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ABSTRACT 

The kinetics of the vapor motion due to arbitrary 

strong evaporation/condensation from an infinite,plane inter­

phase boundary are studied using a moment method of the Mott­

Smith, Liu-Lees type. Detailed calculations are performed for 

the case of net evaporation assuming a vapor of Maxwell mole­

cules. 

An equivalence lS shown to exist between the vapor 

motion and the gas flow effusing from a perforated wall. Simple 

transformation rules are established so that experimental in­

formation on evaporation can be obtained from measurements 

perfowmed ln effusive flow fields. 

The theoretical and experimental results are compared 

with existing analytical, numerical and Monte Carlo results. 
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1. INTRODUCTION 

The problem of vapor motion close to liquid-gas or 

sOlid-gas interphase boundaries has received considerable at­

tention recently due to its increasing importance in various 

fields of engineering, including physics and vacuum technology. 

Applications are very diversified and include such areas as 

the sodium cooling of nuclear reactors, the extreme evaporation 

from metal surfaces exposed to high intensity laser radiation, 

space contamination problems and the problem of small, but 

of ten important, reactions on spacecrafts produced by the eva­

poration into empty space of material from adhesive joints or 

other components of the vehicle . The problem has also a certain 

interest to meteorology, because the growth and decay of water 

droplets are largely governed by the evaporation and condensa­

tion from the droplet surface. In addition, the problem of eva­

poration and condensation has intrinsic theoretical interest, 

because the description of th e vapor motion must be based on 

kinetic theory for a general Knudsen layer in which all the 

gas dynamic variables: density, velocity and temperature under­

go significant changes. 

No analytical results covering a wide range of flow 

conditions seem to be available, due to well-known difficulties 

in solving non-linear kinetic e quations, and even the case of 

weak evaporation into a background of the same gas is only 

partly adequately represented by the results that have been 

derived so faro 

Some approximate results have been obtained by Hertz 

(Ref. 1) and Knudsen (Ref. 2) who computed the evaporated or 

condensed mass flux based on equilibrium considerations. The 

evaporation was represented by a half-range Maxwellian with 

parameters n L and TL,s o that n L would be the density correspondi~g{ 

to phase equilibrium at the temperature TL' and the condensing 

mass flux was similarly computed from a downstream stationary 

Maxwellian with slightly different density and temperature 
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n and T , respectively. In this way the so-called Hertz-
oo 00 

Knudsen formula 

• L bn I RT 
m = n --- (--

(bn _ 

L . 21T n
L 

n -
L 

for the net evaporated mass flux was derived. Generally, the 

change ln temperature is neglected and the formula then reads 

~TL 
m = (n -n) ---

L 00 21T 

In either of the two verSlons above, the Hertz-Knudsen formula 

lS found to underestimate the mass flux by a factor of 2, 

principally because the convective motion in the downstream 

vapor flow was neglected. 

This fact was realized and correctd by Schrage (Ref. 

3) and by Kucherov and Rikenglas (Ref. 4), who introduced a 

bulk velocity in the downstream Maxwellian when computing the 

flux of upstream directed vapor molecules. However, they 

neglected collisional effects ln the Knudsen layer and, more 

importantly, they gave no way of relating the downstream bulk 

velocity to the known parameters in the problem. The Schrage 

formula (Section 6) therefore became empirical in nature, re­

qUlrlng measured values of the downstream vapor velocity. In 

addition, the fact that the quantities bn and bT are coupled 

through the ,finite velocity flow field created in the vapor is 

missing in this approach. 

The coupling between the downstream variables,and 

their correct relation to the conditions at the interphase 

boundary,can only be affected by the dynamic equations governing 

the vapor motion arbitrarily close to that boundary, and so must 

be an outcome of the Boltzmann equation, or of suitable approxi­

mations to that equation. Shankar and Marble (Ref. 5) derived 



- 3 -

moment equations from the Boltzmann equation for the problem, 

using a LiU-Lees distribution function (Ref. 6), and considered 

the linearized,unsteady version of these equations. In the 

steady state limit they obtained mass fluxes that were rather 

close to the Hertz-Knudsen predictions. Patton and Springer 

(Ref. 7) on the other hand, obtained results that were twice 

the Hertz-Knudsen mass flux by a similar linearized analysis 

of the evaporation and condensation between two parallel plates. 

In addition, there have been a number of papers 

dealing with the problem of weak evaporation into a background 

of a different gas where the kinetic corrections to the external 

macroscopie gradients can be computed from linearized Boltzmann 

or BGK-equations (Refs. 8, 9 and Refs. 10, 11, 12, respectively) 

The limiting case of strong evaporation into vacuum 

has been treated by Anisimov (Ref. 13) and by Luikov et al. 

(Ref. 14) for a plane interface boundary, and by Edwards and 

Collins (Ref. 15) for a spherical interphase boundary with a 

radius that is large compared to a mean free path in the flow. 

Numerical results for arbitrarily strong evaporation 

have been obtained by Kogan and Makasev (Ref. 16) who solved 

the non-linear BGK equation for the steady state problem, and 

by Murakami (Ref. 17) and by Murakami and Oshima (Ref. 18), 

who made Monte Carlo simulations of the transient vapor motion 

following a sudden change in the phase equilibrium at a variety 

of flow conditions. In addition, Yen (Refs. 19, 20) has obtained 

numerical solutions to the non-linear Boltzmann and BGK equa­

tions for the evaporation and condensation between two parallel 

plates, also at a wide range of non-equilibrium flow conditions. 

The present study lS intended to glve a simple kinetic 

theory description of vapor motion for arbitrary strong evapo­

ration- or condensation rates at the interphase boundary. Only 

steady state situations will be considered and only the case of 

net evaporation is treated in detail. A moment method that 



- 4 -

combines the features of the Mott-Smith (Ref. 21) and the Liu­

Lees (Ref. 6) methods lS used along with the assumption that 

the vapor may be represented as an ideal gas of Maxwell molecules. 

The important coupling between the gas dynamic var la­

bles ln the downstream flow is described by the conservation 

equations, and it is shown that there is only one free driving 

parameter in the problem, for instance, the pressure parameter 

zL = PL/Poo' The ot her downstream quantities noo' U oo and Too are 

unique functions of this parameter, and they are obtained by 

sol ving the non-linear conservation equations for the problem. 

The non-equilibrium contribution to the backscattering of mo­

lecules into the phase boundary and hence the net mass flux, 

is obtained from the same solution - also as a function of zL' 

Under conditions of weak, or moderately strong eva­

poration, the equations may be linearized and a simple, improved 

version of the Hertz-Knudsen formula is obtained, showing ex­

plicitly the effects of convective motion and non-equilibrium 

backscattering on the mass flux. The resulting mass flux is 

approximately twice the value predicted by the simple Hertz­

Knudsen theory. 

It lS shown that the maximum value of the mass flux 

occurs at son~ downstream conditions, and that a steady state 

cannot exist at these conditions.This last rffiult is not only 

an outcome of the non-linear colli sion term of the ~2-moment x 
equation, but also the Boltzmann H-theorem is shown to be 

violated for steady state, supersonic flow conditions. The 

present analytical results are in good agreement with Kogan's 

(Ref. 16) numerical solution of the non-linear BGK equation 

and with Murakami's Monte Carlo simulation (Refs. 17,18), for 

the vapor mot ion in a similar physical system. 

In the last section of this note we discuss a simple 

analogy with the related problem of molecular effusion from a 

perforated wall, for which theoretical and experimental results 
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have been previously obtained by the author (Refs.22,23,24,30) 

Simple transformation rules are established, whereby all the 

results from the effusion problem can be directly transformed 

into equivalent results for the kinetics of the vapor motion at ar­

bitrarily strong evaporation rate~.It is of particular interest 

to note that the transformation applies equally weIl to expe­

rimental and theoretical quantities, thus suggesting that ex­

perimental information on the vapor motion can be extracted 

from measurements in the physically simpier system of effusive 

flow. This has provided comparison of some of the theoretical 

results with experimental quantities, such as backscatter~flux 

at the phase boundary and the speed ratio ln the downstream 

equilibrium flow, over a wide range of conditions. Conclusions 

can therefore be drawn as to the validity of the present method, 

as wall as ot her methods discussed in this note, in describi~g 

flows that are driven by arbitrary strong evaporation. 
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2. STEADY STATE EVAPOBATION AND 

CONDENSATION PROBLEM 

We consider the steady state limit of the following 

one dimensional time-dependent problem : a liquid (or solid) 

is initially in equilibrium with its pure vapor occupying the 

half space, x ~ 0, at the uniform temp~rature and pressure Ta 

and Po, respectively. At the time t = 0, the surface temperature 

of the condensed phase changes discontinuously to the value 

TL and is kept constant at this value throughout the procedure. 

Then, evaporation or condensation begins through the phase 

boundary according to some specific relation among Ta, Po, TL 

and PL' where PL is the vapor saturation pressure at tempera­

ture TL' 

Let us further assume that, far downstream of the 

phase boundary, there is an idealized, flat sink or source for 

the vapor, that can instantaneously match the mass flow created. 

Then it is reasonable to assume that, af ter a time sufficiently 

long for transients to have died out or to have propagated 

through the system, a steady state will be accomplished ln 

which the flow far from the phase boundary is a uniform equi­

librium flow with constant parameters n ,u and T (Fig. 1). 
00 00 00 

These are the downstream gas dynamic variables in the problem, 

with values depending upon the conditions at the phase boundary. 

A kinetic boundary layer will then form between the phase boun­

dary and the downstream equilibrium region, in which non equi­

librium effects may significantly influence the motion of the 

vapor. It is the kinetics of the vapor in .. this layer and in 

the asymptotic downstream state that will be pursued here; 

other phenomena related to the phase transition and to the 

condensed phase being left out of consideration. 

The vapor molecules that are evaporated from the 

interphase surface are assumed to have a Maxwellian distribu­

tion in the velocity half-spa~ ~ > 0, and we have therefore, x 
in accordance with Eqs. 1 and 2, the usual description 
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~ ~ 0 
X 

at x = 0 ( 3 ) 

where n
L 

~s the saturation density corresponding t o TL· It ~s 

further assumed that all impinging molecules are condensed into 

the phase boundary, and that reemission occurs through evapora­

tion, only, which is equivalent to setting the absorption coef­

ficient equal to unity. 

It ~s reasonable to assume that the downstream pres-

sure level, Pro' can be controlled and we thus ask for the re­

maining downstream quantities - including the net evaporated 

mass flux - and the structure of the kinetic boundary layer for 

given values of n L and TL. 
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3. METHOD OF SOLUTION 

The preVlOUS section defines the following problem 

for the one dimensional, steady state Boltzmann equation 

~x 
af = f f f (f'f'-ff ) h ,g) dx dE ~l ( 4 ) 
ax 1 1 ga slnX 

+ 
~l X E 

+ 
X = 0 f = f L , ~ > 0 x + 00 : f + f 

x 00 

where we have used standard notations in the colli sion term 

(Ref. 25), and where f is the downstream drifting Maxwellian, 
00 

1. • e . 

f = 
00 

n 
exp {­

(2nRT )3/2 
00 

00 

222 
(~ -u ) +~ +~ 

x 00 y z} 

2RT 
00 

This equation l.S too complicated for a detailed analytical so­

lution to be obtained, and we therefore resort to a simplified 

description where the Boltzmann equation is satisfi~d ln some 

average sense, only, but such · that the basic features of the 

non-linear colli sion term are preserved. The Mott-Smith moment 

method (Ref. 21), as previously applied to shock structure 

problem, is capable of doing this, but, because of the boundary 

condition at x = 0, the ansatz for the distribution function 

must contain half-range modes in velocity space, much in the 

same way as in the Liu-Lees method for Couette flow problems 

(Ref. 6). Here, however, the discontinuity in velocity space is 

with respect to the velocity component in the direction of bulk 

motion, and this makes the actual calculations somewhat more 

complicated than in either of the two original methods above. 

The following trimodal ansatz lS applied 

( 6 ) 

where the downstream Maxwellian has been split into the two half­

range functions 
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f + = f c- > 0 00 00' "'x ' 

The boundary conditions of Eq. 4 will be satisfied exactly, 
+ 

and this means in terms of the amplitude functions a:(x): 
l 

+ 
al(O) = 1 + al (00) = 0 

+ 
x = 0 a3(O) = 0 x = 00 

+ a~(oo) a3(00) = = 1 
a3(O) = 8 

( 8 ) 

where 8 lS an unknown boundary parameter that must be obtained 

from the solution of the problem. 

Moment equations are then derived from Eq. 4 in the 

standard way, i.e., by multiplying with functions ~ of molecular 
]J 

velocity, and integrating over the entire velocity-space. 

Choosing for the first three ~ 's the collisional invariants 
1 2 ]J 

1, ~x' 2" ~ and for the fourth one a non-conserved quantity ~4, 

we have 

0 

f ~ x tI!]J 
f ~ 0 1 , 2, 3 = ]J = ox 

( 9 ) 

0 

f ~x 1/!4 f d~ J1/!4 J ( f fi ) d~ = ox 

where we have written J(ffl) for the collision term in Eq. 4. 

The first three of these equations integrate to the usual con­

servation equations of one dimensional gas dynamics, whereas 

the last equation will yield a non-linear differential equation 
+ 

for the amplitude functions a~(x) when the interaction law for 
l 

Maxwell molecules is inserted. 

The number of moment equations required to determine 

the three amplitude functions at(x), a~(x), lS ln principle 

only three, but it is clear that first of all the three conser­

vation equations must be satisfied and that at least one further 

equation for a non-conserved quantity must be used, so that the 

total number of equations will be four. Only three of the equa­

tions are, however, linearly independent because of certain 



- 10 -

conditions that are imposed on the coefficients of the system. 

by the conservation equations written for x = 0 and x = 00, 

respectively (Section 5). This situation is similar to the 

shock structure problem where the compatibility conditions are 

the Rankine-Hugoniot equations relating the states of the 

two sides of the shock. 

The present method of solution is identical to the 

method used in Refs. 22, 23 and 24 to treat the effusive flow 

problem, and also identical to the method used by Anisimov in 

Ref. 13 and by Liukov et al. ln Ref. 14 in treating the limiting 

case of strong evaporation into vacuum. These last authors 

solved the conservation equations for one set of flow conditions 

(sonic), only, and estimated the thickness of the corresponding 

Knudsen layer from the BGK colli sion model. In this way, many 

of the interesting features of the solution were not notieed. 
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4. A GAS DYNAMIC CONNECTION PROBLEM 

4.1 Relations between boundary 

and downstream co~ditions 

Before asking for the structure of the vapor boundary 

layer, i.e., before attempting to solve the complete set of 

local transfer equations, Eqs. 9 of the previous section, for 

the amplitude functions a.(x),w~ ~ must make use of the relations 
~ 

that these equations imply between the conditions at the phase 

boundary and at downstream equilibrium. These relations will, 

in fact, enable us to obtain the downstream parameters noo' U oo 
and Too ' as well as the boundary parameter B , in terms of quan­

tities that are controlled in the problem, and the states at the 

two sides of the Knudsen layer will therefore be known. 

Let us write the integrated conservation equations 

at x = 0 and at x = 00 respectively, to obtain 

(fsx 1Vfl f g)x=o = (J Sx 1Vfl f ~Jx=oo = 1,2,3 (10) \.l 

where the distribution function Eq. 6 with the boundary condi­

tions Eq. 8 is to be inserted. More explicitly, this yields the 

present problem's counterparts to the Rankine-Hugoniot equations 

and may be written as follows (Appendix 1) 

n 
00 

tU­
F = n u 

00 00 

B- 1 n RT ~- = n u 2 + n RT 
20000 00 00 00 00 

n u 
00 00 

where the velocity u L ~s defined as 

u = / RTL 
L 21T 

(11) 

(11) 

( 12) 
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"'~ '" '" and where the functions F , G and H contain error functions, 

exponentials and powers of the downstream speed ratio 

8 = u jl2RT as given in Appendix 1. The system of equations 
00 00 00 

expresses the fact that fluxes of mass, momentum and energy 

are the same at the phase boundary and at downstream equilibrium. 

The equations have been written for the case of net evaporation 

only, assuming U
oo 

to be positive. 

The equations may be restated ln a more convenient, 

non dimensional form 

'" 
zL + (3 C = 48 2 + 2 (13 ) 

00 

-~ "'- K /; .L) Z - (3 H = 8 (8 2 + L 00 00 2 

with z L being a give n driving pa r ame t e r defined as the ratio 

between the saturation vapor pressure PL and the background 

pressure Poo' 1.e. 

(14) 

and with 5
00

, ~ and B being the unknown quantitie. of the 

system. A solution may therefore be obtained for these quanti­

ties in terms of zL' and the downstream state will then be 

completely specified because the density follows from the simple 

relation 

n 
00 1 = 
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This shows that only one of the downstream parameters, tor 

instance the pressure Poo' can be chosen freely~ whereas the 

other parameters follow from the solution of the conservation 

equations. The coupling between the downstream parameters thus 

affected by the finite flow velocity u , is equally important 
00 

in the öases of strong and weak evaporation, which means that 

the quantities ~n and ~T in formula (1) can never be treated as 

independent driving terms. This point was also realized by 

8hankar and Marble in Ref. 5. 

It lS furthermore realized that the physical properties 

of the vapor, i.e., the molecular interaction law, do not enter 

into this gas dynamic part of the problem. 

4.2 Non-linear results 

The solution of the prev10us system of normalized 

conservation equations, Eqs. 13, is straightforward in principle, 

but due to the non-linear character of the equations and to the 
~- ~- ~-

complicated form of the functions F ,G and H , the resulting 

expressions become cumbersome in the general case, and the 

solution must be obtained numerically. 

The speed ratio 8 appears to be the natural parameter 
00 

1n terms of which all the other quantities should be expressed. 

By eliminating the boundary parameter Band the temperature 

ratio IToo/T
L 

in Eqs. 13, the following relation between the 

driving parameter zL and the speed ratio 8
00 

is obtained 

( 16) 

~- ~- ~-
where F ,G and H may be expressed as 
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-.8 2 

= -fIT 8 
00 

erfe8 + e 
00 . 00 

28 -.8 2 

= (2.8 2 + 1 ) ere 8 
00 00 

00 00 

- -- e 

fIT 8 
00 

= 2 

with erfe8 being the eomplementary error funetion, i.e., 
00 

erfe8
00 

= 1 -

8 

erf8 = 1 - ~ f 00 

00 ;; 0 

-t 2 
e dt ( 18 ) 

Although the eoeffieients of Eq. 16 are very eomplieated and 

eontain some transeendental funetions, the equation is essen­

tially a seeond degree algebraie equation for the parameter 

zL in terms of 8
00

, and it ean be solved numerieally without any 

diffieulties. Only one of the two roots is positive for posi­

tive values of 8
00

, and that solution lS eontained in Table 1 and 

is furthermore shown plotted in Fig. 2a. 

The rema1n1ng quantities now follow direetly from 

Eqs. 13, 1. e . , 

S 
4.8~+2-ZL 

= 'V_ 

G 

(19) 

~= zL 
_IV_ 

+!; 8 (8 2+ 2) S H 
00 00 2 

and the density lS glven by the simple expression Eq. 15. The 

quantities are tabulated 1n Table 1 and plotted in Figs 2b,e,d. 

It is possible to demonstrate that, for values of 8 above 
00 

approximately 0.6, the following asymptotie law applies for 8 

8 2 

S IV e 
00 

( 20) 

as indieated 1n Fig. 2d. 
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Now, S lS the value of the amplitude function a3 

for the distribution function f at the phase boundary, and 
00 

therefore is the amplitude of the distribution function des­

cribing molecules that are scattered back into the boundary. 

The value S = 1 corresponds to equilibrium and therefore to 

an abscence of Knudsen layer effects. On the other hand,S > 1 

means that non-equilibrium backscattering occurs in the Knudsen 

layer, and more so the larger S is. At extreme conditions, that 

is when S ~ 0.6, the non equilibrium backscattering is signifi-
00 

cant, tending to reduce the net evaporated number flux. 

The number flux is expressed by the first of Eqs. 11, 

and the normalized verSlon 

m 1 (21) 
n u 

00 00 

= 

lS contained in Table 1 and shown plotted versus the speed ratio 

S in Fig. 3. The function is practically flat above S ~ 0.6 
00 00 

and it reaches a weak maximum (0.820) close to 8 = 0.8. This 
00 

indicates that about 18% of the flux evaporated from the phase 

boundary is scattered back, mainly as a result of non-equilibrium 

collisions 1n the Knudsen layer close to the boundary, at extreme 

conditions of strong evaporation. 

4.3 Linearized results. Improved Hertz-Knudsen formula 

In the case of weak evaporation the downstream flow 

velocity u is small compared to the thermal velocity, i.e. 
00 

8
00 

« 1, and the previous expressions may be linearized leading 

to simple and useful results. 

To obtain the linearized verSlon of the conservation 
~- ~- ~-

equations, Eqs. 13, we first expand the functions F ,G and H 

and have 

~-
F = 1 - In S + 0(8 2 ) 

00 co 
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"'- 4 0(8 2 ) G = 1 - S + 
/TI 

00 00 

'" 5 
R = 1 - h 8 + 0(8 2 ) "4 00 00 

Then writing 

T 
toT 00 

zL = 1 + toz
L = 1 -

TL TL 

e = 1 + toe 

1n Eq. 13, and neglecting produets 1n small quantities, we 

obtain the linearized system 

= 2h 8 
00 

+ toe = ( 24) 

1 toT 2 '" toz
L 

+ toe = h 8 - toR 
2 T ' 2 00 

L 

'" '" -where we have also put F = 1 - toF etc. with , 

'" '" 4 "'- 2 toF = /TI 8 toG = 8 toR = ;; 8 
00 ' rrr 00 4 

00 

From the first of Eqs. 24 above it is clear that neglect of the 

downstream convective velocity when computing the mass flux, 

'" would imply neglect of the quantity toF =;; 8 in comparison 
00 

with 2/TI 8
00

, and thus will never be justified, irrespective of 

the smallness of 8
00

, and of u . 
00 

The solution of the above 

toz
L 

(~ 9/TI ) 8 
toT /TI = + = 4 /TI 16 00 TL 

(~ 91; 
toe = 16) 8 

;; 00 

system in terms of 8 lS 
00 

8 
00 

(26) 
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with a similar result for the density, l.e. 

= 1 - (..R. 
.;-; 

+ 5/7T) 
16 8 

00 

The results are indicated with the straight lines on Figs 2a-d, 

'" and the linear approximation to F is also shown in Fig. 2e. 

Only the temperature is reasonably well approximated by the 

linear result outside of the range of small 8 values. 
00 

A linearized expresslon for the number flux lS now 

available, and we have 

(
t.n 1 t.T - + - - - t.8 
n L 2 TL 

'--~l 
( 28 ) 

1TI8 
00 

0.13148 
00 

showing the relative importance of the varlOUS contributions 

( i ) Hertz-Knudsen theory (t.n + l t.T) 
n L 2 TL 

(ii) non-equilibrium backscattering (t.8 

"'­(iii) downstream convective motion (t.F) 

The non equilibrium backscattering lS thus seen to be very 

moderate under conditions of weak evaporation, whereas the ef­

fect of convective motion lS not. 

Making use of Eq. 27 and of the simple fact that the 

sum ln the above parenthesis equals 2';; 8 , the expression for 
00 

the number flux may be written 

where the value of the numerical factor lS 2 .. 107. This improved 

Hertz-Knudsen formula predicts a mass flux that is more than 
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twice the value glven by the original version, Eq. 2. 

Because the changes ln density, temperature and pres~ 

sure are uniquely related via the flow velocity Uoo ' (Eqs. 26, 

37) the result mayalso be given in terms of pressure drop, 

bp = PL - Poo' and we have 

~ = n /RT L Q..E. • 
L 27T PL 

327T 
32+9'rr 

with the value of the numerrcal factor now being 1.668. 

4.4 Limiting conditions. Boltzmann H-theorem 

The question of what limiting steady state conditions 

can be reached downstream of the Knudsen layer in the case of 

strong evaporation, is not a trivial one, and must be settled 

by arguments from kinetic theory. In the conservation equations 

Eqs. 11, there is ln fact nothing that prevents us from con­

sidering arbitrarily large supersonic downstream flow velocities 

for sufficiently large values of the pressure ratio PL/Poo. In 

complete analogy wit h the corresponding problem for the per­

forated wall effusion, we now demonstrate that the Boltzmann 

H-theorem implies that the speed ratio S must always be less 
00 

than a certain value, correspondi~~ to weakly supersonic flow. 

It will be shown later (Section 5.3) that the limit is even 

more restrictive, and that only subsonic flow conditions are 

actually possible. 

The H-theorem for a bounded system under steady state 

conditions is (Refs. 26, 27) 

f dS f(~·t) f ~nf d~ < 0 (31) 
-+ 

S ~ 

where the integrals must be evaluated at the boundary S, having 
-+ 

local outward directed normal v. In the present case, this gives 

the inequality 
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where the distribution function must be taken in accordance with 

the boundary conditions and the solution obtained for f-Ix=o,i.e. 

f+ 
i;x > 0 

L 

x = 0 f = x = 00 f = f ( 33) - - 00 

B f 
00' i;x < 0 

When the indicated integrations 1n the velocity space are carried 

out, using the results of Appendix 1, and the conservation equation 

for mass flux is used, the inequality (32) may be rewritten in 

explicit terms as 

+ B 
n 

00 

+ 3 ;; S - 2 > 0 
00 

The left-hand side of this inequality has been tabulated along 

with the gas dynamic parameters in Table 1 and is listed under 

the heading BF. This quantity is seen to be positive for values 

of S that are below 1.20, and the H-theorem is therefore satis-
00 

fied up to this point, only. A graph of this function (BF) lS 

given in Fig. 4 where the speed ratio S has been chosen as 
00 

abscissa. Highly supersonic vapor velocities are thus seen to 

be impossible in the steady state limit in the process considered. 
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5. 8TRUCTURE OF THE VAPOR KNUD8EN LAYER 

5.1 Local conservation equations 

To compute the transition from the state at the phase 

boundary through the kinetic boundary layer to the state at 

downstream equilibrium, local conservation equations must be 

written and solved together with a transfer equation for a 

non-conserved quantity. The local conservation equations are 

as follows (Appendix 1) 

n u 
00 00 

1 + 1 RT ~+ + 1 'V_ 
a~(x) u 2 nLRT L al (x) + n a3 ( x) + n RT G = n + n RT 

2 2 00 00 2 00 00 00 00 00 

+ /RToo 'V+ + /RToo 'V_ 
a~(x) 2n

L
u

L
RT

L al ( x) + 2n RT H a 3 (x) - 2n RT H 
00 00 2n 00 00 2n 

= n u 
00 00 

(-!. u 2 + 2. RT ) 
2 00 2 00 

with 
'V+ 'V+ 'V+ 
F , G and H 

ln the Ç. > 0 .x part 

being the results of half-ra~~ integrations 

of the velocity space, and being related to 

from ~ < 0 integrations by previous 

'V+ 
F 

'V+ 
G 

'V+ 
H 

+ 

'V 
F 

'V 
G 

'V_ 
H 

functions x 

= 2in 8 
00 

= 48 2 + 2 
00 

= in 8 3 + 2. ;; 8 
00 2 00 

(36 ) 

00 

The equations may be exploied more easily ln the non-dimensional 

verslon 
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+ '\.0+ + '\.0 

zL al (x) + G a3(x) + G a3(x) = 48 2 + 2 
'" 

(37) 

+ I:: "'+ + /;00 ~-a;(x) ~;; 8 (8 2 + ~) zL al(x) + H a3(x) - = 
TL '" 00 2 L 

It lS easy to show that, with the Rankine-Hugoniot like rela­

tions Eqs. 11 or Eqs. 13 being satisfied by zL' 8", and T",/T L , 

the above system of three 1inear equations for the three amp1i-
+ + tude functions al,a3 and a3 is singular and therefore does not 

specify a non-trivia1 solution for these quantities. If this 

was not so, the structure of the kinetic boundary layer would 

follow from the conservation equations alone, without any col-

1isional effects being involved, thus leading to highly con-

tradictory results. The Rankine-Hugoniot like equations in 

the gas dynamic problem are therefore necessary conditions for 

a solution of the full kinetic problem to exist, in complete 

ana10gy with the Mott-8mith approach for the shock structure 

problem. 

On1y two of the three equations (37) are thus linear1y 

independent and the system therefore serves to express two 

amplitude function s in terms of the third one. By simple manipu­

lations we find 

- 1 

8 - 1 

8 

8 - 1 

which also means that a very simple re1ation exists between 

these two functions, namely 

Further progress must be based upon specific information on 

collisional effects, and for this we require a moment equation 

for a non-conserved quantity. 
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5.2 Transfer equation for ~4 = 1;2 
x 

A natural choice for the non-conserved quantity is to 

take ~4 = 1;2 in Eq. 9 and then use existing formulas for the x 
resulting colli sion term for the case of Maxwell molecules 

(F ~ ~). For that particular interaction law the cross sec-
r 5 

tion 0 (X,g) in the two-particle problem becomes inversely pro-

portional to the relative velocity g, so that the product oog 

in Eq. 4 becomes a function of the deflection angle X, only 

(Ref. 25). This considerably simplifies the evaluation of the 

collision term in any non-conserved moment equation, and in 

particular the colli sion operator does not create moments of 

higher order than those given by the function ~4 itself, i.e., 

(Ref. 25). 

By well-known results from the symmetry properties 

of the binary colli sion term (Ref. 25) we have in the general case 

= f f f f (~4(t' )-ljId!)) fflgo(x,g)sinXdxd€~I~ ( 40) 

-+ -+ 
I; SI X € 

-+ -+ 
where 1;' lS related to I; by the dynamics of a binary encounter. 

Because of the simplifications for Maxwell molecules noted above 

the 1;1 and the x-integrations can be performed independently 

and simple expresslons will result from both integrations. 

For ~4 = 1;2 we have (Ref. 25, pp 364) x 

f ~4J(ffl) ~ 
7r /RTr n 

T' (41) = À m 27r n xx 
-+ r r 
I; 

where the mean free path Àr ln the reference state denoted by 

subscript "r" is related to the potential constants A (4) and a, 

or to the viscosity coefficient ~ of the gas, by 
r 



À 
r 

= 5 
l6A2(4) 

= 
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l-lr 

mn 
r !2R;r (42) 

T ' xx 
lS the vi scou s part of the normal stress in the x-direct ion 

as obtained from the standard definition 

( 13 f (1_-+u) 2 f d~ )0 T~X = - m f(~x-u)2 f d~ s s 

-+ 
where u = (u,O,O) lS the local bulk velocity 1n the present 

one dimensional flow. 

Also, by definition we have 

n = f f ~ 

u = ~ f ~x f ~ 

so that the resulting moment equation for ~2 x 

( 44) 

lS non-linear 1n the moments of f occurr1ng 1n the right hand 

side. 

This equation must be worked out in terms of the basic 

amplitude functions, a~(x), af ter the expression for f. 
1 J 

has been inserted. Then the Eqs. 38 can be used to transform 

the result into a differential equation for one single amplitude 

function, only and a solution may be obtained. This procedure is 

reviewed in some detail in Appendix 2, from which we quote the 

following results 
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(46) 

with L _ nu, and ~l and ~2 being given as 
00 00 

The parameter r lS expressed as 

r = ( 48 ) 

and all these quantities are unlque functions of the driving 

parameter zL by the gas dynamic relations between the states at 

the phase boundary and at downstream equilibrium. 

The convective term may similarly be expressed ln 
-terms of a3 alone, and the result is (Appendix 2) 

a 
ax f t;~ f g = 

f3 -1 

The moment equation (45) may therefore be written as 

da3 
-B "Ci"x- = 

where B, C and r are non zero, positive parameters that dep end 

upon the flow conditions as indicated by the expressions above. 

Therefore, if r < 1 

the above equation describes a relaxation towards the correct 

downstream equilibrium a3 = 1, so that both boundary conditions 
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on a3 from Eq. 8 are satisfied, l,e" 

(S > 1), 

Then the solution of Eq. 50 above lS 

a;(x)-l 

a;(x)-r 
= (S_-l) e 

S -r 

C (l-r) 
B À L 

x 

fr om which a proper scale for the thickness of the Knudsen layer 

appears to be 

Q, = 
~ (l-r) 

With one amplitude function being known, the other two follow 

from Eqs. 38, and the distribution function is therefore com­

pletely determined, revealing the corresponding structure of 

the Knudsen layer. 

5.3 Properties of the solution 

To discuss the solution for the amplitude functions 

found above, we first need to consider the actual values of 

the parameters B, C and r at all possible flow conditions. This 

is done in Table 2 where these quantites are tabulated as func-
. . C. 

It lS seen that the ratlo B lS tions of the speed ratio, 8 . 
00 

of order unity at ordinary flow conditions, decreasing with 

increasing values of 8
00

, and that the parameter r stays below 

unity for values of 8 below approximately 0.91 (Fig, 5). The 
00 

C product B (l-r), which is also of order unity at intermediate 

conditions, therefore decreases strongly with 8 and becomes 
00 

zero at the above critical value of 8 that makes r equal to 
. 00 

one. The quantitative behaviour is shown in Fig. 6, where the 

reciprocal length Eq. 52 has been plotted versus the speed ratio 

8 
00 

In the range where we have 



- 26 -

- ~ (l-r) 'V 0(1), i. e. 

the solution Eq. 51 describes spatial relaxation through a 

Knudsen layer of thickness as the mean free path À L , At the 

higher values of 3
00

, and in particular as we approach the 

critical value close to 0.91 1, the thickness of the Knudsen 

layer increases strongly and finally becomes infinite. 

In the limit r = 1 the differential equation (50) 

does, however; degenerate into the simpler version 

-
da3 

-B dx = 

whose solution lS glven by 

1 = 
S -1 

This non-exponential solution implies a very slow approach to­

wards downstream equilibrium, and evaluating the parameters 

entering, we have 

c ( s - -1) '" 0.05 
B 

(at r = 1, 3 '" 0.91) 
00 

so that a length scale 

t 
À

L = 
C ( s -
B 

-1) 

lS of the order of 20À . In order to complete 90% of the transi-- L 
tion to the downstream son1C state, i.e., in order for a~(x) to 

reach the value 0.9, a value of x equivalent to some 250 mean 

free paths ÀL is therefore required, and this means that th~ 

1 
The actual critical value lS found to be 0.907. 
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downstream equilibrium lS practically unattainable under these 

conditions. 

At values of 8
00 

greater than sonic, which are predicted 

by the conservation equations to occur for values of zL above 

4.8, we find 

1 < r < S 

and Eq. 50 has a solution that approaches the downstream value 
-

a3 = r, rather than the equilibrium value a3 = 1. The downstream 

state corresponding to a3 = r is clearly incompatible with the 

Rankine-Hugoniot-like conditions (11), and a; = r therefore re­

presents a spurious equilibirum without any significance for 

the present problem. 

The non-conserved moment equation (50) thus implies a 

relaxation towards a Maxwellian state only as long as the pres­

sure ratio PL/Poo is below 4.8 and the flow lS subosnic. This 

results is a little more restrictive than the limit 8 < 1.2 
00 

which was derived from the Boltzmann H-theorem. 

At low evaporation rates, corresponding to small devia-

tions from equilibrium, 

the substitution 

-a ( x ) = 1 + h(x) 
3 

We thus get 

dh C (l-r) = h dx B À L 

h(O) = óS 

50 may be linearized with 

( 56) 

( 57) 

where the coefficient % (l-r) may be evaluated from linearized 

expressions for 8 «1, and óS is the linearized boundary 
00 

value given in Eq. 26. 
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It lS readily verified that 

i (l-r) = i (S <;< 1) 
00 

so that the solution for h(x) lS 

h(x) = Ll8 e 

We .t here fore 

a3(x) = 1 + 

h(x) + 
al(X) = 

Ll8 

+ 
a3(x) = 1 -

3 - x/-À 4 L 

have 

-
Ll8 e 

-
;:: e 

h(x) = 
Ll8 

3 
x/"4 ÀL 

3 
x/4"À L 

3 - x/4"À L 1 - e 

and the sealing length for the Knudsne layer thickness 

5.4 Discussion 

(60) 

lS 

Some results revealing the structure of the Knudsen 

layer at arbitrarily strong evaporation rates are shown in 

Figs. 6-10. 

From Fig. 6 the thickening of the Knudsen layer with 

increasing S , which means increasing evaporation rates, is 
00 

apparent. According to the present sOlution, the son1C state can 

never be achieved with the downstream flow being close to equi­

librium. Two interpretations of this result are possible 

either the flow must become unsteady in the sonic limit, or, 

there are not enough collisions to affect a downstream equili­

brium when the pressure ratio zL ;:: PL/Poo exceeds the critical 

value close to 4.8. In the latter case a very complicated transi­

tion from a Knudsen layer type of flow close to the boundary 
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into a non-equilibrium rarefaction wave extending to infinity 

will occur. 

Figures 7, 8, 9 and 10 show the relaxation of the 

basic modes in the distributionfunction and of the macroscopie 

quantities density, velocity and temperature at typical flow 

conditions; S : 
00 

0.3, 0.5, 0.7. The vapor is seen to expand, 

almost isothermally, away from the phase boundary, af ter a 

rat her pronounced microscopie Jump ln temperature has been 

taking place at the boundary. For the typical flow conditions 

of 8
00 

= 0.5 

0.85, 

we quote the numbers 

T 
00 = 0.80 

TL 

which means that 75 per cent of the total drop in temperature, 

from the evaporation temperature TL at the interphase to the 

equilibrium temperature T
oo 

far downstream, is affected by the 

microscopie jump at the boundary. This percentage is slightly 

less at higher evaporation rates, and larger at lower evapora­

tion rates - and downstream flow veloeities. 

The macroscipic quantities were obtained from the 

standard definitions 

n = f f ii 1 nkT = f ! m c 2 f de 
2 2 

resulting ln the explicit formulas 

n 
(a~(x)-l) 

1 
+ 1 = 2"h n 

(61) 
00 

T , n ~S;+3+(a;(X)-1).2-2S~ n~ ..L 00 

= T 3 n 
00 

with ~l and ~2 being defined ln the previous Eqs. 47, and with 

a;(x) being given by the solution (51). The spatial relaxation 

lS contained in one mode only, such as exp(- f) which is aresult 

of the fact that only one non-conserved moment equation has been 

used to describe the structure of the flow. 
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6. GOMPARISQN WITH EXISTING RESULTS 

6.1 Linearized results 

For the case of weak evaporation or condensation, 

several theoretical papers present both approximate and exact 

results based upon the linearized Boltzmann or BGK equation, or 

based upon 1ihearized solutions to systems of moment equations. 

Pao (Ref. 10) derived the following approximate results 

from the linearized BGK equation 

!lT I; 
S 

!ln 71; S = 4 = -8-
TL 00 n L 

00 

( 62) 

2n
L 

/RT L rn 

+ 
1 'T~ m = 21T n

L 
2 TL 

which are very close to our linearized results, Eqs. 26-29. 

In fact, the temperature change is exactly the same, and the 

density change and the mass flux are only slightly smaller, 

by 8 and 5 per cent~ respe~tively. The above results have been 

confirmed by Pao (Ref. 11) by an exact evaluation from the 

linearized BGK equations, and by Loyalka (Ref. 8) and Cipolla 

et al. (Ref. 9) who considered the linearized Boltzmann equa­

tion for Maxwell molecules. 

In addition, Patton and Springer (Ref. 7) have obtained 

evaporation rates that are twice the Hertz-Knudsen value for 

evaporat ion - c ondensa t ion between two parall el plat e s by sol vi n..s; I 

linearized moment equations derived by Liu-Lees' method. 

Shankar and Marble (Ref. 5) on the other hand, ob­

tained in a similar analysis for the half-space problem, results 

that are rather close to the Hertz-Knudsen values. They did, 

however, neglect the bulk velocity in the downstream Maxwellian 

and this will always lead to Hertz-Knudsen results. The authors 

emphasized the fact that on1y one of the downstream variables 

can be ch6sen freely in the problem and that therefore there lS 
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only one free driving parameter,such as 6~, lnEq. 30. 

6.2 Non-linear results 

The non-linear formulation of the problem most of ten 

requlres numerical evaluation, but a few approximate analytical 

results are available. 

Anisimov (Ref. 13) and Luikov et al. (Ref. 14) used 

the same Mott-Smith method as in the present study to compute 

the limiting case of strong evaporation from a plane metal sur­

face into vacuum. Their calculation is therefore only for sonic 

downstream conditions, and the values obtained at this point 

are identical to the limiting values of the present analysis, 

Figs. 11, 12, 13. In particular theyfound (m/mL)c~ = 0.815 

which means that the backscattered flux is 18.5 percent of the 

evaporated flux at extreme conditions. Practically the same 

result has been obtained by Edwards and Collins (Ref. 15) for 

the approximate calculation of evaporation from a spherical drop 

into vacuum, using Grad's expression for the distribution func­

tion at the surface of the droplet. The structure of the Knudsen 

layer was estimated from the BGK collision term in Ref.14, and 

from the Navier-Stokes equations matched to a Grad-type of 

distribution function at the phase boundary in Ref. 15, and 

none of the treatments present any irregular behaviour at, or 

close to the sonic point. In fact, the analysis in Ref. 15 assumes 

that the sonic state, M = 1, can be reached by the vapor af ter 
00 

expanding through a finite thickness Knudsen layer, which seems 

to be contradicted by the present results. 

Kogan and Makashev (Ref. 16) solved the non-linear 

BGK equation numerically for the half-space evaporation problem, 

and obtained results as shown on Figs. 11 and 12. The agreement 

with the present results is good, except at extreme conditions, 

for which th e accuracy of Kogan's numerical results are known 

to be poor (Ref. 28). For the heat flux from the phase boundary 

which is defined as 
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qw = ~ m J t; X,F,; 2 f ( 0 , t ) g 
-+ 
t; 

the agreement lS substantial at all, flow conditions (Fig. 12). 

The abscissa in Figs. 11, 12 lS the number flux at the phase 

boundary normalized by the flux nLc mL = n L/2RT
L

. 

Yen (Refs. 19, 20) obtained numerical solutions of 

the discretized Boltzmann and BGK equations for evaporation­

condensation between parallel plates. Ris results show the 

same qualitative trend as the present results, namely, that 

the non-equilibrium collisional effects tend to reduce the eva­

poration rate as compared to linear theory. 

6.3 Monte-Carlo results 

Murakami (Refs. 17,18) has made a Monte-Carlo simula­

tion of the full unsteady version of the present half-space 

problem, and asymptotic steady state results are shown in Figs. 

11, 12, 13. The parameter a l S the condensation coefficient 
I 1 

(taken to be unity in the present study) and the parameter 8 

is defined as 

8 = ( 64) 

ln terms of the notions explained ln Section 2. 

The agreement between the Monte Car10 results and 

the present calcu1ations is very good for all quantities 

throughout the whole range of flow conditions considered. The 

non-linear deviation in mass flux at strong and moderately 

strong evaporation is evident (Fig. 11) and the almost flat 

maximum for S larger than 0.6 is apparent from both sets of 
00 

1 
Not to be confused with 8 ln the present treatment. 
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results (Fig. 12). A maximum value 1n the number flux close to 

0.85 n
L

/RT
L

/2n may be inferred from the Monte Carlo results, 

and this is only sldghtly higher than the Mott Smith value, 

0.82 nL/RTL/2n. Very few values for the heat flux are available 

from the Monte Carlo calculations and those at extreme conditions 

appear somewhat overestimated compared to the present and to 

Kogan's results. 

Further substantial agreement lS observed in the 

comparison of macroscopie jumps in density and temperature 

from the Monte Carlo and the present results (Fig. 13) . The 

deviation in density jump from linear predictions in the Knudsen 

layer is of importance even for moderately strong evaporation. 

The temperature jump is on the other hand predicted quite ac­

curately by the linear theory throughout the whole range of flow 

conditions 1 

The Monte Carlo results for the local structure of 

the evaporation Knudsen layer are also in qualitative agreement 

with the predictions from the present theory, and they show in 

particular that a steady downstream state is never accomplished 

at, or beyond Mach number equal to one. In those cases the 

Knudsen layer and thereby the non-equilibrium effects, are found 

to merge far into the downstream flow field through a kind of 

(non-equilibrium rarefaction wave (Ref. 18) and it is not clear 

if the ultimate downstream state will be exactly sonic, or not. 

Some results obtained with the Schrage formula, i.e. with B = 1 

in the expression (11) 

Observe that the odd trend 1n the Monte Carlo predicted tem­

peratures at low evaporation rates is due to statistical scat~ 

tering in that method. 
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are also shown 1n Fig. 11. The va~ues for S were inferred from 
00 

the Monte Carlo reBults in that figure. In addition to being 

incomplete trom the theoretical point of view, the Schrage 

formula overestimates the mass flux at extreme conditions, due 

to neglect of non-equilibrium contributions to the backscat­

tering. The present expression for the mass flux with 8 1 1 

where Soo is a glven function of zL = PL/Poo is to be preferred 

due to consistent and easy application; and also due to improved 

accuracy at extreme conditions of high evaporation rates. 

6.4 Experimental results 

The only experimental results, on strong evaporation 

at least, that appear to be referred to in the literature, are 

those of Golubtsov (Ref. 29) for evaporation of tantalum into 

vacuum. They are shown in Fig. 11 and indicate mass fluxes close 

to the predicted upper limit. The downstream variables were, how­

ever, not obtained by measurements in the flow field itself, 

they were rather inferred from ambient pressure measurements 

in the background and accordingly these quantities are not weIl 

defined. In at least part of the experiments, the flow condi­

tions were far from being one dimensional and this makes the 

assignment of any value n 1n Fig. 11 rather questionable. 
00 

In the following section we indicate a way of obtaining 

additional and more detailed experimental information by making 

use of an analogy between evaporation and the physically simpIer 

situation of effusion from a perforated wall. 
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7. THE ANALOGY BETWEEN EVAPORATION AND 

PERFORATED WALL EFFUSION 

7.1 Physical similarity 

The problem of molecular effusion from a thin, per­

forated wall has been studied theoretically and experimentally 1n 

Refs. 22, 23, 24 and a complete report on the results is given 

in Ref. 30. The system is represented schematically and compared 

with the system used to represent evaporation in Fig. 14. 

Under appropriate conditions (orifice diameters and 

spac1ng small compared to the mean free path, wall thickness 

small compared to the orifice diameters, etc.) the effusion can 

be described by the half-range Maxwellian 

+ 
f = e 

with 

n 
e 

(2nRT a )3/2 
~ exp {- 2RT

a
} t; > 0 x 

ne = qna ( 66) 

where q is the small,fractional porosity of the wall, and na 1S 

the number density in the gas at stagnation conditions at the 

upstream side. In the limit of small porosity, capturing of 

impinginj?; , molecules can be neglected, and considering diffuse 

reflection, from the wall at temperature T = Ta, only we have w 

( 2nRT a)3/1 

t;2 
exp {- 2RTa} 

i.e., the same half-range Maxwellian as above, except for the 

density. 

The result of these two contributions 1S seen to 

be completely equivalent to the distribution function describing 

evaporation : 



(2nRT )3/2 
L 

ç;2 
exp ' {- 2RT } 

L 
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ç; ' > 0 
x 

provided the temperature Ta lS taken to be TL' and the sum of 

densities ne + nw corresponds to nL· 

The conditions for the mass injection at the upstream 

boundary are thus the same in the two systems, and far downstream 

the state must approach a Maxwellian. The only lack of physical 

similarity between the two systems comes from the fact that 

molecules are reflected at the boundary in one case, and com­

p~etely condensed into it in the other case. But this is merely 

a difference in physical processes taking place at the boundary 

itself and it does not affect the kinetics in the flow, as will 

be shown next. 

7.2 Equivalent quantities. Transformation rules 

The following considerations are general and are not 

limited by the approximate nature of the treatment of the eva­

poration problem in previous sections. 

Assume that the one dimensional Boltzmann equation 

(4) can be solved for the half-space problem (x > 0) specified by 

x = 0 
+ 

f = f Q ç; > 0 
x 

( 68 ) 

-for given ,(pumping) conditions at macroscopic infinity. Then 

the solution may tend to a Maxwellian f (n, u ,T ) far from 
00 00 ex> 00 

the boundary. 

brium 

tions 

same. 

The Maxwellian f
oo

' describing the downstream equili­

flow, will be the same in two physically different situa-
. ... . + - . 
1f the d1str1but1on funct10n f

Q 
at the boundary lS the 

The two flows will then be completely equivalent from the 

kinetic point of view. 

For the two particular cases under consideration, the 
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condition for equivalence lS glven by Eqs. 65, 66 and 67 

f
+ + + f e w 

whi~h we rewrite as 

with a+ being defined as 1n previous treatments on effusive 

flow, i.e., as 

+ 
a = 

This 

n
L = 

T = L 

PL = 

n 
w 

n e 

gives 

+ 
(l+a ) 

Ta 

+ 
(l+a ) 

the parameter relations 

n e 

Pe 

Provided these relations are satisfied, the boundary conditions 

in the two problems are the same, and the flow field due to 

evaporation is completely equivalent to the corresponding ef­

fusive flow. In particular, the asymptotic downstream equili­

brium state is the same in two cases. 

This can be used to transform any result obtained in 

the effusive flow problem into an equivalent result for evapo­

ration. We have, for instance, the relations 

noo 1 
n T T 

00 00 00 

= = n
L 

+ n TL Ta l+a e 

( 73) 

Poo 1 Poo + = zL = (1 +a ) z 
PL + Pe l+a 
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that apply at constant u
oo

' and therefore at constant 8 
00 

The 8
00 

versus z (~ qPQ/p
oo

) .relation in effusive flow 

lS therefore transformed into the equivalent 8
00 

versus z1 

(= P1/ Poo) relation for evaporation by the simple change of 

driving parameter 

+ z1 = (l+a )z 

The transformation is practical 1n only one direction, namely 

from right to left, or from effusion to evaporation, because 

a+ is an additional unknown that occurs in the effusion problem 

but not for evaporation provided the impinging molecules are 

all condensed at the interphase boundary. 

For purpose of illustration, the solution corresponding 

to the approximating distribution function Eq. 6, (a = 0, Ref. 

30) for effusive flow has been included in Tables 3 and 4, so 

that it can be verified that the transformations above lead to 

the correct results. 

7.3 Transformation of experimental results 

The transformations from effusion to evaporation 

problems outlined above work equally well also for experimental 

quantities. This is of particular importance because many 

measurements are far more easily performed in the effusiv~ flow 

than 1n the equivalent vapor flow problem. 

We will now show that the transformation function 

1n the expressions above can actually be obtained from simple 

flux measurements, so that the transformation of experimental 

results can be perfommed independent of any approximate theo­

retical treatments. 

Consider the flux of molecules scattered back on 

the perforated wall in effusion 

+ a 
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w 
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In case of small wall porosity capturing of backscattered mole­

cules by the wall orifices can be neglected, and we have the 

usual flux balance at asolid boundary: 

f 
ç; <0 

x 
ç; > 0 

x 

+ . ... . 
where f- lS the d1str1but10n funct10n for molecules that are 

w 
brought in contact with the solid part of the wall. 

f 
ç; > 0 

x 

+ According to the expression for f , Eq. 67, we have w 

+ = CL 
n jRTO ,_ 
el~ 

+ • 
CL m 

e 

+ where the density n has been replaced by CL from the general w 
definition, Eq. 71. But then Eq. 75 will give 

f Iç;) 
ç; <0 

x 

f dÇ; 
w 

+ 
CL 

and this lS a quantity that was obtained experimentally in 

Ref. 30 at a variety of flow conditions, using a free molecular 

orifice pr0be mounted flush with the wall. 

+ The transformation function CL lS thus immediately 

available from already existing experimental data (R~f. 30), 

and transformation of experimental quantities can proceed in 

exactly the same way as for the theoretical results, i.e., by 

using the fundamental relations Eqs. 72, 73. 

We now apply this result to obtain experimental 1n­

formation on two interesting quantities in evaporation: 
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backscattered flux at the interphase boundary ~-(O), and down­
PL 

stream speed ratio S 
00 

as functions of the pressure ratio z = 
L 

For the flux we clearly have 

t;. <0 
x 

f ~ w 

if the boundary conditions are equivalent, i.e., if 

• + = m (1 +CL ) 
e 

Here the notation lS such that 

m = n fRT;: 
L L I ~ , m = n /RT o 

e e 2'IT 

This gives for the backscattered flux ln evaporation 

f It;.) f ~ w 

m-(O) t;. <0 + 
1 x _CL_ = = + + 

mL l+CL m 1 +CL e 

(80) 

ln terms of the corresponding flux in effusion. The driving 

parameter is then transformed according to Eq. 74, 

+ 
z L = (1 +CL ) z 

where Z lS the pressure-porosity parameter ln the perforated 

wall effusion. 

All the information needed is therefore obtained 

from the experimental a+ versus z-relation in Ref. 30 (Appendix 

9, Test A-4), and the results are plotted in Fig. 15. 

The theoretical results shown in the same figure are 

also transformed from Ref. 30 (although the case CL = 0 corres-
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ponds to the present approximation, Eq. 6). The case a ~ 0 

corresponds to a more general expression for the distribution 

function; 

(81) 

where the fourth mode f 
~ 

~s the upstream tail of the Maxwellian 

that would result af ter BGK-first-collisions between evapora-

ting (or effusing) molecules. The boundary value 

~s obtained from considerations of the probability for such 

cOllisions, and it may be shown (Ref. 30) that the expression 

a = 
n 

e 
n +n 

e 00 

represents an upper limit for this quantity ~n effusive flow. 

For evaporation this is e quivalent to 

a = 
n

L 
+ n +n (l+a ) L 00 

as indicated on the dash-dotted curve ~n Fig. 15 ~ 

The lower, dotted curve ~n the figure represents con­

tinuum theory and equilibrium results obtained by neglecting 

any non-equilibrium backscattering in the Knudsen layer (8 = 1 

~n Eq. 21). These results are therefore completely equivalent 

to the Schrage formulation for the backscattered flux. 

There is very good agreement between the kinetic 

theory results and the, experiments throughout the whole range 

of flow conditions. The equilibrium theory und~restimates in an 

important manner the backscattering that occurs, in particular 

at extreme conditions of strong evaporation. The experimental 

value at these conditions is 
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0.11 ± 0.03 

The resulting experimental band therefore covers the present 

theoretical results (0.180-0.185) the Monte-Carlo result of 

Ref. 18 (0.15), and the approximate non-linear result of Ref. 

15 (0.189). The experimental value found by Gulubtsov seems to 

indicate a slightly lower value (0.13). 

The experiments could possibly be repeated with 

better accuracy and at somewhat more clean conditions (less 

lateral expansion in the flow, higher Knudsen number for the 

effusion, etc.) to arrive at a more conclusive limiting value 

for the mass flux at strong evaporation. 

Next the downstream speed ratio S is obtained as a 
00 

function of zL by simply using the transformation (14), again 

for the experimental data of Ref. 30 (Appendix 9, Test A-ll). 

The results are shown on Fig. 16 in comparison with the same 

kind of theoretical predictions as discussed above. There is 

substantial agreement between kinetic theory results and expe­

riments also for this quantity, and this proves in particular 

that zL is the only relevant driving parameter in the problem. 

The pressure-porosity parameter in the effusive flow 

PO 
Z = q was defined experimentally by estimating the equilibrium 

Poo 
pressure Pro from the ambient pressure Pt in the ~ind tunnel. 

Measurements of the statie pressure locally in the equilibrium 

flow, assuming the temperature T to be correctly predicted by 
00 

the theory, did indicate that this was a good approximation. In 

fact, the discrepancy between the statie pressure thus found 

and the pressure measured outside the flow in the wind tunnel 

was always less than the most probable error in the experiments 

(Ref. 30). 

improved, 

Again the experimental accuracy can be considerably 

so that even more conclusive results on the S versus 
00 

zL-relationship may be obtained. 
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8. CONCLUSIONS 

A combined Mott-Smith, Liu-Lees method has been used 

to describe vapor motion at arbit~arily strong evaporation rates 

from a plane surface into a half~space. 

Closed-form expressions have been obtained for the 

parameters of the downstream equilibrium flow, and for a non­

equilibrium parameter describing backscattering into the phase 

boundary. There is one single driving parameter for the flow, 

most conveniently chosen as the pressure ratio zL = pt/poo. 

A simple improved verSlon of the Hertz-Knudsen formula 

for the eVáporated mass flux has been derived for use at weak, 

or moderately st rong evaporation rates. The predicted mass 

flux is larger than the H-K value, by a factor close to 2. 

At arbitrarily strong evaporation rates non-equilibrium 

effects are important, and Schrage's formula overestimate s the 

mass flux. The present results give the relations between the 

downstream variables and the driving parameter that are missing 

in Schrage's formulation and account in addition for the non­

equilibrium effe c ts in a simple way. The limiting evaporation 
• + • 

flux is m /m
L 

= 0.82 and lS conditioned primarily by backscat-

tering from non-equilibrium collisions. 

The above conclusions are all independent of the 

physical properties of the vapor. 

The x-dependence of the postulated trimodal distr~u­

tilln .function in the Knudsen layer was obtained for a vapor 

consisting of Maxwell molecules. Spatial relaxation of the form 

exp(- T) was found, where ~ is a strongly increasing function 

of the downstream speed ratio, S . At moderate flow conditions 
00 

1 is of the same magnitude as . ~L' the mean free path for evapo~ 

ratin.$1molecules, and the vapor expands at nearly constant tem­

perature following a microscopie jump ln temperature at the phase 

boundary. Extreme conditions occur at S ~ 0.91, 
00 

for which 
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goes to infinity and no equilibrium state lS reached af ter a 

finite distance. 

The present results are ~n good agreement with 

linearized kinetic theory predictions for weak evaporation, and 

with Monte Carlo and non-linear BGK results at arbitrarily large 

evaporation rates. This indicates that the present method yields 

an efficient description of the kinetics in vapor motion. 

A simple analogy has been shown to exit between eva­

poration and the problem of effusion fr om a perforated boundary. 

It is demonstrated that experimental and theoretical informa­

tion obtained in the latter problem can be directly transformed 

to the former, and the existing experimental data are in sub­

stantial agreement with the present theory. 

It lS suggested that more accurate measurements of 

backscattered flux at the wall in effusive flow are made at 

weIl defined conditions, so that more conclusive experimental 

information on evaporated mass flux can be obtained. 
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APPENDIX A 

The conservation equ.tinns are obtained as moments 

of the Bo1tzmann equation with th~ .co11isiona1 invariants as 

weight functions. We have from Eq. 9 : 

d f Çx IjJjl 
f ~ 0 1, 2, 3 = , 1.I = dX 

so that 

f Çx IjJjl 
f dç = C (A-1) 

jl 

where the C 's are the constant f1uxes 1n the x-direction of 
Jl 

mass, momentum and kinetic energy, respective1y. Inserting the 

expreSS10n (6) for the distribution function, i.e., 

3 
L 

V=l 
a (x) f 

v \! 

we get the system of equations 

3 
L 
v=l 

a (x) BjlV = C 
v ).l 

with coefficients B defined as 
JlV 

B = r ç ljJ 
jl v ) x jl 

f ~, 
\! 

= 1, ~ , 
x 

1 ç2 
2 

for jl 

(A-2) 

(A-3) 

= 1,2,3 

The fv 's are the ha1f-ran$f Maxwe11ians defined 1n Eqs. 3 

and 5, 1.e. 

+ 
n

L {-
ç2 

fl = f
L 

= exp 2RT } Çx ;> 0 
(27fRT )3/2 L L 

+ (A-4) f2 = f = f Çx ;> 0 
00 00' 

f3 = f = .foo' ·çx < 0 
00 -

(A-4) 



with 

f = 
00 

n 
00 

exp {­
(21fBT ) 3/2 

00 
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(E; - .u) 2+E; 2+ ç; 2 
x 00 Y z} 

2RT 

Performing the integrations 1n velocity-space, 1n exactly the 

same manner as shown in great detail in Ref. 30, we have 

n RT G+ 
00 00 

= 1 n RT G-
2 00 00 

(A-6) 

B31 -2n IRT"" RT H-
00 21f 00 

'V+ 'V+ 'V+ 
where F-, G-, and H- are dimensionless functions of the down-

stream speed ratio given 1n the following way 
1 

'V+ -S2 
rnS (±l+erfS ) 

00 F- = + e 
00 00 

'V+ 2 
-S2 

(2S 2+l)(1±erfS) 
00 G- = ± S e 

00 00 1;- 00 

'V+ fiTs 
(S2+2 1 

-S2 
00 

)(±l+erfS ) (S2+2) 
00 H- = + - e 2 00 2 00 2 00 

The above definitions imply the relations 

'V+ 'V_ 
2/; F - F = S 

00 

'V+ 'V 
G + G = 4s 2 + 2 

00 

'V+ 'V 
2) H - H = rn S (S2 + 

00 00 2 

1 
Note slightly different normalization compared to 

'V± _ A± 'V± A± 'V+ fiT8
00 

~± 
and 30, e.g., F = 2/1f SooF , G = G , H- = --2-- H = 

(A-8) 

Refs. 
1 

00 

23 

H . 



- 51 -

By evaluating the eonstants C at downstream equilibrium, we 
II 

then ean write the eonservation equations in the following way 

n u 
00 00 

1 + 1 "'+ + 
u 2 (A-9) nLRT L al + - n RT G- a3 = n + n RT 

2 2 00 00 00 00 00 00 

+ IRToo "'+ + (1. u 2 .2. RT ) 2n
L

u
L

RT
L al ± 2n RT H- a3 = n u + 

00 2n 00 00 00 2 00 2 00 

whieh in partieular yield the Rankine-Hugoniot li ke equations (11) 

when the boundary eonditions for the a. 
l 

's at x = 0 are inserted. 

The above eonservation equations mayalso be eonSl­

dered as a system of three linear equations for the three am-
+ + 

plitude funetions al, a3 and a3' It is, however, elear that 

this system must not speeify any non-trivial solution for the 

a. 
l 

IS, exeept at the boundaries, and thus we have the alterna-

tive eondition 

Det 11 B 
llV 11 = 0 (A-IO) 

whieh is eompletely equivalent to the Rankine-Hugoniot like 

relations between the boundary values. 

Only two of the three eonservation equations are 

therefore linearly independent in the present description of 

the flow, and the following relations between the amplitude 

functions are found to exist 

+ + 
a3 + a I = 1 (A-ll) 

(3 -1 

where (3 lS the value a~(O) at the phase boundary. 
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APPENDIX B - THE~2_MOMENT EQUATION --- x 

We co nsi. der the transfer equation for ~2 ln the case 
x 

of Maxwell molecules and have (by Eq. 41) 

d 
dX 

TI 

À m 
r 

n 
n 

r 

T I 
xx 

(B-l) 

The equation must beexpressed in terms of the amplitude func­

tions and we first transform the colli sion term, working out 

the product nT I 

xx 

T I = 
xx 

3 
L 

\)=1 
a (T' ) 

\) XX \) 

Let us write 

where the basic contributions are defined by 

(T' ) = -m[J c c f dc - ~ J xx \) x X\)-- 3 

(B-2) 

(B-3) 

Making use of symmetry ln velocity space, this can be written as 

= - c c f x x \) dc de] (B-4) 

where c lS the thermal velocity with respect to the local 
x 

bulk velocity, i.e. 

c _ ~ - u(x) 
x x 

(B-5) 

In complete analogy with tre results of Refs. 23 and 27 we then 

get the separate contributions 

(T' ) = - ~ m G. n (-4uu +u 20 
xX L 3 ~ L· L j (B-6) 
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+(u -U)2 !2 n (l±erfS )- !2n RT (l±erfS ;l 
00 00 00 00 00 ooj 

Bye 011 eet in g t heter m s c 0 nt a i n i n g u a n d u 2, re spe c t i vel y, 1. n 

the resulting expression (B-2) and using the fact that the 

mass flux is constant throughout the flow field, i.e., 

nu = n u = L: co 00 

we arr1.ve at the result 

T' 
xx = 

which we 

-

2 
3 

write 

2 - mL: 2 

as 

nT' 3 t4S;+ 
n = xx 4s 2 n 

00 

00 

The density 1.S g1.ven by 

n = f f d~ = ~ a J f ~ 
\)=1 \) \) 

and may be expressed as 

(B-8) 

and the above express1.on for nT' 1.S therefore a non-linear 
xx 

function in the a. 's that vanishes at dowqstream equilibrium. 
1. 

By using the momentum conservation equation and the 

relation (A-ll) between the amplitude functions, straightfor­

ward, but lengthy algebraic manipulations rendre the final 

expression 



- 54 --

( B-1 0) 

with ~l' ~2 and r being defined as 

~ 1 = 1 (B-11) -f3 -1 

~2 
1 GL - 2 f3 - ( 1 - erf 8,J] = + 

f3 -1 

2 
48 2 

00 
r = 1 - - + 

h <1>2 

We next work out the convective term 1n the moment equation 

(B-1) which is 

3 da 
L v 

dx v=l 

with the coefficients B
4v 

being defined as 

(B-12) 

(B-13) 

On performing the integrations in the velocity space, we have 

(again in complete ana10gy wit h Re f . 30) 

= 2n / R
2

T oo RT 
00 1T 00 

-2n 00 

'" where the functions K± are g1ven by 

-8 2 

(S~ + ~)(±1+erf800) + (1+8~) e 00 

"'+ 
K 

(B-14) 
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By us~ng the simple relations (A~ll) between the amplitude 

functions, the expression (B-12) can be written 

da 
\) 3 

~ dx 
\):::;1 

B 
4\) 

1 {2n u RT
L

-2n 
- L L 00 

(3 -1 

+(3-~-J} da3 
dx 

where the simple property 

has also been applied. 

(B-16) 

It lS possible (although not essential) to greatly 

simplify the above result by observing the additional relation 

'V 'V 'V 

K = 2H F (B-18) 

and then uSlng the Rankine-Hugoniot like e~uation (11) for 
'V 'V 

mass and energy conservation to eliminate Hand F-. Important 

cancelling then occurs among the terms, and the final result 

for the convective term lS 

-
3 da 2n

L
u

L
RT

L 
T da3 

~ 
\) 

B4 \) ( 1 ~) (B-19) -- = -
dx - TL dx \)=1 (3 -1 
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APPENDIX C ~USEFUL INTEGRALS 

In performing the integrations of the var10US half­

range Gaussian distribution functions in previous appendices, 

frequent use was made of the following properties of gamma 

functions, 

Complete gamma functions r ( z ) 

00 

r ( z ) J 
-t z-l = e t dt 

0 

r ( z ) = (z-l)l 

r(z+l) = z r ( z ) r (-!.) = liT 
2 

Particular integral 

+00 

t-
a n 

f t
n -j3t 2 

dt 
n+l 

e = 2 
r (!) -00 n 

2 

Incomplete gamma functions r(z,x), y(z,x) 

x 

r(z,x) f 
-t t-l dt = e z 

0 

y(z,x) 
1 r(z,x) = fTZT 

Recursion formula 

z -x 
y(z+l,x) = y(z,x) - ~(Z:l) 

(C-l) 

odd 

(C-2) 

even 

(C-3) 

(c-4) 



Partic.ular case 

y( l 82) 
2' co 

with 

1 
Y (- 82) = 2' co 

2 

in 

1 
z = 2 

8 

, x 

1 

I 
co 

-u 2 
e du-

o 
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2 = 8 
co 

8 e 
co 

erf 8 
co 

-8 2 
co 

(c-6) 
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TABLE 1 - GAS DYNAMIC PARAMETERS FOR EVAPORATION 

***** E V APO H A T tON CON n f N S A T ION ***** 

ROOT NO.2 

S ZL 

.00 

.05 

.10 

.15 

.20 

.25 

.30 

.35 

.40 

.45 

.50 

.55 

.60 

.65 

.70 

.75 

.80 

.85 

.90 

.95 
1.00 
1.05 
1.10 
1.15 
1.20 

1.00000+00 
1.11073+00 
1.23070+00 
1.36035+00 
1.50016+00 
1.65056+00 
1.81200+00 
1.98494+00 
2.16980+00 
2.36702+00 
2.57700+00 
2.80017+00 
3.03692+00 
3.28764+00 
3.55271+00 
3.83249+00 
4.12732+00 
4.43756+00 
4. 76,~52+00 
5.10553+00 
5.46387+00 
5.83884+00 
6.23071+00 
6.63974+00 
7.06618+00 

no.,/ nr, 

0.00000 
9.20476-01 
8.49358-01 
7.85613-01 
7.28j49-01 
6.76792-01 
6.30~77-01 

5.~8220-01 
~.50118-01 
5.15531-01 
4.84072-01 
4.55405-01 
4.29234-01 
4.05297-01 
3.83.167-01 
3.63241-01 
3.44739-01 
3.27702-01 
3.11Y91-01 
2.9747~-01 

2.84054-01 
2.71617-01 
2.60U80-01 
2.49.162-01 
2.39.191-01 

(GAS ~YN~~IC PARAMET~RS) 

Too/T L 

1.00000+00 
9.78088-0t 
9.~6660-01 
9.35705-01 
Y.152\7-01 
8.95188-01 
8.75608-01 
8.56471-01 
8.37768-01 
8.194Q1-01 
8.01632-U1 
7.84183-01 
7.67136-01 
7.50484-0t 
7.34218-01 
7.18331-01 
7.02B16-01 
6.H76f,4-01 
6.7286B-01 
b.58422-01 
b.44316-01 
6.30545-01 
6.17100-01 
b.D3975-01 
~.91163-01 

• + • 
ffi( O)/ffiL 

0.'10000 
1.61353-01 
2.94493-01 
4.fJ40B7-0t 
4.94011-01 
5.67489-01 
6.27209-01 
6.75413-01 
7.13975-01 
7.4446')-Ot 
7.68197-01 
7.86274-01 
7.q9624-01 
8.09027-01 
8.t5137-0' 
8.18509-01 
8.19607-01. 
8.18826-01 
8.1649f,-01 
8.12898-0t 
8.fJ8267-01 
8.n2804-01. 
7.96677-01 
7.90027-01 
7.82975-01 

qw 

2 n
L

u
L

RT L 
o.O.Ooon 
1.97469-01 
3.~3570-01 
4.76886-01 
5.74201-01 
6.50887-01 
7.11200-01 
7.58521-01 
7.95533-01 
~.2437~-01 
8.4674-0-01 
A.n3986-01 
8.771Q1-01 
A.87214-r)1 
R.Q4740-01 
Q.n0314-01 
Q.n4372-01 
Q.fJ725A-01 
Q.n9247-01 
9.10559-01 
9.'1364-01 
9.11~OO-01 

9.11973-01 
9.11QnÓ-01 
Q.11846-01 

.+ .-
ffi(O / ffi (O) 

1.nOOoo+no 
1.l9240+00 
1..4174?+00 
1.f,7810+00 
1.Q7633+00 
?:3120A+no 
?A8247+00 
~.f')8084+00 
3.49620+00 
3.°1335+00 
'l • ~ 14 0 0 + 0 n 
El. 6 788Q+('l 0 
4.q90n~+OO 

'5.?363~+on 

5.40942+00 
'1.C;0990+r)n. 
'5.'54346+0n 
C;.C::;195')+no 
'5.44947+00 
,).~4467+r)O 

C;.?1559+00 
5.n7111+0n 
4.Q182~+OO 

4.'76253+00 
4.AQ777+00 

BF 

0.'10nOn 
5.P6361-04 
2.3582:':'-03 
5.3212n-n3 
9.45A18-03 
1.47223-02 
2.1028::>-02 
2.82444-02 
3.61847-02 
4.46042-02 
5.3198::>-02 
6.1608::>-02 
6.94:33,:,-n2 
7.n2501-02 
8.16321-02 
8.~17?1-02 

8.n5164-02 
8.'53 4 97-02 
8.14341-02 
7.4SQ7h-02 
6.4733?-02 
5.1795n-n2 
3.C:;7891-02 
1.076"51-02 

-5.19294-03 



VFIN 

TABLE 2 - KINETIC PARAMETERS FOR EVAPORATION 

***** E V ~ POR A T ION CON 0 E N 5 A T r Ö N ***** 

(KINETIC PARAMETERS) 

ROOT NO.2 

s 

.05 

.10 

.15 

.20 

.25 

.30 

.35 

.40 

.45 

.50 

.55 

.bU 

.65 

.70 

.75 

.80 

.85 

.90 

.95 
1.UO 
1.05 
1.10 
1.15 
1.20 

s-

1.00807+00 
1.01982+00 
1.03b50+00 
1. 0597.3+00 
1.09163+00 
1.13494+00 
1,19323+00 
1.27113+00 
1. 3 7462+00 
1,51140+00 
1,09171+00 
1. 92b39+00 
2.23841+00 
2.64369+00 
3.17270+00 
3.b624b+OO 
4.76115+00 
5.93157+00 
7.45565+00 
9. 44U52+00 
1.20264+01 
1. 5 3973+Ul 
1.97950+01 
2.55377+01 

r 

5.724B ;3 -01 
5.~527 e -01 
4.75U89-01 
4,22186-01 
3.6704 j -01 
3.10395-01 
2.5334 4-01 
1.97468-01 
1.44987-01 
9.8971 2-02 
6.361209-02 
4.'i5t357-02 
4.9516 2-02 
8.b6002-U2 
1.75419-01 
3.2B009-01 
5,70266-01 
9,.3.3dO g-01 
1 • 1+ 6 04 'i + 0 0 
2.2053 .g +00 
3.2416 11 +00 
4. b655 .3+00 
6.0046 9+00 
~.2277 q +OO 

C/B 

2.8620~+OO 
2.3565tHOO 
1.94101+00 
1.5990t)+00 
1.317~t)+00 

1.08541+00 
8.9412U-01 
7.3635~-01 
6.062U1-01 
4.9861.j-ü1 
4.1020.j-01 
3.37 09 4--01 
2.7678/-01 
2.27 050-01 
1. 860 60-01 
1.52299-01 
1.2450~-01 
1. n16.3'j-01 
8.2851~-02 
6.74294--02 
5.4785~-02 
4.44324--02 
3.5967ö-02 
2.9057/-02 

ÀL/t 

1.22357+00 
1.11872+00 
1.018A6+00 
9.23950-01 
8.33887-01 
7.48504-01 
6.67600-01 
5.90947-01 
5.18310-01 
4.49444-01 
3.84109-01 
3.22064-01 
2.63082-01 
2. 0f>939-01 
1.53426-01 
1.02344-01 
5.35029-02 
6.72757-03 

-3. 8 1479-02 
-h.l?779-02 
-1.22807-01 
-1.62868-01 
-2. 01588-01 
-2.390AO-01 

ÀL/t n 

1.24667+00 
1.1Ei543+00 
1.08970+00 
1.01946+00 
9.54599-01 
8.94969-01 
8.40374-01 
7.90596-01 
7.45405-01 
7.04568-01 
6.67849-01 
6.35020-01 
6.05858-01 
5.80149-01 
5.57692-01 
5.3B294-01 
5.21775-01 
5.07967-01 
4.96711-01 
4. <9 7861-01 
4.81280-01 
4.76841-01 
4.74427-01 
4.73929-01 

<PI 

· 4.66397+00 
4.16182+00 
3.70605+00 
3.29316+00 
2.91991+00 
2.58318+00 
2.28006+00 
2.00780+00 
1.76382+00 
1.54568+00 
1.35111+00 
1.17801+00 
1.02438+00 
8.R8403-01 
7.68358-01 
6.62672-01 
5.69888-01 
4.88664-01 
4.17768-01 
3.56074-01 
3.02550-01 
2.56262-01 
2.16359-01 
1.82072-01 

<P 2 

7.67984+00 
6.8'i298+00 
6.10248+00 
5.42261+00 
4.80801+00 
4.2'1354+00 
3.75442+00 
3.30611+00 
2.90435+00 
2.545l6+00 
2.22479+00 
1.93975+00 
1.68678+00 
1.4fi287+00 
1.26520+00 
1.09118+00 
9.38394-01 
8.04648-01 
6.87910-01 
5.86321-01 
4.9P189-01 
4.21969-01 
3.56263-01 
2.9Q806-01 



TABLE 3 - GAS DYNAMIC PARAMETERS FOR EFFUSION (a = 0) 

VXGT A 

POSITIVE ROOT 

VFIN 

s 

.10 

.20 

.30 

.40 

.50 

.60 

.70 

.80 

.90 
1.00 
1.10 
1.20 
1.30 
1.40 
1.!S0 
1.60 
1.70 
1.80 
1.90 
2.00 
2.10 
2.20 
2.30 
2.40 
2.50 
2.6U 
2.70 
2.80 
2.90 
3.00 

z 
3.02432-01 
7.41093-01 
1.13650+00 
1.54'J18+00 
1. 9 7965+00 
2.42él40+00 
2.89!)9!:>+OO 
3.3827tHOO 
3.88940+00 
4.41627+00 
4.963A6+00 
5.53264+00 
6.12305+00 
ó.73!:>51+00 
7.3704b+OO 
b.02830+00 
8.70943+00 
9.'+142~+00 

1.U1431+01 
1.08963+01 
1.1674~+(j1 
1.24772+01 
1.33u5b+01 
1.415g7+01 
1.503Y7+01 
1.~9459+01 
1. 6 87Hb+o1 
1.78381+01 
1.aA~45+01 
1.983112+01 

***** 5 IMP LEe ASE ***** 

T3/rO 

9.0666 .)-01 
9.15217-01 
8.75608-01 
8.37768-01 
13.01632-01 
7.67136-01 
7.34218-01 
7.02816-01 
6.72868-01 
6.44316-01 
6.1710 1)-01 
5.9116 ,3 -01 
5.6645 rt -01 
5.42906-01 
5.2047 g-01 
4.99117-01 
4.7877 2 -01 
4.!)9395-01 
4.4094 .-)-01 
4.23364-01 
4.ü6b2 .3-01 
3.90b7 .9-01 
3.75488-01 
3.b101 6 -01 
3 ... 7227-01 
3 • .:14087-01 
3.21561-01 
3.u9621-01 
2.98235-01 
2. 8 7375-01 

N3/N1 

2. 88414+00 
1.474,j0+QO 
1. U 048~+00 

7.705U.1-01 
6.j01 4 .1-01 
5.36794-01 
4.7031U-01 
4.20610-01 
3.82109-01 
3.5143b-01 
3.264~b-Ol 
3.05740-01 
2.8831/-01 
2.734bl-01 
2.60611-01 
2.495~9-01 
2 • .3981 b -01 
2.3122~-01 
2.2359U-01 
2.167/"'-01 
2 ol06~~-01 
2. 051 40-01 
2. 0 01~b-01 
1.9562.)-01 
1. 9 1491-01 
1. « 7712-01 
1.d424/ -01 
1.d10b U-OI 
1.781~2-01 
1.7540tS-0! 

SIGM/2 

2.31432+00 
9.57307-01 
5 • . ~A271-01 
3.52061-01 
2.57711-01 
2.08286-01 
1. 13 3714-01 
1.74001-01 
1.73626-01 
1.79306-01 
1.88979-01 
2.01293-01 
2.15330-01 
2.:30457-01 
2.46222-01 
2.62303-01 
2.78467-01 
2.94542-01 
3.10407-01 
3.25970-01 
3.41169-01 
3.55959-01 
3.70310-01 
3.84202-01 
3.97627-01 
4.10579-01 
4.230n2-01 
4.35078-01 
4.46638-U1 
4.57750-01 

EPS/2 

1.00304-01 
8.11630-02 
6.69564-02 
5.71157-02 
5.11218-02 
4.85022-02 
4.88280-02 
5.17104-02 
5.67986-02 
6.37765-02 
7.23602-02 
8.22958-02 
9.33565-02 
1.05340-01 
1.1A069-01 
1.31383-01 
1.45145-01 
1.59231-01 
1.73536-01 
1.8796n-01 
2.02442-01 
2.16894-01 
2.31263-01 
2.45499-01 
2.59560-01 
2.73410-01 
2.87021-01 
3.00369-01 
3.13435-01 
3.26204-01 

BF 

3.129A4-02 
5.71911-02 
8.099A5-02 
1.05070-01 
1.30493-01 
1.56943-01 
1.82875-01 
2.06078-01 
2.24341-01 
2.35933-01 
2.39784-01 
2.35438-01 
2.22911-01 
2.02538-01 
1.74850-01 
1.40478-01 
1.00098-01 
5.43856-02 
3.99171-03 

-5.04683-02 
-1.08424-01 
-1.69355-01 
-2.32785-01 
-2.98289-01 
-3.654AI-Ol 
-4.34022-01 
-5.03607-01 
-5.73967-01 
-6.44865-01 
-7.16092-01 



TABLE 4 - KINETIC PARAMETERS FOR EFFUSION (a = 0) 

vXGT A 

PüSITIVE ROOT,TAR.2 

s 

.05 

.10 

.15 

.20 

.25 

.30 

.35 

.40 

.45 

.50 

.55 

.60 

.65 

.70 

.75 

.80 

.85 

.90 

.95 
1.00 
1.05 
1.10 
1.15 
1.20 
1.25 
1.30 
1.35 
1.40 

BETA-

1.00807+00 
1.01982+00 
1.03650+00 
1.05973+00 
1.09163+00 
1.13494+00 
1.19323+00 
1.27113+00 
1. 37462+00 
1.51146+00 
1.69171+00 
1.92839+00 
2.23841+00 
2. 6 43ó9+00 
3.17270+00 
3.86246+00 
4.76115+00 
5.93157+00 
7.45565+00 
9.44052+00 
1.20264+01 
1.53974+01 
1.97950+01 
2.55377+01 
3.30455+01 
4.2A736+01 
5.57578+01 
7.26756+01 

***** SIM P LEe ASE ***** 

ALFA+ 

5.19760+00 
2.39567+00 
1.47472+00 
1.02425+00 
7.62148-01 
5.94365-01 
4.80576-01 
4.00609-01 
3.43247-01 
3.01750-01 
2.71821-01 
2.50587-01 
2.36053-01 
2.26787-01 
2.21734-01 
2.20097-01 
2.21261-01 
2.24746-01 
2.30167-01 
2.37215-01 
2.45634-01 
2.55214-01 
2.65779-01 
2.77180-01 
2.89290-01 
3.02000-01 
3.15217-01 
3.288513-01 

R 

5.72480-01 
5.25277-01 
4.7508B-01 
4.221A6-01 
3.67043-01 
3.10396-01 
2.53344-01 
1.9746B-01 
1. 4/~987-01 
9.89711-02 
6.36127-02 
4.45855-02 
4.95155-02 
8.85997-02 
1.75419-01 
3.28009-01 
5.70265-01 
9.33809-01 
1.46044+00 
2.2053 e +oo 
3.2416 0+00 
4.66553+00 
6.6046H+OO 
9.2278 0+00 
1.27584+01 
1.74931+01 
2.3825 g+01 
3.22A07+01 

B 

1.68278+01 
7.42528+00 
4.35953+00 
2.87340+00 
2.01575+00 
1.46974+00 
1.09973+00 
8.38058-01 
6.47238-01 
5.04879-01 
3.96816-01 
3.13678-01 
2.49041-01 
1.98370-01 
1.58386-01 
1.~6672-01 
1.01417-01 
8.12426-02 
6.50901-02 
5.21363-02 
4.17366-02 
3.33826-02 
2.66709-02 
2.12798-0(> 
1.69519-02 
1.34806-02 
1.069g5-02 
R.47447-03 

O~F.GAl 

7.58318+00 
3.798P-1+00 
2.52138+00 
1.87030+00 
1.46943+00 
1.1 Q339+00 
9.88432-01 
8.27686-01 
6.96218-01 
5.85064-01 
4.88517-01 
4.02770-01 
3.25183-01 
2.53870-01 
1.87446-01 
1.24869-01 
6.53411-02 
8.23956-03 

-4.69283-02 
-1.00558-01 
-1.52972-01 
-2.04435-01 
-2.55165-01 
-3. ('I534Q-01 
-3.55140-01 
-4.04674-01 
-4.5406;:'-01 
-5.03405-01 

LAM1/LG 

7.72632+00 
3.95741+00 
2.69670+00 
2.06363+00 
1.ó8215+00 
1.4269t+oO 
1.24424+00 
1.10732+00 
1.00126+00 
9.17171-01 
8.49385-01 
7.94148-01 
7.48872-01 
7.11720-n1 
6.81351-01 
6.56771-01 
6.37224-01 
6.2213n-01 
6.11038-n1 
6.03589-01 
5.99498-01 
5.98537-01 
6.00519-01 
fJ.n5292-n1 
6.12731-01 
6.2(>731-n1 
6.35205-1)1 
6.5008n-n1 
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TECHNICAL NOTE 112 

ERRATA 

Fig.10 

Fig.15 

The two tables below Fig.10 

should be disregarded. 

Ordinate of Fig.15 should 

read m-(o)/m
L 




