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Abstract

This study explores how different features impact
a Reinforcement Learning agent’s performance in
forex trading. Using a Deep Q-Network (DQN)
agent and EUR/USD data from 2022-2024, we
found that performance is highly sensitive to the
information provided. Key findings show that for
feature types like momentum and volatility, a sin-
gle indicator outperformed a combination of them,
as the latter tended to introduce noise. Including
information about the agent’s own status, such as
its current trade duration, was beneficial. Counter-
intuitively, providing more historical data consis-
tently worsened performance, leading to overfit-
ting where the agent memorized training data rather
than learning general strategies. The main conclu-
sion is that creating an effective state representation
is a trade-off; the complexity of the input data must
match the learning algorithm’s ability to process it
without overfitting.

1 Introduction
The use of artificial intelligence (AI) in financial trading has
become increasingly popular in recent years [8; 5]. Specif-
ically, reinforcement learning (RL) has shown a promising
future in the field of autonomous trading agents [11; 5; 22;
17]. These agents, in theory, can learn optimal trading strate-
gies through interaction with the market environment [5]. De-
spite this potential of RL in finance, its adoption remained
limited as of 2022. A report by the Dutch Authority for the
Financial markets (AFM) highlighted perceived risks associ-
ated with RL-based trading agents as a primary barrier, even
as firms acknowledged its future potential [5]. This gap be-
tween the potential and actual adoption of RL in algorithmic
trading shows further research is required into this field. Ad-
ditionally, reviews of the field, such as that by [22], explic-
itly call for more comparative studies, particularly examining
how different RL agents perform compared to each other un-
der similar conditions. Therefore, this work aims to provide
insights for developing more effective, robust, and safer AI-
based trading agents by investigating the impact of different
state representation designs on agent performance.

1.1 Research Questions

This paper seeks to answer the question: ”What are the
impacts of different state representation designs on the
performance of an RL-based low-frequency forex trad-
ing agent?” To answer this, the following sub-questions are
asked:

1. (SQ1) How does the inclusion or exclusion of specific
features (Technical Indicators, Trading Agent Data) af-
fect agent performance?

2. (SQ2) How does the quantity of information impact
agent performance?

1.2 Structure of Research
This paper is structured as follows: Section 1 introduces the
research, outlining the motivation, the research questions,
and related works. Section 2 provides background informa-
tion on trading and reinforcement learning. Section 3 de-
tails the methodology, including the formal problem descrip-
tion, dataset, and the reinforcement learning environment and
agent. Section 4 outlines the experimental setup, detailing the
data splits, performance metrics, and the protocol for the two
phases of experiments. Section 5 presents the results of these
experiments. Section 6 discusses the implications of these re-
sults, followed by a section on responsible research in Section
7. Finally, Section 8 provides the conclusion and suggestions
for future work.

1.3 Related works
To our knowledge, there have not yet been any works pub-
lished on specifically comparing different state representa-
tion designs under similar conditions in RL-based algorith-
mic trading. However, there are many other works around
the general use of reinforcement learning and artificial intelli-
gence in algorithmic trading, containing relevant information
for the goal of this study. Below we highlight some of the
related works.

Reviews & Surveys
A number of surveys [5; 22; 10; 17; 3] offer insights into the
current state of the field of RL in algorithmic trading, dis-
cussing various RL approaches, different state features, and
comparative performance analysis.

Applications
Several works [12; 14; 26; 11; 9; 30; 20] present a variety of
approaches of feature selection and data representation, rang-
ing from the use of raw market data and common technical
indicators to more advanced techniques such as dimension-
ality reduction, clustering, autoencoders, and learned feature
weighting. Below are highlighted some of the key insights.
Feature Engineering is Central:

• Many successful approaches do not just use raw prices
but incorporate a diverse set of features, including tech-
nical indicators [14; 9; 20], derivatives of raw mar-
ket data like log returns or price evolution [11; 26;
12], and trading agent data like current position, cash,
or holding duration [14; 26; 11; 30]. Reference [9]
specifically explores novel features from wave theory
and K-line patterns, suggesting that domain-specific or
advanced pattern recognition can enhance state input.

Data Representation Methods are Diverse and Impactful:
• Normalization (e.g., Z-score, division by last price, log

returns) is a common and crucial preprocessing step [12;
11; 20].

• Dimensionality Reduction and Robust Feature Extrac-
tion: Techniques like Stacked Denoising Autoencoders
(SDAEs in [14]) and offline State Representation Learn-
ing (SRL) involving PCA and clustering [20] are used
to manage large feature sets, reduce noise, and extract
more robust representations.



• Temporal Feature Extraction: LSTMs are frequently
employed within the RL architecture to process se-
quences of state features and capture temporal depen-
dencies [14; 20; 12].

• Specific Encodings: Sinusoidal encoding for time data
and one-hot encoding for categorical agent states (like
position) are used in forex trading agents [11].

• Discretization: For certain RL algorithms like Q-
learning in noisy markets, creating a finite state space
through discretizations and categorization of variables
(including agent-specific data like holding time) is a vi-
able strategy [30].

Quantity and Quality of Information Matter:
• Reference [9] advocates for multi-category features to

provide richer market information.
• Reference [26] shows a practical example of starting

with a broad set of potential observations and then defin-
ing a more focused, reduced observation space for the
actual agent.

Context and Market-Specific Design:
• References [11; 30] provide forex-specific state de-

sign examples, including intermarket features and multi-
timeframe analysis.

• Reference [20] demonstrates that their SRL (State Rep-
resentation Learning) components (dimensionality re-
duction, clustering, gate structure for feature weighting)
each contribute to improved performance, emphasizing
the importance of a tailored state representation pipeline.

2 Background
This section provides an overview of trading concepts, market
analysis techniques, and reinforcement learning (RL), laying
the foundation for our research.

2.1 Trading
This research focuses on trading in the foreign exchange
(forex) market, a decentralized global marketplace where cur-
rencies like the Euro and U.S. Dollar are exchanged [4]. Al-
gorithmic trading automates the process of executing asset
exchanges, using computer programs that act based on prede-
fined criteria such as timing, price movements, market data,
or other quantitative inputs [24]. Over time these exchanges
of currencies can result in profits or losses.

Exchange rates
In the forex market, currencies are exchanged in pairs, mean-
ing that to buy one currency, another has to be sold. Exchange
rates represent the value of the quote currency in terms of the
base currency, showing the amount of the quote currency that
is received by selling 1 unit of the base currency [15].

Currency prices are typically quoted with a bid price and
an ask price. The bid price is the rate at which a dealer (or the
market) is willing to buy a currency, while the ask price is the
rate at which they are willing to sell that same currency [21].

The difference between the ask price and the bid price is
known as the ’bid-ask spread’ or simply the ’spread’. A nar-
rower spread is generally more advantageous for traders as it

indicates lower transaction costs [21]. The spread commonly
increases during periods of low liquidity, and decreases dur-
ing periods of high liquidity [26].

Price movements in financial markets are often described
using the term ’ticks’. A tick represents the smallest possible
price change for a financial instrument [6].

Tick data refers to the most granular level of market infor-
mation, recording every individual price change (tick) and the
time it occurred. This high-resolution data is crucial for many
algorithmic trading strategies that rely on capturing small,
short-term price fluctuations.

Japanese Candlesticks
This research focuses on low-frequency trading, where deci-
sions are made at discrete time steps (e.g. 5-minute intervals).
The raw tick data is aggregated into Japanese candlesticks,
which represent the Open, High, Low, and Close (OHLC)
prices for a given period [5]. Figure 1 shows how candle-
sticks are formed, and highlights the difference between an
upward/bullish and downward/bearish candle.

Figure 1: Formation of candlesticks. Figure reproduced from [5].

Volume
Trading volume refers to the total quantity of an asset traded
during a specific period. It serves as an indicator of mar-
ket activity and liquidity. Because of the decentralized na-
ture of forex markets, absolute volume data is often unavail-
able. Instead, tick volume is used as a proxy. Tick vol-
ume measures the number of ticks that occur within a spe-
cific period. Although it doesn’t capture total trade sizes, tick
volume strongly correlates with actual trading volume [16;
28].

Analysis
Financial market analysis is broadly categorized into funda-
mental analysis, which examines external economic factors,
and technical analysis, which this work employs. Technical
analysis uses historical price and volume data to estimate fu-
ture price movements, often using technical indicators [5].
The different types of analysis are shown in Figure 2. Tech-
nical indicators are categorized into three main types: trend
indicators, momentum indicators, and volatility indicators.
Trend indicators are designed to identify the general direc-
tion of price in recent history. Momentum indicators, also
known as oscillators, measure the speed and strength of price
movements. They can help identify whether an asset is gain-
ing or losing strength [5]. Volatility indicators measure the
rate and magnitude of price fluctuations. They help traders



Figure 2: Financial Market Analysis Types. Figure reproduced and
adjusted from [5].

understand the degree of market risk and potential for signifi-
cant price swings. High volatility indicates large and rapid
price changes, while low volatility suggests a more stable
market. Complementing these categories are volume-based
indicators. These indicators incorporate trading volume into
their calculations to provide insight into the market partici-
pation and conviction driving a price trend. For instance, a
price trend accompanied by high volume is generally consid-
ered more significant than one with low volume [28].

Costs of Trading
Trading profitability is directly impacted by two main costs:
transaction costs and slippage. Transaction costs are explicit
fees for executing trades. Transaction costs are subdivided
into two main components: trading platform commissions,
and spread costs (crossing the spread). Commissions are fees
charged by a trading platform for the execution of trades, typ-
ically a percentage on the trading volume. As an example,
FOREX.com charges a commission of 0.005% for users with
a ”RAW Spread account” [1]. Spread costs arise from the
gap between the bid and ask prices, which incurs a minor loss
upon the execution of a trade [8; 11; 9; 30]. Slippage is an
implicit cost defined as the difference between the expected
and actual execution price of a trade. This typically occurs
due to market volatility during execution delays or the price
pressure from the trade’s own volume (market impact) [26;
20].

Trade Types
A trade is defined as a continuous period of holding a long or
short position [13]:

• A Long position is initiated by buying an asset, specu-
lating that its price will rise, allowing it to be sold later
for a profit.

• A Short position involves selling an asset (typically bor-
rowed), speculating that its price will fall, allowing it to
be bought back at a lower price for a profit.

2.2 Reinforcement Learning
Reinforcement Learning is a machine learning paradigm for
sequential decision-making. An agent learns to operate

within an environment by performing actions and receiving
feedback in the form of numerical rewards. The agent’s ob-
jective is to develop a policy, a strategy for choosing actions,
that maximizes the cumulative reward over time, effectively
learning optimal behavior through trial-and-error [10; 17; 20;
11]. Figure 3 shows a visual representation of this process.

Figure 3: Process of reinforcement learning. Figure reproduced
from [25].

RL algorithms can be classified in several ways [22; 3; 10]:
• By what they learn: Algorithms can be critic-only

(learning a value function to estimate the expected future
reward of states), actor-only (learning a policy directly),
or a hybrid actor-critic method (learning both simultane-
ously).

• By how they learn: On-policy algorithms improve the
same policy that is used to make decisions. In contrast,
off-policy algorithms can learn an optimal policy using
data generated by a different, exploratory policy, making
them more sample-efficient by allowing the reuse of past
experiences.

Deep Reinforcement Learning
Deep Reinforcement Learning (DRL) combines RL with
deep learning, using neural networks (e.g. MLPs, CNNs,
RNNs, LSTMs) as function approximators to handle com-
plex, high-dimensional state spaces like those found in finan-
cial data [22; 17; 14; 9].

Markov Decision Process
A Markov Decision Process (MDP) is a mathematical frame-
work for modeling sequential decision problems where out-
comes are partly random and partly controlled by a decision-
maker. Most reinforcement learning problems are framed as
MDPs. An MDP is formally defined by a tuple (S,A,T ,R,γ)
[10; 17; 20], which contains:

• S: A set of all possible states the environment can be in.
• A: A set of all possible actions the agent can take.
• T (s′|s, a): The transition probability of moving to state
s′ from state s after taking action a.

• R(s, a): The reward received after taking action a in
state s.

• γ ∈ [0, 1]: A discount factor that balances the impor-
tance of immediate versus future rewards.

A key assumption of the MDP framework is the Markov
property: the probability of transitioning to the next state de-
pends only on the current state and the action taken, and is



independent of the history of states and actions that led to the
current state [17; 14].

Partially Observable Markov Decision Process
In many real-world applications, including finance, the agent
cannot fully perceive the environment’s true state, violat-
ing the core assumption of an MDP. A Partially Observ-
able Markov Decision Process (POMDP) extends the MDP
for these scenarios where the agent cannot observe the true
state. A POMDP adds a set of observations Ω and an ob-
servation function O(o|s′, a), meaning the agent receives an
observation o that is a probabilistic function of the true un-
derlying state s. This makes the POMDP a more realis-
tic framework for algorithmic trading [11; 22; 3; 12; 26;
14].

3 Methods
3.1 Formal Problem Description
We model the low-frequency forex algorithmic trading task as
a portfolio optimization problem, framed as a POMDP. The
portfolio consists of two assets: a base currency (cash) and
a quote currency (shares). The agent’s goal is to learn a pol-
icy π(ot) that maps observations to actions to maximize the
expected cumulative discounted reward, which correlates to
maximizing the total final value of the portfolio. The POMDP
is defined by the tuple (S,A,T ,R,Ω,O,γ):

• State Space (S): The state st ∈ S consists of the port-
folio state pt, and the unobserved market state mt. The
portfolio state pt is defined by its cash (Ct, base cur-
rency) and shares (Ht, quote currency). A negative Ht

denotes a short position. Let Pt represent the exchange
rate of the currency pair at time t. We consider both the
bid price (Pbid,t) and the ask price (Pask,t). The port-
folio’s equity (Et) liquidation value, is calculated using
Equation 1.

Et =

{
Ct +Ht ∗ Pbid,t if Ht ≥ 0

Ct +Ht ∗ Pask,t if Ht < 0
(1)

• Action Space (A): The action space A is a fi-
nite set of discrete actions the agent can take, A =
{a0, a1, . . . , aN−1}. Each action maps to a different
configuration of the assets in the portfolio, as seen in
Section 3.4

• Reward Function (R): The reward function R(st, at)
provides the immediate feedback signal to the agent.
The reward is a function of the change in the agent’s
portfolio equity, guiding it toward profitable behavior.
The specific mathematical formulation of the reward is
a critical design choice detailed in Section 3.7.

• Transition Function (T ): The market state transition is
not modeled but follows historical data, as is standard in
backtesting environments (Section 3.4).

• Observation Space (Ω) and Function (O): The obser-
vation vector ot is composed of features derived from
historical market data and the agent’s portfolio states
(Section 3.3).

3.2 Dataset

The data source for this research is Dukascopy. We gathered
tick-by-tick historical data for the EUR/USD currency pair,
covering the full calendar years of 2022, 2023, and 2024. EU-
R/USD was chosen for its major use in previous research [5]
and being one of the most traded currency pairs in general
[15].

Resampling
The tick data is resampled into Japanese candlesticks using
the resample functionality within the Pandas library [19]. The
resampling is done both on the bid and ask prices to gener-
ate Open, High, Low, and Close (OHLC) values for each.
Regarding trading volume, Dukascopy provides bid volume
and ask volume fields with their tick data, but their precise
definition is not clearly documented. Therefore, we adopt the
count of ticks occurring within each candle as a proxy for the
volume. To account for non-trading hours, the resulting data
is filtered on having a tick count greater than 0.

The final resampled dataset consists of candlestick data at
the chosen granularity for the EUR/USD pair, with distinct
OHLC values for bid and ask prices, and a volume figure rep-
resenting the number of ticks per candle.

Analysis on the data in 15-minute japanese candlesticks
can be seen in Appendix A.

3.3 Feature Engineering

Due to data availability and time constraints, this research fo-
cuses solely on features directly calculated from the market
and agent data. The five types of features we recognize are:
time, trend, momentum, volatility, and agent features. The
trend, momentum, and volatility features are defined the same
as the technical indicators discussed in Section 2. We define
time features as features that give a quantitative indication of
time, for example, the hour of the day. Agent features are cal-
culated based on the agent’s current state, including its cash,
amount of shares, and previous actions.

Features
Within these categories, we recognize the following features:

• Time: SIN(interval), COS(interval), and
LIN(interval).

• Trend: Parabolic SAR, Volume Weighted
Average Price (VWAP), and Kaufman’s Adaptive
Moving Average (KAMA).

• Momentum: MACD, MFI, and CCI.

• Volatility: Bollinger Bands, Average True
Ranges (ATR), and Ease of Movement (EOM).

• Agent: CURRENT TRADE DURATION, and CURRENT
EXPOSURE.

Calculations of these features and our normalization, scaling,
and transformation techniques can be found in our GitHub
repository [2].



Core Feature Set
To establish a consistent baseline for both hyperparame-
ter optimization and our primary experiments, seen in Sec-
tion 4, we define a ”Core Feature Set”. This set is de-
signed to be a balanced representation, including one fea-
ture from each of our defined categories. The trend, mo-
mentum and volatility features have been provided with an
additional historical lookback of 4 timesteps. All features
have been normalized to approximately fall into the range
of −1 and 1. The core feature set consists of the fol-
lowing: SIN(24H), Parabolic SAR, MACD, Bollinger
Bands, Current Exposure. This feature set forms the ba-
sis of the hyperparameter optimization detailed in Appendix
C, and serves as a starting point for the experiments described
in Section 4.

3.4 Simulated Forex Environment
We developed a custom backtesting environment, built on the
Gymnasium API [27], to implement the POMDP described in
Section 3.1. The agent’s discrete action i ∈ {0, 1, . . . , N−1}
is mapped to a desired target exposure (χ), which represents
the intended ratio of the shares’ value to the total portfo-
lio equity. The target exposure for action i is calculated as

χ(i) = −1 +
2i

N − 1
, creating a uniform spread of posi-

tions from [−1, 1], or full short to full long. The agent’s cur-
rent exposure is calculated using the agent’s portfolio state:
χt = (Et − Ct)/Et At each step, the environment executes
the necessary trades at the open price of the current candle to
align the current exposure with the target, disregarding small
differences to avoid a large number of transactions. This pro-
cess of buying and selling accounts for the bid-ask spread
and commissions. Following the transaction, a reward and
next observation are calculated and returned to the agent. An
episode concludes if the agent’s equity is depleted or the end
of the dataset has been reached, after which it is reset. Visual
representations of this environment are given in Figures 6 and
7 in Appendix B.

As we are simulating the highly complex forex markets,
some assumptions and simplifications have been made:

• Zero Market Impact Hypothesis: we assume that the
agent’s trades have no impact on the price of the traded
asset.

• Action Execution: we assume actions get executed at
exactly the open prices of the current candlestick, with-
out any slippage.

3.5 RL Algorithm
We use the Deep Q-Network (DQN) algorithm, implemented
via the Stable-Baselines3 library [23], due to its demonstrated
success and frequent use in previous studies [5; 10; 26]. DQN
is an off-policy, critic-only algorithm that uses a deep neu-
ral network to approximate the optimal action-value function,
Q∗(s, a). The Q-network takes as input an observation, and
outputs the Q-values of each possible action. The agent’s pol-
icy is ϵ-greedy, meaning it selects the action with the highest
Q-value most of the time but chooses a random action with

a probability of ϵ to ensure exploration. To stabilize train-
ing, DQN utilizes an experience replay buffer, which stores
past experiences that are sampled in mini-batches to update
the Q-network. This process breaks the correlation between
consecutive samples. Additionally, a separate, periodically
updated target network is used to provide a stable target for
calculating the loss, further improving learning stability [23;
18; 17; 14; 26; 11]. The DQN algorithm involves a number
of key hyperparameters that were tuned during our research
(Section 4.4). A detailed list and explanation of these param-
eters can be found in Appendix C.3.

3.6 Action Space
We use a discrete action space of N=3, where the agent
chooses from the actions {0, 1, 2}. These actions map to a
target portfolio exposure, χ, of -1 (full short), 0 (neutral), and
+1 (full long), respectively.

3.7 Reward Function
We define the reward, Rt, as the percentage change in the
portfolio’s equity from the moment just before an action is
taken at time step t, to the beginning of the next time step,
t+ 1.

Let Epre−action,t be the equity calculated using the open
price at time t (Popen,t), before executing the action given by
the agent for timestep t. The reward is calculated as Rt =

(
Epre−action,t+1

Epre−action,t
− 1) ∗ 100.

Using pre-action equity at both t and t+1 ensures that the
reward reflects the full impact of price movement and trans-
action costs over that interval. This approach encourages the
agent to select actions that maximize portfolio growth in a
way that aligns with actual trading outcomes.

4 Experimental Setup
4.1 Data Splits
To ensure rigorous evaluation and to prevent data leakage, the
dataset covering 2022-2024 is divided chronologically into
two equally sized blocks. The first block (Jan 2022 - June
2023) was used exclusively for the multi-phase hyperparam-
eter optimization detailed in Section 4.4. The second block is
used in the main experiments, and split chronologically into a
training set (70%), a validation set (15%) for model selection,
and a final, untouched evaluation set (15%) for final evalua-
tion.

4.2 Performance Metrics
We evaluate each agent model using standard financial met-
rics to assess profitability, risk, and risk-adjusted performance
[5; 22; 10; 14; 20]:

• Annualized Sharpe Ratio (ASR): Our primary metric,
measuring risk-adjusted return. It is the sample Sharpe
Ratio of portfolio returns annualized for comparison,

calculated as ASR =
r

σr
∗
√
N . Here r and σr are



the mean and standard deviation of periodic portfolio re-

turns (rt =
Et

Et−1
− 1). N is the annualization factor,

representing the number of trading periods in a year.
• Total Profit and Loss (PnL %): The overall strategy

profitability, calculated as the percentage change in eq-
uity from start to finish.

• Maximum Drawdown (Max DD): A measure of down-
side risk, representing the largest peak-to-through de-
cline in portfolio equity, calculated as MDD =
min
t
(Et −max

τ≤t
Eτ ).

• Number of Trades: The total count of executed trades,
offering insight into trading frequency and transaction
costs. A trade is a continuous period of holding a long
or short position.

4.3 Benchmarks
We compare the results against several benchmarks to assess
whether the created RL-based strategies are viable. We use
four benchmarks:

1. Long Only: This model performs one long trade across
the entire dataset

2. Short Only: This model performs one short trade across
the entire dataset

3. Trend Following: The Trend Following benchmark
is a model designed to follow market trends by mak-
ing trades based on moving average crossovers [26].
It utilizes two Kaufman’s Adaptive Moving Average
(KAMA) indicators, each configured with a different
time window. A long trade is initiated when the shorter-
term moving average crosses above the longer-term one,
and conversely, a short trade is opened when it crosses
below.

4. Perfect Trading: This model takes near perfect actions
at each timestep, calculated beforehand using a dynamic
programming approach.

4.4 Hyperparameter Optimization
Prior to the main experiments, the hyperparameters were de-
termined through a systematic optimization process. This was
conducted in phases using a dedicated, non-overlapping por-
tion of the dataset to prevent data leakage and ensure that the
final model was not overfit to the test data. The comprehen-
sive details of this phased approach are described in Appendix
C. This process led to the selection of the parameters that can
be seen in Table 1.

4.5 Experimental Protocol
Our experimental protocol is structured in two distinct
phases, each designed to systematically address one of the
sub-questions outlined in Section 1. This approach allows
us to first isolate the impact of different types of information
before investigating the effect of the quantity of that infor-
mation. All experiments are conducted using the final model
architecture and hyperparameters determined during the opti-
mization phase, highlighted in Table 1.

Table 1: Experimentation Parameters

Configuration Name Value

Learning Rate 5× 10−5

γ 0.95
Buffer Size 60, 000
Batch Size 512
Tau 0.0025
Train Frequency (Steps) 64
Target Update Interval 2, 500
Exploration Fraction 0.40
Exploration Initial Epsilon 1.0
Exploration Final Epsilon 0.02
DQN Policy MlpPolicy
Network Architecture [32,16]
Activation Function Leaky ReLU
Optimizer Adam
Data Granularity 1-hour
Initial Capital 10, 000
Transaction Cost 0.005%

To ensure robustness and reproducibility of our results, all
experiments described below are executed on five distinct
random seeds: 42, 43, 44, 45, 46. The performance metrics
reported in Section 5 are the mean and standard deviation
across these five runs, providing insight into the stability of
our findings.

Furthermore, we employ a systematic model selection
strategy to balance performance with generalization and mit-
igate overfitting. During the training of an agent for a spe-
cific experimental setup, the model’s state is saved at the
end of every episode. After the training process concludes,
each of these saved models is evaluated on both the train-
ing set and the validation set. The definitive model for that
experiment is then selected based on a score calculated as:
score = ASRval − |ASRval − ASRtrain|. ASRval and
ASRtrain represent the primary performance metric (annual-
ized sharpe ratio) on the validation and training sets, respec-
tively. This selection criterion was designed to reward high
performance on unseen validation data, while also penalizing
models that exhibit a large performance gap between training
and validation data, which indicates overfitting or ”getting
lucky”. The single model with the highest score is chosen
as the representative for that experiment and is the only one
used for the final evaluation on the out-of-sample evaluation
dataset.

Phase 1: Impact of Feature Categories (SQ1)
The primary objective of the first phase is to answer our first
sub-question (SQ1): ”How does the inclusion or exclusion of
specific features (Technical Indicators, Trading Agent Data)
affects agent performance?”

To achieve this, we conduct a series of experiments based
on the feature categories defined in Section 3.3: Time, Trend,
Momentum, Volatility, and Agent features. For each category,
we systematically alter the core feature set’s features (Section
3.3), within that specific category. The experiments for each
category generally include:

• No features included.



• A single non-volume-based feature.

• A single volume-based feature.

• A model combining one non-volume-based and one
volume-based feature.

• A model using all available defined features within that
category.

This structured approach allows us to attribute changes in
performance directly to the presence or absence of specific
feature types. A comprehensive list of the 28 unique experi-
mental configurations for this phase is detailed in Table 7 in
Appendix D.1.

Phase 2: Impact of Information Quantity (SQ2)
The second phase addresses SQ2: ”How does the quantity of
information impact agent performance?”. This phase investi-
gates the impact of historical information depth across three
predefined feature configurations of increasing complexity:

• Small: The core feature set as defined in Section 3.3.

• Medium: An enhanced set combining two features for
each category, specifically the ’COMBO’ configurations
from Phase 1, defined in Appendix D.1.

• Large: The complete set of all engineered features in-
vestigated in this research.

For each of these three configurations, we systematically
vary the historical lookback window that is applied only to
the Trend, Momentum, and Volatility features. We test look-
back values of 0, 1, 2, 4, 8, 16, and 32. A lookback of k
means the agent receives data from the current time step t
and the previous k steps, for a total of k+1 datapoints for the
applied feature. This allows us to assess performance sen-
sitivity to historical context across different levels of feature
complexity. A comprehensive list of the 21 unique experi-
mental configuration for this phase is detailed in Table 8 in
Appendix D.2.

5 Results
This section presents the empirical results from our two-
phase experimental protocol. All metrics are reported as the
mean and standard deviation across five distinct random seeds
to ensure a robust evaluation. We first establish benchmark
performance, followed by a general overview of agent per-
formance, and then detail the results corresponding to our two
sub-questions on feature categories and information quantity.
Additionally, Appendix E shows the performance graphs of
each model saved during training, evaluated on the training
and validation datasets.

5.1 Benchmark Results
Table 2 reports the performance of the four benchmark strate-
gies on the evaluation dataset. The passive ’Long Only’ strat-
egy yielded a Sharpe ratio of -2.9, and the ’Short Only’ strat-
egy achieved a positive Sharpe ratio of 2.9. The rule-based
’Trend Following’ strategy produced a Sharpe ratio of 0.41.
The ’Perfect Trading’ model, representing a theoretical upper
bound for performance, obtained a Sharpe ratio of 56.1.

Table 2: Results of the benchmarks

Configuration Sharpe PnL (%) # Trades Max DD
Long Only -2.9 -5.3 1 549
Short Only 2.9 5.3 1 207
Trend Following 0.41 0.68 43 231.5
Perfect Trading 56.1 121.3 585 25.0

5.2 General Results
A primary observation across the majority of experiments is a
negative mean Sharpe ratio, as shown in Tables 3 and 4. The
experiments consistently exhibit high variance, with standard
deviations that are often close to or exceed the mean values,
indicating a significant sensitivity to the random seed used for
agent initialization.

The highest mean Sharpe ratio observed across all config-
urations was 1.64 (S2 MEDIUM 0) , and the lowest was −2.60
(S2 LARGE 32). All experiments performed better than the
’Long Only’ benchmark, and some surpassed the ’Trend Fol-
lowing’ strategy. None of the experiments’ mean perfor-
mance surpassed the ’Short Only’ strategy’s performance. A
recurring pattern in the results is that simply increasing the
number of features does not consistently lead to improved
agent performance.

A notable observation is the performance variance among
experiments that used the same set of features but in a dif-
ferent input order. Due to the experimental design, the base-
line ’Core Feature Set’ was constructed under different exper-
iment IDs (e.g., S1 MO NV, S1 VO NV, and S2 SMALL 4).
This resulted in a different ordering of features in the agent’s
input vector. This seemingly minor difference led to disparate
performance outcomes: S1 MO NV reported a mean Sharpe ra-
tio of 0.58, while S1 VO NV and S2 SMALL 4 both reported
−0.37. This discrepancy shows the training process’s high
sensitivity to input structure and initial network weights.

5.3 Phase 1: Impact of Feature Categories (SQ1)
This phase investigated how the inclusion or exclusion of spe-
cific feature categories affects agent performance. The com-
plete results are summarized in Table 3.

Time Features
The configuration with a single linear encoding of the 24-hour
cycle (S1 TM L24) resulted in the highest mean Sharpe ratio
in this category at 1.12. In contrast, using all available time
features (S1 TM ALL) led to a negative mean Sharpe ratio of
-1.02.

Trend Features
For this category, the agent configured with all available
trend features (S1 TR ALL) produced the best result within the
group, with a mean Sharpe ratio of -0.46. Excluding trend
features entirely (S1 TR NONE) or using a limited combina-
tion (S1 TR COMBO) resulted in lower Sharpe ratios of -0.99
and -1.33, respectively.

Momentum and Volatility Features
For both the momentum and volatility categories, including
a single feature yielded superior performance compared to



other configurations within the group. For momentum, a sin-
gle volume-based feature (S1 MO V) achieved a Sharpe ratio
of 0.70. For volatility, a single non-volume-based feature
(S1 VO NV) performed best with a Sharpe ratio of -0.37. In
both categories, models using no features, two features, or all
available features significantly underperformed compared to
the single-feature configurations.

Agent Features
Providing the agent with information about its own state re-
sulted in a performance increase. The configuration with no
agent features (S1 AG NONE) registered the lowest Sharpe ra-
tio in this group (-2.48). Including the agent’s current trade
duration (S1 AG DT) resulted in the group’s best performance,
with a mean Sharpe ratio of -0.03.

Table 3: Results of the SQ1 experiments displayed as a mean with
the standard deviation in brackets

Configuration Sharpe PnL (%) # Trades Max DD
S1 TM NONE -0.73(2.22) -0.97(3.55) 103.00(40.15) -407.88(163.89)
S1 TM L24 1.12(2.27) 1.83(3.88) 90.8(15.97) -290.25(83.13)
S1 TM L24L7 -0.83(2.41) -0.83(3.90) 119.00(67.46) -405.98(201.08)
S1 TM S24 0.29(2.19) 0.56(3.91) 94.80(31.56) -328.91(128.67)
S1 TM SC24 -1.11(2.46) -1.99(4.11) 180.40(111.58) -469.26(212.62)
S1 TM SC24SC7 0.04(2.81) 0.33(4.81) 74.00(56.44) -338.51(167.63)
S1 TM COMBO -0.48(3.02) -0.57(5.08) 81.8(72.16) -399.29(204.29)
S1 TM ALL -1.02(2.29) -1.46(3.52) 164.00(46.84) -410.72(168.39)

S1 TR NONE -0.99(1.21) -1.60(2.00) 75.20(49.97) -306.55(124.05)
S1 TR NV -0.82(2.66) -1.63(4.46) 97.00(45.55) -438.55(245.32)
S1 TR V -1.11(2.18) -1.93(3.76) 107.80(47.08) -450.82(190.94)
S1 TR COMBO -1.33(2.42) -2.23(4.14) 76.8(45.15) -407.28(209.17)
S1 TR ALL -0.46(1.98) -0.79(3.31) 87.00(45.76) -358.98(122.176)

S1 MO NONE -1.62(1.43) -2.87(2.43) 24.4(46.80) -336.06(267.44)
S1 MO NV 0.58(2.42) 0.95(4.23) 123.00(67.10) -369.84(216.90)
S1 MO V 0.70(2.24) 1.00(3.85) 57.8(44.63) -295.10(111.71)
S1 MO COMBO -2.15(1.17) -3.47(1.67) 124.60(42.21) -516.09(112.08)
S1 MO ALL -2.44(3.26) -3.98(5.34) 134.80(22.78) -591.01(353.47)

S1 VO NONE -1.85(2.35) -3.21(4.01) 84.00(63.83) -558.47(136.99)
S1 VO NV -0.37(2.50) -0.36(4.06) 103.20(37.45) -355.71(202.66)
S1 VO V -0.09(2.94) 0.59(4.32) 60.00(25.65) -317.73(178.15)
S1 VO COMBO -1.73(1.26) -2.46(1.96) 106.4(77.30) -407.50(107.09)
S1 VO ALL -2.25(0.89) -3.09(1.42) 128.8(51.61) -410.86(124.47)

S1 AG NONE -2.48(1.19) -3.68(1.85) 165.40(94.91) -466.25(103.13)
S1 AG CE -0.38(2.51) -0.37(4.06) 103.20(37.46) -355.71(202.67)
S1 AG DT -0.03(1.82) 0.15(3.04) 151.80(62.83) -321.65(152.94)
S1 AG ALL -0.94 (2.26) -1.45(3.60) 127.60(43.97) -352.90(134.61)

S1 COMBO COMBO -0.57(2.56) -0.67(4.33) 90.00(61.20) -367.89(131.34)
S1 COMBO ALL -0.66(2.58) -0.74((4.14) 157.8 (46.2) -370.40(142.94)

5.4 Phase 2: Impact of Information Quantity
(SQ2)

Phase 2 evaluated the impact of historical information depth
by varying lookback windows across feature sets of increas-
ing size. The results are presented in Table 4.

Small Feature Set
Using the core ’Small’ feature set, performance peaked with
short lookback windows. A lookback of 2 (S2 SMALL 2)
achieved the highest mean Sharpe ratio for this set at 1.21.
Further increasing the lookback window generally corre-
sponded with a decrease in performance.

Medium Feature Set
The ’Medium’ feature set achieved the highest Sharpe ra-
tio across all experiments (1.64) with no historical lookback
(S2 MEDIUM 0). The introduction of any historical context
(k > 0) resulted in a significant performance degradation,

with all other configurations yielding negative mean Sharpe
ratios.

Large Feature Set
Similar to the other sets, the ’Large’ feature set performed
best with no historical lookback (S2 LARGE 0), yielding a
mean Sharpe ratio of 0.39. Increasing the lookback depth
generally resulted in progressively lower performance, cul-
minating in a Sharpe ratio of -2.60 for the largest lookback of
32.

Table 4: Results of the sq2 experiments displayed as a mean with
the standard deviation in brackets

Configuration Sharpe PnL (%) # Trades Max DD
S2 SMALL 0 0.75(2.47) 1.34(4.22) 55.40(32.37) -316.42(182.73)
S2 SMALL 1 0.41(1.64) 1.19(2.28) 51.00(54.61) -217.41(121.40)
S2 SMALL 2 1.21(2.09) 2.06(3.59) 62.60(76.84) -278.76(142.31)
S2 SMALL 4 -0.37(2.50) -0.36(4.06) 103.20(37.45) -355.71(202.66)
S2 SMALL 8 -0.01(1.68) -0.03(2.67) 82.40(48.95) -242.03(172.78)
S2 SMALL 16 0.28(2.81) 0.52(4.54) 100.00(78.40) -317.41(155.12)
S2 SMALL 32 -0.68(2.13) -0.98(3.35) 96.00(57.37) -355.83(146.50)

S2 MEDIUM 0 1.64(1.51) 1.36(2.56) 40.00(40.16) -182.70(160.16)
S2 MEDIUM 1 -1.84(2.08) -2.92(3.46) 87.00(47.09) -446.66(154.92)
S2 MEDIUM 2 -0.33(1.72) -0.59(2.68) 113.80(61.80) -294.75(201.17)
S2 MEDIUM 4 -0.56(2.55) -0.66(4.33) 90.00(61.20) -367.89(131.33)
S2 MEDIUM 8 -1.43(2.77) -1.84(4.56) 120.40(70.34) -416.66(234.75)
S2 MEDIUM 16 -1.54(1.65) -2.59(2.76) 132.30(70.98) -426.61(144.59)
S2 MEDIUM 32 -1.30(2.05) -1.71(2.86) 149.20(81.19) -382.90(127.66)

S2 LARGE 0 0.39(2.25) 0.46(3.78) 81.6(32.11) -279.33(163.24)
S2 LARGE 1 -0.81(1.13) -1.19(1.83) 90.4(55.6) -300.19(166.35)
S2 LARGE 2 -2.43(2.25) -3.41(3.30) 148.00(8.48) -509.99(182.96)
S2 LARGE 4 -0.65(2.57) -0.74(4.14) 157.80(46.20) -370.39(142.94)
S2 LARGE 8 -0.91(2.75) -1.86(3.94) 151.40(50.61) -429.81(247.66)
S2 LARGE 16 -1.67(2.90) -2.45(4.84) 97.60(87.77) -410.28(274.03)
S2 LARGE 32 -2.60(1.17) -3.51(2.29) 99.60(61.91) -479.10(298.07)

6 Discussion
The results reveal significant challenges in applying a DQN
agent to low-frequency forex trading. Across most exper-
imental configurations, the agent achieved negative mean
Sharpe ratios with high standard deviations, which often ex-
ceeded the mean values themselves (Tables 3 and 4). This
indicates that despite finding profitable strategies on certain
random seeds, the agent’s performance lacked stability and
was not reliably positive.

This high variance points to a significant sensitivity to ini-
tial conditions, such as network weights and exploration tra-
jectory. For instance, merely altering the input order of an
identical feature set resulted in mean Sharpe ratios of 0.58
and −0.37, respectively. Such instability occurred despite a
prolonged exploration phase (40% of training) and compli-
cates efforts to draw firm conclusions about the value of spe-
cific features.

6.1 Phase 1: The Impact of Feature Categories
The first phase of experiments, designed to answer SQ1, re-
vealed that the relationship between feature types and agent
performance is not straightforward. The results suggest a bal-
ancing act between providing sufficient information and in-
troducing excessive complexity or noise.

For the Momentum and Volatility categories, a ”less is
more” approach appeared most effective. Configurations with



a single, well-chosen feature (S1 MO V and S1 VO NV) signif-
icantly outperformed those with no features, a combination
of two, or all available features. This suggests that adding
indicators introduced confounding noise rather than valuable
signals, making it harder for the agent to learn a coherent pol-
icy.

Conversely, for Trend features, the agent performed best
when provided with all available indicators (S1 TR ALL),
achieving the highest Sharpe ratio within its group. This may
indicate that the different trend indicators (Parabolic SAR,
VWAP, KAMA) captured complementary aspects of the market’s
direction, providing a richer and more robust view that the
agent could leverage.

Another notable finding was the impact of Agent features.
Providing the agent with information about its own state,
specifically the duration of its current trade (S1 AG DT), led
to an improvement in performance compared to when this
context was absent (S1 AG NONE). This is logical within a
POMDP framework, as this feature provides the agent with
a crucial piece of its own history, helping it to contextual-
ize its current position. For instance, it could learn to exit a
trade that has been held for an extended period without gen-
erating profit. The Current Exposure feature was less impact-
ful, likely because its value was a direct consequence of the
action space ({−1, 0, 1}), offering little new information be-
yond what the agent had just decided to do.

6.2 Phase 2: The Peril of Too Much Information
The second phase, addressing SQ2, investigated the impact
of historical information depth. The results were remarkably
consistent and counter-intuitive: across all three feature set
sizes (Small, Medium, and Large), performance peaked with
little to no historical lookback (k = 0 or k = 2). For the
Medium and Large sets, the introduction of any significant
historical lookback led to a consistent and severe degradation
in performance.

The most probable explanation for this phenomenon is
overfitting. As the dimensionality of the observation space
increases (either through more features in Phase 1 or more
historical steps in Phase 2), the DQN agent, with its com-
plex neural network, has a greater capacity to ”memorize”
specific patterns in the training data rather than learn general-
izable strategies. This is corroborated by the training graphs
in Appendix E, where models with larger feature sets often
converge to higher Sharpe ratios on the training set but fail to
translate this performance to the validation or evaluation sets.
The agent is incentivized to find complex, high-dimensional
correlations that, despite yielding high rewards during train-
ing, are merely noise when tested on unseen data.

This issue also highlights a potential weakness in our
model selection methodology. The criterion, score =
ASRval − |ASRval − ASRtrain|, was designed to penalize
overfitting. However, the high variance in performance across
episodes may have allowed ”lucky” models to still achieve a
high score, even if they were not truly generalized. This could
have occurred simply because they performed well enough on
both training and validation sets by chance. The observation
that poor convergence on the training data sometimes led to
better validation performance further supports this concern.

6.3 Answering the Research Questions
Overall, this research paints a picture of a delicate balancing
act in designing state representations for an RL trading agent.
The agent’s extreme sensitivity to initial conditions and input
structure highlights the need for robust experimental proce-
dures, including the use of more random seeds and more ad-
vanced model selection techniques, to confidently isolate the
effects of specific parameters.

With this crucial context in mind, we answer the research
questions as follows:

• SQ1: How does the inclusion of specific feature cat-
egories affect performance? Within our setup, the im-
pact was category-dependent. Providing all available
Trend indicators was beneficial, whereas for Momentum
and Volatility categories, a single feature yielded bet-
ter results, suggesting that additional features in these
groups introduced more noise than signal for the agent.
Most significantly, providing the agent with its own
state information, led to improvements in relative per-
formance, highlighting the value of contextual features.

• SQ2: How does the quantity of information impact
performance? For our agent, increasing the quantity
of information, both in terms of the number of features
and the depth of historical lookbacks, was consistently
detrimental. Performance peaked with little to no his-
torical context, and the introduction of lookback win-
dows almost always resulted in significant performance
degradation, which we attribute to the agent’s inability
to generalize from a high-dimensional state space and
its tendency to overfit.

However, this should not be interpreted as a definitive state-
ment that simpler feature sets are universally superior. It is
more likely a reflection of the limitations of the chosen agent
and methodology. The DQN agent’s inability to effectively
process a high-dimensional state space does not mean the in-
formation within it is not valuable. It is plausible that a more
advanced agent architecture, perhaps with attention mecha-
nisms to weigh feature importance, or a more sophisticated
training and model selection process, could successfully ex-
tract the signal from the noise in a larger feature set and ben-
efit from deeper historical context.

Therefore, the final takeaway is not that complex state rep-
resentations should be avoided, but that the design of the
state representation is closely linked with the capabilities of
the learning algorithm and the robustness of the experimen-
tal procedure. The challenge lies in the co-design of these
elements: developing agents and training protocols that are
capable of effectively exploiting rich, complex information
without succumbing to high variance and overfitting.

7 Responsible Research
This research was conducted with a strong commitment to
ethical considerations, reliability, and reproducibility. We
acknowledge the complexities and potential risks associated
with applying advanced AI techniques to financial markets
and have taken deliberate steps to address them throughout
our methodology and reporting.



7.1 Ethical Considerations
The application of Reinforcement Learning (RL) in algorith-
mic trading raises several ethical questions, primarily cen-
tered on transparency, risk, and market fairness.

A significant concern is the ”black box” nature of many RL
models. This lack of transparency makes it difficult to fully
understand how an agent arrives at its decisions, creating un-
certainty about whether it might be exploiting data or market
mechanics in unintended or unethical ways. This challenge
is recognized by regulatory bodies like the Dutch Authority
for the Financial Markets (AFM), which highlights the risks
of market manipulation and the lack of explainability as po-
tential barriers to the adoption of RL in trading. The AFM
stipulates that if a trading algorithm is suspected of causing
disorderly conditions, the firm must be able to explain how its
trading decisions were made. Furthermore, the AFM points
to a potential knowledge gap between machine learning ex-
perts and organizational supervisors, which could impede ef-
fective oversight [8].

Trading is inherently risky, and the development of au-
tonomous agents carries the responsibility of considering po-
tential financial losses for users. If commercialized, such
agents could enable users with limited knowledge to suffer
significant losses. A core part of this risk is the potential for
an RL agent to perform unexpectedly when faced with new,
unseen market data, a factor that requires further research to
be fully understood.

Finally, the issue of fairness arises. RL agents that can
execute trades faster and potentially more reliably than man-
ual traders could create market inequalities. Beyond individ-
ual fairness, the widespread adoption of similar RL agents
could pose a systemic risk, where correlated trading strate-
gies might amplify market volatility. While this research aims
to develop ”more effective, robust and potentially safer trad-
ing agents”, we acknowledge that the underlying technolo-
gies could be misused if not deployed responsibly.

7.2 Reliability
To make sure our results were as reliable as possible, we built
several checks into our process and have been upfront about
the limitations of our study.

A core practice was to test our experimental configura-
tions across five distinct random seeds to account for the
stochastic nature of RL training. Our results confirm the ne-
cessity of this approach, as experiments consistently exhib-
ited high variance, with performance being highly sensitive
to the agent’s initialization. In one notable instance, a sim-
ple change in the input order of the same feature set resulted
in significantly different performance outcomes, with Sharpe
ratios of 0.58 and -0.37, underscoring the training process’s
high sensitivity.

In addition, the quality of the data is important for the reli-
ability of the results. While the tick data from Dukascopy is
generally considered reliable [29], our analysis revealed po-
tential data gaps. We identified a total of 1, 758 potentially
missing 15-minute candles across the dataset, as explained
in Appendix A. We also acknowledge the possibility of data
source bias; since the experiments were conducted on data

from a specific source, an agent might learn patterns that are
not generalizable to the broader market.

Our simulated environment makes several simplifying as-
sumptions. We operate under a ”Zero Market Impact Hy-
pothesis” and do not model slippage costs. While the market
impact of an agent with an initial capital of 10,000 USD is
likely minimal in the highly liquid forex market, both market
impact and slippage are realistic concerns that would become
significant with larger trading volumes.

7.3 Reproducibility
In response to the general lack of reproducibility and compa-
rability in the field, this study was designed to be fully trans-
parent and replicable. We believe this is a critical step toward
building a reliable body of knowledge on the application of
RL in finance.

To this end, we have made the following available:

• Public Codebase: Our complete Python codebase is
publicly accessible on GitHub, as seen at [2]. The spe-
cific commit hash used for the final experiments is pro-
vided to ensure that the exact version of the code can be
replicated. All experiments can be found and identically
run in the folder named RQ2.

• Detailed Methodology: We have thoroughly doc-
umented our experimental protocol, data processing
steps, and the two-phase hyperparameter optimization
process. The final hyperparameters are explicitly listed.

• Specified Seeds: The random seeds used for all experi-
ments are specified to allow for exact replication of the
training runs.

We also maintain transparency about our limitations. The
specific parameters for the technical indicators themselves
were not optimized; instead, they were set to default val-
ues based on common usage in other research and libraries.
While their calculation is available in the codebase, we did
not test the significance of these specific parameters. By pro-
viding open access to our code and a detailed account of our
methods, we hope to provide a fully reproducible foundation
that other researchers can use to verify, critique, and extend
our findings.

8 Conclusion
This paper investigated the critical role of state representa-
tion in the performance of a Deep Q-Network (DQN) agent
developed for low-frequency algorithmic trading in the forex
market. Our primary goal was to systematically determine
how different feature designs impact agent profitability and
stability.

To answer our research questions, we developed a simu-
lated trading environment and conducted two phases of ex-
periments. The first phase focused on the impact of includ-
ing or excluding specific categories of features: Time, Trend,
Momentum, Volatility, and Agent-specific data. The sec-
ond phase investigated how the quantity of information, ma-
nipulated by varying the historical lookback window across
feature sets of different sizes, affected performance. This



structured approach allowed for a methodical analysis of the
agent’s sensitivity to both the type and volume of input data.

Our findings reveal a delicate balance in state represen-
tation design. In response to our first sub-question (SQ1),
the impact of feature categories was highly dependent on the
type of information. We found that providing the agent with
all available trend indicators was beneficial, likely offering a
more robust view of market direction. Conversely, for mo-
mentum and volatility features, a ”less is more” approach
was superior; single indicators outperformed larger sets, sug-
gesting that additional features introduced confounding noise.
Most significantly, providing the agent with its own historical
context, specifically its current trade duration, led to a notable
relative improvement, underscoring the importance of such
features in a Partially Observable Markov Decision Process
(POMDP) framework.

The answer to our second sub-question (SQ2) was counter-
intuitive but clear: increasing the quantity of information,
both through more features and deeper historical lookbacks,
was consistently detrimental to the agent’s performance. The
best results were achieved with little to no historical context.
We attribute this phenomenon to the DQN agent’s tendency
to overfit in high-dimensional state spaces, where it mem-
orizes training data patterns rather than learning generaliz-
able strategies. The agent’s performance is not necessarily a
definitive verdict on the value of complex features, but rather
a reflection of the specific learning algorithm’s limitations in
processing them effectively.

A primary challenge that emerged was the agent’s extreme
sensitivity to initial conditions and input structure, resulting
in high variance across experiments with identical configu-
rations but different random seeds. This highlights the diffi-
culty of isolating the incremental value of specific features
and achieving deterministic performance. This instability,
coupled with the agent’s propensity to overfit, underscores
the core problem: the design of the state representation is in-
extricably linked to the capabilities of the learning algorithm
and the robustness of the experimental protocol.

8.1 Future Work

Based on the challenges and insights gained, future work
should proceed in several key directions. A more extensive
hyperparameter search is needed, and the experimental pro-
cedure must be made more robust, primarily by utilizing a
larger number of random seeds and developing more sophis-
ticated model selection criteria to ensure results are stable
and not due to chance. Exploring more advanced agent ar-
chitectures could be crucial for effectively processing higher-
dimensional state spaces and benefiting from the potential
rich information within larger feature sets and deeper histor-
ical contexts. Furthermore, investigating automated feature
extraction techniques could help in creating more condensed
and potent state representations. Finally, future research
should focus on ensuring generalization not only across dif-
ferent random seeds but also across different RL algorithms,
financial instruments, and market conditions to build truly ro-
bust and reliable trading agents.
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the discussions and shared learning experience.

This work would not have been possible without the con-
tributions of this entire team.

References
[1] Trading costs - Trading charges (FOREX.com).

https://www.forex.com/en/about-us/financial-
transparency/trading-costs/. Accessed: 2025-06-10.

[2] TUD CSE RP Q4 2025 Group 77. TUD-CSE-
RP-RLinFinance. GitHub repository, 2025. Com-
mit: c75542a91e254856cadcb6d13557802c5dd118f1.
Accessed: June 22, 2025.

[3] Yahui Bai, Yuhe Gao, Runzhe Wan, Sheng Zhang, and
Rui Song. A review of Reinforcement learning in Finan-
cial Applications. arXiv (Cornell University), 10 2024.

[4] James Chen. Forex (FX): How trading in the foreign
exchange market works, 11 2024.

[5] Fatima Dakalbab, Manar Abu Talib, Qassim Nasir, and
Tracy Saroufil. Artificial intelligence techniques in fi-
nancial trading: A systematic literature review. Journal
of King Saud University - Computer and Information
Sciences, 36(3):102015, 3 2024.

[6] Greg DePersio. Pips vs. Points vs. Ticks: What’s the
Difference?, 7 2024.

[7] Dukascopy Bank SA. Forex historical data feed, 2025.
Accessed: 2025-06-01.

[8] The Dutch Authority for the Financial Markets. Ma-
chine learning in Algorithmic Trading. Technical report,
9 2023.

[9] Kui Fu, Yidong Yu, and Bing Li. Multi-feature super-
vised reinforcement learning for stock trading. IEEE
Access, 11:77840–77855, 2023.

[10] Ben Hambly, Renyuan Xu, and Huining Yang. Recent
advances in reinforcement learning in finance. Mathe-
matical Finance, 33(3):437–503, 4 2023.



[11] Chien Yi Huang. Financial Trading as a Game: A deep
reinforcement learning approach. arXiv (Cornell Uni-
versity), 1 2018.

[12] Zhengyao Jiang, Dixing Xu, and Jinjun Liang. A
deep reinforcement learning framework for the Finan-
cial Portfolio Management problem. arXiv (Cornell
University), 1 2017.

[13] Leslie Kramer. Long Position vs. Short Position:
What’s the Difference?, 5 2025.

[14] Yang Li, Wanshan Zheng, and Zibin Zheng. Deep
robust reinforcement learning for practical algorithmic
trading. IEEE Access, 7:108014–108022, 1 2019.

[15] Daniel Liberto. Forex (FX): Definition, How to Trade
Currencies, and Examples, 5 2025.

[16] Caper Marney. Are price updates a good proxyfor actual
traded volume in FX? 4 2011.

[17] Adrian Millea. Deep Reinforcement Learning for Trad-
ing—A Critical Survey. Data, 6(11):119, 11 2021.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing Atari with Deep Reinforce-
ment Learning. arXiv (Cornell University), 1 2013.

[19] The pandas development team. pandas-dev/pandas:
Pandas, February 2020.

[20] Deog-Yeong Park and Ki-Hoon Lee. Practical algorith-
mic trading using state representation learning and imi-
tative reinforcement learning. IEEE Access, 9:152310–
152321, 1 2021.

[21] Elvis Picardo. Bid-Ask spreads in the foreign currency
exchange market, 9 2024.

[22] Tidor-Vlad Pricope. Deep Reinforcement Learning in
Quantitative Algorithmic Trading: a review. arXiv (Cor-
nell University), 1 2021.

[23] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi
Kanervisto, Maximilian Ernestus, and Noah Dormann.
Stable-baselines3: Reliable reinforcement learning im-
plementations. Journal of Machine Learning Research,
22(268):1–8, 2021.

[24] Shobhit Seth. Basics of Algorithmic Trading: Concepts
and Examples, 12 2023.

[25] AltexSoft Editorial Team. Reinforcement Learning ex-
plained: Overview, comparisons and applications in
business, 1 2019.

[26] Thibaut Théate and Damien Ernst. An application of
deep reinforcement learning to algorithmic trading. Ex-
pert Systems with Applications, 173:114632, 1 2021.

[27] Mark Towers, Ariel Kwiatkowski, Jordan K Terry,
John U. Balis, Gianluca de Cola, Tristan Deleu, Manuel
Goulão, Andreas Kallinteris, Markus Krimmel, Ar-
jun KG, Rodrigo Perez-Vicente, Andrea Pierré, Sander
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A Data Analysis
In this section, we analyze the EUR/USD exchange rate data,
resampled to 15-minute candles from Dukascopy tick data
spanning the years 2022, 2023, and 2024. We define unusual
gaps as time differences between two consecutive candles that
are neither equal to the expected 15-minute interval nor to the
duration of a weekend, which typically indicates non-trading
hours.

The 15-minute candle data, with the unusual gaps high-
lighted, is shown in Figure 4. At first glance, 1, 758 can-
dles appear to be missing, representing approximately 4%
of the full dataset. However, further analysis suggests that
most of these gaps correspond to global holidays or daylight
saving time changes, both of which affect trading schedules.
After excluding these known anomalies, the number of gen-
uinely missing candles drops to approximately 122, a negli-
gible amount relative to the overall dataset.

The distribution of tick volume across the dataset is illus-
trated in Figure 5.

Figure 4: Exchange rates of EURUSD 15M candles resampled from
tick data from dukascopy, including highlights of unusual gaps

Figure 5: Volume distribution of EURUSD 15M candles resampled
from tick data from dukascopy



The text output of the analysis can be seen below:

1 Analysis of time differences for EURUSD at 15
min granularity.

2 Expected regular time diff: 15 minutes.
3 Approximate weekend gap expectation (time

diff for first candle after weekend):
2895 minutes.

4 Rows listed below are those where the time
difference from the previous candle was
neither the standard granularity nor a
typical weekend gap.

5 This suggests potential missing data or
unusual market closure.

6
7 Unusual gap before 2022-03-13 21:00:00 (local

time in data): 2835.00 minutes.
Estimated ˜188.00 missing 15-min candles.

8 Unusual gap before 2022-11-06 22:00:00 (local
time in data): 2955.00 minutes.
Estimated ˜196.00 missing 15-min candles.

9 Unusual gap before 2023-03-12 21:00:00 (local
time in data): 2835.00 minutes.
Estimated ˜188.00 missing 15-min candles.

10 Unusual gap before 2023-09-25 11:00:00 (local
time in data): 60.00 minutes. Estimated
˜3.00 missing 15-min candles.

11 Unusual gap before 2023-11-05 22:00:00 (local
time in data): 2955.00 minutes.
Estimated ˜196.00 missing 15-min candles.

12 Unusual gap before 2023-12-24 23:00:00 (local
time in data): 2955.00 minutes.
Estimated ˜196.00 missing 15-min candles.

13 Unusual gap before 2023-12-24 23:30:00 (local
time in data): 30.00 minutes. Estimated
˜1.00 missing 15-min candles.

14 Unusual gap before 2023-12-25 22:00:00 (local
time in data): 855.00 minutes. Estimated
˜56.00 missing 15-min candles.

15 Unusual gap before 2024-01-01 22:00:00 (local
time in data): 4335.00 minutes.
Estimated ˜288.00 missing 15-min candles.

16 Unusual gap before 2024-03-10 21:00:00 (local
time in data): 2835.00 minutes.
Estimated ˜188.00 missing 15-min candles.

17 Unusual gap before 2024-11-03 22:00:00 (local
time in data): 2955.00 minutes.
Estimated ˜196.00 missing 15-min candles.

18 Unusual gap before 2024-12-25 02:30:00 (local
time in data): 30.00 minutes. Estimated
˜1.00 missing 15-min candles.

19 Unusual gap before 2024-12-25 05:00:00 (local
time in data): 30.00 minutes. Estimated
˜1.00 missing 15-min candles.

20 Unusual gap before 2024-12-25 22:00:00 (local
time in data): 855.00 minutes. Estimated
˜56.00 missing 15-min candles.

21 Unusual gap before 2024-12-26 19:00:00 (local
time in data): 75.00 minutes. Estimated
˜4.00 missing 15-min candles.

22
23 Total estimated number of missing candles

from these unusual gaps: 1758.00

Additional Notes
Dukascopy also allows direct downloads of candlestick data
on their website [7]. However, for us, this resulted in up to
30% of missing data. Therefore, we opted for the tick-by-tick
data download, which also allowed us to use a proxy for the
volume.

B Simulated Forex Environment
This appendix provides a visual walkthrough of the custom
forex environment’s operational flow, as described in Section
3.4. Figure 6 illustrates the sequence of events within a single
discrete timestep of the simulation. Each box represents one
market data candle. At the start of a timestep (e.g., t = 1), the
environment first calculates the ”Pre-Action Equity” based on
the candle’s open price. The agent’s chosen action is then exe-
cuted at this same price. The price subsequently evolves over
the remainder of the candle’s duration. The reward for the
action taken at timestep t is calculated based on the change
in equity between the pre-action state at t and the pre-action
state at the beginning of the next timestep, t+1. This ensures
the reward fully captures the outcome of the price movement
during the interval. Figure 7 presents a flowchart of the envi-
ronment’s pipeline for a single step. The process begins when
the environment receives an action from the agent. This input
triggers a series of internal calculations:

1. Transform Action: The discrete action is mapped to a
target portfolio exposure.

2. Execute Action: The environment performs the neces-
sary buy or sell trades based on market data to align the
portfolio with the target exposure.

3. State Calculation: The agent’s internal state (e.g., cash,
shares held) is updated.

4. Calculate Reward: The reward is computed based on
the change in portfolio equity.

5. Retrieve Observation: A new observation vector is as-
sembled for the next timestep, incorporating market data
and updated agent features.

The environment then returns the reward and the new obser-
vation to the agent, completing the step loop.

Figure 6: Visual representation of the discrete time steps and sim-
ulation steps within. Each box represents a candle, and the lines
represent the price movement within that candle.



Figure 7: Visual representation of the pipeline of a single step exe-
cution of the forex environment.

C Hyperparameter Optimization
As mentioned in Section 3, we optimize our parameters on a
subset of our full dataset in phases. Adjusting and performing
new experiments as we go.

C.1 Data split
As explained in Section 4.1, the first 9 months of the full
dataset is used for hyperparameter optimization. This dataset
is chronologically split up into a training set, containing 70%
of the data, and a validation set, containing the remaing 30%.
We use the validation set to analyze the reaction of the models
to out-of-sample data.

C.2 Baseline
Before starting training models we set the following parame-
ters:

• Seed: the random seed for all used libraries and pack-
ages is set to 42.

• Initial Capital: the agent starts with 10,000 U.S. dol-
lars, the base currency.

• Transaction Cost: the commission of the environment
is set to 0.005% to support realism.

• DQN Policy: the MlpPolicy is used with the Adam op-
timizer and LeakyReLU activation function. The neu-
ral network has two hidden layers of sizes 32 and 16.
Other parameters are set to their default values [23], un-
less specified otherwise.

• Gamma (γ): the gamma parameter is set to 0.95.

Features
The hyperparameter optimization experiments were con-
ducted exclusively using the Core Feature Set as defined in
Section 3.3. This ensures that the tuning process was per-
formed on a consistent and representative baseline before the
main experiments were conducted.

C.3 DQN Parameters
The most notable parameters of the DQN algorithm are [23]:

• Policy: The neural network architecture used to approx-
imate the Q-function. In this case, the MlpPolicy is a
multi-layer perceptron.

– Q Network: The neural network that approximates
the Q-values.

– Optimizer: The algorithm used to update the
weights of the Q-network to minimize the loss,
such as the Adam optimizer.

– Activation Function: The non-linear function
used in the hidden layers of the neural network, like
Leaky ReLU.

• Learning Rate: The step size at which the optimizer
updates the network’s weights.

• Buffer Size: The maximum number of past experiences
stored in the replay buffer.

• Batch Size: The number of experiences sampled from
the replay buffer for each training update.

• Tau (τ ): The parameter for the soft update of the target
network’s weights.

• Gamma (γ): The discount factor for future rewards, bal-
ancing immediate and long-term gains.

• Train Frequency: The number of steps in the environ-
ment between training updates.

• Gradient Steps: The number of gradient descent steps
to perform after each new experience.

• Target Update Interval: The frequency (in terms of en-
vironment steps) at which the target network is updated
with the weights of the main Q-network.

• Exploration Fraction: The fraction of the total training
time over which the exploration rate (ϵ) decreases.

• Exploration Initial Epsilon: The starting value of ϵ for
the ϵ-greedy exploration strategy.

• Exploration Final Epsilon: The final, minimum value
of ϵ.

C.4 Phase 1
Phase one is meant to optimize the convergence of training,
and to generate as close to non-random results as possible.
The parameters that influence these most can be seen in Table
5. We define four different types of agents called ’aggressive’,
’balanced’, ’cautious’, and ’patient’. Respectively, they range
from fast unstable learning to slow more stable learning, as
seen in Table 5. Each of these configurations are run on three
granularities: 15-minute, 30-minute, and 1-hour market data,
following the idea that higher granularity data carries more
noise. The experiments are run for 100 episodes.

Discussion
The ’aggressive’ models proved too unstable for effective
learning, while the ’patient’ models converged too slowly.
The ’balanced’ and ’cautious’ configurations demonstrated
the most stable and promising learning patterns across all data
granularities (15-min, 30-min, and 1-hour). Therefore, we se-
lected these two configurations to move forward into Phase 2
for a more detailed investigation of network architecture.



Table 5: Hyperparameter Configurations for Initial Convergence Ex-
periments

Hyperparameter Aggressive Balanced Cautious Patient

Learning Rate 10−3 10−4 5× 10−5 10−5

Buffer Size 5,000 30,000 60,000 100,000
Batch Size 64 256 512 512
Tau 0.01 0.005 0.0025 0.001
Train Frequency

(Steps) 4 16 64 128

Target Update
Interval 500 1,000 2,500 5,000

Exploration
Fraction 0.25 0.33 0.40 0.50

Exploration
Initial Epsilon 1.0 1.0 1.0 1.0

Exploration
Final Epsilon 0.1 0.05 0.02 0.01

C.5 Phase 2
In this phase we investigate the network architecture. As
such we experiment with 6 additional network architectures,
adjusted from the initial architecture to either be larger or
smaller. The experiments can be seen in Table 6. These ex-
periments are run on the 15-minute, 30-minute, and 1-hour
candlestick datasets similar to Phase 1, with the model types
cautious and balanced.

Table 6: Phase 2: Network Architecture Configurations for Gener-
alization Testing

Configuration Name Hidden Layers Rationale

Baseline [32, 16] The original network.
Reduced [16, 8] Overfitting Mitigation
Minimalist [16] Minimal Parameter Search
Medium Symmetric [32, 32] Symmetric vs. Funnel
Increased [64, 32] Complex Pattern Recognition
Symmetric [64, 64] Complex Pattern Recognition
High [128, 64] Maximal Parameter Search

Discussion
After evaluating all network architectures with the ’cau-
tious’ and ’balanced’ configurations, a clear pattern emerged.
The experiments using 1-hour candlestick data consistently
yielded higher and more stable Sharpe ratios on the validation
set compared to the 15-minute and 30-minute data. Among
these, the ’cautious’ configuration paired with the ’Baseline’
network architecture ([32, 16]) provided the best balance of
performance and generalization. This combination was there-
fore selected as the final configuration for the main experi-
ments detailed in Section 4.

C.6 Final Configuration
The systematic, two-phase optimization process detailed in
this appendix led to the selection of our final model configu-
ration. Based on our experiments, the ’cautious’ hyperparam-
eter set (Table 5) combined with the baseline network archi-
tecture of [32, 16] (Table 6) and 1-hour data granularity was
chosen. This configuration demonstrated the most robust per-
formance on our validation dataset. The complete set of final

parameters used for the main experiments is listed in Table 1
in Section 4.4.

D Experiments
D.1 Phase 1 Experiments
The unique experimental configurations explained in Section
4 for Phase 1 are shown in Table 7.



Table 7: Complete Experimental Design for Phase 1 Experiments

Category Experiment ID Features Investigated

Time

S1 TM NONE Baseline: No time features included.
S1 TM L24 Linear encoding of the 24-hour cycle.
S1 TM L24L7 Linear encoding of the 24-hour cycle, and 7-day cycle.
S1 TM S24 Sinusoidal encoding of the 24-hour cycle.
S1 TM SC24 Sinusoidal and Cosine encoding of the 24-hour cycle.
S1 TM SC24SC7 Sinusoidal and Cosine encoding of the 24-hour cycle, and 7-day cycle.
S1 TM ALL All available time features (Linear, SIN, COS for 24h and 7d).

Trend

S1 TR NONE Baseline: No trend features included.
S1 TR NV One non-volume-based feature: Parabolic SAR.
S1 TR V One volume-based feature: VWAP.
S1 TR COMBO Combination of Parabolic SAR and VWAP.
S1 TR ALL All trend features: Parabolic SAR, VWAP, and KAMA.

Momentum

S1 MO NONE Baseline: No momentum features included.
S1 MO NV One non-volume-based feature: MACD.
S1 MO V One volume-based feature: MFI.
S1 MO COMBO Combination of MACD and MFI.
S1 MO ALL All momentum features: MACD, MFI, and CCI.

Volatility

S1 VO NONE Baseline: No volatility features included.
S1 VO NV One non-volume-based feature: Bollinger Bands.
S1 VO V One volume-based feature: Ease of Movement (EOM).
S1 VO COMBO Combination of Bollinger Bands and EOM.
S1 VO ALL All volatility features: Bollinger Bands, EOM, and ATR.

Agent

S1 AG NONE Baseline: No agent features included.
S1 AG CE Agent’s current market exposure.
S1 AG DT Duration of the agent’s current trade.
S1 AG ALL All agent features: Current Exposure and Trade Duration.

Combinatory S1 COMBO COMBO A combination of select features from each category.
S1 COMBO ALL The complete set of all engineered features.

D.2 Phase 2 Experiments
The unique experimental configurations explained in Section
4 for Phase 2 are shown in Table 8.



Table 8: Complete Experimental Design for SQ2: Investigating the Impact of Historical Lookback

Configuration Experiment ID Features and Historical Lookback Investigated

SMALL

S2 SMALL 0 Core Feature Set. Lookback of 0 on Trend, Momentum, and Volatility features.
S2 SMALL 1 Core Feature Set. Lookback of 1 on Trend, Momentum, and Volatility features.
S2 SMALL 2 Core Feature Set. Lookback of 2 on Trend, Momentum, and Volatility features.
S2 SMALL 4 Core Feature Set. Lookback of 4 on Trend, Momentum, and Volatility features.
S2 SMALL 8 Core Feature Set. Lookback of 8 on Trend, Momentum, and Volatility features.
S2 SMALL 16 Core Feature Set. Lookback of 16 on Trend, Momentum, and Volatility features.
S2 SMALL 32 Core Feature Set. Lookback of 32 on Trend, Momentum, and Volatility features.

MEDIUM

S2 MEDIUM 0 Medium Feature Set (COMBO for Trend/Momentum/Volatility, ALL for Time/Agent). Lookback of 0.
S2 MEDIUM 1 Medium Feature Set (COMBO for Trend/Momentum/Volatility, ALL for Time/Agent). Lookback of 1.
S2 MEDIUM 2 Medium Feature Set (COMBO for Trend/Momentum/Volatility, ALL for Time/Agent). Lookback of 2.
S2 MEDIUM 4 Medium Feature Set (COMBO for Trend/Momentum/Volatility, ALL for Time/Agent). Lookback of 4.
S2 MEDIUM 8 Medium Feature Set (COMBO for Trend/Momentum/Volatility, ALL for Time/Agent). Lookback of 8.
S2 MEDIUM 16 Medium Feature Set (COMBO for Trend/Momentum/Volatility, ALL for Time/Agent). Lookback of 16.
S2 MEDIUM 32 Medium Feature Set (COMBO for Trend/Momentum/Volatility, ALL for Time/Agent). Lookback of 32.

LARGE

S2 LARGE 0 All engineered features. Lookback of 0 on Trend, Momentum, and Volatility features.
S2 LARGE 1 All engineered features. Lookback of 1 on Trend, Momentum, and Volatility features.
S2 LARGE 2 All engineered features. Lookback of 2 on Trend, Momentum, and Volatility features.
S2 LARGE 4 All engineered features. Lookback of 4 on Trend, Momentum, and Volatility features.
S2 LARGE 8 All engineered features. Lookback of 8 on Trend, Momentum, and Volatility features.
S2 LARGE 16 All engineered features. Lookback of 16 on Trend, Momentum, and Volatility features.
S2 LARGE 32 All engineered features. Lookback of 32 on Trend, Momentum, and Volatility features.

E Experiment Result Graphs
The graphs in the following sections visualize the perfor-
mance of the various experimental configurations throughout
the training process. During the training of each experimen-
tal setup, the state of the model was saved at the conclusion
of every episode. Each of these saved models was evaluated
on the training and validation dataset, showed in the first two
subsections. The plots show the mean Sharpe ratio (and its
standard deviation across five random seeds) for the models
saved at each episode, offering insight into learning stabil-
ity, convergence, and generalization. The final subsection
shows performance of the final selected models, which are
also shown in Table 3 and 4 in Section 5.

E.1 Training Dataset

Figure 8: Results for experiments in group [FE S1 Agent] on the
train dataset.

Figure 9: Results for experiments in group [FE S1 Combinatory] on
the train dataset.

Figure 10: Results for experiments in group [FE S1 Momentum] on
the train dataset.



Figure 11: Results for experiments in group [FE S1 Time] on the
train dataset.

Figure 12: Results for experiments in group [FE S1 Trend] on the
train dataset.

Figure 13: Results for experiments in group [FE S1 Volatility] on
the train dataset.

Figure 14: Results for experiments in group [FE S2 LARGE] on the
train dataset.

Figure 15: Results for experiments in group [FE S2 SMALL] on
the train dataset.

Figure 16: Results for experiments in group [FE S2 MEDIUM] on
the train dataset.

E.2 Validation Dataset

Figure 17: Results for experiments in group [FE S1 Agent] on the
validate dataset.



Figure 18: Results for experiments in group [FE S1 Combinatory]
on the validate dataset.

Figure 19: Results for experiments in group [FE S1 Momentum] on
the validate dataset.

Figure 20: Results for experiments in group [FE S1 Time] on the
validate dataset.

Figure 21: Results for experiments in group [FE S1 Trend] on the
validate dataset.

Figure 22: Results for experiments in group [FE S1 Volatility] on
the validate dataset.

Figure 23: Results for experiments in group [FE S2 LARGE] on the
validate dataset.

Figure 24: Results for experiments in group [FE S2 MEDIUM] on
the validate dataset.

Figure 25: Results for experiments in group [FE S2 SMALL] on
the validate dataset.



E.3 Evaluation Models & Dataset

Figure 26: Results for experiments in group [FE S1 Agent] on the
evaluation dataset.

Figure 27: Results for experiments in group [FE S1 Combinatory]
on the evaluation dataset.

Figure 28: Results for experiments in group [FE S1 Momentum] on
the evaluation dataset.

Figure 29: Results for experiments in group [FE S1 Time] on the
evaluation dataset.

Figure 30: Results for experiments in group [FE S1 Trend] on the
evaluation dataset.

Figure 31: Results for experiments in group [FE S1 Volatility] on
the evaluation dataset.

Figure 32: Results for experiments in group [FE S2 LARGE] on the
evaluation dataset.



Figure 33: Results for experiments in group [FE S2 SMALL] on
the evaluation dataset.

Figure 34: Results for experiments in group [FE S2 MEDIUM] on
the evaluation dataset.
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