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Abstract 

The Riemann problem for the unsteady, one dimensional 

Euler equations together with the constant-covolume equation 

of state is solved exactly. The solution is then applied 

to the Random Choice Method to solve the general initial-

boundary value problem for the Euler equations. The 

iterative procedure to find p*, the pressure between the 

acoustic waves, involves a single algebraic (non-linear) 

equation, all other quantities follow directly throughout 

the X - t plane, except within rarefaction fans, where an 

extra iterative procedure is required. 



1. Introduction 

The ideal-gas kinetic theory assumes that molecules occupy a negligible 

volume and that they do not exert forces on one another. In applications 

such as in combustion processes, these assumptions are no longer accurate 

descriptions of the problem. In this paper we incorporate covolume, that 

is to say, we assume that molecules occupy a finite volume b, so that the 

volume available for molecular motion is v - b. The resulting thermal 

equation of state is 

p(v - b) = RT (1) 

Here p, v, R and T are pressure, volume, the gas constant and absolute 

temperature respectively, with v = 1/p; p is density. 

If one were to assume intermolecular forces as well, then the Van 

der Waals' equation of state would result. However, we are only interested 

in eq. (1) where b is constant (with dimensions m^/kg). Corner [1] 

reports on experimental results for a good range of solid propel 1 ants, 

where he observed that the covolume b varied very little, i.e. 

0.9 x 10"3 mVkg <: b < 1.1 x lO"^ mVkg. The best values of b lead to 

errors no greater than 2% and thus we feel there is some justification in 

using eq. (1) with b = constant, when modelling gas dynamical events 

associated with solid propel!ant burning. 

The main motivation of the present work is to extend the applicability 

of the Random Choice Method (RCM) to model gas dynamical events arising 

from, and coupled with, combustion phenomena. Since RCM uses the exact 

solution of the Riemann problem, our first task will be to devise an 

efficient Riemann solver. In Ref. [2] we derived a number of covolume 

relations and indicated a solution strategy based on the Newton-Raphson 

fiethod applied to a 3 x 3 system of algebraic equations. For rarefaction 

fans we also suggested a similar approach to solve another 3 x 3 system. 

The resulting Riemann solver was found to be more efficient than that 

based on the Godunov iteration when applied to the special case 

b = 0 (ideal gas), but the net gains were limited. 

The present Riemann solver is much more efficient; it is an extension of 

that proposed in Ref. [3] for ideal gases. The two iteration procedures that are 

present (one the pressure p* between the acoustic waves and the other for 

the density p inside rarefaction fans) involve a single algebraic equation. 

The Newton-Raphson Method works well in both cases. 



The implementation of RCM using the exact Riemann solver is carried 

out on a non-staggered grid, whereby the solution to the next time level 

is advanced in a single step. This programming strategy has a number of 

advantages over the more common staggered grid approach. Simplicity is 

one of them. Use of irregular/adaptive grids is another. The original 

idea appears to be due to Col el la [4]. 

The remaining part of this paper is organised as follows: Section 2 

defines the Riemann problem and delineates the solution strategy. In 

section 3 we collect the covolume relations required to solve the problem. 

In section 4 we solve the Riemann problem. In section 5 we describe the 

implementation of RCM. In section 6 we solve a shock-tube problem 

exactly by direct application of the present Riemann solver and approxi-

ately via the Random Choice Method. Results are compared and discussed. 

Finally, in section 7 we draw some conclusions and indicate areas of 

applications of present results. 

L. The Riemann Problem 

Ke consider the Riemann problem for the unsteady one-dimensional 

Euler equations together with the covolume equation of state (1) with 

constant b, namely 

U, . F(U)^ = 0 (2) 

U(x,t„) =. 
Ui . X ;̂  XQ 

Ur ' ^ ^ ^0 

(3) 

where -«> < x < «>, t > t . Here U = U(x,t) with x and t denoting space 

and time respectively. In eq. (2) subindices denote partial differen­

tiation, as usual. U and F(U) are vectors of conserved variables and 

fluxes respectively. These are given by 

U = 
P 

pu 

E 

F(U) = 

pu 

pu^ + p 

(E + p)u 

(4) 

where u is velocity, e is specific internal energy and E is total energy 

given by 



E = èpu^ + pe (5) 

The initial condition (3) consists of two constant states U-i and U^. 

Note that equation (1) serves as a closure condition for system (2), 

which has three differential equations and four unknowns. A corres­

ponding caloric equation of state gives an expression for the specific 

internal energy in eq. (5) in terms of the unknowns of system (2). 

The solution of the Riemann problem (1) - (5) for t > t can be 

represented in the half x - t plane as in Fig. 1. 

Fig. 1: Solution of Riemann problem with data U-, and U 

There are three waves present: W. , Wĵ  and Wp. The middle wave Wj, 

is always a contact discontinuity, the left wave W. is either a shock or 

a rarefaction and the right wave W^ is either a shock or a rarefaction. 

Hence, there are four possible wave patterns. The region star between 

waves W. and Wg is characterised by having pressure p* = constant and 

velocity u* = constant with p = p? between W. and W.. (star left) and 

p = p* between Wj. and W^ (star right). In the portion of the half x - t 

plane to the left of wave W. the solution is equal to the constant state 

Û  (data). Similarly U = U^ in the region to the right of wave Wp. The 

solution U at a time t > t inside a rarefaction fan (W, or Wn) varies 

smoothly with x. 



The principal step of the solution procedure is the determination 

of the solution in the region star. We call this the Star step. A 

feature of the present Riemann solver is that the star-step consists of 

a single (non-linear) algebraic equation for the pressure p*. Other 

quantities in the region star follow directly. Clearly, the solution 

for p* must be found iteratively, since the type of waves W. and W^ is 

not known a-priori. This must be determined as part of the solution. 

The star-step requires equations connecting U, (data) to Uf and 

U (data) to U*. In each situation one must derive equations for the 

case in which the connecting wave is a shock or a rarefaction. These 

equations are manipulated in such a way that the velocities u? and u* 

are expressed as 

u* = f,(p*, U J 
' ^ ^ (6) 

uf = f^(p*, U^) 

But u^ = u* gives a single algebraic non-linear equation for the 

unknown p*, i .e. 

f ( p * , U^, U )̂ = f ^ (p* , U )̂ + f^ (p* , Û ) = 0 (7) 

A certain amount of work is involved in determining the form of the 

functions f-, and f in equations (6), and thus f in eq. (7). 

Once p* is known from eq. (7) a l l other quantities in region star 

follow direct ly from expl ic i t relations. I f both waves W. and Wp are 

shocks then the solution of the Riemann problem has been determined 

everywhere in the half x - t plane. However i f a rarefaction fan is 

present the solution inside i t requires another i terat ive procedure. 

This is unlike the ideal-gas case, where the solution inside rarefaction 

fans follows direct ly from the star step (also i te ra t ive) . We present 

an economical way of finding the solution inside rarefaction fans. 

Instead of solving a 3 x 3 non-linear system (as suggested in Ref. [2]) 

we solve a single non-linear equation for the density p. Other quantities 

follow di rect ly . 

Next, we collect some basic relations for shock and rarefaction waves 

and derive covolume expressions for the internal energy and the sound 

speed. These wi l l be later ut i l ised in the star step. 



3. Covolume relations 

Here we collect some of the covolume equations derived in Ref. 2, 

There, we showed that the specific internal energy e is given by 

P(1 
pTT 

bp) 
TT (8) 

and the sound speed c is given by 

c = 
PY 

p(1 - bp) 
(9) 

Here y denotes ratio of specific heats, as usual. The derivation of 

equations across shocks and rarefactions is now dealt with separately. 

3.1 Shock relations 

Consider the case of a right travelling shock wave of speed S . In 

the steady frame of reference attached to the shock the usual equations 

for mass momentum and energy apply. In Ref. [2] we formulated the solution 

of the star step in terms of the pressure p* and two parameters M, and M . 

In the present paper the solution strategy is different, but expressions 

for M and M, are still useful 
r I 

faction) M is defined as 

For a right moving wave (shock or rare-

1* -

\ - ' ^ 
Pr (10) 

For a right travelling shock, the steady shock relations give 

P,(P* - P,)DR 
M2 
r (11) 

where Dp = p*/p is the density ratio across the shock wave. Also, 

the standard Hugoniot relation can be written as 

r pr 
p^R- 1)(Do - 1) 

(12) 

where Pp = p*/p„ is the pressure ratio across the shock. Substitution of 

e from eq. (8) into eq. (12) gives a relationship between Pp and Dp 

across the shock i.e. 



(Y + 1)P_ + (Y - 1) 

(Y - 1 + 2bp^)Pp + (Y + 1) - 2bp^ 
(13) 

which, i f used in eq. (11), leads to 

fr-

\ - < 
(Y + 1) P^ P^ 

T — (1 - bp̂ ) 
P , (Y - 1) 
R̂ M Y + 1) (14) 

S im i la r l y , f o r the l e f t t r ave l l i ng wave W, a parameter M, can be defined 

as fol lows 

(P* - Pi) 

" l = • (u* - u^) 

which, a f t e r using appropriate re l a t i ons , becomes 

(15) 

Ml ={ 
(Y + 1) Pi P] 

T - (1 - bp^)j P. + 
(v - 1) 

Ï 

Here P, 

L (Y + 1) 

p*/p-| is the pressure ratio across the left moving shock. 

(16) 

3.2 Rarefaction re la t ions 

In order to obtain expressions fo r M, and M in the case in which 
I r 

waves W. and Wp are rarefaction waves we need the generalised Riemann 

invariants and the isentropic relations. For a left rarefaction 

1̂  = u + I "•_ ̂ ^ (1 - bp) = con stant (17) 

and 
Vv 

(1 - bp*) - (1 - bpi) '̂L (18) 

For a right rarefaction we have 

2c Jp = u - T—;^-T-j- (1 - bp) = constant (19) 

and 



Use of eqs. (17) - (18) gives for M^ 

(Y - 1) P-, Pi 
Yd - bp^) 

1 - Pi 

1 - P,_~2Y 

(21) 

and use of eqs. (19) - (20) gives for M^ 

M - (Y - 1) Pr Pr 
(̂1 - bp„) 

1- P I 
R 

l - P p " ^ 

(22) 

We now return to eq. (6). Note that for a l e f t wave, from definit ion (15) 

for M, we have 

U* = Un + 
(Pl - P*) 

or 

u* = Ui + f i (p* ,Ui ) (23) 

where 

(1 - PL) 

2(1 -

(Y 

h^ 

bpi)Pi 

+ 1)Pl 
Y - 1 

Y + f J 

v/ 

i f PL >/ 1 

(shock) 

(24a) 

2(1 - bp.,)C^ 

(Y - 1) 
1 - P 

Y-1 

\> 

if PL < 1 

(rarefaction) 

(24b) 

Similarly, for a right wave definition (10) gives 

u* = u^ - f^(p*. U^) (25) 

where 



(1 PR) 

'2(1 - bp^)p^ 

(Y + 1)P7~ 

r y + ] 

i f PR > /1 

(shock) 

(26a) 

2(1 - bp^)C^ 

•(V" 

Y - 1 
"2Y 

R i f Pp < 1 

(rarefaction) 

(26b) 

We have now completely determined the problem for the star-step. From eqs. 

(23) and (25) the single equation (7) for p* results, where f, and f are 

given by eqs. (24) and (26) respectively. 

4. Algorithm for the solution of the Riemann problem 

Here we use all relations developed in section 3 to implement an efficient 

algorithm for completely solving the Riemann problem with constant covolume 

in the half plane x - t. 

As pointed out in section 2 the solution procedure consists basically 

of the star-step and the rarefaction fan step. The principal part of the 

star step is the solution of an equation for the pressure p* in region star. 

The rarefaction fan step consists of finding the complete solution inside 

a rarefaction fan; its principal step is the solution of a single equation 

for the density p, Both steps contain an iteration. We shall deal with each 

of them separately. 

4.1 The star step 

The main part here is the determination of p* by solving the single non­

linear algebraic equation 

f(p*.U^,U^) = fi(p*,U^) + f^(p*.U^) + û  - u^ - 0 (27) 

where f, and f are given by eqs. (24) and (26). We do this by a Newton-

Raphson iteration procedure of the form 

P(k) = P(k-1) ^ "^k-D (28) 



where 

6(,) = -f(p|„.u,,u^)/f;„ 

Here k denotes the iteration and S,.^ is an increment at the k-th iteration. 

The method requires evaluation of derivatives 

%)=é-'^^*'^^'V P*(k) 

at the known point p* = p|. x and an initial (guess) value p*. An 

economical guess value would be p* = HPi + Pp)» but it could be inaccurate 

which can increase the number of iterations for convergence. We say that 

iteration procedure has converged to the solution at iteration k = K if 

CHA - 1 
1* _ 

PIK-I) 

'PflÖ 
^ TOL 

where TOL is a chosen tolerance, e.g. TOL 

accurate solutions. 

(29) 

10" is found to give sufficiently 

An accurate (although expensive) guess value p* can be found if we 

assume that both acoustic waves W. and Wp are rarefaction waves, that is 

in evaluating f, and f in eq. (27) for p*, eqs. (24b) and (26b) apply. 

Algebraic manipulations give a closed form solution for p* as 

p* = 
•̂0 

(1 - bpi)C^ + (1 - bp^)C^ + ̂ 1 - Ü ( u ^ - u^)l 1 7 ^ 

(1 - bp^)C^/Pi^Y + (1 - bp^)C^/p/Y 

(30) 

Clearly if both WL and Wp are rarefaction waves, then eq. (30) gives the 

exact solution for p*. But even if the assumption leading to eq. (30) is 

not true the estimate p* is quite accurate [3] even for cases involving 

shocks of strength of about 3. The reason for this is that the rarefaction 

and shock branches of the p - u curve (see Ref. [5]) have 1st and 2nd contin­

uous derivatives at their intersection point. Thus a continuation of, say, 

a shock branch via the rarefaction branch is a good approximation for data 

states U, and U that are sufficiently close, in a given sense. 



compute 
f l and f ï 
from eq.24a 

compute 
f and f ' r r 
from eq.ZGa 

f start N 

T 
compute p* 
from eq. 30 

k = k + 1 

YES NC 

I right wave V 

YES NO 

'1 ' \ 

Pk=Ptk-1) -'/'' 

compute CHA from eq. 29 

compute 
f̂  and f] 

fron eq.24b 

compute 
fp and f ; 
from eq.26b 

Figure 2: Algorithm for finding p* 



If the solution of the Riemann problem is used in a local sense, 

as applied to the Random Choice Method, then there may well be one 

or two genuine discontinuities (shocks or contacts) in the flow field at 

a given time. Thus typically 98% of the local Riemann problems have data 

with close states and thus p* as given by eq. (30) is very accurate. A single 

iteration is performed in most, if not all, of these cases. 

Fig. 2 illustrates the algorithm for solving eq. (27) for p*. Once 

p* has been found u* follows directly from any of eqs. (23) or (25). In 

practice, it is advisable to take a mean value. The determination of p? 

and p* (Fig. 1) depends now on the type of waves WL and Wp. For instance 

if Wp is a shock wave then p* follows directly from eq. (13). If WL is a 

shock wave we use the counterpart of eq. (13) to find pï. If W. is a rare­

faction then eq. (18) gives p?; if Wp is a rarefaction eq. (20) gives p*. 

Thus, the complete solution of the Riemann problem in the region star has 

been obtained. 

A simple but important Riemann problem is that arising at boundaries. 

The solution has closed form and is given in the next section. 

4.2 The Riemann problem at a moving boundary 

Consider the right boundary and assume this is given by a piston moving 

with known speed V . If reflections are to be allowed then the following 

boundary conditions apply 

Pp = Pl . u^ = -Ui + 2Vp . Pp = Pl (31) 

Here subscript 1 denotes last grid point inside the computational domain, 

and subscript r denotes fictitious grid point immediately to the right of 

the piston. 

The Riemann problem with data (31) has solution as depicted in Fig.1 

with u* = V and WL and Wp both of the same type, i.e. they are both rarefactions 

or both shocks. 

Now we find the pressure p* explicitly. It is easy to see that the 

functions f, and f^ in eq. (27) are identical and that f, + u, - V = 0 . 
I r ^ I r p 

If V > u-, then both WL and Wp are rarefaction waves and the solution 

for p* is 



P* = Pi 1 -
(Y - 1)(V - Ui) 

2(1 - bp^)C^ 

2Y 
FT 

(32) 

I f V 4 u-, then both W, and Ŵ  are shock waves wi 
P ^ I L R 

th 

P* = Pi 
/4a. 2^1 + (u^ - Vp) + (Ui - V p ) / 4 a i ( 1 - e) + (u^ - Vp) 

2_ 
'1 

with 2(1 - bp,)p^ 

^̂ 1 = (Y -H D P 
B Y - 1 (34) 

For the l e f t boundary the analysis i s ident ical and the resu l t is 

2Y 

P* = P, 
(Y - 1)(u^ - Vp) 

^ " 2(1 - bp )C, 
r r 

FT 
(35) 

i f V < u (2 rarefact ions) 

and 

P* = P. 
2ap ^ Vp - u^) ' -̂ (Vp - u^)/4cx^(1 - e) + (Vp - u^) 

2^ 

(36) 

if V > u (2 shocks), where a is given in eq. (34) with p,, p, replaced 

by pp. Pp. 

The problem that remains is the determination of the solution inside 

rarefaction fans. 

4.3 Solution inside rarefaction fans 

We only consider one case in detail. Suppose the left travelling wave W. 

is a rarefaction wave as illustrated in Fig.3. Consider a general point Q 

(x, t) inside the rarefaction fan bounded by characteristics ^ = Ui - c,(head) 

and -Tf = u* - ct (tail). A characteristic ray through the origin and Q 
dx 

has slope ̂  = u - c in the x - t plane, where both u and c are unknowns 

of the problem. Then 

U = -jr + c 

t 
(37) 



d x / d t = u , - c , 

* • X 

Figure 3: Point Q(x, t ) inside rarefaction fan 

centered at (0,0). 

Use of the l e f t Riemann invariant JL given by eq. (17) and of eq. (37) 

gives 

c[1 ^ jrh) ^' -''^^ -'l^'^^ -1 (38) 

Now using definition (9) of sound speed and isentropic relation (18), 

with pt replaced by p, at point Q we obtain 

P = P 
•1 - bpiY / \^ 

1\ P 1 r^ 
Further algebraic manipulations give 

FL = P^^"''^Y + 1 - 2bp)' - B^(1 - bp)'' 
+1 

(39) 

(40) 

and 
3F 
•g-^ = (Y + 1)[bBi(1 - bp)Y + (Y + 1 - 2bp)(Y - 1 - 2bp)pY"2] (41) 

where the constant g, is given by 



_ { ( V - 1 ) [ 0 , ( U , ) - | ] ] 

Eq. (40) is a non-linear algebraic equation for p. We solve this 

using a combination of the Newton-Raphson and the Secant Methods. Once 

p is found, to a given accuracy, the pressure p follows immediately from 

eq. (39). The sound speed c is now known from eq. (9) and velocity u 

follows directly from eq. (37). 

For the case of a right rarefaction the analysis is entirely analogous. 

The equation for p inside the fan is 

Fp = P^^"^^(Y + 1 - 2bp)' - B^(1 - bp)^"-^ = 0 (43) 

where 

2c ̂  
[x/t - u^ + X 7 ^ ( l " ^Pr^^ 

V = 1 - bp Y 

YPr^-^) r̂ 

(44) 

Then p follows from an equation like eq. (39) with p,, p, replaced 

by p , p . The sound speed c follows from the definition (9) and u is r r 
given by 

u = x/t - c (45) 

The exact solution of the Riemann problem with constant covolume is 

now known everywhere in the half x - t plane (Fig. 1). 

5. The Random Choice Method (RCM) with covolume 

In this section we describe the way the exact solution of the Riemann 

problem can be used locally to obtain (numerically) the global solution of 

the general initial-boundary value problem for the Euler equations. 

Consider the system of equations (2) in a finite domain 0 ̂  x ^ L subject 

to a general initial data at a time t , say. If the spatial domain is 



discretised into M cells of size Ax and the general data is approximated 

by piece-wise constant functions then the original problem has been replaced 

by a sequence of local Riemann problems Rp(i, i+1) for i = 1, ... M - 1. 

In addition, there are two more boundary Riemann problems RP(0,1) and 

RP(M, M+1). Data for RP(i, i+1) consists of two constant states u" (left) 

and U^^. (right). The discrete problem is illustrated in Fig. 4. Each 

local Riemann problem has solution as depicted in Fig. 1 and can be solved 

exactly by the method of section 4. Now the solution is valid locally for 

a restricted range of space and time, i.e. before wave interaction occurs. 

For a sufficiently small time increment AT the local solutions are unique 

in their respective domains so that the global solution at time 

t . = t + AT is uniquely defined for 0 4 x ̂  L. Within cell i (Fig.4), 

the solution is composed of the exact solutions of RP(i-1, i) and RP(i, i+1). 

We denote this exact solution by v'J"̂  . Note that M^.'^ (x, t .) depends on 

x(x. < X < X- J; it is not constant, in general. In fact, there may be 

strong discontinuities transversing cell i. In order to advance the 

numerical solution in time, a procedure to update U. to U."*" is required. 

The Random Choice Method ([4], [6]) takes 

uy^ = V^*^(Q.) (46) 

where Q. = (x . + e„Ax, t + AT) is a point a t a "random" pos i t ion wi th in l i n n 
ce l l i . Here e is a pseudo-random number in the in terva l [ 0 , 1 ] . 

We remark that a more well known version of RCM advances the solut ion 

in two steps using a staggered gr id [ 6 ] . The one-step PCM on a non-

staggered gr id as presented here is simpler to implement and has a number 

of advantages over the staggered-grid vers ion. This is most evident when 

source terms depending on x and t are incorporated; also when using higher-

order versions [ 7 ] , or hybrid schemes [ 8 ] , or i r regu lar grids [ 9 ] , the one-

step RCM f a c i l i t a t e s coding enormously. 

Two more aspects of the method require a t t e n t i o n , namely, the choice 

of the time-step size AT and the generation of the pseudo-random numbers 

e . The choice of AT is d ictated by the requirement that no waves should 

i n te rac t . This is the CFL cond i t ion . A popular version [4 ] fo r RCM is 

'' - h ^̂ /̂̂ max (47) 



-interual 
of 

sampling 
,n + l 

n + 1 

Fig. 4: Solution of local Riemann problems RP(i-1,i) and 

RP(i,i+1) affecting cell i. 

where the coefficient Cc is chosen within the interval ( 0,J] and S is 
b mix 

the maximum wave speed present at time t , i.e. 

S ^ ^ = m a x ( | u ; | +c1) (48) 

The CFL condition (47) chooses AT in such a way that no wave is allowed 

to transverse more than half a cell size. This is convenient to implement, 

but one could do better by monitoring intersection points within each cell 

and then choosing AT appropriately. 

Concerning the sequence {e }, it has been established [4] that Van 

der Corput sequences give best results. Truly random numbers are not as 

adequate. A general Van der Corput sequence [10] {e } depends on two 

parameters ki, kj with ki > kj > 0, both integer and relatively prime. 

Then the (ki, kj) van der Corput sequence {6 } is formally defined as 

follows 

e = ? A,kr(-i) 
" i=0 ^ 

(49) 

where 

A. = kja. (mod ki) (50) 



and 

n = E a, kj (51) 
i=0 ^ 

Eq. (49) says that the n-th member e E[0,1] of the (ki, kj) van der 

Corput sequence is a summation of m terms involving powers of ki. The 

coefficients A. are defined by eqs. (50) and (51). First, the non-

negative integer n is expressed in scale of notation with radix ki 

(base ki) by eq. (51). e.g. ki = 2 gives the binary expansion of n. 

Table I contains coefficients a. of eq. (51) for ki = 2 and kj = 3 

for ten values of n. The next stage is to find the "modified" coefficients 

A. from eq. (50), i.e. A. is the remainder of dividing k^a. by ki 

(A. < ki). The simplest case is ka = 1 , then A. = a. V.. Table 11(a) 

shows the coefficients A. for ten values of n when ki = 3 and kg = 2. 

Having found A. for i = 0, . . . , m, the actual members e of the sequence 

are computed from eq. (49). Table 11(b) shows the first 10 members of two 

van der Corput sequences. 

k, . 2 

n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

^0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

^1 

1 

1 

0 

0 

1 

1 

0 

0 

1 

^2 

1 

1 

1 

1 

0 

0 

0 

^3 

1 

1 

1 

m 

0 

2 

2 

3 

3 

3 

3 

4 

4 

4 

k̂  = 3 

'o 

1 

2 

0 

1 

2 

0 

1 

2 

0 

1 

^1 

1 

1 

1 

2 

2 

2 

0 

0 

'2 

1 

1 

m 

0 

1 

2 

2 

2 

2 

2 

2 

3 

3 

Table I: Coefficients a. and value of m when k. = 2 and k. = 3 

for n = 1 to 10 



n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

^ 

2 

1 

0 

2 

1 

0 

2 

1 

0 

2 

^ 

2 

2 

2 

1 

1 

1 

0 

0 

A2 

2 

2 

e^ for (2,1) 

0.0 

-0.25 

0.25 

-0.375 

0.125 

-0.125 

0.375 

-0.4375 

0.0625 

-0.1875 

e^ for (3,2) 

0.1667 

-0.1667 

-0.2778 

0.3889 

0.0556 

-0.3889 

0.2778 

-0.0556 

-0.4259 

0.2407 

(a) (b) 

(a) Coefficients A. for sequer 

(b) van der Corput numbers (2,1) and (3,2) for n = 1 to 10 

Table II: (a) Coefficients A. for sequence (3,2) and 

The final stage to implement RCM is the sampling procedure. Fig. 4 

shows that the updated value U. depends on sampling the exact solution 

of the Riemann problems RP(i-1,i) and RP(i,i+1). Note that for each cell i 

we only solve one Riemann problem, except for i = 1. Given the CFL condition 

(47) we sample the right half of the solution of RP(i-1,i) if 0 <: e x; J 

or the left half of the solution of RP(i,i+1) if è < e X 1. The sampling 

procedure itself, irrespective of the value of e , has two main cases to 

consider, namely (A) the sampling point Q. lies to the left of the contact 
dx discontinuity ̂  = u* and (B) Q. lies to the right of the contact discontinuity, 

Each case has two possible wave configurations. Figs. 5 and 6 show these 

configurations for cases (A) and (B) respectively. 

dx 
Consider case (A), i.e. Q. is to the left of ̂x- = u*. The flow 

chart of Fig. 7 shows the detailed sampling procedure. One proceeds to 

sample the wave pattern of Fig. 5a if the left wave is a shock wave, i.e. 

p* :̂  Pl. Otherwise the wave configuration of Fig. 5b is sampled (left rare­

faction). For the shock case there are two possible regions, namely behind 

the shock (region star left) or in front of the shock (left state). For 

the rarefaction case there are three possible regions. If Q. lies to the 
dx ^ 

right of the tail of the rarefaction gr- ~ "* " ̂ f* ^^®" ̂ ^ assign the solution 



d x / d t = S 

d x / d t = u'~ 

d x / d t = u , - c , 

(») (h) 

(a) (b) 

Figure 5: Wave configuration for case A when Q. is to the l e f t of contact; 

(a) WL is shock, (b) WL is rarefaction. 

d x / d t = u ^ ^ + C' 

d x / d t = u +c r r 

(a) (b) 

Figure 6: Wave configuration for case B where Q. is to the r ight of 

contact: (a) Wp is shock, (b) Wp is rarefaction. 



NO 

Q Fig. 5b 3 

YES 

c Fig.5a 

(star left) 

U = U* 

J 

(left state) 

U - U 

(star left) 

U = U* 

Figure 7: Sampling procedure for case (A), Q. lies to the left of contact 
dx discontinuity jf- = u* (see Fig. 5) 



corresponding to the region star left. If Q. lies to the left of the rare-
dx ^ 

faction head ^ = u, - c-, then the data state U, is assigned to the solution. 

Finally, if Q. lies inside the rarefaction fan the non-linear eq. (40) must 

be solved to find p; the pressure p is found from eq. (39) and the velocity 

u is found from eq. (37). 

Case (B), Q. l ies to the r ight of the contact discontinuity, is entirely 

similar to case (A) just described; i t is i t s mirror image (see Fig. 6) . 

The application of the solution of the Riemann problem with covolume 

to the Random Choice Method has been described. The resulting numerical 

technique to solve the one-dimensional unsteady Euler equations with general 

data and boundary conditions of practical interest can now be applied to 

a variety of problems in which covolume is important. Note that the present 

Riemann solver applies direct ly to the ideal-gas case (b = 0 ) . Indeed, i f 

covolume is not needed, then i t is more ef f ic ient to exclude covolume in 

a l l equations. 

In Ref. [ 3 ] , details of the ideal gas algorithm are given, including 

FORTRAN programs for the Riemann solver and i t s implementation in the Random 

Choice Method. 

6. Application to shock-tube problems 

Shock-tube problems are special cases of a Riemann problem and can 

therefore be solved exactly by direct application of the present Riemann 

solver. Also, as gas dynamical problems they can be solved approximately 

by solving the Euler equations numerically. This is done here by use of 

RCM which in turn u t i l i ses , local ly , the exact solution of the Riemann 

problem. 

F i rs t , as a part ial validation of the method, we solved the shock-tube 

problem with data as given in Table I l l a . This is the ideal-gas case 

(b = 0) and has a s imi lar i ty solution. Fig. 8 shows results. They are 

coincident, as they should be. The second shock-tube problem is defined 

by data of Table I l l b . This is a case with covolume. Fig. 9 shows a comparison 

between the ideal case (b E 0) and the non-ideal case (b = 10"^m^/kg). 

Differences are relat ively small. The ideal gas case gives a stronger 

shock but a weaker contact discontinuity. Also the rarefaction for the ideal 

case is s l ight ly weaker, but overall variations in p, u, p inside the rare­

faction fan are small. Variation in internal energy are appreciable. This 



has implications for ignit ion c r i t e r i a . 

Fig. 10 shows a comparison between the exact solution and the numerical 

solution (obtained by RCM) of the covolume shock tube problem. 

(a) 

b = 0.0 

Y = 1.4 

Pl = 1 . 0 

u^ = 0.0 

Pl = 1 . 0 

x« = 0 . 4 
0 

ideal case 

, p^, = 0.125 

. u^ = 0.0 

. Pp = 0.1 

(b) non-1 

b = 0.001 

Y = 1.3 

p,= 100.0 

u^= 0.0 

p^= 100.0 

x„ = 0.4 
0 

deal case 

(mVkg) 

Pp = 1.0 

Up = 0.0 

Pp = 0.1 

(kg/mM 

(m/s) 

(MPa) 

Table I I I : Data for two shock-tube problems. 

7. Conclusions 

An ef f ic ient method for solving exactly the Riemann problem with constant 

covolume has been presented. The Riemann solver can be direct ly applied to 

shock-tube problems. The corresponding ideal-gas version of the Riemann 

solver is very fast by current standards, Ref. [ 3 ] . 

The solution has been applied to the Random Choice Method to solve 

numerically the general i n i t i a l boundary value problem for the unsteady 

one-dimensional Euler equations with the constant covolume equation of state. 
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SHOCK-TUBE PROBLEM WITH COVOLUME B=0.001 
FIGURE g : EXACT SOLUTIONS FOR COVOLUME CASE (FULL LINE) 

AND IDEAL CASE B=0 (BROKEN LINE). 
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APPENDIX 

A FORTRAN 77 program for the Random Choice Method using the constant 

covolume Riemann solver is included. 

There is a DRIVER (main program) and a set ofseuensubroutines. 

DRIVER Program 

There are 3one-dimensional arrays for density D, velocity U and 

pressure P. Also there is an array RN that holds the random numbers 

required for the calculations; if more than 10000 time steps are 

required then its dimension will have to be changed. The common block 

CPQAMMA contains various constants involving the ratio of specific heats 

GAMMA. STATES contains data for Riemann problem RP(U£,U^). STARSO 

contains solution u* and p* of Riemann problem as well as sound speeds 

c^ and c . COVOLU contains expressions involving the covolume B and 

B itself. GAMTOL has GAMMA and the tolerance TQL. 

The following data is read in: 

TUBLEN : length 

M : It defines spatial discretion (e.g. M=100) 

NOTIST : Number of time steps (e.g. 200) 

MöPROF : No. of profiles (times) to be printed out (e.g. 10) 

TOL : Tolerance for iterative solution procedures. 

CFLCOE : Coefficient for CFL - condition (0<CFLCOE<^) in calculating time 

step size A T . 

GAMMA : Ratio of specific heats Y(e.g. 1.3) 

B : covolume (e.g. O.OOlm^/kg) 

Main loop 0001 is for time stepping. Loop 0003 solve M + 1 Riemann 

problems and updates solution by sampling Riemann problem solutions. 

Also, there are the following subroutines: 

SUBROUTINES RPCOV - this is our Riemann solver forthe constant covolume 

equation of state. 

SUBROUTINE SAMGOv/ - it samples solution of Riemann problem RP(U^,Up). 

SUBROUTINE RARFAN - computes quantities inside rarefaction fa^j^ ^ 
solves iteratively for density p first. 

SUBROUTINE VDCK12 - this generates random number sequences (k .kp) starting 

atNRN0. 



SUBROUTINE ICDATA - gives initial condition and calculates various 

constants to be used throughout the computations. 

SUBROUTINE CFLCON - caJculates AT according to CFL condition. 

SUBROUTINE OUTPUT - it prints out p,u,p and e for specified times. 



PROGRAM DRIVER 
PARAMETER (MD-1000) 
DIMENSION D(0:MD+1),U(0:MD+1),P(0:MEH-1),RN(10000),TV(10) 
COMMON/CPGAMMA/GPl,GMl,HGMl,DGAM,Gl,G2,G3,G4, G5, G6 
COMMON/STATES/DL,UL,PL,DR,UR,PR 
COMMON/STARSOAJS,PS,CL,CR 
COMMCW/COVOLU/COVL,COVR,B 
COMMON/GAMTOL/GAMMA,TOL 
DATA NC,TIME,POINTER,TOLTIME/0,0.0,0.5,1.OE-06/ 
DATA (TV(KT),KT=1,2)/0.0002,0.0004/ 
READ(99,*)TUBLEN,M,NOTIST,NOPROF,TOL,CFLCOE,GAMMA,B 
CALL ICDATA(M,TUBLEN,DX,GAMMA,D,U,P) 
CALL VDCK12(RN,NOTIST) 
KT=1 

C COMMENCE TIME STEPPING 
DO 0001 N=l,NOTIST 

C REFLECTING BOUNDARY CCMDITIONS APPLIED 
D(0) =D(1) 
U(0) =U(1) 
P(0) =P(1) 
D(M+1)=D(M) 
U(M-(-l)=-U(M) 
P{M+1)=P(M) 
CALL CFLCON(B,GAMMA,M,D,U,P,DX,DTMIN) 
DT=CFLCOE*DTMIN 
TITEST=(TIME-HDT) 
IF(TITEST.GT,TV(KT))THEN 

DT=TV(KT)-TIME 
ENDIF 
TIME=TIME+DT 
RAND=RN(N) 
DTDX=DT/DX 
DXDTL-RAND/DTDX 
DXDTR=(RAND-1.O)/DTDX 

C UPDATE SOLUTION TO NEXT TIME LEVEL 
DO 0003 1=1,M 

IFd.EQ.DTHEN 
C SOLVE RIEMANN PROBLEM AT THE LEFT BOUNDARY 

DL=D(I-1) 
UL=U(I-l) 
PL=P(I-1) 
DR=D(I) 
UR=U(I) 
PR=P(I) 
CALL RPCOV 

ENDIF 
IF (RAND. LE. POINTER) THEN 
CALL SAMCOV (Dl, Ul, Pl, DXDTL) 

ENDIF 
C SOLVE RIEMANN PROBLEM RP( 1,1-1-1) 

DL=D(I) 
UL=U(I) 
PL=P(I) 
DR=D(I-l-l) 
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UR=U(l+l) 
PR=P(I-̂ l) 
CALL RPCOV 
IF(RAND.GT.POINTER)THEN 

CALL SAMCOV(Dl,Ul,Pl,DXDTR) 
ENDIF 
D(I)=D1 
U(I)=U1 
P(I)=P1 

0003 CONTINUE 
C UPDATING COMPLETED 

TDIF=ABS(TIME-TV(KT)) 
IF(TDIF.LE,TOLTIME)THEN 

NC=NC+1 
CALL OUTPUT(TIME,M,NC,NOPROF,GMl,D,U,P,B) 
IF(NC.EQ.0)THEN 

WRITE(6,*)'J0B FINISHED OK' 
STOP 

ENDIF 
KT=KT+1 

ENDIF 
0001 CONTINUE 
C TIME STEPPING COMPLETED 

END 

SUBROUTINE RPCOV 
COMMON/STATES/DL,UL,PL,DR,UR,PR 
COMMON/STARSO/US,PS,CL,CR 
COMMON/GAMTOL/GAMMA,TOL 
COMMON/COVOLU/COVL,COVR,B 
COMMON/CPGAMMA/GPl,GMl,HGMl,DGAM,Gl,G2,G3,G4,G5,G6 

C SOLVES RIEMANN PROBLEM WITH CONSTANT COVOLUME B 
C0VL=1,0-B*DL 
C0VR=1.0-B*DR 
CL =SQRT(GAMMA*PL/(C0VL*DL)) 
CR =SQRT(GAMMA*PR/(COVR*DR)) 
DELU=UL-UR 

C GUESSED VALUE FOR PS IS PROVIDED 
CLPLG=CL/PL**G1 
CRPRG=CR/PR**G1 
ABOVE=CL*COVL-i-CR*COVR-l-HGMl *DELU 
BELOW=CLPLG*COVL+CRPRG*COVR 
PS =(AB0VE/BELCW)**G3 
PSO =PS 

C START ITERATION 
EX) 0001 IT=1,50 

C LEFT WAVE 
IF(PL.LT.PS)THEN 

S1=SQRT(G5*C0VL/DL) 
S2=G6*PL 
S2PS=S2-i-PS 
DELPLPS=PL-PS 
SQS2PS=1.0/SQRT(S2PS) 
FLEFVAL=S1*DELPLPS*SQS2PS 
FLEFDER=-S1*SQS2PS*(1.0+0.5*DELPLPS/S2PS) 
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ELSE 
FLEFVAL=G4*C0VL*(CL-CLPLG*PS**Gl) 
FLEFDER—DGAM*COVL*CLPLG*PS* *(-G2) 

ENDIF 
C RIGHT WAVE 

IF(PR,LT.PS)THEN 
S1=SQRT(G5 *COVR/DR) 
S2=G6*PR 
S2PS=S2+PS 
DELPRPS=PR-PS 
SQS2PS=1.0/SQRT(S2PS) 
FRICÏVAL=S1*DELPRPS*SQS2PS 
FRIGDER=-S1*SQS2PS*(1.0+0.5*DELPRPS/S2PS) 

ELSE 
FRIC;VAL=G4 *COVR* (CR-CRPRG*PS* *Gl) 
FRIGDER=-DGAM*COVR*CRPRG*PS**(-G2) 

ENDIF 
FUNVAL=FLEFVAL+FRIGVAL+DELU 
FUNDER=FLEFDER+FRIGDER 
PS =PS-FUNVAL/FUNDER 
IF(IT.GT.5)THEN 

C SECANT METHOD 
ABOVE=PS0*FUNVAL-PS*FUNVALO 
BELOW=FUNVAL-FUNVAL0 
PS=ABOVE/BELCW 

ELSE 
C NEWTON RAPHSON METHOD 

ENDIF 
US=0.5*(FLEFVAL-FRIC^AL+UL+UR) 
TESTPS =ABS((PS-PSO)/PS) 
IF(TESTPS.LE.TOL)GOTO 0002 
IF(PS.LT.TOL)PS=TOL 
PS0=PS 
FUNVALO=FUNVAL 

0001 CONTINUE 
WRITE(6,0003)IT 
STOP 

0003 FORMATC DIVERGENCE IN PSTAR STEP, ITERATION NO. =',I4) 
0002 CCa^INUE 

RETURN 
END 

SUBROUTINE SAMCOV(D,U,P,DXDT) 
COMMON/STATES/DL,UL,PL,DR,UR,PR 
COMMON/STARSO/US,PS,CL,CR 
COMMON/COVOLU/COVL,COVR,B 
COMMCW/GAMTOL/GAMMA,TOL 
COMMON/CPGAMMA/GPl,GMl,HGMl,DGAM,Gl,G2,G3,G4,GS,G6 
IF(DXDT.GE.US)THEN 
SAMPLING POINT LIES TO THE RIGHT OF SLIP LINE 

IF(PS.LE.PR)THEN 
RIGHT WAVE IS A RAREFACTION WAVE 

IF(DXDT.LT.(UR+CR))THEN 
AISEN=(DR/COVR)*(PS/PR)* *DGAM 
D3 =AISEN/(1.0+B*AISEN) 

C 

C 
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C0V3 =1.0-B*D3 
C3 -SQRT(GAMMA*PS/(D3*COV3)) 
IF(DXDT.LT.(US+C3))THEN 

C LEFT OF RIGHT RAREFACTION 
D=D3 
U=US 
P=PS 

ELSE 
C INSIDE RIGHT RAREFACTION 
C GUESS VALUE FOR D, MEAN VALUE 

D=0.S*(DR+D3) 
RARCON=DXDT-UR 
CALL RARFAN(DXDT,RARC0N,D,C4,P,DR,PR,CR,COVR) 
U=DXDT-C4 

ENDIF 
ELSE 

C RIGHT OF RIGHT RAREFACTION 
D=DR 
U=UR 
P=PR 

ENDIF 
ELSE 

C RIGHT WAVE IS A SHOCK WAVE 
CONS=0.5*GPl*DR*PR/C0VR 
PRERAT=PS/PR 
RMR=SQRT(CONS*(PRERAT+GMl/GPl)) 
URS=UR+RMR/DR 
IF(DXDT.GE.URS)THEN 

C RIGHT OF RIGHT SHOCK 
D=DR 
U=UR 
P=PR 

ELSE 
C BEHIND RIGHT SHOCK 

AB0VE=GP1*PRERAT+GM1 
'IWIBDR=2.0*B*DR 
BELCW=(GMl+IWIBDR)*PRERAT+GPl-IWIBDR 
D=DR*ABOVE/BELCW 
U=US 
P=PS 

ENDIF 
ENDIF 

ELSE 
C SAMPLING POINT LIES TO THE LEFT OF SLIP LINE 

IF(PS.LE.PL)THEN 
C LEFT WAVE IS A RAREFACTION 

AISEN=(DL/COVL)*(PS/PL)* *DGAM 
D3 =AISEN/(1.0+B*AISEN) 
C0V3 =1,0-B*D3 
C3 =SQRT(GAMMA*PS/(D3*COV3)) 
IF(DXDT.LT.(US-C3))THEN 

IF(DXDT.LT.(UL-CL))THEN 
C LEFT OF LEFT RAREFACTION 

D=DL 
U=UL 
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P=PL 
ELSE 

C INSIDE LEFT RAREFACTION 
C GUESS VALUE FOR D, MEAN VALUE 

D=0.5*(DL+D3) 
RARCON=-(DXDT-UL) 
CALL RARFAN(DXDT,RARCON,D,C4,P,DL,PL,CL,COVL) 
U=DXDT+C4 

ENDIF 
ELSE 

C RIGHT OF LEFT RAREFACTION 
D=D3 
U=US 
P=PS 

ENDIF 
ELSE 

C LEFT WAVE IS A SHOCK WAVE 
CONS=0.5*GP1*DL*PL/C0VL 
PRERAT=PS/PL 
RML=SQRT(CONS*(PRERAT+GMl/GPl)) 
ULS=UL-RML/DL 
IF(DXDT.GE.ULS)THEN 

C BEHIND LEFT SHOCK 
ABOVE=GPl*PRERAT+GMl 
TWIBDL=2.0*B*DL 
BELCW= (GMl+IWIBDL) *PRERAT+GPl-'IWIBDL 
D=DL*ABOVE/BELCW 
U=US 
P=PS 

ELSE 
C LEFT OF LEFT SHOCK 

D=DL 
U=UL 
P=PL 

ENDIF 
ENDIF 

ENDIF 
RETURN 
END 

C 
SUBROUTINE RARFAN(DXDT,RARCON,DF,C4,P,DK,PK,CK,COVK) 
COMMON/COVOLU/COVL,COVR,B 
COMMON/GAMTOL/GAMMA,TOL 
COMMON/CPGAMMA/GPl,GMl,HGMl,DGAM,Gl,G2,G3,04,GS,G6 
Zl=RARC0N+2.0*CK*COVK/GM1 
Z2=PK* (COVK/DK) **(5AMMA 
ZZ=(Zl*GMl)**2/(GAMMA*Z2) 
DF0=DF 
DO 0001 1=1,100 

C0VF=1,0-B*DF 
Fl =GPl-2,0*B*DF 
F2 =COVF**GAMMA 
F3 =Fl-2.0 
F4 =DF**GM1 
FVAL=F1*F1*F4-ZZ*F2*C0VF 
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C NEWTON-RAPHSON ITERATIC»! 
FDER=GPl*(B*ZZ*F2+Fl*F3*F4/DF) 
DF =DF-FVAL/FDER 
IF(I.GT.5)THEN 

C SECANT METHOD 
ABOVE=DF0*FVAL-DF*FVALO 
BELCIW=FVAL-FVALO 
DF =ABOVE/BELCW 

ENDIF 
DETED=ABS((DF-DFO)/DF) 
IF(DETED.LE.TOL)GOTO 0002 
IF(DF.LT.TOL)DF=TOL 
DFO =DF 
FVALO=FVAL 

0001 CONTINUE 
WRITE(6,0004)I 

0004 FORMAT(5X,'DIRVERGENCE INSIDE FAN, NO. OF ITER.=',I5) 
STOP 

C COMPUTE OTHER UNKNCWNS 
0002 C0V4=1.0-B*DF 

P =Z 2 *(DF/C0V4)* *GAMMA 
C4 =SQRT(GAMMA*P/(DF*C0V4)) 

0003 CONTINUE 
RETURN 
END 

C 
SUBROUTINE VDCKl2(RN,NOTIST) 
PARAMETER (Nl=1000,N2=10000) 
DIMENSION NA(Nl),JA(Nl),RN(N2) 
DATA Kl,K2,NRN0/2,1,100/ 
DO 0001 NRN=NRN0,NOTIST+NRN0 

IS=0 
MM=NRN 
DO 0002 1=1,100 

IF(MM.EQ.0)GOTO 8888 
IS=IS+1 
NA(I)=MOD(MM,Kl) 
MM=MM/K1 
KL=K2*NA(I) 
JA(I)=MOD(KL,Kl) 

0002 CONTINUE 
8888 RANNUM=0,0 

DO 0004 K=1,IS 
RANNUM=RANNUM+REAL(JA(K) )/( Kl**K) 

0004 CONTINUE 
NT=NRN-NRN0+1 
RN(NT)=RANNUM 

0001 CONTINUE 
RETURN 
END 

C 
SUBROUTINE ICDATA(M,TUBLEN,DX,CiAMMA,D,U,P) 
PARAMETER (MD=1000) 
DIMENSION D(0:MD+1),U(0:MD+1),P(0:MD+1) 
COMMON/CPGAMMA/GPl,GMl,HGMl,DGAM,Gl,G2,G3,G4,GS,G6 



DATA DLO,ULO,PLO/100.0,0.O,100.0E+06/ 
DATA DRO,URO,PRO/1.0,0.0,0,lE+06/ 
DATA XO/0,4/ 
GPl=GAMMA+l,O 
GMl=GAMMA-l,O 
HGM1=0.S*GM1 
HGP1=0.5*GPl 
DGAM=1.O/GAMMA 
Gl=HGMl/GAMMA 
G2=HGP1/GAMMA 
G3=l.0/Gl 
G4=l.0/HGMl 
G5=2,0/GPl 
G6=GM1/GP1 
DX=TUBLEN/REAL(M) 
DO 1000 1=1,M 

XP=(REAL(I)-O.S)*DX 
IF(XP.LE,XO)THEN 

D(I)=DLO 
U(I)=ULO 
P(I)=PLO 

ELSE 
D(I)=DRO 
U(I)=URO 
P(I)=PRO 

ENDIF 
1000 CONTINUE 

RETURN 
END 

SUBROUTINE CFLCON(B,GAMMA,M,D,U,P,DX,DTMIN) 
PARAMETER (MD=1000) 
DIMENSION D(0:MrHl),U(0:MD+l),P(0:MD+l) 
SMAX=0.O 
DO 0001 1=1,M 

DENS=D(I) 
C0V=1,0-B*DENS 
A=SQRT(GAMMA*P(I)/(COV*DENS)) 
SMUA=ABS(U(I))+A 
IF(SMUA,GT,SMAX)SMAX=SMUA 

0001 CONTINUE 
DTMIN=DX/SMAX 
RETURN 
END 

SUBROUTINE OUTPUT(TIME,M,NC,NOPROF,GMl,D,U,P,B) 
PARAMETER (MD=1000) 
DIMENSION D(0:MD+1),U(0:MD+1),P(0:MD+1) 
DIMENSION TM(20),Rl(4,20,MD) 
DATA RMPA/1.OE+06/ 
TM(NC)=TIME 

GMC0NST=GM1*RMPA 
DO 0001 1=1,M 

Rl(l,NC,I)=D(I) 
Rl(2,NC,I)=U(I) 



Rl(3,NC,I)=P(I)/RMPA 
COV=1,0-B*D(I) 
Rl(4,NC,I)-(COV*P(I))/(D(I)*GMCONST) 

0001 CONTINUE 
IF(NC.EQ.NOPROF)THEN 

WRITE(1,0004)(TM(J),J=l,NOPROF) 
WRITE(2,0004)(TM(J),J=l,NOPROF) 
WRITE(3,0004)(TM(J),J=1,NOPROF) 
WRITE(4,0004)(TM(J),J=l,NOPROF) 
DO 0002 1=1,M 

WRITE(1,0003)1,(Rl(l,J,I),J=l,NOPROF) 
WRITE(2,0003)I,(Rl(2,J,I),J=l,NOPROF) 
WRITE(3,0003)I,(Rl(3,J,I),J=l,NOPROF) 
WRITE(4,0003)1,(Rl(4,J,I),J=l,NOPROF) 

0002 CONTINUE 
NC=0 

ENDIF 
0003 FORMAT(I4,1X,10(F10.4,1X)) 
0004 FORMAT(5X,10(F7.4,4X)) 

RETURN 
END 

C 

1.0 100 7000 1 l.OE-04 0.4 1.3 0.001 

VARIABLE NAMES FOR TEST PROBLEM WITH COVOLUME 

TUBLEN M NOTIST NOPROF TOL CFLCOE GAMMA B 


