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ABSTRACT

The kinetics of the vapor motion due to arbitrary
strong evaporation/condensation from an infinite,plane inter-
phase boundary are studied using a moment method of the Mott -
Smith, Liu-Lees type. Detailed calculations are performed for
the case of net evaporation assuming a vapor of Maxwell mole-

cules.

An equivalence is shown to exist between the vapor
motion and the gas flow effusing from a perforated wall. Simple
transformation rules are established so that experimental in-
formation on evaporation can be obtained from measurements

performed in effusive flow fields.

The theoretical and experimental results are compared

with existing analytical, numerical and Monte Carlo results.
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1. INTRODUCTION

The problem of vapor motion close to liquid-gas or
solid-gas interphase boundaries has received considerable at-
tention recently due to its increasing importance in various
fields of engineering, including physics and vacuum technology.
Applications are very diversified and include such areas as
the sodium cooling of nuclear reactors, the extreme evaporation
from metal surfaces exposed to high intensity laser radiation,
space contamination problems and the problem of small, but
often important, reactions on spacecrafts produced by the eva-
poration into empty space of material from adhesive joints or
other components of the vehicle. The problem has also a certain
interest to meteorology, because the growth and decay of water
droplets are largely governed by the evaporation and condensa-
tion from the droplet surface. In addition, the problem of eva-
poration and condensation has intrinsic theoretical interest,
because the description of the vapor motion must be based on
kinetic theory for a general Knudsen layer in which all the
gas dynamic variables: density, velocity and temperature under-

go significant changes.

No analytical results covering a wide range of flow
conditions seem to be available, due to well-known difficulties
in solving non-linear kinetic equations, and even the case of
weak evaporation into a background of the same gas is only
partly adequately represented by the results that have been

derived so far.

Some approximate results have been obtained by Hertz
(Ref. 1) and Knudsen (Ref. 2) who computed the evaporated or
condensed mass flux based on equilibrium considerations. The
evaporation was represented by a half-range Maxwellian with
parameters np and TL,SO that np would be the density correspondingy
to phase equilibrium at the temperature TL, and the condensing
mass flux was similarly computed from a downstream stationary

Maxwellian with slightly different density and temperature




n_ and Tm, respectively. In this way the so-called Hertz-

Knudsen formula

RT
ﬁl:nL/mL(ﬁ_*% ) (1)

A
kﬂ>
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i
=
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=

(An = n. - n_, AT

for the net evaporated mass flux was derived. Generally, the

change in temperature is neglected and the formula then reads
| / RT

. _ L

m = (nL n_) o (2)

In either of the two versions above, the Hertz-Knudsen formula

is found to underestimate the mass flux by a factor of 2,
principally because the convective motion in the downstream

vapor flow was neglected.

This fact was realized and correctd by Schrage (Ref.
3) and by Kucherov and Rikenglas (Ref. 4), who introduced a .
bulk velocity in the downstream Maxwellian when computing the
flux of upstream directed vapor molecules. However, they
neglected collisional effects in the Knudsen layer and, more
importantly, they gave no way of relating the downstream bulk
velocity to the known parameters in the problem. The Schrage
formula (Section 6) therefore became empirical in nature, re-
quiring measured values of the downstream vapor velocity. In
addition, the fact that the quantities An and AT are coupled
through the finite velocity flow field created in the vapor is

missing in this approach.

The coupling between the downstream variables,and
their correct relation to the conditions at the interphase
boundary,can only be affected by the dynamic equations governing
the vapor motion arbitrarily close to that boundary, and so must
be an outcome of the Boltzmann equation, or of suitable approxi-

mations to that equation. Shankar and Marble (Ref. 5) derived



moment equations from the Boltzmann equation for the problem,
using a Lin-Lees distribution function (Ref. 6), and considered
the linearized,unsteady version of these equations. In the
steady state 1imit they obtained mass fluxes that were rather
close to the Hertz-Knudsen predictions. Patton and Springer
(Ref. 7) on the other hand, obtained results that were twice
the Hertz-Knudsen mass flux by a similar linearized analysis

of the evaporation and condensation between two parallel plates.

In addition, there have been a number of papers
dealing with the problem.of weak evaporation into a background
of a different gas where the kinetic corrections to the external
macroscopic gradients can be computed from linearized Boltzmann

or BGK-equations (Refs. 8, 9 and Refs. 10, 11, 12, respectively).

The limiting case of strong evaporation into vacuum
has been treated by Anisimov (Ref. 13) and by Luikov et al.
(Ref. 14) for a plane interface boundary, and by Edwards and
Collins (Ref. 15) for a spherical interphase boundary with a

radius that is large compared to a mean free path in the flow.

Numerical results for arbitrarily strong evaporation
have been obtained by Kogan and Makasev (Ref. 16) who solved
the non-linear BGK equation for the steady state problem, and
by Murakami (Ref. 17) and by Murakami and Oshima (Ref. 18),
who made Monte Carlo simulations of the transient vapor motion
following a sudden change in the phase equilibrium at a variety
of flow conditions. In addition, Yen (Refs. 19, 20) has obtained
numerical solutions to the non-linear Boltzmann and BGK equa-
tions for the evaporation and condensation between two parallel

plates, also at a wide range of non-equilibrium flow conditions.

The present study is intended to give a simple kinetic
theory description of vapor motion for arbitrary strong evapo-
ration- or condensation rates at the interphase boundary. Only
steady state situations will be considered and only the case of

net evaporation is treated in detail. A moment method that




combines the features of the Mott-Smith (Ref. 21) and the Liu-

Lees (Ref. 6) methods is used along with the assumption that

the vapor may be represented as an ideal gas of Maxwell molecules.

The important coupling between the gas dynamic varia-

bles in the downstream flow is described by the conservation
equations, and it is shown that there is only one free driving
parameter in the problem, for instance, the pressure parameter
2, = pL/pw. The other downstream quantities n_, u and T are
unique functions of this parameter, and they are obtained by

solving the non-linear conservation equations for the problem.
The non-equilibrium contribution to the backscattering of mo-
lecules into the phase boundary and hence the net mass flux,

is obtained from the same solution - also as a function of Zy -

Under conditions of weak, or moderately strong eva-

poration, the equations may be linearized and a simple, improved

version of the Hertz-Knudsen formula is obtained, showing ex-
plicitly the effects of convective motion and non-equilibrium
backscattering on the mass flux. The resulting mass flux is
approximately twice the value predicted by the simple Hertz-

Knudsen theory.

It is shown that the maximum value of the mass flux
occurs at sonic downstream conditions, and that a steady state
cannot exist at these conditions.This last result is not only
an outcome of the non-linear collision term of the Ei—moment
equation, but also the Boltzmann H-theorem is shown to be
violated for steady state, supersonic flow conditions. The
present analytical results are in good agreement with Kogan's
(Ref. 16) numerical solution of the non-linear BGK equation
and with Murakami's Monte Carlo simulation (Refs. 17,18), for

the vapor motion in a similar physical system.

In the last section of this note we discuss a simple

analogy with the related problem of molecular effusion from a

perforated wall, for which theoretical and experimental results




have been previously obtained by the author (Refs.22,23,24,30).
Simple transformation rules are established, whereby all the
results from the effusion problem can be directly transformed
into equivalent results for the kinetics of the vapor motion at ar-
bitrarily strong evaporation rates.It is of particular interest
to note that the transformation applies equally well to expe-
rimental and theoretical quantities, thus suggesting that ex-
perimental information on the vapor motion can be extracted

from measurements in the physically simpler system of effusive
flow. This has provided comparison of some of the theoretical
results with experimental quantities, such as backscattered flux
at the phase boundary and the speed ratio in the downstream
equilibrium flow, over a wide range of conditions. Conclusions
can therefore be drawn as to the validity of the present method,
as well as other methods discussed in this note, in describing

flows that are driven by arbitrary strong evaporation.




2. STEADY STATE EVAPORATION AND

CONDENSATION PROBLEM

We consider the steady state limit of the following
one dimensional time-dependent problem : a liquid (or solid)
is initially in equilibrium with its pure vapor occupying the
half space, x > O, at the uniform temperature and pressure Ty
and pg, respectively. At the time t = 0O, the surface temperature
of the condensed phase changes discontinuously to the value
TL and is kept constant at this value throughout the procedure.
Then, evaporation or condensation begins through the phase
boundary according to some specific relation among T, DPg,» TL

and Pp» where Py is the vapor saturation pressure at tempera-

ture TL.

Let us further assume that, far downstream of the
phase boundary, there is an idealized, flat sink or source for
the vapor, that can instantaneously match the mass flow created.
Then it is reasonable to assume that, after a time sufficiently
long for transients to have died out or to have propagated
through the system, a steady state will be accomplished in
which the flow far from the phase boundary is a uniform equi-
librium flow with constant parameters n_, u_ and T (Fig. 1).
These are the downstream gas dynamic variables in the problem,
with values depending upon the conditions at the phase boundary.
A kinetic boundary layer will then form between the phase boun-
dary and the downstream equilibrium region, in which non equi-
librium effects may significantly influence the motion of the
vapor. It is the kinetics of the vapor in this layer and in
the asymptotiec downstream state that will be pursued here;
other phenomena related to the phase transition and to the

condensed phase being left out of consideration.

The vapor molecules that are evaporated from the
interphase surface are assumed to have a Maxwellian distribu-
tion in the velocity half-spaes fo O, and we have therefore,

in accordance with Egqs. 1 and 2, the usual description
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foo= exp (-
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where np is the saturation density corresponding to TL. It is
further assumed that all impinging molecules are condensed into
the phase boundary, and that reemission occurs through evapora-
tion, only, which is equivalent to setting the absorption coef-

ficient equal to unity.

It is reasonable to assume that the downstream pres-
sure level, p_, can be controlled and we thus ask for the re-
maining downstream quantities - including the net evaporated
mass flux - and the structure of the kinetic boundary layer for

given values of np and TL'




3. METHOD OF SOLUTION

The previous section defines the following problem

for the one dimensional, steady state Boltzmann equation

E# éi - J J J (f'fi—ffl) go (x,g) siny dy de dg, (L)
->
51 X €

+ ¢ .
x=0:f = fL 5 EX > 0 3 X > o : f > f,

where we have used standard notations in the collision term
(Ref. 25), and where f_is the downstream drifting Maxwellian,
i.e.
2 2 2
- +g
n (g ~u ) *E *E,

f = = exp {- .S

* (21TRT°°)3/2 2RT_

} (5)

This equation is too complicated for a detailed analytical so-
lution to be obtained, and we therefore resort to a simplified
description where the Boltzmann equation is satisfied in some
average sense, only, but such that the basic features of the
non-linear collision term are preserved. The Mott-Smith moment
method (Ref. 21), as previously applied to shock structure
problem, is capable of doing this, but, because of the boundary
condition at x = 0, the ansatz for the distribution function
must contain half-range modes in velocity space, much in the
same way as in the Liu-Lees method for Couette flow problems
(Ref. 6). Here, however, the discontinuity in velocity space is
with respect to the velocity component in the direction of bulk
motion, and this makes the actual calculations somewhat more

complicated than in either of the two original methods above.

The following trimodal ansatz is applied

+al(x)f) + a3(x)f (6)

(e}

where the downstream Maxwellian has been split into the two half-

range functions



£ > 0, f =f , & <0 (7)

The boundary conditions of Eq. 4 will be satisfied exactly,

) ) +
and this means in terms of the amplitude functions ai(x):

+
B1iBl =1 a‘f(m) =0
x = 0 : a;(o) = 0 X = ® . _ (8)
s _ a3(°°) = ag(w) = 1
a3z(0) = B

where B 1is an unknown boundary parameter that must be obtained

from the solution of the problem.

Moment equations are then derived from Eq. 4 in the
standard way, i.e., by multiplying with functions wu of molecular
velocity, and integrating over the entire velocity-space,
Choosing for the first three y 's the collisional invariants
1, E_» % gz and for the fourthuone a non-conserved quantity Uy,

%
we have

1]
o
v
=
]
=
-
n
w

d
a—xfgxw‘ufﬂ

)
% J £, Yy T dE qu J (ffy) d&

where we have written J(ff1) for the collision term in Eq. L.
The first three of these equations integrate to the usual con-
servation equations of one dimensional gas dynamics, whereas
the last equation will yield a non-linear differential equation
for the amplitude functions a?(x) when the interaction law for

Maxwell molecules is inserted.

The number of moment equations required to determine
the three amplitude functions af(x), ag(x), is in principle
only three, but it is clear that first of all the three conser-
vation equations must be satisfied and that at least one further
equation for a non-conserved quantity must be used, so that the
total number of equations will be four. Only three of the equa-

tions are, however, linearly independent because of certain




_lo_

conditions that are imposed on the coefficients of the system.
by the conservation equations written for x = 0 and x = o,
respectively (Section 5), This situation is similar to the
shock structure problem where the compatibility conditions are
the Rankine-Hugoniot equations relating the states of the

two sides of the shock.

The present method of solution is identical to the
method used in Refs. 22, 23 and 24 to treat the effusive flow
problem, and also identical to the method used by Anisimov in
Ref. 13 and by Liukov et al. in Ref. 1L in treating the limiting
case of strong evaporation into vacuum. These last authors
solved the conservation equations for one set of flow conditions
(sonic), only, and estimated the thickness of the corresponding
Knudsen layer from the BGK collision model. In this way, many

of the interesting features of the solution were not noticed.




4. A GAS DYNAMIC CONNECTION PROBLEM

4.1 Relations between boundary

and downstream conditions

Before asking for the structure of the vapor boundary
layer, i.e., before attempting to solve the complete set of
local transfer equations, Egs. 9 of the previous section, for
the amplitude functions ai(x),weemust make use of the relations
that these equations imply between the conditions at the phase
boundary and at downstream equilibrium. These relations will,
in fact, enable us to obtain the downstream parameters n_, u_
and T _, as well as the boundary parameter B_, in terms of quan-

tities that are controlled in the problem, and the states at the

two sides of the Knudsen layer will therefore be known.

Let us write the integrated conservation equations

at x = 0 and at x = ®, respectively, to obtain

oty # o= [for oy £ &ure wwris 09

where the distribution function Eq. 6 with the boundary condi-
tions Eq. 8 is to be inserted. More explicitly, this yields the
present problem's counterparts to the Rankine-Hugoniot equations

and may be written as follows (Appendix 1)

RT
n.u. - B n 2 ¥— = n u (11)
L L © 2T © oo

1 = L -

L R, + LnRrr & = 2

5 o, RT, B 5 Dy T n_u’Z + n RT_ (11)
RT .

- g ® H = 1 24 2
2n u RT. - B 2n RT_ / s— B =mu, (5 uZ+ 5 RT)
where the velocity up is defined as
RT
u. = L (12)

L 2T
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" N n_
and where the functions F , G and H contain error functions,

exponentials and powers of the downstream speed ratio

B, = um//§§ﬁz as given in Appendix 1. The system of equations
expresses the fact that fluxes of mass, momentum and energy

are the same at the phase boundary and at downstream equilibrium,
The equations have been written for the case of net evaporation

only, assuming u_ to be positive.

The equations may be restated in a more convenient,

non dimensional form

H

{\l—
- B F 2/ s _

bs2 + 2 (13)

(3 Ve T ) 5
L — 2, 2
H T v s_(s2+ 2)

with 2 being a given driving parameter defined as the ratio

between the saturation vapor pressure Py, and the background

pressure p_ s i.e.

(14)

"dl"d
=

8

T
and with §_, T and B being the unknown quantities of the
L

system. A solution may therefore be obtained for these quanti-

ties in terms of z and the downstream state will then be

L,
completely specified because the density follows from the simple

relation

(=]

s

1
Tm

LT

ja]
[

Z
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This shows that only one of the downstream parameters, for
instance the pressure p_, can be chosen freely, whereas the
other parameters follow from the solution of the conservation
equations. The coupling between the downstream parameters thus
affected by the finite flow velocity u_, is equally important
in the cases of strong and weak evaporation, which means that
the quantities An and AT in formula (1) can never be treated as
independent driving terms. This point was also realized by

Shankar and Marble in Ref. 5.
It is furthermore realized that the physical properties
of the vapor, i.e., the molecular interaction law, do not enter

into this gas dynamic part of the problem.

4.2 Non-linear results

The solution of the previous system of normalized
conservation equations, Egs. 13, is straightforward in principle,
but due to the non-linear character of the equations and to the
complicated form of the functions §_, 8- and ﬁ—, the resulting
expressions become cumbersome in the general case, and the

solution must be obtained numerically.

The speed ratio S, appears to be the natural parameter
in terms of which all the other quantities should be expressed.
By eliminating the boundary parameter B and the temperature
ratio /5:75; in Eqs. 13, the following relation between the
driving parameter zZy and the speed ratio S _ is obtained

TS, S VR, V

= v LAV VI 5 (A VI, VIR
2 (G -F H )+ z (2(482+2)F H +2/m §_ G H +/m 5_(82+ 2) F G )

L VI =" - v
- ((482+2)2F H +(hs2+2)Ym S_(82+ g)¥ G +(hs2+2)2/7 S_G H
N
+2m82(062+ 2)677) = 0 (16)

N N
where F , G and H may be expressed as




—g2
n_ : ©
F = /1 S, erfeS + e
N 2g_ -82
G = (282+l)ercs_ - e
/r
N /T 8 ; 1 -l
H = - —5— (82+ 5) erfeS_ + 3 (Si+2) e

with erfcS_ being the complementary error function, i.e.,

®
erfeS_ = 1 - erfS_= 1 - = J et at (18)
/T

Although the coefficients of Eq. 16 are very complicated and
contain some transcendental functions, the equation is essen-
tially a second degree algebraic equation for the parameter

z2p in terms of S_, and it can be solved numerically without any
difficulties. Only one of the two roots is positive for posi-
tive values of S.,» and that solution is contained in Table 1 and

is furthermore shown plotted in Fig. 2a.

The remaining quantities now follow directly from

Eqs. 13, i.e.,

2 =
hSw+2 zp
W el

(19)

and the density is given by the simple expression Egq. 15. The
quantities are tabulated in Table 1 and plotted in Figs 2b,c,d.
It is possible to demonstrate that, for values of Sw above

approximately 0.6, the following asymptotic law applies for B
B ~ e (20)

as indicated in Fig. 24d.
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Now, 8" is the value of the amplitude function ag
for the distribution function f; at the phase boundary, and
therefore is the amplitude of the distribution function des-
cribing molecules that are scattered back into the boundary.
The value B = 1 corresponds to equilibrium and therefore to
an abscence of Knudsen layer effects. On the other hand,B_ > 1
means that non-equilibrium backscattering occurs in the Knudsen
layer, and more so the largerB_ is. At extreme conditions, that
is when S_ : 0.6, the non equilibrium backscattering is signifi-

cant, tending to reduce the net evaporated number flux.

The number flux is expressed by the first of Egs. 11,

and the normalized version

. 1 _ /RT°° n_ n_u_
= —— (n u; "8 n, 5— F ) = (21)

is contained in Table 1 and shown plotted versus the speed ratio
s in Fig. 3. The function is practically flat above S_ v 0.6

and it reaches a weak maximum (0.820) close to S_ = 0.8. This
indicates that about 18% of the flux evaporated from the phase
boundary is scattered back, mainly as a result of non-equilibrium
collisions in the Knudsen layer close to the boundary, at extreme

conditions of strong evaporation.

4.3 Linearized results. Improved Hertz-Knudsen formula

In the case of weak evaporation the downstream flow
velocity u_ is small compared to the thermal velocity, i.e.
S, << 1, and the previous expressions may be linearized leading

to simple and useful results.

To obtain the linearized version of the conservation
Ny = N s R
equations, Egs. 13, we first expand the functions F , G and H

and have




LAV
8T =1 - s+ o0(s2) (22)
"z
r\l—
H =1—%/¥sm+o(si)
Then writing

T

o AT
z. =1 + Az = =1 - ==
L L o T, T,
B- =1 + AR (23)

in Eq. 13, and neglecting products in small quantities, we

obtain the linearized system

—_ v
pz. - 2 AL _ AT = 2/7 S - AF
L 2 T o
L
- v
Az, + AR = AG (2k)
LAT _ - .5 - AR
Mz, + 3 oo - AB =35 /m S, - AW
L
N N
where we have also put F = 1 - AF , etc. with
LV N N e
AF = /7w s, AG =—l“—soo g AET = 2 V7 s, (25)
Vr L

From the first of Egqs. 24 above it is clear that neglect of the
downstream convective velocity when cgmputing the mass flux,
would imply neglect of the quantity AF = V7 S, in comparison
with 2/® So» and thus will never be justified, irrespective of

the smallness of S_, and of u_.

The solution of the above system in terms of S_ is

_ 2 oV AT _ Vw
AZL_(?‘;+16)S°°, T_L—TS“’
(26)
re” = (& - 2Ty 5
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with a similar result for the density, i.e.

o

s
>
=

o

[V N
3

8

— S (27)
n n vy

i
=

The results are indicated with t%e straight lines on Figs 2a-d,
and the linear approximation to F is also shown in Fig. 2e.
Only the temperature is reasonably well approximated by the

linear result outside of the range of small S_ values.

A linearized expression for the number flux is now

available, and we have

RT B .
m=ng 2L [ﬁﬁ+%—AT—E—Ae +AF] (28)
'n \L L ! ’
. L
!
/n S, /m 8

0.131)48oo

showing the relative importance of the various contributions

(1) Hertz-Knudsen theory (A— + = éi)
n 2T
L L
(ii) non-equilibrium backscattering (AR )

(iii) downstream convective motion (AF )

The non equilibrium backscattering is thus seen to be very
moderate under conditions of weak evaporation, whereas the ef-

fect of convective motion is not.

Making use of Eq. 27 and of the simple fact that the
sum in the above parenthesis equals ovm S,» the expression for

the number flux may be written

“Tn _sen_ (29)
21 32+5m7

m = (nL—nw)

where the value of the numerical factor is 2.107. This improved

Hertz-Knudsen formula predicts a mass flux that is more than
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twice the value given by the original version, Eq. 2.

Because the changes in density, temperature and pres-
sure are uniquely related via the flow velocity u,, (Eqs. 26,
37) the result may also be given in terms of pressure drop,

Ap = pPp p,», and we have

RT
> = L Ap ,_32m
m np //2TT o e (30)

with the value of the numerical factor now being 1.668.

4.4 Limiting conditions. Boltzmann H-theorem

The question of what limiting steady state conditions
can be reached downstream of the Knudsen layer in the case of
strong evaporation, is not a trivial one, and must be settled
by arguments from kinetic theory. In the conservation equations
Egqs. 11, there is in fact nothing that prevents us from con-
sidering arbitrarily large supersonic downstream flow velocities
for sufficiently large values of the pressure ratio pL/pw. In
complete analogy with the corresponding problem for the per-
forated wall effusion, we now demonstrate that the Boltzmann
H-theorem implies that the speed ratio S_ must always be less
than a certain value, corresponding to weakly supersonic flow.
It will be shown later (Section 5.3) that the limit is even
more restrictive, and that only subsonic flow conditions are

actually possible.

The H-theorem for a bounded system under steady state

conditions is (Refs. 26, 27)

[ as J(G-E) £ gnf dg < O (31)
s &

where the integrals must be evaluated at the boundary S, having
-> . .
local outward directed normal v. In the present case, this gives

the inequality



(J £, f anf 95)x=o - (J £, f gnf dg) > 0 (32)
g

™y

where the distribution function must be taken in accordance with
the boundary conditions and the solution obtained for f x=0,i'e'
+
L > fx 7 0°

x =w : f=7¢ (33)

X
£, £, <0

(f
x = 0 : £ =%

;
When the indicated integrations in the velocity space are carried
out, using the results of Appendix 1, and the conservation equation
for mass flux is used, the inequality (32) may be rewritten in

explicit terms as

n T 3/2 n -g2 — -
L © - _oo © - - © 3‘/11-
in = (T_) + B n T —F 4nB +2e - Sw(l—erfsm)
o L L L
n_ _
+3— /= V/ns_-22>0 (34)
nL TL

The left-hand side of this inequality has been tabulated along
with the gas dynamic parameters in Table 1 and is listed under
the heading BF. This quantity is seen to be positive for values
of S8_ that are below 1.20, and the H-theorem is therefore satis-
fied up to this point, only. A graph of this function (BF) is
given in Fig. L4 where the speed ratio S_ has been chosen as
abscissa. Highly supersonic vapor velocities are thus seen to

be impossible in the steady state 1limit in the process considered.
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5. STRUCTURE OF THE VAPOR KNUDSEN LAYER

5.1 Local conservation equations

To compute the transition from the state at the phase
boundary through the kinetic boundary layer to the state at
downstream equilibrium, local conservation equations must be
written and solved together with a transfer equation for a
non-conserved quantity. The local conservation equations are

as follows (Appendix 1)

+ JRI, my 4 B Y o
njup ay(x) + n_ o Faz(x) - n_ P F aj(x) = n_u_

= n u (% ui + % RT ) (35)

©o

) vy vy gy
with F , G and H being the results of half-range integrations

in the gx > O part of the velocity space, and being related to

previous functions from gx < O integrations by

o+ s
-F =2/r s
vy N o_
+ G = 4s2 + 2
o]
vy L4 VIR 5
-8 =Vn 8l + 5 /ms, (36)

The equations may be exploi ed more easily in the non-dimensional

version



Z —_—

It is easy to show that, with the Rankine-Hugoniot like rela-

tions Egs. 11 or Egs. 13 being satisfied by =z S, and Tw/TL,

s
the above system of three linear equations fo? the three ampli-
tude functions aT,a; and ag is singular and therefore does not
specify a non-trivial solution for these quantities. If this
was not so, the structure of the kinetic boundary layer would
follow from the conservation equations alone, without any col-
lisional effects being involved, thus leading to highly con-
tradictory results. The Rankine-Hugoniot like equations in
the gas dynamic problem are therefore necessary conditions for
a solution of the full kinetic problem to exist, in complete
analogy with the Mott-Smith approach for the shock structure
problem.

Only two of the three equations (37) are thus linearly
independent and the system therefore serves to express two
amplitude functions in terms of the third one. By simple manipu-
lations we find

az(x) - 1
g [(x) = =————

a3(x)

which also means that a very simple relation exists between

these two functions, namely
aj(x) + a3z(x) =1 (39)
Further progress must be based upon specific information on

collisional effects, and for this we require a moment equation

for a non-conserved quantity.



5.2 Transfer equation for Y, = 52

X

A natural choice for the non-conserved quantity is to
take Y, = Ei in Eq. 9 and then use existing formulas for the
resulting collision term for the case of Maxwell molecules

(F ~ ;L). For that particular interaction law the cross sec-
5
T
tion o (x,g) in the two-particle problem becomes inversely pro-

portional to the relative velocity g, so that the product o-g
in Eq. 4 becomes a function of the deflection angle x, only
(Ref. 25). This considerably simplifies the evaluation of the
collision term in any non-conserved moment equation, and in
particular the collision operator does not create moments of
higher order than those given by the function y, itself, i.e.,
[y, £ dE (Ref. 25).

By well-known results from the symmetry properties

of the binary collision term (Ref. 25) we have in the general case

J vy, (g) J(£fy) dg = J J J J \Pq(&)(f'fi—ffl)go(x,g)sinxdxdsgild_é_

2 g 21 X €

V)= () ££189(X,g) sinxdxdedE  dE (40)

> Y
M N
'€~
.L."

m+

T - > . :
where &' is related to & by the dynamics of a binary encounter.

Because of the simplifications for Maxwell molecules noted above
the &; and the y integrations can be performed independently

and simple expressions will result from both integrations.

For Yy = Ei we have (Ref. 25, pp 36U4)

RT
J Yy J(£Ffy) dE = Xﬂﬁ / 2ﬂr gi T (41)

I r

where the mean free path Ar in the reference state denoted by
subscript "r" is related to the potential constants A (L) and a,

or to the Viscosity coefficient Llr of the gas, by



5 1 r 1 _ . r m
x = 4 = (h2)
r 16A,(L) n_ a F(%) mn_ //

1' is the viscous part of the normal stress in the x-direction
XX

as obtained from the standard definition

o o= -m |flew)? g oaE - 3/ (E-0)2 £ a (43)

where u = (u,0,0) is the local bulk velocity in the present

one dimensional flow.

Also, by definition we have

n=[fg§ (hb)

il

J e, f ag

so that the resulting moment equation for gi

9 3 = 2

axfixfié JEX J(efy) 4 (45)

is non-linear in the moments of f occurring in the right hand

side.

This equation must be worked out in terms of the basic

n § & s
amplitude functions, ai(x), after the expression for f,
J

£(Eax) = al(x)f]

+ a;(x)f: + a;(x)f°°
has been inserted. Then the Eqs. 38 can be used to transform

the result into a differential equation for one single amplitude
function, only and a solution may be obtained. This procedure is
reviewed in some detail in Appendix 2, from which we quote the

following results
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i 2
. RTL % mZ _ _
[(e2 ater) ae - 35 /5 -~ 4182(a3-1) (a3r) (46)
- L 8n_S
L o
with £ =nu, , and ¢; and ¢, being given as
n
61 = __L (‘*L = 2 % B—(l—erfsw)]
B -1 "w
(L7)
b2 = —— (2, - 2 + 8 (1-erfs_))
B -1
The parameter r is expressed as
5 hs?
g $1 b2 il

and all these quantities are unique functions of the driving

parameter z. by the gas dynamic relations between the states at

L
the phase boundary and at downstream equilibrium.

The convective term may similarly be expressed in

terms of a; alone, and the result is (Appendix 2)

2n_u_RT T da_
3 3 - _ _LL L _ e 3
S U B (19)

The moment equation (L45) may therefore be written as

3 522 - ft (a3-1)(a3-r) (50)

where B, C and r are non zero, positive parameters that depend

upon the flow conditions as indicated by the expressions above.
Therefore, if r < 1

the above equation describes a relaxation towards the correct

downstream equilibrium a; = 1, so that both boundary conditions




on a3 from Eq. 8 are satisfied, i.e.,
az(0) =8 , (B > 1), az(») =1

Then the solution of Eq. 50 above 1is

- C (1-r)
a_3(_X);l_ = (.B__‘l) . B iy (51)

az(x)-r B -r

from which a proper scale for the thickness of the Knudsen layer

appears to be

‘"

Y B St (52)
% {L=ze )

With one amplitude function being known, the other two follow
from Eqs. 38, and the distribution function is therefore com-
pletely determined, revealing the corresponding structure of

the Knudsen layer.

5.3 Properties of the solution

To discuss the solution for the amplitude functions
found above, we first need to consider the actual values of
the parameters B, C and r at all possible flow conditions. This
is done in Table 2 where these quantites are tabulated as func-
tions of the speed ratio, S_. It is seen that the ratio % is
of order unity at ordinary flow conditions, decreasing with
increasing values of S,» and that the parameter r stays below
unity for values of S_ below approximately 0.91 (Fig. 5). The
product % (1-r), which is also of order unity at intermediate
conditions, therefore decreases strongly with S, and becomes
zero at the above critical value of S, that makes r equal to
one. The quantitative behaviour is shown in Fig. 6, where the
reciprocal length Eq. 52 has been plotted versus the speed ratio
S

.
[eo]

In the range where we have



=

(1-r) ~ O(1), i.e. S_ % 0.3

L :-C
" B

the solution Eq. 51 describes spatial relaxation through a

Knudsen layer of thickness as the mean free path AL' At the
higher values of S_, and in particular as we approach the
critical value close to 0.91 !, the thickness of the Knudsen

layer increases strongly and finally becomes infinite.

In the limit r = 1 the differential equation (50)

does, however; degenerate into the simpler version

dag _ 2
B e e { ag L) (53)

dx AL

whose solution is given by

as(x)-1
; = L (54)

87 -1 1+ % (g™-1) &
L

This non-exponential solution implies a very slow approach to-
wards downstream equilibrium, and evaluating the parameters
entering, we have

(B -1) = 0.05 (at r =1, S = 0.91)

(o]

o

so that a length scale

g = o= v (55)

is of the order of QQAL. In order to complete 90% of the transi-
tion to the downstream sonic state, i.e., in order for ag(x) to
reach the value 0.9, a value of x equivalent to some 250 mean

free paths A_ is therefore required, and this means that the

L

1
The actual critical value is found to be 0.90T7,
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downstream equilibrium is practically unattainable under these

conditions.

At values of S_ greater than sonic, which are predicted
by the conservation equations to occur for values of zL above
4.8, we find

1l < r < B-

and Eq. 50 has a solution that approaches the downstream value

a3 = r, rather than the equilibrium value a3 = 1. The downstream
state corresponding to a; = r is clearly incompatible with the
Rankine-Hugoniot-like conditions (11), and a3 = r therefore re-

presents a spurious equilibirum without any significance for

the present problem.

The non-conserved moment equation (50) thus implies a
relaxation towards a Maxwellian state only as long as the pres-
sure ratio pL/p°° is below 4.8 and the flow is subosnic. This
results is a little more restrictive than the limit S_ < 1.2

which was derived from the Boltzmann H-theorem.

At low evaporation rates, corresponding to small devia-

. . . + + . . .
tions from equilibrium, fL = fw, Eq. 50 may be linearized with

the substitution
a (x) =1 + h(x) , Ih(x)l < AB (56)

We thus get

_an_c Qo)
dx B AL
(57)
n(o0) = AB
where the coefficient % (1-r) may be evaluated from linearized
expressions for S_ << 1, and ASB is the linearized boundary

value given in Eq. 26.
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It is readily verified that

wl&=

% (-2} = = , (8, << 1) (58)

so that the solution for h(x) is
3
- x/3A

h(x) = AB e (59)

We therefore have

3
- -~ X/EA
aa(x) = 1 + AB e 3
3
- x/5A
aj(x) = Bzl oo AL (60)
AB
3
- x/5)
a;(x) =1 - h(_) =1 - e WL
AB
and the scaling length for the Knudsne layer thickness is % AL

5.4 Discussion

Some results revealing the structure of the Knudsen
layer at arbitrarily strong evaporation rates are shown in

Figs. 6-10.

From Fig. 6 the thickening of the Knudsen layer with
increasing S_, which means increasing evaporation rates, is
apparent. According to the present solution, the sonic state can
never be achieved with the downstream flow being close to equi-
librium. Two interpretations of this result are possible
either the flow must become unsteady in the sonic limit, or,
there are not enough collisions to affect a downstream equili-

brium when the pressure ratio =z pL/pm exceeds the critical

L=
value close to L4.8. In the latter case a very complicated transi-

tion from a Knudsen layer type of flow close to the boundary
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into a non-equilibrium rarefaction wave extending to infinity

will occur.

Figures 7, 8, 9 and 10 show the relaxation of the
basic modes in the distribution function and of the macroscopic
quantities density, velocity and temperature at typical flow
conditions; S_ : 0.3, 0.5, 0.T7. The vapor is seen to expand,
almost isothermally, away from the phase boundary, after a
rather pronounced microscopic jump in temperature has been

taking place at the boundary. For the typical flow conditions

of 8, = 0.5 we quote the numbers
T
TéO) = 0.85, == = 0.80
L L

which means that 75 per cent of the total drop in temperature,
from the evaporation temperature TL at the interphase to the
equilibrium temperature T _ far downstream, is affected by the
microscopic jump at the boundary. This percentage is slightly
less at higher evaporation rates, and larger at lower evapora-

tion rates - and downstream flow velocities.

The macroscipic quantities were obtained from the

standard definitions

% nkT

n
S—
|
=]
(@]
N
H
jol}
(@]

n = J r dg

resulting in the explicit formulas

(33(X)—l) % o7 + 1 (61)

B
n
oo

n n
0 - (e}
= 282+3+(a3(x)—l)¢2—282 By

Wk

I
Tco

with ¢; and ¢, being defined in the previous Eqs. 47, and with
a;(x) being given by the solution (51). The spatial relaxation
is contained in one mode only, such as exp(- %) which is a result
of the fact that only one non-conserved moment equation has been

used to describe the structure of the flow.
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6. COMPARISON WITH EXISTING RESULTS

6.1 Linearized results

For the case of weak evaporation or condensation,
several theoretical papers present both approximate and exact
results based upon the linearized Boltzmann or BGK equation, or

based upon linearized solutions to systems of moment equations.

Pao (Ref. 10) derived the following approximate results

from the linearized BGK equation

AT _ V7 An _ TV/m
__.__S . _ = S
L L o n 8 ®
(62)
R -
1'11-21’1 TL A_n.g.iﬂ
L 27 nL 2 TL

which are very close to our linearized results, Eqs. 26-29.

In fact, the temperature change is exactly the same, and the
density change and the mass flux are only slightly smaller,
by 8 and 5 per cent, respectively. The above results have been
confirmed by Pao (Ref. 11) by an exact evaluation from the
linearized BGK equations, and by Loyalka (Ref. 8) and Cipolla
et al. (Ref. 9) who considered the linearized Boltzmann equa-

tion for Maxwell molecules.

In addition, Patton and Springer (Ref. T7) have obtained
evaporation rates that are twice the Hertz-Knudsen value for
evaporation - condensation between two parallel plates by solviqg{

linearized moment equations derived by Liu-Lees' method.

Shankar and Marble (Ref. 5) on the other hand, ob-
tained in a similar analysis for the half-space problem, results
that are rather close to the Hertz—-Knudsen values. They did,
however, neglect the bulk velocity in the downstream Maxwellian
and this will always lead to Hertz-Knudsen results. The authors
emphasized the fact that only one of the downstream variables

can be chosen freely in the problem and that therefore there 1is
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only one free driving parameter,such as Ap, in Eq. 30,

6.2 Non-linear results

The non-linear formulation of the problem most often
requires numerical evaluation, but a few approximate analytical

results are available.

Anisimov (Ref. 13) and Luikov et al. (Ref. 1k) used
the same Mott-Smith method as in the present study to compute
the limiting case of strong evaporation from a plane metal sur-
face into vacuum. Their calculation is therefore only for sonic
downstream conditions, and the values obtained at this point
are identical to the limiting values of the present analysis,
Figs. 11, 12, 13. In particular they found (m/mL)cr = 0.815
which means that the backscattered flux is 18.5 percent of the
evaporated flux at extreme conditions. Practically the same
result has been obtained by Edwards and Collins (Ref. 15) for
the approximate calculation of evaporation from a spherical drop
into vacuum, using Grad's expression for the distribution func-
tion at the surface of the droplet. The structure of the Knudsen
layer was estimated from the BGK collision term in Ref.ll4, and
from the Navier-Stokes equations matched to a Grad-type of
distribution function at the phase boundary in Ref. 15, and
none of the treatments present any irregular behaviour at, or
close to the sonic point. In fact, the analysis iﬁ Ref. 15 assumes
that the sonic state, M, =1, can be reached by the vapor after
expanding through a finite thickness Knudsen layer, which seems

to be contradicted by the present results.

Kogan and Makashev (Ref. 16) solved the non-linear
BGK equation numerically for the half-space evaporation problem,
and obtained results as shown on Figs. 11 and 12. The agreement
with the present results is good, except at extreme conditions,
for which the accuracy of Kogan's numerical results are known
to be poor (Ref. 28). For the heat flux from the phase boundary

which is defined as




a, =3 m | g% £(0,F) ag (63)

|

the agreement is substantial at all flow conditions (Fig. 12).
The abscissa in Figs. 11, 12 is the number flux at the phase
V2RTL.

boundary normalized by the flux Dpcmp = np
Yen (Refs. 19, 20) obtained numerical solutions of

the discretized Boltzmann and BGK equations for evaporation-

condensation between parallel plates. His results show the

same qualitative trend as the present results, namely, that

the non-equilibrium collisional effects tend to reduce the eva-

poration rate as compared to linear theory.

6.3 Monte-Carlo results

Murakami (Refs. 17,18) has made a Monte-Carlo simula-
tion of the full unsteady version of the present half-space
problem, and asymptotic steady state results are shown in Figs.
11, 12, 13. The parameter o is the condensation coefficient
(taken to be unity in the present study) and the parameter Bl

is defined as

(nL~n0)
ng
;~To)
To

(T

in terms of the notions explained in Section 2.

The agreement between the Monte Carlo results and
the present calculations is very good for all quantities
throughout the whole range of flow conditions considered. The
non-linear deviation in mass flux at strong and moderately
strong evaporation is evident (Fig. 11) and the almost flat
maximum for S, larger than 0.6 is apparent from both sets of

1 -
Not to be confused with B in the present treatment.
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results (Fig. 12). A maximum value in the number flux close to
0.85 nL/§E£7§? may be inferred from the Monte Carlo results,

and this is only slightly higher than the Mott Smith wvalue,

0.82 nL/§E;7§;. Very few values for the heat flux are available
from the Monte Carlo calculations and those at extreme conditions
appear somewhat overestimated compared to the present and to

Kogan's results.

Further substantial agreement is observed in the
comparison of macroscopic jumps in density and temperature
from the Monte Carlo and the present results (Fig. 13). The
deviation in density jump from linear predictions in the Knudsen
layer is of importance even for moderately strong evaporation.
The temperature jump is on the other hand predicted quite ac-—
curately by the linear theory throughout the whole range of flow
conditions 1.
The Monte Carlo results for the local structure of
the evaporation Knudsen layer are also in qualitative agreement
with the predictions from the present theory, and they show in
particular that a steady downstream state is never accomplished
at, or beyond Mach number equal to one. In those cases the
Knudsen layer and thereby the non-equilibrium effects, are found
to merge far into the downstream flow field through a kind of
(non-equilibrium rarefaction wave (Ref. 18) and it is not clear
if the ultimate downstream state will be exactly sonic, or not.
Some results obtained with the Schrage formula, i.e. with B =1

in the expression (11)

//RTm B
b= npu, -0, S F (s,)

L
Observe that the odd trend in the Monte Carlo predicted tem-

peratures at low evaporation rates is due to statistical scat-

tering in that method.
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are also shown in Fig. 11. The values for S, were inferred from
the Monte Carlo results in that figure. In addition to being
incomplete from the theoretical point of view, the Schrage
formula overestimates the mass flux at extreme conditions, due
to neglect of non-equilibrium contributions to the backscat-
tering. The present expression for the mass flux with 8 # 1

where S_ is a given function of z_ = pL/pm is to be preferred

L
due to consistent and easy application, and also due to improved

accuracy at extreme conditions of high evaporation rates.

6.4 Experimental results

The only experimental results, on strong evaporation
at least, that appear to be referred to in the literature, are
those of Golubtsov (Ref. 29) for evaporation of tantalum into
vacuum. They are shown in Fig. 11 and indicate mass fluxes close
to the predicted upper limit. The downstream variables were, how-
ever, not obtained by measurements in the flow field itself,
they were rather inferred from ambient pressure measurements
in the background and accordingly these quantities are not well
defined. In at least part of the experiments, the flow condi-
tions were far from being one dimensional and this makes the

assignment of any value n_ in Fig. 11 rather questionable.

' In the following section we indicate a way of obtaining
additional and more detailed experimental information by making
use of an analogy between evaporation and the physically simpler

situation of effusion from a perforated wall.
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7. THE ANALOGY BETWEEN EVAPORATION AND
PERFORATED WALL EFFUSION

7.1 Physical similarity

The problem of molecular effusion from a thin, per-
forated wall has been studied theoretically and experimentally in
Refs. 22, 23, 24 and a complete report on the results is given
in Ref. 30. The system is represented schematically and compared

with the system used to represent evaporation in Fig. 1L.

Under appropriate conditions (orifice diameters and
spacing small compared to the mean free path, wall thickness
small compared to the orifice diameters, etc.) the effusion can

be described by the half-range Maxwellian

n
+ _ e §2

f = exp {- o, g >0 (65)
©  (2rRT,)3/2 2RTo *

with

n_ = ang (66)

where g is the small, fractional porosity of the wall, and ng is
the number density in the gas at stagnation conditions at the
upstream side. In the limit of small porosity, capturing of

impinging, molecules can be neglected, and considering diffuse

reflection, from the wall at temperature Tw = Tp, only we have
n 2

+ w

£t = exp 1- 2=} E_ >0 (67)

i.e., the same half-range Maxwellian as above, except for the

density.

The result of these two contributions is seen to
be completely equivalent to the distribution function describing

evaporation




& e

. £2
f = exp {- } ) 3 > 0 (3)
L (anTL)3/2 ity X

provided the temperature Ty is taken to be T and the sum of

L?
densities n_ + ny corresponds to n .
The conditions for the mass injection at the upstream
boundary are thus the same in the two systems, and far downstream
the state must approach a Maxwellian. The only lack of physical
similarity between the two systems comes from the fact that
molecules are reflected at the boundary in one case, and com-
pletely condensed into it in the other case. But this is merely
a difference in physical processes taking place at the boundary
itself and it does not affect the kinetics in the flow, as will

be shown next.

7.2 Equivalent quantities. Transformation rules

The following considerations are general and are not
limited by the approximate nature of the treatment of the eva-

poration problem in previous sections.

Assume that the one dimensional Boltzmann equation

(4) can be solved for the half-space problem (x > 0) specified by
+
x = 0 f=f5 , g > 0 (68)

for given (pumping) conditions at macroscopic infinity. Then
the solution may tend to a Maxwellian fm (nm, uw,Tw) far from

the boundary.

The Maxwellian f_, describing the downstream equili-
brium flow, will be the same in two physically different situa-
tions if the distribution function q; at the boundary is the
same., The two flows will then be completely equivalent from the

kinetic point of view.

For the two particular cases under consideration, the



condition for equivalence is given by Egs. 65, 66 and 67

+ _ 4
fo. = £ = £, % £y (69)

whieh we rewrite as

+ + +
= +
f1 = (1+a’) f_ (70)
. g2 . : . . .
with o being defined as in previous treatments on effusive

flow, i.e., as

n
+ A

n
e

This gives the parametér relations

+
n = (L+a ) iy

T = TO (72)

+
pL = (l+a ) pe

Provided these relations are satisfied, the boundary conditions
in the two problems are the same, and the flow field due to
evaporation is completely equivalent to the corresponding ef-
fusive flow. In particular, the asymptotic downstream equili-

brium state is the same in two cases.

This can be used to transform any result obtained in
the effusive flow problem into an equivalent result for evapo-

ration. We have, for instance, the relations

N _ 1 noo Too Tco
nL 1 # e TL To
pm 1 pw

kel

+
pL 1l+o e
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that apply at constant u_, and therefore at constant Sw.

The S_ versus z (= qpo/pw) relation in effusive flow
is therefore transformed into the equivalent S, versus zp
(= pL/pw) relation for evaporation by the simple change of

driving parameter

+
z, = (1+a )z (74%)
The transformation is practical in only one direction, namely
from right to left, or from effusion to evaporation, because
+ . - . .
0 1s an additional unknown that occurs 1n the effusion problem
but not for evaporation provided the impinging molecules are

all condensed at the interphase boundary.

For purpose of illustration, the solution corresponding
to the approximating distribution function Eq. 6, (a = 0, Ref.
30) for effusive flow has been included in Tables 3 and 4, so
that it can be verified that the transformations above lead to

the correct results.

7.3 Transformation of experimental results

The transformations from effusion to evaporation
problems outlined above work equally well also for experimental
quantities. This is of particular importance because many
measurements are far more easily performed in the effusive flow

than in the equivalent vapor flow problem.

We will now show that the transformation function o’
in the expressions above can actually be obtained from simple
flux measurements, so that the transformation of experimental
results can be performed independent of any approximate theo-

retical treatments.

Consider the flux of molecules scattered back on

the perforated wall in effusion




In case of small wall porosity capturing of backscattered mole-
cules by the wall orifices can be neglected, and we have the

usual flux balance at a solid boundary:

- +
J le | £, d& = { g, T, 4 (75)
Ex<0 £X>O

+ . . . . .
where f; is the distribution function for molecules that are

brought in contact with the solid part of the wall.

. ; +
According to the expression for fw’ Eq. 67, we have

/RT, -
+ + 0"+ .
[ Ex Ty 2L = 4 "e /2w % e (76)

. +
where the density n. has been replaced by a from the general

definition, Eq. Tl. But then Eq. 75 will give

and this is a quantity that was obtained experimentally in
Ref. 30 at a variety of flow conditions, using a free molecular

orifice probe mounted flush with the wall.

The transformation function o’ is thus immediately
available from already existing experimental data (Ref. 30),
and transformation of experimental quantities can proceed in
exactly the same way as for the theoretical results, i.e., by

using the fundamental relations Egqs. T2, T3.

We now apply this result to obtain experimental in-

formation on two interesting quantities in evaporation:
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backscattered flux at the interphase boundary m (0), and down-

. . : P

stream speed ratio Soo as functions of the pressure ratio zL= EL

oo
For the flux we clearly have
m (0) =J le | £, dg (78)
€x<0

if the boundary conditions are equivalent, i.e., if

2 = m (1+a’) | (79)

o Me - 79

Here the notation is such that

. RTL . _ RT0

o P ARV AP T e T Me/ 27

This gives for the backscattered flux in evaporation

[ legl o) ae

.= <0 +

m (0) _ _1 Ex o Ll (80)

ﬁL l+a ﬁe 1l+a

in terms of the corresponding flux in effusion. The driving

parameter is then transformed according to Eq. Tk,

+
Ty = (1+a ) z (Th)
where z 1is the pressure-porosity parameter in the perforated

wall effusion.

All the information needed is therefore obtained
. + g 5 5
from the experimental o versus z-relation in Ref. 30 (Appendix

9, Test A-4), and the results are plotted in Fig. 15.

The theoretical results shown in the same figure are

also transformed from Ref. 30 (although the case @ = 0 corres-
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ponds to the present approximation, Eq. 6). The case a # 0
corresponds to a more general expression for the distribution
function;

£(x,E) = aT(X)fz + a;(x)f: + az(x)f, + ay (x)f (81)

where the fourth mode f; is the upstream tail of the Maxwellian
that would result after BGK-first-collisions between evapora-

ting (or effusing) molecules. The boundary value
a:(O) = o

is obtained from considerations of the probability for such

collisions, and it may be shown (Ref. 30) that the expression

represents an upper limit for this quantity in effusive flow.

For evaporation this is equivalent to

as indicated on the dash-dotted curve in Fig. 15.

The lower, dotted curve in the figure represents con-
tinuum theory and equilibrium results obtained by neglecting
any non-equilibrium backscattering in the Knudsen layer (g =1
in Eq. 21). These results are therefore completely equivalent

to the Schrage formulation for the backscattered flux.

There is very good agreement between the kinetic
theory results and the experiments throughout the whole range
of flow conditions. The equilibrium theory underestimates in an
important manner the backscattering that occurs, in particular
at extreme conditions of strong evaporation. The experimental

value at these conditions 1is




m (0)

= 0.17 * 0.03 (s = 0.9)

The resulting experimental band therefore covers the present
theoretical results (0.180-0.185) the Monte-Carlo result of
Ref. 18 (0.15), and the approximate non-linear result of Ref.
15 (0.189). The experimental value found by Gulubtsov seems to
indicate a slightly lower value (0.13).

The experiments could possibly be repeated with
better accuracy and at somewhat more clean conditions (less
lateral expansion in the flow, higher Knudsen number for the
effusion, etc.) to arrive at a more conclusive limiting value

for the mass flux at strong evaporation.

Next the downstream speed ratio S, 1s obtained as a
function of zZp by simply using the transformation (T7L4), again
for the experimental data of Ref. 30 (Appendix 9, Test A-11).
The results are shown on Fig. 16 in comparison with the same V |
kind of theoretical predictions as discussed above. There is
substantial agreement between kinetic theory results and expe-
riments also for this quantity, and this proves in particular

that 21 is the only relevant driving parameter in the problem.

The pressure-porosity parameter in the effusive flow

P
z = q 52 was defined experimentally by estimating the equilibrium

pressur: P, from the ambient pressure Py in the wind tunnel.
Measurements of the static pressure locally in the equilibrium
flow, assuming the temperatufe T to be correctly predicted by
the theory, did indicate that this was a good approximation. In
fact, the discrepancy between the static pressure thus found
and the pressure measured outside the flow in the wind tunnel

was always less than the most probable error in the experiments

(Ref. 30).

Again the experimental accuracy can be considerably
improved, so that even more conclusive results on the S°° versus

zL—relationship may be obtained.




8. CONCLUSIONS

A combined Mott-Smith, Liu-Lees method has been used
to describe vapor motion at arbitrarily strong evaporation rates

from a plane surface into a half-space.

Closed-form expressions have been obtained for the
parameters of the downstream equilibrium flow, and for a non-
equilibrium parameter describing backscattering into the phase
boundary. There is one single driving parameter for the flow,

most conveniently chosen as the pressure ratio Zy = pi/pm.

A simple improved version of the Hertz-Knudsen formula
for the evaporated mass flux has been derived for use at weak,
or moderately strong evaporation rates. The predicted mass

flux is larger than the H-K value, by a factor close to 2.

At arbitrarily strong evaporation rates non-equilibrium
effects are important, and Schrage's formula overestimate s the
mass flux. The present results give the relations between the
downstream variables and the driving parameter that are missing
in Schrage's formulation and account in addition for the non-
equilibrium effects in a simple way. The limiting evaporation

» °t e . i s : .
flux is m /m. = 0.82 and is conditioned primarily by backscat-

L
tering from non-equilibrium collisions.

The above conclusions are all independent of the

physical properties of the vapor.

The x-dependence of the postulated trimodal distribu-
tion function in the Knudsen layer was obtained for a vapor
consisting of Maxwell molecules. Spatial relaxation of the form
exp(- %) was found, where & is a strongly increasing function
of the downstream speed ratio, S_. At moderate flow conditions
2 is of the same magnitude as,kL, the mean free path for evapo-
ratingimolecules, and the vapor expands at nearly constant tem-
perature following a microscopic jump in temperature at the phase

boundary. Extreme conditions occur at S§_ = 0.91, for which ¢
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goes to infinity and no equilibrium state is reached after a

finite distance.

The present results are in good agreement with
linearized kinetic theory predictions for weak evaporation, and
with Monte Carlo and non-linear BGK results at arbitrarily large
evaporation rates. This indicates that the present method yields

an efficient description of the kinetics in vapor motion.

A simple analogy has been shown to exit between eva-
poration and the problem of effusion from a perforated boundary.
It is demonstrated that experimental and theoretical informa-
tion obtained in the latter problem can be directly transformed
to the former, and the existing experimental data are in sub-

stantial agreement with the present theory.

It is suggested that more accurate measurements of
backscattered flux at the wall in effusive flow are made at
well defined conditions, so that more conclusive experimental

information on evaporated mass flux can be obtained.
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APPENDIX A

The conservation equations are obtained as moments
of the Boltzmann equation with the .collisional invariants as

weight functions. We have from Eq. 9

9 o =
Hngq;ufd_g—o, w=1,2, 3
so that
f dg = C A-1
ngwu ag " ( )

where the Cu 's are the constant fluxes in the x-direction of
mass, momentum and kinetic energy, respectively. Inserting the
expression (6) for the distribution function, i.e.,

+ + + - 3
£ = ayf] +af +agf_ = I a (x)f (A-2)

oo

we get the system of equations

< Mw
o
»

Buv = C (A-3)
=1 H

with coefficients Buv defined as

B = (EX y f odE v =1, £_, % £2 for p = 1,2,3 (A-L)

The fv 's are the half-range Maxwellians defined in Egs. 3

and 5, i.e.

n
+ L g2
f1 = f_ = exp {- } , & >0
L (2WRTL)3/2 2RTL X
+
£ = f, = £, £, > O (A-L)
£fg =.f =f ,.E_<.0




with

n (€ -u )2+g24¢2
£ = exp {- S L 2

(2mRT_)3/2 2RT_

}

Performing the integrations in velocity-space, in exactly the

same manner as shown in great detail in Ref. 30, we have

B o, RT_ o
Bi11 = nyug, Bi2®= n = Foo, B3z = -n_ o F
_ 1 _ 1 V4 _ 1
Bop = 5 nLRTL, Boo= E nmRTmG 5 Bog = 5 anTwG (A—6)
RTOo r\,+ RTOO LA V.
B31 = 2nLuLRTL , B32 = 2n_ / “on RT H , B3z = -2n_ s RT _H
Vi Vg vy
where F~, G, and H™ are dimensionless functions of the down-

1
stream speed ratio given in the following way

o -s2
+ o
F- = /1 s (tl+erfs_) + e
‘82
'\"i 2 2 Py
G~ = (28.+#1)(lferfs_ ) * = s_ e (A-T)
m
—a2
it = 75, (8242 )(tl+erss ) + = (S2+2) S
2 © 2 - er o 2 © €

The above definitions imply the relations

iy n_
F' - F = 2/7 8
(o]
Ny n_
G + G =482 + 2 (A-8)
Ny n_
- H =Vns_ (s2+ %)

1
Note slightly different normalization compared to Refs. 23

o4 = -4 g - N o 4
and 30, e.g., F = 2/7 s_F°, ¢ = ¢*, ®g® = Yufe g 1 4

g 2,/?80°
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By evaluating the constants CU at downstream equilibrium, we

then can write the conservation equations in the following way

. FT, v, o _

npu; 8y oo B ay = n_u_

1 1 Yy + _ 2 _
5 nLRTL a;] + 51 RT G~ a3 n_uZ + n_RT_ (A-9)

RT Iy
+ + #
2n_u.RT_ a; * 2n_ // = RT_H” a3 = n_u (% ui + % RT )

2T oo oo

which in particular yield the Rankine-Hugoniot 1i ke equations (11)

when the boundary conditions for the a; 's at x = O are inserted.

The above conservation equations may also be consi-
dered as a system of three linear equations for the three am-
plitude functions aT, a; and ag. It is, however, clear that
this system must not specify any non-trivial solution for the
a. 's, except at the boundaries, and thus we have the alterna-

i
tive condition

Det = -
|| By || 0 (A-10)
which is completely equivalent to the Rankine-Hugoniot like

relations between the boundary values.

Only two of the three conservation equations are
therefore linearly independent in the present description of
the flow, and the following relations between the amplitude

functions are found to exist

BF-a;
S = 1 (A"‘ll)
B -1

where B_ is the value a;(o) at the phase boundary.




APPENDIX B - THE Ei-MOMENT EQUATION

We consider the transfer equation for Ei in the case

of Maxwell molecules and have (by Eq. Lul)

m 4

A m 2
Tr r

9 3 - n _

XX

The equation must be expressed in terms of the amplitude func-
tions and we first transform the collision term, working out

the product nT;x' Let us write

' = g a (1" ) (B-2)

where the basic contributions are defined by

(t'.) = -m J cc f dc - % J czfv de (B-3)

X vV — =

Making use of symmetry in velocity space, this can be written as

T;x)v = - % m[J CXCXfV de - J cif QE} (B-L4)

where cy is the thermal velocity with respect to the local

bulk velocity, i.e.

¢ B E. - ulx] (B-5)

In complete analogy with the results of Refs. 23 and 27 we then

get the separate contributions

L (—huuL+u2) (B-6)

—
—
S
1
1
wiln

m L n
2



o 2 1
1 = - — — +
(T x)m 3 m vganTm(l_y(

RT_  -52
,Si))i2(um—u)nw o ¢

o |w

+(u _-u)? L (lterfs )- L, RT (1terfs )
© 2 © © 2 © ©
By collecting the terms containing u and u?, respectively, in
the resulting expression (B-2) and using the fact that the
mass flux is constant throughout the flow field, i.e.,

ﬁu =nu, = I (B-T)

we arrive at the result

__2 2 1 * (¥ = P
e =T 5w |- 5+ 3 n.RT (e (G"-(1+erfs_))+a3 (G (1-errs_))}
which we write as
2 2
= = m2 N
— 3 2 n 4 + - rb-;
nT;X = ——:g;*— —hSw+ H: {a3[G —(l+erme))+a3(G -(l-erfSw)N
(B-8)
The density is given by
3
n = [ f dg = I &, f fv dag
v=1l
and may be expressed as
1 + 1 + 1 -
n = E nLal -+ > nw(l+erme)a3 + E nw(l—erfsw)ag (B—9)

and the above expression for nT;x is therefore a non-linear

function in the a. 's that vanishes at downstream equilibrium.

By using the momentum conservation equation and the
relation (A-11) between the amplitude functions, straightfor-
ward, but lengthy algebraic manipulations rendre the final

expression
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2 2
g mk _ - .
nt' = ¢1¢2(a3—l)(a3—r) (B-10)

xx 8s”

with ¢3, ¢, and r being defined as

n .
¢y = ‘fL— ;L -2+ B—(l—erfsm) (B-11)
B -1 e
l -
bp = — [%L = 2 + § (l-erfsmi}
B -1
2
R T
$1 b2

We next work out the convective term in the moment equation

(B-1) which is

3 3 3 da\)
3% ng T4 = I 3x By, (B-12)
v=1
with the coefficients B”v being defined as
= qJ = 2 -
By J E, ¥y T dg (py = €2) (B-13)

On performing the integrations in the velocity space, we have

(again in complete analogy with Ref. 30)

RToo Vi
By, = 2nLuLRTL 5 Byp, = 2n oy RT X
(B-1k)
RTm no_
B]+3 = "‘21’1oo o RToo K
s
where the functions K~ are given by
n ~82
* 2 3 2 ®
K- = (8% + E)(il+erme) +(1+82) e (B-15)
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By using the simple relations (A-11) between the amplitude

functions, the expression (B-12) can be written

Vg =L fon u RT. -2n —2 Rr |/7s (282+3)
- L L ™ © ) )

] dag .
+p K_|} - (B-16)
where the simple property

+

N N
K - K = /1 s_(252+3) (B-17)

has also been applied.

It is possible (although not essential) to greatly

simplify the above result by observing the additional relation

Y]

no_ n
K =2H - F (B-18)

and then using the Rankine-Hugoniot like equation (11) for
v}

= v
mass and energy conservation to eliminate H and F . Important
cancelling then occurs among the terms, and the final result

for the convective term 1is

da 2n_u _RT T daj

vV
— B, = - —————= (1 - &) 7— (B-19)
1 dx Ly 8T -1 L

N Mw
|

%
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APPENDIX C - USEFUL INTEGRALS

In performing the integrations of the various half-
range Gaussian distribution functions in previous appendices,
frequent use was made of the following properties of gamma
functions,

Complete gamma functions T(z)

r(z)

]
Sy
]
J
ct
N
|
[a]
Q
ct

r(z)

[}
—
N
|
._l
~
—
Q
|
'_l
~

r(z+1) = zf(z) , r(%) = /7

Particular integral

+00
- 2
J 5 o P g - Bl (c-2)

o B P(%) n even

iz i) =J e z at

y(z,x) = T(2) r(z,x)

Recursion formula

z
y(z+l,x) = y(z,x) - 37— (c-4)



Particular case : z = & , X = S
2 ©

..SZ
v(2, 82) = x(3, 82) - —— 5, e (c-5)
T (5)
with
Sm
—F2
Y(% , S2) = f& e Y du = erf S, (c-6)
m
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6.16082=02
6+94335=n2
7.62501‘02
8.16321=02
8.51751=02
8.,6516u=02
8,53u97=-02
8,14341=02
7.45976=-02
6.47332=02
5.1795n=02
3.57&9,-02
1.67651=0n2

=5.1929u~03




VEIN

ROOT

«05
.10
«15
20
25
030
» 35
o490
<45
20
« 55
« 60
«65
o 70
« 15
QtjU
« 85
90
095
1eU0
1.05
110
1.15
120

TABLE 2 - KINETIC PARAMETERS FOR EVAPORATION

*kXkR £V A

NQe2

1.00807+00
1,01982+400
1.03050+00
1,05973+00
1.09163+400
1.13494400
1,18323+00
1,27113+400
1,37462+00
1,91140+4+00
1,69171+00
1.92839+00
2,23841+00
2.64369+030
3,17270+00
3,86240+00
4,76115+00
5.,93157+00
7.45565+00
g, 44052+00
1,20264+01
1.93973+91
1.97950+01
2,95377+01

r

5.72483-01
S.25278=01
4,75089=01
L,22186-01
3.67043-01
3¢10395=01
2.53344=01
1.97462-01
1.44987-01
9,89712=-02
6.3612R3=02
QQ45857‘02
4,95162=02
8.86002=02
1,75419-01
$.280089=-01
5.70266=01
9.,33809=-01
1.46044+00
2,20538+400
3.24160n+00
4.,06553+00
6.004634+00
Y.22775+00

PORATILION

(KINETIC

C/B

2.86204+00
2+35655+00
1.94101+00
1059903+00
1.31745+00
1.08541+00
8.9412U=p1
7.3635“—01
6.06201=-01
q¢9881°-01
4o10209=01
337094%=01
2076781-01
2¢27050=01
1.86060=01
1.52299=-01
1.2450<=01
1.01639=01
5028513-02
6e74294=02
5.478959=02
404432“-02
3e59670=02
29057 (=32

CONDENSATIO

PARAMETERS)

AL/Z

1.22357+00
1.11872+00
1.01886+00
9,23950-01
8.33887-01
7.48504=01
6.67600=01
5.90947=01
5.18310-01
4.49444=01
3.84109=01
3.22064=01
2.63082=-01
2:06939-01
1.53426=01
1.02344=01
5.35029-02
6.72757=-03
=3.81479=02
-&.1?779-02
-1.22807=01
-1.62868-01
-2.01588=01
-239080-01

AL/Qn

1.24667400
1.16543+4+00
1.08970+00
1.01946+00
9,54599=01
B8.94969=-01
8,40374=01
7090596-01
7.“5“05-01
T7.04568=01
6.67849=01
6.35020=01
6.05858=-01
5.80149=01
5.57692~-01
5.38294=01
5621775=01
5.07967-01
4.96711-01
4087861-01
Q-81280-01
4.76841-01
4.74427-01
4473929=01

N kkkkk

¢

4.66397+00

4,16182+00
3.70605+00
3429316+00
2.91991+00
2.58318+00
2.28006+00
2.00780+00
1.76382+00
1.54568+00
1.35111+400
1.17801+00
1.02438+00
B.88403=-01
7.68358=n1
6+.62672=01
5.69888~-01
4,88664-n1
4.17768-01
3.56074=01
3.02550-01
2.56262-01
2.16359-01
1.82072~=01

%,

7.67984+00
6.85298+00
6.102u48+00
5.42261+00
4,80801+00
4.,25354+400
3,754u2+00
3,3N611+00
2.90435400
2.54516400
2.22479+00
1.93975+400
1,.6R678+00
1.46287+00
1.26520+00
1.09118+400
9,38394~01
8.,046u48=-0n1
6.87910-01
5.86321=-01
4,9R1R0=01
4.,21969=01
3,56263=01
2.99806-01
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TABLE 3 - GAS DYNAMIC PARAMETERS FOR EFFUSION (a_ = 0)

POSITIVE ROOT

IFIN

S

«10

20

«30

40

2y

«60

e 70

«80

«90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
170
1.80
1.90
200
2.10
2.20
2030
280
2.50
2.0U
2470
280
290
3.00

Z

3,62432=01
7.41093-01
1.13e503+00
1.54918+00
1.97965+00
2.42840+400
2.89595+00
3,38278+00
3,88940+400
4,41627+00
4,96380400
5.953264+400
6,12305+00
6o 13551+00
7,970u6+00
6,02830+00
Be10943+00
G, 41422400
1,01431401
1.08965+01
1.16742+01
1.24772+401
1,330504+01
1.41597+4¢01
1.950397+01
1.59459+01
1,68786+01
1.78381+01
1.,88cL5+01
1.98382+01

*xkxx S I M P L E

T3/7710

8,56063=01
9.,15217-01
8.75608=-01
8.57768-01
8001632'01
7.67136=-01
7.34218=-01
7.02816=01
6.,72868-01
6.44316=-01
6.17103-01
5.91162-01
5.6645“‘01
5.42906-01
5,20473%=01
4,99117-01
4,78772=-01
4,59395=-01
4.,4094n=01
4,23364=01
4,06023=01
J3.90072=01
3.75488=-01
Jebl016=-01
S.u47227=01
3.34087-01
3.21561-01
J.09021-01
2.98235=01
2.87375=-01

N3/

2.88419+00
1.47430+4+00
1.030489400
Te¢70501=01
6e50141=01
503679“-01
4.7031U-01
4,2061°5=0g1
3.62109-01
3,514390=01

- 3.26450=01

3.05740=01
2088311“01
20734bl-01
20606]1'01
20“9559‘01
2¢39810=(1
2.3122¢=01
2.2359U=01
2.1677%=01
2.10699=(1
2.05140=01
20ﬂ0150-01
1.85649=01
1.91491=01
lod??la-ul
1.n4247=01
l.3106U=01
1.78122=01
1.75408=01

C A S F %x¥kX%X%kx

SIgM/2

231432400
9.57307=-01
5.38271-01
3.52061-01
2¢57711-01
2.08286=01
1.33714-01
1.74001-01
1.73626=01
1,79306=-01
1088979‘01
2.01293-01
2+415330~01
2.30457=-01
2.46222-01
2.62303-01
2.78467-01
2.94542=01
3.10407=01
3.25970=-01
3.41169-01
3.55959-01
3.70310-01
3.84202=01
3.97627=01
4.10579-01
4.23062'01
4.35078=-01
4.46638=01
4.,57750-01

EPS/2

1-0030u-01
8.11630-02
6.69564~02
5.71157=-02
5.11218=02
4.85022-02
4,88280-02
5.17104=02
5.67986=02
6.37765=02
7.23602=-02
8.22958=02
9,33565=-02
1,05340=-01
1.18069-01
1.31383=-01
1.45145-01
1.59231-01
1.73536-01
1.87966~=01
2.02442=01
2.16894~01
2.31263=01
2.45499=-01
2.59560-01
2.73410=-01
2.87021=-01
3.00369=01
3.13435=01
3.26204=01

BF

301298“'02
5.71911=02
8.09985=02
1.05070-01
1.30493=-01
1.56943=01
1.82875-01
2.06078=01
2.24341-01
2.35933-01
2.39784=01
2.35438=-01
2.22911-01
2.02538=01
1.74850=-01
1.“0“78-01
1.00098=01
5.43856=02
3.99171=-03
-5,04683-02
-1.08424=01
‘1069355'01
-2.32785=01
-2.98289=01
=-3.65481-01
-4.,34022=-01
-5003607-01
-5.73967=01
-6e44865=01
~7.16092=01




vXGT A

PCSITIVE ROQT»TAR.2

S

« 05
«10
.15
«20
25
« 30
«35
W40
45
.50
¢ 55
«60
.65
.70
.75
«80
« 85
«90
«95
1.00
1.05
1.10
1.15
1.20
1.25
1.30C
1.35
1.40

TABLE L4 - KINETIC PARAMETERS FOR EFFUSION (a = 0)

BETA-

1.00807+00
1.01982+0n0
1.03650+00
1.05973+00
1.09163+00
1.13494+400
1.,19323+00
1.27113+00
1.37462400
1.51146+400
1.69171+00
1.92839+400
2.23841+00
2.04369+4+00
317270400
3.,86246+00
4,76115+00
5.93157+00
7.45565+00
9.,44052+00
1.202644+01
1.53974+01
1.97950+01
2.95377+91
3.,30455+01
4,28736+n1
5.57578+01
7.26756+n1

*xkkkk S I

ALFA+

5.19760+00
2.39567+00
1.47472+00
1.02425+00
7.62148=01
5,94365-01
4.80576=-01
4000609-01
3.432“7—01
3.01750~-01
2,71821-01
2.50587-01
2.36053-01
2,26787-01
2.,21734=01
2.20097-01
2.21261-01
2.24746=01
2.30167-01
2.37215-01
2.45634=-01
2.65779=01
2.77180=-01
2.892980~01
3.02000-01
3415217-01
3.,28858=-01

R

5.72480=01
5.25277=01
4,75088=01
4,22186=-01
3-670“3-01
3.10396=01
2.53344=01
1.97u68=01
1.44987=01
9,89711l=02
6036127'02
4,45855=02
4,95155=02
8.85997=-02
1.75419=01
3028009‘01

5.70265=01

9,33809=01
146044400
2.20538+00
3.24160+00
4,66593+400
6.60468+4+00
9,.,22780+00
1.27584401
1.74931401
2.38259+01
3,22807+01

MPLE CASE *xkxx

B

1.68278+01
7.42528+00
4.35953+00
2.87340+00
2.N01575+00
1.46974+400
1.09973+00
8.38058=01
6047238‘01
5.04879=01
3.96816-01
3.13678=01
2.49041-01
1.98370-01
1.58386-01
1.26672=01
1.01417=-01
Re12426=02
6.50901=02
5.21363=-02
4,17366=02
3033826“02
2.66709-02
2.12798=p2
1.6QS19‘02
1.34806=-02
1.06995=02
R.47447=-03

OMFGA1}

7.58318+00
3.79881+00
2.52138+00
1.87030+00
1.46943400
1.19339+00
908843?-01
8,27686=0n1
6.96218=01
5.85064=01
4,88517-01
4,02770=01
3.25183=-01
2.53870=-0n1
10874“6-01
1.24869-01
6.53411-02
8023956—03
-4,69283=-02
=1.00558=01
=-1.52972=01
'2.0““35-01
-2.55165=-01
-3.053&0-01
-3.55140-01
=4,nu674=-01
-4,54062=-01

LAM1/LG

7.72632+00
3.95741+00
269670+00
2.06363+n0
1.68215+00
1.42681+00
1.24424+00
1.10732+00
1.00126+400
G,17171=0n1
8.49385=-01
7.94148=n1
7.48872=01
7.11720=n1
6.81351=-n1
6.56771-01
6.37224=0n1
6.22130=01
6.11038=-n1
6. 03589=n1
5.99498=n1
5098537‘“1
6.00519=n1
6-0529?‘"1
6.12731=-0n1
Hhe22731=n1
6.35205=-n1
6.50080=-n1
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FIG. 3 NORMALIZED MASS FLUX VERSUS DOWNSTREAM
SPEED RATIO
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TECHNICAL NOTE 112

ERRATA

Fig.10 : The two tables below Fig.10
should be disregarded.

Fig.15 : Ordinate of Fig.15 should

read n (o)/rhL







