOM 2016 - 2016 IEEE
Military Communications Conference, pages 401–405, Nov 2016.

[6] David Bissett. Analysing tdoa localisation in lora networks. Master
thesis, Delft University of Technology, Delft, The Netherlands, 2018.

[7] J. Biswas and M. Veloso. Wifi localization and navigation for autonom-
ous indoor mobile robots. In 2010 IEEE International Conference on
Robotics and Automation, pages 4379–4384, May 2010.

[8] Sinem Bozkurt, Gulin Elibol, Serkan Gunal, and Ugur Yayan. A com-
parative study on machine learning algorithms for indoor positioning.
pages 1–8, 09 2015.

[9] Jason Brownlee. A gentle introduction to the rectified lin-
ear unit (relu). https://machinelearningmastery.com/

rectified-linear-activation-function-for-deep-learning-neural-networks/.
Last accessed: Sep. 21, 2019.

45

https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/


[10] Jason Brownlee. When to use mlp, cnn, and rnn
neural networks. https://machinelearningmastery.com/

when-to-use-mlp-cnn-and-rnn-neural-networks/. Last accessed:
Sep. 17, 2019.

[11] Luca Calderoni, Matteo Ferrara, Annalisa Franco, and Dario Maio.
Indoor localization in a hospital environment using random forest clas-
sifiers. Expert Syst. Appl., 42(1):125–134, January 2015.

[12] Zhikui Chen, Feng Xia, Tao Huang, Fanyu Bu, and Haozhe Wang. A
localization method for the internet of things. The Journal of Super-
computing, 63(3):657–674, Mar 2013.

[13] Wongeun Choi, Yoon-Seop Chang, Yeonuk Jung, and Junkeun Song.
Low-power lora signal-based outdoor positioning using fingerprint al-
gorithm. ISPRS International Journal of Geo-Information, 7(11), 2018.

[14] European Space Agency. Galileo performances. https://gssc.esa.

int/navipedia/index.php/Galileo_Performances. Last accessed:
Sep. 11, 2019.

[15] B. C. Fargas and M. N. Petersen. Gps-free geolocation using lora in
low-power wans. In 2017 Global Internet of Things Summit (GIoTS),
pages 1–6, June 2017.

[16] Silke Feldmann, Kyandoghere Kyamakya, Ana Zapater, and Zighuo
Lue. An indoor bluetooth-based positioning system: Concept, imple-
mentation and experimental evaluation. In International Conference
on Wireless Networks, 2003.

[17] Pedro Figueiredo e Silva, Ville Kaseva, and Elena Simona Lohan. Wire-
less positioning in iot: A look at current and future trends. Sensors,
18(8), 2018.

[18] geopy. Welcome to geopys documentation! https://geopy.

readthedocs.io/en/stable/#. Last accessed: Sep. 15, 2019.

[19] Gerard J.M. Janssen. Wireless communication - lecture 2. Last ac-
cessed: Sep. 11, 2019.

[20] Andrea Goldsmith. Wireless Communications. Cambridge University
Press, 2005.

[21] Google. Geocoding api - get started. https://developers.google.

com/maps/documentation/geocoding/start. Last accessed: Sep. 15,
2019.

46

https://machinelearningmastery.com/when-to-use-mlp-cnn-and-rnn-neural-networks/
https://machinelearningmastery.com/when-to-use-mlp-cnn-and-rnn-neural-networks/
https://gssc.esa.int/navipedia/index.php/Galileo_Performances
https://gssc.esa.int/navipedia/index.php/Galileo_Performances
https://geopy.readthedocs.io/en/stable/#
https://geopy.readthedocs.io/en/stable/#
https://developers.google.com/maps/documentation/geocoding/start
https://developers.google.com/maps/documentation/geocoding/start


[22] P. Gotthard and T. Jankech. Low-cost car park localization using rssi in
supervised lora mesh networks. In 2018 15th Workshop on Positioning,
Navigation and Communications (WPNC), pages 1–6, Oct 2018.

[23] Aurlien Gron. Hands-On Machine Learning with Scikit-Learn and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Sys-
tems. O’Reilly Media, Inc., 1st edition, 2017.

[24] F. Gustafsson and F. Gunnarsson. Positioning using time-difference
of arrival measurements. In 2003 IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP
’03)., volume 6, pages VI–553, April 2003.

[25] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements
of statistical learning. Springer Series in Statistics, New York, NY,
USA, 2001. Springer New York Inc.

[26] J.M.; Ocaa-M.; Kim E. Hernndez, N.; Alonso. Wifi-based indoor local-
ization using a continuous space estimator from topological information.
Indoor Positioning and Indoor Navigation, 10 2015.

[27] Noelia Hernndez, Manuel Ocaa, Jose M. Alonso, and Euntai Kim. Con-
tinuous space estimation: Increasing wifi-based indoor localization res-
olution without increasing the site-survey effort. Sensors, 17(1), 2017.

[28] Geoffrey Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Improving neural networks by preventing
co-adaptation of feature detectors. arXiv preprint, arXiv, 07 2012.

[29] Xuke Hu, Jianga Shang, Fuqiang Gu, and Qi Han. Improving wi-
fi indoor positioning via ap sets similarity and semi-supervised affin-
ity propagation clustering. International Journal of Distributed Sensor
Networks, 11(1):109642, 2015.

[30] IoT Analytics. Lpwan emerging as fastest growing iot communic-
ation technology 1.1 billion iot connections expected by 2023, lora
and nb-iot the current market leaders. https://iot-analytics.com/
lpwan-market-report-2018-2023-new-report/. Last accessed: Sep.
10, 2019.

[31] T. Janssen, M. Aernouts, R. Berkvens, and M. Weyn. Outdoor fin-
gerprinting localization using sigfox. In 2018 International Conference
on Indoor Positioning and Indoor Navigation (IPIN), pages 1–6, Sep.
2018.

[32] Jason Brownlee. Use weight regularization to reduce overfitting
of deep learning models. https://machinelearningmastery.com/

47

https://iot-analytics.com/ lpwan-market-report-2018-2023-new-report/
https://iot-analytics.com/ lpwan-market-report-2018-2023-new-report/
https://machinelearningmastery.com/weight-regularization-to-reduce-overfitting-of-deep-learning-models/
https://machinelearningmastery.com/weight-regularization-to-reduce-overfitting-of-deep-learning-models/


weight-regularization-to-reduce-overfitting-of-deep-learning-models/.
Last accessed: Sep. 17, 2019.

[33] Jason Brownlee. Machine learning mastery. https:

//machinelearningmastery.com/, 2017. Last accessed: Sep. 08,
2019.

[34] Zhiping Jiang, Wei Dong Xi, Xiuping Li, Jizhong Zhao, and Jisong Han.
Hiloc : A tdoa-fingerprint hybrid indoor localization system. 2014.

[35] Charles F. F. Karney. Algorithms for geodesics. Journal of Geodesy,
87(1):43–55, Jan 2013.

[36] K. Kavitha Muthukrishnan, G.T. Koprinkov, Nirvana Meratnia, and
M.E.M. Lijding. Using time-of-flight for WLAN localization: feasibility
study. Number 06-28 in CTIT Technical Report Series. Centrum voor
Telematica en Informatie Technologie, 6 2006.

[37] Keras. Keras: The python deep learning library. https://keras.io/.
Last accessed: Sep. 15, 2019.

[38] Fekher Khelifi, A. Bradai, Abderrahim Benslimane, Priyanka Rawat,
and Mohamed Atri. A survey of localization systems in internet of
things. Mobile Networks and Applications, 08 2018.

[39] E.-K.; Kim J. Kim, D.-H.; Lee. Experiencing lora network establish-
ment on a smart energy campus testbed. Sustainability, 2019.

[40] J. Kim, S.; Ko. Low-complexity outdoor localization for long-range,
low-power radios. In In Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and Services Companion,
page 44, June 2016.

[41] KPN. Lora — geolocation. https://zakelijkforum.kpn.com/

lora-forum-16/lora-geolocation-8555. Last accessed: Sep. 12,
2019.

[42] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[43] P. Kumar, L. Reddy, and S. Varma. Distance measurement and er-
ror estimation scheme for rssi based localization in wireless sensor net-
works. In 2009 Fifth International Conference on Wireless Communic-
ation and Sensor Networks (WCSN), pages 1–4, 2009.

48

https://machinelearningmastery.com/weight-regularization-to-reduce-overfitting-of-deep-learning-models/
https://machinelearningmastery.com/weight-regularization-to-reduce-overfitting-of-deep-learning-models/
https://machinelearningmastery.com/
https://machinelearningmastery.com/
https://keras.io/
https://zakelijkforum.kpn.com/lora-forum-16/lora-geolocation-8555
https://zakelijkforum.kpn.com/lora-forum-16/lora-geolocation-8555


[44] In Lee and Kyoochun Lee. The internet of things (iot): Applications,
investments, and challenges for enterprises. Business Horizons, 2015.

[45] Honggui Li. Low-cost 3d bluetooth indoor positioning with least square.
Wireless Personal Communications, 78:1331–1344, 09 2014.

[46] LoRa Alliance. Geolocation whitepaper. https://lora-alliance.

org/sites/default/files/2018-04/geolocation_whitepaper.pdf.
Last accessed: Sep. 12, 2019.

[47] LoRa Alliance. Landing page. https://lora-alliance.org/. Last
accessed: Sep. 11, 2019.

[48] University of Cambridge. Dataset splitting. https://www.cl.cam.ac.
uk/teaching/1617/MLRD/handbook/dataset-splits.pdf. Last ac-
cessed: Sep. 17, 2019.

[49] Ministry of Defence (Navy). Admiralty Manual of Navigation, Volume
1. The Stationery Office, 1987.

[50] Douwe Osinga. Deep Learning Cookbook-Practical Recipes to Get Star-
ted Quickly. O’Reilly Media, Inc., 1st edition, 2018.

[51] Nico Podevijn, David Plets, Jens Trogh, Luc Martens, Pieter Suanet,
Kim Hendrikse, and Wout Joseph. Tdoa-based outdoor positioning
with tracking algorithm in a public lora network. Wireless Communic-
ations and Mobile Computing, 2018:1–9, 05 2018.

[52] Theodore Rappaport. Wireless Communications: Principles and Prac-
tice. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd edition,
2001.

[53] Sakshama Ghoslya. All about lora and lorawan. https://www.

sghoslya.com/. Last accessed: Sep. 08, 2019.

[54] A. H. Salamah, M. Tamazin, M. A. Sharkas, and M. Khedr. An en-
hanced wifi indoor localization system based on machine learning. In
2016 International Conference on Indoor Positioning and Indoor Nav-
igation (IPIN), pages 1–8, Oct 2016.

[55] Semtech. Low energy consumption design.

[56] Semtech. Lora modem design guide. https://www.semtech.com/

uploads/documents/LoraDesignGuide_STD.pdf, 2013. Last accessed:
Sep. 08, 2019.

[57] Rashmi Sharan Sinha, Yiqiao Wei, and Seung-Hoon Hwang. A survey
on lpwa technology: Lora and nb-iot. ICT Express, 3(1):14 – 21, 2017.

49

https://lora-alliance.org/sites/default/files/2018-04/geolocation_whitepaper.pdf
https://lora-alliance.org/sites/default/files/2018-04/geolocation_whitepaper.pdf
https://lora-alliance.org/
https://www.cl.cam.ac.uk/teaching/1617/MLRD/handbook/dataset-splits.pdf
https://www.cl.cam.ac.uk/teaching/1617/MLRD/handbook/dataset-splits.pdf
https://www.sghoslya.com/
https://www.sghoslya.com/
https://www.semtech.com/uploads/documents/LoraDesignGuide_STD.pdf
https://www.semtech.com/uploads/documents/LoraDesignGuide_STD.pdf


[58] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. Journal of Machine Learning Research,
15:1929–1958, 2014.

[59] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. J. Mach. Learn. Res., 15(1):1929–1958, Janu-
ary 2014.

[60] TensorFlow. Landing page. https://www.tensorflow.org/. Last
accessed: Sep. 15, 2019.

[61] The Things Network. Landing page. https://www.

thethingsnetwork.org/. Last accessed: Sep. 15, 2019.

[62] The Things Network. Lorawan adaptive data rate. https://

www.thethingsnetwork.org/docs/lorawan/adr.html. Last accessed:
Sep. 09, 2019.

[63] The Things Network. Lorawan overview. https://www.

thethingsnetwork.org/docs/lorawan/. Last accessed: Sep. 11, 2019.

[64] The Things Network. Ttn mapper. https://www.thethingsnetwork.
org/docs/applications/ttnmapper/. Last accessed: Sep. 15, 2019.

[65] The Things Network. Lorawan distance world record
broken, twice. 766 km (476miles) using 25mw transmis-
sion power. https://www.thethingsnetwork.org/article/

lorawan-distance-world-record, 2019. Last accessed: Sep.
11, 2019.

[66] Tony Pallone. Powering iot’s next generation. https:

//electronics360.globalspec.com/article/10806/

powering-iot-s-next-generation, 2018. Last accessed: Sep.
11, 2019.

[67] Joaqun Torres-Sospedra, Ral Montoliu, Sergio Trilles, scar Belmonte,
and Joaqun Huerta. Comprehensive analysis of distance and similarity
measures for wi-fi fingerprinting indoor positioning systems. Expert
Systems with Applications, 42(23):9263 – 9278, 2015.
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