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Summary

The increasing size of cargo vessels poses significant challenges for ports in ensuring safe mooring
operations, as larger ships result in higher mooring forces. Excessive mooring line forces can have
catastrophic outcomes, including severe injuries or fatalities to personnel, along with vessels breaking
free to cause costly collisions and environmental damage. However, most existing port infrastructure
and mooring equipment were designed for smaller ships, creating a disparity between vessel size and
infrastructure capabilities. This raises concerns about the safe and efficient mooring of current and
future ship generations. To address these risks, accurately predicting mooring line forces is essential
for enabling timely and effective mitigation measures.

A numerical approach called Dynamic Mooring Analysis (DMA) can be used to predict moored vessel
behavior. DMA solves the equations of motion in six degrees of freedom in the time domain, accounting
for nonlinear interactions between ship, mooring system, and environment. However, these simulations
are computationally expensive. Machine learning (ML) offers a data-driven alternative by capturing the
nonlinear behavior of moored ships through training on measured field data, thereby eliminating the
need to explicitly model physical processes. This approach, though promising, typically suffers from
limited interpretability and requires large, costly field measurement datasets.

Metamodeling provides a potential solution. In this technique, ML models are trained on simulated
data, serving as a simplified surrogate for a more complex numerical model. Metamodels offer similar
predictive capabilities but at significantly reduced computational cost, making them suitable for large-
scale scenario analysis. Moreover, they can provide insights into system behavior and sensitivities of
the original numerical model.

There is a gap in the existing literature on metamodels specifically developed for predicting mooring
line forces of large-scale vessels in port environments. This research addresses this gap through the
following research question: How can mooring line forces of large-scale vessels within port areas be
predicted using machine learning techniques? To answer this, the thesis investigates the development
of a machine learning-based metamodel that replicates the results of traditional DMA.

A metamodeling approach is proposed in which ML algorithms, namely Linear Regression (LR) and a
Multi-Layer Perceptron (MLP), are trained on a systematically generated dataset of simulated mooring
scenarios. These scenarios are created by varying input parameters across the key aspects charac-
terizing mooring: environmental conditions, mooring system, and ship characteristics. The resulting
models are evaluated through a multi-objective evaluation framework.

The method was applied to a case study involving a 333-meter container vessel moored at the Port of
Rotterdam. Input parameters included environmental, mooring, and vessel-specific factors, while the
targets were the mean and maximum mooring line forces. A total of 11,520 scenarios were simulated
to form the DMA dataset. This dataset was used to train and test both LR and MLP models. The
models were then evaluated based on their accuracy, efficiency in terms of both prediction time and
development effort, and lastly interpretability. Based on this evaluation, the MLP model was selected
as the final DMA metamodel. It achieved high predictive accuracy (R2 = 0.996, RMSE = 10 kN) while
predicting mooring forces in microseconds, a significant improvement over the 30 seconds per sce-
nario required by numerical DMA. This makes the metamodel well suited for large-batch predictions.
Interpretability was addressed through permutation importance and SHAP analysis, providing insights
into the influence of individual input features.

In addition, a practical method was proposed to estimate uncertain input parameters, such as preten-
sion and viscous damping, using field measurements. This approach showed promising results for the
mean mooring line force but was less reliable for maximum mooring line forces, highlighting the need
for multi-objective optimization and more extensive measurement datasets.
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The results demonstrate that the DMA metamodel based on MLP is a viable and efficient tool for moor-
ing line force prediction, with practical relevance for port authorities and maritime engineers. Future
research should extend the model to different vessel sizes, and explore additional ML algorithms, ex-
pand scenario design, and develop models based solely on measured field data.
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1
Introduction

This chapter starts with background information, including the problem statement and a brief literature
review. From this, the research gap is identified, the research questions are defined, and the scope of
the study is outlined. Finally, the structure of this thesis is presented.

1.1. Background
1.1.1. Increasing mooring forces
In recent years, a significant expansion in cargo vessel dimensions and capacities has been observed,
as illustrated in Figure 1.1 (UNCTAD, 2023). This trend of ever-increasing ship sizes poses significant
challenges for ports worldwide in ensuring safe mooring operations (Van Zwijnsvoorde, Donatini, et al.,
2019). Larger ships experience greater environmental forces (Sáenz et al., 2023; Van Zwijnsvoorde
et al., 2018), resulting in higher mooring loads, including increased mooring line forces.

Excessive mooring line forces can lead to catastrophic outcomes. Line failures may cause severe
injuries or fatalities to crewmembers and port personnel. Additionally, vessels may break free from their
moorings, resulting in collisions with port infrastructure or other ships, causing substantial economic
losses and potential environmental damage.

Figure 1.1: Evolution of new generation container ships illustrating the increase in
physical dimensions and TEU capacity over time (Rodrigue, 2024)
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The majority of the existing port infrastructure and mooring equipment were designed for smaller ships
than those currently visiting (Van Zwijnsvoorde, Donatini, et al., 2019). As a result, the growing disparity
between vessel size and infrastructure design raises concerns about the safe and efficient mooring of
future ship generations.

1.1.2. Port of Rotterdam
This problem is also relevant to the Port of Rotterdam (Figure 1.2), the largest port of Europe. Covering
over 12,000 hectares, the port features 76 kilometers of quay walls, 126 jetties, and a wide range of
mooring facilities such as dolphins and buoys (Figure 1.3). With a water depth of up to 24 meters, it is
capable of accommodating vessels with the deepest draughts. In 2023, the Port of Rotterdam handled
approximately 28,000 seagoing vessels and 89,000 inland vessels, with a total cargo throughput of
438.8 million tonnes. This included dry and liquid bulk cargo, containers (13,446,709 TEU), and break
bulk (Port of Rotterdam Authority, 2024b).

Figure 1.2: Overview of the Port of Rotterdam area, which covers over 12,000 hectares (Port of Rotterdam, 2024)

The Port of Rotterdam Authority, a public company jointly owned by the municipality of Rotterdam and
the Dutch government, is responsible for the management, operation, and sustainable development of
the port and industrial area (Port of Rotterdam Authority, 2024a).

When there is a risk that moored vessels break loose due to extreme conditions, the Rotterdam Port
Authority can employ several mitigating measures to prevent such incidents (Port of Rotterdam, 2023).
However, the responsibility for taking these measures lies with the captain of a moored vessel. One
approach is to add more ballast water to increase the weight of the vessel and thereby reduce its
surface area exposed to wind. ShoreTension systems can be applied as well. Moreover, additional
lines can be deployed to (storm) bollards and tugboats can assist by pushing the vessel toward the
quay to maintain its position. In very extreme cases, vessels may be sent out to sea, where they are
safer by maintaining a favorable wind course. However, this measure is hardly implemented in practice.

The increasing vessel dimensions raise concerns on the part of the Port Authority regarding its ability
to safely accommodate such ships in the future. These concerns served as the main motivation for
initiating this thesis.

To ensure the mooring safety, it is essential that the Port Authority can accurately estimate mooring
forces. This allows the implementation of mitigation measures in time, assessment of whether existing
bollards have sufficient capacity, and evaluation of which future vessels can be safely moored in order
to enabling optimal use of the existing port infrastructure.
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(a) Quay wall (Cornelissen, 2021) (b) Mooring dolphins (De Roo, 2023)

(c) Jetty (Donker, 2018) (d) Mooring buoys in the Waalhaven (Port of
Rotterdam, 2015)

Figure 1.3: Different types of berths in the port of Rotterdam

1.1.3. Estimating mooring forces
Twomain approaches for estimatingmoored vessel response, exist in the scientific literature: numerical
modeling and machine learning. While numerical models are physics-based and simulate detailed
interactions, machine learning offers a data-driven alternative that may overcome some limitations of
traditional methods. A promising intermediate approach is metamodeling, which uses machine learning
trained on simulated data to approximate numerical models at lower computational cost.

1.1.3.1. Numerical modeling
Dynamic Mooring Analysis (DMA), based on time-domain numerical simulations, is widely used to
estimate ship responses under various environmental conditions. These methods solve the equations
of motion for moored vessels and often involve a series of coupled sub-models (Romano-Moreno et al.,
2022).

Numerous studies have demonstrated the application of numerical models for predicting moored vessel
behavior. Weiler et al. (2009) combined hydrodynamic scale model tests and time-domain computer
simulations to analyze an LNG carrier moored at a jetty with complex bathymetry in Yemen. Van der
Molen et al. (2016) evaluated various mooring configuration improvements at Geraldton Harbour, which
suffers from long wave-induced vessel motions, by comparing numerical simulations. Van Zwijnsvo-
orde and Vantorre (2017) numerically simulated an 18,000 TEU container vessel at berth, analyzing
mooring line forces under passing ship effects. Gourlay (2019a) developed a coupled ship-and-harbor
model to predict wave-induced motions and mooring line and fender loads of moored ships in Gerald-
ton Harbour in Autralia. Sundar et al. (2019) performed a comprehensive simulation of mooring line
forces due to combined wind, wave, current, and passing ship effects at Mumbai Port. Sáenz et al.
(2023) investigated the impact of next-generation ULCVs (up to 40,000 TEU) on port mooring systems,
by simulating the effects of wind and passing ship forces. M. Yan et al. (2023) employed numerical
modeling to analyze the hydrodynamic response of moored ships under harbor oscillations. Gourlay
(2023) modeled six-buoy spread mooring systems at Cape Cuvier in Australia in order to calculate the
wave-induced motions and loads and validated results using field measurements.

Although numerical modeling offers flexibility and is grounded in physical principles, the results can be
limited by the complexity of multivariate and nonlinear modeling (Liu et al., 2020; Taveira Pinto et al.,
2008). Moreover, it requires many variables that may not always be available. Therefore, hypothetical
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or standard values must be assumed, introducing uncertainties (Romano-Moreno et al., 2023). Ad-
ditionally, the computational cost of numerical modeling makes it impractical for large-batch scenario
analysis.

1.1.3.2. Machine learning
Machine Learning (ML) offers a data-driven alternative to traditional simulation-based methods that
can capture the nonlinear behavior of moored ships (Liu et al., 2020). Several studies have explored
machine learning methods for moored vessel response prediction, employing various algorithms and
training on measurement data from field or scaled experiments. S. Li and Qiu (2017) developed a ge-
netic algorithm-back propagation neural network (GA-BP) model to predict mooring forces in an open
sea terminal from environmental conditions and the ship’s draught defined as input parameters. Liu
et al. (2020) trained an artificial neural network (ANN) to predict mooring force, using wave character-
istics, ship specifications, and mooring line length as inputs. S. Li and Qiu (2016) proposed a model
based on Artificial Neural Network (ANN) techniques to predict the motions of moored ships in an open
sea terminal using meteorological parameters and ship draught as input parameters. Alvarellos et al.
(2021) created models that predict the 6 degrees of freedom (DoF) of a moored vessel using ocean me-
teorological data and ship characteristics based on neural network and gradient boosting methods. The
model was trained using measured data from field campaigns. Finally, Romano-Moreno et al. (2022)
presented a semi-supervised machine learning model to predict moored ship motions from met-ocean
variables and ship characteristics, using the same dataset as Alvarellos et al. (2021).

A key advantage of ML techniques is their ability to handle the nonlinear nature of moored ship response.
They learn complex relationships directly from data, eliminating the need for explicit physical processes
modeling (Liu et al., 2020). However, they typically suffer from limited interpretability (Alvarellos et al.,
2021) and require large datasets to avoid overfitting (Kadhim et al., 2023). Moreover, the acquisition of
measured field data is costly, logistically challenging, and sometimes unfeasible under severe weather
conditions (Romano-Moreno et al., 2022; Alvarellos et al., 2021).

1.1.3.3. Metamodeling
Metamodeling offers a promising alternative. In this approach, ML models are trained on synthetic data
generated from numerical simulations. The resulting metamodel can approximate the behavior of the
original numerical model at a fraction of the computational cost (Wang et al., 2014).

Several studies have explored training ML models on simulated data in mooring applications, although
these have primarily focused on offshore floating structures. Saad et al. (2021) presented two neural
networks to predict the movement of a floating platform based on the observation of past time series.
The models were trained with simulated motion data generated using actual environmental conditions
measured in Rio de Janeiro, Brazil. Mentes and Yetkin (2022) proposed an ANN and Adaptive Neuro-
Fuzzy Inference System (ANFIS) to estimate the mooring line tension and displacements of the spread
mooring system of a floating platform or vessel, also using simulated data. Sidarta et al. (2023) devel-
oped a ANN-based method to detect mooring line failures by identifying subtle shifts in motion patterns
of floating offshore platforms. Their model was trained on numerical simulations and tested with mod-
ified field data. Sun et al. (2024) assessed five ML methods in order to explore a suitable metamodel
to replace time-domain numerical simulation for offshore floating structures. Yetkin and Mentes (2015)
presented a metamodel based on ANN to predict mooring tensions and tanker motion displacements in
spread mooring systems. Ye et al. (2024) developed a metamodel for floating offshore wind turbines to
predict, among other targets, the motion response, incorporating it into a design optimization approach.

1.2. Research gap
While ML models trained on simulated data have been studied in offshore applications, their use in
port environments, and specifically for predicting mooring line forces of large vessels, remains under-
explored. The objective of this study is to fill this gap by developing a metamodel for Dynamic Mooring
Analysis to predict mooring line forces of large-scale vessels moored in port areas.

1.3. Research questions
The aim of this thesis is to answer the following main research question (RQ):
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How can mooring line forces of large-scale vessels moored within port areas be predicted
using machine learning techniques?

Based on the main question, the following sub-questions (SQs) were formulated:

SQ1. What are the key aspects characterizing the mooring of large-scale vessels in port areas?
SQ2. What are the fundamental principles and key considerations of Dynamic Mooring Analysis for

predicting mooring line forces of large-scale vessels in port areas?
SQ3. How can a metamodel for Dynamic Mooring Analysis be developed using machine learning tech-

niques to predict mooring line forces of large-scale vessels in port areas?
SQ4. What objectives and criteria are relevant for evaluating and selecting a metamodel for Dynamic

Mooring Analysis?
SQ5. Which proposed machine learning technique provides the best metamodel for Dynamic Mooring

Analysis?
SQ6. How to utilize the metamodel for estimating unknown input parameters?
SQ7. What specific field data should be collected by Port of Rotterdam to enhance applicability of

machine learning models for mooring line force prediction, and what recommendations can be
made for developing such models?

1.4. Scope limitations
This research investigates the development and evaluation of metamodels for predicting mooring line
forces of large-scale vessels moored in port environments, applying the approach to a case study in
the Port of Rotterdam. The study is conducted within the following scope and limitations:

• Only the period during which a ship is moored and thus physically secured at a berth is considered.
Accordingly, berthing maneuvers are excluded.

• The environmental conditions included are constrained to time-varying wind. Other dynamic in-
fluences such as currents, waves, water level variations due to tides, and the effects of passing
vessels are excluded.

• Mooring line failure is not explicitly modeled. Consequently, unrealistically high line forces may be
predicted in certain scenarios, without accounting for force redistribution following a line failure.

• The case study is limited to a single berth and vessel. Bollard and fender layouts, as well as their
mechanical properties, are fixed throughout the study. Similarly, the moored vessel type, draught,
and mooring line arrangement remain constant.

• The machine learning scope is restricted to two regression algorithms: Linear Regression and
Multi-Layer Perceptron. Other potentially relevant models are not explored.

• The metamodel based on the case study is designed to predict only two output variables: the
mean mooring line force and the maximum mooring line force.

1.5. Outline
This thesis report addresses the research questions comprehensively. An overview of the structure is
illustrated in Figure 1.4.
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Figure 1.4: Overview of the report structure in relation to the research questions

Chapter 2 defines the key aspects that characterize the mooring of large-scale vessels in port areas
via a literature review. Chapter 3 explains the fundamental principles of Dynamic Mooring Analysis
(DMA) and its key considerations. Chapter 4 outlines the metamodeling approach, covering the gen-
eral methodology, DMA metamodel development, and a case study application. Chapter 5 presents
the results of the candidate DMA metamodels built and the selection of the optimal DMA metamodel.
Chapter 6 proposes a method to estimate unknown parameters via measured field data using the DMA
metamodel. Chapter 7 summarizes the conclusions to all sub-questions, addresses the main research
question, and proposes several recommendations for future work as well as for field data collection to
support the development of new ML models for mooring line force prediction at the Port of Rotterdam.

Appendix A presents a scientific research paper derived from this thesis report, titled Prediction of moor-
ing line forces using metamodeling. Appendix B defines the case study scenarios used for numerical
DMA simulations. Appendix C provides the data analysis performed on the complete set of DMA sim-
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ulation results. Appendix E describes the measurement data used to update input parameters of the
metamodel. Appendix F illustrates how the DMA metamodel can be applied to estimate the probability
of bollard capacity exceedance during the operational design lifetime.



2
Key aspects of mooring

This chapter provides a literature-based exploration of SQ1: What are the key aspects characterizing
the mooring of large-scale vessels in port areas?

A moored vessel is subjected to several forces resulting in a dynamic response. Its response is defined
as the mooring force (mooring line tension and fender force) and moored vessel movement. It is char-
acterized by three key aspects which are illustrated in Figure 2.1: environmental conditions, mooring
system, and ship characteristics (Liu et al., 2020).

Figure 2.1: External conditions (blue), mooring system (orange), and vessel
specifications (green) are the key aspects that influence mooring situations

Section 2.1 explores the environmental conditions that exert forces on a moored ship and consist of
both natural phenomena and operational activities. Next, Section 2.2 discusses the components of the
mooring system. Lastly, Section 2.3 focuses on the characteristics of the moored ship.

2.1. Environmental conditions
Moored vessels experience a variety of external loads arising from environmental conditions. They
can be categorized into natural phenomena encompassing wind, currents, and waves, and operational
influences including the effects of passing ship traffic (Abdelwahab et al., 2024; Van Zwijnsvoorde et al.,
2018; Sáenz et al., 2023; Van Koningsveld et al., 2023). These environmental conditions are visualized
in Figure 2.2.

8
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Figure 2.2: Wind, current, waves, tide, and passing ships
generate external forces on a moored ship

The environmental forces can be categorized into two main components: static and dynamic. Static
forces show minimal variation over short periods of time and include current, constant wind, and short-
period waves. Dynamic forces fluctuate significantly within a short time, such as long-period waves,
gusting wind, and passing ship effects (OCIMF, 2018).

The port configuration and terminal’s layout directly impact the exposure of a moored vessel to envi-
ronmental conditions and, consequently, on the magnitude of these forces (Sáenz et al., 2023; OCIMF,
2018). For example, solid quay walls and container stacks on shore can serve as windshields, breakwa-
ters offer partial protection from waves, and terminals located along busy waterways may be subjected
to frequent disturbances from passing vessels. Large-scale vessels in ports are typically moored at
deep sea terminals close to deep water. As a result, these mooring locations are less sheltered, mak-
ing them more exposed to environmental conditions than smaller ships (Schellin & Östergaard, 1995).

Moreover, the varying intensity and frequency of metocean aspects, including wind, short waves, and
infragravity waves, across the globe result in significant differences in exposure levels at different geo-
graphical locations. This leads to a geographically diverse risk profile for port operability, includingmoor-
ing. Areas of high operability risk are primarily concentrated around the southern capes, at exposed
coastal locations, and within the “Roaring Forties”, which is the region between 40 and 50 degrees
south latitude known for frequent strong westerly winds. Locations on or near the equator generally
experience a lower downtime risk compared to those further away. Inland seas tend to have lower risk
as well due to reduced exposure to swell waves. Furthermore, the seasonal variations of the metocean
factors significantly influence the risk profile throughout the year (Wiegel et al., 2021).

2.1.1. Wind
Wind acting on a vessel can be divided into two components: longitudinal wind, parallel to the longitu-
dinal centerline of the ship, and transverse wind, perpendicular to the amidship line. The force induced
by wind varies proportionally with the exposed area, as can be derived from the formulas for wind force
and moment (K. Yan et al., 2023; OCIMF, 2018; Fernandes Ramos & Caprace, 2018; Ligteringen,
2022):

FXw =
1

2
CXwρaV

2
wAT (2.1)

FYw =
1

2
CYwρaV

2
wAL (2.2)

MXYw =
1

2
CXYwρaV

2
wATLpp (2.3)
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Where
FXw longitudinal wind force [N ]
FYw lateral wind force [N ]
MXYw wind yaw moment [Nm]
CXw longitudinal wind force coefficient [-]
CYw lateral wind force coefficient [-]
CXYw wind yaw moment coefficient [-]
ρa air density [kg/m2]
Vw wind speed [m/s]
AT transverse wind area [m2]
AL longitudinal wind area [m2]
Lpp length between perpendiculars [m]

Following Equation 2.1, 2.2, 2.3, the wind forces and moment increase quadratically with wind velocity,
as visualized in Figure 2.3.

Due to the reduced projected area of a vessel to longitudinal headwind compared to transverse beam
wind, the resultant longitudinal wind force is of lower magnitude than the transverse force. Conse-
quently, the resultant wind force acting on the vessel will deviate from the initial wind direction, except
for pure head and beam winds (OCIMF, 2018; Schellin & Östergaard, 1995). This is illustrated in
Figure 2.4.

Figure 2.3: Wind force vs wind
velocity (OCIMF, 2018)

Figure 2.4: Wind forces on a ship (OCIMF, 2018)

The wind force coefficient, which indicates the magnitude of the wind forces acting on a ship, is de-
termined through wind tunnel tests or numerical calculations (Ma et al., 2019; Schellin & Östergaard,
1995). The vessel’s shape and the relative wind direction influence this coefficient (Molina-Sanchez
et al., 2020). Further details can be found in Subsection 2.3.2.

Wind shielding impacts this wind force coefficient but is usually not directly accounted for. The effect
of solid quays is viewed as a reduction of the vessel’s lateral wind area. However, because of their
unpredictable presence, wind shielding by large objects on the quay, such as buildings, cargo, and
cranes, should not be taken into account according to IACS (2023), even though this simplifies the
calculations and thereby affects the accuracy.

Besides wind shielding, ground-based obstacles in port areas, including cranes, container storage,
other vessels, and buildings, significantly alter the wind profile, resulting in wind velocity and direc-
tion changes. Additionally, the average wind speed increases with elevation due to a reduction in the
hindering effect of these barriers (Messe München, 2023).

2.1.2. Current
Current is the flow of water moving in a specific direction. Within ports, currents are generated by a
variety of variables, including astronomical and meteorological tides, wind, industrial wastewater, and
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fresh water influx from rivers. These currents can significantly impact moored vessels, causing ship
motions with long periods, which results in increased tension in mooring lines (Molina-Sanchez et al.,
2020).

The forces on vessels due to the current are proportional to the cross-sectional area under water and
increase quadratically with the average current velocity. The force due current can be calculated using
the following equation (Ligteringen, 2022; Natarajan & Ganapathy, 1995; OCIMF, 2018):

FXc =
1

2
CXcρwV

2
c LppT (2.4)

FYc =
1

2
CYcρwV

2
c LppT (2.5)

MXYc =
1

2
CXYcρwV

2
c L

2
ppT (2.6)

Where
FXw longitudinal current force [N ]
FYw lateral current force [N ]
MXYw current yaw moment [Nm]
CXc longitudinal current force coefficient [-]
CYc lateral current force coefficient [-]
CXYc wind yaw moment coefficient [-]
ρw density of water [kg/m2]
Vc current velocity [m/s]
Lpp length between perpendiculars [m]
T draught of vessel [m]

The values of the current coefficients are based on model tank measurements (Schellin & Östergaard,
1995) and flume model tests (Gravesen, 2005). They depend on the direction of the wind relative to
the moored vessel, on the under keel clearance (UKC), and on the shape of vessel’s hull (Ligteringen,
2022). In Subsection 2.3.2 more details can be found.

Similarly to wind, the current speed and direction relative to themoored vessel determine themagnitude
and direction of the force exerted on the vessel (OCIMF, 2018). A beam current generates a significantly
larger force compared to a head current because of the greater area. Most terminals are aligned parallel
to the current, minimizing this force (Schellin & Östergaard, 1995).

2.1.3. Waves
According to Van Koningsveld et al. (2023), motions of vessels are primarily the result of waves. Be-
sides wave height, the wave period, and thereby the frequency, is of great influence. The response of
a vessel to waves is significantly affected by its length. As visualized in Figure 2.5, large ships respond
more to long waves, whereas small ships respond more to small waves.

Figure 2.5: Response of vessels to waves depend on their
length (Van Koningsveld et al., 2023)

Molina-Sanchez et al. (2020) identified threemain wave types that contribute considerably to themotion
of moored vessels: sea waves, swell waves, and infragravity waves. The natural frequency of vessel
motions is of a similar order of magnitude as the frequencies of these wave types (Figure 2.6) (Van
Koningsveld et al., 2023).
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Figure 2.6: Wave periods and eigen periods of vessel motions at berth (Van Koningsveld et al., 2023)

Sea waves have a period of 4 to 10 seconds. They have short wavelengths and are induced by local
wind. Their limited height and period are determined by the wind gust duration and the fetch, the unob-
structed distance over which the wind blows. The natural periods of large-scale vessels are typically
longer than the period of sea waves. Thus, they are not significantly affected by them (Molina-Sanchez
et al., 2020). (Molina-Sanchez et al., 2020).

Swell waves have a period of 8 to 25 seconds and are caused by distant storms. Their periods may be
close to the natural periods of moored ships, resulting in vertical vessel movements (heave, roll, pitch)
(Molina-Sanchez et al., 2020).

Infragravity waves, also known as long waves, have a period of 30 to 300 seconds. They originate
from three sources (Van Deyzen et al., 2015):

• Bound long waves generated by the grouping of swell waves
• Free long waves formed by the reflection of bound long waves after breaking on shallow water or
induced by remote meteorological phenomena

• Harbor oscillations or seiches, which are standing waves associated with the natural resonance
of a semi-enclosed body of water, like a harbor basin

Although the amplitudes of infragravity waves are generally low, they can cause large horizontal ship
motions (surge, sway, yaw), especially for longer vessels (Molina-Sanchez et al., 2020; Van Deyzen et
al., 2015). Besides, infragravity waves diffract around coastal defense structures (Wiegel et al., 2021),
reducing the effectiveness of breakwaters which are designed to protect a port from waves and currents
(Abdelwahab et al., 2024; Van Koningsveld et al., 2023; K. Yan et al., 2023).

2.1.4. Tide
Astronomical tides, driven by the gravitational attraction of the moon, sun, and other astral bodies,
cause the periodic alternating fluctuations in seawater level (Puertos del Estado, 2007; NOAA, 2010b).
These tidal movements of the water level in ports have a crucial effect on currents (Molina-Sanchez
et al., 2020) as at high tide, water flows into ports, and ebb currents flow outward to sea during low tide
(NOAA, 2010a).

In addition, the resulting changes in water level cause an alteration in ship elevation, affecting the rela-
tive position of moored vessels with respect to the port’s mooring infrastructure (Natarajan &Ganapathy,
1995; Molina-Sanchez et al., 2020). This leads to fluctuations in mooring line tension, potentially result-
ing in slack lines that allow greater ship movements or excessive loads that induce the risk of parting
lines. This issue must be addressed by managing the line length with the winch.

2.1.5. Passing ship traffic
In addition to natural phenomena, the passage of vessels in the proximity of a moored ship can gen-
erate significant peak loads in the mooring lines. When sailing, hydrodynamic pressure variations are
developed along a ship’s hull, inducing forces and moments on nearby moored vessels, referred to
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as the passing ship effect. This interaction effect causes the moored ship to undergo motions (Van
Zwijnsvoorde et al., 2018). Particularly passing vessels with deep draughts induce noticeable forces
(Campbell et al., 2022).

Sreedevi and Nallayarasu (2023) stated that passing ship size, speed, water depth, and moored ship
length are the passing ship interaction parameters.

Talstra and Bliek (2014) found the following basic properties that influence captive forces on moored
ships due to other passing vessels: passing vessel speed, hull form of the moored vessel, lateral pass-
ing distance, under keel clearance of the moored vessel, moored vessel’s displacement, and channel
cross-section blocking ratio, which is the ratio between channel cross-section and ship cross-section
area.

The model test study conducted by Remery (1974) showed the loads induced by a passing ship on a
moored vessel increase proportionally with the square of the speed of the passing vessel and depend
on the relative position of the vessels. These tests did not take into account the possible impact of the
passing ship’s propeller action.

2.2. Mooring system
The primary function of a mooring system is to ensure a vessel remains in a designated location during
mooring (Wilson, 2003) by providing a secure connection between a vessel and a quay in port envi-
ronments. The system is compromised of three main components, which can be seen in Figure 2.7:
(1) the winch located on board the vessel which operates the mooring line, (2) the mooring line itself
securing the vessel to shore, and lastly (3) the mooring point on the quay, known as a bollard (Broos
et al., 2018). In addition to these three elements, other devices and structures are also involved during
mooring. The mooring line leaves the ship through a fairlead, a guide mounted on deck. Besides, fend-
ers are installed on the quay wall between the quay and the vessel to protect them both from damage
(Roubos et al., 2024; PIANC, 2024; Broos et al., 2024; Eskenazi & Wang, 2015).

Figure 2.7: A mooring system consists of a winch onboard, mooring line, and berth
structure with a mooring point and fender

The following subsections describe these main mooring system components, along with additional rel-
evant elements, including different types of berth structures, fenders, and mooring points, the resulting
mooring arrangement, and innovative alternative mooring systems.

2.2.1. Mooring lines
The purpose of mooring lines is to restrict ship movements. They are particularly effective in preventing
movements in the horizontal plane (surging, swaying, and yawing) (Molina-Sanchez et al., 2020). The
properties of mooring lines, including stiffness, are determined by material type, strand manufacturing
technique, and rope construction (Lamont-Smith, 2019). Mooring lines in the same service, but prefer-
ably all lines, should be of the same type and have the same characteristics (IACS, 2023) to ensure
the even distribution of mooring loads (Section 2.2).
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Mooring lines are constructed from either synthetic ropes or steel wire. The five main usedmaterials are
steel, High Molecular PolyEthylene (HMPE), polyester, polypropylene, and nylon, listed from most stiff
to most flexible (Van Zwijnsvoorde & Vantorre, 2017). Figure 2.8 shows thesematerials’ load elongation
curves of mooring lines. To absorb shock loads and facilitate line handling (Villa et al., 2018; OCIMF,
2018), synthetic rope tails can be added to stiff mooring lines such as wire ropes (Lamont-Smith, 2019)
as can be seen in Figure 2.9.

Figure 2.8: Typical load-elongation profiles
for various ropes from 0 to 50% of MBL

(McKenna et al., 2004)

Figure 2.9: White mooring tails are
connected to blue mooring lines (Samson

Rope, 2024)

Steel wire ropes consist of steel strands laid around a steel or fiber core as illustrated in Figure 2.10
(OCIMF, 2018; US Department of Defense, 2020; Prasad et al., 2023). They exhibit high durability
due to their high resistance to mechanical damage. However, their susceptibility to corrosion requires
frequent maintenance, and their high weight poses handling challenges. Synthetic lines are manufac-

]

Figure 2.10: Wire rope and its components (Prasad et al., 2023)

tured in various constructions and arrangements (Figure 2.11) and can be jacketed at rope or strand
level. An advantage of these lines over wire ropes is that they are relatively easy to handle by staff,
and some types have lower stiffness (US Department of Defense, 2020; OCIMF, 2018).

IACS (2023) recommends a required minimumMinimal Breaking Load (MBL) of mooring lines based on
the vessels lateral area. The ship fittings are designed using this theoretical Ship Design MBL (MBLSD)
(Broos et al., 2024). However, IMO (2020) outlines that the number and strength requirements for
mooring lines depend on the vessel’s Equipment Number (EN). The formula of EN is based on the
ship’s area below the water surface, the wind area in longitudinal direction defined by the beam and
height from the waterline, and the lateral projected area subjected to wind (Oh et al., 2020). For vessels
with EN ≤ 2000 are the number of mooring lines and required MBL defined by the EN. Large-scale
vessels with EN > 2000, though, have these values determined solely by their side projected area:

MBLSD = 0.1Aside + 350 (2.7)

n = 8.3 · 10−4Aside + 6 (2.8)

Where
MBLSD Ship Design MBL [kN]
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n general total number of mooring lines
Aside side projected area [m2]

Figure 2.11: Constructions of synthetic fiber lines (OCIMF, 2018)

Both prototype and experimental model tests emphasize the importance of maintaining taut mooring
lines (Gravesen, 2005). Pretension in the mooring lines by the winches has been observed to result
in reduced vessel motions and forces, as seen in Figure 2.12. Gourlay (2017) further elaborates that
higher pretension levels cause the vessel to be held against the fenders, leading to increased friction
force and more energy dissipation. This contributes to more damping and lower motions, which result
in lower peak loads in the mooring lines. However, excessive pretensioning diminishes the efficacy of
the mooring system (OCIMF, 2018).

Figure 2.12: Effect of pretension on the movement of moored vessels due to waves (Gravesen, 2005)

When the mooring lines are attached to the mooring points on shore, an initial load, the so-called
pretension, is applied to the lines by the winch. This establishes a stable initial condition for moored
vessels. According to literature, the pretension of mooring lines typically ranges from 5% to 10% of
the MBL (Lamont-Smith, 2019; Barros & Mazzilli, 2018; M. Yan et al., 2023; Van Zwijnsvoorde et al.,
2018). However, the actual practice of mooring line pretensioning remains unclear, as it is not possible
to directly determine the exact pretension level from the winch.

If the tension in the mooring lines exceeds the MBL, there is a risk of line failure. Parting of a mooring
line may result in so-called snap-back: the broken ends recoil immediately after the line breaks. This
phenomenon occurs because the potential energy stored in the line, which is related to the area under
the plotted load-elongation curve (see Figure 2.8), is transferred into kinetic energy (Campbell et al.,
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2022). The ends are thereby accelerated for longer than the rest of the line (OCIMF, 2018). Lines
with lower stiffness can have more severe snap-backs, due to their increased amount of stored energy
compared to those with high stiffness. Snap-backs can result in severe injury or fatalities among crew
members, and damage to the ship or berth.

In order to mitigate these risks, various protective measures have been implemented. Physical mooring
line barriers of all sorts (Campbell et al., 2022) are installed to provide some protection. Furthermore,
Wilhelmsen (2022) developed a snap-back arrestor. This is a core of rope integrated into the mooring
line. It serves as an energy absorber and lowers risks significantly, as seen in the pictures of the
snapping of mooring lines in Figure 2.13.

Figure 2.13: Comparison of mooring line snap-back with and without a snap-back
arrestor. A regular mooring line recoils violently after breaking, while the mooring line
equipped with a snap-back arrestor demonstrates a substantial reduction in recoil

distance (Wilhelmsen, 2022).

Additionally, hydraulic shore tensioning systems, which will be discussed in more detail in Subsec-
tion 2.2.7, can prevent line failure by preventing the lines from reaching their MBL. It is not recom-
mended to mark snap-back zones on deck as this creates a false sense of safety for personnel outside
these areas (OCIMF, 2018; UK P&I, 2009). On board, the crew should protect the line from perfor-
mance degrading factors such as chafing, UV exposure, induced twists in the line, and exposure to
industrial chemicals.

2.2.2. Winch
Mooring winches are installed on deck (Figure 2.14, Figure 2.15) and handle the mooring line (Broos et
al., 2018) by rotating its drum, thereby releasing or retrieving line (Villa et al., 2018; Couce et al., 2015).
Proper line tending is necessary to accommodate changes in ship elevation due to tidal fluctuations
in water level as stated in Subsection 2.1.4 or vessel loading operations (Villa et al., 2018). Winches
typically use electric power, or more commonly, hydraulic or pneumatic power (Villa et al., 2018).

Mooring winches are supposed to apply a pretension load to the mooring lines, effectively pulling the
vessel to the quay against the fenders. This decreases ship motions and mooring line loads due to
fender friction and the energy absorption capacity of both fenders and lines (Rosa-Santos et al., 2014).

Conventional winches rely on manual operation, requiring crew intervention to regularly monitor and
tend mooring tensions (Villa et al., 2018; Couce et al., 2015). Conversely, auto-tension winches can
be employed in auto-tension mode in moderate conditions (Broos et al., 2018; Villa et al., 2018). In
this mode, the winch automatically tends the mooring line to maintain a preset tension (Villa et al.,
2018; Couce et al., 2015) and has a pull capability of 33% of the MBLSD (IACS, 2023). Under severe
environmental conditions, all winches can be placed on their brakes, increasing the holding capacity.

According to OCIMF (2018), the Brake Holding Capacity (BHC) is 60% of the MBLSD, but this is not
a certified value (Broos et al., 2018; De Gijt & Broeken, 2013). When the BHC is reached, the winch
should start rendering line (Broos et al., 2024; OCIMF, 2018).

Winches can have a single drum into which the mooring line is wound, resulting in a varying linear
speed across different layers. The alternative is a split drum wherein a drum separator divides the
tension drum from the storage drum. In this configuration, the mooring line is reeled into one layer on
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Figure 2.14: Winch with a split drum (Wilhelmsen,
2023)

Figure 2.15: Forecastle deck with mooring lines and winches (Broos
et al., 2018)

the tension drum, providing a constant speed, while the remaining line is stored on the storage drum
(Villa et al., 2018). Ideally, winches can to store the entire length of the mooring line.

2.2.3. Berth structure
Ships can moor at berth structures in ports that are equipped with mooring points. These structures
are the physical interface between land and water (De Gijt & Broeken, 2018) and facilitate the loading
and unloading of cargo or boarding and disembarking of passengers (Puertos del Estado, 2019).

The type of berth structure significantly influences vessel motions (Gravesen, 2005). Furthermore, the
height of these structures affects the length of the mooring lines and their angles and, thus, the line
forces and moored ship motion.

2.2.3.1. Quay wall
Quay walls are earth-retaining structures and facilitate cargo handling by cranes or other moving heavy
equipment (De Gijt & Broeken, 2013). Most container transshipment operations are conducted on quay
walls (De Gijt & Broeken, 2018). Their functions (De Gijt & Broeken, 2013) are twofold: firstly, to provide
bearing capacity to carry the loads imposed by the freight, stored goods, and transshipment equipment;
and secondly, to retain the soil for the area behind the quay (Ligteringen, 2022). Additionally, they may
function as water retaining walls.

The four basic quay wall types are illustrated in Figure 2.16 (De Gijt & Broeken, 2013):

(a) Gravity walls
(b) Sheet pile walls
(c) Structures with relieving platforms
(d) Open berth quays

Vertical solid quays lower the ship response due to increased damping and added mass and can shield
the moored vessel from wind compared to open quay structures (IACS, 2023).
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Figure 2.16: Classification of quay walls (Nguyen et al., 2021): (a) gravity wall, (b) sheet pile wall, (c)
structures with relieving platform, (d) open berth quay

2.2.3.2. Jetty
Jetties are commonly used for the storage and transshipment of light cargo and RoRo traffic. These
structures can either be fixed, typically with an open design as in Figure 2.17, or floating platforms.
Fixed jetties feature a deck supported by a pile foundation (De Gijt & Broeken, 2018). The deck is
usually closed to prevent cargo spillage in the surrounding water. Jetties may be isolated or connected
to shore through gangways or bridges or an extension of the structure (Puertos del Estado, 2019).

Figure 2.17: T-shaped jetty in Port of Rotterdam (Donker, 2018)

Liquid bulk terminals typically do not require heavy cranes due to pipeline transportation. This allows
for using jetties as berthing structures, representing a more cost-effective alternative to quay walls.
Besides, jetties facilitate the positioning of vessels away from other terminal operations, making them
particularly suitable for LNG and LPG terminals with high safety standards (Van Koningsveld et al.,
2023).

2.2.3.3. Dolphin
Mooring dolphins (Figure 2.18) are isolated offshore structures (Puertos del Estado, 2019). They can
be positioned to form a berthing line or incorporated into mixed mooring solutions with jetties. Tankers
are frequently moored at a combination of a jetty and mooring dolphins.

2.2.3.4. Buoy
Mooring buoys (Sijberden, 2006) are floating mooring structures (Puertos del Estado, 2019) fitted with
eyes for connecting the mooring line (Figure 2.19). They are attached to an anchor system in the
seabed by anchor chains. At low tide, the slack in the anchor chain increases, resulting in a larger
range of movement for the moored vessel.
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Figure 2.18: Mooring dolphins in the
Port of Rotterdam (CROW, 2021)

Figure 2.19: Mooring buoys in Port of
Rotterdam (Port of Rotterdam, 2015)

2.2.4. Fenders
Fenders are installed on marine structures as an interface. They absorb the kinetic energy of approach-
ing or moored vessels and transmit the forces to the structure. This prevents damage to both the vessel
and the mooring structure (Eskenazi & Wang, 2015; Roubos et al., 2024; PIANC, 2024).

The load-deflection curve of a fender depicts the fender deflection s and the corresponding reaction
force FR exerted by the fender as shown in the general curve in Figure 2.20. The area beneath the
curve shows the absorbed energy Ef , and the energy absorption capacity is achieved at the maximum
deflection smax (HTG, 2015).

Figure 2.20: Load-deflection curve for a fender (HTG, 2015)

Fenders are categorized into two main groups according to their primary function (PIANC, 2024). The
first category of fenders transmits impact forces directly to the supporting structure with minimal en-
ergy absorption. The second category absorbs the impact energy and is further separated into two
subgroups: buckling and sideloaded fenders.

Buckling fenders consist of cone, cell, element, or leg fenders (Figure 2.21) and are typically equipped
with a fender panel. They offer substantially greater energy absorption capacity than sideloaded fend-
ers, as indicated by the load-deflection curve shown in Figure 2.22.

(a) Cone fender (b) Cell fender (c) Element or leg
fender

Figure 2.21: Buckling fenders (PIANC, 2024)
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Figure 2.22: Typical indicative load deflection curve of buckling fenders (PIANC, 2024)

Sideloaded fenders include cylindrical, pneumatic, and foam fenders (Figure 2.23). Their fender deflec-
tion and reaction force increase almost linearly, as shown in the load-deflection curve in Figure 2.24.

(a) Cylindrical
fender

(b) Pneumatic fender (c) Foam fender

Figure 2.23: Sideloaded fenders (PIANC, 2024)

Figure 2.24: Typical indicative load deflection curve of sideloaded fenders (PIANC, 2024)

2.2.5. Mooring point
Mooring points are attachment points for mooring lines and are installed on berth structures.

2.2.5.1. Bollard
Bollards are fixed mooring points installed on berth structures. They are typically composed of cast
iron, nodular cast iron, or cast steel (Sijberden, 2006). They consist of a shaft with a thicker head to
prevent line slippage, particularly with large vertical angles, and a base plate that is anchored in the
foundation. As illustrated in Figure 2.25, multiple bollard types exist. According to HTG (2015), bollards
are characterized by their reliability and low maintenance requirements.

At least two people are required to handle the fastening and releasing of mooring lines to and from
bollards, and this can only be done when the line is slack (OCIMF, 2018). Multiple mooring lines can
be secured to one bollard. So, a bollard’s Safe Working Load (SWL) should be higher than the forces
in the lines (Broos et al., 2018).

According to the EAU guidelines (HTG, 2015), the displacement of the ship determines a bollard’s re-
quired pull force capacity. However, this approach does not account for the wind-induced forces on
the vessel, which are related to the windage area (Broos et al., 2018). Following BS 6349-4 (2014),
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the maximum mooring loads should be calculated for vessels larger than 20,000t displacement to de-
termine the nominal bollard loading.

Figure 2.25: Tricorn, T-head, K-head, Quad-head, and T-horn bollard (left to right) (QuayQuip
Technical Solutions BV, 2019)

Figure 2.26: Quick
Release Hook (QRH)
arrangement on a
mooring dolphin in

Amsterdam (Straatman,
2020)

2.2.5.2. Quick release hook
A Quick Release Hook (QRH) (Figure 2.26) is a common mooring point as well and is designed to
accommodate only one mooring line. A maximum of five hooks can be installed on a single base
(OCIMF, 2018). Unlike bollards, they allow for rapid and easy release of mooring lines even when under
tension as they are hydraulically operated (Sijberden, 2006). This reduces line handling effort during
berthing (OCIMF, 2018) and is helpful in emergency situations to limit damage to port infrastructure and
the environment, making them particularly crucial for berths handling hazardous cargo (HTG, 2015).
QRHs are typically installed on mooring dolphins and commonly used for mooring tankers (OCIMF,
2018).

2.2.6. Mooring arrangement
The mooring arrangement refers to the geometrical configuration of mooring lines between vessel and
berth, and depends on the vessel characteristics and the port infrastructure.

The layout typically consists of spring, breast, and head and stern lines for large-scale vessels as
illustrated in Figure 2.27 (Villa et al., 2018; OCIMF, 2018; IACS, 2023). Spring lines are orientated
parallel to the amidships line, preventing longitudinal surge motions, while breast lines ideally lead
perpendicularly ashore and are positioned at stern and bow, restraining sway movement in an off-berth
direction. The head and stern lines are deployed diagonally, restricting motions in off-berth and in the
fore or aft direction. The pattern in which the lines are deployed influences the load distribution along
these lines and is the responsibility of the vessel’s captain.

Figure 2.27: Vessels are often moored using spring, breast,
head, and stern lines (IACS, 2023)

While preferably all deployed lines should have similar characteristics, mooring lines used in the same
service absolutely are required to be of the same length and type and have the same characteristics
(OCIMF, 2018; IACS, 2023). This ensures that forces are distributed evenly among them. In addition,
the vertical angle of the mooring line relative to the pier deck, and the horizontal angle relative to the
ship’s side should be minimized OCIMF (2018).

The combination of a jetty and mooring dolphins usually provides a better mooring pattern than quays,
which are equipped with bollards arranged linearly along the quay edge due to crane rail requirements.

The following factors determine the specific mooring arrangement of a vessel:
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• Position and amount of mooring points
• Amount of mooring lines
• Position of fairleads, which guide mooring lines from the vessel to shore
• Ship’s elevation
• Presence of alternative mooring techniques (Subsection 2.2.7)

2.2.7. Alternative mooring techniques
Besides the conventional mooring system involving lines and winches, which is most commonly used
for mooring (Kuzu & Arslan, 2017), alternative innovative systems have been developed to enhance
safety and efficiency.

2.2.7.1. Vacuum mooring
Vacuummooring systems offer an alternative to conventional mooring lines (Sijberden, 2006; Kołakowski
et al., 2023). Vacuum pads are attached directly to the flat hull of a vessel and act as hydraulically
operated suction cups. The system does not require any modifications to the mooring vessels (Abdel-
wahab et al., 2024). MoorMaster (Cavotec, 2024) (Figure 2.28) and AutoMoor (Trelleborg, 2024) are
both shore-based automated vacuum systems which minimize human error through automation and
reduce personnel involvement. Ship motions are restricted in the horizontal plane (surge, sway, yaw)
(Abdelwahab et al., 2024) by the dynamic hydraulic computer control (Van den Boom et al., 2014; BS
6349-4, 2014) and the speed of the mooring operation is much higher compared to using mooring lines
(K. Yan et al., 2022). However, the system is limited by the thickness of the hull, maximum fender force,
and the restricted movement of the system (K. Yan et al., 2022), and it has a high maintenance level,
especially in a saline environment of seaports (De Bont et al., 2010). Vacuum mooring is a widely ac-
cepted technology with applications on various ship types, including ferries, general cargo ships, large
container ships, and bulk ships (Jørgensen et al., 2023).

Figure 2.28: MoorMaster units in Port
of Salalah, Oman (Cavotec, 2020)

Figure 2.29: Magnetic mooring on
ferry in London (Christy, 2018)

2.2.7.2. Magnetic mooring
Magneticmooring systems (Sijberden, 2006; Kuzu &Arslan, 2017; Abdelwahab et al., 2024; Kołakowski
et al., 2023) use magnetic pads connected to hydraulic arms replacing mooring lines to dampen the
ship motions actively. An electric current generates the magnetic field. The system requires hull modifi-
cations in the form of integrated plates with which the pads can interact as seen with the Docklock (Van
Reenen, 2013), an automatic magnetic mooring system on a ferry in London (Jørgensen et al., 2023)
which is installed on the quayside (Abdelwahab et al., 2024) (Figure 2.29). Using magnetic mooring
systems enhances the efficiency compared to conventional mooring as it reduces the time required for
berthing operations (Kołakowski et al., 2023). In contrast to vacuum-based mooring, this technology is
not widely operational, partly due to the complex integration with existing ship designs.

2.2.7.3. Hydraulic mooring line tensioning
ShoreTension (Van der Burg, 2011) is a widely used hydraulic, dynamically controlled (Van den Boom
et al., 2014) mooring system in ports around the world (ShoreTension, 2024). The system dampens
ship motions in severe conditions by automatically managing mooring line tension without exceeding
the MBL, thereby preventing it from breaking (Abdelwahab et al., 2024; Kołakowski et al., 2023). It
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does not require an external energy source, except to bring the mechanism to the correct setting. The
unit consists of a hydraulic cylinder with a 3-meter long piston, one end of which is fixed to a quay
bollard, and the moving end of which is connected to a high-strength mooring line which is guided to
the moored vessel by a second bollard (Figure 2.30). During peak loads, the mechanism pays out the
line.

Onboard auto-tension winches can prevent mooring lines from breaking as well by managing the line
tension. However, these winches require considerable of energy and cannot provide the same benefits
as a ShoreTension unit (Kołakowski et al., 2023).

Figure 2.30: ShoreTension unit (VNO-NCW Regio
Rotterdam, 2023)

Figure 2.31: DynaMoor unit
(Trelleborg, 2021b)

DynaMoor (Trelleborg, 2021a) is a shore-based constant tensioning system similar to ShoreTension.
It is a linear unit anchored independently at the quay edge (Figure 2.31). The ship’s mooring line is
connected to the system’s quick release hook via the built-in fairlead, which controls the direction and
angle of the mooring line and reduces rope friction. The electronically controlled hydraulic damper
manages the line tension, reducing vessel movement and minimizing snap-back zones on the quay.

These hydraulic mooring line tensioning devices can be easily integrated in the conventional mooring
systems with lines and ropes, directly enhancing safety and reducing vessel motion.

2.3. Ship characteristics
The ship characteristics influence the environmental forces’ impact and are a key factor characterizing
mooring. They include the dimensions and load state, which are illustrated in Figure 2.32, and the
current and wind coefficients of the moored vessel.

Figure 2.32: The ship characteristics include the load state and the dimensions of the
moored vessel
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2.3.1. Dimensions and load state
As outlined in Subsection 2.2.1, the equipment number (EN) defined by IMO (2020) depends on the
vessel dimensions and determines theMBLSD of the mooring lines. All shipboard fittings and equipment
are designed using this particular value of MBLSD. Thus, the capacity of the mooring lines and winches
is directly related to the vessel size.

The size of a vessel influences its susceptibility to waves. As already stated in Subsection 2.1.3, larger
ships are more responsive to long waves with low frequencies, whereas smaller ships are more sensi-
tive to short waves. This phenomenon is attributed to the natural frequency of vessels, which can be
close to the frequencies of those specific waves.

The load condition of a vessel affects the draught and air draught. When fully loaded, a vessel typi-
cally sits deeper in the water due to increased weight, consequently reducing the exposed area above
the waterline. This principle applies to RoRo vessels and gas tankers, where the overall dimensions
remain constant regardless of the loading state. Conversely, fully loaded container ships present a
significantly larger projected area than empty ones due to the substantial proportion of the containers
stacked above the deck (PIANC, 2024). Furthermore, according to Blendermann (1997), the configu-
ration of containers affects wind force. Variations in bay height and the random stacking of containers
on the deck contribute to increased wind force.

A vessel’s air draft, the vertical distance between the waterline and the highest point, including deck
cargo, determines the projected area exposed to wind, along with the vessel’s length and beam. Ves-
sels with large air drafts are more susceptible to wind due to their increased windage area (Molina-
Sanchez et al., 2020), as wind forces are directly proportional to the exposed area as can be read in
Subsection 2.1.1.

The draught of a ship is defined as the vertical distance between the waterline and the lowest point
of the hull (Barden, 2018) and changes with the weight a vessel carries. A fully laden cargo vessel
has a large water displacement, resulting in a deeper draught. The draught of a vessel determines the
UKC, which both influences the impact of current (Subsection 2.1.2) and the effect of passing vessels
(Subsection 2.1.5).

2.3.2. Force coefficients
2.3.2.1. Wind coefficients
Wind coefficients determine the impact of wind on moored vessels. They depend on relative wind
direction and the vessel’s shape (Molina-Sanchez et al., 2020) as mentioned in Subsection 2.1.1.

The value varies according to ship type, size, and loading condition (IACS, 2023), but wind coefficients
from similar vessel shapes can be interchangeably used for wind calculations. Wind force and moment
coefficients of a tanker are provided in Figure 2.33 according to OCIMF (2018) and based on data from
wind tunnel tests.

(a) Longitudinal wind coefficients CXw (b) Lateral wind coefficients CY w (c)Wind yaw moment coefficients CXY w

Figure 2.33: Wind coefficients of tankers (OCIMF, 2018)
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2.3.2.2. Current coefficients
The current coefficients of vessels are based on model tank measurements (Schellin & Östergaard,
1995) and flume model tests (Gravesen, 2005). The values are influenced by the hull profile (Molina-
Sanchez et al., 2020), UKC (OCIMF, 2018), and the relative wind direction as stated in Subsection 2.1.2.

The UKC, the distance between the ship’s keel and seabed, has the largest influence on current coef-
ficients (OCIMF, 2018), as a small UKC amplifies the effect of current (Andrés & Piniella, 2017). The
current coefficients of tankers at loaded draught are shown in Figure 2.34. For tankers moored in shal-
low water, a proportionately larger volume of water passes around the tanker than under due to the
blockage effect. The lateral current coefficients for a water depth to draught ratio (Wd/T) of 1.05 are
thereby approximately three times larger than coefficients for (Wd/T) of 3.0 (OCIMF, 2018).

(a) Longitudinal current coefficients CXc

(b) Lateral current coefficients CY c

(c) Current yaw moment coefficients CXY c

Figure 2.34: Current coefficients of tankers at loaded draught for different Wd/T (OCIMF, 2018)

2.4. Conclusion
This chapter answers SQ1: What are the key aspects characterizing the mooring of large-scale vessels
in port areas?

Figure 2.35 provides an overview of the key aspects of mooring covered in this chapter.

Environmental conditions induce external forces on a moored vessel, the mooring system restricts the
movement of the vessel, and the ship characteristics determine the impact of these forces and define
the capacity of the mooring equipment on board.

It is essential to understand these key aspects to ensure the safety and efficiency of mooring operations.
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Figure 2.35: Overview of the key aspects that characterize the mooring of large-scale vessels



3
Mooring force prediction using DMA

With the increasing scale of vessel sizes, accurate tools to evaluate mooring forces and vessel motions
have become essential to ensure mooring safety. Dynamic Mooring Analysis (DMA) offers a physics-
based computational approach to simulate the responses of moored vessels under time-varying loads.

This chapter answers SQ2: What are the fundamental principles and key considerations of Dynamic
Mooring Analysis for predicting mooring line forces of large-scale vessels in port areas?

DMA is introduced in Section 3.1 and Section 3.2. Section 3.3 outlines the necessary input files, the
resulting output files, and model assumptions of the DMA package aNySIM. Section 3.4 describes
some practical use cases of DMA.

3.1. Numerical simulation
Computational simulation is a model-based technique that can be used to estimate ship responses
under various environmental conditions by numerically solving the equations of motions for moored
vessels. This method is widely used and often involves a series of coupled models (Romano-Moreno
et al., 2022). The availability of numerical models has led to a decline in the use of physical modeling
(Gaythwaite, 2014).

Numerical simulation offers several advantages in terms of costs, flexibility, and time consumption
compared to physical model testing. However, its results can be limited by the complexity of multivariate
and nonlinear modeling (Liu et al., 2020; Taveira Pinto et al., 2008). Additionally, the requirement for a
wide range of input parameters often leads to the use of hypothetical or standardized values, introducing
uncertainty into the results (Romano-Moreno et al., 2023).

3.2. Dynamic Mooring Analysis
A DMA is a numerical simulation model used to evaluate the behavior of moored vessels under various
environmental conditions. DMA simulations are typically conducted in the time domain, enabling the
modeling of nonlinear effects (Van Koningsveld et al., 2023).

The input data of for a DMA includes environmental conditions, vessel characteristics, and mooring
configuration. Environmental conditions consist of a combination of wind, waves, and currents. Vessel
characteristics include dimensions, mass properties, and coefficients for calculating forces and mo-
ments due to environmental conditions. Mooring configuration encompasses mooring line properties
and deployed pattern, fender characteristics, and additional motion-damping devices (Van Koningsveld
et al., 2023).

Several (commercial) DMA packages are available and employed in studies: Quaysim (De Bont et
al., 2010; Van der Molen et al., 2016), Vlugmoor (Van Zwijnsvoorde & Vantorre, 2017), MoorMotions
(Gourlay, 2017, 2023, 2019a, 2019b), SHIP-MOORINGS (Romano-Moreno et al., 2023; Sáenz et al.,
2023), MIKE 21 Mooring Analysis (M. Yan et al., 2023), Optimoor (Sundar et al., 2019), TERMSIM
(Weiler et al., 2009).

For this study, the DMA software package aNySIM is used. This software was developed by Mar-

27
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itime Research Institute the Netherlands (MARIN) and is used by Haskoning, a leading engineering
consultancy. aNySIM is well-suited for modeling complex mooring scenarios involving nonlinearities in
mooring systems and vessel behavior.

3.3. aNySIM software
The DMA software aNySIM mathematically models the response of moored vessels subject to time-
varying environmental forces such as wind, waves, and currents. It is capable of simulating moored
vessels at various structures, including quays, jetties, or alongside other ships.

It predicts mooring lines forces, fender forces, and ship motions in 6 DoF by solving the equation of
motion in Equation 3.1 (Bunnik & Veldman, 2010) in the time domain, accounting for nonlinear effects
in fenders and mooring lines (Van Deyzen, Nguyen, & Eggermont, 2024; Cross & Van Deyzen, 2023;
Van Deyzen, Nguyen, & Van de Sande, 2024; Eggermont & Van Deyzen, 2023).

6∑
j=1

(Mkj +mkj)ẍj +

∫ t

−∞
Rkj(t− τ)ẋj(t− τ)dτ + Ckjxj = Fk(t) (3.1)

Where
k, j indices representing the six degrees of freedom: surge, sway, heave, roll, pitch, and yaw
xj displacement in motion mode j
ẋj velocity in motion mode j
ẍj acceleration in motion mode j
Fk(t) external force in motion mode k
Mkj solid inertia matrix
mkj added inertia matrix
Rkj matrix of retardation functions
Ckj matrix of hydrostatic restoring forces

Typically, the simulation length of each run is set at 3.5 hours. However, the statistical analysis of max-
ima and minima only includes the last 3 hours to ensure a representative vessel response, excluding
the initial 30 minutes due to transient effects (Schweter et al., 2023; Van Deyzen, Nguyen, & Egger-
mont, 2024; Van Deyzen, Nguyen, & Van de Sande, 2024; Naciri et al., 2007; Fleer et al., 2024; Cross
& Van Deyzen, 2023). The resulting 3-hour simulation duration was determined to provide a reliable
representation of wind patterns within the modeled time frame (Eggermont, 2024).
A single run requires approximately 30 seconds of computational time.

3.3.1. Model input description
aNySIM requires three key inputs (MARIN, 2022):

• XMF file: Defines simulation setup, environmental forcing, body dynamics, and output parameters
• Fender mesh: Specifies the shape and layout of the contact surface used to model fender inter-
actions (MARIN, 2021)

• Hyd file: Contains hydrodynamic properties

3.3.1.1. XMF
The DMAmodel aNySIM is constructed on the Extensible Modelling Framework (XMF), a C++ software
toolkit developed by MARIN to facilitate time-domain simulations (MARIN, 2022). The XMF file serves
as the main input file and defines the overall computational model. It is a structured text file and
provides a hierarchical representation of the simulation environment, the simulation setup, and the
system components through nodes and properties as visualized in Figure 3.1.

An XMF file typically contains information on global environmental conditions such as wind, waves,
and current characteristics, along with references to global databases like the hydrodynamic database.
The integrator object performs the actual time-domain simulation and includes sub-objects representing
gravity, the fenders, the mooring lines, and the body involved. The body is further described by param-
eters such as the vessel’s dimensions, mass, and draught, wind and current coefficients, subjected
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areas, and linear and quadratic damping. Lastly, the timetrace logger object generates the output files,
specifies the start-up transient time, and defines the output parameters (Zhi, 2013; MARIN, 2021).

The simulation process begins by reading the model from the XMF input file, loading the dynamic
content libraries, and subsequently running the simulation (MARIN, 2022).

Figure 3.1: Overview of the nested structure of the XMF file of a vessel moored to a berth under waves, current, and wind,
based on MARIN (2021)
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3.3.1.2. Fender mesh
The fender mesh is provided as an .obj file and describes the geometry of the fender contact plane
using a polygons, which can represent convex, concave, or non-contiguous surfaces (MARIN, 2021).

3.3.1.3. Hyd file
The Hyd file contains the hydrodynamic database and defines information about the hydrodynamic
response and wave excitation of the floating body, including hydromechanic forces such as added
mass, damping, and first- and second-order wave forces. It is computed using MARIN’s 3D diffraction
theory software DIFFRAC, although other diffraction software can also be used (Eggermont & Van
Deyzen, 2023; Schweter et al., 2023; MARIN, 2021). The input for DIFFRAC includes the dimensions,
weight, and draught of the moored vessel.

3.3.2. Model output description
The aNySIM simulation generates three main output files for analysis (MARIN, 2021). Firstly, a .csv file
(“res”) contains time-series data of simulation output variables over three hours. The following output
channels can be activated in the .xmf input file:

• Mooring line stretch
• Mooring line tension
• Fender deflection
• Fender force
• Manifold motion at specified points
• Waveprobe
• Wind force
• Current force
• Total bollard load
• x, y, z components of the bollard load

Secondly, a .txt file (“rep”) provides statistical summaries of these variables, such as mean, standard
deviation, and extrema. Thirdly, an mst.log file documents warnings and errors encountered during the
simulation, useful for debugging.

3.3.3. Model assumptions and limitations
Although aNySIM provides a powerful framework for simulating moored vessel behavior, it relies on
several assumptions (MARIN, 2022). Such simplifications may affect the fidelity of the simulations.

3.3.3.1. Wave model assumptions
The wave model assumes a flat, infinite mean water surface with constant water depth, gravitational
acceleration, and density throughout the domain. It neglects bathymetric variations and interactions
between waves and currents, such as wave stretching. The model is not applicable in shallow water
where the depth is less than approximately 10% of the wavelength. Breaking waves and the influence
of physical obstructions are also not considered. Furthermore, viscous effects and surface tension are
ignored, and wave behavior is modeled through linear superposition, which is considered an acceptable
compromise between accuracy and simplicity.

3.3.3.2. Wind model assumptions
The wind is modeled as a horizontally uniform velocity field, constant in both direction and magnitude
across the entire spatial domain and height. Forces due to wind are incorporated using predefined,
dimensionless coefficients, and the effects of wind shielding are not taken into account.

3.3.3.3. Bathymetry Assumptions
For bathymetry, the model assumes a static seabed profile that does not change over time, despite
possible real-world variations due to operations such as dredging. Although the water depth, which
combines tide and bathymetry, and seabed slope significantly influence the behavior and configuration
of mooring lines, they are held constant in the simulations.
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3.3.3.4. Current model assumptions
Currents are represented as horizontal velocity vectors that are homogeneous within each layer. Cur-
rents are taken as constant both spatially and vertically within these layers, and shielding effects are
not considered.

3.3.3.5. Hydrostatics assumptions
The hydrostatics component assumes linear behavior and is valid only for small vessel motions in
heave, roll, and pitch. The influence of waves on hydrostatic forces is neglected, and the shape of
the waterline area is assumed to remain unchanged. Additionally, the hull is modeled to intersect the
waterline vertically.

3.3.3.6. Linear and quadratic damping assumptions
The linear and quadratic damping models are both formulated in a coordinate system fixed to the
ship. Forces and moments are calculated with respect to the parent body’s center of mass. The
models rely on the assumption of a slender hull, with large length-to-beam and length-to-draft ratios.
The submerged geometry is based on the instantaneous beam and draught. The water is considered
incompressible and inviscid, and effects from the free surface are neglected.

3.3.3.7. Gravity assumptions
The internal load model assumes that the body of the ship is rigid and that internal loads do not affect
its structure.

3.3.3.8. Taut line assumptions
The spring module calculates the reaction force between two attachment points and assumes that the
connecting spring has no mass. Both linear and quadratic spring-damper configurations are supported,
and a tension-only mode can be enabled or disabled depending on the application.

3.3.3.9. Fender assumptions
Finally, the fender (ball and mesh) model determines contact loads based on spherical fenders and a
polygon mesh representation of contact geometry. Contact is updated at each time step, with dynamic
friction and damping effects included. Hysteresis is not considered in this model.

3.4. DMA result applications
Generally, the results of DMA simulations are used to provide an indication of the critical conditions
for a specified moored vessel in specified berth. For example, Figure 3.2 displays the limiting wind
conditions for a specified vessel for four different types of mooring line.

By numerically calculating the ship motions in 6 DoF and the loads in all mooring lines, a DMA can
identify potential problems associated with excessive forces or motions, such as line failure. By testing
variousmitigationmeasures, such as breakwaters or multiplemooring line configurations, a DMA allows
for the evaluation of their effectiveness in reducing moored vessel response (Van Koningsveld et al.,
2023).

Moreover, several studies demonstrate aNySIM’s application for port design, mooring system optimiza-
tion, and mooring safety prediction.

Van Deyzen, Nguyen, and Eggermont (2024) simulated the response of moored container ships in
gusting wind, showing how the usage of tugs and application of ShoreTension can increase safe wind
speed limits. Van Deyzen, Nguyen, and Van de Sande (2024) compared static and dynamic mooring
analyses for container ships in wind using aNySIM. Eggermont and Van Deyzen (2023) carried out
DMAs to optimize the orientation of a jetty exposed to waves for reduced downtime using. Fleer et al.
(2024) investigated the effects of mooring line type on limiting wind speeds for a future 450m container
ship using aNySIM simulations. Cross and Van Deyzen (2023) presented two DMAs: one for cruise
ship mooring safety under varying wind, and another to determine limiting wind and wave conditions
for a tanker at a new jetty. Van Deyzen et al. (2015) showed, through two case studies, how DMAs can
improve port efficiency in swell conditions, using port design optimization and applying ShoreTension
systems to reduce ship motions.
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Figure 3.2: Example of DMA results for a future Ultra Large Container Ship: polar plot of
the limiting wind speeds per wind directions for various line types (Fleer et al., 2024)

3.5. Conclusion
This chapter addressed SQ2: What are the fundamental principles and key considerations of Dynamic
Mooring Analysis for predicting mooring line forces of large-scale vessels in port areas?

aNySIM is a simulation framework developed to analyze the dynamic behavior of moored vessels under
varying environmental loads. It operates by solving the equations of motion for six DoF at each time
step, capturing the vessel’s response.

The simulation setup is primarily defined through an XMF file, which outlines the configuration of the
simulation environment, including environmental conditions and system components. In addition to the
XMF file, the simulation requires a Fender mesh file and a hydrodynamic database. The Fender mesh
file defines the geometry of the contact plane used in the fender model. The hydrodynamic database,
often referred to as the Hyd file, contains the vessel’s hydrodynamic properties.

The modeling approach is based on several simplifying assumptions. Key assumptions include the use
of linear wave theory on a flat, infinite water surface with constant environmental parameters, and the
neglect of wave-current interactions and shallow water effects. Wind and current fields are treated as
spatially homogeneous, and bathymetry is assumed static over time. Vessel hydrostatics are linearized
and only valid for small motions, while both linear and quadratic damping models assume slender hulls
and inviscid, incompressible water. The vessel is modeled as a rigid body, and internal loads are
assumed not to influence its structural integrity. Mooring lines and fenders are simplified as massless
or rigid components with idealized contact behavior.



4
DMA metamodel development

This chapter addresses SQ3: How can a metamodel for Dynamic Mooring Analysis be developed using
machine learning techniques to predict mooring line forces of large-scale vessels in port areas?

It also covers SQ4: What objectives and criteria are relevant for evaluating and selecting a DMA meta-
model?

A general overview of the metamodeling approach is outlined in Section 4.1. This is followed by a
detailed description of the DMA-specific metamodel development using ML techniques in Section 4.2.
Subsequently, Section 4.3 presents the implementation of this metamodeling process for DMA in a
specified case study situated in the Port of Rotterdam.

The DMA simulations considered in this study are conducted using the aNySIM software package,
which was introduced in Section 3.3.

4.1. Introduction to metamodeling
Metamodels, also known as surrogate models (Delage et al., 2022), represent the response surface
of more complex simulation models, by providing simplified approximations. They map inputs to out-
puts when their underlying relationships are either unknown or computationally expensive to compute
(Williams & Cremaschi, 2021). In essence, a metamodel is a “model of a model”, offering similar pre-
dictive capabilities but at a significantly reduced computational cost (Wang et al., 2014).

They are most commonly employed to enable fast predictions without requiring a complex and compu-
tationally expensive simulation for each scenario. Additionally, they offer valuable insight by facilitating
analysis and interpretation of the behavior of the original complex model (C. Andriotis, 2024).

Two key requirements should be considered: Firstly, the metamodel must provide results significantly
faster than the original simulation model. Secondly, the results must maintain a useful degree of accu-
racy. Achieving an optimal balance between these two factors is a challenge (Forrester et al., 2008).

The construction of metamodels typically involves three stages (Wang et al., 2014):

1. Sample design: selecting representative sample points
2. Model training: optimizing the model parameters
3. Model testing: evaluating the accuracy of the model

Any supervised learning method can be employed for metamodeling (C. Andriotis, 2024). Supervised
learning is a type of ML in which a model is trained on a labeled dataset, where each sample consists
of input features and corresponding target outputs. The algorithm learns a function that maps these
inputs to the desired outputs (Nasteski, 2017).

Several algorithms can be used, including Linear Regression, Polynomial Regression, Gaussian Pro-
cesses, Radial Basis Function Networks, Support Vector Machines, Decision Trees, Random Forests,
and Neural Networks (De Bosscher, 2023; Wang et al., 2014; Williams & Cremaschi, 2019). Regard-
less of the chosen algorithm, the general objective is to generate predictions that approximate the true

33
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values with minimal error. This relationship can be described by:

y = ŷ + ε (4.1)

Where
y true output of the original model
ŷ predicted output of the metamodel
ε prediction error

The typical workflow of training and testing ML models is illustrated in Figure 4.1

Figure 4.1: Complete workflow of a machine learning model

4.2. Methodology for developing a DMA metamodel
This section presents the general methodology for developing a metamodel that predicts mooring line
forces based on DMA. The approach is grounded in supervised machine learning, where a large, simu-
lated dataset, comprising inputs and corresponding DMA outputs, serves as the foundation for training
and evaluating predictive models.

The development process includes data generation, data preprocessing, algorithm selection, training
and testing of models, and model interpretability analysis (Forrester et al., 2008). Finally the candidate
models are evaluated against multiple objectives in order to select the best DMA metamodel.

While the methodology is introduced in a general form here, its application to a specific case study is
detailed in Section 4.3.

4.2.1. Simulated DMA dataset
The synthetic DMA dataset comprises a collection of input scenarios and their corresponding outputs,
generated using the numerical DMA model. The input parameters are used as features for the meta-
model, while the DMA outputs serve as target variables. The metamodel is trained to predict these
target values based on the given input features.

4.2.1.1. DMA input
These input scenarios are constructed in a structured three-step process. First, the input parameters
to be varied are identified. Next, the design space for these parameters is defined. Finally, a sampling
technique is applied to systematically generate the final set of input scenarios.

The numerical DMA model, aNySIM, requires a separate XMF file for each simulation run. Conse-
quently, every input scenario must be converted into an individual XMF file. A dedicated workflow
was developed to automate and standardize the generation of these files, ensuring consistency and
efficiency in the simulation process.
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Input parameters The varied input parameters used in the DMA simulations also serve as input for
the metamodel. DMA model parameters that can be varied include:

• Berth characteristics: orientation, position of the bollards, water depth
• Moored vessel geometry: dimensions, deck plan
• Operational state of the vessel: loading condition, draught, wind area
• Mooring lines: line material, MBL, number of mooring lines, layout, pretension
• Environmental conditions: wind, water level, waves, current

Many of these parameters are interconnected and cannot be varied independently. For instance, the
vessel’s loading condition affects its weight and draught, which in turn influence its natural frequency
and dynamic response to external forces. Similarly, changes in the number of containers on deck and
the draught alter the wind-exposed surface area.

Design space The design space or design domain of the parameters, within which the metamodel
will operate, should be defined. These parameter ranges should be included in the input scenarios for
the numerical DMA model.

Sampling methods The input scenarios for the numerical DMAmodel should comprehensively cover
the design space. Possible sampling methods include grid sampling and Latin Hypercube Sampling.
Additionally, a hybrid approach, integrating different sampling techniques, can be employed to leverage
the strengths of each method.

Grid sampling involves selecting a set of values for each parameter and systematically combining them
to form a structured grid design (Figure 4.2, left panel). It ensures that all combinations of the specified
values are included. This method offers the most simple design, is particularly useful for exploring
the entire design space systematically, and enables single-parameter sensitivity analyses. By moving
along a parameter axis while keeping other parameters constant, the influence of variations in a single
parameter on the model response can be evaluated. However, grid sampling has several limitations,
sincemultiple grid points share the same parameter value. First, themodel is evaluated only on a limited
set of values for each parameter. Second, the total number of grid points increases exponentially with
the number of parameters. Third, models exhibit varying levels of sensitivity to different parameters.
Including an insensitive parameter in the grid can lead to inefficient use of computational resources,
as evaluating these parameter changes may have minimal or no impact on the model output (Urban &
Fricker, 2010).

As an alternative, Latin Hypercube Sampling (LHS), or near-random or quasi-random sampling (C.-Q.
Li & Yang, 2023), is widely adopted (Urban & Fricker, 2010). This statistical method ensures that the
design space is explored more efficiently. It is particularly useful for reducing the number of samples
needed while still covering the entire range of each variable. This technique divides the range of each
parameter into evenly spaced hypercubes (bins), ensuring that the number of bins equals the total
number of samples. Along each parameter axis, every bin contains a sample as seen in Figure 4.2,
right panel (Forrester et al., 2008). LHS maintains memory of the samples taken, thereby ensuring
that each sample is unique and well distributed (Ebbs-Picken et al., 2023). Moreover, the number
of samples required does not increase with the number of variables (C.-Q. Li & Yang, 2023). This
efficiency allows LHS to explore a larger design space more effectively than grid sampling while using
the same number of samples (C.-Q. Li & Yang, 2023). A comparison of grid and LHS designs is
illustrated in Figure 4.2.

Generation of DMA input files Haskoning developed an internal workflow for generating XMF input
files used in DMA simulations. Due to the extensive parameter variations required for this project, the
original workflow was revised to improve flexibility and automation.

The process begins with manually prepared Mooring Arrangement (MA) sheet templates, that are Excel
files that define the mooring arrangement and calculate the vessel’s eigenfrequency. These templates
are adjusted for parameters that are easiest to modify manually, such as mooring line layout and force-
stretch characteristics.
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Figure 4.2: Sampling of 16 data points using grid sampling and LHS

Subsequent steps are automated using a Python script:

• MA sheets are generated for each base case, incorporating variations in parameters that impact
the eigenfrequency of the moored vessel (e.g., water depth, mooring line material, MBL, preten-
sion). The resulting eigenfrequency values from each template are extracted and temporarily
stored.

• These MA sheets are then converted into XMF templates containing placeholders for additional
parameters.

• Finally, the placeholders are systematically filled with scenario-specific values (e.g., wind area,
wind speed, wind direction, viscous damping), resulting in a complete set of XMF files represent-
ing unique input scenarios.

4.2.1.2. DMA output
Each input scenario is executed using the generated XMF input files, with a simulation time step of
0.25 seconds, a total duration of 12,600 seconds, and a statistical analysis period beginning at 1,800
seconds.

The output of each DMA simulation consists of the minimum, mean, and maximum mooring line force
for every individual mooring line. However, since the number of mooring lines may vary between
scenarios, the resulting output dimensions are not uniform across the dataset. This poses a challenge
for supervised machine learning algorithms, which require consistent output dimensions. To address
this, a set of aggregated target variables must be defined and computed to standardize the line-specific
results across all scenarios.

4.2.2. Data preparation
The development of a DMA metamodel begins with the careful preparation of the raw data generated
from the simulation model. This dataset is synthetic by nature and does not contain missing values,
which simplifies the initial data cleaning process.

The dataset is used to train and test the candidate metamodel and consists of featuresX, derived from
the DMA input parameters, and targets y, calculated from the DMA output. While the raw input and
output of the DMA simulations are informative, they may require preprocessing and transformation to
become suitable input features and target variables for machine learning.

4.2.2.1. Encoding
DMA scenarios are generated by varying a set of model parameters that represent key mooring charac-
teristics. These parameters form the features of the metamodel. However, some of these parameters
require transformation to ensure compatibility with machine learning algorithms.

Categorical data Machine learning models typically require numerical input. Parameters that are
already numeric can be directly used as features. However, categorical variables, which represent
discrete, non-ordinal values, must be encoded to prevent introducing unintended hierarchies. One-hot
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encoding effectively addresses this issue, creating binary indicator variables for each category and
ensuring no false ordinal relationship is implied (Kosaraju et al., 2023).

Cyclic data Some input parameters are cyclical in nature, such as hour of the day, wind direction, or
vessel heading. Since the cyclical structure is not inherently recognized by machine learning models,
these features are transformed using sine and cosine functions to preserve their periodic properties
(Mahajan et al., 2021). This allows the model to learn relationships across cyclic boundaries (e.g.,
359◦ and 0◦).

4.2.2.2. Data splitting
Once the features and targets have been prepared and formatted, the complete DMA dataset is split
into training and test subsets, as illustrated in Figure 4.3 The training set is used for the purpose of
training the algorithm, while the performance of the trained model is evaluated using the test subset
(Shalev-Shwartz & Ben-David, 2014). Generally, the data are divided with 70% allocated for training
and 30% for testing, or alternatively, 80% for training and 20% for testing (Sivakumar et al., 2024).
Ensuring a balance in this ratio is important to avoid both overfitting and underfitting.

Overfitting leads to models that perform exceptionally well on training data, but poorly on new data as
they memorize training examples instead of identifying the true relationships between input and output.
On the other hand, underfitting results in models that perform poorly overall due to insufficient capacity
or training to capture the underlying patterns in the data (Bashir et al., 2020).

Figure 4.3: The complete synthetic DMA dataset is split in a training and
test subset

To prevent data leakage, the data splitting is performed before feature selection and data scaling, both of
which are described in the following paragraphs. Data leakage occurs when unauthorized information
is incorporated in the training data, causing biased model training (Apicella et al., 2024). This can
lead to an overestimation of the model performance during evaluation. Unauthorized information may
contain knowledge about out-of-training data, without directly including these specific data, such as the
test subset.

4.2.2.3. Scaling
When values of features are closer in scale, ML models can often be trained more efficiently and ef-
fectively. In contrast, widely varying feature values can lead to slower training and may reduce the
model’s accuracy. To address this, scaling is applied to adjust the range of feature values while pre-
serving their distribution, ensuring that their relative relationships remain unchanged. There are two
main techniques for scaling: normalization and standardization (Sharma, 2022).

Normalization adjusts the data to a fixed range, typically between 0 and 1. This process involves
transforming the smallest value of a feature to 0 and the largest to 1. Each value is scaled using the
formula:

Normalized value =
Value−Min
Max−Min

(4.2)

Standardization, on the other hand, centers the data around a mean µ of 0 with a standard deviation σ
of 1. This transformation is achieved by subtracting the mean and dividing by the standard deviation:

Standardized value =
Value− µ

σ
(4.3)
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Unlike normalization, standardization does not depend on the range (maximum and minimum) of the
data. Instead, it relies on the mean and standard deviation to ensure that the scaled data follows a
standard normal distribution.

(a) Original data (b) Normalized data (c) Standardized data

Figure 4.4: Comparison of original, normalized, and standardized data of a random generated dataset

Data scaling is performed after data splitting to prevent data leakage (Apicella et al., 2024). The scaler
is fitted to the training data and then used to transform both the training and testing data.

4.2.3. Machine learning algorithm selection
The prediction of mooring line forces simulated by DMA presents a Multivariate Multiple Regression
problem, characterized by:

• Multivariate input: Multiple input features are used to describe the scenario.
• Multivariate output: The task involves predicting multiple output variables, representing various
types of mooring line forces.

• Continuous numerical output: The target variables are continuous and numeric.

For this study, two different algorithms are considered for developing candidate metamodels for the
DMA, both suitable for multivariate multiple regression tasks. Linear regression is selected due to its
simple implementation and high interpretability, making it a strong baseline for comparison. In addition,
a deep neural network model, specifically a multi-layer perceptron, is build to leverage its ability to
capture complex, nonlinear relationships within the data.

The key advantages and disadvantages of these two algorithms are summarized in Table 4.1.

Table 4.1: Advantages and disadvantages of linear regression and deep neural networks

Algorithm Advantages Disadvantages Reference

Linear Regression Simple implementation;
highly interpretable; low
computational cost

Assumes linearity; limited
in capturing complex
patterns; sensitive to
outliers

Sabouri et al.
(2024) and Gzar
et al. (2022)

Deep Neural
Network

Capable of modeling
complex, nonlinear
relationships

Computationally
intensive; requires careful
hyperparameter tuning;
prone to overfitting;
difficult to interpret

Gzar et al. (2022),
Vieira et al. (2020),
and Yondo et al.
(2018)

The following subsubsections provide a more detailed explanation of both algorithmic approaches.
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4.2.3.1. Linear regression
Linear regression analysis is most likely the simplest and most frequently used technique for evaluat-
ing relationships between continuous variables (Hope, 2020). Multiple linear regression models the
relationship between multiple input variables and a response variable by fitting a linear function (Hastie
et al., 2009):

ŷ = β0 +

n∑
i=1

xiβi (4.4)

Where
ŷ predicted output target
xi input feature, for i = 1, 2, . . . , n
β0 intercept (bias term)
βi coefficient corresponding to xi , for i = 1, 2, . . . , n

The model estimates the optimal values for β0 and βi by minimizing the sum of squared errors between
the line and the actual data points. Ordinary Least Squares (OLS) is the most widely used method for
this minimization problem, offering computational efficiency and, under certain assumptions, providing
the best possible estimates (Hope, 2020).

In linear regression, the influence of each feature on the predicted output is reflected by the magnitude
and sign of its corresponding coefficient. A larger absolute coefficient value indicates a stronger impact
on the prediction, meaning the feature with the highest absolute coefficient exerts the most influence.
A positive coefficient implies that an increase in the feature value leads to a higher predicted output,
whereas a negative coefficient suggests the opposite effect.

Figure 4.5: Example of a fitted linear function for a simple linear regression consisting of
a single input variable x and an output variable y

Linear regression yields easily interpretable results, facilitating the understanding of the relationships
between predictor and response variables. However, it does have the potentially invalid assumption
that the relationships are linear. Furthermore, as the number of predictors increases, the model perfor-
mance may decrease (Hope, 2020).

Even when the underlying relationships between variables are not believed to be strictly linear, linear
regression algorithms often serve as a useful baseline model (Hope, 2020).

4.2.3.2. Multi-Layer Perceptron
One of the most popular and promising techniques in ML is Deep Learning (DL) (Vieira et al., 2020).
The simplest DL model is the Multi-Layer Perceptron (MLP), which is a specific Deep Neural Network
(DNN). MLPs, as illustrated in Figure 4.6, are inspired by the architecture of the human brain and are de-
signed to learn complex patterns within data. This enables them to approximate nonlinear relationships
between input and output variables.
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(a) Every input xi has an associated weight wi. The weighted
sum of all inputs

∑
xiwi is transformed using a nonlinear

activation function f to the neuron’s output yi.

(b) The input data is propagated through the network, transformed in every
layer. The output layer generates the predicted values based on the input

of the input layer.

Figure 4.6: Structure of a MLP (Vieira et al., 2020)

The architecture of a MLP is structured in three types of layers: the input layer, which receives the input
data; the output layer, which produces the final prediction; and one or more hidden nonlinear layers
in between, whose number determines the depth of the model. Each layer comprises interconnected
neurons. These connections have associated weights that determine the strength and direction of
influence between neurons. The input of a neuron computed as the weighted sum of the outputs from
neurons in the preceding layer. A nonlinear activation function is then applied to this sum before the
result is passed to the following layer (Vieira et al., 2020). The output of a hidden neuron is expressed
as:

hj = f(

n∑
i=1

wjixi) (4.5)

Where
hj output of jth hidden neuron
wji weight from input i to hidden neuron j
xi input i, for i = 1, 2, . . . , n
f activation function
The output of the neuron serves as input to the neuron in the next layer. This process is repeated
in every subsequent hidden layer. Finally, the output layer generates the final output values, after
receiving the values from the last hidden layer.

DL models are often considered “black boxes” due to their lack of interpretability in comparison to more
transparent models, such as linear regression. Themultiple layers of nonlinear transformations obscure
the direct relationship between input and output, complicating the understanding of how predictions are
made (Vieira et al., 2020).

The development of a MLP also involves selecting hyperparameters including the number of layers
and neurons per layer, activation function, optimizer, learning rate, and regularization strategy. These
settings are optimized through hyperparameter tuning (subsubsection 4.2.4.1). During training, the
model learns by adjusting the weights to minimize the error (Vieira et al., 2020).

Number of layers and neurons Although hidden layers do not directly interact with the input or output
domains, they significantly influence the model’s predictive performance. Consequently, the determi-
nation of both the depth (number of layers) and width (number of neurons per layer) of these hidden
layers should be carefully considered (Heaton, 2008). Unfortunately, no universally accepted method
exists for determining the optimal number and size of hidden layers (Zendehboudi et al., 2017; Vieira
et al., 2020).

However, Heaton (2008) recommends limiting neural network architectures to one or two hidden lay-
ers, as these configurations are capable of representing a wide range of complex functions. Besides,
various rule-of-thumb methods exist for determining the appropriate number of neurons in the hidden
layers of a neural network (Heaton, 2008). Common guidelines include:
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• The number of hidden neurons should be within the range defined by the input and output layer
dimensions.

• The number of hidden neurons should be two-thirds of the input layer size, plus the output layer
size.

• The number of hidden neurons should not exceed twice the input layer size.

An insufficient number of neurons in the hidden layers can lead to underfitting, where the model fails to
capture the underlying patterns in the data. Conversely, an excessive number of neurons may cause
overfitting, where the model memorizes noise instead of learning generalizable features, or significantly
increase training time. Therefore, an appropriate compromise between model complexity and general-
ization ability is necessary (Heaton, 2008).

Activation function To introduce nonlinearity, a nonlinear activation function is implemented. Com-
mon activation functions include the rectified linear unit, as well as the hyperbolic tangent and sigmoid
functions (Vieira et al., 2020). These activation functions are detailed in Table 4.2 and shown in Fig-
ure 4.7.

Table 4.2: Common activation functions the MLP algorithm (Apicella et al., 2021)

Name Function Output range

Logistic sigmoid g(z) = 1
1+e−z (0, 1)

Hyperbolic tangent g(z) = tanh z (−1, 1)

ReLU g(z) = max(0, z) (0,∞)

Figure 4.7: Common activation functions for the MLP algorithm

4.2.4. Training process of machine learning algorithms
The simulated DMA dataset is split into a training dataset and a test dataset. The test set is reserved
exclusively for model testing purposes in the next stage and should be completely set apart.

Figure 4.8 visualizes the overall training process of machine learning algorithms. Within the training
dataset, a portion is used to train the algorithm and develop a prototype model. The remaining portion
is used for validation, allowing for iterative evaluation and hyperparameter tuning. Once the model and
its hyperparameters achieve satisfactory performance on the validation set, the final model is retrained
on the entire training set using the optimized hyperparameters. This results in the validated model used
for testing in the next stage.
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Figure 4.8: Flowchart of the training process of ML models

The linear regression model can be trained directly, whereas the MLP model requires careful hyperpa-
rameter tuning to achieve optimal performance.

4.2.4.1. Hyperparameter tuning
The initial ML algorithm represents a general model framework. However, the specific model perfor-
mance of any ML algorithm are significantly dependent on its unique set of hyperparameters. These
hyperparameters, which are specified prior to model training and are not learned from the data itself,
require tuning in order to achieve optimal model outcomes.

Two common strategies employed for this crucial hyperparameter tuning, besides manual search, are
grid search and random search.

Grid search Grid search is a widely used technique to solve the hyperparameter estimation problem,
particularly in combination with cross-validation. The method systematically explores a predefined
range or set of values for each hyperparameter. It constructs a grid containing all possible combinations
of these values. For each combination, the model is trained and evaluated using a validation dataset
or cross-validation. The hyperparameter combination that yields the highest validation performance
is then selected as the optimal configuration and used for training the candidate metamodel. While
effective, grid search can be computationally expensive, particularly when dealing with a large number
of hyperparameter combinations (Shams et al., 2024).

Random search Random search offers an alternative approach with reduced computational cost
(Shams et al., 2024). It involves randomly sampling hyperparameter values from a uniform distribu-
tion within a defined hyperparameter space. As demonstrated by (Bergstra & Bengio, 2012), a ran-
dom search across the same hyperparameter space can identify models that perform equally well, or
even better, but with significantly less computational effort, as compared to neural networks config-
ured through a systematic grid search. Random search has been shown to be more efficient than grid
search, especially in high-dimensional search spaces.

4.2.4.2. 5-fold cross-validation
Validation is used to estimate the performance of an ML model on unseen data and to tune its hyper-
parameters accordingly. An effective validation technique to avoid overfitting is 5-fold cross-validation
which involves retraining the model with specified hyperparameter on different training sets.

The original training set is divided into five equal parts, or folds: over five iterations, every fold at a time
is assigned as the validation subset and the model is trained on the remaining folds as illustrated in
Figure 4.9. A loss function is calculated to measure the error between the prediction and the actual
values in the validation subset. The errors from all five iterations are then summed to evaluate the
model’s overall performance. Based on the five validation results, the hyperparameters of the algorithm
are tuned to optimize accuracy (Figure 4.8) (Forrester et al., 2008).
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Figure 4.9: With 5-fold cross-validation the training set is divided into five folds. One fold serves as the validation set, while the
remaining are used to train the model. This process is repeated over five iterations, with each fold taking a turn as the

validation set. The model is retrained in each round. The overall performance score across all iterations forms the validation
score, which is then used to finetune the hyperparameters.

4.2.5. Testing process of machine learning models
A randomly selected subset of the data is reserved exclusively for model testing purposes. Since
these samples are solely used for evaluating the testing error after the model is constructed, they must
remain untouched during the prior stages. The test error, defined by the difference between the true and
predicted outputs at the test samples, is quantified using performance evaluation metrics to evaluate
the performance of the model on the unseen test data (Forrester et al., 2008). The testing process is
illustrated in the flowchart in Figure 4.10

Figure 4.10: Flowchart of the testing process of ML models

4.2.5.1. Predictive performance evaluation metrics
Commonly used metrics for evaluating the predictive performance of regression models include MAE,
MSE, RMSE, and R2 (Plevris et al., 2022). Their expressions are listed in Table 4.3.
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Table 4.3: Commonly used performance evaluation metrics for regression

Metrics Formula Value
range

Ideal
value

MAE 1
n

∑n
i=1 |yi − ŷi| [0,+∞) 0

MSE 1
n

∑n
i=1(yi − ŷi)

2 [0,+∞) 0

RMSE
√

1
n

∑n
i=1(yi − ŷi)2 [0,+∞) 0

R2 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(−∞, 1] 1

Mean Absolute Error (MAE) measures the average of the absolute differences between observed and
predicted value. It indicates how closely the fitted line matches the test data points, with a positive
value where closer to 0 signifies higher accuracy. The formula is given as:

MAE =
1

n

n∑
i=1

|yi − ŷi| (4.6)

Where
n number of data points
yi actual output value
ŷi predicted output value by the model

Mean Squared Error (MSE) is the average squared difference between actual and predicted output
values. Due to the squaring, larger errors have a much larger effect on the MSE than small ones,
making it sensitive to outliers, unlike MAE which uses absolute differences. The formula is:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (4.7)

Where
n number of data points
yi actual output value
ŷi predicted output value by the model / predicted values

Root Mean Squared Error (RMSE) is derived by taking the square root of MSE, providing an error
measure in the same unit as the output. It is calculated as:

RMSE =
√
MSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (4.8)

Where
n number of data points
yi actual output value
ŷi predicted output value by the model

Coefficient of Determination (R2) quantifies the proportion of variance in the dependent variable yi
explained by the model’s independent variables xi. R2 is defined as:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(4.9)

Where
n number of data points
yi actual output value
ŷi predicted output value
ȳ mean of the actual output values
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The numerator
∑n

i=1(yi − ŷi)
2 corresponds to the sum of squared residuals (SSR), which measures

the unexplained variance by the model. The denominator
∑n

i=1(yi − ȳ)2 represents the total sum of
squares (SST), which quantifies the total variance in the dependent variable.

R2 serves as an indicator of the model’s goodness of fit, generally with values ranging from 0 to 1. A
value of 1 indicates that the model perfectly predicts the dependent variable, while a value of 0 suggests
that the model does not explain any of the variance in the data. However, R2 can also take on negative
values. This occurs when the model’s predictions are consistently worse than simply predicting the
mean of the dependent variable, indicating a poor fit.

4.2.5.2. Visualization
To understand the performance of a regression model, it is crucial to visualize its test results. Two key
plots used for this purpose are the Actual vs predicted values plot and the Residual vs predicted values
plots.

Actual vs predicted plot In an actual versus predicted plot (Figure 4.11), the true observed values of
the target variable are plotted on the x-axis, while the corresponding values predicted by the model are
plotted on the y-axis. A dashed diagonal line, representing the situation in which the predicted values
perfectly match the actual values (y = x), serves as a reference point for ideal prediction. A perfect
regression model would exhibit all data points lying precisely on this diagonal line. Consequently, the
distance of the data points from this diagonal provides a visual representation of the model’s prediction
error. Points further away from the dashed line indicate larger differences between the actual and
predicted values, implying a larger error for those particular instances.

Figure 4.11: Example of an actual vs predicted plot

Residual vs predicted plot A residual versus predicted plot displays the difference between the ac-
tual observed value and the values predicted by the model (residuals) against the predicted values
themselves. As highlighted by Faraway (2005), a well-fitting model will show uncorrelated residuals
with constant vertical variance, symmetrically distributed around zero (Figure 4.12a).

Deviations from this ideal pattern can reveal issues with the model. If the vertical spread of the resid-
uals is not constant, it suggests heteroskedasticity, meaning the variance of the errors changes with
the predicted values (Figure 4.12b). Moreover, nonlinearity is indicated by a non-random pattern in
the residuals, where the average of the residuals is not consistently zero across the predicted values
(Figure 4.12c). This might suggest that some change in model could be more appropriate.
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(a) Good fit (b) Non-constant variance indicates
heteroskedasticity

(c) Conditional mean of the residuals is not
constant zero indicating nonlinearity

Figure 4.12: Residual vs. predicted plots (Faraway, 2005)

4.2.6. Model interpretability
For linear regression, the coefficients and intercept can be obtained, making it an interpretable algo-
rithm. However, these coefficients do not necessarily accurately reflect feature importance due to their
dependence on the scale of the features.

In contrast, a multi-layer perceptron is considered a black-box model, making them more challenging
to interpret and understand. Model-agnostic interpretability methods offer a versatile approach to un-
derstanding machine learning models, as they can be applied regardless of the specific algorithm used.
Two prominent techniques in this category are Permutation Importance and SHAP.

4.2.6.1. Permutation importance
Permutation importance measures the contribution of each feature to the prediction performance of the
model (Molnar, 2025). This is achieved by shuffling the values of a single feature and observing the
resulting decrease in model performance. The importance of the feature is quantified by the increase
in this error compared to the model’s original performance. Essentially, a feature is deemed important
if its random shuffling leads to a higher error, indicating that the model relied on this feature for making
accurate predictions. Conversely, if shuffling a feature’s value has little to no effect on the error, it
suggest that the model did not find that feature particularly useful and it is considered unimportant.

4.2.6.2. SHAP
SHAP (SHapley Additive exPlanations) offers an alternative perspective on feature importance, focus-
ing on the magnitude of feature contributions to model predictions (Molnar, 2025). SHAP values, rooted
in game theory principles, provide insights into how each individual feature influences a specific predic-
tion. A negative SHAP value signifies that the feature’s value contributes to a decrease in prediction
value, while a positive SHAP value indicates a increase in prediction value. A SHAP summary plot
serves as a visual tool to identify the most influential features and how their different values affect the
model’s output. In this plot, each point represents the SHAP value for a particular feature and specific
instance, with the color gradient indicating the feature’s value, ranging from blue for low values to red
for high values. The features are ranked along the y-axis based on their overall importance.

4.2.7. Metamodel evaluation objectives
Metamodels, used as a competent replacement for simulation models, should provide fast and accu-
rate predictions (Nejati et al., 2024). Therefore, there are two key objectives according to Forrester
et al. (2008): significant speed increase in use and useful accuracy. Depending on the purpose of the
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final metamodel, more objective can be added if necessary. After defining the criteria that the meta-
model must meet, a multi-criteria analysis (MCA) is performed to support the selection of the optimal
metamodel from the candidates.

MCA is a decision-making framework used to evaluate and rank different options based on multiple
criteria (Dean, 2020). One of the most popular MCA techniques is simple additive weighting. First,
the objectives are defined, which serve as the evaluation framework against which the options are
assessed and compared. Criteria (at least one per objective) are then established to measure the
degree to which options satisfy these objectives. Finally, each criterion is given a weight to indicate
its relative significance compared to the other criteria, with criteria of high importance and preference
receiving higher weights.

Simple rating, where each criterion is assigned a numerical value on a given scale based on its impor-
tance, is one of the simplest approaches for determining criteria weights. The weights are subsequently
normalized to sum up to 1 by dividing each weight by the total sum of all weights. Point allocation is
another weighting technique in which a fixed number of points need to be distributed among the cri-
teria based on their perceived importance. This method becomes more challenging as the number of
criteria grows. A more comprehensive weighting technique is pairwise comparison, that involves com-
paring each criterion to the others in pairs and labeling them with normalized weights based on these
comparisons.

After determining the weights for each criterion based on its relative importance, the performance of
each option against all criteria is evaluated by assigning a performance score. This score is a numerical
value on a given scale, with high-performing options receiving higher scores. The weighted sum of the
performance scores for each option clearly identifies the “best” choice. The results of MCA are typically
presented in a performance table, as shown in the example in Table 4.4.

Table 4.4: Performance table example of MCA results using simple additive weighting, based on Dean (2020)

Criteria Weights
(0-100%)

Option 1 Option 2 Option 3
Score
(0-10)

Weighted
score

Score
(0-10)

Weighted
score

Score
(0-10)

Weighted
score

C1 25 5 1.25 8 2 10 2.5

C2 10 4 0.4 6 0.6 4 0.4

C3 25 3 0.75 7 1.75 8 2

C4 40 9 3.6 3 1.2 7 2.8

Total 100% - 6 - 5.55 - 7.7

Preference rank 2 3 1

4.3. DMA metamodel development for a case study
This case study applies the DMA metamodeling methodology introduced in Section 4.2 to the mooring
of a 333-meter container vessel, the Cartagena Express, at the Delta Dedicated North (DDN) berth
at the ECT Delta Terminal in the Port of Rotterdam (Figure 4.14). The vessel has a length overall of
333 meters, a breadth of 48 meters, and a draught of 12.25 meters, representative of large container
ships currently serviced by the terminal (Sterkenbrug, 2024). The ECT Delta Terminal is a deep-sea
container terminal located on the Maasvlakte with direct access to the North Sea. Its quay depth allows
it to accommodate some of the world’s largest vessels (Hutchison Ports ECT Rotterdam, 2024), making
it a relevant test case for mooring force analysis.



4.3. DMA metamodel development for a case study 48

Figure 4.13: Cartagena Express (Scheepvaartwest,
2020)

Figure 4.14: Satellite photo of ECT DDN terminal,
with the yellow square indicating the DDN berth

(Google Earth, 2024)

The case study dataset consists of designed scenarios reflecting variations in several key parameters
forming the basis for training and evaluating candidate DMA metamodels.

4.3.1. DMA dataset for case study
The case study is based on a systematically designed dataset including 11,520 scenarios. Each sce-
nario has been numerically simulated using the DMA model aNySIM. The resulting synthetic dataset
includes both the input parameters and the corresponding output mooring line forces. This DMA dataset
serves as the foundation for training and evaluating the candidate DMA metamodels.

4.3.1.1. DMA input for case study
All scenarios are based on a fixed berth configuration and vessel type, as detailed in Appendix B.
However, nine key parameters are systematically varied to reflect realistic operating conditions. These
include:

• Water depth
• Number of mooring lines
• Mooring line material
• Minimum breaking load (MBL)
• Pretension
• Viscous damping
• Wind area
• Wind velocity
• Wind direction

For each input parameter, a set of possible values was defined based on expert consultation with
the Port of Rotterdam, Royal Boatmen Association Eendracht (KRVE), and Haskoning, as detailed in
Appendix B. A uniform distribution of values was not applied across all parameter axes. Given the
higher accuracy of approximation models in the vicinity of given data samples (Forrester et al., 2008),
the most relevant and representative values for this particular case study were selected.

By combining these parameter values, a total of 11,520 unique scenarios were generated, as summa-
rized in Table 4.5.

The first seven parameters were varied systematically using grid sampling, generating 1,152 distinct
“base cases”. Each base case was then duplicated 10 times, with a unique combination of wind velocity
and direction added using LHS. This results in a total of 11,520 input scenarios.

The parameters are defined as input for the ML model and will serve as features to the ML models.
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Table 4.5: Description of inputs in the DMA model

Model parameter Value Number of
values

Number of
combinations

Total number
of scenarios

Water depth (m) 16.53, 18.48 2

1,152

11,520

Number of mooring lines 12, 16 2

Mooring line material nylon, polyester 2

MBL (ton) 120, 130, 150 3

Pretension (% MBL) 5, 10, 20, 40 4

Viscous damping (%) 0, 2, 4 3

Wind area (%) 100, 80, 60, 40 4

Wind velocity (m/s) 5 - 18 27
1,274

Wind direction (◦) 173 - 263 90

4.3.1.2. Output mooring force via DMA
The mooring line forces computed by the DMA are considered as output variables. The DMA output
file provides, for each mooring line, the minimum, mean, and maximum force recorded over the entire
simulation duration.

As the number of mooring lines varies across scenarios, the number of corresponding DMA outputs
differs as well. To ensure consistency and comparability across all configurations, two aggregated
target variables were defined:

• Mean mooring line force F̄mean: the average of the mean forces across all mooring lines in a
simulation

y1 = F̄mean =
1

N

N∑
i=1

Fi,mean (4.10)

Where Fi,mean is the mean force in line i during the simulation, and N is the total number of
deployed lines.

• Maximum mooring line force Fmax: the absolute peak force in any mooring line during the simula-
tion

y2 = Fmax = max
i∈{1,...,N}

Fi,max (4.11)

Where Fi,max is the maximum force in line i during the simulation, and N is the total number of
deployed lines.

These two aggregated values are used as target variables for the metamodels. Data analysis on output
distribution and correlations with input features is available in Appendix C.

4.3.2. Data preparation
The DMA data set requires some data preparation.

4.3.2.1. Encoding
The categorical variable mooring line material is one-hot encoded, creating two features: Nylon and
Polyester, as visualized in Table 4.6. Wind direction is encoded cyclically using sine and cosine trans-
formations to reflect its circular nature as illustrated in Table 4.7.
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Table 4.6: One-hot encoding

(a) Original line material data

Id Mooring line material
1 nylon
2 polyester

(b) Converted data using one-hot encoding

Id Nylon Polyester
1 1 0
2 0 1

Table 4.7: Cyclic encoding

(a) Original wind direction data

Id Wind direction
[◦ ]

1 180
2 241

(b) Converted data using cyclic encoding

Id Wind direction
Sin

Wind direction
Cos

1 sin(180) cos(180)
2 sin(241) cos(241)

4.3.2.2. Data splitting
The complete synthetic DMA dataset, consisting of 11,520 samples, is divided into training and test
subsets using an 80/20 split. As a result, the training set comprises 9,216 samples and the test set
contains 2,304 samples. To ensure reproducibility of the results, the split was performed with a fixed
random state.

4.3.2.3. Data scaling
To ensure that all input features contribute equally to the model training process and to improve nu-
merical stability, the all features and target variables were standardized as explained in subsubsec-
tion 4.2.2.3. A standard scaler was fitted to the training subset, and this fitted scaler was then used to
transform both the training and test subsets.

The widely-used StandardScaler module from the Scikit-learn library was employed for this purpose.

Notably, the Wind direction is represented using both sine (x10) and cosine (x11) components to ac-
count for the circular nature of directional data, specifically over the range of 173◦ (southerly side wind,
perpendicular to the vessel) to 263◦ (westerly headwind, parallel to the vessel and directed toward the
bow). By standardizing these components, their interpretation is affected:

• Original sine values ranged from approximately −0.993 (at 263◦) to 0.122 (at 173◦). After scaling,
this maps to [0, 1], with higher sine values indicating wind more perpendicular to the vessel and
lower values indicating wind more parallel.

• Original cosine values ranged from −1 (at 180◦, slightly past perpendicular) to about −0.122 (at
263◦, headwind). After scaling to [0, 1], low scaled cosine values represent side wind, and high
values represent headwind.

4.3.2.4. Feature and target sets
Table 4.8 and Table 4.9 list the final feature and target sets for the DMA metamodel.
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Table 4.8: Feature variables

Feature Parameter Unit

x1 Water depth m
x2 Number of mooring lines -
x3 Nylon mooring lines -
x4 Polyester mooring lines -
x5 MBL ton
x6 Pretension % MBL
x7 Viscous damping %
x8 Wind area m2

x9 Wind velocity m/s
x10 Cosine of wind direction -
x11 Sine of wind direction -

Table 4.9: Target variables

Target Parameter Unit

y1 Mean mooring line force F̄mean kN
y2 Maximum mooring line force Fmax kN

4.3.3. Training of candidate DMA metamodels
As introduced in Section 4.2, the linear regression (LR) and multi-layer perceptron (MLP) algorithms
were selected to serve as candidate DMA metamodels. Both algorithms were trained on the same
dataset, comprising 9,216 samples.

LR does not require hyperparameter tuning. A linear relationship is fitted directly to the training data.
The model is implemented using the LinearRegression module from the Scikit-learn library.

To identify the optimal hyperparameters for the MLP, a randomized grid search was performed with
1,000 iterations and 5-fold cross-validation. A fixed random seed was applied to ensure reproducibility
of the results. The considered hyperparameters and their respective value ranges are presented in
Table 4.10.

The network architecture was varied through the hidden_layer_sizes parameter, incorporating both
shallow and moderately deep configurations. This enabled the exploration of models with different
capacities to capture nonlinear relationships, while avoiding excessive complexity.

For the activation function, three commonly used nonlinear functions were considered: hyperbolic tan-
gent (tanh), logistic sigmoid (logistic), and Rectified Linear Unit (relu). The linear activation function
was excluded, as it effectively reduces the network to a linear regression model.

Both the adam and sgd solvers were tested. The lbfgs solver was excluded, as it frequently failed
to converge for the dataset at hand. When the sgd solver was selected, the use of Nesterov momen-
tum (nesterovs_momentum) was also explored to potentially enhance convergence speed and stability.
Three learning rate schedules were considered: constant, adaptive, and invscaling. These schedules
govern how the learning rate evolves during training and can significantly impact convergence behavior.
The initial learning rate (learning_rate_init) was sampled from a range spanning one order of magni-
tude to explore both conservative and aggressive learning regimes. The regularization strength (alpha),
corresponding to L2 weight penalty, was varied from 10−5 to 1.0. This range allowed evaluation of the
trade-off between underfitting and overfitting. Early stopping was enabled throughout the search pro-
cess to prevent overfitting and reduce training time. The maximum number of iterations was set to
1,000 to ensure convergence while maintaining practical computational limits.

After determining the optimal hyperparameters, the algorithm was retrained on the complete training
dataset using this configuration. The implementation is based on the MLPRegressor module, in combi-
nation with KFold and RandomizedSearchCV, all from the Scikit-learn library.
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Table 4.10: Defined hyperparameter space of MLP, with remaining hyperparameters set to default

Hyperparameter Space

hidden_layer_sizes (8,), (10,), (20,), (50,), (20, 10),
(50, 20), (60,40), (100, 50), (100, 20)

activation tanh, relu, logistic
solver sgd, adam
alpha 0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0
learning_rate constant, adaptive, invscaling
learning_rate_init 0.001, 0.01, 0.05, 0.1
nesterovs_momentum True, False
batch_size 64, 128, 256

4.3.4. Testing the candidate DMA metamodels
The predictive performance of both models is evaluated on the test set (2,304 samples) using standard
regression metrics: MSE, RMSE, MAE, and R2, as defined in subsubsection 4.2.5.1. These metrics are
computed separately for each target variable, the mean and maximum mooring line force, as well as
combined into a single global score, in which the performance across both targets is weighted equally
to provide an overall assessment of the model.

4.3.5. DMA metamodel selection process
In addition to the two main primary requirements a metamodel must satisfy, further considerations
were introduced in consultation with Port of Rotterdam. These include the development effort required
to develop the model and its interpretability to ensure that results are transparent and understandable
to stakeholders.

All considerations are grouped under three overarching objectives: Accuracy, Efficiency encompassing
both speed and development effort, and Interpretability.

To support the selection of the final DMA metamodel from the developed candidate models, an MCA
is employed. Each objective is assigned a weight to reflect its relative importance.

Accuracy receives the highest weight (55%) as the metamodel must reliably approximate mooring
line forces in order to serve as a safe surrogate for numerical DMA. Within this objective, the RMSE
is weighted 35% due to its sensitivity to large prediction errors, which are particularly important when
estimating peak forces. RMSE values are normalized using a threshold value of 100 kN, corresponding
to 10% of bollard capacity. The coefficient of determination R2 contributes 20% as a complementary
indicator of overall goodness-of-fit.

Efficiency is assigned a weight of 30% to reflect its significance in practical applications, where fast
prediction enables batch processing or near real-time analysis. This objective includes two criteria:
inference time (25%) and development effort (5%). Inference time, defined as the time required to
produce a prediction, is prioritized due to the significant advantage it offers over the computationally
intensive numerical DMA, which takes approximately 30 seconds per scenario. Scores for this criterion
are normalized relative to this baseline. Development effort encompasses the time and resources
needed for model design, hyperparameter tuning, and training. Model complexity, typically reflected
in the number of parameters and architectural model structure, is therefore indirectly accounted for
within this criterion, as it tends to influence both training effort and computational demands. Since
it represents a one-time investment, it is given a lower weight. Although somewhat subjective, this
criterion is scored manually.

Finally, Interpretability is assigned a weight of 15%. Although less critical than accuracy or speed,
interpretability remains important for model validation and stakeholder confidence. It is evaluated based
on transparency, reflecting the degree to which the influence of input features on predictions can be
understood and explained.

The detailed weights and scoring metrics are presented in Table 4.11. All scores are scaled between
0 and 1, whit a score of 1 representing the best possible performance in that criterion.
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By evaluating each candidate model against these weighted criteria, the MCA provides a structured
and balanced foundation for selecting the final DMA metamodel.

Table 4.11: Objectives, criteria, and associated weights for the MCA to select the final DMA metamodel. All scores are
normalized between 0 and 1, where 1 indicates best performance.

Objective Weight (%) Criterion Description Scoring

Accuracy 55
35 RMSE Relative global RMSE 1− RMSEmodel

RMSEthreshold

20 R2 Global R2 R2
model

Efficiency 30
25 Inference time

tinf

Relative time to make a
prediction for one new sample 1− tinf,model

tinf,DMA

5 Development
effort

Effort taken to prepare,
train, and finalize model Manual score

Interpretability 15 Transparency Feature importance
interpretability Manual score

4.3.6. DMA metamodel assumptions and limitations
The developed DMA metamodel is based on a set of assumptions and simplifications inherent to both
the simulated scenarios used for training and the underlying numerical DMA. These factors result in
a model that is limited and less detailed compared to real-world operations, affecting the accuracy
and reliability of mooring line force predictions. Consequently, the metamodel may underestimate or
overestimate actual mooring line forces.

4.3.6.1. General model limitations
Lack of physical constraints The DMA metamodel does not enforce physical bounds on the pre-
dicted mooring line forces. This allows for the prediction of both negative and unrealistically high moor-
ing line forces exceeding the MBL. Consequently, line breakages and the resulting redistribution of
forces among the remaining lines are not considered. Additionally, winch rendering, which typically
occurs at 60% of the MBL and limits the actual force in a line (Subsection 2.2.2), is not accounted for.

Peak force representation The maximummooring line force is reported as the highest instantaneous
value observed during the simulation. No statistical processing is applied over time.

4.3.6.2. Limitations from the training dataset
The model was trained within a defined input parameter space. Therefore, its predictive reliability is
limited to interpolation within this range. Predictions made for scenarios outside the training boundaries
may be inaccurate or physically implausible.

Vessel and berth specificity The metamodel is trained using exclusively simulation data of the Carta-
gena Express moored at the DDN berth, with fixed bollard and fender positions. Therefore, its predic-
tive accuracy is limited to this vessel-berth configuration. Application to other ships or berths requires
retraining.

Mooring configuration Only two mooring configurations, one with 12 lines and an extended version
with 16 lines, are included in the training dataset. The DMA metamodel is therefore limited to scenar-
ios that exactly match these predefined patterns, as it cannot accurately predict load distributions for
alternative mooring arrangements.

Pretension Mooring lines are modeled as fixed-length elements with constant pretension, assuming
no winch rendering or dynamic line adjustments during tidal or operational changes. Furthermore,
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all mooring lines are initialized with identical pretension values, which oversimplifies real operational
variability caused by line handling, cargo operations, tidal change, or winch-specific behavior.

Viscous damping A uniform viscous damping percentage is applied equally across all three trans-
lational degrees of freedom: surge, sway, and heave. This simplification ignores directional variations
in viscous damping characteristics, which can affect mooring line force predictions.

Mooring line properties All mooring lines are assumed to be identical, in perfect condition, andmade
of synthetic materials limited to nylon or polyester. No distinction is made for line wear, use of tails or
specific material properties, even though such factors affect the behavior of mooring lines.

Passing ships The influence of passing ships has not been included. This may result in an under-
estimation of mooring line forces in busy waterways.

Currents The metamodel assumes no currents.

Tidal variation Water level is held constant throughout each simulation scenario due to DMA limita-
tions. This neglects the effects of tidal cycles, which alter the vertical angles in the mooring lines and
pretension over time.

Wind The DMA model applies a uniform wind field, assuming constant wind speed and direction
at all heights, neglecting the vertical wind gradient typically present in the atmospheric boundary layer.
This oversimplifies wind loading, especially for vessels with high superstructures and container stacks.

Wind shielding by quay structures is approximated via geometric reduction of wind-exposed areas.
However, complex airflow effects, turbulence, and influences from nearby vessels, cranes, buildings,
or breakwaters are not included, potentially underestimating or misrepresenting actual wind loads.

Wind coefficients were assumed fixed across simulations, despite variations in vessel loading and
cargo configurations that affect aerodynamic profiles. Moreover, the coefficients are derived from wind
tunnel tests on a vessel similar, but not identical, to the Cartagena Express, introducing uncertainty in
predicted wind forces and, by extension, mooring line loads.

4.4. Conclusion
This chapter provided answers to SQ3: How can a metamodel for Dynamic Mooring Analysis be de-
veloped using machine learning techniques to predict mooring line forces of large-scale vessels in
port areas? and SQ4: What objectives and criteria are relevant for evaluating and selecting a DMA
metamodel?

A structured methodology was established for developing metamodels of Dynamic Mooring Analysis
(DMA) using machine learning techniques. The approach outlines howmetamodels can be constructed
to approximate the output of numerical DMA simulations, in particular, the mean and maximummooring
line forces.

The general metamodeling workflow was introduced and subsequently applied to a case study involving
a 333-meter container vessel moored at the ECT Delta terminal in the Port of Rotterdam. This included
the design of a simulation dataset, the preparation and structuring of input and output variables, namely
the mean and maximum mooring line force, and the training procedures for two candidate algorithms:
Linear Regression (LR) and Multi-Layer Perceptron (MLP).

A structured model selection approach was proposed, considering accuracy, efficiency, and inter-
pretability. This framework forms the basis for the comparative evaluation of candidate models in the
next chapter, where their performance will be assessed.



5
Results and evaluation of candidate

DMA metamodels

This chapter presents the performance and evaluation of the two developed candidate DMA metamod-
els: LR and MLP, based on linear regression and MLP regression algorithms, respectively. Section 5.1
and Section 5.2 describe the outcomes of the training and testing phases for each model, as well as
analyses of feature importance and learning behavior. Both models were trained on the same training
dataset, consisting of 9,216 samples, and evaluated on a shared test set of 2,304 samples. Finally, Sec-
tion 5.3 compares the two candidate models across multiples objectives, including accuracy, efficiency,
and interpretability, and identifies MLP as the most suitable metamodel for DMA.

5.1. Linear regression
5.1.1. Training LR
The LRmodel was trained on a dataset comprising 9,216 samples. The training process was completed
in 0.002 seconds.

5.1.2. Testing LR
The LRmodel was tested on a test set containing 2,304 samples, with this batch prediction taking 0.001
seconds in total. Its performance is evaluated using various metrics in subsubsection 5.1.2.1, followed
by the predicted outcomes illustrated in subsubsection 5.1.2.2.

5.1.2.1. Predictive performance metrics
The performance of the LR model is evaluated using the performance metrics MSE, RMSE, MAE, and
R2. These metrics are computed separately for each target variable and additionally combined into a
uniform average to provide an overall measure of the model’s predictive performance. The results are
presented in Table 5.1.

Table 5.1: Performance evaluation of the LR model using metrics

Metric Target variable Uniform average
F̄mean Fmax

MSE (kN2) 455 12,374 6,414
RMSE (kN) 21 111 66
MAE (kN) 16 78 47
R2 0.9827 0.6883 0.8355

The LR model fits the mean line force F̄mean very well but shows significantly worse performance on
the maximum line force Fmax, as indicated by the lower R2 and higher errors.

55



5.1. Linear regression 56

This discrepancy is partially explainable: the mean force is an average over time and across all mooring
lines, making it a relatively stable and less sensitive target. In contrast, the maximum force represents
the instantaneous peak force observed on any individual mooring line, which is more susceptible to
transient dynamics and local extremes. As such, Fmax is inherently more variable and harder to predict
using a linear model.

5.1.2.2. Prediction plots

(a) Actual vs Predicted values plot (b) Residual vs Predicted values plot

Figure 5.1: y1: Mean line force F̄mean

According to the Actual vs Predicted values plot in Figure 5.1a, the LR model captures the overall
trend quite well. However, there are slight deviations at the extremes (lower and higher ends), where
predictions tend to under- or overshoot actual values. The model tends to underpredict higher actual
values. The Residual vs Predicted values plot in Figure 5.1b shows a clearly nonrandom pattern in the
residuals. The U-shaped curve implies underestimation (positive residuals) at the extremes (low and
high predicted values) and overestimation (negative residuals) in the middle range. Additionally, the
residuals are not spread around zero. This indicates nonlinearity.

(a) Actual vs Predicted values plot (b) Residual vs Predicted values plot

Figure 5.2: y2: Maximum line force Fmax

The Actual vs Predicted values plot in Figure 5.2a shows an underestimation for higher values of y2,
suggesting that the trained LRmodel is struggling to capture extreme values accurately. In the Residual
vs Predicted values plot in Figure 5.2b a funnel shape is observed, suggesting heteroskedasticity.
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5.1.3. Feature importance of LR
The feature importance of the LR model is analyzed using its coefficients, as well as model-agnostic
methods: permutation importance and SHAP values.

5.1.3.1. Coefficients
The coefficients and intercepts obtained from the LR model are summarized in Table 5.2 and visualized
in Figure 5.3, facilitating comparative analysis of feature influence. Since all features were standardized
prior tomodel training, themagnitudes of the coefficients indicate the relative importance of each feature
in predicting the target variables.

Table 5.2: Coefficients and intercept of the LR model

Feature Coefficients
F̄mean Fmax

x1 Water level -0.001499 0.026998
x2 Number of lines -0.028043 -0.040348
x3 Nylon lines 0.014359 -0.014103
x4 Polyester lines -0.014359 0.014103
x5 MBL 0.120385 0.084778
x6 Pretension 0.979948 0.665266
x7 Wind area 0.015347 0.080227
x8 Viscous damping -0.002422 -0.032195
x9 Wind velocity 0.065932 0.432430
x10 Wind direction sin 0.013136 0.038855
x11 Wind direction cos -0.024672 -0.116377

Intercept 0.000000 0.000000

(a) Target y1: F̄mean (b) Target y2: Fmax

Figure 5.3: Visualization of the fitted LR model coefficients for each feature per target

The most influential feature for both the mean (F̄mean) and maximum (Fmax) mooring line force is pre-
tension, with coefficients of 0.98 and 0.67 respectively. This suggests that pretension has a dominant
positive effect on both outputs.
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Wind velocity and, MBL also show a positive and consistent influence, especially for the maximum line
force, where wind velocity has a relatively high coefficient (0.43). This indicates that stronger winds
and higher line strength correlate with increased mooring line forces.

The positive coefficient of x10 (sine) and the negative coefficient of x11 (cosine) for both targets suggest
that mooring line forces increase as the wind direction shifts from headwind (high cosine, low sine) to
side-on wind (low cosine, high sine). This trend aligns with physical expectations: wind striking the side
of the vessel exposes a larger projected area than headwind, resulting in greater wind force and thus
higher mooring line forces.

The number of lines has a negative coefficient for both outputs, possibly reflecting the load distribution
effect: more lines sharing the total force lead to lower individual line loads.

The material type of the mooring lines, captured by Nylon (x3) and Polyester (x4), shows mirrored
but relatively minor effects, suggesting material choice has limited direct influence when compared to
pretension or environmental factors.

Lastly, viscous damping shows a small negative effect, especially on y2, but consistent with expecta-
tions that damping reduces peak dynamic responses.

5.1.3.2. Permutation importance
Permutation importance was computed for both targets on the test set to evaluate the impact of each
feature on the performance of LR and is presented in Figure 5.4.

Pretension emerges as the most influential feature by a wide margin, with a permutation importance
of 1.41, far exceeding that of any other input. The next most impactful feature is wind velocity (0.19),
followed distantly by MBL (0.023), cosine component of wind direction (0.014), and wind area (0.0085).
These features contribute marginally to the model’s predictive performance.

The remaining input variables, such as water depth, number of lines, mooring material, and viscous
damping, show negligible permutation importance values (all below 0.0015). This implies that their
linear association with the target variables is either weak or redundant in the presence of more dominant
predictors.

Overall, the results reveal that the LR model’s predictive performance is heavily concentrated in a small
subset of features, particularly pretension, highlighting its critical role in mooring line force estimation.

Figure 5.4: Permutation feature importance of the LR model for both target
variables combined

5.1.3.3. SHAP feature importance
For both output targets, SHAP summary plots in Figure 5.5 provide insight into importance and direc-
tional influence of features within the trained LR model. The mean absolute SHAP value is indicated
alongside the feature names in the plot.
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(a) Target y1: F̄mean (b) Target y2: Fmax

Figure 5.5: SHAP summary plots of the LR model

The SHAP plot (Figure 5.5a) indicates that pretension has by far the most dominant influence on F̄mean
with a mean absolute SHAP value of 0.828, followed by MBL (0.104) and wind velocity (0.057), which
both contribute substantially less.

• Higher values of pretension (red points) lead to positive SHAP values, indicating an increase in
the mean force per line.

• MBL also shows a small positive correlation with F̄mean. Higher MBL values tend to slightly in-
crease predicted mean forces.

• Wind velocity contributes modestly; higher wind speeds lead to slightly higher predicted forces,
as expected from increased wind loading.

• The number of lines and wind direction (cosine) have only marginal effects.
• Material type, sine of wind direction, wind area, viscous damping, and water depth have negligible
influence.

This suggests that the pretension is the main driver for mean mooring line force in this model, with MBL
and wind effects acting as secondary contributors.

For the Fmax target (Figure 5.5b), the feature importance is more distributed:

• Pretension and wind velocity are most influential, with mean absolute SHAP values of 0.562
and 0.371, respectively. For both features, high values tend to increase the predicted maximum
mooring line force.

• Wind direction (cosine) is the third most influential feature. It shows that wind parallel to the vessel
(high cosine values) leads to lower predicted forces, while perpendicular wind (low cosine values)
results in higher forces, due to greater wind exposure.

• MBL, wind area, and number of lines have moderate influence, while viscous damping and water
depth have relatively small effects.

• Material type again plays a minor role.

Overall, while F̄mean is primarily governed by pretension, the Fmax is more dynamic, driven by both
pretension and wind speed in LR.

5.1.4. Learning behavior of LR
Figure 5.6 presents the learning curve of the LR model for both target variables. These curves plot
the R2 scores for the training and test sets against the number of training samples, using 5-fold cross-
validation for reliable performance estimation. For easier comparison, Figure G.1 presents plots with
standardized y-axes.
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(a) Target y1: F̄mean (b) Target y2: Fmax

Figure 5.6: Learning curves of the LR model

As shown in Figure 5.6a, for F̄mean the training score starts lower and gradually increases withmore data,
suggesting that the model benefits from additional training samples. The test score remains relatively
high and stable throughout, indicating consistent generalization. The small and slightly narrowing gap
between training and test scores suggests low variance and no overfitting. These trends imply that the
LR model performs reliably for this target, capturing the dominant linear relationships present in the
data.

For Fmax (Figure 5.6b), both training and test R2 scores range roughly between 0.64 and 0.68. The test
score remains stable while the training score is consistently lower, with the gap narrowing as the training
set size grows. The modest R2 values indicate that the LR model struggles to accurately capture the
relationship for this target, likely due to nonlinearities in the data that a linear model cannot represent
effectively. This justifies exploring nonlinear models such as the MLP.

Interestingly, the test R2 scores are slightly higher than the training scores, particularly for Fmax. This
is probably caused by underfitting on smaller training subsets and variance from the cross-validation
folds, where the model may occasionally generalize better on certain test splits by chance.

Both curves show signs of convergence, indicating that increasing the training set size further will likely
not improve model performance. The limited gains suggest that feature engineering or increasing
model complexity would be more effective than simply adding more data.

5.2. MLP Regression
5.2.1. Training MLP
Hyperparameter tuning for theMLPmodel was performed using randomized search with 1000 iterations
and 5-fold cross-validation on the training set of 9,216 samples. Following the tuning phase, the MLP
model was trained on the full training set using the optimal hyperparameters. This overall process
required 1 hour.

The hyperparameter space for the MLPmodel was defined to explore a broad yet computationally feasi-
ble range of model configurations. A randomized search was employed to efficiently sample this space
using 1,000 iterations, combined with 5-fold cross-validation to identify the optimal hyperparameter set.
The results are presented in Table 5.3. Subsequently, the model was retrained using the best-found
configuration on the full training dataset to maximize generalization.
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Table 5.3: The optimal hyperparameter set from this grid was identified through randomized search using 5-fold
cross-validation

Hyperparameter Space Optimal value

hidden_layer_sizes (8,), (10,), (20,), (50,), (20, 10),
(50, 20), (60,40), (100, 50), (100, 20) (50, 20)

activation tanh, relu, logistic tanh
solver sgd, adam sgd
alpha 0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0 0.01
learning_rate constant, adaptive, invscaling adaptive
learning_rate_init 0.001, 0.01, 0.05, 0.1 0.1
nesterovs_momentum True, False True
batch_size 64, 128, 256 64

5.2.2. Testing MLP
The MLP model’s predictions on the 2,304 test samples required 0.008 seconds. The model perfor-
mance is evaluated using various metrics in subsubsection 5.2.2.1 and in subsubsection 5.2.2.2 the
predicted results are visualized.

5.2.2.1. Predictive performance metrics MLP
The performance of the MLPmodel is evaluated using the performance metrics MSE, RMSE, MAE, and
R2. These metrics are computed separately for each target variable and additionally combined into a
uniform average to provide an overall measure of the model’s predictive performance. The results are
presented in Table 5.4.

Table 5.4: Performance evaluation of the MLP model using metrics

Metric Target variable Uniform average
F̄mean Fmax

MSE (kN2) 6 310 158
RMSE (kN) 2 18 10
MAE (kN) 2 9 6
R2 0.9998 0.9922 0.9960

Compared to LR, the MLP shows a significant reduction in error metrics and higher R2, especially on
the maximum force Fmax. This demonstrates the added value of a nonlinear model in capturing the
complex relationships between input parameters and the resulting peak mooring forces.

Still, the MLP performs better at predicting F̄mean than Fmax. This is again most likely because Fmax
represents instantaneous peak forces, which are more variable and harder to predict, whereas F̄mean
is averaged over time and therefore much more stable.
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5.2.2.2. Prediction plots

(a) Actual vs Predicted values plot (b) Residual vs Predicted values plot

Figure 5.7: y1: Mean mooring line force F̄mean

The Actual vs Predicted values plot for F̄mean in Figure 5.7a shows that the points align very closely with
the diagonal line, indicating a strong fit. The Residual vs Predicted values plot in Figure 5.7b suggests
a homoscedastic, but slightly biased model, due to a curved pattern in the deviation of the residual
mean from zero across the predicted value range.

(a) Actual vs Predicted values plot (b) Residual vs Predicted values plot

Figure 5.8: y2: Maximum mooring line force Fmax

The Actual vs Predicted values plot for Fmax in Figure 5.8a presents good alignment of the predictions
with the actual values. The Residual vs Predicted values plot in Figure 5.8b suggests an unbiased
model as there is no average residual trend, however the cone-shaped spread of residuals reveals
heteroskedasticity.

5.2.3. Feature importance of MLP
Due to the complex nonlinear nature of MLP, direct interpretation of feature importance from weights is
not feasible. Permutation importance and SHAP values were used to interpret the model (Figure 5.9
and Figure 5.10).
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5.2.3.1. Permutation importance
The permutation importance results for the MLP model (Figure 5.9) show a similar pattern to the LR
model, with pretension being the most important feature by a large margin (1.66).

However, compared to the LR model, the MLP assigns more importance to several other features. No-
tably, wind velocity has amuch higher importance (0.40), followed by wind direction (cosine component)
(0.11) and MBL (0.046). Features like number of lines (0.034) and wind area (0.032) also contribute
more to the MLP predictions than they did for the LR model.

The remaining features, including water depth, mooring material, viscous damping, and the sine com-
ponent of wind direction, have relatively low importance values (all below 0.01), indicating a minor
influence on the model’s output.

Overall, the MLP model captures a broader range of feature effects compared to the LR, reflecting its
ability to model more complex, nonlinear relationships. Nevertheless, pretension still dominates.

Figure 5.9: Permutation feature importance of the MLP model for both
target variables combined

5.2.3.2. SHAP feature importance
For the MLP model, SHAP summary plots in Figure 5.10 reveal the nonlinear feature importance and
their effect on the predicted mooring line forces. The mean absolute SHAP value per feature is also
denoted in the plot.

(a) Target y1: F̄mean (b) Target y2: Fmax

Figure 5.10: SHAP summary plots of the MLP model



5.2. MLP Regression 64

The SHAP summary plot in Figure 5.10a shows that pretension is the most influential features for
predicting the mean force per line F̄mean, with a mean absolute SHAP values of respectively 0.820.

• Pretension has a strong positive influence when high (red points with positive SHAP values),
significantly increasing the predicted mean force. In contrast, low pretension reduces the mean
line force.

• MBL also shows a clear pattern: higher MBL tends to slightly increase the predicted force.
• Wind velocity has a moderate positive impact, with higher wind velocities generally increasing the
mean force.

• Number of lines and wind direction (cosine) show limited influence on the predicted mean force,
but their effects align with expectations: more lines reduce the force per line due to load distribu-
tion, and side winds (low cosine values) slightly increase line forces due to greater exposed wind
area.

• Wind area, material type, and wind direction (sine) have minimal influence on the predicted mean
force. A larger wind area and high sine values (indicating side wind) lead to a slight increase in
force, as expected due to higher wind loading.

• Water depth and viscous damping have near-zero SHAP values, indicating they are largely irrel-
evant for predicting the mean mooring line force.

According to Figure 5.10b, the MLP model emphasizes pretension (0.583) and wind velocity (0.409) to
predict the maximum line force Fmax with mean absolute SHAP values of 0.583 and 0.409 respectively,
followed by the cosine of wind direction (0.169):

• Pretension remains the most dominant feature. High pretension values strongly increase the
predicted maximum force.

• Wind velocity is the second most important factor. High wind speeds increase the output, while
low speeds reduce it.

• Wind direction cosine exhibits a directional effect: lower values (parallel to the vessel) reduce the
predicted force, while higher ones (perpendicular) increase it.

• Wind area shows a positive contribution to the predicted force, as expected.
• MBL, number of lines, and wind direction sine have smaller effects. Notably, the influence of the
wind direction sine appears counterintuitive: higher sine values (side winds) tend to decrease the
predicted force, while lower values (headwinds) tend to increase it.

• Water depth, viscous damping, and line material again play a minor role for this target.

In summary, the SHAP analysis for the MLP model confirms that pretension is the dominant feature for
both mean and maximummooring line forces. High pretension values generally lead to increased force
predictions. Wind velocity and the cosine of wind direction also play a significant role in predicting the
maximum force, while other features such as linematerial, viscous damping, and water depth contribute
minimally.

5.2.4. Learning behavior of MLP
Figure 5.11 shows the learning curves of the MLP model for both targets. The curves display the
R2 score on the training and test sets as a function of the training set size. For easier comparison,
Figure G.1 presents plots with standardized y-axes.

For F̄mean (Figure 5.11a) both training and test scores increase rapidly with more training samples and
converge to high values above 0.9995. The small and narrow gap between the training and test curves
indicates strong generalization and minimal overfitting. The model benefits from additional data initially,
but shows convergence beyond approximately 5000 samples.

In the learning curve of Fmax in Figure 5.11b, the training score remains consistently high, while the
test score starts lower and gradually improves, plateauing just below 0.993. A small but persistent
gap between the training and test performance suggests slight overfitting. However, the overall test
accuracy is high and stabilizes after around 6000 samples.
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(a) Target y1: F̄mean (b) Target y2: Fmax

Figure 5.11: Learning curves of the MLP model

In summary, the MLP model effectively captures the underlying data relationships for both targets.
For the mean mooring line force, the nearly overlapping curves and high R2 scores indicate excellent
generalization. For the maximum mooring line force, the slightly larger train-test gap points to minor
overfitting, though overall performance remains strong. Further tuning could reduce this gap, but the
model shows convergence beyond 6000 samples, suggesting it has already learned most relevant
patterns.

5.3. Evaluation of the candidate DMA metamodels
To select the most suitable DMA metamodel among the developed candidates, a comprehensive eval-
uation was conducted based on three key objectives: accuracy, efficiency, and interpretability. This
evaluation combines a qualitative assessment with a supporting MCA.

While the MCA provides a structured, quantitative framework for comparison, it is important to empha-
size that it serves as a supporting tool rather than a strict decision-making mechanism. Due to the
inherent subjectivity in assigning weights to the various objectives and criteria, the qualitative analysis
plays a central role in interpreting the results and justifying the final selection.

5.3.1. Accuracy
Model accuracy is the most critical objective in the selection of the DMA metamodel. It was assessed
using the global performance metrics RMSE and R2, as described in the predictive performance evalu-
ation. Both models demonstrated strong performance for the mean mooring line force F̄mean. However,
Port of Rotterdam expressed particular interest in themaximummooring line force Fmax, as it represents
the critical peak loads that impact bollard safety.

In this regard, theMLPmodel clearly outperformed the LRmodel, achieving a substantially lower RMSE
and an almost perfect R2 score for Fmax. Based on the overall predictive performance, and especially
its ability to accurately capture the maximum mooring line forces, the MLP is preferred model under
the accuracy objective.

5.3.2. Efficiency
Efficiency is the second most important objective, particularly relevant for applications where large num-
bers of scenarios must be evaluated efficiently. Both models demonstrated extremely fast inference
times, in the order of microseconds (0.000000-0.000013 seconds). This marks a significant improve-
ment over to the numerical DMA simulations, which require approximately 30 seconds per run.

However, the development effort differed considerably between the models. The LR model is simple
to implement and train, with no hyperparameters to tune, resulting in minimal development effort. By
contrast, the MLP model required a much more involved process, including the design of a meaning-
ful hyperparameter space and a randomized search procedure combined with 5-fold cross-validation.
Additionally, training the MLP took more time due to its higher model complexity.
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While both models fully satisfy the inference speed requirement, the LR model is preferred in terms of
overall efficiency because of its significantly lower development effort.

5.3.3. Interpretability
Interpretability supports stakeholders trust and facilitates model validation by ensuring that predictions
can be understood and justified. The LR model is inherently interpretable, owing to its simple linear
structure. Its coefficients directly indicate the influence of each input feature, enabling straightforward
transparency and explanation of model behavior.

In contrast, MLP has a complex architecture with multiple hidden layers and nonlinear activation func-
tions, which obscure the internal decision logic. Understanding feature contributions requires post-hoc
interpretability tools such as permutation importance and SHAP.

Therefore, under the interpretability criterion, LR is preferred due to its inherent transparency and sim-
plicity.

5.3.4. Results of the multi-criteria analysis
The MCA was conducted to systematically compare the two candidate models based on the objectives
and criteria defined in Table 4.11. The resulting scores, based on normalized values from the previous
subsections, are presented in Table 5.5.

The analysis shows that the MLP model is ranked first overall, with a total weighted score of 83.00,
compared to 73.70 for the LR model.

Table 5.5: Conducted MCA for the selection of the final DMA metamodel

Objective Criteria Weights
(0-100%)

LR MLP
Score
(0-1)

Weighted
score

Score
(0-1)

Weighted
score

Accuracy
RMSE 35 0.34 11.90 0.90 31.50

R2 20 0.84 16.80 1.00 20.00

Efficiency
Inference time 25 1.00 25.00 1.00 25.00
Development
effort 5 1.00 5.00 0.10 0.50

Interpretability Transparency 15 1.00 15.00 0.50 7.50

Total 100 - 73.70 - 84.50

Preference rank 2 1

It is important to note that changes in the assigned weights may affect the outcome of the acMCA,
particularly in cases where candidate models perform similarly. To assess the robustness of the final
ranking to changes in objective weights, a sensitivity analysis was conducted. This analysis confirmed
that the MLP model consistently outperforms the LR model when accuracy is weighted at least as
heavily as the combination of efficiency and interpretability, with efficiency prioritized over interpretability.
The full results of this sensitivity analysis are provided in Appendix D.

5.3.5. DMA metamodel selection
Based on the combined evaluation of predictive accuracy, efficiency, and interpretability, the MLPmodel
is selected as the final DMA metamodel. Accuracy is considered the most important criterion, and the
MLP consistently outperformed the LR model in this regard. This is especially evident in predicting
maximum mooring line forces Fmax, which are a key safety concern for the Port of Rotterdam.
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While the MLP entails higher development effort and offers less interpretability compared to the LR
model, its substantially higher predictive performance justifies its selection. The model is therefore
considered the most suitable choice for replacing numerical DMA.

5.4. Conclusion
This chapter presented the results of training, testing, and evaluating the two candidate metamodels,
Linear Regression (LR) and Multi-Layer Perceptron (MLP), across multiple objectives, including accu-
racy, speed, and interpretability.

The LR model demonstrated reliable performance for mean mooring line force but showed limited
accuracy for the maximum mooring line force, indicating its inability to capture nonlinear relationships
in the data. In contrast, the MLP model achieved substantially higher predictive accuracy for both
targets, with high R2 scores and well-behaved learning curves.

Both models delivered excellent prediction speeds, enabling efficient batch predictions. However, the
MLP required more development time and relies on model-agnostic methods such as permutation
importance and SHAP values to interpret its behavior, while the LR model provides straightforward
feature importance through its coefficients.

Considering that accuracy is the most critical objective, the MLP model is identified as the best meta-
model for Dynamic Mooring Analysis in predicting mooring line forces, thereby answering SQ5: Which
proposed machine learning technique provides the best metamodel for Dynamic Mooring Analysis?



6
Estimation of unknown input

parameters

This chapter demonstrates howmeasurement data can be leveraged to estimate uncertain input param-
eters for the DMA metamodel, thereby addressing SQ6: How can the metamodel be used to estimate
unknown input parameters?

To enhance the predictive accuracy of the DMA metamodel, a measurement-based estimation proce-
dure is proposed for two uncertain inputs: pretension and viscous damping. These parameters cannot
be directly measured, yet especially pretension has a pronounced impact on the predicted mooring line
forces. Understanding the effective values of these parameters under operational conditions is crucial
to improve the model’s practical relevance. The approach presented here aims to estimate plausible
values for these unknowns, enabling more realistic predictions in future applications.

6.1. Measurement data
A full-scale, in-situ measurement campaign was conducted on January 21–22, 2024, at the DDN berth
in the Port of Rotterdam. The vessel Cartagena Express, identical to the one used in the DMA simula-
tions, was moored with several mooring lines attached to Smart Bollards, allowing direct measurement
of bollard loads and, consequently, mooring line forces.

In addition to line forces, relevant environmental and vessel-specific parameters were recorded, includ-
ing wind speed and direction, water level, mooring line configuration, line type, MBL, and wind area.
All data were aggregated into a representative sample over a selected 3-hour time window and are
summarized in Table E.1. A detailed description of the data preprocessing can be found in Appendix E.

While most DMA input parameters could be derived from the measurement data, pretension (x6) and
viscous damping (x8) remained unknown. These were estimated using the procedure outlined in the
next section.

6.2. Parameter estimation methodology
To infer pretension and viscous damping, a grid-based calibration approach was applied. A total of 451
input combinations were generated by systematically varying pretension and viscous damping over
predefined ranges, while keeping all other parameters fixed at their measured values.

• Pretension was varied from 0% to 40%MBL in 1% increments, resulting in 41 distinct values. This
range covers typical literature values (5–10%MBL), while also accounting for potential deviations
due to manually operated mooring systems.

• Viscous damping was varied from 0% to 5% in steps of 0.5% (11 values), based on practice of
Haskoning.

Each of the 451 generated input sets was evaluated using the DMA metamodel to predict the mean
and maximum mooring line forces (F̄mean and Fmax). The predicted values were compared with their
measured counterparts, and absolute prediction errors were calculated.

68
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The five input sets with the lowest absolute error were identified separately for each target. These sets
are interpreted as the most plausible representations of the true, unmeasured input parameters.

6.3. Overview of parameter grid and measured values
Table 6.1 presents a complete overview of the measured inputs, unknown parameters, and measured
output targets. It distinguishes between the values fixed from measurement data and the predefined
ranges used for pretension and viscous damping in the sample generation.

Table 6.1: Overview of measured inputs and outputs and predefined parameter envelopes used for estimating pretension and
viscous damping

Parameter Value
DMA metamodel
variable type Data source

Input Output Measured Predefined
envelope

Water depth 17.40 m x1 3
Number of lines 16 x2 3
Mooring line material Polyester x3, x4 3
MBL 163 ton x5 3
Pretension [0, 40]% MBL x6 3
Wind area 12% x7 3
Viscous damping [0, 5]% x8 3
Wind velocity 16.49 m/s x9 3
Wind direction 194.64◦ x10, x11 3
Mean mooring line force F̄mean 281.032 kN y1 3
Maximum mooring line force Fmax 480.709 kN y2 3

Total number of samples 451

6.4. Parameter estimation results
The predicted values from all 451 combinations ranged between:

• F̄mean: 55.942 – 572.161 kN
• Fmax: 252.175 – 733.680 kN

The measured values (281.032 kN and 480.709 kN, respectively) fall within these bounds, confirming
coverage of plausible parameter combinations.

6.4.1. Mean mooring line force
Table 6.2 lists the top five parameter combinations with the smallest absolute error in F̄mean. All five
share a pretension level of 19% MBL, while viscous damping gradually increases from 0.0% to 2.0%.
The optimal set, 19% MBL pretension and 0.0% viscous damping, achieved an error of only 0.358 kN
(0.13%). The results indicate that the actual pretension during the selected time window was likely
close to 19% MBL, with a low viscous damping value. These values are realistic.

However, the same sets of parameters underpredict the maximum force (Fmax) by approximately 20%,
highlighting that a single combination of pretension and damping may not accurately reproduce both
targets simultaneously.
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Table 6.2: Top five parameter combinations for pretension and viscous damping identified by minimizing the prediction error in
mean mooring line force (F̄mean), along with corresponding prediction errors

Parameter Variable
type

Values

Top 1 Top 2 Top 3 Top 4 Top 5

Pretension (% MBL) x6 19 19 19 19 19
Viscous damping (%) x8 0.0 0.5 1.0 1.5 2.0

Measured F̄mean (kN) yM1 281.032
Predicted F̄mean (kN) ŷ1 281.390 282.160 282.810 283.342 283.759
Absolute error (kN) 0.358 1.127 1.777 2.309 2.725
Absolute percentage error (%) 0.13 0.40 0.63 0.82 0.97

Measured Fmax (kN) yM2 480.709
Predicted Fmax (kN) ŷ2 381.270 381.969 382.645 383.297 383.929
Absolute error (kN) 99.439 98.740 98.064 97.412 96.780
Absolute percentage error (%) 20.69 20.54 20.40 20.26 20.13

6.4.2. Maximum mooring line force
Table 6.3 presents the top five parameter sets to minimize the error in Fmax. Unlike the mean force
case, these combinations show substantial variation: pretension varies widely from 0% to 24% MBL,
and viscous damping ranges from 0.5% and 5.0%.

The best result, 0%MBL pretension with 2.0% viscous damping, achieved an absolute error of 1.476 kN
(0.31%). However, no clear pattern emerges among the top five results. The first two scenarios suggest
minimal pretension, while the remaining three assume a much higher level of 24% MBL. Damping
values also fluctuate inconsistently across the top combinations, with no obvious trend.

Although pretension is the most influential parameter in the metamodel, the wide spread among the
top-performing results suggests that, in this case, the model struggles to resolve its true value. This
lack of convergence contrasts with the results for F̄mean, where all top scenarios consistently indicated
19% MBL pretension.

Moreover, applying these top five parameter sets to the prediction of F̄mean leads to systematic errors:
low pretension combinations significantly underestimate the mean force, while the high pretension
scenarios overestimate it. This further confirms that a single set of parameters may not simultaneously
fit both targets accurately.
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Table 6.3: Top five parameter combinations for pretension and viscous damping identified by minimizing the prediction error in
maximum mooring line force (Fmax), along with corresponding prediction errors

Parameter Variable
type

Values

Top 1 Top 2 Top 3 Top 4 Top 5

Pretension (% MBL) x6 0 1 24 24 24
Viscous damping (%) x8 2.0 0.5 5.0 4.5 4.0

Measured F̄mean (kN) yM1 281.032
Predicted F̄mean (kN) ŷ1 65.366 77.530 358.624 358.524 358.354
Absolute error (kN) 215.667 203.502 77.591 77.492 77.322
Absolute percentage error (%) 76.74 72.41 27.61 27.57 27.51

Measured Fmax (kN) yM2 480.709
Predicted Fmax (kN) ŷ2 479.233 476.349 475.791 475.490 475.206
Absolute error (kN) 1.476 4.360 4.918 5.219 5.504
Absolute percentage error (%) 0.31 0.91 1.02 1.09 1.14

6.5. Assumptions and limitations
The proposed estimation method involves several simplifying assumptions that may introduce error:

• A dynamic system (with time-varying parameters) was reduced to a single representative input
snapshot for simulation, potentially overlooking transient behavior during the measurement win-
dow.

• The physical representation was simplified by assuming uniform pretension across all mooring
lines and constant viscous damping for all motion directions. In reality, both parameters can vary
considerably.

• Wind measurements were not taken directly at the berth. Instead, wind data from a nearby mea-
surement station were used and translated to the berth location using conversion factors depen-
dent on velocity and direction.

• Since not all mooring lines are monitored, the mooring line force targets are derived from limited
measurement data. Consequently, calculated percentages from the DMA output were used to
estimate these targets, introducing considerable uncertainty.

• Effects from current, changing water levels, or vessel loading conditions were not captured.

Due to these assumptions, the estimated parameters for pretension and viscous damping should there-
fore be viewed as effective parameters, those that best approximate real conditions under the con-
straints of the model.

6.6. Conclusion
This chapter demonstrated howmeasurement data can be used to estimate uncertain input parameters
in the DMA metamodel. This directly addresses research question SQ6: How to utilize the metamodel
for estimating unknown input parameters?

By systematically exploring a predefined parameter space and comparing predicted mooring line forces
with measurements, effective values for pretension and viscous damping were identified. Key findings
include:

• For F̄mean, all top results suggest pretension near 19% MBL and minimal viscous damping.
• For Fmax, the results are less consistent, indicating higher uncertainty. The best ranked set fea-
tured no pretension and viscous damping value of 2%.
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While each target could be individually approximated with high accuracy, no single parameter set min-
imized the error for both force metrics simultaneously. Parameter sets optimized for the mean force
significantly underestimated the maximum force, and vice versa. This trade-off highlights a fundamen-
tal limitation of optimizing input parameters for a single target in isolation.

A potential improvement could involve identifying parameter sets that offer a good compromise be-
tween prediction accuracy for both targets. This multi-objective optimization approach is therefore
recommended for further research.

The analysis in this study was based on a single measurement case. While it provided useful in-
sights, additional measurements are essential to assess the robustness and generalizability of the
proposed estimation approach. More data would help determine whether the observed trends are
scenario-specific or reflect more universal conditions.

Despite the limitations, the proposed estimation method offers a practical and data-driven strategy for
integrating measurement data into the DMA metamodeling process. This contributes to improving its
reliability for operational decision-making and forecasting.

In conclusion, parameter estimation based on measurement data is a promising technique to improve
DMA metamodel predictions when input parameters are uncertain. However, extending this approach
to include multiple measurement campaigns is necessary for broader applicability and higher confi-
dence.



7
Conclusions and recommendations

This thesis presents a novel, data-driven approach for predicting mooring line forces of large-scale
vessels moored in port environments using machine learning techniques. The work is among the
first to develop and evaluate metamodels based on 11,520 systematically generated Dynamic Mooring
Analysis (DMA) simulations, offering a fast and accurate alternative to conventional numerical modeling.
The resulting metamodel is not only able of replicating DMA outputs with high accuracy but also opens
new opportunities for practical, probabilistic safety assessments.

This chapter answers the main research question in Section 7.1, summarizes the conclusions of the
sub-questions in Section 7.2, and proposes several key recommendations to guide future work in this
field in Section 7.4. Furthermore, Section 7.5 provides recommendations to the Port of Rotterdam
regarding the development of an ML model for mooring line prediction, based solely on measurement
data acquired within the port.

7.1. Main conclusion
The main research question of this thesis was:

How can mooring line forces of large-scale vessels moored within port areas be predicted
using machine learning techniques?

To answer this, a metamodeling framework was developed, involving the generation of 11,520 DMA
scenarios in a case study at the Port of Rotterdam, based on a 333-meter container vessel moored
at the DDN berth. Two machine learning models, Linear Regression (LR) and Multi-Layer Perceptron
(MLP) were trained on this dataset to predict mean and maximum mooring line forces. The models
were assessed across three objectives: accuracy, efficiency measured in terms of prediction time and
development effort, and interpretability.

The MLP model was selected as the final DMA metamodel, mainly due to its high accuracy (RMSE =
10 kN, R2 = 0.9960) compared to the LR model (RMSE = 66 kN, R2 = 0.8355). While the MLP required
more development effort and is less interpretable than LR, it still offered sufficient transparency through
feature importance analyses. Both models dramatically increased prediction speed compared to the
numerical DMA, which requires approximately 30 seconds per simulation, achieving inference times
on the order of microseconds.

Feature importance analysis revealed that pretension was the dominant factor for predicting mean
mooring line force, while pretension and wind velocity were most influential for the maximum force.

7.2. Sub conclusions
To support the main research question, the preceding chapters addressed the sub-questions as defined
in Section 1.3. This section summarizes the key findings from each.

7.2.1. Key aspects of mooring
SQ1: What are the key aspects characterizing the mooring of large-scale vessels in port areas?
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Three key aspects have been identified: environmental conditions, the mooring system, and ship char-
acteristics. Environmental conditions such as wind, current, waves, tide, and passing vessels apply
external forces on the vessel. The mooring system, which includes mooring lines, winches, fenders,
berth structures, mooring points, and alternative mooring techniques, is responsible for restraining ves-
sel motions. Ship characteristics, including dimensions, load state, and force coefficients for wind and
current, determine the impact of external forces and define the capacity of the mooring equipment.

These key aspects collectively impact the response of the moored vessel, including the mooring forces
on lines and fenders, as well as the vessel’s motions.

7.2.2. Dynamic Mooring Analysis
SQ2: What are the fundamental principles and key considerations of Dynamic Mooring Analysis for
predicting mooring line forces of large-scale vessels in port areas?

Dynamic Mooring Analysis (DMA) is a numerical model that simulated the dynamic response of moored
vessels under time-varying loads. The aNySIM framework implements this by solving the equation of
motion in six degrees of freedom in the time domain, considering nonlinearities. It requires detail input
on environmental conditions, vessel properties, and mooring system configurations. Key assumptions
include linear wave theory, homogeneous environmental fields, and idealized mooring components,
which introduce limitations.

7.2.3. Developing a DMA metamodel
SQ3: How can a metamodel for Dynamic Mooring Analysis be developed using machine learning
techniques to predict mooring line forces of large-scale vessels in port areas?

A DMA metamodel can be built by training supervised machine learning algorithms on a systemati-
cally generated dataset of DMA simulations. The process involves defining relevant input parameters,
generating synthetic data using the aNySIM software, and preparing the dataset through encoding, ag-
gregation of target variables, and scaling. In this study, Linear Regression and Multi-Layer Perceptron
(MLP) were trained as candidate metamodels. The MLP model requires hyperparameter tuning, which
was performed using 5-fold cross-validation.

7.2.4. Evaluation criteria for metamodel selection
SQ4: What objectives and criteria are relevant for evaluating and selecting a DMA metamodel?

Metamodels should primarily meet the requirements of accuracy and speed. The selection of the best
DMA metamodel in this work was based on three objectives: predictive accuracy, efficiency, and inter-
pretability. Accuracy was assessed using metrics RMSE and R2. Efficiency referred to both the pre-
diction time and the development effort required to train and tune the model. Interpretability concerned
the extent to which model behavior can be understood, either inherently or through model-agnostic
tools. While the relative importance of these criteria may vary depending on the application, this study
prioritized accuracy, followed by efficiency and then interpretability. A multi-criteria decision framework
was used to systematically evaluate and compare the candidate models based on these objectives.

7.2.5. Best-performing model
SQ5: Which proposed machine learning technique provides the best metamodel for Dynamic Mooring
Analysis?

The MLP model was identified as the best-performing DMAmetamodel mainly due to its high predictive
accuracy. Inference time was on the order of microseconds, comparable to LR and significantly faster
than original DMA simulations, which require approximately 30 seconds per scenario. However, more
development effort was required because of hyperparameter tuning. While the MLP model offered
less transparency than the LR model, its interpretability was considered sufficient through the use of
model-agnostic tools.

7.2.6. Estimating unknown input parameter
SQ6: How to utilize the metamodel for estimating unknown input parameters?
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The proposed method systematically explored a parameter grid for the unknown inputs and compared
predicted mooring line forces with field measurements in order to identify plausible parameter values.
For a measurement case with unknown pretension and viscous damping, the approach successfully
found values using the mean mooring line force. However, estimations based on the maximum force
were less consistent, and did not correspond to the values found using the mean force. This highlighted
the need for multi-objective optimization. Although the analysis was based on a single measurement
campaign, the method offers a practical, data-driven approach to refine metamodel predictions. Apply-
ing this method to multiple measurement cases is necessary to assess its effectiveness and generaliz-
ability.

7.3. Contribution
This research contributes to filling a gap in the literature by introducing a metamodel specifically de-
signed to predict mooring line forces for large-scale vessels in port environments. The metamodel
provides valuable insight into the behavior of the numerical DMA and offers a faster, more accessible
alternative to full numerical simulations, while maintaining a high level of predictive accuracy.

This increased computational efficiency allows for rapid scenario assessments and enhances usability
in operational settings where some input parameters may be uncertain or unavailable. In such cases,
the metamodel can be applied inversely, using known mooring line forces and input parameters to
estimate and update the remaining unknown values. This improves the reliability and practicality of
future predictions.

Furthermore, a key contribution of this work is the integration of the DMAmetamodel into a probabilistic
framework. By sampling from distributions of relevant input parameters, the metamodel can generate a
distribution of mooring line force predictions. This enables the estimation of exceedance probabilities for
critical infrastructure thresholds, such as bollard capacity, supporting more reliable risk assessment and
data-informed decision-making for port design and maintenance. An illustrative application is provided
in Appendix F.

7.4. Recommendations for future research
Due to the defined scope of this study and limitations of the developed DMA metamodel described in
Subsection 4.3.6, several recommendations for future work are outlined in this section.

7.4.1. Extend DMA metamodel
The current DMA metamodel is trained on a dataset derived from a limited set of simulated scenarios.
As such, its predictive capabilities are constrained by the specific scenario design space, including
vessel type, mooring layout, berth configuration, and environmental conditions, used during dataset
generation.

To improve the generalizability and applicability of the metamodel across a wider range of operational
conditions, it is recommended to extend the input parameter space. This involves including additional
parameters as well as broader value ranges.

Implementing such an extension requires adapting the workflow for generating XMF input files. Once
the expanded set of DMA simulations is completed, the same data processing and modeling steps
outlined in Chapter 4 can be applied to retrain the model.

To extend the applicability of the DMA metamodel beyond the current case study, the following direc-
tions are proposed:

• Alternative mooring layouts: Simulate alternative mooring configurations (e.g., different line pat-
terns) and include layout parameters as input features in the model.

• Multiple berths: Integrate berth-specific characteristics such as quay geometry, bollard and fender
locations into the simulation scenarios and include corresponding input parameters in the dataset.

• Different vessel classes: Incorporate vessel of various sizes in the scenarios and include vessel-
specific features such as length, beam, displacement.



7.5. Recommendations for measurement-based model 76

7.4.2. Alternative calculation of maximum mooring line force
The maximum mooring line force reported in the simulations represents an incidental peak value ob-
served during the simulation period. While this approach identifies instantaneous extremes, it does not
account for the statistical distribution of tensions over time. An alternative is to estimate the maximum
force using statistical measures, by combining the mean force with a multiple of the standard deviation
(µ + kσ). This reduces sensitivity to single outliers and could provide a more robust estimate of the
probable maximum loads.

7.4.3. Explore more algorithms
This research investigated the performance of two specific machine learning algorithms as candidates
for a DMA metamodel. While these algorithms yielded promising results, other models may offer im-
proved performance. Future research is encouraged to explore a broader spectrum of machine learning
algorithms to determine whether higher accuracy or computational efficiency can be achieved.

In addition, the hyperparameter search space for the MLP model was deliberately limited due to com-
putational constraints. Expanding this parameter grid in future studies may lead to the identification of
more optimal configurations, potentially resulting in increased performance.

7.4.4. Reduce subjectivity in metamodel selection
The evaluation of metamodels using MCA is known to be highly sensitive to the assignment of weights,
which introduces subjectivity into the decision-making process. Consequently, MCA is employed as a
complementary tool rather than serving as the sole basis for selecting the optimal metamodel.

For future research, it is recommended to explore more rational, preference-based decision-making
frameworks. One such approach is the use of decision-support tools such as Tetra (Scientific metrics,
2022), which aims to reduce subjectivity by implementing a mathematical framework for systematically
combining and interpreting preferences.

7.5. Recommendations for measurement-based model
A DMA metamodel was developed that offers a reliable and significantly faster alternative to the nu-
merical DMA, while maintaining high predictive accuracy. However, DMA is based on simplified repre-
sentations of reality, involving assumptions. These simplifications introduce uncertainties that limit the
reliability of both the numerical DMA and its metamodel in dynamic operational settings.

To overcome these limitations, it is recommended that the Port of Rotterdam develops a machine learn-
ing model trained entirely on field measurements. Such a measurement-based model would capture
operational variability and human behavior more realistically, and can reduce the reliance on assump-
tions inherent to DMA. Prior research (subsubsection 1.1.3.2) has already demonstrated the potential
of data-driven models for moored vessel response prediction.

Therefore, this section addresses SQ7: What specific field data should be collected by Port of Rotter-
dam to enhance applicability of machine learning models for mooring line force prediction, and what
recommendations can be made for developing such models?

7.5.1. Measurement parameters
To build a reliable and accurate machine learning model for predicting mooring line forces, the variables
listed in Table 7.1 should be collected. The model should treat mooring line forces (from smart bollards
or load cells) as target variables, and the remaining parameters as features.

Many of the recommended parameters are already measured or recorded in the Port of Rotterdam.
For those not yet automatically available, manual collection can offer an interim solution. The dataset
should aim to reflect realistic operational conditions, including environmental factors, ship-specific char-
acteristics, mooring configuration, and human-influenced decisions.
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Table 7.1: Recommended measurements and sensors for an operational mooring force prediction model based on field data

Category Parameter Sensor type, Source

Mooring forces
Mooring line loads Load cells
Bollard loads Smart Bollards

Environmental
conditions

Wind Wind speed, direction Ultrasonic or cup anemometers with wind vanes
Waves Wave height, period, direction Wave radar, ADCP, buoys
Tide Water level, flow direction Tide gauges, pressure sensors, ADCP
Current Current speed, direction ADCP, electromagnetic or acoustic current meters
Passing vessel characteristics Length, beam, draught, UKC, speed, distance AIS, Port radar, LIDAR, Cameras

Vessel
Ship characteristics

Length, beam, draught, DWT, vessel type AIS data
loading condition, windage area Ship manifest, camera-based estimation

Mooring line Material, MBL, diameter Manual input via captain
Human behavior Shipping company, vessel name AIS data

Mooring
Mooring line configuration KRVE
Ship heading KRVE, AIS data

Berth
Fender Position, layout Port database, manual input
Bollard Position, capacity Port design drawings
Quay Orientation Satellite photo

7.5.2. Considerations for data collection
7.5.2.1. Pretension
Pretension is one of the most influential predictors of mooring line forces. It fluctuates throughout
the berth visit due to tidal changes, vessel loading, and crew behavior. While current smart bollard
data shows that lines are not always adjusted appropriately, indirect indicators, such as tide level and
shipping company practices, can help infer pretension dynamics.

7.5.2.2. Mooring line properties
Line material and MBL affect mooring line forces. These mooring line properties are often unknown.
Notably, mooring line types may vary even within a single vessel.

Communication with agents or captains should be encouraged to standardize and log this data. The
shoremen of KRVE already records subjective assessments of the weight of the lines, categorizing
them as lightweight, moderate, or heavy. This data can be used as a temporary substitute until more
precise data becomes routinely available.

7.5.2.3. Mooring line pattern
KRVE currently documents the number of mooring lines and their type (spring and breast). While this
helps, the exact mooring layout is often only captured through quickly taken photos. Future automation
through camera-based detection of mooring patterns would enhance accuracy, but for now, structured
manual input is sufficient.

7.5.2.4. Mitigating measures
Devices such as ShoreTension units are often used for the mooring of large-scale vessels as a precau-
tionary measure, because they reduce the line forces. Their presence and approximate position should
therefore be documented. The units are visible in mooring layout photos, and the number deployed is
logged by KRVE.

In addition, tugboats may be temporarily deployed during periods of strong off-quay winds to help
maintain the vessel’s position by applying lateral force toward the quay. Recording the occurrence and
duration of such tug assistance is recommended, as these actions also lower the forces in the mooring
lines.

7.5.2.5. Vessel identification
Using AIS data and port booking information provided by the Rotterdam Port Authority, vessels moored
at the DDN berth can be accurately identified. This allows the Smart Bollard load measurements to be



7.5. Recommendations for measurement-based model 78

linked to the correct vessel, along with its relevant characteristics.

7.5.2.6. Passing vessels
Passing vessels induce loads on moored vessels. These can be detected using AIS data, which in-
cludes vessel speed, length, beam, and draught. AIS also provides vessel position, allowing for the
calculation of the relative distance between the passing and moored vessels. These parameters should
be included as time-varying input features to the model.

7.5.2.7. Mooring time
Mooring operations typically take up to an hour, during which bollard load measurements do not reflect
the fully secured condition of the vessel. For this reason, data collected during this period should be
excluded. Measurement should begin only after mooring is fully completed and stop before unmooring
operations start.

7.5.2.8. Environmental delay
Wind gusts and wave forces have delayed effects on ship response. Therefore, it is advisable not to
rely on measurements from a single moment in time, but rather to use a short time window to capture
the full impact of environmental conditions on mooring forces.

In addition, when environmental sensors are not located directly at the berth, a time shift, either a lag
or a lead, could be applied to better align environmental data with mooring force response.

7.5.2.9. Preprocessing
All time series data must be synchronized and combined into a single dataset of timestamped feature-
target pairs. Careful preprocessing is critical for model performance and interpretability.

7.5.2.10. Mooring line force
A key challenge in using smart bollards to measure mooring line forces is that multiple lines may be
attached to a single bollard. This leads to aggregate force measurements that do not represent individ-
ual line forces. Additionally, not all lines are necessarily connected to smart bollards, meaning not all
line forces are measured. This depends on the mooring arrangement and available bollard positions
along the quay.

As an alternative, load shackles can be temporarily installed on individual mooring lines to capture
line-specific forces directly. While more accurate, this method is more intrusive and costly, making
it less feasible for large-scale deployment. If individual line forces are unavailable, the model could
instead be trained to predict bollard loads, which are directly measured and operationally relevant to
the Rotterdam Port Authority.

7.5.3. Machine learning algorithm
Based on the results of the DMA metamodel selection in Section 5.3, a multi-layer perceptron (MLP)
is recommended for the field-trained model. It achieved high predictive accuracy and fast inference
times, both important for decision-making in port operations.

Learning curve analysis showed that the MLP model reached near-optimal performance with approxi-
mately 1,000 training samples. This indicates that the model is data-efficient and capable of learning
meaningful patterns even from relatively small datasets. This property is particularly valuable for the
proposed application, where the measured field data may initially be limited in size and quality.

7.5.4. Required number of measurements
Based on the findings, the MLP algorithm is expected to be more effective than LR when learning
from limited measured data. In the context of the DMA metamodel, approximately 5,000 samples were
sufficient to reach near-optimal (99.9%) performance for this algorithm. While this offers a preliminary
indication of the data requirements for the operational model, it is important to recognize that the actual
number of required samples will likely be significantly higher. This is due to differences in the number
and type of input features, the presence of noise, and complexity of real-world measurement data
compared to the simulated data used in this study.
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Prediction of mooring line forces using
metamodeling

N.K.S. Wilking

Abstract: The increasing size of cargo vessels poses significant challenges for ports in ensuring
safe mooring, as larger ships result in higher mooring forces. Most existing port infrastructure
and mooring equipment were designed for smaller ships, making accurate estimation of
mooring line forces increasingly critical. Metamodels, machine learning models trained on
numerically simulated data, offer a promising alternative to traditional, computationally
expensive simulation-based methods by enabling rapid predictions with a useful level of accuracy.
This study proposes a metamodeling approach for the numerical Dynamic Mooring Analysis
(DMA) to predict mooring line forces from input parameters that describe environmental
conditions, mooring systems, and ship characteristics. The methodology is demonstrated in
a case study involving a 333-meter container vessel moored at a berth in the Port of Rotterdam.
A total of 11,520 scenarios were simulated using the DMA model aNySIM and used to train
and test two candidate metamodels: Linear Regression (LR) and Multilayer Perceptron (MLP).
After evaluating both models on predictive accuracy, efficiency in terms of prediction speed
and development effort, and interpretability, the MLP was selected as the preferred DMA
metamodel. It achieved high predictive performance, with an RMSE of 10 kN and an R2 of
0.996, while offering prediction times measured in microseconds. This is more than seven orders
of magnitude faster than the numerical DMA, thereby enabling large-batch predictions.

Keywords: Mooring line forces, Dynamic Mooring Analysis (DMA), Metamodeling, Machine
learning, Linear Regression, Multilayer Perceptron (MLP), Large-scale vessels

1. INTRODUCTION

The increasing size of cargo vessels [20] poses significant
challenges for ports in ensuring safe mooring operations
[24]. Larger ships are subjected to greater environmental
forces [14, 23], resulting in higher mooring loads, including
increased mooring line forces.

Excessive mooring line forces can lead to catastrophic out-
comes. Line failures may cause severe injuries or fatalities
to crew members and port personnel. In extreme cases,
vessels may break free from their moorings, resulting in
collisions with port infrastructure or other ships, causing
substantial economic losses and potential environmental
damage.

However, most existing port infrastructure and mooring
equipment were originally designed for smaller vessels
[24]. This growing disparity between vessel size and port
infrastructure capacity raises concerns about the safe and
efficient mooring of future ship generations. Accurately
predicting mooring line forces is therefore essential to
assess the operational safety and enable timely mitigating
measures.

A moored vessel is subjected to several forces, resulting in
a dynamic response involving mooring line tension, fender
loads, and ship motion. This response is characterized
by three key aspects: environmental conditions, mooring
system configuration, and ship characteristics [9].

1.1 Dynamic Mooring Analysis

Dynamic Mooring Analysis (DMA) is a widely used tech-
nique to estimate ship response under varying environ-
mental conditions. Based on numerical simulations, DMA
solves the moored vessel’s six degrees-of-freedom equations
of motion in the time-domain (Equation 1), often relying
on coupled sub-models [12].

Fk(t) =

6∑
j=1

(Mkj +mkj)ẍj

+

∫ t

−∞
Rkj(t− τ)ẋj(t− τ) dτ

+ Ckjxj (1)

Where k and j are indices representing the six degrees of
freedom; Fk(t) is the external force in mode k, xj , ẋj , and
ẍj are the displacement, velocity, and acceleration in mo-
tion mode j, respectively; matrix M is the solid inertia; m
is the added mass, R is the retardation function modeling
memory effects; and C is the hydrostatic restoring force
matrix.

Numerous studies have demonstrated the application of
numerical models for predicting moored vessel behavior.
Weiler et al. [27] combined hydrodynamic scale model tests
and time-domain computer simulations to analyze an LNG
carrier moored at a jetty with complex bathymetry in
Yemen. Van der Molen et al. [21] evaluated various moor-
ing configuration improvements at Geraldton Harbour,
which suffers from long wave-induced vessel motions, by
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comparing numerical simulations. Van Zwijnsvoorde and
Vantorre [22] numerically simulated an 18,000 TEU con-
tainer vessel at berth, analyzing mooring line forces under
passing ship effects. Gourlay [5] developed a coupled ship-
and-harbor model to predict wave-induced motions and
mooring line and fender loads of moored ships in Geraldton
Harbour in Autralia. Sundar, Nandhini, and Nallayarasu
[18] performed a comprehensive simulation of mooring line
forces due to combined wind, wave, current, and passing
ship effects at Mumbai Port. Sáenz et al. [14] investigated
the impact of next-generation ULCVs (up to 40,000 TEU)
on port mooring systems, by simulating the effects of wind
and passing ship forces. Yan et al. [29] employed numerical
modeling to analyze the hydrodynamic response of moored
ships under harbor oscillations. Gourlay [6] modeled six-
buoy spread mooring systems at Cape Cuvier in Australia
in order to calculate the wave-induced motions and loads
and validated results using field measurements.

1.2 Metamodeling

Metamodeling provides a computationally efficient alter-
native to numerical simulations. Metamodels, also known
as surrogate models [3], represent the response surface of
more complex simulation models, by providing simplified
approximations. They map inputs to outputs when their
underlying relationships are either unknown or computa-
tionally expensive to compute [28]. In essence, a meta-
model is a “model of a model”, offering similar predictive
capabilities but at a significantly reduced computational
cost [26]. Additionally, they provide valuable insight by
facilitating analysis and interpretation of the behavior of
the original complex model [1].

Several studies have investigated the use of machine learn-
ing (ML) models trained on simulated data to to predict
mooring responses. However, these efforts have primarily
focused on offshore floating structures. Saad et al. [13]
presented two neural networks to predict the movement
of a floating platform based on the observation of past
time series. The models were trained with simulated mo-
tion data generated using actual environmental conditions
measured in Rio de Janeiro, Brazil. Mentes and Yetkin
[10] proposed an Artificial Neural Network (ANN) and
Adaptive Neuro-Fuzzy Inference System (ANFIS) to es-
timate the mooring line tension and displacements of the
spread mooring system of a floating platform or vessel,
also using simulated data. Sidarta et al. [16] developed
a ANN-based method to detect mooring line failures by
identifying subtle shifts in motion patterns of floating
offshore platforms. Their model was trained on numerical
simulations and tested with modified field data. Sun et al.
[17] assessed five ML methods in order to explore a suitable
metamodel to replace time-domain numerical simulation
for offshore floating structures. Yetkin and Mentes [31]
presented a metamodel based on ANN to predict moor-
ing tensions and tanker motion displacements in spread
mooring systems. Ye et al. [30] developed a metamodel
for floating offshore wind turbines to predict, among other
targets, the motion response, incorporating it into a design
optimization approach.

1.3 Research goal

Currently, research on ML-based metamodels trained on
simulated data for predicting mooring line forces of large-
scale vessels in port environments is underexplored.

This study aims to address this gap by developing and
evaluating a metamodel trained on DMA-generated data
to predict mooring line forces for large-scale vessels moored
in ports. The proposed method was demonstrated through
a case study at the Port of Rotterdam. To this end, 11,520
scenarios were simulated using DMA to generate training
and test data. Two candidate metamodels were developed
using Linear Regression (LR) and Multi-Layer Perceptron
(MLP) algorithms. These models were evaluated based
on multiple objectives to select the most suitable DMA
metamodel.

1.4 Outline

The structure of this paper is as follows. Section 2 intro-
duces the proposed metamodeling approach for predict-
ing mooring line forces using numerical simulations from
DMA. Section 3 presents the development and evaluation
of two candidate metamodels, demonstrated through a
case study in the Port of Rotterdam. Finally, Section 4
summarizes the main conclusions and provides recommen-
dations for future work.

2. METHODOLOGY

2.1 Metamodeling process

The construction of metamodels typically involves three
stages [26]:

(1) Sample design: selecting representative sample points
(2) Model training: optimizing the model parameters
(3) Model testing: evaluating the accuracy of the model

Sample design The synthetic dataset used for meta-
model development is generated through numerical DMA
simulations. Each data sample consists of an input sce-
nario, defined by environmental and operational parame-
ters, and the corresponding output, namely the mooring
line forces. These input parameters serve as features for the
metamodel, while the outputs form the target variables.

These input scenarios are constructed in a structured,
three-step process:

(1) Identification of input parameters to be varied.
(2) Definition of the design space for each parameter.
(3) Sampling the set of scenarios.

After generation, the input and output data were pre-
processed into usable features and targets. The dataset
was then split into training and test subsets and scaled
accordingly. The training set was used to fit the model,
while the test set was reserved for performance evaluation
[15]. Maintaining a balanced train-test split is crucial to
prevent overfitting and underfitting.

Training The training phase involves fitting a supervised
learning algorithm to the training subset to predict the
mooring line forces from the input features.
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Predicting mooring line forces based on simulated DMA
data represents a Multivariate Multiple Regression prob-
lem, characterized by:

• Multivariate input
• Multivariate output
• Continuous numerical output

Testing The test subset is used to evaluate the predictive
performance of the trained model. The prediction error,
defined by the difference between the true and predicted
outputs, is quantified using standard regression metrics
[4]. The two metrics used in this study are the Root Mean
Squared Error (RMSE) and the coefficient of determina-
tion (R2) [19, 2]. Their expressions are listed in Table 1,
where n is the number of samples, yi the actual output, ŷi
the predicted output, and ȳ the mean of the actual output
values.

Table 1. Performance evaluation metrics for
regression used in this study

Metric Formula
Value
range

Ideal
value

RMSE
√

1
n

∑n

i=1
(yi − ŷi)2 [0,+∞) 0

R2 1−

∑n

i=1
(yi − ŷi)

2∑n

i=1
(yi − ȳ)2

(−∞, 1] 1

2.2 Metamodel interpretability

To gain insights into the model’s behavior, feature im-
portance was analyzed using the model-agnostic inter-
pretability tool SHAP (SHapley Additive exPlanations)
[11]. SHAP quantifies how each feature contributes to
individual predictions, with positive values indicating an
increase and negative values indicating a decrease in the
predicted output. A SHAP summary plot visualizes these
contributions, ranking features by overall importance on
the y-axis. Each point represents a SHAP value for a
specific feature and instance, with color indicating the
feature’s value (blue for low, red for high), thereby re-
vealing how different feature values influence the model’s
predictions.

2.3 Metamodel evaluation and selection

When multiple candidate models are developed, their se-
lection is guided by a multi-objective evaluation frame-
work. In this study, models are assessed according to the
following objectives:

• Accuracy
• Efficiency
• Interpretability

Accuracy Accuracy is the most important objective, as
the metamodel must reliably approximate mooring line
forces in order to serve as a safe surrogate for numerical
DMA. Model accuracy is evaluated using:

• RMSE, due to its sensitivity to large prediction errors,
and

• R2, as a complementary indicator of overall goodness-
of-fit.

Efficiency Efficiency considered the second most impor-
tant objective and is assessed based on two criteria:

• Inference time: The time required to make predic-
tions. This is prioritized due to its significance in prac-
tical applications, and is a key reason for replacing the
computationally intensive numerical model.

• Development effort: This includes the time and re-
sources required for model design, hyperparameter
tuning, and training. It indirectly reflects model com-
plexity, but is considered less important as it involves
a one-time investment.

Interpretability Although less critical than accuracy or
efficiency, interpretability remains important for stake-
holder confidence and operational transparency. It is eval-
uated based on model transparency, reflecting the degree
to which the influence of input features on predictions can
be understood and explained.

3. CASE STUDY

The proposed metamodeling methodology is applied to a
case study in the Port of Rotterdam. It involves a container
vessel with a length overall of 333 meters, a length between
perpendiculars of 318 meters, a beam of 48 meters, and
a draught of 12.15 meters. The vessel is moored at the
DNN berth, with all vessel and berth characteristics held
constant throughout the analysis.

3.1 Sample design

A total of 11 features were selected from the numerical
DMA input parameters, categorized under key aspects
that characterize moored vessel response. These features
are summarized in Table 2.

Table 2. Input features

Feature Parameter Unit

x1 Water depth m
x2 Number of mooring lines -
x3 Nylon mooring lines -
x4 Polyester mooring lines -
x5 MBL ton
x6 Pretension % MBL
x7 Viscous damping %
x8 Wind area m2

x9 Wind velocity m/s
x10 Cosine of wind direction -
x11 Sine of wind direction -

Ranges or sets of discrete values were defined for each
input parameter, forming a multidimensional design space.
Sampling was conducted using a combination of grid
sampling and Latin Hypercube Sampling (LHS). This
procedure resulted in 11,520 distinct input scenarios.

Each input scenario was simulated using the numerical
DMA model aNySIM, and the corresponding outputs were
used to define two target variables, as listed in Table 3.
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Table 3. Targets

Target Parameter Unit

y1 Mean mooring line force kN
y2 Maximum mooring line force kN

The target variables are expressed as:

y1 =
1

N

N∑
i=1

Fi,mean (2)

y2 = max
i∈{1,...,N}

Fi,max (3)

Where Fi is the force in line i and N the number of lines.

3.2 Model training

Two regression algorithms were selected to develop candi-
date metamodels: Linear Regression (LR) and Multilayer
Perceptron (MLP). Both methods are suitable for multi-
variate multiple regression tasks and were trained on the
designated training subset of the dataset.

LR Linear Regression (LR) is widely used due to its sim-
plicity and interpretability [8]. It models the relationship
between multiple input variables and a response variable
by fitting a linear function [7]:

ŷ =

n∑
i=1

xiβi + β0 (4)

Where ŷ is the predicted output, n is the number of
features, xi are the input features, βi are the feature
coefficients, and β0 is the bias term.

Although LR assumes a linear relationship, which may not
fully capture the underlying physics, it serves as a strong
baseline and is easy to interpret [8].

MLP The Multilayer Perceptron (MLP) is a popular
deep learning model capable of approximating nonlinear
relationships [25]. Its architecture includes an input layer,
one or more hidden layers with nonlinear activation func-
tions, and an output layer. The output of a hidden neuron
is computed as:

hj = f(

n∑
i=1

wjixi) (5)

Where hj is the output of j
th hidden neuron in the hidden

layer, n is the number of inputs, xi are the inputs, wji

the weight from input i to hidden neuron j, and f is the
activation function.

Hyperparameter optimization is necessary to define the
model architecture and training configuration. The op-
timal set of hyperparameters was identified using 5-fold
cross-validation combined with random search and is pre-
sented in Table 4.

Table 4. The identified optimal hyperparame-
ter set for the MLP model

Hyperparameter Optimal value

hidden layer sizes (50, 20)
activation tanh
solver sgd
alpha 0.01
learning rate adaptive
learning rate init 0.1
nesterovs momentum True

3.3 Model testing

The predictive performance of the trained models on
the unseen test subset is visualized through Actual vs.
Prediction plots, presented in Figure 1.

(a) LR - y1 (b) MLP - y1

(c) LR - y2 (d) MLP - y2

Fig. 1. Actual vs. Prediction plots for both candidate
metamodels (LR and MLP) and both target variables
(y1: mean mooring line force, y2: maximum mooring
line force)

Model accuracy was quantified using RMSE and R2 met-
rics. Table 5 summarizes these results for the targets y1
(mean mooring line force) and y2 (maximum mooring line
force).

Both models showed reduced accuracy in predicting y2,
which is likely because it represents the instantaneous peak
force. In contrast, y1 is a time-averaged value and therefore
less sensitive to transient fluctuations, making it inherently
more predictable.

Table 5. Predictive accuracy of the candidate
metamodels

Model
y1 y2

RMSE R2 RMSE R2

LR 21 0.9827 111 0.6883
MLP 2 0.9998 18 0.9922
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3.4 Model insights

Insight in the models was obtained through feature im-
portance analysis using SHAP summary plots, as shown
in Figure 2. The relative importance of the features was
generally consistent across the models.

For the prediction of y1 (mean mooring line force), pre-
tension was the most dominant factor in both models,
with a mean absolute SHAP value of approximately 0.82.
This was followed by the MBL (∼ 0.10), which had a
significantly lower importance.

For y2 (maximum mooring line force), pretension (∼
0.56–0.58) and wind velocity (∼ 0.37–0.40) contributed
most significantly. The cosine of the wind direction also
played a notable role with a mean SHAP value between
0.10 and 0.17.

3.5 Model evaluation

The candidate metamodels were evaluated against the cri-
teria of accuracy, efficiency, and interpretability to support
final model selection.

Accuracy The MLP significantly outperformed the LR
model on both target variables. It achieved a near-perfect
fit for the mean mooring line force (y1), and demonstrated
a substantially better fit for the maximum mooring line
force (y2) compared to the moderate performance of the
LR model.

Efficiency Both models offer inference times on the order
of microseconds. This marks a significant improvement
over to the numerical DMA simulations, which require
approximately 30 seconds per run.

However, development effort differed considerably between
the models. The MLP required extensive hyperparameter
and had longer training times due to its complexity. In
contrast, the LR model involved minimal development
effort, as it is simple to implement and train, with no
hyperparameters to tune.

Interpretability The LR model is inherently inter-
pretable, with coefficients that directly represent the effect
of each input feature on the prediction. In contrast, in-
terpreting MLP predictions requires model-agnostic tools
such as SHAP values.

Selection Based on the combined evaluation of predic-
tive accuracy, computational efficiency, and interpretabil-
ity, the MLP model is selected as the final DMA meta-
model.

While the MLP involves higher development effort and
reduced interpretability compared to the LR model, its
superior predictive performance makes it the most suitable
surrogate for numerical DMA.

4. CONCLUSION

A methodology was proposed for constructing a meta-
model of the numerical Dynamic Mooring Analysis (DMA)
to estimate mooring line forces. This approach involves the
systematic design a comprehensive DMA dataset, which

was used to train and evaluate machine learning models.
Candidate models are assessed using three objectives: ac-
curacy, efficiency, and interpretability. This facilitates a
quantitative selection of the most suitable DMA meta-
model.

The methodology was demonstrated in a case study involv-
ing a 333-meter container vessel moored at a quay in the
Port of Rotterdam. wo target variables were predicted: the
average mean mooring line force per line and the average
maximum mooring line force per line. Predictions were
based on a set of 11 input features encompassing environ-
mental conditions, and mooring system and ship charac-
teristics. Two candidate metamodels were developed using
Linear Regression (LR) and Multilayer Perceptron (MLP)
algorithms, and evaluated against the three objectives.
The MLP was selected as the preferred metamodel due
to its high predictive performance, with an RMSE of 10
kN and an R2 of 0.996. Additionally, the MLP achieved
inference times on the order of microseconds per predic-
tion, significantly faster than the DMA, which requires 30
seconds per simulation. This makes it well-suited for large
batch scenario analyses. Despite its “black-box” nature,
interpretability was sufficiently addressed through SHAP
analysis. It revealed that pretension is clearly the most
dominant feature for predicting y1, followed by MBL. For
y2, the most influential features were identified as preten-
sion, windvelocity, and wind direction (cosine).

This research contributes to bridging the gap in applying
metamodeling techniques to DMA, specifically for predict-
ing mooring line forces of large-scale vessels in port envi-
ronments. The developed metamodel enables fast, data-
driven predictions that are grounded in physically mean-
ingful relationships. It can be used as a surrogate for nu-
merical DMA simulations, supporting batch applications
such as parameter updating to match field measurements
and probabilistic analyses of bollard capacity exceedance
over its operational lifetime.

There are two main recommendations for future research:

• Expand the design space: The applicability of the
current metamodel is inherently constrained by the
training data. Extending the model to cover a broader
set of operational conditions involves incorporating
wider value ranges and additional features, includ-
ing diverse vessel types, alternative mooring config-
urations, and multiple berths. To support this, new
simulations should be generated and the metamodel
retrained accordingly.

• Explore additional algorithms: Future studies should
investigate a broader spectrum of machine learning
algorithms to determine whether higher accuracy or
computational efficiency can be achieved.
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B
Input scenarios for the case study

B.1. Berth and ship specifics
B.1.1. Berth
The DDN quay (Figure B.1) is a closed structure with sheet pile walls and has a height of +3.52 meters
NAP. It is orientated from 263◦ to 83◦ (Google Earth, 2024) and is equipped with 1000 kN capacity
bollards, installed in pairs. Cylindrical sideloaded rubber fenders are mounted to to the quay wall, with
fender pairs positioned at +1.00 m NAP and single fenders at -1.20 m NAP. This configuration ensures
that the lower fenders remain submerged at all times, while the upper fenders are only submerged
during high tide. The average seabed depth at the berth is at -17.20 m NAP. In Figure B.2 the exact
arrangement and spacing between the bollards and fenders is illustrated.

(a) (Port of Rotterdam, 2024) (b) DDN berth viewed from the landside

Figure B.1: Views of the DDN berth from the waterside

Figure B.2: Illustration of the DDN berth front view, showing the arrangement and spacing of bollards
and fenders, and the seabed depth
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B.1.2. Moored vessel
Sterkenbrug (2024) of the KRVE states that the average size of vessels moored at the DDN berths
varies throughout the year. Over the entire year, a ship length of 333 m approximates the average.

For this reason, the considered ship is the Cartagena Express (Figure B.3), which has a length overall
(Loa) of 333 m, length between perpendiculars (Lpp) of 318 m, and beam (B) of 48 m.

Figure B.3: Cartagena Express (D. Hasenpusch, n.d.)

The load condition, and so the number of containers on deck, will vary between the scenarios. However,
the mass of the vessel and thus the draught will be kept constant for simplicity reasons, so the defined
draught should represent all scenarios.

In recent years, the average draught of the Cartagena Express was 12.75 meter when visiting the
DDN berth. According to Royal Institution of Naval Architects (2017) her sister ship, the Valparaiso
Express, shares the same dimensions and a scantling draught and a design draught of 14 m and
12.5 m, respectively. The estimation is that the draught of a half-loaded Cartagena Express will be
around 12.25 m. This draught (T) is therefore assumed for all simulated scenarios. The displacement
corresponding to this draught is 1.253E+5 m3.

The deck plan of the ship is obtained from the sister ship Valparaiso Express according to Royal Insti-
tution of Naval Architects (2017), assuming similar layouts.

The deck plan of the vessel is based on that of its sister ship, the Valparaiso Express, as described by
Royal Institution of Naval Architects (2017), under the assumption of a similar layout.

B.2. Varying input parameters
B.2.1. Water level
In the port of Rotterdam the water level is currently measured by water level radars in the monitoring net-
work of the Port of Rotterdam. These fixed radars measure the distance to the water level. Previously,
measurements were conducted using floats, known as “vlotters”. At the EURH location (Figure B.4),
the average low water and high water levels were +1.28 m NAP and -0.67 m NAP, respectively, as
measured from 2002 to 2022 (Janssen & Van Hell, 2023). The average seabed depth is at -17.20 m
NAP.

In all simulations, the water level is set to the average minimum water level during low tide and the
maximum during high tide at the DDN berth. These levels are 16.53 m (-0.67 m NAP) and 18.48 m
(+1.28 m NAP), respectively.
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Figure B.4: Location of the water level radar EURH (orange dot) and DDN berth (red rectangle)

B.2.2. Mooring line configuration
Container vessels of this size are typically moored using a 4-to-2 configuration, which involves four
breast lines and two spring lines on each side (stern and bow), totaling six mooring lines per side
and twelve lines overall. Occasionally a 5-to-2 or 6-to-2 mooring arrangement may be used, but this
depends on the weather conditions and available space on the quay (Sterkenbrug, 2024). At the DDN
berth, vessels are generally moored to port side. The terminal decides whether vessels should be
moored starboard of port side (Sterkenbrug, 2024).

The simulated scenarios considered two distinct mooring line configurations for port side mooring: one
with 12 lines (Figure B.5a) and another with 16 lines (Figure B.5b).

The line numbering system for this vessel utilizes a consistent approach. Lines are numbered from aft
to bow, from 1 to 12. This numbering remains consistent between the 12-line and 16-line configurations,
ensuring each number corresponds to the same physical line.

The 12-line configuration typically employs a 4-to-2 mooring arrangement: four breast lines and two
spring lines on each side.

The 16-line configuration, observed on the Cartagena Express on January 22, 2024, utilizes a 6-to-2
mooring arrangement: six breast lines and two spring lines on each side. This 16-line configuration
includes four additional lines: 13 and 14 at the aft, and 15 and 16 at the bow.
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(a) 12-line configuration

(b) 16-line configuration

Figure B.5: The two line configurations in the scenarios

The 12-line configuration is derived from the 16-line configuration by simply removing lines 13, 14, 15,
and 16, leaving the vessel with the standard 12-line mooring setup.

B.2.3. Line material
The DDN berths serve primarily slightly older vessels that typically use nylon or polyester mooring lines.
While HMSF lines are occasionally observed, steel wires have not been used for container ships for
the past 15 years. Tails are used only in combination with HMSF or steel lines (Sterkenbrug, 2024).

Therefore, in the simulation scenarios, nylon or polyester mooring lines were chosen, with all lines
being of the same material.

B.2.4. MBL
In the Port of Rotterdam, there is no data available on the MBL of used lines of the accommodated
vessels.

The MBL of mooring lines is unknown to the boatmen, however, the specifications and usage of the
lines are required to be recorded in the vessel’s onboard logbook (Sterkenbrug, 2024).

However, in the ports of Antwerp and Hamburg is some limited information known about mooring lines.

A monitoring campaign conducted by Ides et al. (2018) at a container terminal in Antwerp focused
on vessels exceeding Panamax size (over 4,500 TEU (Institute for Trade and Transportation Studies,
2009)). The study revealed variability in line types, even among ships of the same class. The MBL
for 400-meter vessels appears to be relatively consistent, with 140 tons as a representative value (Van
Zwijnsvoorde, Eloot, et al., 2019).

In the Port of Hamburg the line types and MBLs vary as well for ULCVs as can be seen in Table B.1.

Table B.1: Observed line types for Ultra Large Container Vessels (ULCVs) at Hamburg Port by ship size, based on Heitmann
(2024)

Line type 300 - 330m 360m 400m

Percentage Avg. MBL (t) Percentage Avg. MBL (t) Percentage Avg. MBL (t)

HMSF 5.33% 136 11% 137 34% 155
PE / PET / PP 43.33% 120 40% 129 38% 131
PA / Nylon 51.33% 114 49% 132 28% 153

Based on this data and discussions with representatives from the Port of Rotterdam, it was decided to
use MBLs of 120, 130, and 150 tonnes in the scenarios for both the nylon and polyester mooring lines.
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B.2.5. Pretension
The pretension in the mooring lines varies over time, depending on water level and draught. If the
winches are set to auto-tension mode, they attempt to maintain a constant tension in the lines. When
a winch is on the brake, the vessel crew is responsible for managing and adjusting the tension in
the mooring line. The Smart Bollards installed on the DDN berth sometimes measure loads visibly
increasing with the tide, resulting in very large mooring line tensions. This indicates poor management
of the lines by the vessel crew.

All lines in each scenario are set to the same initial tension, which is a percentage of the MBL. Preten-
sions of 5%, 10%, 20%, and 40% of the MBL were chosen for the scenarios to cover a range from low
to very high pretensions.

B.2.6. Wind area
The exact dimensions of sister ship Valparaiso Express and her technical drawings (Figure B.6) are
obtained. Using the drawings, the wind areas of the load conditions on deck of 100%, 80%, 60% and
40% are defined in square meters as illustrated in Figure B.7.

(a) Side view (b) Front view

Figure B.6: Midship section of the Valparaiso Express (Royal Institution of Naval Architects, 2017)

(a) 100% (b) 80% (c) 60% (d) 40%

Figure B.7: Wind-exposed areas (in black) for the Cartagena Express under varying deck load conditions, expressed as
percentages of the total containers on deck. The underwater hull, corresponding to a draught of 12.25 m, is shown in blue.

Wind area (%) Front area (m2) Side area (m2)
100 2,242 11,378
80 2,210 10,340
60 2,138 9,303
40 2,009 8,266

Table B.2: The front and side areas of the vessel exposed to wind
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B.2.6.1. Shielding of the quay
The presence of the quay provides wind shielding, which is accounted for by reducing the effective
side wind area of the vessel. This reduction is calculated by subtracting the area shielded by the quay,
which is determined as the product of the vertical distance between the water level and the quay height,
and the vessel’s length between perpendiculars Lpp.

The quay height is 3.52 m relative to Nederlands Amsterdams Peil (NAP). The shielded area varies
depending on the water level:

• Low tide: The water level is at -0.67 m NAP, resulting in a vertical difference of 3.52+ 0.67 = 4.19
m. The corresponding shielded area is:

Ashield, low = 318 · 4.19 = 1, 332.42 m2

• High tide: The water level is at +1.28 m NAP, resulting in a vertical difference of 3.52−1.28 = 2.24
m. The corresponding shielded area is:

Ashield, high = 318 · 2.24 = 712.32 m2

B.2.6.2. Wind coefficients
There are several methods to determine the aerodynamic drag coefficients or wind coefficients of a ship,
including Computational Fluid Dynamics (CFD) modeling, wind tunnel tests, and other techniques. For
this project, coefficients obtained from wind tunnel tests were chosen.

According to practice, wind coefficients can be used for similar ships. The selection of the modeled
ship is based on the ship size, the superstructure arrangement on deck, and the mean height, which is
the wind area divided by the overall length of the ship.

Marikom (2015) conducted wind tunnel tests on two ship models commissioned by the Hamburg Port
Authority. These ship models had different draughts and loading conditions. The Globe, with a draught
of 13 meters and partially loaded with 7 tiers of containers (Figure B.8), most closely resembles the
Cartagena Express, which has a draught of 12.25 m and varying simulated wind areas in the scenarios.
Therefore, the wind coefficients from the Globe tests have been adopted for the case study.

Figure B.8: Model of the Globe, fully loaded with draught of
10 m (Marikom, 2015)

Figure B.9: Side view of the Cartagena Express
(Hapag-Lloyd, n.d.)

B.2.7. Viscous damping
Viscous damping is due to the flow between ship, quay, and seabed. It depends on the distance
between the quay structure and the moored vessel, as well as the water depth (De Boer & Buchner,
2005). Additionally, it is sensitive to the type of quay structure, whether it is a closed quay or an open
deck on piles.

Figure B.10: Effects of damping (De Boer & Buchner, 2005)
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Not much is known about this topic, except what has been published in De Boer and Buchner (2005).
For a ship moored to a quay wall, it is assumed for now that a viscous damping of 1 to 3% of the critical
damping in the surge, sway, and yaw direction is appropriate.

Critical damping is calculated by formula, total mass (including mass of the ship and added mass) and
natural frequency ωn in rad/s.

For linear motions (surge, sway, heave):

bcr = 2 ·mtotal · ωn (B.1)

For rotations (roll, pitch, yaw):
bcr = 2 · (Izz +madded) · ωn (B.2)

Where
bcr critical damping per direction [N.s/m] for linear motions
mtotal total mass (ship’s mass and added mass) per direction [kg]
ωn natural frequency [rad/s] per direction
Izz [kg.m2]
madded added mass per rotation direction [kg]

The natural frequency is calculated for every base case using this formula:

ωn =

√
C

mtotal
(B.3)

Where
ωn natural frequency per direction[rad/s]
C stiffness per direction [N/m]
mtotal total mass (ship’s mass and added mass) per direction [kg]

Note: The stiffness and added mass have different values in each direction (surge, sway, heave, roll,
pitch, yaw), so the natural frequency (ωn) is direction-dependent.

The total damping includes the viscous damping and “wave-making” damping obtained from the Hyd-
files. A Hydfile provides wave-making damping b per water level. Therefore, for the 11,520 scenarios,
there are two sets of b-values from the Hydfile. The total damping is assumed to be a percentage of
the critical damping, often in the range of 1 to 3%, as direct measurements are not possible.

btotal = b+ bvisc = percentage · bcr (B.4)

Where
btotal total damping per direction in [N.s/m] for linear motions and [N.m.s] for rotations
b wave-making damping per direction in [N.s/m] for linear motions and [N.m.s] for rotations
bvisc viscous damping per direction in [N.s/m] for linear motions and [N.m.s] for rotations
percentage assumed percentage [%]
bcr critical damping per direction in [N.s/m] for linear motions and [N.m.s] for rotations

Thus, the viscous damping can be calculated by taking the assumed total damping and subtracting the
“wave-making” damping.

For the scenarios, total damping values of 0%, 2%, and 4% of the critical damping are selected, all
resulting in different viscous damping values. For simplicity, equal percentages are assumed for surge,
sway, yaw direction. Damping in the heave, roll, and pitch directions is not considered.

B.2.8. Wind
Port of Rotterdam uses cup anemometers and wind vanes to measure the wind velocity and direction
at various locations in the port. A cup anemometer consists of a rotating cup element which is driven
by wind. The rotation produces an electric voltage signal, where the signal’s magnitude is proportional
to the wind velocity. The wind vane features a rigid metal plate mounted on a rotating axis. As the wind
turns the vane, its position is registered to represent the wind direction (Janssen & Van Hell, 2023).
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Figure B.11: Location of Beerkanaal Radarpost 37 (orange dot) and DDN berth (red rectangle)

The wind sensor installed at Beerkanaal Radarpost 37 (Figure B.11) is used by the Rotterdam Port
Authority to record the wind and is the closest wind sensor to the DDN berth. In 2009-2019, south-
wester winds were measured most frequently and the most common wind force was 0-3 Beaufort,
followed by 4 Beaufort, and 5 Beaufort as visualized in Figure B.12.

Figure B.12: Wind rose plot of Beerkanaal Radarpost 37 2009-2019, based on Janssen and Van Hell (2023)

The underlying data are the 10-minute average wind speed and direction.

For vessels with an approximate length of 333 m, the limiting wind speeds are 10-15 m/s and the critical
sector are off-quay wind directions, meaning 90◦ +- 45◦ relative to the ship (Van Deyzen, Nguyen, &
Van de Sande, 2024; Van Deyzen, Nguyen, & Eggermont, 2024).
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The designed scenarios feature wind speeds ranging from 5 to 18 m/s, corresponding to moderate
(Beaufort 3) to storm-force winds (Beaufort 8). As the wind most frequently comes from the south-west,
it was decided to model the wind from 173◦ to 263◦, covering directions from perpendicular to parallel
to the quay, as illustrated in Figure B.13.

Figure B.13: Wind directions in the simulated scenarios are in the range of 173◦ to 263◦



C
DMA data analysis

C.1. Raw DMA outputs analysis
To gain insights into howmooring forces are distributed across individual lines, the raw DMA output was
analyzed separately for scenarios with 12 and 16 deployed mooring lines. This distinction is important
as the number and configuration of lines directly influence how the total force is distributed.

Figure B.5 illustrates the line numbering and layout for both the 12-line and 16-line configurations.

C.1.1. Mean mooring line force
The first target variable, y1, is the average mean force per line, denoted by F̄mean. It is calculated for
each scenario by taking the sum of the mean forces across every deployed line i and dividing by the
number of lines N :

F̄mean =
1

N

N∑
i=1

Fi,mean

To analyze the contribution of each individual line, the force in each line was expressed as a percentage
of the scenario’s F̄mean. These percentages were then averaged across all scenarios to reveal how each
line typically contributes relative to the average.

Table C.1 presents, for each mooring line, the average absolute mean force and the average rela-
tive contribution to the total mean force (F̄mean), separately for the 12-line and 16-line configurations.
This provides insight into how individual lines contribute to the overall mooring load distribution across
different system configurations.
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Table C.1: Average mean mooring line forces per line and their relative contribution to the total mean force, for both 12-line and
16-line configurations

Line
number

12-line configuration 16-line configuration
Average
mean force
F̄i,mean (kN)

Average %
of F̄mean

Average
mean force
F̄i,mean (kN)

Average %
of F̄mean

1 246.07 96.25 243.26 99.19
2 242.73 94.52 237.71 96.54
3 244.95 96.84 240.60 99.21
4 236.30 92.87 226.16 92.86
5 276.82 114.46 298.64 127.60
6 271.06 110.91 288.67 122.26
7 233.23 84.83 202.65 80.44
8 221.50 84.01 197.97 78.44
9 249.82 107.63 228.86 102.65
10 242.80 102.69 215.17 95.00
11 258.85 109.16 251.33 109.86
12 252.87 237.94 103.46
13 - - 229.85 91.80
14 - - 226.27 90.01
15 - - 237.91 102.86
16 - - 255.32 107.84

Average
F̄mean

247.25 - 238.64 -

Figure C.1 illustrates the average mean force per mooring line, along with the overall average mean
force across all lines.

(a) 12-line configuration (b) 16-line configuration

Figure C.1: Average mean mooring line forces per line for the 12-line and 16-line systems. The blue bars represent the
average mean force per individual line. The red dashed line indicates the overall average mean line force across all lines in the

system.

C.1.2. Maximum mooring line force
The second target variable, y2, is the maximum peak force among all N mooring lines in a given
scenario, denoted as Fmax:

Fmax = max
i∈{1,...,N}

Fi,max

To better understand which lines are typically subjected to peak loads, the average maximum force
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per line was computed over all scenarios. Besides, for each scenario, the peak force in each line was
expressed as a percentage of that scenario’s maximum peak force. These values were then averaged
across all scenarios.

Table C.2 summarizes, for each mooring line, the average absolute maximum force and its relative
percentage compared to the highest maximum force observed across all lines, separately for the 12-
line and 16-line configurations.

Table C.2: Average maximum mooring line forces per line and their relative contribution to the highest maximum force, for both
12-line and 16-line configurations

Line
number
i

12-line configuration 16-line configuration
Average
maximum
force F̄i,max
(kN)

Average %
of Fmax

Average
maximum
force F̄i,max
(kN)

Average %
of Fmax

1 283.15 78.58 270.81 76.52
2 280.49 77.73 265.28 74.84
3 302.28 81.96 282.90 79.44
4 302.54 81.05 273.82 76.37
5 315.50 91.48 326.16 95.95
6 301.94 87.61 310.65 91.05
7 243.42 69.50 215.69 61.81
8 245.15 69.66 213.20 61.00
9 328.48 90.90 283.40 82.87
10 315.45 86.75 265.27 76.93
11 316.75 89.44 291.76 85.38
12 311.05 87.09 278.13 80.93
13 - - 244.63 69.41
14 - - 239.61 68.03
15 - - 275.68 80.09
16 - - 277.96 80.77

Average
Fmax

359.72 - 346.02 -

Figure C.2 presents the average maximum force per mooring line, as well as the overall average max-
imum force across all lines.
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(a) 12-line configuration (b) 16-line configuration

Figure C.2: Average maximum mooring line forces per line for the 12-line and 16-line systems. The blue bars represent the
average maximum force per individual line. The red dashed line indicates the overall average maximum line force across all

lines in the system.

C.2. Distributions, scatter plots, and correlation analysis
This section presents an exploratory analysis of the DMA dataset comprising 11,520 simulated scenar-
ios. Each scenario corresponds to a unique combination of input features (Table 4.5) and the resulting
target values: the mean mooring line force (F̄mean) and maximum mooring line force (Fmax), both com-
puted via numerical DMA.

The analysis includes frequency plots of the target variables in Subsection C.2.1. Subsection C.2.2
presents the sampled distribution of each feature and includes scatter plots illustrating its relationship
with the target values. Additionally, Spearman’s rank correlation coefficient (rs) is used to quantify the
monotonic association between each feature and the targets.

C.2.1. Target distributions
The distributions of the two target values over all scenarios are shown in Figure C.3.

(a) F̄mean (b) Fmax

Figure C.3: Distribution of the calculated target forces across 11,520 DMA scenarios

C.2.2. Feature analyses
The following paragraphs provide of each feature the distribution, scatter plots with the targets, and the
Spearman’s correlation coefficient.

C.2.2.1. Water Depth (x1)
Scenarios were sampled at low tide and high tide, corresponding to water depths of 16.53 and 18.48
meters, respectively.
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Figure C.4: Distribution of the water
depth values in the DMA dataset

Figure C.5: Water depth versus F̄mean
(rs = −0.00)

Figure C.6: Water depth versus Fmax
(rs = −0.02)

C.2.2.2. Number of Lines (x2)
The number of mooring lines was evenly distributed between 12 and 16.

Figure C.7: Distribution of the number of
lines in the DMA dataset

Figure C.8: Number of lines versus
F̄mean (rs = −0.05)

Figure C.9: Number of lines versus Fmax
(rs = −0.02)

C.2.2.3. Mooring line material (x3, x4)
The mooring line material is encoded using two binary indicators: x3 for nylon, and x4 for polyester.

Figure C.10: Distribution of nylon lines in
the DMA dataset

Figure C.11: Nylon lines versus F̄mean
(rs = 0.04)

Figure C.12: Nylon lines versus Fmax
(rs = −0.03)

Figure C.13: Distribution of polyester
lines in the DMA dataset

Figure C.14: Polyester lines versus
F̄mean (rs = −0.04)

Figure C.15: Polyester lines versus Fmax
(rs = 0.03)
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C.2.2.4. Minimum Breaking Load (MBL) (x5)
MBL values were sampled at 120, 130, and 150 tonnes.

Figure C.16: Distribution of MBL values
in the DMA dataset

Figure C.17: MBL versus F̄mean
(rs = 0.19)

Figure C.18: MBL versus Fmax
(rs = 0.11)

C.2.2.5. Pretension (x6)
For all scenarios, pretension was assigned one of four discrete values: 5%, 10%, 20%, or 40% of the
mooring line’s MBL. This feature shows a very strong positive monotonic correlation with both target
variables, indicating that higher pretension levels consistently lead to increased mooring line forces.

Figure C.19: Distribution of pretension
values in the DMA dataset

Figure C.20: Pretension versus F̄mean
(rs = 0.95)

Figure C.21: Pretension versus Fmax
(rs = 0.66)

C.2.2.6. Wind Area (x7)
The wind area is expressed as a percentage of the fully loaded vessel profile and was sampled at 40%,
60%, 80%, and 100%.

Figure C.22: Distribution of wind area
values in the DMA dataset

Figure C.23: Wind area versus F̄mean
(rs = 0.03)

Figure C.24: Wind area versus Fmax
(rs = 0.07)

C.2.2.7. Viscous Damping (x8)
Evenly sampled values of 0%, 2%, and 4% represent varying levels of added damping.
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Figure C.25: Distribution of viscous
damping values in the DMA dataset

Figure C.26: Viscous damping versus
F̄mean (rs = −0.00)

Figure C.27: Viscous damping versus
Fmax (rs = −0.02)

C.2.2.8. Wind Velocity (x9)
Wind velocity was varied between 5 m/s and 18 m/s.

Figure C.28: Distribution of wind velocity
values in the DMA dataset

Figure C.29: Wind velocity versus F̄mean
(rs = 0.14)

Figure C.30: Wind velocity versus Fmax
(rs = 0.47)

C.2.2.9. Wind direction (x10, x11)
The wind direction was uniformly sampled between 173◦ and 263◦ to represent the prevailing west-
erly winds in the region. To account for the cyclic nature of directional data, the wind direction was
transformed into its sine (x10) and cosine (x11) components.

Figure C.31: Distribution of the sine
components values in the DMA dataset

Figure C.32: Sine of the wind direction
versus F̄mean (rs = 0.08)

Figure C.33: Sine of the wind direction
versus Fmax (rs = 0.13)
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Figure C.34: Distribution of the cosine
components values in the DMA dataset

Figure C.35: Cosine of the wind direction
versus F̄mean (rs = −0.08)

Figure C.36: Cosine of the wind direction
versus Fmax (rs = −0.14)

C.3. Correlation coefficients
Spearman’s correlation coefficient rs ranges from -1 (perfect negative monotonic correlation) to 1 (per-
fect positive monotonic correlation). It is suitable for detecting nonlinear but monotonic relationships
(Xiao et al., 2016). Non-monotonic such as perfect quadratic relationships, however, are not captured
by this measure.

Figure C.37 presents the correlation matrix between the input features and target values. As the feature
values were independently sampled, the correlation coefficients between input features are very low,
as expected.

Regarding the mean mooring line force, pretension exhibits an extremely strong monotonic relationship
(rs = 0.95). This is followed by weak correlations with MBL (rs = 0.19) and wind velocity (rs = 0.14).

For the maximum mooring line force, pretension also shows the strongest correlation (rs = 0.66), fol-
lowed by a moderate correlation with wind velocity (rs = 0.47). The wind direction components have
weaker correlations: cosine (rs = −0.14) and sine (rs = 0.13). MBL follows closely with rs = 0.11.

All other features show negligible correlation with the targets (|rs| < 0.10), indicating very weak mono-
tonic relationships.

Figure C.37: Spearman’s correlation coefficients between input features and target values



D
Sensitivity analysis of Multi-Criteria

Analysis

Multi-Criteria Analysis (MCA) is inherently sensitive to the subjective selection of weights assigned to
objectives and criteria. To evaluate the robustness of the MCA outcomes under varying priorities, a
sensitivity analysis was performed.

The weights of the three objectives were systematically varied, while preserving their relative impor-
tance: accuracy was considered more important than efficiency, which in turn was prioritized over
interpretability (accuracy > efficiency > interpretability), as determined in collaboration with the Port of
Rotterdam.

For the actual MCA that determined the final DMAmetamodel in Subsection 5.3.4, the following weights
were applied: accuracy 55%, efficiency 30%, and interpretability 15%, in line with the defined priority
ordering. This configuration resulted in total weighted scores of 73.70 for the LR model and 84.50 for
the MLP model, making MLP the selected metamodel.

D.1. Method
The objective weights were varied in steps of 5%, while ensuring the total sum remained 100%. within
each objective, the weights of the criteria were kept in fixed proportion. The sensitivity analysis was
performed based on the predetermined criterion scores assigned to both models as presented in Sub-
section 5.3.4. These weights and scores are provided in Table D.1.

For each weight configuration, the total weighted score was computed for both the LR and MLPmodels.
The model with the highest score was labeled the “winner”.

Table D.1: Proportional criteria weights and criteria scores of the candidate models

Objective Criterion Weight Score
LR MLP

Accuracy RMSE 35/55 0.34 0.90

R2 20/55 0.84 1.00

Efficiency Inference time 25/30 1.00 1.00
Development effort 5/30 1.00 0.10

Interpretability Transparency 1 1.00 0.50

D.2. Results
Table D.2 presents the results for all tested objective weight configurations, along with the resulting
total scores for each model and the selected winner.
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Although the weights were varied, the relative importance ordering (accuracy > efficiency > interpretabil-
ity) was always preserved. The LR model was only selected as the winner in one configuration, where
accuracy was weighted at 40%, efficiency at 35%, and interpretability at 25%. In all other configura-
tions, where accuracy received a weight of 50% or more, the MLP model consistently outperformed
LR.

Table D.2: Objective weight configurations and resulting model scores

No. Objective weights (%) Total weighted score Winner
Accuracy Efficiency Interpretability LR MLP

1 40 35 25 80.87 79.70 LR
2 45 40 15 78.48 83.64 MLP
3 45 35 20 78.48 81.89 MLP
4 45 30 25 78.48 80.14 MLP
5 50 45 5 76.09 87.57 MLP
6 50 40 10 76.09 85.82 MLP
7 50 35 15 76.09 84.07 MLP
8 50 30 20 76.09 82.32 MLP
9 55 40 5 73.70 88.00 MLP
10 55 35 10 73.70 86.25 MLP
11* 55 30 15 73.70 84.50 MLP
12 55 25 20 73.70 82.75 MLP
13 60 35 5 71.31 88.43 MLP
14 60 30 10 71.31 86.68 MLP
15 60 25 15 71.31 84.93 MLP
16 65 30 5 68.92 88.86 MLP
17 65 25 10 68.92 87.11 MLP
18 65 20 15 68.92 85.36 MLP
19 70 25 5 66.53 89.30 MLP
20 70 20 10 66.53 87.55 MLP
21 75 20 5 64.14 89.73 MLP
22 75 15 10 64.14 87.98 MLP
23 80 15 5 61.75 90.16 MLP

∗ The actual weight configuration used for evaluating the candidate DMA metamodels

D.3. Conclusion
The MLP model is the justified winner based on the individual criterion scores. The MCA results are
robust with respect to variations in the objective weights, provided that the relative importance remains
accuracy > efficiency > interpretability and the internal criterion weights are proportional.

Additionally, based on stakeholder input it was concluded that accuracy should be valued at least as
highly as efficiency and interpretability combined. Therefore, in all tested configurations where accuracy
received a weight of 50% or more, the MLPmodel was consistently selected as the most suitable model.



E
Measurement data for updating input

parameters

This appendix presents the measurements recorded during the event on January 21 and 23, 2024,
when the Cartagena Express was moored at the ECT berth. Furthermore, it explains the process
by which the respective measurements were consolidated into a single representative value for each
parameter.

E.1. Mooring line force
The mooring line forces of four lines were measured with Smart Bollards during the measurement
campaign.

E.1.1. Smart bollard
The Smart Bollard (Figure E.1), developed by Straatman in cooperation with Port of Rotterdam, is a
device that provides real-time data on mooring line loads. It replaces traditional bollards and can be
placed on existing anchor platforms using an adapter plate. The Smart Bollard maintains the familiar
T-shape design, but waves in the base plate allow the shaft to move within safe limits. High-precision
sensors measure the deformation in three directions, which is then converted into bollard force, line
angle, and line direction. The collected data is transmitted wirelessly. Following a pilot phase, a large-
scale deployment of Smart Bollards is being installed along selected quays in the Port of Rotterdam.

Figure E.1: Traditional bollard (left) and Smart
Bollard (right) in the Port of Rotterdam (Rijnmond,

2021)

E.1.2. Smart bollard measurements
The Cartagena Express was moored using 16 lines, arranged in the same pattern as defined in the
case study. Her lines were made of polyester and had an MBL of 163 tons. Lines 11 and 12 were both
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attached to Smart Bollard 179O, line 15 to 179W, and line 16 to 178O, as illustrated in Figure E.2. It
is assumed that the measured bollard loads correspond directly to the forces in the attached mooring
lines.

Figure E.2: Mooring layout of the stern of the observed vessel with line 11 and line 12 both attached to Smart Bollard 178O,
line 15 to 179W, and line 16 to 179O

Figure E.3: Measurements of the Smart Bollards

Since the DMA metamodel requires target variables derived from mooring line forces, the available
measurements must be translated accordingly. Targets mean (F̄mean) and maximum (Fmax) mooring
line force can both be estimated from individual mooring line force measurements.

As shown in Figure E.3, Smart Bollard 178O (connected to line 16) experiences the lowest loads. Bol-
lard 179O, with lines 11 and 12 attached, records the highest total loads. Assuming an even load
distribution between the two lines, the individual force in each is still lower than the force in line 15,
which is connected to 179W. Therefore, the force measured at bollard 179W is taken as representative
of the individual line forces.

To ensure consistency with the DMA simulation duration, the selected measurement window also spans
three hours, from 2024-01-22 00:00:00 to 2024-01-22 03:00:00, as highlighted in yellow in the figure.
During this period, the mean and maximum loads recorded at bollard 179W were 28.9 tonnes and 38.5
tonnes, respectively, equivalent to 289.070 kN and 385.000 kN.

As detailed in Section C.1, analysis of the synthetic DMA dataset (comprising 16 mooring lines) showed
that the mean force in line 15 corresponds to approximately 102.86% of the overall average mean line
force F̄mean, while its maximum force accounts for 80.09% of the overall maximum mooring line force
Fmax. To estimate the true targets for the metamodel, the measured values are scaled accordingly:

• The actual mean force per line is estimated by scaling the observed mean value of 289.0 kN by
a factor of 100

102.86 , yielding F̄mean = 281.032 kN.
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• The actual maximum mooring line force is estimated by scaling the observed maximum value of
385.0 kN by a factor of 100

80.09 , resulting in Fmax = 480.709 kN.

E.2. Wind area vessel
The wind area of the vessel changed over time due to loading and unloading. Upon arrival, the front
area was 1,790 m2 and the side area was 6,479 m2 according to photos. Upon departure on January
23, the front area was 1,810 m2 and the side area 7,127 m2.

A front area of 1,870 m2 was assumed, corresponding to a ship with no containers protruding above
or beside the superstructures on deck. The side area was averaged, resulting in 6,803 m2 which
corresponds to 39 containers on deck visible from the side. This means that the number of containers
on deck was 12% of the total possible number of containers on deck. The wind area was thus set to
12%.

In reality, the draught was 13.00 m upon arrival, and 12.60 m upon departure. In the metamodel, a
draught of 12.25 m, as in the case study, is assumed, but the reduction in wind area due to the larger
draught was accounted for in the wind area percentage.

E.3. Environmental conditions
During the measurement campaign, the wind and water level were measured at two different sensor
stations.

E.3.1. Sensor locations
Wind velocity and direction were measured at the Noorderpier (NRDP) station, located approximately
3.5 km from the berth. Water level data were obtained from the Europahaven (EURH) station, situated
roughly 2.2 km from the DDN berth (Google Maps, 2024). The locations of these measurement stations
are shown in Figure E.4.

Figure E.4: The locations of the water level sensor at Europhaven (EURH) and wind sensors at
Noorderpier (NRDP), and the ECT berth (Google Maps, 2024)
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E.3.2. Wind

Figure E.5: Wind conditions measured at Noorderpier (NRDP) during the event

Figure E.5 illustrates the wind velocity and wind direction at the wind sensor location, Noorderpier
(Figure E.4), during the event. The yellow area highlights again the time period of interest. Here, the
least favorable wind conditions are observed, characterized by high wind speeds and a direction nearly
perpendicular to the ship (263◦). During the time period of interest the average wind velocity was 16.97
m/s and average wind direction was 194.64◦.

The Port of Rotterdam provides conversion factors to translate the wind measured at Noorderpier to
local wind conditions in the port. Specifically, for the observed wind direction, the wind speed amplifi-
cation factor at the ECT berth was estimated to be 0.972, yielding a wind velocity of 16.49 m/s. The
wind direction is assumed to be the same and is rounded to 195◦.

E.3.3. Water level
Figure E.6 shows the recorded water level in the Europahaven during the event.

Figure E.6: Water level measurement in the Europahaven (EURH) during the event

During the time period of interest, the average water level was +20.22 cm NAP. It assumed that the
water level at the ECT berth is similar to the water level at the sensor location. The defined water level,
referenced to NAP, was converted to water depth relative to the seabed, which is located at -17.20 m
NAP. Consequently, a measured water level of 20.22 cm NAP corresponds to a water depth of 17.40
m.

E.4. Measurement sample
For each measured parameter one value was found to create a sample that represents the time period
of interest in the event best in the right location. The overview of these measurement values in the
correct formats and units is presented in Table E.1.
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Table E.1: Measurement of the mooring of Cartagena Express at the DDN berth at January 21 and 22, 2024

Parameter Measured value Metamodel variable type
Input Output

Water level (m) 17.40 m x1

Number of lines 16 x2

Mooring line material (-) Polyester x3, x4

MBL (ton) 163 ton x5

Wind area (%) 12% x7

Wind velocity (m/s) 16.49 m/s x9

Wind direction (◦) 194.64◦ x10, x11

Mean mooring line force F̄mean 281.032 kN y1
Maximum mooring line force Fmax 480.709 kN y2



F
Bollard capacity exceedance

probability

This appendix provides an illustrative example of how the metamodel can be used to assess the prob-
ability of bollard load exceedance due to mooring line forces over its operational lifetime. It outlines the
data sources, assumptions, and approach used in a simplified Monte Carlo simulation to demonstrate
this application.

F.1. Reliability requirements
The Safe Working Load (SWL) of a structure corresponds to the Serviceability Limit State (SLS) and
represents the maximum expected load under normal operational conditions. The design load Fd re-
lates to the Ultimate Limit State (ULS) and defines the maximum load capacity a structure can sustain
before collapse of failure occurs. Between the SWL and the design load, the structure is allowed to
undergo deformation without experiencing failure.

Structural reliability is commonly expressed using the reliability index β and probability of failure Pf ,
which are standard metrics according to Eurocode – Basis of structural and geotechnical design (2025).
Independent from the reference period, the functional relationship between failure probability and reli-
ability index is given by:

Pf = Φ(−β) (F.1)

Where
Pf probability of failure
Φ() the standard normal cumulative probability distribution function
β reliability index

Table F.1: Relation between failure probability Pf and reliability index β (Eurocode – Basis of structural and geotechnical
design, 2025)

Pf 10−1 10−2 10−3 10−4 10−5 10−6 10−7

β 1.28 2.33 3.09 3.72 4.26 4.75 5.20

Target reliability index values β for 1-year and 50-year reference periods, applicable to design conditions
in the ULS, must be met to consider the structure safe. These target values are listed in Table F.2.
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Table F.2: Target values for reliability index β for different consequence classes

Consequence
class

1-year reference
period

50-year reference
period

β β Pf,50

CC3 5.2 4.3 ∼ 10−5

CC2 4.7 3.8 ∼ 10−4

CC1 4.2 3.3 ∼ 10−3

When a load is considered the leading action and the resistance uncertainty is not taken into account,
the reliability index β should be reduced by a factor of 0.7 to ensure a more conservative safety require-
ment.

F.2. Bollard information and mooring frequency
The DDN berth is equipped with bollards with a SWL of 1000 kN. Applying a safety factor of 1.5 (Broos
et al., 2018), the corresponding design load Fdesign is 1,500 kN. The operational design lifetime of these
bollards Tlife is 100 years. According to the Port of Rotterdam’s guidelines, a maximum of three mooring
lines may normally be attached to a single bollard (Broos et al., 2018). However, at the DDN berth, the
maximum is limited to two lines.

It is assumed that bollards fall under Consequence Class 1 (CC1), and that approximately 350 vessels
are moored at the berth each year, defining the annual mooring frequency fannual.

F.3. Input parameter distributions
The distributions for each input parameter of the DMA metamodel are presented in Table F.3 and are
described in the following subsections.

Table F.3: Overview of input parameters and their distributions used for Monte Carlo simulations

Input parameter Distribution Parameters Remarks

x1 Water depth (m) Uniform Min = 16.53, Max = 18.48 Based on tidal measurements in the
Europahaven (Janssen & Van Hell, 2023)

x2 Number of lines (-) Discrete (conditional) 12 (2/3), 16 (1/3); forced 16 if
vwind ≥ 13.9 m/s

Based on mooring configuration practice by
the KRVE (Sterkenbrug, 2024)

x3, x4 Line material (-) Categorical Nylon (51/94), Polyester (43/94) Based on observations in the Port of
Hamburg by Heitmann (2024)

x5 MBL (t) Truncated normal (by
material)

Nylon: µ = 114, σ = 15
Polyester: µ = 120, σ = 15
Bounds: [90, 160]

Based on observations in the Port of
Hamburg by Heitmann (2024)

x6 Pretension (% MBL) Truncated normal µ = 10, σ = 5; bounds: [0, 40] Based on Lamont-Smith (2019), Barros and
Mazzilli (2018), M. Yan et al. (2023), and
Van Zwijnsvoorde et al. (2018)

x7 Wind area (%) Truncated normal µ = 70%, σ = 15;
bounds: [40, 100]

Reflects varying container loading

x8 Viscous damping (%) Uniform Min = 0, Max = 6 Based on values used in DMA practice by
Haskoning

x9 Wind velocity (m/s) Joint (by direction) Ranges per direction [0, 32.6] Based on wind statistics at Beerkanaal
Radarpost 37 (Janssen & Van Hell, 2023)

x10, x11 Wind direction (◦) Discrete 180◦, 210◦, 240◦ Trained model range (173◦ – 263◦)

F.3.1. Water depth
A uniform distribution is assumed between the observed mean low and high tide levels at the ECT
berth (16.53 m and 18.48 m), based on measurements from the Europahaven sensor between 2002
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and 2022. This reflects the assumption of equal likelihood across the tidal range.

F.3.2. Number of mooring lines
According to Sterkenbrug (2024), vessels like the Cartagena Express typically deploy 12 mooring lines
under standard conditions. However, under extreme weather or when sufficient bollards are available,
16 lines may be deployed.

For the simulation, a discrete distribution with probabilities 2
3 for 12 lines and 1

3 for 16 lines was used.
Additionally, to represent operational safety protocols, the number of lines is automatically set to 16
when the wind velocity exceeds 13.9 m/s.

F.3.3. Mooring line material and MBL
Only nylon and polyester lines are considered, as the DMA metamodel was only trained on these
materials. Predictions involving other materials would therefore be impossible and unreliable.

Based on observations at the Port of Hamburg by Heitmann (2024) in Table B.1 for 300 m and 330 m
vessels, 51% of the mooring lines are nylon, with an average MBL of 114 tonnes and 43% are polyester,
with an average MBL of 120 tonnes.

The material sampling follows a probability distribution of 51
94 for nylon and

43
94 for polyester. MBL values

are drawn from a truncated normal distribution with a mean of 114 t for nylon and 120 t for polyester
lines, a standard deviation of 10 t, and bounds set between 90 and 160 t.

F.3.4. Pretension
As discussed in Subsection 2.2.1, the pretension in mooring lines typically ranges between 5% and
10% of the MBL, according to values reported in literature (Lamont-Smith, 2019; Barros & Mazzilli,
2018; M. Yan et al., 2023; Van Zwijnsvoorde et al., 2018).

In this study, pretension values are sampled from a truncated normal distribution with a mean of 10%
of the MBL and a standard deviation of 5%. The distribution is bounded between 0% and 40% of the
MBL to ensure physical realism and to allow for occasional high pretension scenarios, as may occur in
practice.

F.3.5. Wind area
The wind-exposed area, representing the above-deck container stack, is expressed as a percentage
of the maximum possible exposure. A truncated normal distribution is assumed, with a mean of 70%
and a standard deviation of 15%, to reflect different loading conditions while ensuring values remain
within the the range of 40% to 100%.

F.3.6. Viscous damping
A uniform distribution from 0% to 6% is assumed. This reflects the typical values used by Haskoning
in their DMA simulations and represents uncertainty evenly across this range.

F.3.7. Wind velocity and direction
The wind joint distribution presented in Table F.4, derived from historical wind data collected between
2009 and 2019 at the Beerkanaal Radarpost 37 Janssen and Van Hell (2023), forms the basis of the
applied wind distribution. Due to its close proximity to the DDN berth, this measurement location is
considered representative of the local wind conditions.
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Table F.4: Wind frequency Beerkanaal Radarpost 37 between 2009 and 2019 (Janssen & Van Hell, 2023)

Wind velocity (m/s)

Wind direction (◦) [0, 5.5)
0–3 Bft

[5.5, 8)
4 Bft

[8, 10.8)
5 Bft

[10.8, 13.9)
6 Bft

[13.9, 17.2)
7 Bft

[17.2, 20.8)
8 Bft

[20.8, 32.6)
9–11 Bft Total

[345, 15) North 4.81% 2.40% 1.33% 0.43% 0.05% 0.00% 0.00% 9.03%

[15, 45) NNE 2.72% 1.96% 1.21% 0.37% 0.05% 0.00% 0.00% 6.31%

[45, 75) ENE 3.06% 1.82% 1.02% 0.22% 0.01% 0.00% 0.00% 6.13%

[75, 105) East 4.51% 2.65% 0.98% 0.22% 0.06% 0.00% 0.00% 8.42%

[105, 135) ESE 2.08% 0.87% 0.35% 0.05% 0.00% 0.00% 0.00% 3.35%

[135, 165) SSE 2.89% 1.86% 0.67% 0.10% 0.00% 0.00% 0.00% 5.52%

[165, 195) South 6.11% 3.14% 1.67% 0.43% 0.05% 0.01% 0.00% 11.41%

[195, 225) SSW 5.60% 3.95% 2.14% 0.53% 0.04% 0.00% 0.00% 12.26%

[225, 255) WSW 4.51% 5.03% 4.14% 1.17% 0.10% 0.00% 0.00% 14.96%

[255, 285) West 3.24% 2.77% 2.37% 1.19% 0.26% 0.04% 0.00% 9.88%

[285, 315) WNW 3.26% 1.69% 0.92% 0.35% 0.10% 0.01% 0.00% 6.34%

[315, 345) NNW 3.86% 1.65% 0.72% 0.16% 0.02% 0.00% 0.00% 6.42%

Total 46.64% 29.79% 17.52% 5.23% 0.75% 0.07% 0.00% 100%

The DMA metamodel is only valid for wind directions between 173◦ and 263◦, which statistically oc-
cur most frequently and are associated with the highest mooring line forces as mentioned in Subsec-
tion B.2.8.

To ensure consistency and validity of the model predictions, only three representative directions were
selected: 180◦ (South), 210◦ (SSW), and 240◦ (WSW). The sampling probabilities for these directions
are derived from their relative frequencies and are normalized to sum up to 1: 180◦ has a probability
of 11.41

38.64 , 210
◦ has a probability of 12.26

38.64 , and 240
◦ has a probability of 14.96

38.64 .

Wind speeds are sampled conditionally based on the selected direction and a joint distribution of wind
direction and speed range. Each sampled wind direction corresponds to a speed interval and probability,
ensuring that the wind conditions reflect realistic joint occurrences.

F.4. Monte Carlo sampling
Monte Carlo sampling is applied by repeatedly drawing random samples from the defined input distribu-
tions. These sampled inputs are evaluated using the metamodel to predict the corresponding maximum
mooring line force Fmax.

The total bollard load Fbollard is approximated by multiplying the maximum predicted line force Fmax by
the number of mooring lines on a single bollard n:

Fbollard = Fmax · n (F.2)

By aggregating a large number of such simulated outcomes (Nsamples = 100,000), the probability distri-
bution of the bollard load is estimated.

F.5. Probability calculation
The exceedance probability per mooring is computed by evaluating how often the predicted bollard
load surpasses either the SWL or the design load (1.5×SWL). The basic exceedance probability per
mooring event is defined as:

Pevent =
Nexceedance

Nsamples
(F.3)

The probability that the load does not exceed the capacity in a single mooring is Pno event = 1− Pevent.
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Assuming an annual mooring frequency of fannual and a reference period of Tref years, the probability
that the load never exceeds the capacity during the reference period is:

Pno ref = (1− Pevent)
fannual·Tref (F.4)

Hence, the probability that the capacity is exceeded at least once during the reference period becomes:

Pref = 1− (1− Pevent)
fannual·Tref (F.5)

F.6. Results
Figure F.1 shows the distribution plot of the maximum mooring line force (Fmax) calculated by the DMA
metamodel, for the 100,000 Monte Carlo samples.

The distribution of maximum bollard load Fbollard is calculated for cases where one, two, or threemooring
lines are attached to the same bollard. Several standard distributions were fitted to the data, including
Normal, Lognormal, Weibull, and Gamma. Among the fitted distributions, the Lognormal distribution
provided the best fit for the cases with one and two mooring lines, while the Gamma distribution offered
the best fit for the case with three lines, as visualized in Figure F.2.

Figure F.1: Distribution of Fmax (N=100,000) Figure F.2: Histogram and probability density of the maximum bollard
load Fbollard (N=100,000)

The probability that the bollard load exceeds the SWL, P (Fbollard > FSWL), is calculated using the
fitted distributions for different reference periods and varying numbers of attached lines. Similarly,
the probability of bollard failure, defined as the bollard load exceeding the design load, is given by
P (Fbollard > Fdesign). The distribution and resulting probabilities, along with the corresponding reliability
index for a 50-year reference period, are summarized in Table F.5.
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Table F.5: Fitted probability distributions of bollard load for one, two, and three lines per bollard, with exceedance probabilities
for the SWL and design load per event, over 50 and 100 years (operational lifetime), and the corresponding reliability index for

50 years

Lines
per
bollard

Fitted
distribution

Distribution
parameters

P (Fbollard > FSWL) P (Fbollard > Fdesign)

Per
event 50 years 100 years Per

event 50 years 100 years β50

1 Lognormal s: 0.18519;
loc: -210.42220;
scale: 347.98036

8.41 · 10−12 1.47 · 10−7 2.94 · 10−7 0.00 · 100 0.00 · 100 0.00 · 100 ∞

2 Lognormal s: 0.24191;
loc: -252.38312;
scale: 527.41120

1.75 · 10−4 9.53 · 10−1 9.98 · 10−1 3.46 · 10−7 6.03 · 10−3 1.20 · 10−2 2.51

3 Gamma a: 14.08968;
loc: -313.99886;
scale: 52.86210

7.39 · 10−3 1.00 · 100 1.00 · 100 3.15 · 10−5 4.23 · 10−1 6.68 · 10−1 0.19

As stated in Section F.1, the target reliability index β50 for a 50-year reference period for structures in
CC1 is 3.3. When considering only the leading action, a reduction factor of 0.7 is applied, resulting in
a stricter β50 of 2.31. This corresponds to a probability of failure of approximately 10−2 over 50 years.

The reliability indices shown in Table F.5 are higher than the required value of 2.31 for configurations
with one or two mooring lines per bollard, indicating sufficient safety. However, the configuration with
three lines does not meet this criterion, suggesting it is not safe according to Eurocode – Basis of
structural and geotechnical design (2025).

For the configuration with two lines per bollard, the probability that the bollard load exceeds the SWL
during the 100-year lifetime is nearly 100%. While a single exceedance of the SWL does not necessarily
lead to immediate failure, it may cause plastic deformation or initiate fatigue damage. Over time, this
can reduce the structural capacity of the bollard. It is important to note that the calculated probabilities
and corresponding reliability indices do not account for fatigue effects. Therefore, even the two-line
configuration may be considered borderline in terms of long-term safety when fatigue is taken into
account.

F.7. Assumptions
This analysis serves as an illustrative example demonstrating how the metamodel can be applied to
estimate the probability of bollard capacity exceedance. Several simplifying assumptions are made in
this approach:

• Only a single simulation is performed per mooring event, even though a vessel may remain
moored for an extended period (e.g., an entire day). This implies that environmental and opera-
tional conditions (i.e., the model inputs) are assumed to remain constant throughout the mooring
event.

• It is assumed that all mooring events involve the Cartagena Express vessel, using an identical
mooring line configuration each time. Additionally, it is assumed that the same bollard is consis-
tently subjected to the maximum mooring line forces in every mooring event.

• Only wind directions of 180◦, 210◦, and 240◦ are considered, representing exclusively unfa-
vorable wind conditions for mooring. This choice results in a conservative estimate of the ex-
ceedance probability.

• The DMA metamodel does not enforce physical constraints on its output, allowing it to predict
negative mooring line forces or excessive high values that exceed the MBL, which are physically
unrealistic. It does not model line breakage or the redistribution of the resulting loads among
the remaining lines. Additionally, winch rendering, which typically occurs at 60% of the MBL and
limits the actual force in a line (Subsection 2.2.2), is not accounted for.

• The total load on a bollard is estimated as the number of lines multiplied by the predicted max-
imum mooring line force. This approach assumes that all lines connected to the same bollard
experience their peak force simultaneously, with equal magnitude and in the same direction. This
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oversimplified, conservative assumption neglects differences in line angles, winch settings, and
the true resultant of forces, making it an overestimation of true bollard loading conditions.

• The method assumes that forces from multiple mooring lines attached to the same bollard act in
the same direction and does not account for their resultant force.

• Fatigue effects are not included in the analysis. The current approach only considers the ultimate
limit state failure due to excessive loading, whereas a complete structural reliability assessment
would also account for fatigue and accumulated damage over time.

• The design load of the bollard is set to 1.5 times the SWL, representing a fixed safety factor used
to define structural limits.

F.8. Conclusion
This appendix demonstrated how the DMA metamodel can be applied to estimate the probability of
bollard loads exceeding their capacity over over different time periods.

A Monte Carlo simulation was performed using the DMA metamodel, integrating realistic input parame-
ter distributions with historical wind data andmooring practices, to generate a representative distribution
of the maximummooring line force. These forces were then scaled according to the number of lines per
bollard in order to estimate the resulting bollard loads. Based on their distributions, the probability of
exceeding the 1,000 kN SWL and the 1,500 kN design threshold during individual mooring events was
evaluated. When combined with annual mooring frequencies, this approach provides a data-driven
method to assess long-term exceedance risks.

Results show that as more lines are attached to a single bollard, the probability of exceeding both the
SWL and design load increases significantly. For one or two lines per bollard, the calculated reliability
indices over 50 years are higher than the target value of 2.31, indicating acceptable safety according
to Eurocode – Basis of structural and geotechnical design (2025). However, configurations with three
lines do not meet this criterion and are therefore considered unsafe.

While two-line configurations satisfy the reliability requirement, the probability of exceeding the SWL
at least once during the 100-year lifetime is nearly 100%. Although a single exceedance does not
imply immediate failure, it may lead to plastic deformation and fatigue damage, potentially reducing the
bollard’s capacity over time. Since fatigue effects are not included in the current analysis, the two-line
configuration may still pose a long-term safety concern.

It is important to note that the metamodel does not enforce physical constraints: it may predict non-
physical negative forces and does not consider mooring line breakage or the redistribution of forces
after failure. Moreover, the bollard load is conservatively estimated by multiplying the maximum force
of a single line by the number of lines. This approach likely overestimates the actual bollard load. At
the same time, the DMA metamodel is limited to vessels of 333 meters, whereas larger vessels, which
do call at the DDN berth, could impose even higher mooring forces.

Since the Rotterdam Port Authority allows two lines per bollard on the DDN berth, these results cannot
be overlooked. It highlights the importance of carefully assessing mooring line forces and considering
cumulative effects of multiple lines on a single bollard. Despite simplifications the analysis emphasizes
the practical value of the DMA metamodel as a decision-tool for evaluating long-term bollard safety.

While the methodology relies on simplifying assumptions, it effectively demonstrates the practical value
of the metamodel as a decision-support tool. These assumptions include a fixed vessel type and moor-
ing configuration, limited wind directions, and use of measured wind data 1.5 km verderop. Additionally,
it unrealistically assumes that all lines attached to the bollard simultaneously experience the highest
peak forces across all lines. Line breakage is also not considered, meaning force redistribution among
remaining lines is not accounted for, and negative values...
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Additional figures

G.1. Learning curves

(a) LR - y1 (b) LR - y2

(c) MLP - y1 (d) MLP - y2

Figure G.1: Learning curves of the two candidate models (LR and MLP) (LR and MLP) and both target variables (y1: mean
mooring line force, y2: maximum mooring line force)
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