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Summary

The performance of hydrostatic bearings is in part decided by their lubrication-film height shape. Imag-
ing the shape can be done by dissolving fluorescent dyes in the layer. However, current imaging
techniques are rooted in heuristics, and as such, their physics, design parameters, and error sources
are not quantitatively understood. To fully grasp and consequently design the ultimate measurement
system, the governing equation—the fluorescent radiative transfer equation—is solved analytically for
a plane-parallel system. The new solution method assumes that fluorescent radiative transfer is well-
described by the first two photon generations. Verification is done experimentally and by a concurrent
Monte Carlo method. Themodel also successfully predicted the response of a real measurement setup.
Further model analysis led to the understanding of factors such as: camera positioning; light source
design; and the effect of the reflective background on which the lubrication layer lays. The insights
suggest a practical implementation for a dynamic imaging setup.

v





Contents

List of Symbols ix

1 Introduction 1

2 Fluorescence in the Context of Film Height Imaging 3
2.1 The measurement problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 How fluorescence could help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Basic physical principles of fluorescence . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Fluorescent film-height imaging in the literature . . . . . . . . . . . . . . . . . . . . . . . 6

2.4.1 Direct method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4.2 Ratioed Image Film Thickness Meter . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.3 Emission Reabsorption Laser Induced Fluorescence method . . . . . . . . . . . . 7

2.5 Generalized Emission Reabsorption Induced Fluorescence and its reflectivity depen-
dence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Approach to the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Analytic Solutions to the Plane-Parallel, Fluorescent Radiative Transfer Equation on a
Mirror 13
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 The difficulties in modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Modelling methods in literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.4 A new modelling approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Fluorescent Radiative Transfer Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Distinct forms of the FRTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Extra assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Solving the fluorescent radiative equation. . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.1 A general solution method for the FRTE . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.1 Initial analysis and material spectrums . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2 Fluorescent-layer experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.3 Monte Carlo method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.2 Monte Carlo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.3 Individual Contributions to the overall radiance . . . . . . . . . . . . . . . . . . . . 28

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.8 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Analysis of a Layer-Height Imaging Setup 35
4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 The ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.2 Numerical experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.3 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.1 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vii



viii Contents

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.1 Numerical experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.3 Applicability of results to other measurement conditions . . . . . . . . . . . . . . . 42

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Practical Measurements 45
5.1 Concept of a dynamic imaging Setup for hydrostatic bearings. . . . . . . . . . . . . . . . 45
5.2 Practical aspects in design and dye selection. . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Dye selection and material properties . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.2 Photobleaching and fluorescence saturation . . . . . . . . . . . . . . . . . . . . . 46
5.2.3 Concentration depended effects and FRET. . . . . . . . . . . . . . . . . . . . . . 47
5.2.4 Light source design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Tuning the system with the analytic solution . . . . . . . . . . . . . . . . . . . . . . . . . 47

A Appendix: Setup Picture 49

B Appendices to the Analytic Solution 51
B.1 Appendix: Derivation of the Fluorescent Radiative Transfer Equation. . . . . . . . . . . . 51

B.1.1 The FRTE along a ray path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
B.1.2 The FRTE in a Cartesian coordinate system . . . . . . . . . . . . . . . . . . . . . 52
B.1.3 The FRTE in a plane-parallel system . . . . . . . . . . . . . . . . . . . . . . . . . 53

B.2 Appendix: Constructing spectrums with the solutions . . . . . . . . . . . . . . . . . . . . 53
B.3 Appendix: Solving for excitation photon irradiance 𝐸 . . . . . . . . . . . . . . . . . . . . . 54
B.4 Appendix: Solving for direct photon radiance 𝐿d . . . . . . . . . . . . . . . . . . . . . . . 55
B.5 Appendix: Solving for indirect photon radiance 𝐿i . . . . . . . . . . . . . . . . . . . . . . 56

B.5.1 Differential equation and boundary conditions . . . . . . . . . . . . . . . . . . . . 56
B.5.2 The source term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
B.5.3 The general solution for the indirect photon radiance . . . . . . . . . . . . . . . . 57

B.6 Appendix: Special and limit cases of the 𝐿d and 𝐿i solution . . . . . . . . . . . . . . . . . 59
B.7 Appendix: Upper hemisphere identity for the source-term integral . . . . . . . . . . . . . 60

B.7.1 Identity in absence of a denominator singularity . . . . . . . . . . . . . . . . . . . 60
B.7.2 Identity in presence of a denominator singularity . . . . . . . . . . . . . . . . . . . 61
B.7.3 The general identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B.8 Appendix: lower hemisphere identity for the source-term integral . . . . . . . . . . . . . . 64
B.8.1 Identity in absence of a denominator singularity . . . . . . . . . . . . . . . . . . . 64
B.8.2 Identity in presence of a denominator singularity . . . . . . . . . . . . . . . . . . . 65
B.8.3 The general identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

B.9 Appendix: Indefinite integrals of e±𝑎𝑥 and E1 (𝑏𝑥) products . . . . . . . . . . . . . . . . . 68
B.10 Appendix: Sanity checks for the FRTE solution. . . . . . . . . . . . . . . . . . . . . . . . 68

B.10.1 𝐿d, no mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
B.10.2 𝐿d, mirror of half reflectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
B.10.3 𝐿i no mirror, no-absorption limit case . . . . . . . . . . . . . . . . . . . . . . . . . 70
B.10.4 𝐿i, no mirror, regular solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

C Appendix: Codes 73
C.1 Monte Carlo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
C.2 Derivation Analytic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
C.3 Analytic Model, Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 90
C.4 Plot Ratio and Spectrums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
C.5 Create Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Bibliography 99



List of Symbols

𝑎 molar absorptivity / Lmol−1m−1

𝑐 Speed of light / m s−1

molar concentration / mol L−1

𝐶d integration constant; radiation toward the mirror / q s−1m−2 sr−1

𝐶u integration constant; radiation away from the mirror / q s−1m−2 sr−1

𝑑 distance travelled by a photon package / m
𝐸 irradiance / q s−1m−2

E1 exponential integral / -
𝐸e0 source irradiance at the top domain boundary / q s−1m−2

𝑓 calibration function
𝑔 calibration function
ℎ Planck constant / J s

film height / m
𝑙 path length of a ray inside a homogeneous domain / m
l local direction coordinates at a point on the ray path / -
𝐿 radiance / q s−1m−2 sr−1

𝐿d direct radiance solution; first photon generation
𝐿g general radiance solution
𝐿i indirect radiance solution; second generation
𝐿p particular radiance solution
𝑁a Avogrado’s number
𝑛 index of refraction / -
𝑞 quantum yield / -
𝑞fk spectral quantum yield of dye k / -
𝑞d spectral quantum yield of dye k for the direct/first generation / -
𝑞i spectral quantum yield of dye k for the indirect/second generation / -
𝑟 radius / m
𝑅 rotation matrix / -
ℛ camera sensitivity / VW−1 or V q−1 s

transform that changes the direction cosine’s sign / -
ℜ real part of a complex number / -
𝑠o area / m2

𝑠 projected area / m2

ix



x 0. List of Symbols

s vector of direction cosines / -
𝑆 source term / q s−1m−2 sr−1

𝑡 time / s
𝑇 shutter time / s

Transmittance of an object / -
𝑢 uniform distribution / -
𝑈 Energy of a photon package / J
𝑥 coordinate / m
𝑦 coordinate / m
𝑧 coordinate / m
x position vector / m
x̄ direction vector / -
𝛼 absorptivity / m−1

𝛼e total, representative absorptivity for the excitation light / m−1

𝛼es a single dye’s representative absorptivity for the excitation light / m−1

𝛼d total, representative absorptivity for the direct/first generation of fluores-
cent photons / m−1

𝛼ds a single dye’s representative absorptivity for the direct/first generation of
fluorescent photons / m−1

𝛼i total, representative absorptivity for the indirect/second generation of flu-
orescent photons / m−1

𝜖 emissivity / -
̄𝜖 emissivity, area under the curve normalized / -
𝜂 efficiency / -
𝜃 polar angle with the z-axis / rad
𝜃e excitation angle; polar angle of the light source irradiance / radian
𝜃v view angle; representative polar angle of the observed radiance/ rad
Θd set of angles that make radiance point towards the mirror / rad
Θu set of angles that make radiance point away from the mirror / rad
𝜆 wavelength of electromagnetic radiation / nm

as subscript: spectral derivative for radiant flux quantities such as: 𝐿, 𝐸,
and Φ
as subscript: index to a small waveband centred on a wavelength 𝜆

𝜆e representative wavelength of the irradiance [m]
𝜇 integrating factor / -
Ξ ratio of pixel grey values. Measurement response of the system. [-]
𝜌 reflectivity / -
𝜌d representative reflectivity for the excitation irradiance / -
𝜌e representative reflectivity for the first/direct generation / -
𝜌i representative reflectivity for the second/indirect generation/ -
𝜏 excited state lifetime / s

transmissivity of a filter / -
𝜙 azimuthal angle / rad
Φ radiant flux / q s−1

𝜔 solid angle / sr



1
Introduction

Hydrostatic bearings offer high load capacity, low friction, little wear, high stiffness, and zero stick-slip.
They use a thin layer of high-pressure liquid to separate counter surface and bearing surface [35, 38].
The liquid film layer only applies a very low shear friction to the bearing, and non-traditional lubricants
can be used due to the lack of surface contact. An interesting example could be the use of water
instead of oils and greases [37].

Several applications benefit from the hydrostatic bearing’s properties: pumps, high precision stages
and spindles, and large systems such as civil engineering projects. However, hydrostatic bearings
need stringent surface-form tolerances to work. This can be problematic in the case of large systems:
maintaining exacting manufacturing tolerances over great length scales is difficult; especially the wavi-
ness in the counter surface is a precarious problem. A solution is to add compliance so the bearings
can adapt to the waviness. Models and prototypes that do such a thing have been developed within the
Thin Film group at the department of Precision and Microsystems Engineering at TU Delft [26, 36]. The
challenge is to verify both models and prototypes: dynamic, spatial measurements of the film height
play an important role here. Consequently, a master thesis project was done to explore the potential
of fluorescence as an imaging technique [32]. It was found that fluorescence could work, therefore this
current thesis was created with the aim to develop the technique further—readers interested in more
background to hydrostatic bearings, or the choice for this particular imaging method are referred to the
accompanying literature study.

This report answers the broad question: What is the best way to use fluorescence for the imaging
of lubrication-film heights under hydrostatic bearings in a way that is both practical and repeatable?
The approach is to better understand the physics of the governing equation: the fluorescent radiative
transfer equation for a plane-parallel domain. Once we understand that, a better measurement setup
can be designed. The method is to solve the governing equation and verify its analytic solution by
comparing it to Monte Carlo simulations and practical experiments. Then, the analytic solution predicts
the registered behaviour of a real measurement setup for confirmation of its predictive power. Hereafter,
it analyses the effect of several design parameters. The resulting body of knowledge answers the main
question by proposing the ultimate imaging setup design.

The report is structured in the following way. Chapter 2 gives the context for fluorescence in height
imaging. It introduces the measurement problem, tells how fluorescence could help, how fluorescence
works, and how such methods are embodied in literature. The chapter continues with an introduction to
the most promising imaging method: the emission reabsorption laser induced fluorescence. The work
discusses necessary modifications to make it fit our needs; the new method is called for convenience
generalized emission reabsorption induced fluorescence. The issue of reflection effects is mentioned.
Finally, the resulting study approach is discussed. Chapter 3 proves an analytic solution to the fluo-
rescent radiative transfer equation with experimental verification. A concurrent Monte Carlo method is
used for comparison of input to output behaviour. A journal paper format is chosen with the intention for

1



2 1. Introduction

future publication. As such, parts of Chapter 2 are repeated here to make it an independently readable
text. In Chapter 4, the analytical solution is used to explore the imaging method. Effects of observing
large areas are investigated, an important assumption about reflectivity is critically analysed, design
parameters are explored, and some practical experiments are conducted to see if the method can pre-
dict a real measurement setup. Chapter 5 suggests a functional implementation of all that is learned
into a dynamic imaging setup design. It wraps up with pragmatic suggestions to engineers looking to
use the method.



2
Fluorescence in the Context of Film

Height Imaging

The goal is to image liquid film heights. A promising approach is to use fluorescence. In this chapter, a
gentle introduction to fundamental concepts is given. To do so, several parts of the old literature study
and parts of the paper in chapter 3 are restated.

2.1. The measurement problem
We are interested in liquid film heights underneath hydrostatic bearings: their working principle is not
unlike that of an air hockey puck or hovercraft. An archetypical deep-pocket bearing—Figure 2.1—
carries a load by floating on a cushion of high-pressure liquid, which lifts the bearing from the sliding
surface. In proper operation, there is no bearing to sliding surface contact. The deep pocket is filled
with a liquid, whose high pressure is maintained by creating a tiny gap with a large outflow resistance
to the surrounding environment; imaging squeezing-off a garden hose: the harder you squeeze, the
smaller the gap, the greater the flow resistance. The 2-dimensional gap-height surface, ℎ, and pocket
geometry largely determine relevant properties such as: load capacity, stiffness, and damping. There
are many more ways to design a proper hydrostatic bearing, that is all-up to the engineer’s creativity
and skills. The latter is especially true for the design concepts considered within the research group.
However, in all designs, the shaping of film height is the critical factor that determines functionality
[23, 26, 35, 38]. Modelling of film height is not enough, but proper test are needed to verify design
performance in the real world. We are especially interested in dynamic load cases where a bearing
needs to follow a curved counter surface. Examples are pumps , or sluice gates [37]: obtaining very
strict parallel-form tolerances on a sliding surface 10’s of meters long underwater is impossible . During

High pressure liquid inlet

Gap

Sliding surface

Low pressure
outflow

environment

ℎ(𝑥, 𝑦)

Figure 2.1: A typical, deep-pocket hydrostatic bearing on its sliding surface. Not to scale.

3



4 2. Fluorescence in the Context of Film Height Imaging

such movements, the bearing and sliding surface can easily misalign and create deviations from the
ideal film height, which in turn negatively affects performance. In the worst case, the bearing makes
contact with the sliding surface resulting in friction and wear. Clever designs prevents such problems.
Several ideas for such bearings were conceived within the Thin Film group, but they need verification.
Therefore, an imaging method was needed that can look at the lubrication film and recover its height.
A more deeper introduction to hydrostatic bearings can be found in the literature study.

During the initial project phase the following, most important, specifications were agreed upon

Relevant design criteria

Film thickness 10µm to 600µm
Observation area 100 × 100 mm
No modifications to the bearing
The sliding surface can be made transparent

2.2. How fluorescence could help
The fluorescence phenomenon was a great candidate to investigate for our imaging problem. It has a
proven track record in the literature, to which we will return in the section on imaging method choice—
section 2.4. Interestingly, the inside of this thesis’s cover reveals the two main imaging methods and
a lot of the pitfalls—see Figure 1. Take a look, we have a scene bathing in blue light, yet the liquid
glows red; it has a dissolved fluorescent dye. Fluorescence changes wavelengths of in and outgoing
light. The input signal, blue light, can be easily separated from the output signal, red light. We use
filters for this purpose. The first method is to use intensity: in the palm of the hand, liquid pools in the
creases which shine more brightly then the smudged, thin film surrounding it. The second method is to
use colour shifts: take a look at the beaker, filled by a thick layer and with deep red glow inside, while
adjacent a shallow drip has an orange sheen. The cause of this colour shift is explored in section 2.4.3.

Several pitfalls are visible too. Design of the light source matters: the area left to the beaker bathes
in light while the downright corner is barely lit. A problem exacerbated by differences in reflectivity of
liquid’s underground: the glossy table-top versus the dull skin. As it will turn out in chapter 3, for a
well-designed system, fluorescent radiance is linear in excitation light irradiance. Another problem is
the viewing angle: the camera is at an angle with the liquid inside the beaker. A pixel does not see the
true thickness, but rather the top of a diagonal ”tube” of liquid. Refraction of light at the liquid-to-glass
and glass-to-air also means that the angle of the ”tube” is not the same as we perceive it to be from
the photograph. Unwanted light is another trouble, at the top left corner we see the orange reflection
of a light source; if we were to filter for the orange-red light of fluorescence, the orange reflection would
be visible in the photograph. Fluorescence as an imaging method for film thicknesses is fraught with
difficulties, which need to addressed in proper measurement design. But first, a better understanding
how a fluorescent molecule works is required.

2.3. Basic physical principles of fluorescence
Fluorescence is a three-stage process that happens in specific molecules called fluorophores or flu-
orescent dyes [10, p.1]. The process is usually described by a Jablonski diagram [18, p. 3][8, p.
5-7]—see Figure 2.2.

1. Excitation. A fluorophore’s electrons are in its ground state 𝑆0, until it absorbs a photon with an energy
of 𝐸 = ℎ𝑐

𝜆 that is supplied by an external light source. ℎ the Planck Constant, 𝑐 the speed of light in
vacuum, and 𝜆 the wavelength in vacuum. After absorption, a fluorophore gets to a higher electronic
state such as 𝑆1, 𝑆2, 𝑆3... each with a greater energy. Every singlet state has vibrational energy levels
denoted by 0,1,2,3,.... The ground-to-singlet transition usually takes place from the lowest vibrational
level of 𝑆0 and costs 1 fs [18, p. 5] [8, p. 7].
2. Excited-State. In the vast majority of fluorophores, a rapid—typically 1 ps [18, p. 7]—internal con-
version process follows whereby energy is dissipated radiation-less until lowest vibrational level of 𝑆1
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Figure 2.2: Jablonski diagram
describes the fluorescence process, including non-radiative effects. The numbers indicate vibrational
levels within the electronics states 𝑆0, 𝑆1 and higher. Picture based on the discussion by Lakowicz [18].

is reached. The radiation exchanges occurs often with the fluorophore’s molecular environment via
collisions—also called quenching. If the excess energy of 𝑆1 is not further dissipated by radiationless
decay, the third stage can commence. The excited-stage for regular dyes exists up to roughly 10 ns
[18, p. 5], [8, p. 18].

3. Emission. The fluorophore sheds-off any remaining energy by jumping from the 𝑆1 to a vibration
level in 𝑆0. It does so by emitting a new photon which likely has a lower energy than the absorbed
photon, as quenching processes removed some of the fluorophores energy.

The efficiency of this process is given by the quantum yield: the mean chance of a photon absorption
leading to a photon emission. One usually estimates it macroscopically by using

𝑞 = photons emitted
photons absorbed

(2.1)

𝑞 depends on dye and environment but not on the absorbed photon’s wavelength [10, 18, ;p. 3, p. 7].
A short aside, with environment we can mean: solvent, temperature, pH, contaminants etc.

The process of fluorescence is best described by molar absorption- and emission spectrums—an typ-
ical example can be found in Figure 2.3. An absorption spectrum describes how well an external light
source at a given wavelength is able to cause fluorescence. Emission spectrums describe the likeli-
hood of a photon emission for a wavelength. The spectrums’ peaks are determined by the structure
of the first singlet state 𝑆1. Emissions spectrums depend on dye and environment and not on the ab-
sorbed photon’s wavelength [10, 18, p3; p. 7-9]. A photon emission more energetic than the absorbed
may occur if there are many populated vibration levels in 𝑆0 present or if thermal energy is added to
the system [8, p. 8]. Therefore, an overlap in absorption and emission spectrum is permissible and not
a violation of energy conservation.
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Figure 2.3: Exemplary normalized spectra of absorption and emission. The
dye absorbs at shorter wavelengths and emits at longer ones. An overlap

between both spectrums is a common occurrence.

2.4. Fluorescent film-height imaging in the literature
The liquid film height, ℎ, is a spatially distributed quantity that needs to be visualized nearly instanta-
neously for dynamic bearing operation. Three fluorescent film height imaging techniques where found
in the literature, which will now be discussed. All methods are depicted in Figure 2.6. The discussion
will show that the path to take is Emission Reabsorption Laser Induced Fluorescence (ERLIF). How-
ever, the method needs tuning to our needs of a larger viewing area and different light source. The
new method is called Generalized Emission Reabsorption Induced Fluorescence (GERIF).

2.4.1. Direct method
Any measurement system trying a measure a scalar quantity does not do it directly. Instead, the mea-
surement system response is correlated to the quantity. Think of a simple mercury thermometer, it
does not measure temperature straight, but the mercury level raises-and-falls with changing tempera-
ture. The calibration function is the scale alongside the glass.

Direct measurement of emissions has the most simple calibration function of any fluorescent imaging
technique. Go back to the thesis’s front-page inside. Dye has pooled in creases of the hand palm
and the layer shines much more brightly. The deeper the layer, the more molecules, the more light
is absorbed and emitted. The camera includes a filter to block out all light, except a small waveband
around the fluorescent emission peak. We then can correlate captured radiant flux by a camera pixel
during a shutter time 𝑇 to the height via a calibration function

ℎ = 𝑓 (∫
𝑇
Φd𝑡 )

The calibration function contains factors such as: the sensitivity of the camera, the transmittance of
the filters, transmission of the bearing’s sliding surface. The calibration function is usually acquired by
imaging a film of known thickness and seeing what pixel grey values are obtained. According to the
literature, the method is error prone and very difficult to calibrate. A classic study on oil film behaviour
on a spinning cylinder noted that calibration was: ”the least exact part, dependent on the underlying
surface and scattering” [34]. A similar study on open-channel flow and droplets [9] faced alike problems.
They tried to tackle the surface reflection dependency by adding a calibration vessel made of the same
material as the background in the experiment, but achieved accuracy errors, as a percentage of the
real value, of between 25.6% and 4.9% at the lowest-, and upper boundary. Measurement range was
0.100mm to 2.000mm over an 81 × 61 mm2 area. Another great drawback is that Φ depends on the
irradiance coming from the light source: a light source can vary spatially and temporary—think once
again about the cover picture’s variations in blue light. A higher irradiance means more fluorescent
photon production: an effect that mattered in that particular study, as LEDs’ intensities changed by
thermal drift. Direct measurements emission techniques are not a good method for our measurement
problem.
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2.4.2. Ratioed Image Film Thickness Meter
Ratiometric techniques—also called intrinsically referencedmethods—are popular for fluorescentmea-
surements far beyond height imaging, as they reject disturbances such as instrument and light source
drift which simplifies setup calibration [30, 31]. RIFTP is such a technique for film thickness, it was
developed by Husen et al. [13, 14] to solve the problem of source light inhomogeneity—remember,
fluorescent photon production depends on the number of light source photons available. It works by
measuring the radiation pattern of the light source, and then us it to normalize the imaged fluorescent
signal. To do so, a fluorescent layer with a weak absorbance is deposited on a diffuse-reflecting sur-
face. Also called a Lambertian reflector, which has a reflection brightness that is equal in all directions:
think of rough paper, or snow. Excitation light will barely lose irradiance when traversing the weakly
absorptive layer, it will thus everywhere have approximately the same irradiance as it had entering the
layer. When reflected from the Lambertian surface, its radiance will always be the same, no matter
at which angle we observe the layer. Therefore, by imaging the reflections, we do know what the
irradiance pattern was at the top of the layer and can remove its influence from the fluorescent mea-
surement. Reflected excitation and fluorescent radiant fluxes are captured separately by the camera
with help from two bandpass filters. They were swapped by help of a filter changer; changing filters
costs time, so we can only image static films. Taking the fluxes’ ratio gives the liquid film height with
help from a calibration function

ℎ = 𝑓 (
∫𝑇1 Φfluorescent d𝑡
∫𝑇2 Φlight source d𝑡

)

To demonstrate the method’s robustness, a drop of liquid with a fixed volume was moved to 16 different
places in the camera’s field of view. Drop volume measurements showed that the standard deviation of
the mean was 2.6%. In one of the other experiments, the measurement range was approximately 8 µm
to 86µm over 3.5 × 19.0 cm2. The method can easily be upscaled to layer thicknesses in which we are
interested, and it shows itself to be robust, repeatable and easy to calibrate. However, the previous
master thesis [32] used the method by applying a white matte coating to the bearing. A modification of
the bearing is an extra uncertainty when verifying bearing design models, and therefore the method is
rejected.

2.4.3. Emission Reabsorption Laser Induced Fluorescence method
ERLIF is a small-area layer-height measurement method that was developed by Hidrovo and Hart
[11]. The phenomenon on which it is based can be seen on the cover image were the beaker has a
deep, red layer and the droplet on the left is thin and orange. It is a colour shift method, although the
paper introduces it in terms of intensity. The workings principle is as follows: emissions and absorption
spectra of one or more dyes may overlap, for an example see Figures 2.3 and 2.4a. Therefore, emitted
photons may encounter another fluorophore before they can leave the layer, so they get absorbed
and re-emitted. This does two thing: first photons at wavelengths in the overlapping spectrums get
depleted; secondly, absorbed photons get re-emitted, which usually happens at longer wavelengths.
The combined effect is a red-shift: the bulk of the photons are now found at longer wavelengths.

Hidrovo and Hart utilized the red-shift phenomena by simultaneous laser-excitation of two fluorophores.
The emission spectrum of one dye strongly overlaps with another’s absorption, see for an example of
such a system Figures 2.4a and 2.4b. Therefore, the photons produced by the first dye can be re-
absorbed by the second dye. This red-shifts the overall spectrum at the top of the layer. The change
of a photon meeting dye 2 determines effect strength. For thick layers, with high concentrations the
chance increases: the thicker the layer, the longer the photon travel paths are, the greater the chance
of meeting another fluorophore so that re-absorption can happen.
The red colour shift is captured by measuring the radiant flux at two small wavebands and then take
their ratio

ℎ = 𝑓 (
∫𝑇1 Φwaveband 1 d𝑡
∫𝑇2 Φwaveband 2 d𝑡

) (2.2)
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of a liquid wedge between two optical flats, as Hidrovo and Hart applied in their ERLIF method [11].
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Figure 2.6: Sketches of how measure-
ment principles could be embodied for static imaging; the setups contain filter changers,
swapping filters takes time, thus only static layers can be viewed. The exception is direct
imaging, as there is no filter changer present. From left to right: direct, RIFTP, and GERIF.

For an example applied to Figure 2.4b, take two bandpass filters, put the first around 520nm and the
other at 530 nm. For deepening layers, the flux seen through the 530 nm grows, while flux through the
filter 520 nm weakens.

The journal paper introducing the ERLIF technique promised minimization of typical film thickness er-
rors: optical distortion, variations in surface reflectivity, and excitation. Optical distortion effects are
typically the reflectivity and tranmittance of viewing windows, like in our transparent bearing slide sur-
face. It has a demonstrated measurement range of 5 µm to 400µm at an accuracy of 1%, that is close
to the film thickness range agreed upon at the start of the literature study—10µm to 600µm. They
measured an area of roughly an US mint quarter coin, which has a diameter of 24.26mm. The setup
was calibrated by an external, precisely-made device consisting of two optical flats, so a high accu-
racy was obtained—see Figure 2.5 for a conceptual sketch. They could make such a precise device
because, according to the methodology, background reflections errors are minimized. If that is true,
creating a device becomes a straightforward geometrical manufacturing problem: just create a layer of
known height in a way and with materials that is the most easy and accurate. This simplifies calibration
a lot. If reflections do matter, the device must include surface and materials like the intended test object
with same reflective properties and thus complicating manufacturing.
Since the paper promised such powerful properties, showed remarkable accuracy, and could potentially
satisfy all requirements, it was decided to develop it further to the hydrostatic bearing’s needs.

2.5. Generalized EmissionReabsorption Induced Fluorescence and
its reflectivity dependence

The ERLIF method is successful at its intended purpose. However, applying it to hydrostatic bearings
requires a measurement setup redesign. Also, some questions were raised about the rejection of
optical distortions and especially the background reflectivity. Addressing the setup design issue for a
start. First, the original application successfully imaged a small area: heads-on observation of an area
roughly the same size as the cameras’ CCD-chips. Hydrostatic bearings are, typically, much larger and
therefore viewing-angle effects are important: the camera looks diagonally into the layer, and angular
radiance anisotropy is not understood. The small area was lit by a perpendicular expanded laser beam.
A larger area needs a different light source with greater beam sizes. Inevitably, sources with divergent
beam hitting the layer at an angle are necessary. Thence, what is the effect of irradiance at an angle
on the method? GERIF should be able to handle larger viewing areas, and different light sources.
The ERLIF setup itself is clever yet complicated: a laser beam and cameras partially share an optical
path with many components in the system such as 3 mirrors, 2 cameras and 2 beam-splitters—see
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Figure 2.7: The ERLIF system module, copied from [11].
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Figure 2.8: Copied, combined data [11]. Data linearly fitted to show a small
12% deviation in the slopes.

Figure 2.7. The shared optical path with two cameras makes the setup perfect for dynamic imaging:
we can record both radiant flux signal simultaneous. The study intended to see if a simplified setup
can still provide acceptable measurements for a bearing.

Background reflectivity errors are minimized, which we saw was a crucial assumption simplifying sys-
tem calibration vessels. In the paper, this premise was tested by placing such a calibration vessel on
top of a black rubber block and then on a polished steel block. The resulting measurement responses
versus ℎ were given in two separate figures and told to be similar. Here they are re-drawn together
and linearly fitted in Figure 2.8 to see that there was a small difference. Their slopes deviate by 12%.
It was of interest to understand this small deviation and how the method minimizes reflectivity errors.

Intuition tells us that deviations might be possible: for example, if we were to apply a reflective back-
ground to the fluorophore combination in figure 2.4a that barely reflects around the first emission peak
(515.5nm), but strongly around the second dye’s peak (541 nm), a powerful red-shift should be in-
duced in the normalized spectrum of the layer. Still, even if the background reflection were to matter, it
is not an un-assailable problem: just build a more complex calibration device that mimics the reflective
background.

To summarize, ERLIF is a powerful method that needs extension to larger areas. A simpler setup
for hydrostatic bearings measurements is of interest. The hypothesis that background reflectivity can
matter must be verified.

2.6. Approach to the study
A three-fold approach was taken. First, modelling of the physics inside a fluorescent layer. Second,
use of the model to predict a test measurement setup for static imaging and explore its design param-
eters. Three, use the obtained knowledge to suggest the ultimate dynamic imaging setup, and give
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practical use guidelines to the engineer.
Modelling consist of three parts: an analytic solution to the fluorescent radiative transfer equation for
mirror-like backgrounds, which is a reasonable approximation for precisely mademetal parts of a hydro-
static bearing. A secondary model, Monte Carlo, was developed. It verifies that for the same materials
and geometric inputs, the models produce the same output spectra. This checks for physics and im-
plementation errors. The third part are the experiments to validate the model in practice.
A numerical study was done into the conditions influencing a real measurement setup: differing an-
gles of view on the lubricating layer, varying light source conditions, reflectivity differences. The Monte
Carlo method also simulated a Lambertian reflector background to see if the analytic model has some
predictive power there. Finally, measurement data from a real setup was compared with predictions of
the analytic model. The predictions were reasonably successful, enough so to develop and optimize a
setup that is simpler than the ERLIF one.





3
Analytic Solutions to the Plane-Parallel,
Fluorescent Radiative Transfer Equation

on a Mirror

Abstract

Modelling the radiant fluxes in fluorescent media is a challenge. This work derives
the analytic solution for the stationary, fluorescent radiative transfer equation in a homo-
geneous, scatter-free, plane-parallel, mirror-bounded domain. The solution is a compact,
fast way to calculate spectral radiances for any location inside the domain. It assumes that
there are only two generations of by fluorescence produced photons. A computer algebra
system with custom integration rules finds the solution. With help from Monte Carlo simu-
lations and practical experiments, the solution is verified. A good agreement between all
three methods was found.

3.1. Introduction
Fluorescence is a three-stage process that happens in specific molecules called fluorophores or flu-
orescent dyes [10, p.1]. The process is usually described by a Jablonski diagram [18, p. 3][8, p.
5-7]—see Figure 2.2.

1. Excitation. A fluorophore’s electrons are in its ground state 𝑆0, until it absorbs a photon with an energy
of 𝐸 = ℎ𝑐

𝜆 that is supplied by an external light source. ℎ the Planck Constant, 𝑐 the speed of light in
vacuum, and 𝜆 the wavelength in vacuum. After absorption, a fluorophore gets to a higher electronic
state such as 𝑆1, 𝑆2, 𝑆3... each with a greater energy. Every singlet state has vibrational energy levels
denoted by 0,1,2,3,.... The ground-to-singlet transition usually takes place from the lowest vibrational
level of 𝑆0 and costs 1 fs [18, p. 5] [8, p. 7].

2. Excited-State. In the vast majority of fluorophores, a rapid—typically 1 ps [18, p. 7]—internal con-
version process follows whereby energy is dissipated radiation-less until lowest vibrational level of 𝑆1
is reached. The radiation exchanges occurs often with the fluorophore’s molecular environment via
collisions—also called quenching. If the excess energy of 𝑆1 is not further dissipated by radiationless
decay, the third stage can commence. The excited-stage for regular dyes exists up to roughly 10 ns
[18, p. 5], [8, p. 18].

3. Emission. The fluorophore sheds-off any remaining energy by jumping from the 𝑆1 to a vibration
level in 𝑆0. It does so by emitting a new photon which likely has a lower energy than the absorbed
photon, as quenching processes removed some of the fluorophores energy.

The efficiency of this process is given by the quantum yield: the mean chance of a photon absorption

13
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Figure 3.1: Jablonski diagram
describes the fluorescence process, including non-radiative effects. The numbers indicate vibrational
levels within the electronics states 𝑆0, 𝑆1 and higher. Picture based on the discussion by Lakowicz [18].

leading to a photon emission. One usually estimates it macroscopically by using

𝑞 = photons emitted
photons absorbed

(3.1)

𝑞 depends on dye and environment but not on the absorbed photon’s wavelength [10, 18, ;p. 3, p. 7].
A short aside, with environment we can mean: solvent, temperature, pH, contaminants etc.

The process of fluorescence is best described by molar absorption- and emission spectrums—an typ-
ical example can be found in Figure 2.3. An absorption spectrum describes how well an external light
source at a given wavelength is able to cause fluorescence. Emission spectrums describe the likeli-
hood of a photon emission for a wavelength. The spectrums’ peaks are determined by the structure
of the first singlet state 𝑆1. Emissions spectrums depend on dye and environment and not on the ab-
sorbed photon’s wavelength [10, 18, p3; p. 7-9]. A photon emission more energetic than the absorbed
may occur if there are many populated vibration levels in 𝑆0 present or if thermal energy is added to
the system [8, p. 8]. Therefore, an overlap in absorption and emission spectrum is permissible and not
a violation of energy conservation.

3.1.1. Applications
Fluorophores alter photon wavelength and are sensitive tomolecular environments, which are attractive
properties in practical applications. Some examples pertaining to fluorescent layers are: measurement
techniques [30], dyes to turn blue-LEDs into white-LEDs [21], bio photonics [20], yield-enhancing coat-
ings on green-houses [4], and the imaging of liquid film heights [11, 14]. Effective modelling of such
layers is useful.

3.1.2. The difficulties in modelling
The radiative behaviour of a single fluorophore is easily described by its spectrums and quantum yield:
it are material properties. However, macro-scale modelling—called fluorescent radiative transport—
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Figure 3.2: Exemplary normalized spectra of absorption and emission. The
dye absorbs at shorter wavelengths and emits at longer ones. An overlap

between both spectrums is a common occurrence.

of domains with a large number of molecules is complicated. Radiative transport is 6-dimensional in
nature: imagine using a torch to illuminate a room. The position in the room requires three coordinates.
The direction at which you point the torch needs 2-coordinates: probably a polar and azimuthal angle.
The sixth and final dimension is a description of the emission spectrum, or colour of the torchlight.
Photon packets travel from a source to a sink and carry the history of their trajectory: absorption events,
interaction with scatterers, reflective surfaces. Consequently, a local light flux is aptly influenced by the
global system behaviour. Fluorophores worsen the problem by altering wavelengths and acting as a
local point source. Hence, the modelling of fluorescent radiative transfer is difficult.
A phenomenon unique to fluorophores is of special interest in modelling. Photons can get re-absorbed
and re-emitted multiple times—a process called the fluorescent cascade [29, 40]. This happens if
one or more dyes have overlapping emission and absorption spectrums, as depicted in Figure 3.2. A
photon might have multiple up-and-down wavelengths changes before leaving the domain or getting
quenched. In turn, fluxes between different wavelengths get very complicated. Cascading happens
when the photons can travel for long distances through a domain with high dye concentration. The
dyes must have significant spectral overlap and a large quantum yield to prevent quenching.

3.1.3. Modelling methods in literature
The most accurate, but computationally expensive, modelling approach is to apply the Monte Carlo
method [5, 17, 40]; it is not a solution to the governing equation, but a simulation of large numbers
of photon packages inside the domain. It is a stochastic method where pseudo random numbers
determine the chance a package undergoes physical phenomena such as absorption and emission.
When enough packages are simulated, the model converges to the macroscopic behaviour of the
system.

Another modelling strategy is to use various discretization methods to solve the governing equation:
the so-called Fluorescent Radiative Transfer Equation (FRET). Of course, discretization of 3 spatial,
2 directional, and 1 spectral dimension leads to very large sets of equations. To moderate that prob-
lem, many studies concentrate on domains were some dimensions are irrelevant. Often, this means
analysing a single layer or a stack of layers, where one only the depth coordinate and the out-of-plane
direction angle matter—Figure 3.3 shows an example for such a single layer. The in-plane flux varia-
tions are irrelevant, so 2 positional, and one directional coordinate do not matter; discretisation is much
easier now. We call such a system plane-parallel [28, p. 2].
The adding-doubling is a method specifically intended for layer stacks of homogeneous, parallel plane
media; it was successfully applied with a 600 computation time reduction compared to Monte Carlo
by [19], where they studied a single dye in a scattering domain. The difference between the Monte
Carlo and the adding-doubling methods was less than 0.5%. A similar approach for re-absorption was
implemented with a discrete ordinates method [21], and achieved 7.6% maximal error compared to
the measured spectrum of a scattering, planar, single-phosphor plate. It has the drawback of solving
for the spectrum from short to long wavelengths, and thus ignoring re-emissions at ones shorter than
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the excitation wavelength. Thence, a fluorescent cascade solution is impossible. On the contrary, a
mathematical particle method solved the complete fluorescent cascade for multiple dyes at the cost
of trial-and-error damping and time-step tuning [25]. A spherical harmonics approach was applied to
a strongly scattering, single-dye, plane medium, it modelled a fluorescent cascade and was able to
reproduce qualitative findings from other literature [29]. Likewise, a powerful and flexible method for
multiple, scattering layers was developed by [20], However, it is unable to account for a cascade.

3.1.4. A new modelling approach
This work concentrates on non-scattering, fluorescent radiative transport in a plane-parallel layer on top
of a mirror. The new, main assumption is that for many practical systems, the fluorescent cascade is
limited to only the first 2 generations of fluorescent photons. Then the governing equation can be solved
analytically by the integrating factor method. The method is implemented in the MATLAB Symbolic
Toolbox, a computer algebra system, with help from some custom integration identities. Solutions were
verified against practical experiments and Monte Carlo simulations. The solution offers a fast way to
calculate the radiance spectrum at any point inside the domain for an arbitrary number of fluorophores.

3.2. Fluorescent Radiative Transfer Equation
Radiative transport needs three spatial, two directional, and one spectral coordinates. Themost general
quantity to describe it is radiance, 𝐿. Its definition—see Figure 3.4—is the photon flux density per unit
projected surface, and per unit solid angle incident on, passing through, or emerging in a specified
direction from a specified point in a specified surface with units q s−1 sr−1m−2 [22, p. 11]. The defining
equation in spherical coordinates is

𝐿 = d2Φ
d𝜔d𝑠0 cos(𝜃)

The surface 𝑠0 is specified by its location; this takes care of the three spatial coordinates. The pro-
jected surface, d𝑠 = d𝑠0 cos(𝜃), stems from the fact that the effective area photons can pass through
decreases when they are at an angle with that surface: imagine looking on a square window at a very
steep angle, it will appear to you like a thin rectangle. The element of flux goes into a unit of solid angle
d𝜔 at angles 𝜙 and 𝜃 with the surface’s normal; this takes care of the directional nature of radiative
transport. Geometrical dimensions are not enough, all our quantities are spectral: they depend on the
wavelength of the photons. Include this last dimension by adding subscript 𝜆 to obtain 𝐿𝜆. We define the
spectral quantities to be at a small waveband centred around 𝜆. That is, wavelengths are discretized
because material data is often in the form of look-up tables.
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Figure 3.4: The geometry of radiance in spherical coordinates. Redrawn from [22, p. 12]

One of the fundamental equations in radiative transport is the attenuation of 𝐿𝜆 along a short path length
𝑙

d𝐿𝜆
d𝑙 = −𝛼𝜆𝐿𝜆 (3.2)

Where 𝛼𝜆 is the absorptivity in m−1. This differential equation has a well-known solution: the Lambert-
Beer law

𝐿𝜆(𝑙) = 𝐿𝜆(0) e−𝛼𝜆𝑙 (3.3)

The much more complicated FRTE can be conceptually understood in terms of the Lambert-Beer law
and the differential equation. It is a well-established equation [15, 16, 40] describing the transport of
photons or energy in a medium—for a full derivation see appendix B.1.

Consider a homogeneous, plane-parallel system—see Figure 3.3—where 𝐿 only depends on position
𝑧 and direction 𝜃. Inside the medium, 𝑁 different fluorophores partake in a stationary radiation process,
then the FRTE is given by

cos (𝜃) 𝜕𝐿𝜆(𝑧, 𝜃)𝜕𝑧 = −𝛼m𝜆𝐿𝜆(𝑧, 𝜃) +
𝑁

∑
𝑘=1

𝛼f𝑘𝜆𝐿𝜆(𝑧, 𝜃) + 𝑆𝜆 (3.4)

Essentially, it is the same equation leading to the Lambert-Beer law, but with an extra source term
𝑆𝜆. A infinitesimal small path length is now defined by d𝑙 = 𝜕𝑧 / cos(𝜃). 𝐿𝜆 is now attenuated by the
medium it is traversing through, which is captured by absorptivity 𝛼m𝜆 . Besides medium absorption
losses, there are 𝑁 fluorescent dyes present that add their absorption via 𝛼f𝑘𝜆. Their absorptivity is the
product of the molar absorptivity, a material property, and the molar concentration: 𝛼𝜆 = 𝑎𝜆 𝑐.

Source term 𝑆𝜆 adds extra photons along the path, which is initiated by the absorption and subsequent
fluorescent emissions of the dyes. We know that the absorption process is described by differential
equation 3.2. The emission process then adds the absorbed photons back into the medium, therefore
flip the equation’s sign, and multiply with an ”re-distribution efficiency” to define the source term
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𝑆𝜆 =
1
4𝜋

𝑁

∑
𝑘=1

𝑞fk𝜆∑
𝜆′
𝛼f𝑘𝜆′ ∫𝜔

𝐿𝜆′(𝑧, 𝜃′)d𝜔 (3.5)

First, a small volume element absorbs photons from all directions, which is captured by the integral
over the full solid angle 𝜔 and the absorptivity. This is done over all possible wavelengths 𝜆′ at which
the dyes are able to absorb. Second, the probability of an fluorescent emission following absorption is
given by the spectral quantum yield

𝑞f𝑘𝜆 = 𝑞k ̄𝜖k,𝜆 (3.6)

𝑞k is the ”regular” quantum yield for a fluorophore: the mean chance of a fluorescent emission after
a photon absorption. ̄𝜖𝜆 is a fluorophore’s emission spectrum normalized such that the area under
the curve equals 1. ̄𝜖𝜆 behaves, essentially, as a probability density function for a photon emission to
occur at 𝜆. Finally, fluorescent photons are radiated-out evenly in all directions, therefore, normalize
the density by 4𝜋, which is the solid angle of the sphere surrounding a small control volume.
For plane-parallel systems, a solid angle simplification can be done. The definition of 𝜔 in spherical
coordinates is

d𝜔 = sin(𝜃)d𝜃 d𝜙
Since the system is plane-parallel, the azimuthal angle 𝜙 is irrelevant. Therefore, simplify 𝑆𝜆

𝑆𝜆 =
1
4𝜋

𝑁

∑
𝑘=1

𝑞fk𝜆∑
𝜆′
𝛼f𝑘𝜆′ ∫

2𝜋

0
∫
𝜋

0
𝐿𝜆′ (𝑧, 𝜃′) sin (𝜃′) d𝜃′ d𝜙′

= 1
2

𝑁

∑
𝑘=1

𝑞fk𝜆∑
𝜆′
𝛼f𝑘𝜆′ ∫

𝜋

0
𝐿𝜆′ (𝑧, 𝜃′) sin (𝜃′) d𝜃′

Substitute back in equation 3.4 to obtain the full FRTE

cos (𝜃) 𝜕𝐿𝜆(𝑧, 𝜃)𝜕𝑧 + 𝛼m𝜆𝐿𝜆(𝑧, 𝜃) +
𝑁

∑
𝑘=1

𝛼f𝑘𝜆𝐿𝜆(𝑧, 𝜃) =
𝑁

∑
𝑘=1

𝑞fk𝜆
2 ∑

𝜆′
𝛼f𝑘𝜆′ ∫

𝜋

0
𝐿𝜆′ (𝑧, 𝜃′) sin (𝜃′) d𝜃′

⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
𝑆𝜆

(3.7)

3.2.1. Distinct forms of the FRTE
The FRTE can take 3 distinct forms for different wavelengths ranges, which is best explained by an
example. Look at the hypothetical absorption and emission spectrums of figure 3.2 and assume no
medium absorption losses. For 𝜆 <500nm there is only absorption and the source-term will disappear,
unless an external light source is present. Between 500 nm and 560nm there is both absorption and
fluorescent emission. It is this exact area where fluorescent cascade takes place. Beyond 560nm,
there is pure emission, so the absorption term left of the = sign vanishes.

3.2.2. Extra assumptions
The FRTE can break down under some peculiar conditions that might not directly be obvious during
experimentation or modelling

• The fluorescent process takes a finite amount of time. Under strong photon irradiance, there
is a significant number of fluorophores in the excited stage. Meanwhile, the fluorophores in the
ground state are depleted. The fluorescent emission now shows a non-linearity in light source
irradiance [27]. This effect is not considered here.



3.3. Solving the fluorescent radiative equation 19

• There are no concentration dependent quenching mechanisms [8, p. 28], nor are there non-
fluorescent energy exchange mechanisms between the fluorophores. A poignant example would
be Förster resonance energy transfer: a radiation-less energy exchange between donor and
acceptor fluorophore; it induces an emission red-shift that in homogeneous media has a much
earlier onset than predicted from classic theory [6].

• Fluorophores can break down under high-intensity illumination. A process called photobleaching
[10, p. 3]

3.2.3. Boundary conditions
See Figure 3.3, a slab of thickness ℎ is deposited on a flat mirror surface with spectral reflectivity
𝜌𝜆. The medium boundary at ℎ has negligible reflection. The z-coordinate axis is perpendicular to
both the mirror and medium boundary surface. To excite the fluorophores, use a tightly-collimated,
monochromatic light beam entering the medium at an angle 𝜃e, wavelength 𝜆e and an irradiance of
𝐸e0. 𝐸 is the photon flux density passing through the area d𝑠 [39, p. 24] in q s−1m−2. A practical
example for 𝐸 could be all the photons passing through a pinhole. The fundamental relation between
radiance and irradiance is [22, p. 16]

𝐸 = ∫
𝜔
𝐿 cos(𝜃)d𝜔

A collimated beam is a theoretical but useful construct that can help us simplify the source term in
the FRTE. A collimated beam is a photon flux with no angular spread, therefore it cannot subtend a
finite solid angle d𝜔 at all. The relation between 𝐿 and 𝐸 would break down and there is no sensible
”mathematical” definition of an radiance 𝐿. Likewise, the source term 𝑆𝜆 in equation 3.7 would be
undefined for the same reason. However, think of what the source term tries to represent: a capturing
of a number of photons and their subsequent conversion. By heuristics, define now the source term
simplification as

𝑆𝜆 =
𝑁

∑
𝑘=1

𝑞fk𝜆𝛼fk𝜆e
4𝜋 𝐸(𝑧) for collimated beams (3.8)

With 𝐸(𝑧) the solution to irradiance field in the medium, and 4𝜋 the solid angle of the spherical radiation
pattern.

3.3. Solving the fluorescent radiative equation
The plane-parallel FRTE 3.7 is made difficult by the fluorescent cascade: there is a coupling between
source term on the right hand side and the system response on the left hand side; the solution for 𝐿𝜆
pops-up at both sides of the equation. Repeated re-emission and re-absorption means wavelengths
change, and thus the solution has to be found simultaneously for all 𝜆.

Break this self-coupling by assuming that for many systems multiple re-emissions and re-absorption
events are rare. There are only two generations of fluorescent photons that contribute. The direct
generation is the one driven by the beam of excitation light and the indirect one is driven by partial
absorption of the direct generation. This means that a chain of three equations has to be solved where
the solution of the first is the input to the source term of the next generation. The three equations are:
firstly, the equation describing excitation light of the collimated beam; secondly, the direct fluorophore
photons; thirdly, there are the indirect emissions arising from the absorption of the first fluorophore
light. The final solution for the fluorescent light is then sum of the direct and indirect solutions for all
wavelengths and fluorophores. To wit, the simplified FRTE is
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Figure 3.5: Reflection is the inversion of a ray’s z-direction cosine

cos (𝜃)
𝜕𝐿𝜆,g+1
𝜕𝑧 + 𝛼m𝜆𝐿𝜆,g+1(𝑧, 𝜃) +

𝑁

∑
𝑘=1

𝛼f𝑘𝜆𝐿𝜆,g+1(𝑧, 𝜃) =
𝑁

∑
𝑘=1

𝑞fk𝜆
2 ∑

𝜆′
𝛼f𝑘𝜆′ ∫

𝜋

0
𝐿𝜆′ ,g(𝑧, 𝜃′) sin(𝜃′) d𝜃′

⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
𝑆𝜆

(3.9)
With g the generation index. This only works for systems were photons can escape the medium before
a significant third generation can form. To predict beforehand, several detrimental aspects should be
analysed in combination: large domains, high dye concentration, quantum yields near unity, and a
significant overlap between emission and absorption spectra. As it will turn out, we can check the
2-generation assumption by inspecting the solutions.

3.3.1. A general solution method for the FRTE
Inspect the FRTE (equation 3.9). See that it can be written in the following form, ignoring subscript 𝜆

d𝐿 (𝑧, 𝜃)
d𝑧 + 𝑝 (𝑧, 𝜃) 𝐿 (𝑧, 𝜃) = 𝑞 (𝑧, 𝜃) (3.10)

A common solution method to these types of ordinary differential equations is the integrating factor
method, defined as

𝐿p (𝑧, 𝜃) = 𝜇−1 (𝑧, 𝜃)∫ 𝜇 (𝑧, 𝜃) 𝑞 (𝑧, 𝜃)d𝑧
⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

𝐿g(𝑧, 𝜃)

+ 𝐶𝜇−1 (𝑧, 𝜃)

𝜇 (𝑧, 𝜃) = e∫𝑝(𝑧,𝜃)d𝑧

(3.11)

Where 𝐿p is the particular solution, 𝐿g the general solution, 𝐶 the integration coefficient and 𝜇 the
integrating factor.

The domain has two distinct boundaries: a mirror and a non-reflecting layer. By intuition, the upward
going radiation must have a different character than the downward one: first, reflections are added to
the upward terms; second, it is likely that most of the photons are produced at the top part where the
light source’s irradiance comes in, so most upward photons escape quickly while downward photons
go into the layer to make further contributions. Therefore, the solution can be split in upward and
downward direction. To wit, define now two sets of polar angles, 𝜃 so we can differentiate between the
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two different particular solutions

Θu ∶ [0,
𝜋
2 ]

Θd ∶ [
𝜋
2 , 𝜋]

(3.12)

Boundary conditions are split. At the upper-boundary, there is no fluorescent light entering the layer.
Therefore, the downward boundary condition and solution are

𝐿p (ℎ, Θd) = 0
𝐶d = −𝜇 (ℎ) 𝐿g (ℎ, Θd)

𝐿p (𝑧, Θd) = 𝐿g (𝑧, Θd) − 𝜇 (ℎ, Θd) 𝐿g (ℎ, Θd) 𝜇−1 (𝑧, Θd)
(3.13)

At the mirror boundary, the downward going light, 𝐿p(𝑧, Θd), reflects. The strength of reflection depends
on 𝜌. The direction change in 𝜃 follows from basic physics: specular reflection is a depth-inversion—
angle of incidence is angle of reflection. Adding this effect to the solution is surprisingly easy. As it
turns out, all solutions found included direction cosines, which all derive from the cosine term of the
FRTE—equation 3.7. A reflection is equivalent to a direction-cosine sign change—see Figure 3.5.
Consequently, define ℛ{ ∶ } as the transform that changes a function’s direction cosines by cos (𝜃) →
− cos (𝜃). The boundary condition at the mirror is then

𝐿p (0, Θu) = 𝜌ℛ{ 𝐿p (0, Θd) } (3.14)

Solve for this condition by plugging it in 3.11

𝐿g (0, Θu) + 𝐶u 𝜇−1 (0, Θu) = 𝜌ℛ{ 𝐿g (0, Θd) − 𝐿g (ℎ, Θd) 𝜇 (ℎ, Θd) 𝜇−1 (0, Θd) }
𝐿g (0, Θu) + 𝐶u = 𝜌ℛ{ 𝐿g (0, Θd) − 𝐿g (ℎ, Θd) 𝜇 (ℎ, Θd) }

𝐶u = 𝜌ℛ{ 𝐿g (0, Θd) − 𝐿g (ℎ, Θd) 𝜇 (ℎ, Θd) } − 𝐿g (0, Θu)
(3.15)

Substitute the integration constant into 3.11: this gives the final particular solution

𝐿p (𝑧, Θu) = 𝐿g (𝑧, Θu) + [ 𝜌ℛ{ 𝐿g (0, Θd) − 𝐿g (ℎ, Θd) 𝜇 (ℎ, Θd) } − 𝐿g (0, Θu) ] 𝜇−1 (𝑧, Θu) (3.16)

This solution scheme can be implemented in a computer algebra system with help from some custom
integration identities to find expressions for 𝐿g and 𝑞(𝑧, 𝜃), the latter is essentially the source term 𝑆𝜆.
Some of these are difficult to derive. However, when found an implemented, a simple conversion to
numeric functions gives a swift way to calculate the radiative transfer in the medium.

There are three distinct forms of the FRTE. The method solved for the cascade regime. The indirect
generation solution in that form is not always directly applicable to the two other regimes of no absorp-
tion or no source term. Without absorption can be found from the cascade solution by taking a limit
to 0 for the absorptivity left of = in equation 3.9. When there is no source term there are no photons
emitted. Hence, we have the zero solution. All solutions, their limits, and integration identities can be
found in the appendices: B.4, B.5, B.6, B.8, B.7, and B.9.

3.4. Method
Proof that the analytic solution works is necessary. Verification of the model was done by checking
for implementation errors, see appendix B.10. A concurrent test was done with a Monte Carlo method
to see if for the same material spectra and geometry, they produce the same output. Another aspect
checked was the 2-generation limit concept by investigating the number of absorption events. A mea-
surement setup was built to investigate the emission spectrum for a water layer with two dissolved
fluorophores.
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Figure 3.6: All spectrums used in analytic and Monte Carlo models. 𝛼 absorptivity, 𝜌 reflectivity, �̄� normalized
emissivity, 𝑇 filter and fibre transmission.

3.4.1. Initial analysis and material spectrums
To provide the MC and analytic model with material spectra, two fluorophoric dyes were chosen, and
their material properties investigated. They are Fluorescein sodium salt—purity unknown—and Eosin
Y disodium salt—purity>85%—both acquired from Sigma-Aldrich. They were dissolved in water with
pH of 11—sodium hydroxide of 99% purity—also obtained from Sigma-Aldrich. A pH of 11 makes for
the best quantum yields and creates spectra with well-defined peaks [33]. The water was filtered with
a Puralab Flex.

Spectrums were obtained with an USB4000 spectrometer calibrated by a HL-3P-CAL tungsten source
from Ocean Optics. The spectrometer used an optical fibre as a source, and if necessary, its numerical
aperture was reduced to 0.0371 via attachment of a black tube with a pinhole. As a light source, a
XPE - Starboard blue LED (𝜆max =450nm, Δ𝜆 ± 20 nm) was used with an Ledil Lisa2-Clip16-XP lens
to focus the beam—full width at half maximum angle of ±8∘. A long pass filter with an measured
half-transmission at 493 nm was used to filter-out excitation light from the LED.

Material properties were measured at 741 different wavelengths. Before measuring them, the trans-
missions of filter, fibre-optics and dark spectrum were obtained.

Fluorescein emission spectrum measurements were done by placing 0.02%wt dissolved fluorescein
between two thin glass plates to create a very thin layer without self-absorption—in very thin layers,
the path lengths of the fluorescent photons are too short for re-absorption to occur. The LED-light
shone nearly perpendicularly at the layer while a perpendicular optical fibre with black tube recorded
the spectrum. The light shone away from the tube opening. Measurements were conducted in a
blacked-out, highly light absorptive enclosure. The eosin spectrum was recorded by observing a drop;
the finite optical-lengths in a not-so-thin drop will cause a red-shift of several nanometers. The shift
was removed by literature verification from [41]. It was found that the transmission of the filter bled in
the emission spectra which was not removable. This unfortunate occurrence was unavoidable, as the
spectrometer was not sensitive enough for the glass-plates method.

Absorption spectrums were obtained by placing a 10mgL−1 solution in a transparent, plastic cup of
10.2mm deep and 34.0mm in diameter. The cup was placed between a broad-source LED and the
optical fibre with pinhole tube. Measurements took place in windowed room during daytime. Obtained
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Figure 3.7: Measurement setup for model verification. Optical fibre’s
numerical aperture is reduced by adding a black tube with pinhole. The fibre
is very close to the glass surface. LED light is far way from the glass to
create a approximate collimated light source and equipped with a lens,
reflector, and scatter-light reducing cone to create a well-defined beam.

LED and fibre are positioned such that specular reflections on the glass are
not in the fibre’s numerical aperture.

spectrums agreed well with the ones found in the literature [33]. The peak, molar absorptivity for
fluorescein is 𝑎fl =6.6 × 106 Lmol−1m−1 which agreed well with literature [24]. Eosin’s disagreed very
much with the literature: 𝑎ey = 9.0 × 106 Lmol−1m−1 versus a probable range of 1 × 107 Lmol−1m−1 to
2.2 × 107 Lmol−1m−1 [1, 33]—not directly given in the literature: requires some estimation from plots.
A decision was made to trust the data from literature. 𝑎ey was tuned to make model and a couple of
measurements to agree. Then, the model was compared with the remaining measurements to see if it
had any predictive power.

Fluorescein Eosin Y
𝑞 0.85 [41] 0.2 [41]

𝑎peak 76.0e5 [24] 1 × 107 Lmol−1m−1 to 2.2 × 107 Lmol−1m−1 [1, 33]

To prevent concentration quenching or Förster resonance energy transfer, a series of solutions with
different concentrations were made—0.125mmolmol−1, 0.25mmolmol−1 and 0.5mmolmol−1. Emis-
sion spectrums were repeatedly measured for a very thin layers sandwiched between glass plates. The
highest concentration showed a distinct red shift, themiddle onewas uncertain. Therefore, 0.125mmol L−1
was chosen as the right concentration.

All resulting spectra can be found in Figure 3.6.

3.4.2. Fluorescent-layer experimental setup
A simple setup was built to see if the model can accurately predict a real system, see Figure 3.7.
Fluorescein and Eosin Y were dissolved in water (pH 11) with 𝑐 = 0.125mmol L−1, 1% deviation in
concentration possible, not accounting for chemical purity. Solution was put on a very flat glass disk—
waviness « 1µm, 45mm diameter, 12mm thick, diffuse reflective sidewalls. The choice for glass is
inspired by the low angular reflectivity between water and glass—see Figure 3.8—as can be calculated
by the well-known Fresnel equations. Low reflectivity at the medium boundary is an assumption in the
analytic model. On the glass, metal spacers held-up a mirror—Edmund Optics Zerodur mirror, 2 inch
diameter, protected aluminium coating, waviness of <32 nm. An XPE - Starboard blue LED served as
a light source—𝜆max = 450nm, waveband ±20nm. It had a Ledil Lisa2-Clip16-XP lens to focus the
beam—FWHM angle of ±8∘—and a black cone to reduce stray light. It was put some distance away
to approximate a locally collimated beam in the water. The light source could be put at an angle which
caused an 𝜃e error of ±5∘ inside the water layer. The optical fibre had a pinholed black tube on top to
reduce the Numerical Aperture (NA) to 0.037, it could see the radiance inside the layer at an estimated,
angular error 𝜃v = ±6∘. LED and fibre were put in a cross-plane position to prevent specular reflections
into the NA. Not all combinations of 𝜃v and 𝜃e are possible due to blocking of irradiance light by the
fibre.
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Figure 3.8: Angular reflectivity for rays on a water to glass refractive
interface, as given by Fresnel Equations. Angle is between the ray, and

refractive interfaces normal vector.

The following combination of layer thicknesses and viewing and irradiance angels where used. All
angles are inside the water.

ℎ ±50 µm 500 900 2000
𝜃e ±5∘ 20 45
𝜃v ±6∘ 0 45

Measurements were made over several days. Data was smoothed by a Gaussian filter—centred win-
dow of 15 samples. The comparative, analytic solution dataset was multiplied by 𝑇 to add the trans-
mission effects of the setup’s filter and fibre transmission.

3.4.3. Monte Carlo method
A simple Monte Carlo model was implemented to verify the 2-generation assumption and to reproduce
the output radiance spectrums from the analytic model for the same geometri and material inputs. The
domain was a simple cylindrical medium with a round sensor on top, see Figure 3.9. The coordinate
system flipped with respect to the analytic solution and is now centred on the sensor. The cylinders
radius, 𝑟d, was set such that the smallest view factor from any small control volume to the sensor was at
least 0.01—factors obtained from [2]. This means that any part in the domain has at least a 1% change
of creating a direct hit with a photon on the sensor, which makes sure all parts of the domain have a
meaningful contribution to the simulation. For thick layers of ℎ > 400 µm this radius was multiplied
by 3 to account for intermediate absorption redirecting photon packages to the sensor. Scaling factor
derived by checking for convergence. Photons are released perpendicular to the top surface. 8 different
heights were investigated with 4⋅109 photon packages per height. The cylinder bottom is considered to
have the same reflectivity as the protected aluminium, coated mirrors from Edmund Optics: the same
mirror as used in practical experiments. To find the dependence on polar angle, an acceptance cone
was introduced. Only the photon packages inside of the cone with half-apex angle 𝜃a = 10∘ where
captured by the sensor with a radius of 𝑟s = 450µm. Polar rotation of the cone is defined by the view
angle 𝜃v. The finite solid angle of the cone means that 𝐿 can only be approximated. The model code
was parallelized and ran on six cores of an Intel Core i7-9750H CPU clocked at 2.60GHz.

In the coming algorithm description, the uniform distribution 𝑢 ∈ [0, 1] is sampled. Every 𝑢 is an unique
realization of that distribution. A photon package simulation, see Figure 3.10, starts by setting the
energy 𝑈 and wavelength 𝜆e. The direction vector, x̂ =< �̂�, �̂�, �̂� >, is set to be straight down. The
position x =< 𝑥, 𝑦, 𝑧 > is initialized on top of the cylinder head by sampling the radius and polar angle

𝜃d = 2𝜋𝑢, 𝑟 = 𝑟d√𝑢, x0 = [𝑟 cos(𝜃d), 𝑟 sin(𝜃d), 0]
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Figure 3.9: Domain for MC simulation. Coordinate systems are flipped with
respect to the analytical domain

𝑑 is the distance travelled by the photonpackage. Obtain it by treating Lambert-Beer’s law as a Proba-
bility Density Function (PDF), then find its Cumulative Distribution Function (CDF) and uniformly sample
its inverse, to wit

𝐿(𝑑) = 𝐿(0)e−𝛼𝜆𝑑 , PDF = 𝛼𝜆e−𝛼𝜆𝑑 , CDF = 1 − e−𝛼𝜆𝑑 , 𝑑 = − ln(−𝑢 + 1)𝛼𝜆

Update the new position by xnew = xold + 𝑑x̂ and check if the package is still in the domain. If it is
below the domain, reflection occurs, so remove some energy, update 𝑑, change the direction, and set
the new position to the intersecting point with the mirror

𝑈new = 𝜌𝜆𝑈old, 𝑑new = 𝑑old −
ℎ − 𝑧old
�̂� , �̂�new = −�̂�old, xnew = xold + x̂old(𝑑old − 𝑑new)

If the photons are above the domain, do two checks: first, did an intersection with the sensor occur and
secondly, are the photons in the sensor’s acceptance cone. Intersection happened if

𝑡 = −𝑧�̂� , (𝑥 + �̂�𝑡)2 + (𝑦 + �̂�𝑡)2 − 𝑟2s ≤ 0

Entry into the acceptance cone occurs if the ray’s direction vector falls inside it. To check, rotate the
direction vector into a coordinate systemwhere the new, local z-axis coincides with the cone’s symmetry
axis. If the new z-direction is larger than cosine of 𝜃a, accept it

𝑅 = [
1 0 0
0 cos(𝜃v) − sin(𝜃v)
0 sin(𝜃v) cos(𝜃v)

] , x̂rot = 𝑅 x̂, �̂�rot > cos(𝜃a)

Now, add 𝑈 to the spectrum at 𝜆 and record the number of absorption events that happened before
striking the sensor.

If after travelling distance 𝑑, the photon is in the domain, check which fluorophore absorbed it. We
choose dye 1 if
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Figure 3.10: Flow chart for the Monte Carlo algorithm.
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𝛼1𝜆
𝛼1𝜆 + 𝛼2𝜆

> 𝑢

and dye 2 otherwise. The chance of an absorption event without emission is determined by the quantum
yield

𝑞dye < 𝑢

The photon is removed and a new one is emitted at the top of the layer, but when re-emission does
happen, update 𝜆 and the number of absorption event counter by

𝜆new = CDF−1�̄� (𝑢) abs. counter = abs. counter+ 1

With CDF−1 the inverse cumulative distribution function of the particular dye’s normalized emission
spectrum ̄𝜖. Since there is no analytic inverse, a numerical inversion is needed. Then update 𝑑, and
change the photons energy by

𝑈new =
𝜆old
𝜆new

𝑈old,

Also, find the direction into which the photon is emitted by uniformly sampling on a sphere—fluorescence
emits equally in all directions

cos(𝜃) = 1 − 2𝑢 sin(𝜃) = √1 − cos(𝜃)2, cos(𝜙) = cos(2𝜋𝑢)
�̂� = sin(𝜃) cos(𝜙) �̂� = sin(𝜃) sin(𝜙) �̂� = cos(𝜃)

This concludes the algorithm.

Several heights and viewing angles were simulated and compared to the analytic model

ℎ / µm 20 100 200 400 800 1200 1600 2000
𝜃v / radian 0 𝜋/8 𝜋/4 3𝜋/8

All viewing angles were checked simultaneously within each ℎ run. After simulation, data was smoothed
with a Gaussian filter—centred window of 15 samples — to remove statistical noise. Then it was
transformed from the energy rate to photon rate domain and normalized to 1 for comparison with the
analytic solution of the FRTE.

3.5. Results
3.5.1. Measurements
The comparison between the analytic model and the measurement can be found in Figure 3.11. The
peakmolar absorptivity was heuristically tuned to 𝑎peak = 1.67 × 107 Lmol−1m−1 by comparing analytic
results andmeasurements of Figure 3.11a. This coefficient was then used to create the analytic solution
for the 3 other figures. Both datasets agreed upon the existence of a shoulder at 500 nm to 530 nm that
shrunk in height with increasing ℎ and 𝜃v, yet the effect of 𝜃e is negligible. The model matches peak
radiance well, but overestimates energy in the shoulder; an effect that is less pronounced for greater
depth, were overestimation can turn in underestimation. Deviations with respect to the analytic model
can be found in table 3.1

Varying 𝜃v red-shifts the measured emission peaks, with increasing effect strength for ℎ. Excitation
angle 𝜃e = 20∘ shows an approximative 1 nm, 6 nm and 6nm shift for 500 µm, 900µm and 2000µm.
𝜃e = 45∘ shows an approximative 1 nm, 4 nm and 3nm shift for 500 µm, 900µm and 2000µm.
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Table 3.1: Maximal radiance measurement difference with respect to the analytic model in the shoulder at 500 nm to 530 nm

Figure Error / % Location / nm
3.11a 23, 12, 8 509.5, 510, 510
3.11b 19, 19, 9 510, 510, 525
3.11c 26, 12, 4 509.5, 509.5, 510
3.11d 21, 5, 5 508, no peak, 510

The measured emission peak variation between different 𝜃e was usually negligible, exceptions are
approximately 2 nm and 4nm for 𝜃v = 0∘, ℎ = 900 µm and 𝜃v = 45∘, ℎ = 2000 µm.
Analytic peak wavelengths are always within 3 nm of the measured peak. There seems to be no pattern
between the differences.

3.5.2. Monte Carlo
Comparisons between the analytic model and MC simulations are plotted in Figures 3.12a and 3.12b.
The first figure shows the ℎ = 20µm, 100µm, 200µm and 400µm for different viewing angles and a
perpendicular, collimated irradiance. It has the regular domain radius. Fit between both methods is
good except for 400 µm where the analytic method has more energy at the longer wavelengths. This
deviation is not visible for the larger ℎ’s, but the noise increases, however. The domain radius was
scaled by 3 for these depths to help convergence. All plots show a red-shift of energy by the creation
of a shoulder in the 500 nm to 530 nm waveband; very thin layers such as 20µm have an emission peak
at 515.5nm while deep layer have one at 551 nm. All but the thinnest of layers have a more pronounced
shoulder at greater viewing angles. At 100 µm, the peak broadens, and for greater thicknesses, the
left flank develops the shoulder. Peaks of both spectrums are matched within less than 0.5nm. Monte
Carlo spectrums show for 800µm a repeated bump around 515nm for all viewing angles, which is
absent in the analytic solutions.

Figure 3.13 shows the generational, fraction make-up of fluorescent photon packages that arrived at
the sensor. The first two generations account for more than 90% of all packages. For deeper layers,
the role of latter generations increases.

The MC model took longer to run for deeper layers. A comparison between MC the analytic solution
runtimes for the deepest layer and all viewing angles is

ℎ = 2000 µm, all 𝜃v Monte Carlo Analytic
runtime 1.7089 × 104 s 6.9171 s

The MC model calculates all 𝜃v in one go, while the analytic solution requires separate runs for each
one.

3.5.3. Individual Contributions to the overall radiance
Figure 3.14 shows the individual contributions of all solutions to the total radiance. For 100µm, Fluo-
resceine’s direct solution dominates: its peak is 6 times larger than Eosin Y’s. For 2000µm, Eosine Y’s
direct and indirect results have a combined photon radiance that is equal to 60% of Fluoresceine’s at
the 546 nm and 547nm peak. Fluorescein shows the shoulder effect. Eosin Y is mostly composed of
its direct term, and the indirect term fed by Fluorescein photon absorption. Other contributions are van-
ishingly small, especially the Eosin Y to Fluorescein solution. Noise affects the data for wavelengths
roughly beyond 550 nm.

3.6. Discussion
Measurements and analytic model agree well, but for the shoulder at 500 nm to 530nm, where the
model usually overestimates the energy. The shoulder is centred at the absorption peak of Eosin Y.
The disagreement is likely due to uncertainty in material data. Most of it is in the spectrometer measure-
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Figure 3.11: Measured and analytic emission spectrums of a parallel layer between glass and the mirror. Errors for measured
data are 𝜃e ± 5∘, 𝜃v ± 6∘, ℎ ± 50 µm
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(b) Comparison between Monte Carlo simulations and analytic solution. 𝜃e = 0∘. 3 times larger radius than regular one.



3.6. Discussion 31

1 2 3 4 50

0.2

0.4

0.6

0.8

Generations / -

Fr
ac
tio
n
of
ph
ot
on

pa
ck
ag
es ℎ = 20µm

ℎ = 100µm
ℎ = 200µm
ℎ = 400µm
ℎ = 800µm
ℎ = 1200µm
ℎ = 1600µm
ℎ = 2000µm

Figure 3.13: Generation fraction of all fluorescent photon packages arriving
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Figure 3.14: Individual contributions of both dyes to the direct solution 𝐿d and the indirect 𝐿i solution. FL=Fluorescein
EY=Eosine Y. Data not corrected for filter and fibre transmission 𝑇.
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ment: the strong deviation between measured and literature Eosin Y’s molar absorptivity. A different
problem is the bleed through of fibre transmission and filter corner frequency in the emission spectra,
see Figure 3.6. Other culprits are the lacking measurement conditions: measuring over multiple days
under different environmental conditions, and absorption tests in a well-lit room. All are the unfortunate
effect of a lack of time and resources.
A speculative cause might be that, even though minor, there are some reflection at the water-glass
interface. Photons might not escape glass to the glass, whereafter they serve as a source for Eosin,
and therefore enrich the peak in comparison to the shoulder.
A relatively minor effect of measurement uncertainness is the noise in the model beyond 550nm—
Figures 3.14, 3.12a, and 3.12b— which derives from measurement noise visible in Figure 3.6.
However, matching the peaks of emission is near perfect: usually a within 2 nm match, with an outlier
to 3 nm. Thence, beyond the noise and shoulder, there is a very good agreement between model and
measurement.

For 2000µm layers, the emission peak at 547 nm becomes more and more pronounced, which is
coincident with Eosin’s emission peak at 546 nm. Meanwhile, the shoulder around 515 nm deepens,
it is in this band that Eosin’s absorption peak and Fluorescein’s emissions peak resides. Therefore,
we see that Eosin is actively absorbing Fluorescein photons. For greater viewing angles, the effective
path-length photons travel increases, therefore the shoulder deepens, as Fluoresceine photons have
a greater change to meet an Eosin molecule. This idea is reinforced by the split-up of the individual
contributions of the dyes—Figure 3.14. For thin layers, Fluorescein with its high quantum yield, and
strong absorption of excitation light dominates, while for thicker layers, the indirect solution to Eosin
becomes very strong, enriching the 547 nm peak. Eosin contributes the most by absorbing fluorescein,
and not so much as by emitting photons, for its quantum yield is small.

The Monte Carlo model and analytic solution show a great agreement between outputs for a great
variety of ℎ and view angles up to 3𝜋/8. Although, MC has some innate statistical noise for greater
depths: the domain’s radius is scaled by 3, lowering the chance of a photon reaching the sensor. The
noise then creates a minor disagreement between the two. Both models capture the same physics,
but MC can add more fluorescent photons beyond the first 2 generations. However, at least 90% of the
photons tested for perpendicular irradiance are part of the first 2 generations, so the direct and indirect
analytic solution captures the true physics well.
Individual contributions to the radiance can also show that the 2-generation assumption works. See
Figure 3.14b, the Fluorescein to Fluorescein contribution is very small: photons are rarely re-absorbed
and re-emitted and there is no significant fluorescent cascade. The same holds for the Eosin to Eosin
contribution. If an absorption and emission spectrum overlap over a broad wavelength range and 𝑞 is
large, these contributions would increase significantly, and self-cascade would start. Another hint can
be found in the indirect contributions between Fluorescein to Eosins: it is significant, but only for this
2000µm thick layer, suggesting that their coupling is not that strong. For more than 2 dyes, the absence
of multiple strong couplings from short to long wavelengths would be a good hint the 2-generationmodel
holds.

The overall agreement between measured, Monte Carlo, and analytic emissions spectrums demon-
strates that the model for irradiance works well. The equation derived by heuristics, 3.8, is adequate
for modelling the light source exciting the layer. In general, the effect of irradiance angle 𝜃e seems
small.

The analytic model offers a very fast way to calculate the emission spectrums at the top of the layer.
In general, runtime reductions in the order of 1000’s can be achieved with respect to the MC model. It
should be noted that MC immediately returns the results for all viewing angles in one simulation, while
the analytic model must run separate solution runs for each angle. If only one angle is necessary, then
the current simulation could be almost 10000 times faster. In principal, the solution method can give
the direct and indirect equation of all the dyes combined. Then the analytic model’s run time would not
depend on the number of dyes.
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3.7. Conclusion
An analytic solution to the radiative transfer equation in a plane-parallel medium was derived. Deriva-
tion via computer algebra systems takes care of very difficult bookkeeping of solution. However, the
derivation of identities which help find the solution is a strong upfront cost in time. Afterwards, calculat-
ing the solutions for a 2-dye system takes 1000’s of times less than Monte Carlo simulation with time
reductions up to 1 × 1004 are possible. Comparison between Monte Carlo method and solution show
that for the same material inputs and geometry, they produce the same output. Measurements verified
the solution. There was some uncertainty in material data fed to the solution however. This lead to an
overestimation in the emission radiance at the location of one of the dye’s absorption peaks. Better
measurement conditions and equipment ought to solve this. Assuming two generations of by fluores-
cence produced photons for a practical system is verified by Monte Carlo simulations. By inspecting
the individual contributions of all dyes to the overall emissions spectrum, we can spot a violation of the
assumption.

3.8. Recommendations
Repeat the measurement with better material data to see if the shoulder overestimation disappears.
Use regular fluorometer and absorption meters to obtain material data. Applied methods in the study
were only used because they were time and resource viable.

An attempt has been made at replacing the mirror with a Lambertian surface. However, this was not
finished beyond a first effort at 𝐿d; many an interesting difficult integration problem arose when finding
source terms.

The Monte Carlo method defined the domain radius by applying a minimal, view factor condition on
a control volume. It has to make a significant photon contribution to the sensor. However, in thicker
domains multiple re-absorptions happen. Ray paths are no longer straight, but a piecewise connected
line. Therefore, the domain had to be scaled-up. This problem is also of concern to the analytic
solution: if one can find dimensions of the contributing region surrounding a sensor, one can use them
as a natural element to discretize more complex shaped media. For example, a curved surface could
be approximated by multiple plane-parallel systems. We could predict as well if a wall in the medium
influences the radiance.

It might be interesting if the FRET effect can be added. During the concentration test its onset was
seen. One might add the effect strength by modifying quantum yields. The by FRET produces photons
would be an extra radiance field.





4
Analysis of a Layer-Height Imaging

Setup

Chapter 2 concluded that ERLIF is a promising method for the imaging of liquid films. However, it
is a small area method, and thus needs an extension to larger areas typical for hydrostatic bearings.
Larger areas create non-perpendicular camera viewing and light source angles, whose effects need
consideration. For convenience, this large area method was called GERIF. Also, the hypothesis that it
actually does depend on background reflectivity must be verified.

GERIF observes colour-shifts in the emission spectrum at the top of the layer; the shift serves a proxy
for the layer thickness ℎ. Colour-shifts are studied by taking the ratio between the radiant fluxes at
different wavebands—see Chapter 2 equation 2.2. The intention is to study the effects on the ratio
for differing reflectivity, film thicknesses, viewing angle and irradiance angle of the light source. Film
thicknesses are extended beyond the original 10 µm to 600µm range requirement out of interest. To
explore the ratio’s dependency on all the variables, numerical experiments are conducted with the
analytic solution to the FRTE. Beyond the numerical experiments, a real, static measurement setup is
build to verify the predictive power of the analytic model. Creating it led to key design insights for the
realization of a dynamic, lubrication-film height imaging setup.

4.1. Method
In the coming sections, all material properties are the same as in section 3.4. Any part specification
can be found there too unless it is newly introduced.

4.1.1. The ratio
Let us start with a deep dive in how height information can be obtained from camera images: an aspect
usually treated superficially in the film height measurement literature. The upcoming discussion was
in part inspired by the discussion on general sensor models in [39, p. 240-245]. In Chapter 2, ℎ is
approximated by a calibration function on the ratio between the radiant fluxes passing through two
different filter bands. The fluxes go from a patch on the observed surface to a camera’s pixel. They
are captured during a given shutter time. The equation is repeated here

ℎ = 𝑓 (
∫𝑇1 Φwaveband 1 d𝑡
∫𝑇2 Φwaveband 2 d𝑡

)

𝑓 is a calibration function depending, in part, on camera sensitivity and the filter transmissions. Assume
now that a single camera is observing a liquid patch, and that the filters are swapped with an filter
changer, just like in Figure 2.6. Lets rewrite 𝑓 to a new calibration function to reflect that fact

35
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ℎ = 𝑔(
∑𝜆 ∫𝑇1 ℛ𝜆𝜏1𝜆Φ𝜆 d𝑡
∑𝜆 ∫𝑇2 ℛ𝜆𝜏2𝜆Φ𝜆 d𝑡

)

ℛ𝜆 is the camera spectral responsivity, 𝜏𝜆’s are the spectral transmissivities of the filters. We sum
contributions at all the wavelength-bands centred on wavelength 𝜆 to obtain the total pixel grey value.
Now, it will be shown that we can swap out Φ for radiance 𝐿𝜆, which we readily obtain from the analytic
solution to the FRTE. We reason as follows. Φ𝜆 depends on the geometry of the measurement setup
such as: size of the entrance aperture, the size of the observed surface patch, distance between the
two, and the angles between both surfaces. Geometrical constructs drop out when we ratio both radiant
fluxes, as the geometry does not change between taking the photos. The camera and observed area
are standing still after all. A small amount of radiant flux normalized over geometry is the radiance, 𝐿,
as we encountered in Chapter 3.

𝐿 = d2Φ
d𝜔d𝑠

𝐿 depends both on direction and location. The surface 𝑠 defines the bearing’s observed projected liquid
patch. 𝜔 is the solid angle spanned by the entrance aperture. It defines the rays’ directions of travel
from patch to camera. The cancellation of geometry only happens when 𝐿 does not vary too much with
direction or over the observed liquid patch. The latter is likely for a fine enough camera resolution. The
former happens if all rays travelling from patch to the camera’s entrance aperture are nearly parallel.
This can be explained by geometry: a physical entrance aperture has a diameter of mm’s to cm’s while
the distance to the observed area is in the orders of 10’s of centimetres. The cone spanned by this
geometry has a very small apex angle. Therefore, rays are near parallel, and 𝐿 is constant over this
emission cone.

Finally write this as

ℎ = 𝑔(
∑𝜆 ∫𝑇1 ℛ𝜆𝜏1𝜆𝐿𝜆(𝜃, ℎ)d𝑡
∑𝜆 ∫𝑇2 ℛ𝜆𝜏2𝜆𝐿𝜆(𝜃, ℎ)d𝑡

)

Now, define the ratio Ξ

Ξ =
∑𝜆 ∫𝑇1 ℛ𝜆𝜏1𝜆𝐿𝜆(𝜃, ℎ)d𝑡
∑𝜆 ∫𝑇2 ℛ𝜆𝜏2𝜆𝐿𝜆(𝜃, ℎ)d𝑡

This is the fundamental quantity that is obtained from processing camera photos and the analytic so-
lution.

4.1.2. Numerical experiments
Numerical studies with help form the analytic solution were conducted. They give insight into the
method’s sensitivities. Four experiments with different, constant mirror reflectivity, and different ir-
radiance angles were done: 𝜌𝜆 = 1 and 𝜌𝜆 = 0; 𝜃e = 0∘ and 𝜃e = 45∘. The irradiance angle of the light
source exciting the fluorophores is an important design choice. See Figure for a sketch of the domain
3.3. Correlation surfaces of Ξ for different viewing angles 𝜃 and thicknesses ℎ are studied.
The ratio in numerical studies is

Ξ =
∑525𝜆=515 𝐿𝜆(𝜃, ℎ)
∑537𝜆=527 𝐿𝜆(𝜃, ℎ)

The wavelengths correspond closely to the wavelengths of the applied filter in the real measurement
setup but idealized as a perfect band-pass. The camera is also considered ideal, and the shutter times
are equal.
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The analytic solutions studies mirror like reflection. It is interesting to contrast with a Lambert reflection
solution. Such a surface reflects radiance equally into all hemispherical directions and is thus the
opposite of mirror reflection: a mirror has a one-to-one correspondence between angle of incidence
and reflection, while a Lambertian surface has a one-to-all directions coupling. They are opposites in
directionality. A Lambertian surface is simulated with the Monte Carlo method by adding a sampling
method for a new direction after reflection—derived from [12]; see section 3.4.3 for an intro into Monte
Carlo methods

𝜃 = arcsin(√𝑢), 𝜙 = 2𝜋𝑢
�̂� = sin(𝜃) cos(𝜙), �̂� = sin(𝜃) sin(𝜙), �̂� = − cos(𝜃)

Every 𝑢 is a different realization of the uniform distribution. �̂� has an extra minus, as the direction of
the z-axis is normal to the sensor. 1 × 109 photon packages per ℎ were used. After simulation, data
was smoothed with a Gaussian filter—centred window of 15 samples— to remove statistical noise.
Then the solution was transformed from the energy rate to the photon rate domain. Hereafter, it was
normalized to 1 for comparison with the analytic solution to the FRTE.

4.1.3. Measurement setup
The ratio
A measurement setup was built which included a Pixelink PL-D795 RGB camera with a spectral green-
channel responsivity of ℛ𝜆; two filters were put on a filter changer to observe different wavebands—
FLH532-10, FBH520-10 from Thorlabs—so only static imaging can be achieved

Ξ =
∑528𝜆=510ℛ𝜆𝜏1𝜆𝐿(𝜃, ℎ)𝜆𝜆−1

∑539.5𝜆=523.5ℛ𝜆𝜏2𝜆𝐿(𝜃, ℎ)𝜆𝜆−1

They waveband of the 520 filter resides in the shoulder wavelengths of figure 3.11, so overestimation
by the analytic solution is to be expected. Also, a conversion from photon to energy domain was done
by applying

𝐸 = ℎ𝑐𝜆
ℎ is Planck’s constant and 𝑐 the speed of light in vacuum. The formula is the energy carried per photon.
The camera’s pixels gather energy and do not count photons.

The setup
An overall picture of the setup can be found in appendix A. A calibration device was made, see Figure
4.1, which consists of the aforementioned Edmund Optics mirror and glass disk. Both objects are
placed at an angle with a 1mm gauge block to create a well-defined, wedge-shaped water layer. Glass
and mirror were put in a 2-part, PLA, 3D printed clamp; the two parts were put around the glass and
bolted together. The mirror was held in place by 3 spring-loaded plungers fixed to the clamp, they
prevent relative movement between glass and mirror and accidental damage by excessive holding
forces. Friction held the gauge block in place. The entire clamp was then suspended with springs to
the metrology frame to prevent any shocks from disturbing the water wedge. Inside the water layer,
Eosin Y and Fluorescein were dissolved at a concentration of 0.125mmol L−1. In Figure 4.2, the device
can be seen as viewed by the camera. Blue light is from the LED which made an irradiance angle in
the water of 20∘. The camera was placed once straight below wedge, and once at an angle of 45∘. The
refracted viewing angle inside the water must then be ≈ 32∘, which can be obtained from Snell’s law.
Ignoring angle effects of a finite entrance pupil.

Data processing
To obtain Ξ, one hundred pictures were snapped at a framerate of 10 s−1 for both filters and the dark
image. A region of interest was then made by selecting pixel columns and rows, and within there,
the mean value of each pixel over all pictures calculated. Thereafter, the averaged dark image was
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Figure 4.1: Measurement setup for verifica-
tion of Ξ. Camera and LED light are actually in cross-planes
to prevent specular reflection of the LED into the camera’s
field of view. Water has dissolved Fluorescein and Eosine Y.

Figure 4.2: Underside of the water wedge. The mirror is
spotted by chemical deterioration. Metallic strip at the right is the gauge block.
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Figure 4.3: Ratios predicted by the analytic solution of the FRTE.

subtracted from the filtered images. The two resulting composite pictures—one for each filter band—
were divided on a pixel basis to obtain the ratios. A 2-D Gaussian smoothing kernel with a standard
deviation of two sigma removed random noise. The last step was taking the mean per pixel column,
this gives a line of composite pixel values that represent Ξ versus ℎ.
To get a better understanding of the noise. A raw Ξ picture for the region of interest was made. Two
photos’ pixel values were directly divided by another. No processing was applied except dark image
removal.

4.2. Results
4.2.1. Numerical results
Figure 4.3 presents a comparison between the numerical experiments. The light source’s irradiance is
of small influence: a maximal deviation of only 2.3% and 3.0% for the full absorbing and full reflecting
background.
The full reflection case depends weakly on view angle. A maximal error of 9% occurs. The full absorp-
tion case depends strongly on view angle beyond 20∘. For 𝜃e = 45∘, 𝜃 = 67.5∘, a Ξ reduction of 24%
happens. In general, the difference between no and fully reflective cases increases with ℎ and can run
up to 36%.

Figure 4.4 depicts the analytic solution for a mirror and the MC simulation of a Lambertian surface.
Both results are the same for thin layers while the Lambertian case has a 0% to 11.8% lower response
at thicker layers. In general, the response form is the same. When we inspect some spectrums for
comparison—see Figure 4.8— we see that for Lambertian reflection there is less radiation in the shoul-
der. Strong statistical noise is present.

4.2.2. Measurement setup
While measuring, it was observed that the mirror broke down, and the water wedge did not fully fill all
space—see Figure 4.5. Grey spots are the locations where the reflective coating is removed. At the
gauge block, water leaked away and this reduced pixel values in adjacent parts, such as the encircled



40 4. Analysis of a Layer-Height Imaging Setup

0
500

1,000
1,500

2,000 0
20

40
60

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ℎ / µm 𝜃 / ∘

Ξ
/-

Analytic: Mirror
MC: Lambertian

Figure 4.4: Ratios predicted by the analytic solution and MC simulation. Both for full reflectivity.

green area. The water was sucked away by capillary action into to slit between the glass and clamp.
The region of interest for data processing, in yellow, was reduced in size by the onward creeping leak.
In the far left of the region, the wedge never filled up with water.

Figure 4.6 demonstrates the comparison between measured and predicted Ξ. The shape is similar but
overestimated by the model. The very thin and very thick parts data deviate strongly; the thin part is
in the not-filled area, and the thick part is adjacent to the gauge block. For 𝜃 = 32∘, a dip at 590 µm is
present; inspection of the gain-added camera images revealed the presence of a bubble. Both curves
do not change strongly with altering view angle.

Figure 4.7 demonstrates the raw ratio between two images. Random noise is present along with several
significant outliers.

4.3. Discussion
4.3.1. Numerical experiments
Angle of irradiance has only a weak influence on Ξ. One can use the most convenient light source, and
even combine multiple sources as the FRTE is linear in irradiance. It is advisable to keep the viewing
angle inside the layer not too large. Luckily, refraction helps here: the camera in the test was at 45∘
while the radiance in the layer was 32∘. The ramification is that camera angular alignment is of limited
influence.

Numerical experiments showed similar behaviour as the re-drawn responses of the ERLIF study—
Figure 2.8. No reflection increases the ratio. Reflection allows more photons to be re-absorbed and
re-emitted by the Eosin, therefore the energy at longer wavelengths increases which in turn decreases
the ratio. Reflectivity of the background matters as does the type of reflection. Reflectivity has the
much stronger effect, producing differences up to 36%. Lambertian reflection is very different in char-
acter to the mirror, but the Ξ response was only 11.8% lower. Inspecting the spectrums does not give a
conclusive answer if this is generally true: the filters are present in the shoulder of the analytic emission
spectrums, the Lambertian shoulder has the same form, but is systematically lower. So, the Ξ is mea-
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Figure 4.5: Camera
still for 532 nm filter. Light blue is the circumference of the mirror. Yellow is the region of
interest used for data processing, that at its edges is not filled with water. Green shows
the incursion zone of air influencing the radiance. Mirror coating loss caused the spots.
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Figure 4.6: Comparison of real measurement ratio and predicted ratio.

Figure 4.7: The raw, unprocessed ratio between 2 photos’ grey values.
Some noise is present. Large, positive deviations are from the deterioration of the reflective layer.
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Figure 4.8: Emissions spectrum comparison between the Lambertian Monte Carlo simulation and the analytic specular solution.

sured for a fundamentally different radiance spectrum. The notable exception is 20 µm, were the layer is
so thin, that average path-lengths are the same and thus both reflection conditions produces the same
emission spectrums. Lambertian reflection will on average lengthen the photon path distance and thus
more absorption takes place, so the shoulder deepens with respect to the analytic solution. Only the
position of the peaks seem predictable by the analytic solution. Predictive power is expected increase
for systems with lower 𝜌, as the effect of the reflecting boundary weakens. Fortunately, hydrostatic
bearings will have a reflection type more closely resembling a mirror than a Lambertian reflector.

4.3.2. Measurement setup
The analytic model did overestimate the response as expected: the short wavelength filter at 520 nm is
precisely in the waveband were the analytic FRTE showed the most uncertainty. It is likely that if better
material spectra can be used, the model and measurements would agree much better. The shape
is well matched, however. Figure 4.9 shows how good the analytic data matches the measured data
when we correct it. To do so, multiply by 1.1389, which is the ratio between the mean values of the
analytic and measured spectrums in the filter band—see Figure 3.11a with the ℎ =500µm lines.

Measurement data swings in the thin and thick limit are the results of the: unfilled tip of the wedge, air
bubble presence, or the proximity of the gauge block. Relying on surface tension to keep the liquid
in the device is not enough. Degradation of the coating and air bubbles are the probable cause for
the outliers in the raw image. Degradation means more absorptive surface, and thus a larger ratio as
is seen from Figure 4.3. However, the raw-image has a pleasantly small noise, suggesting that static
imaging is possible with a very simple camera.

The overall system was successfully simplified to a simple camera with filter changer and a LED light
source. Compare the system in appendix A to Figure 2.7. Observing larger surface than an US mint
quarter coin is certainly doable. The laser is successfully swapped for a diverging LED-beam light.

4.3.3. Applicability of results to other measurement conditions
A particular combination of dyes and filters were used. Eosin’s absorption spectrum has a near perfect
overlap to Fluorescein’s emission spectrum. Both dyes are archetypical fluorophores with one, narrow
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Figure 4.9: 𝜃e = 20 ± 5∘, 𝜃 = 0 ± 5∘. Comparison of real measurement ratio and
predicted ratio that is corrected for deviations: material data uncertainty makes the analytic model overestimate radiance in the
520 nm filterband. Correction factor, 1.1389, derived by the division of the mean values found in Figure 3.11a, ℎ = 500µm lines.

absorption and emissions peak without substantial spectral overlap and significant quantum yields.
They are well-excited by the LED’s blue light, as their photon absorption is strong there, and their
peak molar absorption coefficient is of the same order. It is hypothesised that for similar dyes, equal
results are found: low-influence of irradiance angle and view angle. Of course, some variation is
to be expected. One could use this variation to tune the system and try different dye combinations,
concentrations, or different filter sets.

4.4. Conclusion
Numerical experiments for this particular set of dyes and filters show that the effect of a light source
on the measurement is small for angles up to at least 45%. The camera angle with the normal to the
layer’s surface is not that important. Keep the camera such, that observed radiance about to leave the
layer is not at angles larger then several 10’s of degrees.

Background reflectivity matters. Large deviations up to 36% were found between a full reflective mirror
and a completely absorbing background. Lambertian reflection has a similar measurement response
as for the mirror case, with the largest error being 11.8%. This might have been a coincidence for this
particular set of dyes and filters, as the emission spectrums at the top of the layer were very different:
the absorption shoulder at Eosin’s absorption peak was much lower than the mirror one’s. The analytic
model to the solution has limited predictive power for such a surface. For mirror like surfaces, the model
can be used to optimize the measurement system. A very good fit is expected if material data for the
analytic model was better.

Similar dyes and filter sets are assumed to lead roughly the same measurement system behaviour.
Some tune-ability is possible here.

The test object consisting of a mirror at an angle with glass needs a redesign. The mirror layer was
deteriorating in the water. The water wedge could not entirely fill up the wedge between mirror and
glass: at the thick end, water leaked away due to capillary suction between clamp and glass; the thin
part of the wedge was never filled, cause unknown. The test object could serve as a calibration vessel
like depicted in Figure 2.5.

The static, simple camera setup with LED light showed that a simpler design is viable for hydrostatic
bearing imaging.





5
Practical Measurements

This thesis introduced many theoretically important concepts and methods. However, the ultimate goal
was to build a functioning layer imaging system for hydrostatic bearings. A lofty goal not reached, but
we do now have enough understanding of the physics to suggest what the ultimate setup will look like.
Its concept will be introduced here.
Many important, practical lessons about dye selection and building the setup were learned. Most of
those lessons do not quite fit the scientific nature of the previous chapters or are just mentioned in
passing. It is helpful if some are stated explicitly, as new projects with the method are foreseen.

5.1. Concept of a dynamic imaging Setup for hydrostatic bearings
Figure 5.1 shows the proposed concept for a dynamic imaging system that can film the lubrication layer
underneath the hydrostatic bearing. It uses multiple light sources and two cameras.

We know that the radiance leaving the layer is linear in the light source’s irradiance and that its angle
is not that important. So, combining multiple light sources that add up their irradiances is possible. It
prevents shadow formation and improves signal to noise: a single source will likely create light and dark
areas, which causes a brightness contrast in radiant flux for a camera. Quite like taking a portrait photo
against direct sunlight. Likewise, there are upper limits on how strongly fluorophores can be irradiated
before non-linearities occur. A homogenous light source can take the layer right to this very limit,
ensuring maximal utilization of all fluorophores. The non-linearities, photobleaching and saturation,
are treated in the next section.

Viewing angles of the camera can be, with some care, kept within several 10’s of degrees without
altering the measurement ratio Ξ. Observing the large area of a bearing is no problem. Furthermore,
two cameras with each their own filter can be put together and image the same lubrication-film patches.
Filming an actual moving bearing is a possibility. A long-held interest of the research group. This is
not possible with the previous built measurement setup, where a filter changer was used—see A. After
taking a photograph with filter 1, it was swapped for filter 2. This takes time, and therefore only static
imaging can be done. There is, nevertheless, a catch to using two cameras: the ratio Ξ assumes that
both photo’s are made with the same setup geometry between camera and object plane—read section
4.1.1. Two cameras are spaced a bit apart, so the angle by which they observe a film patch is slightly
different. That angle is actually a great design challenge in achieving even image illumination on a
camera’s sensor chip. Some typical problems are: field darkening, the cosine fourth power law, and
vignetting. These effects do not matter for a single camera setup: both pictures suffer equally from the
same effects, taking their ratio makes them drop out. It is thence advisable to place the cameras very
close together and some distance away from the layer to keep the angular difference between the pixels
small. Another aspect is that the same patch is observed by a different pixel in each camera with each
their own differing sensitivity. Hence, calibration is necessary. A strategy could be to observe an evenly-
illuminated, flat sheet of non-glossy white paper—a Lambertian reflector—and tune the individual pixel
gains. A standard procedure available in camera control software.
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Figure 5.1: Suggested setup for dynamic
imaging. Distributed lighting for a more even irradiance improves noise and removes
shadows. Two closely spaced cameras simultaneously film the film the lubrication layer.

5.2. Practical aspects in design and dye selection
5.2.1. Dye selection and material properties
If one wants to use different dyes there are some aspects to consider. Toxicity: many dyes are known or
suspected of being dangerous. Sensitivity to environment: all dyes exchange energy with their molecu-
lar environment, it can shift spectra and quantum yields. Some factors are: solvent, pH, contaminants,
and temperature. Literature studies can give some insight into these, but be aware that the conditions
under which experiments are conducted can vary significantly [41]. You will likely require cheaper bulk
chemicals, which are less pure than the analytic standards used in the literature. Hence, measuring
their properties under the circumstances expected in the bearing is needed.
When material properties are required, measure them on proper fluorometers. The methods used in
the previous chapters were adequate to verify the models under the limited time available, but not good
enough for true measurement setup simulations.

5.2.2. Photobleaching and fluorescence saturation
Photobleaching and fluorescence saturation limits how strong we can excite the fluorescent layer. Flu-
orescence saturation happens when the irradiance becomes so large that the number of dyes in the
ground state become depleted, which alters the absorptivity, and thus influences the fluorescent radi-
ance. This breaks down Ξ, no longer making it independent of variation in the light source. A criterion
to prevent the phenomenon’s onset can be derived from the model of [27]1

1Here is a quick sketch how one can derive the criterion, starting from their main governing equation. Assume that the number
of molecules in the excited state 𝑛2 does not change

d𝑛2
d𝑡 = 𝑛0 𝐵𝜌 − 𝑛2 (𝐴 + 𝐵𝜌) 𝑛0 = 𝑛1 + 𝑛2
0 = 𝑛0 𝐵𝜌 − 𝑛2 (𝐴 + 𝐵𝜌)

𝑛2 =
𝐵𝜌
𝐴 𝑛1

Now assume that the ground state molecules, 𝑛1, are much more numerous than in 𝑛2, and thus
𝐵𝜌
𝐴 << 1

Rewrite this criteria now to the quantities used in this work.
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𝛼𝜆e𝜏𝐸e0
1000 𝑐 𝑁a

<< 1

𝛼𝜆e is a dye’s absorptivity at the beam’s wavelength in m−1. 𝐸e0 the photon irradiance, q s−1m−2, 𝜏 the
fluorescent lifetime s, 𝑐 the molar concentration in mol L−1, 1000 a conversion constant with units of
Lm−3, and 𝑁a Avogrado’s constant.
Photobleaching is the destruction of fluorophores by light. Its mechanisms are varied and to difficult
for us to predict. The countermeasure is to test for it: put a layer in the setup, and observe it over a
prolonged time: say the length of time needed to do a hydrostatic bearing test. Fluorescence should not
diminish. New inflow of liquid underneath the bearing could help here by ”refreshing” the fluorophores.

5.2.3. Concentration depended effects and FRET
Concentration depended or FRET effects can radically change emission behaviour, which might not
immediately be obvious when experimenting. It actually delayed the project for some time and put
the entire modelling effort in question. There is a simple way to catch the problem by analysing the
so-called optical thin limit. Here, layers are so thin, that re-absorption and reflection effects do not
matter and the layer’s emission spectrum is the sum of the dye’s emission spectrums. If we measure
such a thin layer, and that spectrum differs, something is off. For example, emission peak are several
nanometres shifted. The equation to predict the optical thin limit spectrum is

𝜖 = 𝛼1e 𝑞1 ̄𝜖1 + 𝛼2e 𝑞2 ̄𝜖2
𝑞 are the quantum yields for dye 1 and 2, 𝛼e, the representative absorptivity for the excitation irradiance,
̄𝜖 are the dyes’ emission spectrum. Optically thin is defined as (𝛼1e + 𝛼2e)ℎ < 0.01. This relation can
be derived by doing a linear expansion of all exponents in 𝐿d, equation B.9, and keeping only the first
term. Such a layer can be easily made by placing a drop between twomicroscope objective glasses and
then rubbing them together. There is a catch here: concentrations are used to scale the absorptivity.
Therefore, the strength of photon re-absorption is affected, which determines the upper- and lower limit
of ℎ’s that can be measured. Concentrations are no free chosen variable, but are tuned to a specific ℎ
range. If the concentration is weak, only thicker layer can be analysed.

5.2.4. Light source design
The light source needs to be strongly directional to maximize irradiance in the layer while minimizing
stray light. Especially the direct specular reflection of the light source into the camera’s field of view
should be prohibited. The light reflected from the viewing window is strong enough to pass through
the filters and disturb the measurement. Therefore, the light source—see Figure 5.2— could adjust its
angle with the layer, and swivel around its base. A composite lens and reflector were used to focus the
light only on the layer. An extra, 3D-printed hood was clipped onto the optics to remove the last bit of
stray light. Its double-walled, angled structure effectively traps light by letting it reflect multiple times,
each time removing some energy. A simple single-walled design was not effective enough to prevent
stray light.

5.3. Tuning the system with the analytic solution
The scripts for running the analytic solution and calculating the measurement response Ξ are attached
in the appendices. They only need material properties, height, and viewing angles to run. The method
assumed that all spectrums are sampled at the same wavelength. It is only valid for mirror like surfaces.
Before using the script check if your layer has vanishingly small scattering. The reflection from the layer
into the glass should be irrelevant, which can be checked by the well-known Fresnel equations—see
Figure 3.8 for an example of water to glass for an acceptable reflection. The model can easily be used
to tune the system to your specific needs. Be careful, all the inputs and outputs that depend on an angle
are defined inside the medium. The viewing window, and air add two refractive interfaces; use Snell’s
law whenever necessary. Always check if the model is still valid: it assumes that only two generations
of fluorescent photons can exist. A simple check is to see if all the indirect solution spectrums are
approaching the same magnitude as the direct solutions at heights below the maximum height you
intend to measure.
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Figure 5.2: Left: the light armature with a XPE - Starboard blue LED and Lisa2-
Clip16-XP lens. Direction of the light can be set with the screw and rotating the base. Right: cut-through of the stray light hood
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Figure A.1: Measurement setup without its blackout cloth. Light
blue: camera with filter changer inside the 45∘ clamp. Magenta: optical fibre with numerical aperture reducer. Light
green: suspended test vessel made from a glass disk—not visible due to the grey clamp—and flat mirror held in
place by black spring plungers screwed into brass thread inserts. Orange: LED light and its detached stray light cap.
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Appendices to the Analytic Solution

B.1. Appendix: Derivation of the Fluorescent Radiative Transfer
Equation

This chapter derives the FRTE in three forms: along a ray path; in a Cartesian coordinate system; for
a plane-parallel system. Derivation follows in a way similar to the non-fluorescent one in [28, 42]. We
do not regard scattering.

B.1.1. The FRTE along a ray path
Consider the cylindrical infinitesimal volume in figure B.1. At ray coordinate 𝑙, a light ray passes in the
direction l which is perpendicular through the cylinder head. The ray’s spectral photon radiance, 𝐿𝜆 , is
defined as q s−1m−2 sr−1 nm−1 at 𝜆: a photon flux density per unit surface area and unit solid angle at
a specific colour [39, p. 24]. Along a small path length d𝑙, 𝐿𝜆 changes by

d𝐿𝜆(𝑙, l)
d𝑙 + 𝛼m𝜆𝐿𝜆(𝑙, l) +

𝑁

∑
𝑘=1

𝛼f𝑘𝜆𝐿𝜆(𝑙, l) =
𝑁

∑
𝑘=1

𝑞f𝑘𝜆
4𝜋 ∫

𝜆′
𝛼f𝑘𝜆′ ∫𝜔

𝐿𝜆′(𝑙, l′)d𝜔d𝜆′
⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

𝑆𝜆

(B.1)

This is the FRTE in one-dimensional Lagrangian coordinates. 𝐿𝜆 gets absorbed by the medium, for this
use the absorption coefficient 𝛼m𝜆. Furthermore, there are 𝑁 fluorophores available where each has
their own unique absorption coefficient 𝛼f𝑘𝜆. They also add to the radiance of the ray, and thus include
a source term 𝑆𝜆 on the right-hand side of the equation. It works by absorbing radiance 𝐿𝜆′(𝑙, l′) coming
in from all directions l′ surrounding the volume. This is represented as an integration over the entirety
of all small solid angles d𝜔. Since fluorophores can alter wavelengths of in-and-out-going photons, we
need to do this solid angle gathering over every wavelength 𝜆′. The fluorescent process of absorbing
photons at wavelengths 𝜆′ and re-emitting them at wavelength 𝜆 is not perfect: so add an efficiency
term called the spectral quantum yield 𝑞fk𝜆. Lastly, fluorescence is an isotropic emission process in all
directions and thus divide all gathered radiance by the solid angle of a sphere: 4𝜋.
Emission is captured by the spectral quantum yield with the following definition

𝑞f𝑘𝜆 = 𝑞k ̄𝜖k,𝜆
𝑞k is the ”regular” quantum yield for a fluorophore: the ratio of photons emitted to photons absorbed and
it is generally independent of wavelength but does depend on the environment of the molecule [10, 18,
p3; p. 7-9]. In this work, ̄𝜖𝜆 is a fluorohore’s emission spectrum normalized such that the area under
the curve equals 1. ̄𝜖𝜆 behaves, essentially, as a probability density function for the change of a photon
emission at 𝜆. It too depends on environment, but not the wavelength of the absorbed photon[10, 18,
;p. 3, p. 7].
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Figure B.1: Ray passing through a small cylinder volume along a path 𝑙
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Figure B.2: The
coordinate systems for radiation transfer: a fixed, Cartesian one, and a local,
spherical one—denoted by subscript p. Local is for direction of the photons.

B.1.2. The FRTE in a Cartesian coordinate system
The Langrangian frame of reference is not useful for a practical situation: one observes the medium at
a fixed location and not along a ray path. Hence, an Eulerian description with cartesian coordinates is
necessary, see figure B.2. The coordinates are put in a vector r =< 𝑥, 𝑦, 𝑧 >, then the time stationary
derivative is

d𝐿
d𝑙 =

d𝑥
d𝑙
𝜕𝐿
𝜕𝑥 +

d𝑦
d𝑙
𝜕𝐿
𝜕𝑦 +

d𝑧
d𝑙
𝜕𝐿
𝜕𝑧

= s ⋅ ∇𝐿

s is the direction vector composed of the direction cosines on the local projection of the coordinate
system; see the right part of Figure B.2 for a magnification of the projected system. Combining the
direction vector and equation B.1 gives the FRTE in the Eulerian frame

s ⋅ ∇𝐿𝜆(r, s) + 𝛼m𝜆𝐿𝜆(r, s) +
𝑁

∑
𝑘=1

𝛼f𝑘𝜆𝐿𝜆(r, s) =
𝑁

∑
𝑘=1

𝑞fk ,𝜆
4𝜋 ∫

𝜆′
𝛼f𝑘𝜆′ ∫𝜔

𝐿𝜆′(r, s′)d𝜔d𝜆′
⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

𝑆𝜆

(B.2)

It is very convenient to express the direction cosines in coordinates on a unit sphere 𝜃 and 𝜙.

s =< sin (𝜃) cos (𝜙) , sin (𝜃) sin (𝜙) , cos (𝜃) >
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The reason for this expression is that the integral in source term 𝑆𝜆 simplifies a lot since the unit sphere
coordinates form the natural domain for a solid angle integral, so let us define an infinitesimally small
solid angle

d𝜔 = sin(𝜃)d𝜃d𝜙

The general integration for a full unit sphere is

∫
2𝜋

0
∫
𝜋

0
sin(𝜃)d𝜃d𝜙 = 4𝜋

B.1.3. The FRTE in a plane-parallel system
In the case of plane-parallel system, only the z direction matters and 𝐿 no longer depends on 𝜙. As a
result, equation B.2 reduces to

cos (𝜃) 𝜕𝐿𝜆𝜕𝑧 + 𝛼m𝜆𝐿𝜆(𝑧, 𝜃) +
𝑁

∑
𝑘=1

𝛼f𝑘𝜆𝐿𝜆(𝑧, 𝜃) =
𝑁

∑
𝑘=1

𝑞fk𝜆
2 ∫

𝜆′
𝛼f𝑘𝜆′ ∫

𝜋

0
𝐿𝜆′(𝑧, 𝜃′) sin(𝜃′) d𝜃′

⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
𝑆𝜆

(B.3)

And 4𝜋 reduces to 2 by partial evaluation of the source term, to wit

∫
2𝜋

0
sin(𝜙)d𝜙 = 2𝜋

In practice, the integral over all wavelength is a summation term, as material data is given in tabulated
form; there are no simple functions describing the spectrums. Photon radiance quantities such as 𝐿,
𝐸, and Φ are then no longer in the derivative form with units q s−1m−2 sr−1 nm−1, but they are defined
on a waveband centred on 𝜆, and are now given in units q s−1m−2 sr−1. 𝜆 subscripts change from a
derivative to an index. This concludes the derivation of the FRTE as given in 3.7.

B.2. Appendix: Constructing spectrums with the solutions
Solutions to the FRTE are found by MATLAB’s symbolic toolbox. The symbolic solution are then con-
verted to numeric functions, they form the basis of practical simulations. Although the method of section
3.3 can find the overall solution of all 𝑁 fluorophores all at once, it might be interesting to investigate
the solutions for the individual dyes, so their individual contributions to the overall emission spectrum
and couplings can be better understood. A final summation for all dyes gives the complete solution.
Summation comes at the cost of extra computation time. For a full spectrum calculation, the contribu-
tion of all fluorophores at every relevant wavelength needs to be added. Start by defining the following
absorption coefficients

𝛼e = 𝛼m +
N

∑
k=1

𝛼ek 𝛼d𝜆 = 𝛼m𝜆 +
N

∑
k=1

𝛼dk𝜆 𝛼i𝜆 = 𝛼m𝜆 +
N

∑
k=1

𝛼ik𝜆

Subscripts e,d, i denote the excitation, direct, and indirect solutions. Since the excitation light is monochro-
matic, the wavelength subscript is dropped and just treated as constant. Please read section B.3 for
the precise definition behind 𝛼e.
Now, for the direct solution part at wavelength 𝜆, sum the contribution of all dyes. The k subscript
denotes the individual dye’s spectral material properties, s means the absorption coefficient inside
source term 𝑆𝜆.
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𝐿d,tot (𝑧, 𝜃, 𝜆) =
N

∑
k=1

𝐿d{𝛼e, 𝛼esk , 𝛼dsk𝜆 , 𝛼d𝜆 , 𝑞dk𝜆 , 𝜌d𝜆 , 𝜌e, 𝐸e0} (B.4)

The indirect contributions are bit more difficult, since for every dye the influence of all other N dyes
for every wavelength 𝜆′ needs to be added up. The next equation can be read as: for a give dye l,
calculate for all wavelengths the influence it has on another dye called k. Then take the influence of
the next dye l on dye k, and so fort. Repeat this process until the influence of all dyes on dye k are
calculated, then repeat this process for a new dye k.

𝐿i,tot (𝑧, 𝜃, 𝜆) =
N

∑
k=1

N

∑
l=1
∑
𝜆′
𝐿i{𝛼e, 𝛼esl , 𝛼dsk𝜆′ , 𝛼d𝜆′ , 𝛼ik𝜆 , 𝑞l𝜆′ , 𝑞k𝜆 , 𝜌d𝜆′ , 𝜌i𝜆 , 𝜌e, 𝐸e0} (B.5)

After the calculation of the direct and indirect terms for a single wavelength 𝜆 , we can sum them
together to obtain the total photon radiance.

𝐿tot (𝑧, 𝜃, 𝜆) = 𝐿i,tot (𝑧, 𝜃, 𝜆) + 𝐿d,tot (𝑧, 𝜃, 𝜆) (B.6)

The method needs to be refined since the indirect solutions for the fluorescent cascading regime cannot
always be applied as described in section B.6. The no-source term regime is simple: set the contribution
to zero. For the other regime, no absorption, use the limit case equations B.16, B.17, and B.18 to
construct the solution. During a numerical implementation, a case-switch can easily be implemented:
If 𝛼d𝜆 is very small, set 𝐿i,𝜆 in B.5 to zero. If 𝛼i𝜆 is very small, use the limit solution of 𝐿i.

B.3. Appendix: Solving for excitation photon irradiance 𝐸
The fluorescent radiative transfer is driven by an external light source; we need to have mathematical
description of its photon flux inside the layer. Take as an excitation source a monochromatic beam
of photon irradiance hitting the top of the layer with magnitude 𝐸e0 and angle 𝜃e. The physics is best
modelled with the Lambert-Beer Law, equation 3.3, repeated here for convenience

𝐸𝜆(𝑙) = 𝐸𝜆(0) e−𝛼𝜆𝑙

The beam is monochromatic, so drop the 𝜆 subscripts. 𝛼eh is the sum of all fluorophore absorptivities
plus the medium’s one’s. The path length, 𝑙, for the beam heading towards the mirror is

𝑙 = ℎ − 𝑧
|| cos(𝜃e) ||

With ||...|| the absolute value of the direction cosine, which for convenience will now be added to the
absorptivity by defining

𝛼e =
𝛼eh

|| cos(𝜃e) ||

Hence, the downward irradiance towards the mirror is.

𝐸d (𝑧) = 𝐸e0 e−𝛼e(ℎ−𝑧)

The boundary condition for the upwards radiation at the mirror is: upward irradiance is equal to the
reflected irradiance of the downward solution

𝐸u (0) = 𝜌e𝐸u (0) = 𝜌e𝐸e0 e−𝛼eℎ
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The upwards irradiance travels a path-length 𝑧/|| cos(𝜃e) ||. Use Lambert-Beer Law and find

𝐸u (𝑧) = 𝜌e𝐸e0 e−𝛼e(ℎ+𝑧)

We need to sum both solutions together to find the total irradiance through a surface. This is different to
radiance, which depends on the direction of travel thus is a direction dependent density. 𝐸 on the other
hand is a density flux through a surface, fluxes from both sides of the surface add-up their photons.

𝐸(𝑧) = 𝐸d(𝑧) + 𝐸u(𝑧)

The end result is then obtained

𝐸 (𝑧) = 𝐸e0 e−𝛼e (ℎ−𝑧) + 𝜌e 𝐸e0 e−𝛼e (ℎ+𝑧) (B.7)

B.4. Appendix: Solving for direct photon radiance 𝐿d
The direct RTFE describes the fluorescent photon-radiance caused by light beam excitation, and it
includes the absorption by the fluorophores andmedium. It is the first generation of fluorescent photons.
We could, in principle, find the result for all the fluorophores at once. Instead, we look at the solution for
one dye. The overall solution is then the sum of all dyes. This is useful, as we can study their individual
contributions. Apply now the full solution strategy of section 3.3.1. Start by defining the differential
equation describing the system. As the source term, use the 𝐸(𝑧) result B.7 in conjunction with the
definition of 3.8. Dropping the wavelength dependence 𝜆, see that

cos (𝜃) 𝜕𝜕𝑧 𝐿d (𝑧, 𝜃) + 𝛼d 𝐿d (𝑧, 𝜃) =
𝛼es 𝑞d
4𝜋 [𝐸0 e−𝛼e (ℎ−𝑧) + 𝐸0 𝜌e e−𝛼e (ℎ+𝑧)]

𝛼es is the individual fluorphore’s absorptivity. 𝛼e is the combined one of all fluorophores and the medium
for the collimated excitation beam. Both are evaluated at the wavelength of excitation: 𝜆e. 𝑞d is the
fluorophore’s specific quantum yield. 𝛼d is the combined absorptivity of all dyes and medium. 𝜌d is
reflectivity. These quantities are evaluated at 𝜆. Apply the boundary conditions of no fluorescent light
heading into the layer, and the radiance moving away from the mirror equals the reflected downwards
radiance

𝐿d (ℎ, Θd) = 0
𝐿d (0, Θu) = 𝜌dℛ{ 𝐿d (0, Θd) }

(B.8)

The integrating factor is

𝜇 (𝑧, 𝜃) = e∫𝑝(𝑧,𝜃)d𝑧

𝜇 (𝑧, 𝜃) = e
𝛼d𝑧
cos(𝜃)

After applying the solution method with help from MATLAB, the up and down solutions are found



56 B. Appendices to the Analytic Solution

𝐿d (𝑧, Θu) =
𝐸0 𝛼es 𝑞d e−𝛼e (ℎ−𝑧)
4𝜋 (𝛼d + 𝛼e cos (𝜃))

− 𝐸0 𝛼es 𝑞d e
−𝛼e ℎ e−

𝛼d 𝑧
cos(𝜃)

4𝜋 (𝛼d + 𝛼e cos (𝜃))

+𝐸0 𝛼es 𝑞d 𝜌e e
−𝛼e (ℎ+𝑧)

4𝜋 (𝛼d − 𝛼e cos (𝜃))
− 𝐸0 𝛼es 𝑞d 𝜌d e

−𝛼d (ℎ+𝑧)cos(𝜃)

4𝜋 (𝛼d − 𝛼e cos (𝜃))

+𝐸0 𝑎es 𝑞d 𝜌d e
−𝛼e ℎ e−

𝛼d 𝑧
cos(𝜃)

4𝜋 (𝛼d − 𝛼e cos (𝜃))
− 𝐸0 𝛼es 𝑞d 𝜌e e

−𝛼e ℎ e−
𝛼d 𝑧
cos(𝜃)

4𝜋 (𝛼d − 𝛼e cos (𝜃))

+𝐸0 𝛼es 𝑞d 𝜌d 𝜌e e
−𝛼e ℎ e−

𝛼d 𝑧
cos(𝜃)

4𝜋 (𝛼d + 𝛼e cos (𝜃))
− 𝐸0 𝛼es 𝑞d 𝜌d 𝜌e e

−4𝜋𝛼e ℎ e−
𝛼d (ℎ+𝑧)
cos(𝜃)

4𝜋 (𝛼d + 𝛼e cos (𝜃))

(B.9)

𝐿d (𝑧, Θd) =
𝐸0 𝛼es 𝑞d e−𝛼e (ℎ−𝑧)
4𝜋 (𝛼d + 𝛼e cos (𝜃))

− 𝐸0 𝛼es 𝑞d e
𝛼d (ℎ−𝑧)
cos(𝜃)

4𝜋 (𝛼d + 𝛼e cos (𝜃))

+𝐸0 𝛼es 𝑞d 𝜌e e
−𝛼e (ℎ+𝑧)

4𝜋 (𝛼d − 𝛼e cos (𝜃))
− 𝐸0 𝛼es 𝑞d 𝜌e e

𝛼d (ℎ−𝑧)
cos(𝜃) −2𝛼e ℎ

4𝜋 (𝛼d − 𝛼e cos (𝜃))

(B.10)

B.5. Appendix: Solving for indirect photon radiance 𝐿i
The indirect solution describes the second generation of fluorescent photons, who are driven by ab-
sorption of the direct generation. Solving for the indirect photon radiance is difficult: the source-term is
a complicated integral; thereafter the integrating factor method from 3.3.1 leads to integrands of prod-
ucts between exponential functions and exponential integrals. Lets solve both problems one by one.
Once again, we consider the solution to a single dye. The results for all dyes, is the summations of all
the dyes’ solutions.

B.5.1. Differential equation and boundary conditions
For the indirect photon radiance 𝐿i at wavelength 𝜆 caused by absorption at 𝜆′, define the differential
equation

cos (𝜃) 𝜕𝜕𝑧 𝐿i (𝑧, 𝜃) =𝑆i(𝑧) − 𝛼i 𝐿i (𝑧, 𝜃)

𝑆i =
𝑞i 𝛼ds
2 ∫

𝜋

0
𝐿d (𝑧, 𝜃′) sin(𝜃′)d𝜃′

(B.11)

The source term is fed by the solution of the first generation photons 𝐿d. 𝛼i is the total absorptivity
of all dyes and the medium at wavelength 𝜆. 𝛼ds is a dye’s specific absorptivity on the direct photon
radiance 𝐿d at wavelength 𝜆′. 𝑞i is the dye’s specific quantum yield at wavelength 𝜆. Apply the boundary
conditions of no fluorescent light heading into the layer, and the radiance moving away from the mirror
equals the reflected downwards radiance

𝐿i (ℎ, Θd) = 0
𝐿i (0, Θu) = 𝜌iℛ{ 𝐿i (0, Θd) }

The integrating factor is

𝜇 (𝑧, 𝜃) = e∫𝑝(𝑧,𝜃) i𝑧

𝜇 (𝑧, 𝜃) = e
𝛼i𝑧

cos(𝜃)
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B.5.2. The source term
𝑆i, from equation B.11 poses a non-trivial problem for it contains several integrals of the following form

∫
𝜋
2

0

e
−𝑎

cos(𝜃)

𝑏 + 𝑐 cos (𝜃) sin (𝜃)d𝜃 and ∫
𝜋

𝜋
2

e
𝑎

cos(𝜃)

𝑏 + 𝑐 cos (𝜃) sin (𝜃)d𝜃

Their solution processes can be found in sections B.8 and B.7, which colliminate in the integration
identities of equation B.24 and B.29. The identities are used in MATLAB to solve for the source term.
Other integrand terms in there can be found by simple, straightforward integration. The resulting source
term is

𝑆i =
𝐸0 𝛼ds 𝛼es 𝑞d 𝑞i

8𝜋 𝛼e
ℜ[ ln(𝛼𝑑 + 𝛼𝑒𝛼𝑑 − 𝛼𝑒

) (e−𝛼𝑒 (ℎ−𝑧) + 𝜌𝑒 e−𝛼𝑒 (ℎ+𝑧))

+ (E1 (𝛼𝑑 (ℎ − 𝑧)) − e−𝛼𝑒 (ℎ−𝑧) E1 ((𝛼𝑑 − 𝛼𝑒) (ℎ − 𝑧)))
+ e−𝛼𝑒 ℎ (e𝛼𝑒 𝑧 E1 (𝑧 (𝛼𝑑 + 𝛼𝑒)) − E1 (𝛼𝑑 𝑧))
−𝜌𝑑 (e−𝛼𝑒 (ℎ+𝑧) E1 ((ℎ + 𝑧) (𝛼𝑑 − 𝛼𝑒)) − E1 (𝛼𝑑 (ℎ + 𝑧)))
+𝜌𝑒 e−2𝛼𝑒 ℎ (e𝛼𝑒 (ℎ−𝑧) E1 ((𝛼𝑑 + 𝛼𝑒) (ℎ − 𝑧)) − E1 (𝛼𝑑 (ℎ − 𝑧)))
−𝜌𝑑 e−𝛼𝑒 ℎ (E1 (𝛼𝑑 𝑧) − e−𝛼𝑒 𝑧 E1 (𝑧 (𝛼𝑑 − 𝛼𝑒)))
+𝜌𝑒 e−𝛼𝑒 ℎ (E1 (𝛼𝑑 𝑧) − e−𝛼𝑒 𝑧 E1 (𝑧 (𝛼𝑑 − 𝛼𝑒)))
−𝜌𝑑 𝜌𝑒 e−2𝛼𝑒 ℎ (E1 (𝛼𝑑 (ℎ + 𝑧)) − e𝛼𝑒 (ℎ+𝑧) E1 ((𝛼𝑑 + 𝛼𝑒) (ℎ + 𝑧)))
− 𝜌𝑑 𝜌𝑒 e−𝛼𝑒 ℎ (e𝛼𝑒 𝑧 E1 (𝑧 (𝛼𝑑 + 𝛼𝑒)) − E1 (𝛼𝑑 𝑧))]

(B.12)

ℜ meaning: ”select only te real part of”. 𝐸1(∶) is the so-called exponential integral, as defined by
equation B.20.

B.5.3. The general solution for the indirect photon radiance
The general solution can be found by using the source term of B.12 and then applying the solution
method of section 3.3. However, there is a problemwhen using the integrating factor method, equations
3.11, which are repeated here for convenience

d𝐿 (𝑧, 𝜃)
d𝑧 + 𝑝 (𝑧, 𝜃) 𝐿 (𝑧, 𝜃) = 𝑞 (𝑧, 𝜃)

𝐿p (𝑧, 𝜃) = 𝜇−1 (𝑧, 𝜃)∫ 𝜇 (𝑧, 𝜃) 𝑞 (𝑧, 𝜃)d𝑧 + 𝐶𝜇−1 (𝑧, 𝜃)

𝜇 (𝑧, 𝜃) = e∫𝑝(𝑧,𝜃)d𝑧

When we plug in the differential equation B.11, this gives us

𝐿p (𝑧, 𝜃) = 𝜇−1 (𝑧, 𝜃)∫ 𝜇 (𝑧, 𝜃) 𝑆i (𝑧, 𝜃)d𝑧 + 𝐶𝜇−1 (𝑧, 𝜃)

𝜇 (𝑧, 𝜃) = e
𝛼i 𝑧

cos(𝜃)

This is an indefinite integral with products between 𝐸1(±𝑎𝑥) and 𝑒𝑏𝑥. In section B.9, solution identities
are derived and summarized in equations B.31. They are applied in MATLAB Symbolic Toolbox as
an extra set of integration rules. Finally, we are able to formulate the solution of 𝐿i. Although easily
obtained by computer algebra, it is not convenient to give the particular solution directly, as it would
be very difficult to fit on the page, instead we express it the form of the general solutions 𝐿g(𝑧, Θd) and
𝐿g(𝑧, Θu), whose equations 3.13, 3.16 are repeated here
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𝐿p (𝑧, Θd) = 𝐿g (𝑧, Θd) − 𝜇 (ℎ, Θd) 𝐿g (ℎ, Θd) 𝜇−1 (𝑧, Θd)
𝐿p (𝑧, Θu) = 𝐿g (𝑧, Θu) + [ 𝜌ℛ{ 𝐿g (0, Θd) − 𝐿g (ℎ, Θd) 𝜇 (ℎ, Θd) } − 𝐿g (0, Θu) ] 𝜇−1 (𝑧, Θu)

Here is the general solution

𝐿gi (𝑧, 𝜃) =
𝐸0 𝛼ds 𝛼es 𝑞d 𝑞i

8𝜋 𝛼e
ℜ[( e−𝛼e (ℎ−𝑧)

𝛼i + 𝛼e cos (𝜃)
+ 𝜌e e−𝛼e (ℎ+𝑧)
𝛼i + 𝛼e cos (𝜃)

) ln(𝛼d + 𝛼e𝛼d − 𝛼e
)

+ 𝜌d𝛼i
( 1 − 𝜌e e−2𝛼e ℎ )E1 (𝛼d (ℎ + 𝑧)) +

𝜌e e−(ℎ+𝑧)𝛼e
𝛼i − 𝛼e cos (𝜃)

E1 ((𝛼d + 𝛼e) (ℎ − 𝑧))

− 𝜌d e−(ℎ+𝑧)𝛼e
𝛼i − 𝛼e cos (𝜃)

E1 ((ℎ + 𝑧) (𝛼d − 𝛼e)) +
e−𝛼e ℎ

𝛼i
(𝜌e − 𝜌d − 1 + 𝜌d 𝜌e )E1 (𝛼d 𝑧)

+
(𝜌d − 𝜌e) e−𝛼e( ℎ+𝑧 )
𝛼i − 𝛼e cos (𝜃)

E1 (𝑧 (𝛼d − 𝛼e)) +
(1 − 𝜌e e−2𝛼e ℎ)

𝛼i
E1 (𝛼d (ℎ − 𝑧))

− e−(ℎ−𝑧)𝛼e

𝛼i + 𝛼e cos (𝜃)
E1 ((𝛼d − 𝛼e) (ℎ − 𝑧)) +

𝜌d 𝜌e e−𝛼e(ℎ−𝑧)
𝛼i + 𝛼e cos (𝜃)

E1 ((𝛼d + 𝛼e) (ℎ + 𝑧))

+(1 + 𝜌d − 𝜌e − 𝜌d𝜌e𝛼i
− 1 − 𝜌d 𝜌e
𝛼i + 𝛼e cos (𝜃)

− 𝜌d − 𝜌e
𝛼i − 𝛼e cos (𝜃)

) e−𝛼e ℎ−
𝛼i 𝑧

cos(𝜃) E1 (𝑧 (𝛼d −
𝛼i

cos (𝜃)))

+( 1
𝛼i + 𝑎e cos (𝜃)

− 𝜌e e−2𝛼e ℎ
𝛼i − 𝛼e cos (𝜃)

+ 𝜌e e
−2𝛼e ℎ − 1
𝛼i

) e−
𝛼i(𝑧−ℎ)
cos(𝜃) E1 ((ℎ − 𝑧) (𝛼d +

𝛼i
cos (𝜃)))

+𝜌d(
1

𝛼i − 𝑎e cos (𝜃)
− 1
𝛼i
− 𝜌e e−2𝛼e ℎ
𝛼i + 𝛼e cos (𝜃)

+ 𝜌e e
−2𝑎e ℎ

𝛼i
) e−

𝛼i (ℎ+𝑧)
cos(𝜃) E1 ((ℎ + 𝑧) (𝛼d −

𝛼i
cos (𝜃)))

+
(1 − 𝜌d𝜌e) e−𝛼e (ℎ−𝑧)
𝛼i + 𝛼e cos (𝜃)

E1 (𝑧 (𝛼d + 𝛼e))]
(B.13)

Here is the 𝑧 = 0 limit

𝐿gi (0, 𝜃) =
𝐸0 𝛼ds 𝛼es 𝑞d 𝑞i

8𝜋 𝛼e
ℜ[(1 + 𝜌𝑑 − 𝜌e − 𝜌𝑑 𝜌e)

e−𝛼e ℎ

𝛼i
ln (𝛼d)

+( 𝜌e
𝛼i − 𝛼e cos (𝜃)

+ 𝜌𝑑 𝜌e
𝛼i + 𝛼e cos (𝜃)

) e−𝛼e ℎ ln (𝛼d + 𝛼e)

−( 1
𝛼i + 𝛼e cos (𝜃)

+ 𝜌𝑑
𝛼i − 𝛼e cos (𝜃)

) e−𝛼e ℎ ln (𝛼d − 𝛼e)

+( 1 − 𝜌𝑑 𝜌e
𝛼i + 𝛼e cos (𝜃)

+ 𝜌𝑑 − 𝜌e
𝛼i − 𝛼e cos (𝜃)

+ −1 − 𝜌𝑑 + 𝜌e + 𝜌𝑑 𝜌e𝛼i
) e−𝛼e ℎ ln(𝛼d −

𝛼i
cos (𝜃))

+ 1
𝛼i
(1 + 𝜌d − 𝜌e e−2𝛼e ℎ − 𝜌d 𝜌e e−2𝛼e ℎ )E1 (𝛼d ℎ)

−( 1
𝛼i + 𝛼e cos (𝜃)

+ 𝜌d
𝛼i − 𝛼e cos (𝜃)

) e−ℎ𝛼e E1 ((𝛼d − 𝛼e) ℎ)

+( 𝜌e
𝛼i − 𝛼e cos (𝜃)

+ 𝜌d 𝜌e
𝛼i + 𝛼e cos (𝜃)

) e−𝛼eℎ E1 ((𝛼d + 𝛼e) ℎ)

+( 1
𝛼i + 𝛼e cos (𝜃)

− 𝜌e e−2𝛼e ℎ
𝛼i − 𝛼e cos (𝜃)

+ 𝜌e e
−2𝛼e ℎ − 1
𝛼i

) e
𝛼iℎ

cos(𝜃) E1 (ℎ (𝛼d +
𝛼i

cos (𝜃)))

+ 𝜌d(
1

𝛼i − 𝛼e cos (𝜃)
− 1
𝛼i
− 𝜌e e−2𝛼e ℎ
𝛼i + 𝛼e cos (𝜃)

+ 𝜌e e
−2𝛼e ℎ

𝛼i
) e−

𝛼i ℎ
cos(𝜃) E1 (ℎ (𝛼d −

𝛼i
cos (𝜃)))]

(B.14)
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And here is the limit for 𝑧 = ℎ

𝐿gi (ℎ, 𝜃) =
𝐸0 𝑎ds 𝑎es 𝑞d 𝑞i

8𝜋 𝛼e
ℜ[𝜌e e

−2𝛼e ℎ − 1
𝛼i

ln (𝑎d) +
1

𝛼i + 𝛼e cos (𝜃)
ln (𝑎d + 𝛼e)

− 𝜌e e−2𝛼e ℎ
𝛼i − 𝛼e cos (𝜃)

ln (𝑎d − 𝛼e)

+(1 − 𝜌e e
−2𝛼e ℎ

𝛼i
− 1
𝛼i + 𝛼e cos (𝜃)

+ 𝜌e e−2𝛼e ℎ
𝛼i − 𝛼e cos (𝜃)

) ln(𝑎d +
𝛼i

cos (𝜃))

− 𝜌d e−2𝛼eℎ
𝛼i − 𝛼e cos (𝜃)

E1 (2 (𝑎d − 𝛼e)ℎ) +
e−𝛼e ℎ

𝛼i
(𝜌e − 𝜌d − 1 + 𝜌d 𝜌e )E1 (𝑎d ℎ)

+
(𝜌d − 𝜌e) e−𝛼e 2ℎ
𝛼i − 𝛼e cos (𝜃)

E1 (ℎ (𝑎d − 𝛼e)) +
(1 − 𝜌d𝜌e)

𝛼i + 𝛼e cos (𝜃)
E1 (ℎ (𝑎d + 𝛼e))

+ 𝜌d 𝜌e
𝛼i + 𝛼e cos (𝜃)

E1 (2 (𝑎d + 𝛼e) ℎ) +
𝜌d
𝛼i
( 1 − 𝜌e e−2𝛼e ℎ )E1 (2𝑎d ℎ)

+𝜌d(
1

𝛼i − 𝛼e cos (𝜃)
− 1
𝛼i
− 𝜌e e−2𝛼e ℎ
𝛼i + 𝛼e cos (𝜃)

+ 𝜌e e
−2𝛼e ℎ

𝛼i
) e−

2𝛼i ℎ
cos(𝜃) E1 (2ℎ (𝑎d −

𝛼i
cos (𝜃)))

+ (1 + 𝜌d − 𝜌e − 𝜌d𝜌e𝛼i
− 1 − 𝜌d 𝜌e
𝛼i + 𝛼e cos (𝜃)

− 𝜌d − 𝜌e
𝛼i − 𝛼e cos (𝜃)

) e−𝛼e ℎ−
𝛼i ℎ

cos(𝜃) E1 (ℎ (𝑎d −
𝛼i

cos (𝜃)))]
(B.15)

B.6. Appendix: Special and limit cases of the 𝐿d and 𝐿i solution
The 𝐿d and 𝐿i solution cannot be directly applied to a numerical computation scheme, as there are some
absorption coefficient combinations that break-down the solutions. For the 𝐿d solution, see equations
B.9 and B.10, it are the denominator terms becoming zero for 𝛼d = ±𝛼e cos(𝜃). Luckily, in practical
calculations this situation did not occur and is therefore ignored for now. However, 𝐿i terms should
be treated more carefully. The building blocks of the solution, see B.13, B.14 and B.15 have some
peculiar aspects. Firstly, the 𝛼d term cannot be zero, as there would be no photon input to ”force” the
differential equation, which may return NaN when applied in a numerical scheme as 𝐸1’s arguments
are zero. Secondly, 𝛼i can be zero, which leads to division by zero while a physically valid solution
actually does exist: it means that emitted photons do not get re-absorbed. To solve both cases, any
calculation schema needs to skip the cases where 𝛼d = 0, and for 𝛼i = 0 we need to take the limit and
use that result to calculate the propor photon radiance. To wit, using a computer algebra program, the
proper limits are

The general solution

𝐿gi,0 (𝑧, 𝜃) =
𝐸0 𝛼ds 𝛼es 𝑞d 𝑞i
8𝜋 𝛼2e cos (𝜃)

ℜ [(e−𝛼e(ℎ−𝑧) − 𝜌ee−𝛼e(ℎ+𝑧)) ln(
𝛼d + 𝛼e
𝛼d − 𝛼e

)

+𝛼e𝛼d
(e−𝛼d(ℎ−𝑧) + e−𝛼eℎ−𝛼d𝑧 − 𝜌de−𝛼d(ℎ+𝑧) + 𝜌de−𝛼eℎ−𝛼d𝑧 − 𝜌ee−𝛼eℎ−𝛼d𝑧

− 𝜌ee−2𝛼eℎ−𝛼d(ℎ−𝑧) − 𝜌d𝑟𝑒𝑑e−𝛼eℎ−𝛼d𝑧 + 𝜌d𝜌ee−𝛼d(ℎ+𝑧)−2𝛼eℎ)
+(1 − 𝜌d𝜌e)e−𝛼e(ℎ−𝑧)E1((𝛼d + 𝛼e)𝑧) + 𝜌d𝜌ee−𝛼e(ℎ−𝑧)E1((𝛼d + 𝛼e)(ℎ + 𝑧))
+ (1 − 𝛼e(ℎ − 𝑧) + 𝜌ee−2𝛼eℎ𝛼e𝜌ee−2𝛼eℎ(ℎ − 𝑧))E1(𝛼d(ℎ − 𝑧))
+(𝜌d − 𝜌e)e−𝛼e(ℎ+𝑧)E1((𝛼d − 𝛼e)𝑧) − e−𝛼e(ℎ−𝑧)E1((𝛼d − 𝛼e)(ℎ − 𝑧))
−𝜌ee−𝛼e(ℎ+𝑧)E1(𝛼d(ℎ + 𝑧)) + 𝜌de−𝛼e(ℎ+𝑧)E1((𝛼d − 𝛼e)(ℎ + 𝑧))
+ (𝜌d − 1 − 𝜌e − 𝛼e𝑧 + 𝜌d𝜌e − 𝛼e𝜌d𝑧 + 𝛼e𝜌e𝑧 + 𝛼e𝜌d𝜌e𝑧) e−𝛼eℎE1(𝛼d𝑧)
+ (𝛼e𝜌d(ℎ + 𝑧) − 𝜌d − 𝜌d𝜌ee−2𝛼eℎ − 𝜌d𝜌e𝛼ee−2𝛼eℎ(ℎ + 𝑧))E1(𝛼d(ℎ + 𝑧))]

(B.16)

The 𝑧 = 0 limit
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𝐿gi,0 (0, 𝜃) =
𝐸0 𝛼ds 𝛼es 𝑞d 𝑞i
8𝜋 𝛼2e cos (𝜃)

ℜ [(𝜌d𝜌e − 𝜌e)e−𝛼eℎE1((𝛼d − 𝛼e)ℎ) + (𝜌d − 1)e−𝛼eℎE1((𝛼d + 𝛼e)ℎ)

+(1 − 𝛼eℎ − 𝜌d + 𝛼e𝜌dℎ + 𝜌ee−2𝛼eℎ + 𝛼e𝜌eℎe−2𝛼eℎ − 𝜌d𝜌ee−2𝛼eℎ − 𝛼e𝜌d𝜌eℎe−2𝛼eℎ)E1(𝛼dℎ)
+(1 − 𝜌d + 𝜌e − 𝜌d𝜌e)e−𝛼eℎ ln(𝛼d) + (𝜌d𝜌e − 𝜌e)e−𝛼eℎ ln(𝛼d + 𝛼e) + (𝜌d − 1)e−𝛼eℎ ln(𝛼d − 𝛼e)

+𝛼e𝛼d
(e−𝛼dℎ + e−𝛼eℎ − 𝜌de−𝛼dℎ + 𝜌de−𝛼eℎ − 𝜌ee−𝛼eℎ − 𝜌d𝜌ee−𝛼eℎ − 𝜌ee−𝛼dℎe−2𝛼eℎ

+ 𝜌d𝜌ee−𝛼dℎe−2𝛼eℎ)]
(B.17)

The 𝑧 = ℎ limit

𝐿gi,0 (ℎ, 𝜃) =
𝐸0 𝛼ds 𝛼es 𝑞d 𝑞i
8𝜋 𝛼2e cos(𝜃)

ℜ [(−1 − 𝜌ee−2𝛼eℎ) ln(𝛼d) + ln(𝛼d + 𝛼e) − 𝜌ee−2𝛼eℎ ln(𝛼d − 𝛼e)

+(𝜌e − 𝜌d)e−2𝛼eℎE1((𝛼d − 𝛼e)ℎ) + 𝜌de−2𝛼eℎE1(2(𝛼d − 𝛼e)ℎ) + (1 − 𝜌d𝜌e)E1((𝛼d + 𝛼e)ℎ)
+(2𝑎𝑒𝜌dℎ − 𝜌d − 𝜌d𝜌ee−2𝛼eℎ − 2𝛼e𝜌d𝜌eℎe−2𝛼eℎ)E1(2𝑎𝑑ℎ) + 𝜌d𝜌eE1(2(𝛼d + 𝛼e)ℎ)
+(𝜌d − 𝛼eℎ − 1 − 𝜌e − 𝛼e𝜌dℎ + 𝛼e𝜌eℎ + 𝜌d𝜌e + 𝛼e𝜌d𝜌eℎ)e−𝛼eℎE1(𝛼dℎ)

+𝛼e𝛼d
(1 − 𝜌de−2𝛼dℎ − 𝜌ee−2𝛼eℎ + e−𝛼dℎe−𝛼eℎ + 𝜌de−𝛼dℎe−𝛼eℎ − 𝜌ee−𝛼dℎe−𝛼eℎ − 𝜌d𝜌ee−𝛼dℎe−𝛼eℎ

+ 𝜌d𝜌ee−2𝑎𝑑ℎe−2𝑎𝑒ℎ)]
(B.18)

All limits are the building blocks to construct the particular solution as outlined in section 3.3.

B.7. Appendix: Upper hemisphere identity for the source-term in-
tegral

Many terms in the upper hemisphere source term integral of the FRTE can be solved after some ma-
nipulation. Computer Algebra systems will find those readily. However, some terms do not have an
obvious solution, so an integration identity for those is developed. First, the case without a singularity is
considered. Second, the case with a pole is investigated. Third, the results are combined into a single
identity.

B.7.1. Identity in absence of a denominator singularity
Ignoring constants, the problematic upper hemisphere integrals have the following form

∫
𝜋
2

0

e
−𝑎

cos(𝜃)

𝑏 + 𝑐 cos (𝜃) sin (𝜃)d𝜃

{𝑎, 𝑏 ∈ ℝ | 𝑎, 𝑏 > 0}
{𝑐 ∈ ℝ | 𝑐 ≠ 0}
𝑏 + 𝑐 cos(𝜃) > 0

(B.19)

Use substitution 𝑡 = cos (𝜃) and d𝑡 = − sin (𝜃)d𝜃 to obtain

∫
1

0

e
−𝑎
𝑡

𝑏 + 𝑐𝑡d𝑡

Notice the change of upper- and lower boundary. Now use 𝑡 = 1
𝑢 and d𝑡 = − 1

𝑢2d𝑢
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∫
∞

1

e−𝑎𝑢

𝑢(𝑏𝑢 + 𝑐)d𝑢

A partial fraction expansion is applied

1
𝑐 ∫

∞

1

e−𝑎𝑢

𝑢 − 𝑏e−𝑎𝑢
𝑏𝑢 + 𝑐d𝑢

Apply the substitution 𝑢 = 𝑡
𝑎 , d𝑢 =

d𝑡
𝑎

1
𝑐 ∫

∞

𝑎

e−𝑡

𝑡 d𝑡 − 𝑏𝑐 ∫
∞

𝑎

e−𝑡

𝑏𝑡 + 𝑎𝑐d𝑡

At last, use 𝑡 = 𝑣 − 𝑎𝑐
𝑏 with d𝑡 = d𝑣

1
𝑐 ∫

∞

𝑎

e−𝑡

𝑡 d𝑡 − e
𝑎𝑐
𝑏

𝑐 ∫
∞

𝑎+𝑎𝑐𝑏

e−𝑣

𝑣 d𝑣

These are so-called exponential integrals, see [3, Eq. 6.2.1], whose pricipal value is defined as

E1 (𝑧) = ∫
∞

𝑧

e−𝑡

𝑡 d𝑡 𝑧 ∈ ℂ ⧵ 0 (B.20)

Where z is complex, but does not include the origin. It has no known analytic solution, yet is a well-
studied function that regularly pops-up in radiative transfer problems. The final result is

∫
𝜋
2

0

e
−𝑎

cos(𝜃)

𝑏 + 𝑐 cos (𝜃) sin (𝜃)d𝜃 =
1
𝑐 (E1 (𝑎) − e

𝑎𝑐
𝑏 E1 (𝑎 +

𝑎𝑐
𝑏 ))

{𝑎, 𝑏 ∈ ℝ | 𝑎, 𝑏 > 0}
{𝑐 ∈ ℝ | 𝑐 ≠ 0}
𝑏 + 𝑐 cos(𝜃) > 0

(B.21)

B.7.2. Identity in presence of a denominator singularity
Reconsider equation B.19, but now without the condition of positivity on the denominator

∫
𝜋
2

0

e
−𝑎

cos(𝜃)

𝑏 + 𝑐 cos (𝜃) sin (𝜃)d𝜃

{𝑎, 𝑏 ∈ ℝ | 𝑎, 𝑏 > 0}
{𝑐 ∈ ℝ | 𝑐 ≠ 0}

now 𝑏 + 𝑐 cos (𝜃) is somewhere positive and somewhere negative on the open domain of 𝜃 ∈ 0, 𝜋2 ,
thus 𝑐 < 0 and |𝑐| > |𝑏|. This all leads to the existence of a pole in the denominator and the integral is
improper, so solve it by assigning a Cauchy principal value; to start

lim
𝜖→0+

[∫
arccos(−𝑏𝑐 )−𝜖

0

e
−𝑎

cos(𝜃)

𝑏 + 𝑐 cos (𝜃) sin (𝜃)d𝜃 + ∫
𝜋
2

arccos(−𝑏𝑐 )+𝜖

e
−𝑎

cos(𝜃)

𝑏 + 𝑐 cos (𝜃) sin (𝜃)d𝜃]
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Apply u-substitution 𝑡 = cos (𝜃), d𝑡 = − sin (𝜃)d𝜃 and introduce the following abbreviations 𝑓(−𝜖) =
cos (arccos (−𝑏𝑐 ) − 𝜖) and 𝑓(𝜖) = cos (arccos (−𝑏𝑐 ) + 𝜖)

lim
𝜖→0+

[∫
1

𝑓(−𝜖)

e
−𝑎
𝑡

𝑏 + 𝑐𝑡d𝑡 + ∫
𝑓(𝜖)

0

e
−𝑎
𝑡

𝑏 + 𝑐𝑡d𝑡]

Now use 𝑡 = 1
𝑢 and d𝑡 = − 1

𝑢2d𝑢 to see that

lim
𝜖→0+

[∫
1

𝑓(−𝜖)

1

e−𝑎𝑢

𝑢(𝑏𝑢 + 𝑐)d𝑢 + ∫
∞

1
𝑓(𝜖)

e−𝑎𝑢

𝑢(𝑏𝑢 + 𝑐)d𝑢]

A partial fraction expansion is applied

lim
𝜖→0+

[1𝑐 ∫
1

𝑓(−𝜖)

1

e−𝑎𝑢

𝑢 − 𝑏e−𝑎𝑢
𝑏𝑢 + 𝑐d𝑢 +

1
𝑐 ∫

∞

1
𝑓(𝜖)

e−𝑎𝑢

𝑢 − 𝑏e−𝑎𝑢
𝑏𝑢 + 𝑐d𝑢]

Now use this substitution 𝑢 = 𝑡
𝑎 , d𝑢 =

d𝑡
𝑎

lim
𝜖→0+

[1𝑐 ∫
𝑎

𝑓(−𝜖)

𝑎

e−𝑡

𝑡 d𝑡 − 𝑏𝑐 ∫
𝑎

𝑓(−𝜖)

𝑎

e−𝑡

𝑏𝑡 + 𝑎𝑐d𝑡 +
1
𝑐 ∫

∞

𝑎
𝑓(𝜖)

e−𝑡

𝑡 d𝑡 − 𝑏𝑐 ∫
∞

𝑎
𝑓(𝜖)

e−𝑡

𝑏𝑡 + 𝑎𝑐d𝑡]

At last, use 𝑡 = 𝑣 − 𝑎𝑐
𝑏 with d𝑡 = d𝑣

lim
𝜖→0+

[1𝑐 ∫
𝑎

𝑓(−𝜖)

𝑎

e−𝑡

𝑡 d𝑡 − e
𝑎𝑐
𝑏

𝑐 ∫
𝑎

𝑓(−𝜖)+
𝑎𝑐
𝑏

𝑎+𝑎𝑐𝑏

e−𝑣

𝑣 d𝑣+

1
𝑐 ∫

∞

𝑎
𝑓(𝜖)

e−𝑡

𝑡 d𝑡 − e
𝑎𝑐
𝑏

𝑐 ∫
∞

𝑎
𝑓(𝜖)+

𝑎𝑐
𝑏

e−𝑣

𝑣 d𝑣]

This results can be simplified: convince for yourself with help of definition of 𝐸1 B.20 that

∫
𝑔

𝑓

e−𝑥

𝑥 d𝑥 = E1(𝑓) − E1(𝑔)

Apply this formula and get

lim
𝜖→0+

[1𝑐E1(𝑎) −
1
𝑐E1 (

𝑎
𝑓(−𝜖)) −

e
𝑎𝑐
𝑏

𝑐 E1 (𝑎 +
𝑎𝑐
𝑏 ) +

e
𝑎𝑐
𝑏

𝑐 E1 (
𝑎

𝑓(−𝜖) +
𝑎𝑐
𝑏 )

+1𝑐E1 (
𝑎
𝑓(𝜖)) −

e
𝑎𝑐
𝑏

𝑐 E1 (
𝑎
𝑓(𝜖) +

𝑎𝑐
𝑏 )]

With the definition of 𝑓(±𝜖) and the properties of 𝑎, 𝑏, 𝑐 rewrite to
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1
𝑐E1(𝑎) −

e
𝑎𝑐
𝑏

𝑐 E1 (𝑎 +
𝑎𝑐
𝑏 ) + lim

𝜖→0+
[e

𝑎𝑐
𝑏

𝑐 E1 (
𝑎

𝑓(−𝜖) +
𝑎𝑐
𝑏 ) −

e
𝑎𝑐
𝑏

𝑐 E1 (
𝑎
𝑓(𝜖) +

𝑎𝑐
𝑏 )]

The last 𝜖 limit poses some problem as the arguments approach zero; the exponential integral contains
a singularity at the origin. To solve, use a series expansion [3, Eq. 6.6.2] and take the asymptote for 𝑧
approaching zero

E1(𝑧) = −𝛾 − ln (𝑧) −
∞

∑
𝑛=1

(−1)𝑛𝑧𝑛
𝑛!𝑛

E1(𝑧) ≈ −𝛾 − ln (𝑧) for 𝑧 → 0

Use this asymptote and ln𝑎 − ln 𝑏 = ln 𝑎
𝑏 to write

1
𝑐E1(𝑎) −

e
𝑎𝑐
𝑏

𝑐 E1 (𝑎 +
𝑎𝑐
𝑏 ) −

e
𝑎𝑐
𝑏

𝑐 lim
𝜖→0+

ln [

𝑎
cos(arccos(−𝑏𝑐 )−𝜖)

+ 𝑎𝑐
𝑏

𝑎
cos(arccos(−𝑏𝑐 )+𝜖)

+ 𝑎𝑐
𝑏
] =

1
𝑐E1(𝑎) −

e
𝑎𝑐
𝑏

𝑐 E1 (𝑎 +
𝑎𝑐
𝑏 ) −

e
𝑎𝑐
𝑏

𝑐 ln[−1] =

1
𝑐E1(𝑎) −

e
𝑎𝑐
𝑏

𝑐 E1 (𝑎 +
𝑎𝑐
𝑏 ) − 𝑖

e
𝑎𝑐
𝑏

𝑐 𝜋

It is possible to change the sign of the imaginary term by un-careful algebraic manipulation, but this
would be the incorrect principal value: a simple verification for this is checking the signs of the E1’s
arguments and applying the following identity, see [3, Eq. 6.5.1]

E1(−𝑥 ± 𝑖0) = −Ei(𝑥) ∓ 𝑖𝜋 𝑥 > 0 (B.22)

Where Ei is the exponential integral for non-complex arguments. Closer inspection of this identity and
the fact that 𝑎 + 𝑎𝑐

𝑏 < 0 leads to a remarkable conclusion, namely, the cancellation of imaginary terms

1
𝑐E1(𝑎) −

e
𝑎𝑐
𝑏

𝑐 E1 (𝑎 +
𝑎𝑐
𝑏 + 𝑖0) − 𝑖e

𝑎𝑐
𝑏

𝑐 𝜋

1
𝑐E1(𝑎) −

e
𝑎𝑐
𝑏

𝑐 Ei (−𝑎 − 𝑎𝑐𝑏 ) + 𝑖
e
𝑎𝑐
𝑏

𝑐 𝜋 − 𝑖e
𝑎𝑐
𝑏

𝑐 𝜋

1
𝑐E1(𝑎) −

e
𝑎𝑐
𝑏

𝑐 Ei (−𝑎 − 𝑎𝑐𝑏 )

This is the solution to the integral.

∫
𝜋
2

0

e
−𝑎

cos(𝜃)

𝑏 + 𝑐 cos (𝜃) sin (𝜃)d𝜃 =
1
𝑐E1(𝑎) −

e
𝑎𝑐
𝑏

𝑐 Ei (−𝑎 − 𝑎𝑐𝑏 )

{𝑎, 𝑏 ∈ ℝ | 𝑎, 𝑏 > 0}
{𝑐 ∈ ℝ | 𝑐 < 0}

𝑏 + 𝑐 cos(𝜃) = 0 for 𝜃 ∈ (0, 𝜋2)

(B.23)
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B.7.3. The general identity
It is possible to combine both solution equations B.21, B.23 into one identity by considering only the
real parts of the identities

∫
𝜋
2

0

e
−𝑎

cos(𝜃)

𝑏 + 𝑐 cos (𝜃) sin (𝜃)d𝜃 =
1
𝑐 (E1 (𝑎) − ℜ [e

𝑎𝑐
𝑏 E1 (𝑎 +

𝑎𝑐
𝑏 )])

{𝑎, 𝑏 ∈ ℝ | 𝑎, 𝑏 > 0}
{𝑐 ∈ ℝ | 𝑐 ≠ 0}

𝑏 + 𝑐 cos(𝜃) ≠ 0 if 𝜃 = 0 ∨ 𝜋2

(B.24)

Essentially, the pole must be inside the domain of integration and not on its bounds. The implications
of a pole on the boundary domain have not been investigated. Only the real part of the solution is
considered, which is denoted by the symbol ℜ.

B.8. Appendix: lower hemisphere identity for the source-term in-
tegral

Many terms in the lower hemisphere source term integral of the FRTE can be solved after some ma-
nipulation. Computer algebra systems will find those readily. However, some terms do not have an
obvious solution, so an integration identity for those is developed. First, the case without a singularity is
considered. Second, the case with a pole is investigated. Third, the results are combined into a single
identity.

B.8.1. Identity in absence of a denominator singularity
The problematic integrand of the source terms with cosines in the exponent, and in the absence of a
pole, takes the form

∫
𝜋

𝜋
2

e
𝑎

cos(𝜃)

𝑏 + 𝑐 cos (𝜃) sin (𝜃)d𝜃

{𝑎, 𝑏 ∈ ℝ | 𝑎, 𝑏 > 0}
{𝑐 ∈ ℝ | 𝑐 ≠ 0}
𝑏 + 𝑐 cos(𝜃) > 0

(B.25)

Use 𝑡 = cos (𝜃) and d𝑡 = − sin (𝜃)d𝜃

∫
0

−1

e
𝑎
𝑡

𝑏 + 𝑐𝑡d𝑡

Then apply 𝑡 = 1
𝑢 and d𝑡 = − 1

𝑢2d𝑢

∫
−1

−∞

e𝑎𝑢

𝑏𝑢2 + 𝑐𝑢d𝑢

Apply a partial fraction expansion

1
𝑐 ∫

−1

−∞

e𝑎𝑢

𝑢 − 𝑏e𝑎𝑢
𝑏𝑢 + 𝑐d𝑢
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Now utilise 𝑢 = − 𝑡
𝑎 , d𝑢 = −

d𝑡
𝑎

1
𝑐 ∫

∞

𝑎

e−𝑡

𝑡 d𝑡 + 𝑏𝑐 ∫
∞

𝑎

e−𝑡

𝑏𝑡 + 𝑎𝑐d𝑡

At last, on the right term use 𝑡 = 𝑣 − 𝑎𝑐
𝑏 with d𝑡 = d𝑣

1
𝑐 ∫

∞

𝑎

e−𝑡

𝑡 d𝑡 + e
𝑎𝑐
𝑏

𝑐 ∫
∞

𝑎+𝑎𝑐𝑏

e−𝑣

𝑣 d𝑣

Finally, this gives the following identity

∫
𝜋

𝜋
2

e
𝑎

cos(𝜃)

𝑏 + 𝑐 cos (𝜃) sin (𝜃)d𝜃 =
1
𝑐 (E1 (𝑎) + e

𝑎𝑐
𝑏 E1 (𝑎 +

𝑎𝑐
𝑏 ))

{𝑎, 𝑏 ∈ ℝ | 𝑎, 𝑏 > 0}
{𝑐 ∈ ℝ | 𝑐 ≠ 0}
𝑏 + 𝑐 cos(𝜃) > 0

(B.26)

B.8.2. Identity in presence of a denominator singularity
Reconsider equation B.25, but now without the condition of positivity on the denominator

∫
𝜋

𝜋
2

e
𝑎

cos(𝜃)

𝑏 + 𝑐 cos (𝜃) sin (𝜃)d𝜃

{𝑎, 𝑏 ∈ ℝ | 𝑎, 𝑏 > 0}
{𝑐 ∈ ℝ | 𝑐 > 0}

now 𝑏 + 𝑐 cos (𝜃) is somewhere positive and somewhere negative on the open domain of 𝜃 ∈ 𝜋
2 , 𝜋,

thus 𝑐 > 0 and 𝑐 > 𝑏. This all leads to the existence of a pole in the denominator and the integral is
improper, so solve it by assigning a Cauchy principal value; to start

lim
𝜖→0+

[∫
arccos(−𝑏𝑐 )−𝜖

𝜋
2

e
𝑎

cos(𝜃)

𝑏 + 𝑐 cos (𝜃) sin (𝜃)d𝜃 + ∫
𝜋

arccos(−𝑏𝑐 )+𝜖

e
𝑎

cos(𝜃)

𝑏 + 𝑐 cos (𝜃) sin (𝜃)d𝜃]

Apply u-substitution 𝑡 = cos (𝜃), d𝑡 = − sin (𝜃)d𝜃 and introduce the following abbreviations 𝑓(−𝜖) =
cos (arccos (−𝑏𝑐 ) − 𝜖) and 𝑓(𝜖) = cos (arccos (−𝑏𝑐 ) + 𝜖)

lim
𝜖→0+

[∫
0

𝑓(−𝜖)

e
𝑎
𝑡

𝑏 + 𝑐𝑡d𝑡 + ∫
𝑓(𝜖)

−1

e
𝑎
𝑡

𝑏 + 𝑐𝑡d𝑡]

Now use 𝑡 = 1
𝑢 and d𝑡 = − 1

𝑢2d𝑢 to see that

lim
𝜖→0+

[∫
1

𝑓(−𝜖)

−∞

e𝑎𝑢

𝑢(𝑏𝑢 + 𝑐)d𝑢 + ∫
−1

1
𝑓(𝜖)

e𝑎𝑢

𝑢(𝑏𝑢 + 𝑐)d𝑢]

A partial fraction expansion is applied
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lim
𝜖→0+

[1𝑐 ∫
1

𝑓(−𝜖)

−∞

e𝑎𝑢

𝑢 − 𝑏e𝑎𝑢
𝑏𝑢 + 𝑐d𝑢 +

1
𝑐 ∫

−1

1
𝑓(𝜖)

e𝑎𝑢

𝑢 − 𝑏e𝑎𝑢
𝑏𝑢 + 𝑐d𝑢]

Now use this substitution 𝑢 = −𝑡
𝑎 , d𝑢 =

−d𝑡
𝑎

lim
𝜖→0+

[−1𝑐 ∫
∞

− 𝑎
𝑓(−𝜖)

e−𝑡

𝑡 d𝑡 − 𝑏𝑐 ∫
∞

− 𝑎
𝑓(−𝜖)

e−𝑡

𝑎𝑐 − 𝑏𝑡d𝑡 −
1
𝑐 ∫

− 𝑎
𝑓(𝜖)

𝑎

e−𝑡

𝑡 d𝑡 − 𝑏𝑐 ∫
− 𝑎
𝑓(−𝜖)

𝑎

e−𝑡

𝑎𝑐 − 𝑏𝑡d𝑡]

At last, use 𝑡 = 𝑣 + 𝑎𝑐
𝑏 with d𝑡 = d𝑣

lim
𝜖→0+

[−1𝑐 ∫
∞

− 𝑎
𝑓(−𝜖)

e−𝑡

𝑡 d𝑡 + e−
𝑎𝑐
𝑏

𝑐 ∫
∞

− 𝑎
𝑓(−𝜖)−

𝑎𝑐
𝑏

e−𝑣

𝑣 d𝑣+

−1𝑐 ∫
− 𝑎
𝑓(𝜖)

𝑎

e−𝑡

𝑡 d𝑡 + e−
𝑎𝑐
𝑏

𝑐 ∫
− 𝑎
𝑓(𝜖)−

𝑎𝑐
𝑏

𝑎−𝑎𝑐𝑏

e−𝑣

𝑣 d𝑣]

This results can be simplified: convince for yourself with help of definition of 𝐸1 in equation B.20 that

∫
𝑔

𝑓

e−𝑥

𝑥 d𝑥 = E1(𝑓) − E1(𝑔)

Apply this formula and get

lim
𝜖→0+

[−1𝑐E1(𝑎) +
1
𝑐E1 (−

𝑎
𝑓(−𝜖)) +

e−
𝑎𝑐
𝑏

𝑐 E1 (𝑎 −
𝑎𝑐
𝑏 ) +

e−
𝑎𝑐
𝑏

𝑐 E1 (−
𝑎

𝑓(−𝜖) −
𝑎𝑐
𝑏 )

−1𝑐E1 (−
𝑎
𝑓(𝜖)) −

e−
𝑎𝑐
𝑏

𝑐 E1 (−
𝑎
𝑓(𝜖) −

𝑎𝑐
𝑏 )]

With the definition of 𝑓(±𝜖), the properties of 𝑎, 𝑏, 𝑐 rewrite to

−1𝑐E1(𝑎) +
e−

𝑎𝑐
𝑏

𝑐 E1 (𝑎 −
𝑎𝑐
𝑏 ) + lim

𝜖→0+
[e
−𝑎𝑐𝑏

𝑐 E1 (−
𝑎

𝑓(−𝜖) −
𝑎𝑐
𝑏 ) −

e−
𝑎𝑐
𝑏

𝑐 E1 (−
𝑎
𝑓(𝜖) −

𝑎𝑐
𝑏 )]

The last 𝜖 limit poses some problem as the arguments approach zero; the exponential integral contains
a singularity at the origin. To solve, use a series expansion [3, Eq. 6.6.2] and take the asymptote for 𝑧
approaching zero

E1(𝑧) = −𝛾 − ln (𝑧) −
∞

∑
𝑛=1

(−1)𝑛𝑧𝑛
𝑛!𝑛

E1(𝑧) ≈ −𝛾 − ln (𝑧) for 𝑧 → 0

Use this asymptote and ln𝑎 − ln 𝑏 = ln 𝑎
𝑏 to write
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− 1𝑐E1(𝑎) +
e−

𝑎𝑐
𝑏

𝑐 E1 (𝑎 −
𝑎𝑐
𝑏 ) +

e−
𝑎𝑐
𝑏

𝑐 lim
𝜖→0+

ln [
− 𝑎

cos(arccos(−𝑏𝑐 )−𝜖)
− 𝑎𝑐

𝑏

− 𝑎
cos(arccos(−𝑏𝑐 )+𝜖)

− 𝑎𝑐
𝑏
] =

− 1𝑐E1(𝑎) +
e−

𝑎𝑐
𝑏

𝑐 E1 (𝑎 −
𝑎𝑐
𝑏 ) +

e−
𝑎𝑐
𝑏

𝑐 ln[−1] =

− 1𝑐E1(𝑎) +
e−

𝑎𝑐
𝑏

𝑐 E1 (𝑎 −
𝑎𝑐
𝑏 ) + 𝑖

e−
𝑎𝑐
𝑏

𝑐 𝜋

It is possible to change the sign of the imaginary term by un-careful algebraic manipulation, but this
would be the incorrect principal value: a simple verification for this is checking the signs of the E1’s
arguments and applying the following identity, see [3, Eq. 6.5.1]

E1(−𝑥 ± 𝑖0) = −Ei(𝑥) ∓ 𝑖𝜋 𝑥 > 0 (B.27)

Where Ei is the exponential integral for non-complex arguments. Closer inspection of this identity and
the fact that 𝑎 − 𝑎𝑐

𝑏 < 0 leads to a remarkable conclusion, namely, the cancellation of imaginary terms

− 1𝑐E1(𝑎) +
e−

𝑎𝑐
𝑏

𝑐 E1 (𝑎 −
𝑎𝑐
𝑏 + 𝑖0) + 𝑖e

−𝑎𝑐𝑏

𝑐 𝜋

− 1𝑐E1(𝑎) +
e−

𝑎𝑐
𝑏

𝑐 Ei (−𝑎 + 𝑎𝑐𝑏 ) − 𝑖
e−

𝑎𝑐
𝑏

𝑐 𝜋 + 𝑖e
−𝑎𝑐𝑏

𝑐 𝜋

− 1𝑐E1(𝑎) +
e−

𝑎𝑐
𝑏

𝑐 Ei (−𝑎 + 𝑎𝑐𝑏 )

This is the solution to the integral.

∫
𝜋

𝜋
2

e
𝑎

cos(𝜃)

𝑏 + 𝑐 cos (𝜃) sin (𝜃)d𝜃 = −
1
𝑐E1(𝑎) +

e−
𝑎𝑐
𝑏

𝑐 Ei (−𝑎 + 𝑎𝑐𝑏 )

{𝑎, 𝑏 ∈ ℝ | 𝑎, 𝑏 > 0}
{𝑐 ∈ ℝ | 𝑐 > 0}

𝑏 + 𝑐 cos(𝜃) = 0 for 𝜃 ∈ (0, 𝜋2)

(B.28)

B.8.3. The general identity
It is possible to combine both solution B.26 and B.28 into one identity

∫
𝜋

𝜋
2

e
𝑎

cos(𝜃)

𝑏 + 𝑐 cos (𝜃) sin (𝜃)d𝜃 = −
1
𝑐 (E1 (𝑎) − ℜ [e

−𝑎𝑐𝑏 E1 (𝑎 −
𝑎𝑐
𝑏 )])

{𝑎, 𝑏 ∈ ℝ | 𝑎, 𝑏 > 0}
{𝑐 ∈ ℝ | 𝑐 ≠ 0}

𝑏 + 𝑐 cos(𝜃) ≠ 0 if 𝜃 = 𝜋
2 ∨ 𝜋

(B.29)

Essentially, the pole must be inside the domain of integration and not on its bounds. The implications
of a pole on the boundary domain have not been investigated. Only the real part of the solution is
considered, which is denoted by the symbol ℜ.
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Figure B.3: Plot of the ℎ + 𝑧 identity (eq: B.31) versus numeric integration. Blow-up occurs for large arguments ℎ + 𝑧 if 𝑎 > 𝑏.

B.9. Appendix: Indefinite integrals of e±𝑎𝑥 and E1 (𝑏𝑥) products
Applying the solution method of section 3.3.1 to the source term of B.12 gives rise to indefinite integrals
of e±𝑎𝑥 and E1 (𝑏𝑥) products. Identities to integrate the terms need to be found: start with the following
identities from [7]

∫ e−𝑎𝑥E1 (𝑏𝑥)d𝑥 =
1
𝑎 [E1{(𝑎 + 𝑏) 𝑥} − e−𝑎𝑥E1{𝑏𝑥}]

∫ e𝑎𝑥E1 (𝑏𝑥)d𝑥 = −
1
𝑎 [E1{(𝑏 − 𝑎) 𝑥} − e𝑎𝑥E1{𝑏𝑥}] 𝑏 > 𝑎

(B.30)

They consider 𝑎 and 𝑏 to be strictly positive. These identities form the inspiration for the new identity
that can be proven by taking the derivative over z

∫ e±𝑎(ℎ+𝑧)E1 (𝑏 (ℎ + 𝑧))d𝑧 = ∓
1
𝑎 [E1{(𝑏 ∓ 𝑎) (ℎ + 𝑧)} − e±𝑎(ℎ+𝑧)E1{𝑏 (ℎ + 𝑧)}] 𝑏 > 𝑎

∫ e±𝑎(ℎ−𝑧)E1 (𝑏 (ℎ − 𝑧))d𝑧 = ±
1
𝑎 [E1{(𝑏 ∓ 𝑎) (ℎ − 𝑧)} − e±𝑎(ℎ−𝑧)E1{𝑏 (ℎ − 𝑧)}] 𝑏 > 𝑎

∫ e±𝑎𝑧E1 (𝑏𝑧)d𝑧 = ∓
1
𝑎 [E1{𝑏 ∓ 𝑎𝑧} − e±𝑎𝑧E1{𝑏𝑧}] 𝑏 > 𝑎

(B.31)

All terms of the integrand can be written in this canonical form. Notice that in application, the condition
𝑏 > 𝑎 is often violated, for example: 𝛼e > 𝛼d were excitation light energy is absorbed more strongly
than emitted fluorophore light. The interpretation is that the fluorophore radiance would blow-up if the
medium were infinitely thick: the excitation light feeds the fluorophore radiance at a faster rate than it is
removed. This is of-course physically impossible since the slab has a finite thickness of ℎ. Therefore,
the product of 𝑎, 𝑏 and ℎ ± 𝑧 is very small for any real system. The indefinite integrals may not always
exist, but for small, physically-real arguments they do. Figure B.3 depicts an example for this behaviour:
a blow-up occurs, but only for large input arguments. The identity might not work in the mathematical
sense, but it does so in a real-life, physical sense.

B.10. Appendix: Sanity checks for the FRTE solution
The derived solutions to the FRTE underwent some sanity checks by comparing model outputs to
photon balances. In the coming discussion, assume 𝑞 = 0.5 and that irradiance is going straight into
the medium.
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Figure B.4: Test case for 𝐿d without reflectivity. Model evaluated at 530 nm, excited at 450 nm.

B.10.1. 𝐿d, no mirror
Check the direct term, 𝐿d, first. All data can be found in Figure B.4. Excitation happens at 450 nm
and emission at 480 nm and 530nm, of which we now consider the photon radiance balance at the
latter one. By heuristics, the outgoing photon radiance at the top of the layer should be a fraction of
the converted photon irradiance gathered along the path through the medium. The converted photons
from the irradiance beam are not all put at the radiance wavelength of interest, so a efficiency, 𝜂, has
to be introduced

𝐿d(𝜃, ℎ, 530) = 𝜂
Δ𝐸
4𝜋

The 4𝜋 comes from the conversion of the photons in the parallel beam to the isotropic-over-solid-angle
radiating process that is fluorescence. The change in irradiance along depth ℎ follows from shuffling
around Lambert Beer’s law, but since the radiance is at angle with ℎ, we need to scale by cos(𝜃) to
account for the longer photon-gathering path length that feeds the radiance 𝐿d

𝐿d(𝜃, ℎ, 530) = 𝜂
𝐸0 (1 − e−𝛼ℎ)
4𝜋 cos(𝜃)

𝐸0 is the irradiance at the top of the layer. From the normalized emission spectrum ̄𝜖 and q, the efficiency
can be defined

𝐿d(𝜃, ℎ, 530) = 𝑞 ̄𝜖
𝐸0 (1 − e−𝛼ℎ)
4𝜋 cos(𝜃)

In the plots there is a perfect agreement between model and energy balance. For 𝜃 = 0.5𝜋, the cosine
term goes to zero and both balance and model explode—not depicted in the plot.

B.10.2. 𝐿d, mirror of half reflectivity
Let us now extend the previous model by adding a mirror. Add a spectrally constant reflectivity of
𝜌(𝜆) = 0.5—see Figure B.5
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Figure B.5: Test case for 𝐿d with half reflectivity. Model evaluated at 530 nm, excited at 450 nm.

𝐿d(𝜃, ℎ, 530) = 𝜂𝜌𝜂
Δ𝐸
4𝜋

The captured irradiance is modified by adding a reflected term. To do so, calculate the irradiance at
the bottom of the layer, reflect it, and re-apply Lambert-Beer

𝐿d(𝜃, ℎ, 530) = 𝜂𝜌𝜂
𝐸0 (1 − e−𝛼ℎ) + 𝜌𝐸0e−𝛼ℎ (1 − e−𝛼ℎ)

4𝜋 cos(𝜃)

𝜂𝜌 accounts for the reflected fluorescent radiance. Consider that fluorescence is an isotropic, radiative
process, so the radiance hitting the mirror must be equal in size to the non-reflected one leaving the
mirror. Therefore,

𝐿d(𝜃, ℎ, 530) = (1 + 𝜌)𝑞 ̄𝜖
𝐸0 (1 − e−𝛼ℎ) + 𝜌𝐸0e−𝛼ℎ (1 − e−𝛼ℎ)

4𝜋 cos(𝜃)
Once again, model and photon balance are in agreement. This concludes the investigation of the 𝐿d
solution.

B.10.3. 𝐿i no mirror, no-absorption limit case
𝐿i is much harder to check than 𝐿d because of its dependence on fluorescent photon absorption, which
is not as easily modelled as a parallel beam. The solution is to use an overlapping emission and
absorption wavelength—see Figure B.6—where the latter is of such enormous magnitude that any
emitted fluorescent photon is immediately re-absorbed to serve as a source for 𝐿i. Therefore, the
fluorescent photon source can be modelled like the parallel beam source. After the inclusion of the
re-emission efficiency obtain

𝐿i(𝜃, ℎ, 530) = 𝑞2 ̄𝜖2
𝐸0 (1 − e−𝛼ℎ)
4𝜋 cos(𝜃)
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Figure B.6: Test case for 𝐿i in the 𝛼i = 0 limit without reflection. Model evaluated at 530 nm, excited at 450 nm.

We do not consider absorption of the second generation of fluorescent photon, so only the special limit
case of 𝛼i = 0 from section B.6 is tested.

B.10.4. 𝐿i, no mirror, regular solution
Now verify the regular solution of 𝐿i were absorption matters. Add a small absorption at 530 nm—
Figure B.7. The model does indeed reduce the radiance as compared to the non-absorptive model,
which increases with path length.
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Figure B.7: Test case for 𝐿i without reflection. Model evaluated at 530 nm, excited at 450 nm. Mild absorption added to test the
regular solution. Zero value at 𝜃 = 0 rad is due to 𝛼i = 𝛼e cos(𝜃) throwing a NaN in Matlab which is set to zero by the script.
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Appendix: Codes

C.1. Monte Carlo
main.m

1 c l ea r a l l
2 c lose a l l
3 c l c
4

5

6 %% Type of s imu la t i on
7 % Number o f CPUs to use
8 parpool ( 4 )
9 % of montecarlo s imu la t i ons
10 repeat_no=1e9 ;
11

12 %Film he igh ts m
13 % h = [20 ,500 ,900 ,2000]*1e−6;
14 h = [20 ,100 ,200 ,400 ,800 ,1200 ,1600 ,2000]*1e−6;
15 % h = [20 ,100 ,200 ,400]*1e−6;
16 h = [800 ,1200 ,1600 ,2000]*1e−6;
17

18 %angle o f radiance wi th medium normal / / z−ax is rad ians
19 viewAngle = [ 0 , 1 / 8 , 1 / 4 , 3 / 8 ] * p i ;
20

21 % Set r e f l e c t i o n cond i t i on o f domain ’ s bottom : sets on ly angle ; set
22 % spec t r a l r e f l . c o e f f i c i e n t ” rho ” i n next sec t ion
23 re f lType = ’ lamber t ian ’ ;
24

25 %% Setup medium , dye− and spec t r a l p rope r t i e s
26 % Import spec t r a l data
27 f i l ePa thSpec t r a = [ ’C : \ Users \ p lok \ Google Dr ive \ Uni \ Master \ S c r i p t i e \ ’ , . . .
28 ’ Matlab \ SpectrumTool \ Resul ts \ dataMasterSet . mat ’ ] ;
29 data = open ( f i l ePa thSpec t r a ) ;
30

31

32 % Quantum Yie ld and molar concen t ra t i on
33 ph iF l = 0 .85 ;
34 phiEy = 0 .20 ;
35 cF l = 0.5*0.25e−3;
36 cEy = 0.5*0.25e−3;
37

38 % Absorpt ion coe f f . peaks [m^ −1]
39

73
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40 absCoPeakFl = 76.0e5* cF l ;
41 %From : Spect rophotometr ic ana l ys i s o f sodium f l uo r esce i n aqueous so l u t i ons .
42 %Determinat ion o f molar absorp t ion c o e f f i c i e n t
43

44 absCoPeakEy = 1.2*1.2*11.6e6*cEy ;
45 %From : Data on eosin Y so l u t i ons f o r laser −induced
46 % fluorescence in water f lows : i t shows something c lose to or above 1e7
47 % A l t e r n a t i v e : pH−Dependence of the absorp t ion and f l uo rescen t p rope r t i e s
48 % of f l uo rone dyes i n aqueos so l u t i ons . Shows something c lose to to 2.2e7
49

50 % Wavelengths and LED wavelength
51 wvlArray = data . wavelengths ;
52 wvlLED = 450e−9;
53

54 % Spectrometer s e n s i t i v i t y
55 specSens = normal ize ( data . LampSpectrum , ’ range ’ ) . . .
56 . / normal ize ( data . LampReferenceSpectrum , ’ range ’ ) ;
57 specSens = smoothdata ( specSens , ’ gaussian ’ , 15 ) ;
58

59 % Absorpt ion == Exc i t a t i o n spectrum of f l u o r esce i n and eosin
60 eyAbs = ( normal ize ( data . eosinYAbsWater , ’ range ’ ) ) ;
61 f lAbs = ( normal ize ( data . FluoresceinAbsWater , ’ range ’ ) ) ;
62

63 % Eosin emissions . F i l t e r , T , s l i g h t l y bleeds i n t o eyEm, cannot be removed
64 eyEm = data . eosinYEmWater . / ( specSens ) ;
65 eyEm( isnan (eyEm) ) = 0 ;
66 eyEm = normal ize (eyEm, ’ range ’ ) ;
67 eyEm = eyEm/sum(eyEm ) ;
68

69 % Fluoresce in Em. F i l t e r , T , s l i g h t l y bleeds i n t o flEm , cannot be removed
70 f lEm = data . FluoresceinEmWater . / ( specSens ) ;
71 f lEm ( isnan ( flEm ) ) = 0 ;
72 f lEm = normal ize ( flEm , ’ range ’ ) ;
73 f lEm = flEm /sum( flEm ) ;
74

75 % Sh i f t spec : s h i f t s , i f appl ied , are from Fluorescence Proper t i es o f
76 % Twenty F luoresce in De r i va t i ves : L i fe t ime , Quantum Yie ld , Absorpt ion
77 % and Emission Spectra
78 eyEm = c i r c s h i f t (eyEm, −18) ; % −18 se l f −measured . s l i g h t l y red− sh i f t e d due to t h i c k l aye r .
79 eyAbs = c i r c s h i f t ( eyAbs , 0 ) ; % 2 according to l i t e r a t u r e ; se l f −measured
80 f lEm = c i r c s h i f t ( flEm , 1 ) ; % 1 according to l i t e r a t u r e ; have some doubts
81 f lAbs = c i r c s h i f t ( f lAbs , 0 ) ; % 2 according to l i t e r a t u r e ; se l f −measured
82

83 % Spect ra l r e f l e c t i v i t y
84 rho = data . M i r ro rCoat ing ;
85 rho ( : ) = 1 ;
86

87 % Medium absorp t ion
88 medAbs = zeros ( s ize ( f lAbs ) ) ;
89 absCoPeakMed = 0;
90

91 % Wavelength to index f unc t i on .
92 wvl_c1 = leng th ( wvlArray ) −1;
93 wvl_c2 = wvlArray ( 1 ) ;
94 wvl_c3 = wvlArray ( end)−wvlArray ( 1 ) ;
95 wvl Id = @( wvl ) round (1 + wvl_c1 * ( wvl −wvl_c2 ) / wvl_c3 ) ;
96

97

98 %% Domain geometery and numer ica l aper tu re o f sensor
99 % Sensor p rope r t i e s
100 r_s = 450e−6; % Radius o f sensor
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101 numApAngle = deg2rad ( 1 0 ) ; % Half −Angle o f cone where− in rays are
102 % reg i s t e red by the sensor
103 % viewAngle determines symmetry ax is o f the
104 % cone
105 lbAcceptAngle = cos ( numApAngle ) ;
106

107 %Optimize rad ius c y l i n d r i c a l domain m
108 Fmin = 0 .01 ; % Min view f a c t o r from i n f i n i t e s i m a l cube to sensor d isk −
109 % Used to determine opt ima l domain s ize
110 cubeSz = h /10 ; % Size of l i g h t −em i t t i ng cube
111

112 r_d = 3*0.5* optimizeR_d ( r_s , Fmin , h , cubeSz ) ; %Opt . f unc t i on gives diameter .
113 % R_f i s r i b − length , so mu l t i p l y
114 % by 0.5
115

116 % Rot . mat r i x p ro j e c t s ray from coord . sys t . w i th z−ax is along medium ’ s
117 % sur face normal to sys t . w i th z−ax is along op t i c a l ax is o f measurement
118 % system .
119 Rx = @( theta_x ) [ 1 , 0 , 0 ; . . .
120 0 , cos ( theta_x ) , −s in ( theta_x ) ; . . .
121 0 , s in ( theta_x ) , cos ( theta_x ) ] ;
122

123

124 %% Construct inverse CDF f o r wavelength se l e c t i on
125 noOfSmpls = 10000;
126 [ invCdf_EyWvl , invCdf_FlWvl ] = findInvCdf_EmWvl ( flEm ,eyEm, wvlArray , noOfSmpls ) ;
127

128 %% Storage f o r how many f l u o r opho r i c abs . events happen
129 maxAbsEvents = 20;
130 noAbsEvents = zeros ( leng th ( h ) , maxAbsEvents +1) ;
131

132 %% Simula t ion
133 % Store r e su l t s
134 r e s u l t s = zeros ( leng th ( h ) , leng th ( wvlArray ) , leng th ( viewAngle ) ) ;
135

136 no = leng th ( h ) ;
137 t i c
138 t i cBy t es ( gcp ) ;
139

140 pa r f o r j j =1:no
141 % set database f o r photons : on ly ray te rm ina t i ng on sensor have a
142 % non−zero energy .
143 hTmp = h ( j j ) ;
144 r_dTmp = r_d ( j j ) ;
145 EatSensor = zeros ( leng th ( wvlArray ) , leng th ( viewAngle ) ) ;
146 noAbsEvPerH = zeros (1 ,maxAbsEvents +1) ;
147 f o r i i =1: repeat_no
148 [ wvlInd , energy , dx , f luorAbsCounter ]= monte_carlo (hTmp, r_dTmp , . . .
149 r_s , wvlLED , invCdf_EyWvl , invCdf_FlWvl , f lAbs , eyAbs ,medAbs , . . .
150 absCoPeakFl , absCoPeakEy , absCoPeakMed , phiEy , ph iF l , re f lType , . . .
151 noOfSmpls , wvl Id , rho ) ;
152

153 i f energy > 0
154

155 f o r kk =1: leng th ( viewAngle )
156 % Pro jec t ray d i r e c t i o n from coord . sys t . w i th z−ax is along
157 % sur face normal to z−ax is normal w i th o p t i c a l ax is
158 % Assume r o t a t i o n symmetric op t i c s == simple round
159 % lenses . . .
160 dxRot = Rx( viewAngle ( kk ) ) * dx . ’ ;
161 i f ( lbAcceptAngle <= −dxRot ( 3 ) ) %D i r ec t i on cosine smal le r
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162 % than smal les t d i r e c t i o n cosine o f acceptance angle
163 EatSensor ( wvlInd , kk ) = EatSensor ( wvlInd , kk )+ energy ;
164 end
165 end
166

167

168 i f f luorAbsCounter <= maxAbsEvents
169 noAbsEvPerH ( f luorAbsCounter +1) = . . .
170 noAbsEvPerH ( f luorAbsCounter +1) + 1 ;
171 end
172 end
173

174 end
175

176 noAbsEvents ( j j , : ) = noAbsEvPerH ;
177 r e s u l t s ( j j , : , : ) = EatSensor ;
178 disp ( [ ’ h = ’ , num2str (hTmp) , ’ i s done . ’ ] )
179 end
180 elapsedTime = toc
181 tocBytes ( gcp ) ;
182

183 %% Export data
184 medAbs = medAbs*absCoPeakMed ;
185 descr = [ ’Rows correspond to h , columns to viewAngle . numSets i s number ’ , . . .
186 ’ o f samples Number o f f l uo rophore abs . events index −1 i s the t rue ’ , . . .
187 ’ number o f events ! ’ ] ;
188 save ( [ pwd , ’ / resultLambertianMC_ForGERIFPart2 . mat ’ ] , ’ viewAngle ’ , . . .
189 ’ h ’ , ’ descr ’ , ’ numApAngle ’ , ’ r e s u l t s ’ , ’ rho ’ , ’medAbs ’ , ’ noAbsEvents ’ , . . .
190 ’ elapsedTime ’ ) ;
191

192 %% Shutdown a f t e r complet ion
193 system ( ’ shutdown −s ’ )

optimizeR_d.m

1 f unc t i on r_d = optimizeR_d ( r_s , Fmin , h ,meshSz)
2 % Obtain the opt ima l domain r i b − leng th as def ined by a cubic element ’ s
3 % smal les t view f a c t o r to the sensor such t ha t the rays i t re leases make a
4 % s i g n i f i c a n t c on t r i b u t i o n to the model output .
5 % INPUTS :
6 % r_s : rad ius o f disk −shaped sensor . Scalar
7 % Fmin : cut − o f f view fac to r , cubic −elements w i th a smal le r view f a c t o r
8 % do not con t r i bu t e mean ing fu l l y to the sensor . Scalar
9 % h : ar ray o f f l u i d he igh ts
10 % meshSz : ar ray o f cubic −element r i b s izes . Same order as h .
11 % OUTPUTS:
12 % r_d : ar ray o f domain r i b − lengths , same order as h
13

14

15 % Test va r i ab l es
16 % r_s = 150e−6;
17 % Fmin = 0 .01 ;
18 % h = [10 ,40 ,100 ,200 ,300 ,400 ,500 ,600]*10^( −6);
19 % meshSz = h / 5 ;
20

21

22

23 %% Checks
24 asser t ( a l l ( s i ze ( h ) == s ize (meshSz ) ) , ’ h and meshSz ar ray dimensions are not equal ’ ) ;
25 asser t ( a l l (0<h ) , ’ h elements must a l l be po s i t i v e ’ ) ;
26 asser t ( i s so r t ed ( h ) , ’ h must be sor ted ’ ) ;
27 asser t ((0 <Fmin)&&(0.5 >Fmin ) , ’ Fmin must be between 0 and 0.5 ’ ) ;
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28 asser t (0< r_s , ’ r_s must be l a r ge r than 0 ’ ) ;
29

30 %% I n i t i a t e op t im i za t i on va r i ab l es
31 %Opt im iza t ion can give NaN f o r too la rge Fmin , s c r i p t takes care o f t h i s
32 %case by max( r_dTmp ) ; d i sab l i ng prevents p o t e n t i a l confus ing e r r o r s
33 opt ions = opt imset ( ’ D isp lay ’ , ’ o f f ’ ) ;
34 r_d = zeros ( s ize ( h ) ) ;
35

36 %% Optimize f o r the domain ’ s r i b − leng th .
37 f o r i i = 1 : leng th ( r_d )
38

39 % For every h there are mu l t i p l e l aye rs o f cubic mesh−elements :
40 % One of these laye rs has the sma l les t view f a c t o r and thus l i m i t s the
41 % domain ’ s s ize .
42 hTmp = ( 1 : h ( i i ) / meshSz( i i ) ) *meshSz( i i ) ;
43 r_dTmp = zeros ( s ize (hTmp ) ) ;
44

45 %Optimize ha l f − r i b leng th o f domain f o r every poss ib le cubic −mesh
46 %element l aye r w i t h i n h
47 f o r j j =1: leng th ( r_dTmp )
48 r_dTmp ( j j )= fze ro (@(a ) optDomSize ( a ,hTmp( j j ) , r_s , Fmin , . . .
49 meshSz( i i ) ) , 5 * r_s+hTmp( j j ) , op t ions ) ;
50 end
51 % 5* r_s +hTmp guarantees a very smal l s t a r t F , then F w i l l mono t i ca l l y
52 % increase to Fmin ; i f i t e x i s t s .
53 % Optmizat ion f unc t i on could have mu l t i p l e minima : some d i r e c t l y under
54 % the sensor disk , t h i s i n i t i a l cond i t i on prevents those from being
55 % picked .
56

57

58 %Pick l a r ges t ha l f − r i b leng th o f a l l cub ic mesh−element l aye rs
59 optR_f = max( r_dTmp ) ;
60

61 asser t ( r_s <optR_f , [ ’ Optimal r_d i s smal le r than r_s f o r h= ’ , . . .
62 num2str ( h ( i i ) ) , ’ check i f Fmin i s too la rge ’ ] ) ;
63

64 r_d ( i i ) = 2*optR_f ; %Times two ! ! ! opt . func . uses ha l f r i b − leng th r_d
65 end
66 end

optDomSize.m

1 f unc t i on f = optDomSize ( r_ f , h_f , r_oAdj , Fmin , meshSz)
2 % Opt im iza t ion f unc t i on t ha t determines i f the view f a c t o r from an cubic
3 % element to the c i r c u l a r sensor i s la rge enough by cons ider ing i t as a
4 % root − f i n d i n g problem where : f = Fcube − Fminimal = 0 .
5 % Only cons iders the d i r e c t r a d i a t i o n from the top , s ides and
6 % f r o n t o f the cubic element . View f a c t o r s der ived from :
7 % New con f i gu r a t i o n f a c t o r between a c i r c l e , a sphere and a d i f f e r e n t i a l area
8 % at random pos i t i o ns .
9 % INPUTS :
10 % r_ f : raw r i b leng th o f rec tangu la r domain wi th square top
11 % h : f l u i d he igh t
12 % r_oAdj : rad ius o f sensor , ad jus ted to be mu l t i p l e o f mesh s ize
13 % Fmin : minimal view f a c t o r requ i red
14 % OUTPUTS:
15 % f : d i f f e r ence between view f a c t o r and des i red view f a c t o r
16 % NOTE r_ f > r_oAdj and h > 0 and r _ f >0 f o r sens ib le r e s u l t s
17

18 %I n i t i a t e u s e f u l l va r i ab l es according to the paper ’ s naming convent ion
19

20 x = 0;
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21 y = h_f −meshSz *0 .5 ;
22 z = 0.5* r_ f −meshSz *0 .5 ;
23 r = r_oAdj ;
24

25 % View fac t o r s
26 Fside = ( 0 . 5 / p i ) * ( atan ( ( r +z ) / y ) + atan ( ( r −z ) / y ) ) + . . .
27 ( y / ( 4 * p i *z ) ) * log ( ( r ^2+y^2+z^2−2* r *z ) / ( r ^2+y^2+z^2+2* r *z ) ) ;
28

29 F f ron t = y*z / ( 2 * ( x^2+z ^ 2 ) ) * . . . .
30 ( ( r ^2+x^2+y^2+z ^2) / sq r t ( ( r ^2+x^2+y^2+z^2)^2−4* r ^2* ( x^2+z ^2) )−1 ) ;
31

32 Ftop = 0.5* (1 −( x^2+y^2+z^2− r ^2) / sq r t ( ( r ^2+y^2+z^2)^2−4* r ^2* ( x^2+z ^ 2 ) ) ) ;
33

34 % Resu l t ing view f a c t o r minus wanted view f a c t o r : −−> i s needed te create
35 % nonl inear , root − f i n d i n g problem where a Newton scheme f i nds f = 0
36 % 1/6 f o r the s i x s ides o f the cube
37 f = ( 1 / 6 ) * ( 2 * Fside+F f r on t +Ftop )−Fmin ;
38

39

40 end

findInvCdf_EmWvl.m

1 f unc t i on [ invCdf_EyWvl , invCdf_FlWvl ] = findInvCdf_EmWvl ( flEm ,eyEm, wvlArray , noOfSmpls )
2 %Find the inverse cumulat ive d i s t r i b u t i o n f unc t i on from the emission
3 %spect ra o f F luoresce in and Eosin Y . Returns a look −up tab le .
4 % noOfSmpls needs to be >> leng th o f wvlArray to prevent b ias a t the t a i l s
5 % of the inv CDF.
6

7 f lEm = normal ize ( flEm , ’ range ’ ) ;
8 eyEm = normal ize (eyEm, ’ range ’ ) ;
9

10 pd fF l = flEm /sum( flEm ) ; % Normalize spect ra
11 pdfEy = eyEm/sum(eyEm ) ;
12

13 % Remove 0 valued measurement a r t i f a c t s r i g h t o f the emission peak .
14 [ ~ , pdfFl_max ] = max( pd fF l ) ; % f i n d peak
15 pdfF l_ rhs = zeros ( s ize ( pd fF l ) ) ; % se lec t i nd i ces r i g h t o f the peak
16 pdfF l_ rhs ( pdfFl_max : end ) = 1 ;
17 pd fF l ( l o g i c a l ( ( pd fF l ==0) .* pdfF l_ rhs ) ) = eps ; % set 0 ’ s to machine p rec i s i on
18

19 [ ~ , pdfEy_max ] = max( pdfEy ) ;
20 pdfEy_rhs = zeros ( s ize ( pdfEy ) ) ;
21 pdfEy_rhs ( pdfEy_max : end ) = 1 ;
22 pdfEy ( l o g i c a l ( ( pdfEy ==0) .* pdfEy_rhs ) ) = eps ;
23

24 % Find Cumulative D i s t r i b u t i o n Funct ions
25 cd fF l = cumtrapz ( pd fF l ) ;
26 cdfEy = cumtrapz ( pdfEy ) ;
27

28

29 % F i r s t se l ec t the ind i ces where the CDF has one−to −one r e l a t i o n to the
30 % wavelengths
31 i nd_F l = f i n d ((0 < cd fF l ) ) ; %Not smal le r than 1 due to round− o f f e r r o r s
32 i nd_F l = [ ind_F l (1) −1 , ind_F l ] ; % Add the ind i ces where F = 0 f o r l a s t t ime ;
33

34 ind_Ey = f i n d ((0 < cdfEy ) ) ;
35 ind_Ey = [ ind_Ey (1) −1 , ind_Ey ] ;
36

37 % Pre−a l l o ca t e i nve r t ed CDF
38 invCdf_FlWvl = zeros (1 , noOfSmpls ) ;
39 invCdf_EyWvl = zeros (1 , noOfSmpls ) ;
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40

41

42 % Create a look −up tab le f o r i nve r t ed CDF
43 f o r i i = 0 : 1 : ( noOfSmpls −1)
44 smplPoint = i i / ( noOfSmpls −1) ; % Linear sampling o f CDF between 0 and 1
45 invCdf_FlWvl ( i i +1) = i n t e rp1 ( cd fF l ( ind_F l ) . ’ , wvlArray ( ind_F l ) . ’ , . . .
46 smplPoint , ’ l i n e a r ’ , wvlArray ( ind_F l ( end ) ) ) ;
47 invCdf_EyWvl ( i i +1) = i n t e rp1 ( cdfEy ( ind_Ey ) . ’ , wvlArray ( ind_Ey ) . ’ , . . .
48 smplPoint , ’ l i n e a r ’ , wvlArray ( ind_Ey ( end ) ) ) ;
49 end
50

51

52 end

monte_carlo.m

1 f unc t i on [ wvlInd , energy , dx , f luorAbsCounter ]= monte_carlo ( h , r_d , r_s , . . .
2 wvlLED , invCdf_EyWvl , invCdf_FlWvl , f lAbs , eyAbs ,medAbs , absCoPeakFl , . . .
3 absCoPeakEy , absCoPeakMed , phi_ey , ph i _ f l , re f lType , noOfSmpls , wvl Id , rho )
4

5

6 % Release LED rays by Uniform sampling o f top o f c y l i n d r i c a l domain
7 t he ta = rand *2* p i ;
8 rad ius = r_d * sq r t ( rand ) ;
9 x0 = [ rad ius *cos ( the ta ) , rad ius * s in ( the ta ) , 0 ] ;
10 % Di rec t o f ray
11 dx = [ 0 , 0 , 1 ] ;
12

13 % Wavelength
14 wvl = wvlLED ;
15 wvl Ind = wv l Id (wvlLED ) ;
16 % F i r s t path − leng th t r a v e l l e d
17 L = f indAbsL ( f lAbs , eyAbs ,medAbs , absCoPeakFl , absCoPeakEy , absCoPeakMed , wvl Ind ) ;
18 a l i v e = t rue ;
19 energy = 1;
20 f luorAbsCounter = 0 ;
21

22 whi le a l i v e
23

24

25 x = x0 +dx*L ;
26

27 i f ( x (3) −h ) > 0 %H i t lower boundary
28

29 [ x0 , dx , L , aliveTmp ] = r e f l e c t i o n ( x0 , dx , L , h , re f lType ) ;
30 i f al iveTmp == 0 %Prevents not c rea t i ng output f o r monte ca r l o func .
31 energy = 0;
32 a l i v e = f a l se ;
33 end
34 energy = energy * rho ( wvl Ind ) ;
35 e l s e i f x (3) <0 % Le f t domain through top boundary
36

37 i f d i s k I n t e r s e c t ( x0 , dx , r_s ) % H i t de tec to r
38 a l i v e = 0;
39 else % Did not h i t de tec to r
40 energy = 0;
41 a l i v e = f a l se ;
42 end
43

44 else % Ray s t i l l i n s i de domain
45

46 % Ray can now ge absorbed fo reve r or re −emi t ted
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47 % F i r s t , whicht dye does the ac tua l absorbing?
48 absByDye = absDyeSelect ( f lAbs , eyAbs ,medAbs , absCoPeakFl , . . .
49 absCoPeakEy , absCoPeakMed , wvl Ind ) ;
50

51 i f absByDye == 2
52 phi = phi_ey ;
53 invCdf_Wvl = invCdf_EyWvl ;
54 f luorAbsCounter = f luorAbsCounter +1;
55 e l s e i f absByDye == 1
56 phi = p h i _ f l ;
57 invCdf_Wvl = invCdf_FlWvl ;
58 f luorAbsCounter = f luorAbsCounter +1;
59 else % abs by medium ; stop s imu la t i on
60 energy = 0;
61 a l i v e = f a l s e ;
62 break
63 end
64

65 i f rand<=phi % Re−Emissions a t d i f f e r e n t wavelength
66 wvl_new = invCdf_Wvl (1+ f l o o r ( rand * ( noOfSmpls − 1 ) ) ) ;
67 energy = energy *wvl / wvl_new ;
68 wvl = wvl_new ;
69 wvl Ind = wv l Id ( wvl ) ;
70 L = f indAbsL ( f lAbs , eyAbs ,medAbs , absCoPeakFl , . . .
71 absCoPeakEy , absCoPeakMed , wvl Ind ) ;
72 x0 = x ;
73 dx = randomAngles ( ) ;
74 else % Absorpt ion / heat −generat ion
75 energy = 0;
76 a l i v e = f a l s e ;
77 end
78

79 end
80

81

82 end

findAbsL.m

1 f unc t i on [ absL ] = f indAbsL ( f lAbs , eyAbs ,medAbs , absCoPeakFl , absCoPeakEy , . . .
2 absCoPeakMed , wvl Ind )
3 % Uses the absorp t ion spect ra o f F luoresce in and Eosin Y to create a
4 % rea l i z a t i o n f o r the path − leng th where a ray i s terminated . The inverse
5 % cumulat ive d i s t r i b u t i o n func t i ons der ived from Beer−Lambert ’ s law
6

7 absL = − log (− rand+1) / ( eyAbs ( wvl Ind )*absCoPeakEy + . . .
8 absCoPeakFl* f lAbs ( wvl Ind )+absCoPeakMed*medAbs( wvl Ind ) ) ;
9

10 end

reflection.m

1 f unc t i on [ x0_new , dx , L_remaining , a l i v e ] = r e f l e c t i o n ( x0 , dx , L , h , re f lType )
2 % Ref lec t s the ray or absorbs i t .
3 % Updates d i r e c t i o n cosines , pos i t i on , and path − leng th o f the ray
4

5

6 L_t rave led = (h−x0 ( 3 ) ) / dx ( 3 ) ;
7 L_remaining = L−L_t rave led ;
8 x0_new = x0+dx* L_t rave led ; %Pos i t i on on lower boundary
9

10 swi tch re f lType
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11 case ’ absorp t ion ’
12 dx = dx ;
13 a l i v e = 0;
14 case ’ lamber t ian ’
15 a l i v e = 1;
16 dx = d i f f u s eRe f l ( ) ; % Uses uni form sampling on a hemispher
17 case ’ specu lar ’
18 a l i v e = 1;
19 dx (3 ) = −dx ( 3 ) ;
20 otherwise
21 warning ( ’Unknown r e f l e c t i o n cond i t i on ’ )
22 end

diffuseRefl.m

1 f unc t i on [ dx ] = d i f f u s eRe f l ( )
2 %% Samples d i r e c t i o n cosines
3 % Cartes ian coord ina te system
4 % Uniform d i s t r i b u t i o n on a hemisphere : i nve r t ed z−ax is
5 % From : Monte Car lo Technique f o r the Determinat ion o f Thermal Rad ia t ion
6 % Shape Factors
7

8 t he ta = as in ( sq r t ( rand ( ) ) ) ;
9 phi = 2.0* p i * rand ( ) ;
10 dx (1 ) = s in ( the ta )* cos ( ph i ) ;
11 dx (2 ) = s in ( the ta )* s in ( ph i ) ;
12 % dx (3 ) = cos ( the ta ) ; % Regular so l u t i o n
13 dx (3 ) = −cos ( the ta ) ; % Coord . system i s up−s ide down
14 end

diskIntersect.m

1 f unc t i on [ cond ] = d i s k I n t e r s e c t ( x0 , dx , r_s )
2 % Checks i f a ray can pass through a d isk i n the xy−plane centered at
3 % (0 ,0 , 0 ) . Method assumes a s t a r t i n g pos i t i o n where x0 (3) >0.
4 t = −x0 ( 3 ) / dx ( 3 ) ;
5

6 i f x0 (3) <0
7 warning ( ’Ray s t a r t ed outs ide o f the f l uo rescen t medium ’ )
8 end
9

10 i f t < 0
11 cond = f a l s e ;
12 % Time i s reversed in t h i s case . . .
13 else
14 cond = ( x0 (1)+ dx (1 ) * t )^2 +( x0 (2)+ dx (2 ) * t )^2 − r_s ^2 <=0;
15 end
16

17

18 end

absDyeSelect.m

1 f unc t i on dyeNo = absDyeSelect ( f lAbs , eyAbs ,medAbs , absCoPeakFl , . . .
2 absCoPeakEy , absCoPeakMed , wvl Ind )
3 % Returns the number o f the dye respons ib le f o r photon absorpt ion , or the
4 % i f the absorp t ion i s done by the medium
5

6 norm = f lAbs ( wvl Ind )* absCoPeakFl+eyAbs ( wvl Ind )*absCoPeakEy . . .
7 +medAbs( wvl Ind )*absCoPeakMed ;
8 p1 = f lAbs ( wvl Ind )* absCoPeakFl / norm ;
9 p2 = eyAbs ( wvl Ind )*absCoPeakEy / norm + p1 ;



82 C. Appendix: Codes

10

11 absEvent = rand ;
12 i f p1 > absEvent
13 dyeNo=1;
14 e l s e i f p2 > absEvent
15 dyeNo=2;
16 else
17 dyeNo=3;
18 end
19

20 end

randomAngles.m

1 f unc t i on [ dx ] = randomAngles ( )
2 %% Samples d i r e c t i o n cosines
3 % Cartes ian coord ina te system
4 % Uniform d i s t r i b u t i o n on un i t −sphere
5 cosTheta = 1.0 − 2.0* rand ;
6 sinTheta = sq r t (1 .0 − cosTheta *cosTheta ) ;
7 phi = 2.0* p i * rand ( ) ;
8 cosPhi = cos ( ph i ) ;
9 i f ( ph i < p i )
10 s inPh i = sq r t ( 1 .0 − cosPhi * cosPhi ) ;
11 else
12 s inPh i = −sq r t (1 .0 − cosPhi * cosPhi ) ;
13 end
14 dx (1 ) = sinTheta * cosPhi ;
15 dx (2 ) = sinTheta * s inPh i ;
16 dx (3 ) = cosTheta ;
17 end

C.2. Derivation Analytic Solution
AnalyticModelSpecular.mlx

1 %% Solve the f l uo rescen t r a d i a t i v e t r a n s f e r equat ion f o r a plane− p a r a l l e l
2 %% medium l y i n g on a m i r r o r
3 % ^z ^ ^−−−−sur face of medium
4 % |mu/ |
5 % |~ / | h
6 % | / ______>x v____mirror
7 %
8 %
9 % mu = cos ( the ta ) : the d i r e c t i o n cosine wi th the z−ax is
10

11

12 c l ea r a l l
13 c l c
14

15 % Setup va r i ab l es
16 syms a_e a_es a_d a_i a_ds h E_0 the ta theta_e q_d q_ i rho_e rho_d rho_ i z Z
17 sym l i s t = [ a_e a_es a_d a_i a_ds h E_0 the ta q_d q_ i rho_e rho_d rho_ i ] ;
18

19 % Help Matlab by app ly ing assumptions : not s t r i c t l y t r ue : see paper f o r
20 % the rea l assumptions
21 assume ( [ a_e a_es a_d a_i a_ds h E_0 the ta theta_e q_d q_ i rho_e rho_d . . .
22 rho_ i z Z ] , { ’ r ea l ’ , ’ p o s i t i v e ’ } )
23 assumeAlso ( the ta >=0 & the ta <=p i ) ;
24 assumeAlso ( h>z ) ;
25 assumeAlso ( ( a_d ) >(a_e ) )
26
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27 %% Define the e x c i t a t i o n i r r a d i a t i o n
28 % Is a co l l ima ted beam
29 % Theta_e i s i n s i de the laye r ! Not angle a t which the laye r i s i n i t i a l l y
30 % h i t −−> remember Snel l ’ s law
31 syms E( z ) % I r r ad i ance of l i g h t source
32

33 % Not t r u l y dependent on theta , but Matlab needs matching inpu t arguments
34 % when combining func t i ons
35 E_E( z , the ta ) = E_0*exp(−a_e * ( h−z ) ) + rho_e *E_0*exp(−a_e * ( h+z ) )
36

37

38

39 %% Solve f o r d i r e c t f l uo rescen t radiance
40 % The par t t ha t i s d i r e c t l y caused by the co l l ima ted beam of e x c i t a t i o n l i g h t
41 % inc i den t on the medium .
42

43 % De f i n i t i o n s
44 syms L_d ( z , the ta ) % D i rec t radiance
45 dL_d = d i f f ( L_d , z ) ; % Der i va t i ve
46 syms L_d_g L_d_p_down ( z , the ta ) % I n t e g r a t i n g f a c t o r method par ts
47 syms L_d_p_up ( z , the ta ) mu_d Cd_d Cd_u
48

49

50 % D i f f e r e n t i a l equat ion
51 eqnL_d = cos ( the ta )* dL_d == −(a_d )*L_d+multByTerm (E_E, q_d*a_es / ( 4 * p i ) ) ;
52

53 % Find general s o l u t i o n f i r s t
54 % In t eg r a t i n g f a c t o r
55 mu_d( z , the ta )= exp ( a_d*z / cos ( the ta ) ) ;
56 % Parameter from i n t . f a c t . method
57 Q_d( z , the ta ) = multByTerm (E_E, q_d*a_es / ( 4 * p i *cos ( the ta ) ) ) ;
58 % General s o l u t i o n
59 L_d_g = sum( s imp l i f y ( i n t ( symCel l2arr ( ch i l d r en (Q_d ) ) *mu_d, z ) / mu_d ) ) ;
60

61 % Find p a r t i c u l a r so l u t i o n i n downward d i r e c t i o n
62 Cd_d = multByTerm ( L_d_g (h , the ta ) , −mu_d(h , the ta ) ) ; % I n t constant down
63 L_d_p_down = L_d_g + multByTerm (Cd_d , 1 /mu_d ) ; % Pa r t i c u l a r so l u t i o n
64

65 % Find p a r t i c u l a r so l u t i o n i n upward d i r e c t i o n
66 Cd_u = multByTerm ( subs ( subs ( L_d_p_down , cos ( the ta ) , − cos ( the ta ) ) , z , 0 ) , . . .
67 rho_d ) − subs ( L_d_g , z , 0 ) ; % I n t constant up
68 L_d_p_up = L_d_g + multByTerm (Cd_u , 1 /mu_d)
69

70 % Check so l u t i o n by subs i t u t i o n i n the d i f f e r e n t i a l equat ion
71 % s imp l i f y ( subs ( lhs ( eqnL_d ) , L_d , L_d_p_up)−subs ( rhs ( eqnL_d ) , L_d , L_d_p_up ) )
72

73

74 %% Solve f o r the i n d i r e c t f l uo rescen t radiance : d e f i n i t i o n s
75 % I n i t i a l i z e
76 syms L_i ( z , the ta ) % I n d i r e c t radiance
77 dL_i = d i f f ( L_i , z ) ; % Der i va t i ve
78 syms L_i_g L_i_p_down ( z , the ta ) % I n t e g r a t i n g f a c t o r method par ts
79 syms L_i_p_up ( z , the ta ) mu_i Ci_d Ci_u
80 syms S_t S % Source term
81

82 % D i f f e r e n t i a l equat ion
83 eqnL_i = cos ( the ta )* dL_i == −( a_ i )* L_i+S_t ;
84

85 %% Solve f o r the i n d i r e c t f l uo rescen t radiance : source term
86

87 %% DOWNWARD TERMS: solve d i f f e r e n t l y f o r exp . term con ta in ing cos , and w i thou t
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88 tmpIntegrands = symCel l2arr ( ch i l d r en ( L_d_p_down ) ) ;
89

90 % Note mu l t i p l i c a t i o n : from so l i d angle i n t e g r a l
91 tmpNoCos = 1/2* i n t ( tmpIntegrands (3 ) * s in ( the ta ) , theta , p i / 2 , p i ) + . . .
92 ch i l d r en (1 /2* i n t ( tmpIntegrands (1 ) * s in ( the ta ) , theta , p i / 2 , p i ) , 2 ) ;
93 tmpWithCos = [ sourceTermInt ( tmpIntegrands ( 2 ) , theta , ” down ” , ” noCombine ” ) , . . .
94 sourceTermInt ( tmpIntegrands ( 4 ) , theta , ” down ” , ” noCombine ” ) ] ;
95 S_down = multByTerm (sum( tmpNoCos ) + sum( tmpWithCos ) , q_ i *a_ds ) ;
96

97 %% UPWARD TERMS: solve d i f f e r e n t l y f o r exp . term con ta in ing cos , w i thou t
98 tmpIntegrands = symCel l2arr ( ch i l d r en ( L_d_p_up ) ) ;
99

100 % Note on mu l t i p l i c a t i o n wi th constant : from so l i d angle i n t e g r a l
101 % Selec t Cauchy ’ s P r i n c i p a l Value so l u t i o n
102 tmpNoCos = 1/2* i n t ( tmpIntegrands (1 ) * s in ( the ta ) , theta ,0 , p i / 2 ) + . . .
103 ch i l d r en (1 /2* i n t ( tmpIntegrands (3 ) * s in ( the ta ) , theta ,0 , p i / 2 ) , 2 ) ;
104

105

106

107 tmpWithCos = tmpIntegrands ( [ 2 , 4 : 8 ] ) ;
108 f o r i i = 1 : leng th ( tmpWithCos )
109 tmpWithCos ( i i ) =sourceTermInt ( tmpWithCos ( i i ) , theta , ” up ” , ” noCombine ” ) ;
110 end
111

112 S_up = multByTerm (sum( tmpNoCos ) + sum( tmpWithCos ) , q_ i *a_ds ) ;
113

114 %% FINAL RESULT
115 S = S_up + S_down ;
116

117 %% Solve f o r the i n d i r e c t f l uo rescen t radiance : so l u t i ons
118

119 % Find general s o l u t i o n f i r s t : s t a r t w i th i n t e g r a t i n g f a c t o r
120 mu_i = exp ( a_ i *z / cos ( the ta ) ) ;
121

122 % Sp l i t −up i n log par t s and the more d i f f i c u l t E1 par t s .
123 tmpIntegrands = symCel l2arr ( ch i l d r en (S ) ) *mu_i / cos ( the ta ) ;
124 tmpLog = tmpIntegrands ( has ( tmpIntegrands , ’ log ’ ) ) ;
125 tmpNoLog = tmpIntegrands (~has ( tmpIntegrands , ’ log ’ ) ) ;
126

127 f o r i i = 1 : leng th ( tmpLog ) % A l l log con ta in ing in tegrands
128 tmpLog ( i i ) = combine ( c o l l e c t ( i n t ( tmpLog ( i i ) , z ) , { ’E_0 ’ , ’ a_ds ’ , ’ a_es ’ , . . .
129 ’ q_d ’ , ’ q_ i ’ , ’ rho_e ’ } ) / mu_i , ’ exp ’ ) ;
130 end
131

132

133 warning ( ’ o f f ’ , ’ symbol ic : so lve : Solut ionsDependOnCondit ions ’ ) ;
134 f o r i i = 1 : leng th ( tmpNoLog ) % A l l o ther terms
135 tmpNoLog ( i i ) = in tE iExp2 ( tmpNoLog ( i i ) , z , h ) / mu_i ;
136 end
137 warning ( ’ on ’ , ’ symbol ic : so lve : Solut ionsDependOnCondit ions ’ ) ;
138

139 %% General s o l u t i o n
140

141

142 L_i_g = sum( tmpLog ) + sum( tmpNoLog ) ;
143

144 L_i_g = l i m i t ( L_i_g , a_i , 0 , ’ r i g h t ’ )
145 mu_i = 1 ;
146

147 % Find p a r t i c u l a r so l u t i o n i n downward d i r e c t i o n
148 Ci_d = − multByTerm ( l i m i t ( L_i_g , z , h , ” l e f t ” ) , subs (mu_i , z , h ) ) ;
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149 L_i_p_down = L_i_g + multByTerm ( Ci_d , 1 / mu_i ) ;
150

151 % Find p a r t i c u l a r so l u t i o n i n upward d i r e c t i o n
152 Ci_u = multByTerm ( l i m i t ( subs ( L_i_p_down , cos ( the ta ) , − cos ( the ta ) ) , z , 0 , . . .
153 ’ r i g h t ’ ) , rho_ i ) − l i m i t ( L_i_g , z , 0 , ’ r i g h t ’ ) ; % I n t constant up
154 L_i_p_up = L_i_g + multByTerm ( Ci_u , 1 /mu_i ) ;
155

156 % Check so l u t i o n by subs i t u t i o n i n the d i f f e r e n t i a l equat ion
157 s imp l i f y ( subs ( lhs ( eqnL_i ) , L_i , L_i_p_up )−subs ( rhs ( eqnL_i ) , [ L_i , S_t ] , . . .
158 [ L_i_p_up ,S ] ) )
159

160 %% L im i t cases f o r z = h ; l i m i t case f o r zero i n d i r e c t absorp t ion
161 % The radiance at the top o f the l aye r
162 L_i_p_up_at_h = l i m i t ( L_i_p_up , z , h , ” l e f t ” ) ;
163 L_d_p_up_at_h = l i m i t ( L_d_p_up , z , h , ” l e f t ” ) ;
164 L_i_p_up_at_h_0a_i = l i m i t ( L_i_p_up_at_h , a_i , 0 , ’ r i g h t ’ ) ;
165

166 %% Some ex t ra l i m i t s f o r the general s o l u t i o n
167 % L_i_g_h = l i m i t ( L_i_g , z , h , ” l e f t ” )
168 % L_i_g_0 = l i m i t ( L_i_g , z , 0 , ” r i g h t ” )
169

170 %% Create numeric matlab func t i ons
171 syms nu % Prevent repeated ca l c u l a t i o n o f cos ( the ta ) by pre− ca l c u l a t i n g i t
172

173 matlabFunct ion ( subs ( L_d_p_up_at_h , cos ( the ta ) , nu ) , ’ F i l e ’ , ’ L_directSpec ’ , . . .
174 ’ Vars ’ , { theta , nu , h , a_e a_es a_d E_0 q_d rho_e rho_d } , ’ Optimize ’ , t r ue ) ;
175 matlabFunct ion ( subs ( L_i_p_up_at_h , cos ( the ta ) , nu ) , ’ F i l e ’ , ’ L_ ind i rec tSpec ’ , . . .
176 ’ Vars ’ , { theta , nu , h , a_e a_es a_d a_i a_ds E_0 q_d q_ i rho_e rho_d . . .
177 rho_ i } , ’ Opt imize ’ , t r ue ) ;
178 matlabFunct ion ( subs ( L_i_p_up_at_h_0a_i , cos ( the ta ) , nu ) , ’ F i l e ’ , . . .
179 ’ L_ indi rectSpecNo_a_i ’ , ’ Vars ’ , { theta , nu , h , a_e a_es a_d a_ds E_0 q_d . . .
180 q_i rho_e rho_d rho_ i } , ’ Opt imize ’ , t r ue ) ;
181

182 %% This pa r t was used to create formulas t ha t are easy to parse to LaTeX
183 % L_i = l i m i t ( L_ i_gensol_theta , z , h , ’ l e f t ’ )
184 % L_ iP r t = symCel l2arr ( ch i l d r en ( L_i_g_h ) )
185 % E1prt = sum( L_ iP r t ( has ( L_ iPr t , ’ e i ’ ) ) )
186 % E1prt = c o l l e c t ( E1prt , ’ e i ’ )
187 % E1pr tCh i ld = symCel l2arr ( ch i l d r en ( E1prt ) )
188 % Logpr t = sum( L_ iP r t (~has ( L_ iPr t , ’ e i ’ ) ) )
189 % Logpr t = c o l l e c t ( Logprt , ’ log ’ )
190 % symCel l2arr ( ch i l d r en ( Logpr t ) )
191 % mu = exp ( ( a_ i )* z / cos ( the ta ) )
192 % ( s imp l i f y ( subs ( E1pr tCh i ld ( 8 ) , [ E_0 , a_ds , a_es , q_i , q_d , ] , [ 1 , 1 , 1 , 1 , 1 ] ) ) )

multByTerm.m

1 f unc t i on g = multByTerm ( f , c )
2 % S imp l i f i e s the mu l t i p l i c a t i o n o f a se r i es by a constant term :
3 % Mu l t i p l i e s each term i n d i v i d u a l l y ins tead of the en t i r e se r i es
4 % Keeps the equat ion simple to process and re −arrange .
5 g = sum( symCel l2arr ( ch i l d r en ( f ) ) * c ) ;
6 end

symCell2arr.m

1 f unc t i on [ a r r ] = symCel l2arr ( c e l l )
2 %The ch i l d r en f unc t i on re tu rns a ce l l −array , yet sym . too lbox .
3 %func t i ons expect ar rays . . .
4 % Wr i t ten by P ie t e r Lok : 28−12−2021
5

6 a r r = sym( zeros ( s ize ( c e l l ) ) ) ;
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7

8 f o r i i =1: leng th ( c e l l )
9 a r r ( i i )= c e l l { i i } ;
10 end
11

12 end

getExpPow.m

1 f unc t i on pow = getExpPow ( exp )
2 % Obtain the power o f an exponent ia l f unc t i on
3 pow = s imp l i f y ( log ( findSymType ( exp , ’ exp ’ ) ) , . . .
4 ’ I gno reAna l y t i cCons t r a i n t s ’ , t r ue ) ;
5 end

sourceTermInt.m

1 f unc t i on S in t = sourceTermInt ( s , theta , hemisphere , outputForm )
2 % Symbo l i ca l l y eva luate the source term i n t e g r a l s t ha t inc lude cosine
3 % terms in the exponent ia l − f unc t i on argument
4 % s the in tegrand : symbol ic type
5 % hemisphere : ” up ” or ”down ” , the pa r t o f the hemisphere to i n t eg r a t e over ;
6 % def ined by x such t ha t up i s C [0 , p i / 2 ] and down i s C [ p i / 2 , p i ]
7 % S the i n t e g r a l o f s : symbol ic type
8 % outputForm : i f ” combine ” , in tegrand s w i l l be output w i th a share
9 % denominator
10

11 %% Define i n t e g r a t i o n va r i ab l e and i t ’ s i n t . boundaries
12 syms x0 x1 x u v w
13 x = the ta ;
14 i f hemisphere == ” up ”
15 x0 = sym ( 0 ) ; x1 = sym( p i / 2 ) ;
16 e l s e i f hemisphere == ”down”
17 x0 = sym( p i / 2 ) ; x1 = sym( p i ) ;
18 else
19 warning ( ’ Se lec t a proper hemisphere to i n t eg r a t e over : ” up ” or ”down” ’ )
20 end
21

22 %% s imp l i f y in tegrand i n t o constant and re l evan t pa r t s :
23 % assumes a l l source have denominator o f the f o l l ow i ng form 4* p i * ( f ( cos ( x ) ) )
24 s = expand ( s ) ; %Expand exponent ia ls
25 expTerms = findSymType ( s , ’ exp ’ ) ;
26 cosArgIdx = has ( expTerms , ’ cos ’ ) ;
27

28 sExpNonCos = subs ( s , expTerms , ones ( s ize ( expTerms ) ) ) ;
29 sExpNonCos = sExpNonCos*combine ( prod ( expTerms(~ cosArgIdx ) ) , ’ exp ’ ) ;
30 [ num, den ] = numden( sExpNonCos ) ;
31

32 % par t o f in tegrand outs ide the i n t e g r a l : 2 p i
33 % from i n t e g r a t i o n over the az imutha l angle
34 sConst = num/ 2 ;
35 % integrand not moved outs ide of i n t e g r a l
36 s I n t = s imp l i f y ( combine ( prod ( expTerms ( cosArgIdx ) ) , ’ exp ’ ) ) / ( s imp l i f y ( den ) ) ;
37

38

39 %% Solve the in tegrand
40 S in t = i n t ( s I n t * s in ( x ) , x , x0 , x1 , ’ Hold ’ , t r ue ) ;
41 S in t = cIVWrapper ( change In teg ra t ionVar iab le ( Sin t , cos ( x ) , v ) ) ;
42 S in t = cIVWrapper ( change In teg ra t ionVar iab le ( Sin t , v , 1 / u ) ) ;
43 % Pa r t i a l f r a c t i o n s o f the in tegrand and conver t to sym array
44 Sin tFrac = symCel l2arr ( ch i l d r en ( pa r t f r a c ( ch i l d r en ( Sin t , 1 ) , u ) ) ) ;
45 x0 = ch i l d r en ( Sin t , 3 ) ; x1 = ch i l d r en ( Sin t , 4 ) ;
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46

47

48 Sint_1 = i n t ( S in tFrac ( 1 ) , u , x0 , x1 , ’ Hold ’ , t r ue ) ;
49 Sint_2 = i n t ( S in tFrac ( 2 ) , u , x0 , x1 , ’ Hold ’ , t r ue ) ;
50

51 % Solve f i r s t f r a c t i o n
52 Sint_1Pow = getExpPow ( Sin tFrac ( 1 ) ) ;
53 Sint_1 = cIVWrapper ( change In teg ra t ionVar iab le ( Sint_1 , u , −w*u / Sint_1Pow ) ) ;
54

55

56 signPow = not ( has ( expand ( Sint_1 ) , −w ) ) ;
57

58 % Create a proper exp i n t eg ra l f unc t i on : i n t ( exp(−v ) / v ) _x0 ^x1
59 i f signPow == 1
60 Sint_1 = cIVWrapper ( change In teg ra t ionVar iab le ( Sint_1 ,w, −v ) ) ;
61 end
62

63

64 Sint_1 = re lease ( Sint_1 ) ;
65

66 % Solve second f r a c t i o n
67 Sint_2Pow = getExpPow ( Sin tFrac ( 2 ) ) ;
68 Sint_2 = cIVWrapper ( change In teg ra t ionVar iab le ( Sint_2 , u , −w*u / Sint_2Pow ) ) ;
69 [ ~ , den ] = numden( ch i l d r en ( Sint_2 , 1 ) ) ;
70 den = symCel l2arr ( ch i l d r en ( den ) ) ;
71 eq = v == den ( has ( den ,w ) ) ;
72 wIsEqToVFunc = solve ( eq ,w ) ;
73 Sint_2 = cIVWrapper ( change In teg ra t ionVar iab le ( Sint_2 ,w, wIsEqToVFunc ) ) ;
74

75 signPow = not ( has ( expand ( Sint_2 ) , − v ) ) ;
76

77 % Create a proper exp i n t eg ra l f unc t i on : i n t ( exp(−v ) / v ) _x0 ^x1
78 i f signPow == 1
79 Sint_2 = cIVWrapper ( change In teg ra t ionVar iab le ( Sint_2 , v , −w ) ) ;
80 end
81

82 Sint_2 = re lease ( Sint_2 ) ;
83

84

85 %% Clean−up and combine par t s o f the i n t e g r a l
86 % In some edge−cases , MATLAB does not recognize t ha t assumptions on
87 % symbol ic va r i ab l es are met , and as such creates a piecewise f unc t i on .
88 % Selec t the r i g h t exp in t con ta in ing term
89 i f hasSymType ( Sint_1 , ’ p iecewise ’ )
90 tmp = symCel l2arr ( ch i l d r en ( Sint_1 ) ) ;
91 Sint_1 = tmp (hasSymType ( tmp , ’ e i ’ ) ) ;
92 end
93

94 % In some edge−cases , MATLAB does not recognize t ha t assumptions on
95 % symbol ic va r i ab l es are met , and as such creates a piecewise f unc t i on .
96 % Selec t the r i g h t exp in t con ta in ing term
97 i f hasSymType ( Sint_2 , ’ p iecewise ’ )
98 tmp = symCel l2arr ( ch i l d r en ( Sint_2 ) ) ;
99 Sint_2 = tmp (hasSymType ( tmp , ’ e i ’ ) ) ;
100 end
101

102

103

104 i f outputForm == ” combine ”
105 S in t = pa r t f r a c ( sConst * ( s imp l i f y ( Sint_1 )+ s imp l i f y ( Sint_2 ) ) ) ;
106 else
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107 S in t = sConst* s imp l i f y ( Sint_1 )+ sConst* s imp l i f y ( Sint_2 ) ;
108 end
109

110

111 end

cIVWrapper.m

1 f unc t i on g = cIVWrapper ( f )
2 % The change In teg ra t ionVar iab le f unc t i on can re tu rn i n t e g r a l s where the
3 % lower l i m i t o f i n t e r g r a t i o n i s l a r ge r than the upper l i m i t . This poses a
4 % problem by repeated c a l l s to the same func t i on , as i t expects the reverse
5 % of i n t e g r a t i o n l i m i t s .
6 ar = ch i l d r en ( f ) ; % arguments o f the unevaluated i n t e g r a l
7

8

9 % Check i f lower i n t . l i m i t >> upper i n t . l i m i t
10 % I f so , swap , as Mupad Engine assumes the reverse
11 i f ar { 3 } > ar { 4 }
12 g = i n t ( − ar { 1 } , ar { 2 } , ar { 4 } , ar { 3 } , ’ hold ’ , t r ue ) ;
13 else
14 g = i n t ( ar { 1 } , ar { 2 } , ar { 3 } , ar { 4 } , ’ hold ’ , t r ue ) ;
15 end
16

17 i f ar { 3 } == i n f
18 g = i n t ( − ar { 1 } , ar { 2 } , ar { 4 } , ar { 3 } , ’ hold ’ , t r ue ) ;
19 end
20

21 i f ar { 4 } == − i n f
22 g = i n t ( − ar { 1 } , ar { 2 } , ar { 4 } , ar { 3 } , ’ hold ’ , t r ue ) ;
23 end
24 end

intEiExp2.m

1 f unc t i on [ F ] = in tE iExp2 ( f , x , c )
2 %Evaluate i n d e f i n i t e i n t e g r a l s w i th in tegrands of the f o l l ow i ng form :
3 % f = exp(+−au ) exp in t ( bu ) w i th a and b rea l and pos i t i v e :
4 % Use i d e n t i t i e s from Ge l l e r and Ng (1969)
5 % Assumes tha t exp . i n t . arguments can be fac to red such t ha t
6 % exp in t ( d * ( e*c−/+x ) ) w i th d , e constants and c i s a va r i ab l e t ha t
7 % l i n e a r l y t r a n s l a t e x .
8

9

10 syms u
11

12 %Sp l i t f up i n constants , and exponents and exponent ia l i n t e g r a l s
13 fCh i l d = symCel l2arr ( ch i l d r en ( f ) ) ;
14 fExpEiPar t = prod ( fCh i l d ( has ( fCh i l d , ’ exp ’ ) ) ) * fCh i l d ( has ( fCh i l d , ’ e i ’ ) ) ;
15 fConstPar t = prod ( fCh i l d (~has ( fCh i l d , ’ exp ’ )&~has ( fCh i l d , ’ e i ’ ) ) ) ;
16

17

18

19 % Sp l i t exp . and exp . i n t . pa r t f u r t h e r
20 expTerm = findSymType ( fExpEiPart , ’ exp ’ ) ;
21 eiTerm = findSymType ( fExpEiPart , ’ e i ’ ) ;
22

23 % Sometimes , negat ive s ign o f constant pa r t gets put i n t o the exp . and
24 % exp i n t . con ta in ing par t s . I t w i l l then be l o s t a f t e r the c a l l to
25 % func t i on ” i n t E i E xp I d en t i t y ” . Add i t back a f t e r t h i s func t i on − c a l l .
26 s ign = subs ( fExpEiPart , [ expTerm , eiTerm ] , [ ones ( s ize ( expTerm ) ) , 1 ] ) ;
27
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28 %Simp l i f y e i arguments to t h i s form d * ( e*c−/+x )
29 eiArg = ch i l d r en ( findSymType ( eiTerm , ’ e i ’ ) , 2 ) ;
30 eiArgSimp = s imp l i f y ( c o l l e c t ( expand ( e iArg ) , [ x , c ] ) ) ;
31 fExpEiPar t = subs ( fExpEiPart , eiArg , eiArgSimp ) ;
32

33 %Change of va r i ab l es u = ( e*c−/+x ) to create the form exp in t ( bu )
34 e iArgPar ts = symCel l2arr ( ch i l d r en ( eiArgSimp ) ) ;
35 eiArgXPart = e iArgPar ts ( has ( e iArgPar ts , x ) ) ;
36 eq = u == eiArgXPart ;
37 xSubs = ( so lve ( eq , x , ’ I gno reAna l y t i cCons t ra i n t s ’ , t r ue ) ) ;
38 expTerm = subs ( expTerm , x , xSubs ) ;
39 eiTerm = subs ( eiTerm , [ eiArgXPart , x ] , [ u , xSubs ] ) ;
40

41 %Rewri te exponents i n par t s t ha t do−and−do−not con ta in a u−dependence
42 expTermParts = symCel l2arr ( ch i l d r en ( expand ( prod ( expTerm ) ) ) ) ;
43

44 i f l eng th ( expTermParts ) ==1 %In case only s i ng l e exp . term ava i l ab l e
45 expTermParts = expTerm ; %the f o l l ow i ng l i n e s would have re turned
46 end %the exponent ’ s argument and not the
47 %exponents themsel f
48 expTermsNoU = s imp l i f y ( combine ( prod ( expTermParts ( not ( has ( . . .
49 expTermParts , u ) ) ) ) , ’ exp ’ ) ) ;
50 expTermsU = combine ( prod ( expTermParts ( ( has ( expTermParts , u ) ) ) ) , ’ exp ’ ) ;
51

52 in tTerm = d i f f ( eiArgXPart , x )* i n t E i E xp I d en t i t y ( expTermsU , eiTerm , u ) ;
53

54 % Subs i tu te u back i n .
55 % Not ice the d i f f : t h i s i s the reason : d ( h−x ) / dx =−1; f o r proo f t ha t a l t e na t i v e
56 % iden t i y works , uncomment f o l l ow i ng l i n e s .
57 % syms a b x h
58 % y ( x ) = −(1/a ) * ( exp in t ( ( a+b ) * ( h−x )) − exp(−a * ( h−x ) ) * exp in t ( b * ( h−x ) ) )
59 % d i f f ( y ( x ) , x )
60

61 F = s imp l i f y ( combine ( fConstPar t * s ign *subs (expTermsNoU* intTerm , . . .
62 u , eiArgXPart ) , ’ exp ’ ) ) ;
63

64 end

intEiExpIdentity.m

1 f unc t i on g = i n t E i E x p I d en t i t y ( expTerm , eiTerm , x )
2 % Uses the f o l l ow i ng i d e n t i t y
3 % i n t exp(+−a*x ) exp in t ( bx ) dx = −+1/a * ( exp in t (( −+a+b )* x)−exp(+−a*x )* exp in t ( b*x ) )
4 % wi th a , b>0. Note f o r a>b , and the exp ( ax ) i d e n t i t y , the so l u t i o n w i l l blow−up
5 % even tua l l y when x grows and have an imaginary pa r t .
6 %
7 syms a b
8

9 % Assemble exp terms
10 expTerm = combine ( expTerm , ’ exp ’ ) ;
11

12 % Find c o e f f i c i e n t s ; and cast to a p r e t t y form
13 a = −expand ( subs ( ch i l d r en ( expTerm , 1 ) , x , 1 ) , ’ A r i thmet i cOn ly ’ , t r ue ) ;
14 %I d e n t i t y assumes exp(−a*x ) ,
15 % but f unc t i on i npu t i s o f ” exp ( c*x)− form ”
16

17 b = expand ( subs ( ch i l d r en ( eiTerm , 2 ) , x , 1 ) , ’ A r i thmet i cOn ly ’ , t r ue ) ;
18

19 % Apply i d e n t i t y
20 g = s imp l i f y ( 1 / a ) . . .
21 * ( exp in t ( x * ( a+b )) − exp(−x*a ) . . .
22 * exp in t ( x*b ) ) ;
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23

24 end

C.3. Analytic Model, Numerical Implementation
The analytic solutions’ numerical functions are not given in this manuscript.

createAnalyticSpectraSpec.m

1 c l ea r a l l
2 c lose a l l
3 c l c
4

5 % Gives ana l y t i c so l u t i o n f o r the f l uo rescen t r a d i a t i v e t r ans f e r e
6 % equat ion on a m i r r o r .
7

8

9 %% I n i t i a l i z e model
10 nameResults = ’ \ analyticWedgeMeasurement ’ ;
11 % Define system and impor t spec t ra l −data
12 hp = 6.62607e−34; %Planck ’ s const .
13 v l = 299792458; %Speed of l i g h t
14 % molar concen t ra t ions ; e x c i t a t i o n i r r ad i ance ; quantum y i e l d s
15 cF l = 0.5*0.25e−3;
16 cEy = 0.5*0.25e−3;
17 E_0 = 1;
18 ph iF l = 0 .85 ; % From Fluorescence Proper t i es o f Twenty F luoresce in De r i va t i ves :
19 phiEy = 0 . 2 ; %
20

21

22 % Import spec t r a l data
23 f i l ePa thSpec t r a = [ ’C : \ Users \ p lok \ Google Dr ive \ Uni \ Master \ S c r i p t i e ’ , . . .
24 ’ \ Matlab \ SpectrumTool \ Resul ts \ dataMasterSet . mat ’ ] ;
25

26

27 % Absorpt ion coe f f . peaks [m^ −1]
28 absCoPeakFl = 76.0e5* cF l ;
29 %From : Spect rophotometr ic ana l ys i s o f sodium f l uo r esce i n aqueous so l u t i ons .
30 %Determinat ion o f molar absorp t ion c o e f f i c i e n t
31

32 absCoPeakEy = 1.2*1.2*11.6e6*cEy ;
33 %From : Data on eosin Y so l u t i ons f o r laser −induced
34 % fluorescence in water f lows : i t shows something c lose to or above 1e7
35 % A l t e r n a t i v e : pH−Dependence of the absorp t ion and f l uo rescen t p rope r t i e s
36 % of f l uo rone dyes i n aqueos so l u t i ons . Shows something c lose to to 2.2e7
37

38 % set −up dye spec t r a l absorp t ion and r e f l e c t i v i t y p rope r t i e s
39 data = open ( f i l ePa thSpec t r a ) ;
40 wvlArray = data . wavelengths ;
41

42 % Exc i t a t i o n wvl [m]
43 wvlLED = 450e−9;
44

45 % Tranmission spectrum of f i l t e r , f i b r e and coup l ing lenses : Normalized to 1 .
46 T = data . F i l t e rT ransm iss i on ;
47

48 % Spectrometer s e n s i t i v i t y
49 specSens = normal ize ( data . LampSpectrum , ’ range ’ ) . . .
50 . / normal ize ( data . LampReferenceSpectrum , ’ range ’ ) ;
51 specSens = smoothdata ( specSens , ’ gaussian ’ , 15 ) ;
52

53 % Absorpt ion == Exc i t a t i o n spectrum of f l u o r esce i n and eosin
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54 eyAbs = absCoPeakEy * ( normal ize ( data . eosinYAbsWater , ’ range ’ ) ) ;
55 f lAbs = absCoPeakFl * ( normal ize ( data . FluoresceinAbsWater , ’ range ’ ) ) ;
56

57 % Eosin emissions . F i l t e r , T , s l i g h t l y bleeds i n t o eyEm, cannot be removed
58 eyEm = data . eosinYEmWater . / ( specSens ) ;
59 eyEm( isnan (eyEm) ) = 0 ;
60 eyEm = normal ize (eyEm, ’ range ’ ) ;
61 eyEm = eyEm/sum(eyEm ) ;
62

63 % Fluoresce in Em. F i l t e r , T , s l i g h t l y bleeds i n t o flEm , cannot be removed
64 f lEm = data . FluoresceinEmWater . / ( specSens ) ;
65 f lEm ( isnan ( flEm ) ) = 0 ;
66 f lEm = normal ize ( flEm , ’ range ’ ) ;
67 f lEm = flEm /sum( flEm ) ;
68

69 % Mi r ro r
70 rho_ar r = data . M i r ro rCoat ing ;
71

72 % Sh i f t spec :
73 eyEm = c i r c s h i f t (eyEm, −18) ; % −18 se l f −measured . s l i g h t l y red− sh i f t e d due to t h i c k l aye r .
74 eyAbs = c i r c s h i f t ( eyAbs , 0 ) ; % 2 according to l i t e r a t u r e ; se l f −measured
75 f lEm = c i r c s h i f t ( flEm , 1 ) ; % 1 according to l i t e r a t u r e ; have some doubts
76 f lAbs = c i r c s h i f t ( f lAbs , 0 ) ; % 2 according to l i t e t e r a t u r e ; se l f −measured
77

78 % Absorpt ion o f e x c i t a t i o n l i g h t
79 l ed Idx = 142;
80 a_1e = f lAbs ( l ed Idx ) ;
81 a_2e = eyAbs ( l ed Idx ) ;
82

83 % Path co r r e c t i on leng th f o r e x c i t a t i o n l i g h t coming i n a t an angle
84 % h_e f f e c t i v e = h / cos ( the ta )
85 co r r = 1 / cos ( deg2rad ( 2 0 ) ) ;
86

87 % Medium absorp t ion
88 medAbs = zeros ( s ize ( f lAbs ) ) ;
89 a_f = medAbs ;
90 a_fe= a_f ( l ed Idx ) ;
91

92 % Re f l e c t i v i t y
93 rho_e = rho_ar r ( l ed Idx ) ;
94

95 h = [20 ,500 ,900 ,2000]*1e−6;
96 h = [20 ,100 ,200 ,300 ,400 ,500 ,600 ,700 ,800 ,900 ,1000 ,2000]*1e−6
97 h = [20 ,100 ,200 ,300 ,400 ,500 ,600 ,700 ,800 ,900 ,1000]*1e−6
98

99 viewAngle = [ 0 , 1 / 8 , 1 / 4 , 3 / 8 ] * p i ;
100 viewAngle = [0 , deg2rad ( 3 2 ) ] ; % For measurement setup wi th camera
101 viewAngle = 0;
102 %% Find so l u t i o n
103 noOfH = leng th ( h ) ;
104 noOfviewAng = leng th ( viewAngle ) ;
105 spect rumAnaly t ic = zeros ( noOfH , leng th ( wvlArray ) , noOfviewAng ) ;
106

107 nu = cos ( viewAngle ) ; % pre−ca l cu l a t e d i r e c t i n cosine f o r speed−up
108 t i c
109

110 % par f o r kk = 1:noOfH %Code can be pa r a l l i z e d f o r each d i f f e r e n t h
111 f o r kk = 1:noOfH
112 f o r j j = 1 : noOfviewAng
113 %% Di rec t Photon Radiance : r e s u l t s o f e x c i t a t i o n l i g h t
114
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115 % Fluoresce in
116 spectrumLdFl = zeros ( s ize ( wvlArray ) ) ;
117 f o r i i = 1 : leng th ( wvlArray )
118 i nc rLd = L_directSpec ( nu ( j j ) , h ( kk ) , co r r * . . .
119 ( a_1e+a_2e+a_fe ) , a_1e , f lAbs ( i i )+eyAbs ( i i )+ a_f ( i i ) , . . .
120 E_0 , ph iF l * f lEm ( i i ) , rho_e , rho_ar r ( i i ) ) ;
121

122 spectrumLdFl ( i i ) = inc rLd ;
123 end
124

125

126 % Eosin
127 spectrumLdEy = zeros ( s ize ( wvlArray ) ) ;
128 f o r i i = 1 : leng th ( wvlArray )
129 i nc rLd = L_directSpec ( nu ( j j ) , h ( kk ) , co r r * . . .
130 ( a_1e+a_2e+a_fe ) , a_2e , f lAbs ( i i )+eyAbs ( i i )+ a_f ( i i ) , . . .
131 E_0 , phiEy *eyEm( i i ) , rho_e , rho_ar r ( i i ) ) ;
132

133 spectrumLdEy ( i i ) = inc rLd ;
134 end
135

136

137 %% In d i r e c t Photon Radiance : r e s u l t s o f dye re −absorp t ion re −emission l i g h t
138 spec t rumL iF l toF l = zeros ( s ize ( wvlArray ) ) ;
139 spec t rumL iF l toF l = specInd ( nu ( j j ) , h ( kk ) , wvlArray , . . .
140 co r r * ( a_1e+a_2e+a_fe ) , a_1e , f lAbs+eyAbs+a_f , f lAbs , . . .
141 E_0 , ph iF l , ph iF l , flEm , flEm , rho_e , rho_ar r ) ;
142

143 spect rumLiEytoFl = zeros ( s ize ( wvlArray ) ) ;
144 spect rumLiEytoFl = specInd ( nu ( j j ) , h ( kk ) , wvlArray , . . .
145 co r r * ( a_1e+a_2e+a_fe ) , a_2e , f lAbs+eyAbs+a_f , f lAbs , . . .
146 E_0 , phiEy , ph iF l , eyEm, flEm , rho_e , rho_ar r ) ;
147

148 spectrumLiEytoEy = zeros ( s ize ( wvlArray ) ) ;
149 spectrumLiEytoEy = specInd ( nu ( j j ) , h ( kk ) , wvlArray , . . .
150 co r r * ( a_1e+a_2e+a_fe ) , a_2e , f lAbs+eyAbs+a_f , eyAbs , . . .
151 E_0 , phiEy , phiEy ,eyEm,eyEm, rho_e , rho_ar r ) ;
152

153 spect rumLiFl toEy = zeros ( s ize ( wvlArray ) ) ;
154 spect rumLiFl toEy = specInd ( nu ( j j ) , h ( kk ) , wvlArray , . . .
155 co r r * ( a_1e+a_2e+a_fe ) , a_1e , f lAbs+eyAbs+a_f , eyAbs , . . .
156 E_0 , ph iF l , phiEy , flEm ,eyEm, rho_e , rho_ar r ) ;
157

158

159 %% Sum f l uo r esce i n and eosin spect ra : change from photon to energy domain
160 spect rumAnaly t ic ( kk , : , j j ) = r ea l ( spectrumLdFl + spectrumLdEy + . . .
161 ( spect rumLiF l toEy+spec t rumL iF l toF l+spect rumLiEytoFl + . . .
162 spectrumLiEytoEy ) ) ;
163 % *hp* v l . / wvlArray ; %Convert to energy domain
164 end
165 end
166

167 elapsedTime = toc ;
168

169

170 %% Export data
171 medAbs = a_f ;
172 descr = ’Rows correspond to h , columns to viewAngle . ’ ;
173 save ( [ pwd , nameResults , ’ . mat ’ ] , . . .
174 ’ viewAngle ’ , ’ spect rumAnaly t ic ’ , ’ h ’ , ’ descr ’ , ’ rho_ar r ’ , ’medAbs ’ , ’ cF l ’ , . . .
175 ’ cEy ’ , ’ ph iF l ’ , ’ phiEy ’ , ’ absCoPeakFl ’ , ’ absCoPeakEy ’ , ’ wvlLED ’ , ’ elapsedTime ’ ) ;
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specInd.m

1 f unc t i on spec = specInd ( nu , h , wvlArray , . . .
2 a_e , a_es , a_arr , a_ds , E_0 , q_d , q_i , . . .
3 dEm, iEm , rho_e , rho_ar r )
4 % Calcu la te the i n d i r e c t radiance con t r i b u t i o n o f a s p e c i f i c f l uo rophore i ,
5 % as caused by the r ad i a t i o n o f f l uo rophore d .
6 %
7 % INPUTS
8 % nu viewing angle , d i r e c t i on −cosine
9 % h medium th ickness
10 % wvlArray a l l wavelengths which are o f i n t e r e s t
11 % a_e t o t a l absorp t ion c o e f f i c i e n t (m^−1) seen by e x c i t a t i o n source
12 % a_es t h i s f l uo rophore d ’ s absorp t ion c o e f f i c i e n t f o r the e x c i t a t i o n source
13 % a_arr the combined medium ’ s and a l l f luorophores ’ absorp t ion
14 % a_ds t h i s i s f l uo rophore i ’ s absorp t ion c o e f f i c i e n t f o r a l l wavelengths
15 % E_0 ex c i t a t i o n source ’ s i r r a d i a t i o n a t the top of the medium
16 % q_d f luo rophore d ’ s quantum y i e l d
17 % q_i f l uo rophore i ’ s quantum y i e l d
18 % dEm f luo rophore d ’ s emission spectrum ; curve area normal ized to equal 1
19 % iEm f luo rophore i ’ s emission spectrum ; curve area normal ized to equal 1
20 % rho_e spe c i f i c r e f l e c t i v i t y c o e f f i c i e n t f o r e x c i t a t i o n i r r ad i ance
21 % rho_ar r r e f l e c t i v i t y a t a l l wavelengths
22 %
23 % OUTPUT
24 % Photon radiance spectrum of f l uo rohpore i , as caused by e x c i t a t i o n from
25 % f luo rophore d .
26

27 % I n i t i a t e spectrum
28 spec = zeros ( s ize ( wvlArray ) ) ;
29

30 % Find−out where t o t a l absorp t ion i s low or high
31 i dx = f i n d ( a_arr >= (0.001*max( a_arr ) ) ) ;
32 % idx = f i n d ( a_arr >= (1e−6*max( a_arr ) ) ) ; % For L_ i nd i r e c t t e s t ; Abs1 i s
33 % very high
34 idxLim_a_i0 = f i n d ( a_arr < (0.001*max( a_arr ) ) ) ;
35 % idxLim_a_i0 = f i n d ( a_arr < (1e−6*max( a_arr ) ) ) ; % For L_ i nd i r e c t t e s t
36

37

38 % Estab l i sh spectrum wavelength by wavelength
39 f o r i i = 1 : leng th ( i dx )
40 i d = idx ( i i ) ;
41 i n c rL = zeros ( s ize ( wvlArray ) ) ;
42

43 %Con t r i bu t i on o f dye d emission at wavelength x to dye i emissions
44 %at wavelength y .
45

46 % At st rong absorbing wavelengths
47 i n c rL ( idx ) = L_ ind i rec tSpec ( nu , h , a_e , a_es , . . .
48 a_arr ( i d ) , a_arr ( i dx ) , a_ds ( i d ) , E_0 , . . .
49 q_d*dEm( i d ) , q_ i * iEm ( idx ) , rho_e , . . .
50 rho_ar r ( i d ) , rho_ar r ( i dx ) ) ;
51

52 % At weak absorbing wavelengths
53 i n c rL ( idxLim_a_i0 ) = L_indi rectSpecNo_a_i ( nu , h , a_e , a_es , . . .
54 a_arr ( i d ) , a_ds ( i d ) , E_0 , . . .
55 q_d*dEm( i d ) , q_ i * iEm ( idxLim_a_i0 ) , rho_e , . . .
56 rho_ar r ( i d ) , rho_ar r ( idxLim_a_i0 ) ) ;
57

58 % Denominator term can become zero f o r ce r t a i n absorp t ion and
59 % d i r e c t i on −cosine combinat ions ; r e j e c t and accept smal l
60 % underes t imat ion e r r o r
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61 i n c rL ( isnan ( i nc rL ) ) = 0 ;
62 i n c rL ( i s i n f ( i n c rL ) ) = 0 ;
63 spec = spec + inc rL ;
64

65 end
66 end

C.4. Plot Ratio and Spectrums
PlotRatioAnalyticModels.m

1 c l ea r a l l
2 c lose a l l
3 c l c
4

5 %% Setup and get data
6 dirName = ’C : \ Users \ p lok \ Google Dr ive \ Uni \ Master \ S c r i p t i e \ Matlab \ ModelResults ’
7 load ( f u l l f i l e ( dirName , ’ / ana ly t icWedgeMir ror I r rad iance20deg . mat ’ ) ) ;
8 nameTEX = ’ Ra t ioL igh t0 . tex ’
9 re f lCond = ’ specular ’ ;
10

11

12 % Import spec t r a l data
13 load ( ’C : \ Users \ p lok \ Google Dr ive \ Uni \ Master \ S c r i p t i e \ Matlab \ SpectrumTool \ Resul ts \ dataMasterSet . mat ’ ) ;
14

15 % Setup f i l t e r wavebands
16 wv lF i l t e r 520 = [510 :0 .5 :528 ]*1e−9;
17 wv lF i l t e r 532 = [523 .5 : 0 . 5 : 539 .5 ] *1e−9;
18

19 % Setup f i l t e r t r a n sm i s s i v i t i e s : obta ined from manufacturer
20 % resample them at the wavelengths a t which the ana l y t i c so l u t i o n was
21 % ca lcu la ted
22 f i l t 5 3 2 = f l i p l r ( [0 .49829 ,1.04171 ,2.25468 ,5.12734 ,11.42873 ,24.0103 ,43.13596 , . . .
23 64.73587 ,81.45908 ,90.69869 ,94.42489 ,96.19921 ,96.80226 ,97.20901 ,96.93609 ,. . .
24 96.46327 ,96.1847 ,96.84495 ,96.72127 ,97.54354 ,97.35931 ,97.34093 ,96.93386 ,. . .
25 94.63559 ,87.4587 ,72.30578 ,51.08831 ,29.84005 ,14.84017 ,6.59942 ,2.8578 , . . .
26 1.2435 ,0 .58176]*0.01) ;
27

28 f i l t 5 2 0 = f l i p l r ( [0 .64469 ,2.97201 ,13.53116 ,39.34839 ,71.00861 ,91.15532 , . . .
29 97.07044 ,97.2268 ,96.89224 ,97.10666 ,97.12119 ,95.92615 ,87.51147 , . . .
30 62.82768 ,30.72126 ,9.35444 ,1.94364 ,0.42044 ,0.11291]*0.01) ;
31 f i l t 5 2 0 = i n t e rp1 ( f i l t 5 2 0 , l i nspace (1 , leng th ( f i l t 5 2 0 ) , leng th ( wv lF i l t e r 520 ) ) ) ;
32

33 wv lF i l t e r 520_ i dx = wvlToIdx ( wv lF i l t e r520 , wavelengths ) ;
34 wv lF i l t e r 532_ i dx = wvlToIdx ( wv lF i l t e r532 , wavelengths ) ;
35

36 Camera = camera_pl_d795Green ;
37

38 %% Bui ld r a t i o
39 [ H_f , ViewAngle ] = meshgrid ( h , viewAngle ) ;
40 Rat io = zeros ( s ize ( H_f ) ) ;
41

42 cam520 = Camera ( wv lF i l t e r 520_ i dx ) . * wavelengths ( wv lF i l t e r 520_ i dx ) ;
43 cam532 = Camera ( wv lF i l t e r 532_ i dx ) . * wavelengths ( wv lF i l t e r 532_ i dx ) ;
44

45 f o r i i = 1 : leng th ( h )
46 f o r j j = 1 : leng th ( viewAngle )
47 Rat io ( j j , i i ) = sum( spect rumAnaly t ic ( i i , wv lF i l t e r520_ idx , j j ) . . .
48 . * cam520 . * f i l t 5 2 0 . / wavelengths ( wv lF i l t e r 520_ i dx ) ) . . .
49 / sum( spect rumAnaly t ic ( i i , wv lF i l t e r532_ idx , j j ) . . .
50 . * cam532 . * f i l t 5 3 2 . / wavelengths ( wv lF i l t e r 532_ i dx ) ) ;
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51 end
52 end
53

54 %% Plo t Setup
55 % Defau l t s
56 width = 5; % Width i n inches
57 he igh t = 3 ; % Height i n inches
58 alw = 0 .75 ; % AxesLineWidth
59 f sz = 10; % Fonts ize
60 lw = 1 . 5 ; % LineWidth
61 msz = 8; % MarkerSize
62

63 %% Plo t Rat io o f the radiances versus h and viewing angle
64 f i g u r e (1 )
65 pos = get ( gcf , ’ Pos i t i on ’ ) ;
66 set ( gca , ’ FontSize ’ , fsz , ’ LineWidth ’ , alw ) ; %<− Set p rope r t i e s
67 set ( gcf , ’ Pos i t i on ’ , [ pos (1 ) pos (2 ) width *100 , he igh t *100 ] ) ; %<− Set s ize
68 su r f ( H_f*1e6 , ViewAngle , Ratio , ’ FaceColor ’ , ’ none ’ ) , hold on
69 ax is t i g h t
70 view (70 ,30)
71 x l im ( [ 0 , h ( end )*1e6 ] )
72 x l abe l ( ’ $h$ / \ s i { \ micro \ meter } ’ )
73 y l abe l ( ’ $ \ the ta$ / \ s i { rad } ’ )
74 z l abe l ( ” Rat io o f Camera ’ s Gray Levels ” )
75 t i t l e ( ” Pred ic ted Measurement Response f o r ERLIF method ” )
76 % Here we preserve the s ize o f the image when we save i t .
77 set ( gcf , ’ Inver tHardcopy ’ , ’ on ’ ) ;
78 set ( gcf , ’ PaperUnits ’ , ’ inches ’ ) ;
79 %% Export to LATEX
80 c l ean f i gu re ;
81 mat lab2 t i kz (nameTEX, ’ width ’ , ’ \ fw i d t h ’ , . . .
82 ’ he igh t ’ , ’ \ f h e i gh t ’ , . . .
83 ’ i n te rp re tT ickLabe lsAsTex ’ , t rue , . . .
84 ’ pa rseSt r ings ’ , fa l se , ’ showWarnings ’ , f a l s e ) ;

wvlToIdx.m

1 f unc t i on [ wv l Idx ] = wvlToIdx ( wvl , wvlArray )
2

3 %Convert from wavelength to index of wvl a r ray
4 wvl_c1 = leng th ( wvlArray ) −1; wvl_c2 = wvlArray ( 1 ) ; wvl_c3 = wvlArray ( end)−wvlArray ( 1 ) ;
5 wvl Idx = round (1 + wvl_c1 * ( wvl −wvl_c2 ) / wvl_c3 ) ;
6

7 end

PlotSpectraCompareAnalyticAndMeasurement.m

1 c l ea r a l l
2 c lose a l l
3 c l c
4

5

6 % Name of f i g u r e
7 nameTEX = ’ spectrums_meas_analyt ic_view0_irr20deg . tex ’ ;
8

9

10 %% Compensation f o r spectrometer s e n s i t i v i t y , and f i l t e r and f i b r e t ransmiss ion
11 f i l ePa thSpec t r a = ’C : \ Users \ p lok \ Google Dr ive \ Uni \ Master \ S c r i p t i e \ Matlab \ SpectrumTool \ Resul ts \ dataMasterSet . mat ’ ;
12 data = open ( f i l ePa thSpec t r a ) ;
13

14 % Wavelengths ana l y t i c
15 wv lAna l y t i c = data . wavelengths *1e9 ;
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16

17 % Tranmission spectrum of f i l t e r , f i b r e and coup l ing lenses : Normalized to 1 .
18 T = data . F i l t e rT ransm iss i on ;
19

20 % Spectrometer s e n s i t i v i t y
21 spectroSens = normal ize ( data . LampSpectrum , ’ range ’ ) . . .
22 . / normal ize ( data . LampReferenceSpectrum , ’ range ’ ) ;
23 spectroSens = smoothdata ( spectroSens , ’ gaussian ’ , 15 ) ;
24

25 %% Import Measurement Data
26 % F i l e names f o r measurements
27 bounds = [1444 , 2454] ;
28 dirName = ’C : \ Users \ p lok \ Google Dr ive \ Uni \ Master \ S c r i p t i e \ SpectroMetingen \ Metingen ’ ;
29

30 f i l e s = { ” h500Light20Fibre0 . t x t ” , . . .
31 ” h900Light20Fibre0 . t x t ” , . . .
32 ” h2000Light20Fibre0M3 . t x t ” } ;
33 % f i l e s = { ” h500Light45Fibre0 . t x t ” , . . .
34 % ” h900Light45Fibre0 . t x t ” , . . .
35 % ” h2000Light45Fibre0M3 . t x t ” } ;
36

37 % f i l e s = { ” h500Light20Fibre45 . t x t ” , . . .
38 % ” h900Light20Fibre45 . t x t ” , . . .
39 % ” h2000Light20Fibre45 . t x t ” }
40 %
41 % f i l e s = { ” h500Light45Fibre45 . t x t ” , . . .
42 % ” h900Light45Fibre45 . t x t ” , . . .
43 % ” h2000Light45Fibre45 . t x t ” }
44

45

46 % Obtain measured data : wavelenghts and specs .
47 wvlMeasure = zeros ( leng th ( f i l e s ) , bounds (2) −bounds (1 ) + 1 ) ;
48 specMeasure = zeros ( leng th ( f i l e s ) , bounds (2) −bounds (1 ) + 1 ) ;
49

50 f o r i i = 1 : leng th ( f i l e s )
51 [ tmpWvl , tmpSpec ] = getSpec ( f i l e s { i i } , dirName , bounds ) ;
52 wvlMeasure ( i i , : ) = tmpWvl ;
53 % Compensate f o r spectrometer s e n s i t i v i t y
54 specMeasure ( i i , : ) = normal ize ( tmpSpec . / . . .
55 i n t e r p1 ( wv lAna ly t i c , spectroSens , tmpWvl ) , ’ range ’ ) ;
56 end
57 c l ea r tmpWvl tmpSpec
58

59

60

61 %% Obtain ana l y t i c data : wavelenghts and specs .
62 % Ana l y t i c r e s u l t s
63 dirName = ’C : \ Users \ p lok \ Google Dr ive \ Uni \ Master \ S c r i p t i e \ Matlab \ ModelResults ’ ;
64 load ( f u l l f i l e ( dirName , ’ / analy t icMeasurementContro l I r rad iance20deg . mat ’ ) ) ;
65

66 % load ( f u l l f i l e ( dirName , ’ / analy t icMeasurementContro l I r rad iance45deg . mat ’ ) ) ;
67 % Spectrum ana l y t i c : compensate f o r f i b r e and f i l t e r t ransmiss ion
68 % specAna ly t i c = normal ize ( spect rumAnaly t ic ( 2 : 4 , : , 1 ) . *T . * spectroSens , 2 , ’ range ’ ) ;
69 specAna ly t i c = normal ize ( spect rumAnaly t ic ( 2 : 4 , : , 1 ) . *T,2 , ’ range ’ ) ;
70 hPlo t = h ( 2 : 4 ) ;
71

72

73

74 %% Plo t Setup
75 % Defau l t s
76 width = 6; % Width i n inches
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77 he igh t = 3 ; % Height i n inches
78 alw = 0 .75 ; % AxesLineWidth
79 f sz = 10; % Fonts ize
80 lw = 1 . 5 ; % LineWidth
81 msz = 8; % MarkerSize
82 co lour = { ’ #0072BD ’ , ’ #77AC30 ’ , ’ #4DBEEE ’ } ;
83

84 %% Plo t spectrogram
85 f i g u r e (2 )
86 pos = get ( gcf , ’ Pos i t i on ’ ) ;
87 set ( gca , ’ FontSize ’ , fsz , ’ LineWidth ’ , alw ) ; %<− Set p rope r t i e s
88 set ( gcf , ’ Pos i t i on ’ , [ pos (1 ) pos (2 ) width *100 , he igh t *100 ] ) ; %<− Set s ize
89 e r r o r = zeros (3 , leng th ( wv lAna l y t i c ) ) ;
90 f o r i i = 1:3
91 p l o t ( wv lAna ly t i c , specAna ly t i c ( i i , : ) , ’ L ineS ty le ’ , ’ −− ’ , ’ Color ’ , . . .
92 co lour { i i } , ’ L ineWidth ’ , lw ) , hold on
93 p l o t ( wvlMeasure ( i i , : ) , specMeasure ( i i , : ) , ’ L ineSty le ’ , ’ − ’ , ’ Color ’ , . . .
94 co lour { i i } , ’ L ineWidth ’ , lw )
95 % f i n d d i f f e r ences between measured and analysed
96 % resampSpecMeasure = i n t e rp1 ( wvlMeasure ( i i , : ) , specMeasure ( i i , : ) , wv lAna l y t i c ) ;
97 % er r o r ( i i , : ) = resampSpecMeasure . / specAna ly t i c ( i i , : ) ;
98 end
99 ax is t i g h t
100 y l im ( [ 0 . 0 1 , 1 ] )
101 x l abe l ( ’ $ \ lambda$ / \ s i { \ nano \ meter } ’ )
102 y l abe l ( { ’ Normalized Photon radiance / − ’ } )
103 y t i c k l a b e l s ( { } )
104 legend ( ’ Ana l y t i c $h=500$ \ s i { \ micro \ meter } ’ , ’ Measurement . . . ’ , . . .
105 ’ Ana l y t i c $h=900$ \ s i { \ micro \ meter } ’ , ’ Measurement . . . ’ , . . .
106 ’ Ana l y t i c $h=2000$ \ s i { \ micro \ meter } ’ , ’ Measurement . . . ’ )
107 legend ( ’ boxo f f ’ )
108

109

110 % Here we preserve the s ize o f the image when we save i t .
111 set ( gcf , ’ Inver tHardcopy ’ , ’ on ’ ) ;
112 set ( gcf , ’ PaperUnits ’ , ’ inches ’ ) ;
113

114 %% Export to LaTeX
115 c l ean f i gu re ;
116 mat lab2 t i kz (nameTEX, ’ width ’ , ’ \ fw i d t h ’ , . . .
117 ’ he igh t ’ , ’ \ f h e i gh t ’ , . . .
118 ’ i n te rp re tT ickLabe lsAsTex ’ , t rue , . . .
119 ’ pa rseSt r ings ’ , fa l se , ’ showWarnings ’ , f a l s e ) ;
120

121 %% Funct ion to get wvl and spec from measurement f i l e
122

123 f unc t i on [ wvl , spec ] = getSpec ( fi leName , dirName , bounds )
124 % Get Data
125 f i l e = fopen ( f u l l f i l e ( dirName , ’ / ’ , f i leName ) , ’ r ’ ) ;
126 Datac = tex tscan ( f i l e , ’%f %f ’ , ’ De l im i t e r ’ , ’ ’ , ’ HeaderLines ’ , 1 7 , . . .
127 ’ CommentStyle ’ , ’ >>>>> ’ , ’ Co l lec tOutpu t ’ , 1 ) ;
128 data = Datac { 1 } ;
129 f c l o se ( f i l e ) ;
130

131 % Ext rac t wavelengths and process spectrum
132 i d l = bounds ( 1 ) ;
133 idu = bounds ( 2 ) ;
134 dataSel= data ( i d l : idu , : ) ;
135 wind = 15;
136 spec = normal ize ( smoothdata ( dataSel ( : , 2 ) , ’ gaussian ’ , wind ) , ’ range ’ ) ;
137 wvl = dataSel ( : , 1 ) ;
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138 end

C.5. Create Dataset
Datasets are the spectrums of the dyes and measurement setup components.

ResampleDataSets.m

1 %% resample created datasets == spectrum
2 % Resample a l l datasets a t spec i f i ed wavelengths , and safe the resampled datasets i n
3 % one masterset f o r l a t e r use .
4 c l ea r a l l
5 wavelengths = (380 :0 .5 :750)*1e−9;
6 da taSe tL i s t = d i r ( ’ * * / DataSets / * . mat ’ ) ;
7

8

9 f i leName = f u l l f i l e (pwd , ’ Resul ts ’ , ’ dataMasterSet ’ ) ;
10 save ( fi leName , ’ wavelengths ’ ) ;
11

12

13 f o r i i = 1 : leng th ( da taSe tL i s t )
14 f ieldName = erase ( da taSe tL i s t ( i i ) . name, ’ . mat ’ ) ;
15 loadedDataSet = load ( f u l l f i l e (pwd , ’ DataSets ’ , f ieldName ) ) ;
16 oldWaveLengths = loadedDataSet . ( char ( f ie ldnames ( loadedDataSet ) ) ) ( : , 1 ) ;
17 i f 1e−6 < max( oldWaveLengths )
18 oldWaveLengths = oldWaveLengths *1e−9; %Some old data i s i n nm, not m
19 end
20 s i gna l = loadedDataSet . ( char ( f ie ldnames ( loadedDataSet ) ) ) ( : , 2 ) ;
21 ass ign in ( ’ base ’ , f ieldName , i n t e r p1 ( oldWaveLengths , s igna l , wavelengths , ’makima ’ , 0 ) ) ;
22 save ( fi leName , fieldName , ’−append ’ )
23 end
24

25 save ( f u l l f i l e (pwd , ’ Resul ts ’ , ’ dataMasterSet . mat ’ ) , ’ dataMasterSet ’ ) ;

csv2DataSet.m

1 %% 26/05/2021 create a dataset from an csv f i l e
2 % Many f luo rophore spect ra are ava i l ab l e f o r download in the form of a csv .
3 % Here , a csv f i l e i s reworked and saved to a mat f i l e . Raw datasets must
4 % have . t x t f i l e type
5

6 da taSe tL i s t = d i r ( ’ * * / rawCsvDatasets / * ’ ) ;
7

8

9 %%
10 f o r i i = 1 : leng th ( da taSe tL i s t )
11 i f da taSe tL i s t ( i i ) . bytes >= 1
12 f ieldName = erase ( da taSe tL i s t ( i i ) . name, ’ . t x t ’ ) ;
13 f ieldName ( i s s t r p r o p ( fieldName , ’ alphanum ’ )==0) = [ ] ; %clean up names
14 dataSet = load ( f u l l f i l e (pwd , ’ rawCsvDataSets ’ , da taSe tL i s t ( i i ) . name ) ) ; %lazy programming and va r i ab l e name choosing
15 save ( f u l l f i l e (pwd , ’ DataSets ’ , f ieldName ) , ’ dataSet ’ ) ;
16 end
17 end
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