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Preface
The work represented in this report is about measuring humans. To be more specific, we have inves-
tigated non-contact oxygen saturation estimation from the face by making use of a camera. The study
is performed, as part of the Master Thesis graduation procedure, within the Computer Vision Lab at the
TU Delft.

In short, the first main finding of this research is that neural networks are able to cope with the
presented challenges (e.g. varying lighting conditions) of facial oxygen saturation. Secondly, neural
networks show promising results in selecting facial regions that contain oxygen-related information,
and we suggest that they should replace traditional facial region selectors. Lastly, we indicate that even
single frame differences are a potential source for obtaining oxygen saturation related information.

Finally, I would like to thank Dr J.C. van Gemert for his supervision, M. Bittner for his daily advice
and K. Liang for evaluating my work as a core member from a different field.

Jim Kok
Delft, June 2022
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Abstract

COVID-19 drastically raised the importance of
non-contact based healthcare methods. Low blood
oxygen levels of a person, which can be unno-
ticeable, are potentially a precursor of COVID-19.
Contact based methods for measuring blood oxy-
gen saturation could spread the contagious disease.
Therefore, this paper investigates non-contact RGB
camera-based peripheral oxygen saturation esti-
mation by remote photoplethysmography (rPPG)
methods. The novel aspects of non-contact oxy-
gen saturation that we are looking into are: (1)
Applying SpO2 predictor neural networks to rPPG
signals obtained from facial regions, instead of the
less practical hand based skin regions. To be more
specific, we show in a facial based setting that
in the relatively uncontrolled environment the tra-
ditional Ratio-of-Ratios pulse oximetry principles
fail. In the leave-one-participant-out experiments,
the RoR method achieved a correlation of −0.05,
whereas neural networks showed the capability of
dealing with the inherent challenges of the PURE
dataset by achieving a superior correlation of 0.64.
These challenges are lighting variation due to subtle
head motion and clouds alternatively blocking the
sun. (2) The first end-to-end neural networks for
SpO2 estimation are introduced by replacing tradi-
tional hard pixel region-of-interest selectors, which
assign equal weight to each selected pixel, with con-
volutional soft-attention masks. (3) By using an
adapted version of a recent heart and breathing
rate estimator network, called DeepPhys, we in-
dicate that the current state-of-the-art is far from
optimal. This is done by comparing the window-
based constructed end-to-end neural networks with

Adapted DeepPhys, which is based on single frame
differences. Finally, our research1 shows that non-
contact facial based SpO2 estimation by RGB cam-
era remains a difficult task. However, as our results
indicate, more sophisticated deep learning model
might become a viable diagnostic tool for this task
in the future.

Index Terms– Neural networks, rPPG, Oxygen
saturation, SpO2.

1 Introduction

Skin colour changes unnoticeable to the human eye
contain physiological information, that amongst
other things can be used to determine the heart
rate [9, 33], oxygen saturation [4, 7, 20, 29] and
blood pressure [13, 42]. This paper focuses on
blood oxygen saturation. Specifically, this paper
focuses on non-contact oxygen saturation estima-
tion. Non-contact based methods could avoid the
spread of transferable diseases by taking preemp-
tive measures when low blood oxygen saturation
is observed in a person. This is because low blood
oxygen saturation may be an early indicator of var-
ious diseases (e.g. COVID-19) [6].

Blood oxygen saturation in the blood stream
is the ratio of concentrations of oxygenated
haemoglobin and total haemoglobin [20]. Arterial
blood oxygen saturation (SaO2) can be measured
invasively by a gas chromatograph and is highly
correlated with peripheral blood oxygen satura-
tion (SpO2), which is measured at the skin [41].

1Code available on https://github.com/jimkok9/

oxygenSaturation
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Invasive methods require patients’ blood samples
and do therefore not allow for continuous moni-
toring. Conventionally, blood oxygen saturation
is measured non-invasively with contact-based de-
vices (e.g the pulse oximeter [19]). The SpO2 mea-
sured by pulse oximeters may show a discrepancy
with SaO2 in some cases (e.g. with increased car-
boxyhaemoglobin concentrations)[3]. The down-
side of contact-based devices is that they could
cause discomfort, especially when someone needs
to be monitored constantly. In some cases, for in-
stance, in patients with burn injuries, it would not
even be possible to use contact devices at all. In
healthcare, especially when dealing with transfer-
able diseases, it is not always possible to treat pa-
tients in person. Furthermore, contact based meth-
ods could spread contagious diseases when they are
applied to multiple patients [6]. Non-contact based
methods have the potential to solve these problems
[21].

Remote photoplethysmography (rPPG) is a non-
contact based method that estimates physiological
related signals with a camera, based on reflection
variation of the skin [40]. Light reaching the cam-
era is comprised of specular lighting, which is light
reflected by the skin, and diffuse lighting, which is
light scattered by skin tissue. Specular lighting is
not affected by blood volume changes, whereas dif-
fuse lighting penetrates the skin and changes colour
depending on the blood volume [10]. As can be seen
from figure 1, the skin penetration depth of light is
dependent on the wavelength. In visible light, the
blue and green wavelengths reach arterioles at the
upper dermal layers, whereas the red wavelength
reaches subdermal layers [24].

In the literature, various types of cameras have
been used to determine oxygen saturation. The
types of cameras include charge-coupled device [16],
CMOS [32] and RGB cameras [6, 11]. Non-contact
based methods, for estimating blood oxygen satu-
ration, rely on the extinction coefficients at differ-
ent wavelengths of oxygenated and deoxygenated
haemoglobin, as can be seen in Figure 2. For ex-
ample, RGB camera-based SpO2 estimation makes
use of the fact that the absorption coefficient of
oxygenated haemoglobin is higher at the blue wave-
length and lower at the red wavelength, with re-
spect to deoxygenated haemoglobin. The ratio-of-
ratios (RoR) method [41] makes use of this property

and is defined as the ratio of absorbance of light at
two different wavelengths.

Figure 1: Skin penetration depth of various wave-
lengths. Figure is copied from [39].

Figure 2: Absorption coefficients of oxygenated and de-
oxygenated haemoglobin at different wavelengths. Fig-
ure is copied from [20].

Several challenges are inherent to rPPG, one
of which is changing lighting conditions. Natural
lighting changes over time (e.g. clouds blocking the
sun) can severely impact the ratio of absorbances
[21]. Secondly, head motion introduces changes in
pixels’ colour intensities which are not related to
the absorbance of light [7]. Furthermore, physiolog-
ical factors, like temperature, change the light scat-
tering properties of the skin and affect the rPPG
based SpO2 estimation [36]. The varying penetra-
tion depths of light in the skin may lead to inaccura-
cies [24]. A linear relation between SpO2 and RoR
is assumed which can be an oversimplified repre-
sentation due to the previously mentioned factors.
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Neural networks have shown to be able to learn
complex tasks, and can potentially mitigate the
aforementioned challenges. To the best of our
knowledge, neural networks have not been used to
determine facial oxygen saturation. This leads to
the research question of whether neural networks
are able to estimate SpO2 in a relatively uncon-
trolled facial based setting. Neural networks have
previously been used to predict hand based SpO2

measurements [20, 36, 38], in highly controlled en-
vironments, where most of these challenges do not
apply to. In contrast to hand based settings, fa-
cial based rPPG is more practical at present (e.g.
through selfie cameras and webcams). Therefore, in
this paper, the explainable neural networks intro-
duced by Methew et al. [20], which have been used
to determine oxygen saturation from the hands, are
examined by applying them to the face. The con-
tributions of this work are the following:

• We show that SpO2 facial based neural net-
works are capable of dealing with the induced
challenges, in a relatively low controlled envi-
ronment with amongst other things changing
natural lighting conditions.

• We constructed the first end-to-end neural net-
works for SpO2 estimation by adding a convo-
lutional soft-attention mask, for skin pixel av-
eraging, to existing SpO2 estimator networks.
The achieved results of the constructed models
are promising for predicting facial rPPG based
SpO2 estimations.

• We adapted DeepPhys [9] to predict oxygen
saturation, instead of heart rate (HR), and
show that single frame differences are a poten-
tial source of SpO2 relevant information. The
results suggest that the current state-of-the-art
is not optimal yet.

2 Related work

This section first describes the work done with re-
gard to the traditional ratio-of-ratios methods. Fi-
nally, the deep learning methods applied in this
field are described.

2.1 Ratio-of-ratios

Traditional photoplethysmography [2] (PPG)
methods, which are contact based, make use
of the ratio-of-ratios (RoR) principle [25]. The
ratio-of-ratios is defined as the ratio of absorption
at two different wavelengths, for instance red
(λ = 660nm) and infrared (λ = 940nm) for pulse
oximeters [41].

For computing the RGB camera’s RoR, there
exists controversy about whether to use the ”red
and blue channels” or the ”red and green chan-
nels”. Most work in this field uses the blue and red
channels, since the absorption coefficient of HbO2

is higher than Hb at the blue wavelength and for
the red wavelength, Hb absorbs more light than
HbO2. Instead of using the red and blue chan-
nels averaged over facial regions, the authors in [24]
showed that the red and green channels can be used
to compute the normalized ratio-of-ratios in con-
trolled settings, with only artificial light. Al-Naji et
al. [1], similarly, used the red and green channels to
estimate oxygen saturation. The setting is less con-
trolled, in terms that the participants sit still with
artificial- and sunlight. The authors concluded that
their RoR methods showed similar readings with
the pulse oximeter, however, their results showed
relatively low correlations. Both authors state that
the absorption coefficient of HbO2 and Hb should
be significantly different at one wavelength, which
is the case for the red wavelength, and equal at
the other wavelength, which makes the green wave-
length applicable. These findings lead to the use of
the red, green and blue channels, averaged over the
facial regions, as input to our neural networks.

Currently three types of digital cameras are
used in contactless SpO2 estimation, which are the
RGB, monochrome Complementary Metal Oxide
Semiconductor (CMOS) and monochrome Charge-
Coupled Device (CCD) camera. In contrast to
CMOS cameras, CCD cameras are relatively more
sensitive to light and create higher quality low
noise images [22]. The authors in [16] used two
monochrome CCD cameras to determine facial oxy-
gen saturation for stationary participants under
ambient lighting. They empirically showed that
the pulse oximeter and camera SpO2 measure-
ments are in perfect agreement with each other.
Shao et al. [32] used the respectively lower light-
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sensitive monochrome CMOS cameras, with a light
source alternating at two different wavelengths
(λ = 611nm and λ = 880nm). They performed
breath-holding experiments in a setting with no
light sources that could act as noise. The results
were consistent with those obtained from the pulse
oximeter over a wide SpO2 range. Monochrome
CMOS and CCD are, unlike RGB cameras (e.g.
smartphones and webcams), generally more expen-
sive and not ubiquitous nowadays. This emphasizes
the importance of research with regard to RGB
cameras, on which this paper is based.

Fingertip contact-based SpO2 estimation by
RGB camera is relatively less prone to subtle mo-
tions and illumination changes, with respect to
non-contact based methods. Therefore, fingertip
contact-based SpO2 estimation can be considered
less challenging than non-contact based SpO2 es-
timation. The authors in [17] used the averaged
red and green channels of the participant’s finger-
tip. This is measured by a smartphone touching
the fingertip with the flashlight turned on. This
work is followed up by Mishra et al. [23] who per-
formed breath-holding experiments on the partici-
pants’ fingertips. Their setup makes use of polar-
ization techniques to filter components of reflected
light. Ding et al. [11] used convolutional neural
networks to predict oxygen saturation of videos of
the fingertip made by smartphones. However, all
these methods are contact-based and require the
flashlight and camera of the smartphone to be in
touch with the person’s fingertip. Contact-based
methods can cause inconvenience by among other
things the heat of the flashlight. These limitations
emphasize the importance of SpO2 research on non-
contact based methods.

In contrast to fingertip contact-based SpO2 es-
timation, Sun et al. [36] performed SpO2 estima-
tion experiments on videos of the hands captured
by a smartphone. Lighting from any other source
than the smartphone’s built-in flashlight was min-
imized. The authors adapted the RoR method
and showed improved performance over the con-
ventional RoR method. Blood oxygen saturation
was manually regulated between 90 % and 100%
by a blood pressure cuff. Instead of manually
regulating oxygen saturation, Mathew et al. [20]
were able to accurately predict SpO2 values in a
less controlled environment where the participants

breathe normally and hold their breath in cycles.
Tian et al. [38] followed this work up and pro-
posed a multi-channel ratio-of-ratios method for
non-contact hand based SpO2 estimation using a
smartphone. Their method combines the RGB
channels to extract the rPPG wave, after which the
heart rate (HR) can be determined. Based on the
HR the R, G and B channels are bandpass filtered.
A similar approach is used in our paper where we
filter the channels based on the ground truth HR,
since their method showed promising results. By
using this method the raw signals (i.e. unfiltered),
which are prone to contain noise (e.g. motion
[27] and lighting artefacts), can possibly be filtered
more accurately. Their results are based on videos
of the hands, which contain relatively few motion
artefacts since the participant’s hands are lying still
in front of a table with a black background. Fur-
thermore, the black background and the station-
ary nature of the experiments allow for more accu-
rate and simplified region-of-interest (RoI) extrac-
tion (e.g. by applying a threshold [38]). Facial
RoI extraction is more prone to motion and light-
ing artefacts, like blinking and shadowing effects
[13]. However, nowadays, devices are designed for
capturing facial videos (e.g. webcams and selfie-
cameras), which makes these hand based methods
less practical and realistic.

The more practical and realistic facial based
SpO2 estimation is examined by various literary
works. The authors in [37] tracked changes in
oxygen saturation in a non-controlled clinical envi-
ronment during dialyses, which involves significant
oxygen saturation fluctuations, under artificial- and
sunlight. They made use of the facial based nor-
malized ratio-of-ratios method and showed robust
performance in a setting where participants are ly-
ing still. Bal et al. [4] showed that the facial based
RoR method is able to track the changes in oxy-
gen saturation, in a setting where participants sit
still or lie in a bed, with either fluorescent light or
indirect sunlight as the only light source. In con-
trast to lying in a bed, sitting still is more inherent
to contain noise, both due to changing background
and motion artefacts. Tarassenko et al. [14] showed
that it is possible to determine oxygen saturation
changes by using a RGB camera aimed at the face.
The experiments took place in an oxygen controlled
environment, where the participants sat 1.5 meters
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in front of the camera. They showed that the accu-
racy of the results was comparable to that of a com-
mercial pulse oximeter. However, this experiment
is performed in a highly controlled non-practical
lab environment. Instead, Rose et al. [30] sim-
ulated oxygen saturation fluctuation by perform-
ing breath-holding experiments with a RGB cam-
era under ambient lighting. To show that the signal
is present the authors used Eulerian video magni-
fication to amplify facial skin colour changes. The
authors in [5] performed similar facial based ex-
periments, however without trying to achieve fluc-
tuations in oxygen saturation. A relatively con-
stant oxygen saturation makes it harder to tune
the ratio-of-ratios, and therefore introduces an ad-
ditional challenge. Casalino et al. [6, 7] extended
this work by determining the facial SpO2 satura-
tion for stationary participants with changing sun-
light as the only source of illumination. The use
of sunlight, with changing light intensity over time,
introduced additional challenges. Nevertheless, all
these papers show that the face could be a potential
source for neural networks to show improvement in
non-contact oxygen saturation estimation, with re-
spect to the linear RoR method.

2.2 Deep learning applied to rPPG
signals

Deep learning based methods have shown promis-
ing results with regard to estimating physiologi-
cal signals from RGB videos. Niu et al. [26]
have shown that Rythmnet achieves promising re-
sults with regard to heart rate estimation. This
was done under less-constrained conditions, such
as movements and lighting changes. Chen et al.
[9] proposed the first end-to-end convolutional neu-
ral network, named DeepPhys, for heart rate (HR)
and breathing rate (BR) predictions. DeepPhys
combines convolutional soft-attention masks with
subsequent frame differences. They showed that
their model generalizes to people with different skin
types, which led us to adjust and examine it with
regard to SpO2 estimation, which can be considered
more difficult than heart and breathing rate estima-
tion. HR and BR estimation requires determining
the timestamps of the peaks of the rPPG signal,
whereas for SpO2 estimation both the timestamps
and amplitude of the peaks need to be accurately
determined.

With regard to oxygen saturation, Ding et al.
[11] have shown that convolutional neural networks
lead to better results than the ratio-of-ratios princi-
ple for videos of the fingertip made by smartphones.
However, the method requires the flashlight and
camera of the smartphone to be in touch with the
person’s fingertip, which could cause inconvenience
by the heat of the flashlight. Furthermore, in the
current COVID-19 situation, contact-based meth-
ods should be avoided as much as possible with re-
gard to the possible risk of spreading diseases. The
authors in [28, 34] proposed convolutional neural
networks for constructing the rPPG signal from fa-
cial videos, and thereby replacing the traditional
RoI selection procedures. Finally, Mathew et al.
[20] proposed the first 3 models to estimate SpO2

saturation from the hands in a non-contact man-
ner. They were able to accurately predict SpO2

values in a controlled environment where the par-
ticipants breathe normally and hold their breath
in cycles. Their results are based on videos of the
hands with a black background. However, videos of
the hands are much less common with current digi-
tal devices (e.g. when holding your phone your face
is in the camera range). Therefore, this method
is further examined, in this paper, with regard to
performance on the face, where more challenges are
involved (e.g. motion artefacts and changing back-
grounds).

3 Method

This section first explains the required background
theory. Secondly, the skin pixel extraction meth-
ods, by which the rPPG signals are obtained, are
described. Thirdly, the 3 proposed models for non-
contact SpO2 estimation by camera, that take as
input the rPPG signals, are elaborated. Finally,
the hyper-parameter and model structure selection
procedure will be explained.
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3.1 Theory

Blood oxygen saturation (SO2) is defined as the
percentage of oxygenated haemoglobin over the
total amount of haemoglobin in the blood, as
defined in Equation 1. The total amount of
haemoglobin is defined as the concentration of oxy-
genated haemoglobin (HbO2) and deoxygenated
haemoglobin (Hb).

SO2 =
HbO2

Hb+HbO2
· 100% (1)

During systole and diastole the heart transports
blood through the body, which causes variation
in light absorbed by the skin. Under non-varying
lighting conditions, the light perceived by a sen-
sor consists of a direct current (DC) and alternat-
ing current (AC). The DC is composed of venous
blood, a constant amount of arterial blood and non-
pulsatile components like skin pigmentation, while
the AC involves the pulsatile components [36].

When the amount of blood passing through the
arteries reaches a maximum, the amount of light
absorbed is also maximal. Likewise, the amount
of light is minimum when the amount of flowing
blood is at its minimum. According to the Beer-
Lambert law, this phenomenon could be expressed
as in Equation 2 and 3, where IH and IL are re-
spectively the highest and lowest light intensity, I
is the initial light intensity, At equals the AC ab-
sorbance at time t and ADC is the constant light
absorbance. The light absorbance at time t is de-
fined as At = ϵHb(λ)cHbdHb+ϵHbO2(λ)cHbO2dHbO2 ,
where λ is the wavelength, ϵ is the extinction co-
efficient, c is the blood concentration and d is the
optical pathlength [36].

IH = Ie−ADCe−AH,t (2)

IL = Ie−ADCe−AL,t (3)

The ratio-of-ratios is defined as the ratio of ab-
sorbance of light at two different wavelengths, as
defined in Equation 4.

R =
At,λ1

At,λ2

=
ln(

IL,λ1

IH,λ1
)

ln(
IL,λ2

IH,λ2
)

(4)

Then, by combining Equation 1, 2, 3 and 4, we
can infer a linear relation between oxygen satura-
tion and the RoR, as shown in equation 5, where
slope a and bias b are found through calibration. In
this paper, least squares regression is used to find
the best fitting line.

SO2 = b+ a ·R (5)

Correspondingly, Scully et al. [31] defined the
ratio-of-ratios for RGB video sequences as in Equa-
tion 6. The AC component is computed as the stan-
dard deviation and the DC component as the mean
of the corresponding channel over a specified time
period.

SpO2 = A−B
ACred/DCred

ACblue/DCblue
(6)

3.2 Skin colour extraction

The inputs to the neural network are the 3-
dimensional RGB times series extracted from the
participant’s face. To be more specific, the input
signals are defined as the spatially averaged RGB
time series X ∈ R3×(t·fps), where t is the window
length in seconds and fps is the number of frames
per second. The selected areas of the face are spa-
tially averaged for each channel. When using tradi-
tional RoI selectors each selected pixel is assigned
an equal weight, whereas for the convolutional soft-
attention masks a weighted average is applied.

3.2.1 Appearance model

The Appearance model, shown in Figure 3, is used
in our research to produce the convolutional soft-
attention masks. The input of the first convolu-
tional layer is the 32 × 32 pixel cropped face in
RGB2 (i.e. 3 input channels), which is converted to
32 channels. Layer 2 applies ’same’ padded convo-
lution to the result of layer 1 and keeps the number
of feature maps equal. The convolution in layers 1
and 2 are each followed by batch normalization and
the hyperbolic tangent activation function, in this
order. The third 1 × 1 convolutional layer com-
bines the resulting features maps into 1 channel.

2Examples of cropped faces are shown in Figure 8b and
8d.
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Figure 3: Pipeline of our constructed end-to-end neural
networks. The first part is the skin colour extraction
performed by the Appearance model. The second part
is the SpO2 prediction from the spatially averaged RGB
time series, by the proposed models for SpO2 extrac-
tion. The image is adjusted from [9].

The final soft-convolutional attention mask q is ob-
tained by L1 normalization as shown in Equation
7, where σ is the sigmoid function, H is the height
and W is the width of the cropped face. The convo-
lutional weight w ∈ R32x1x1 and bias b are applied
to resulting feature maps x ∈ R32x32x32 of the sec-
ond convolutional layer. Finally, the convolutional
soft-attention mask is element-wise multiplied with
the input image to extract the raw (i.e. unfiltered)
RGB traces.

q = H·W ·σ(wx+b)
2||σ(wx+b)||1 (7)

3.3 Proposed SpO2 prediction mod-
els

The authors in [20] have proposed 3 models for non-
contact SpO2 extraction from the hands, shown in
Figure 4. The models, that will be described in this
sub-section, are explainable and designed based on
domain-specific knowledge [20]. Specifically, the
first model structure resembles heart and breath-
ing rate estimation methods [20], where only the
timestamps of the peaks of the rPPG signal need
to be determined. Generally, first the pulse signal
is extracted by spatial combination of the colour
channels (e.g. POS [40] and CHROM [10]). Sec-
ondly, the pulse signal is temporally combined to
get the psychological signal of interest. The struc-
ture of model 2 is most in accordance with tra-
ditional SpO2 estimation methods (e.g. the RoR
method) where, in contrast to heart and breathing
rate estimation, both the timestamps and ampli-

tude of the peaks of the rPPG signal need to be
accurately determined. Determining the lowest IL
and highest IH light intensity of the cardiac cycles
is first performed by temporal combination. Sec-
ondly, the peak values are spatially combined to
determine the SpO2 saturation.

3.3.1 Model 1

Model 1 performs channel mixing followed by fea-
ture extraction. The channel mixing part consists
of 3 linear layers, where each layer is followed by
the Rectified Linear Unit (ReLU) activation func-
tion. Each linear layer combines the values spa-
tially and does not involve temporal combination.
The second step is to perform feature extraction
twice (i.e. in this order convolution, batch normal-
ization, dropout and temporal sub-sampling are ap-
plied). The number of filters of first convolutional
layers is determined by the parameter search Hy-
perband algorithm. The number of filters is halved
for each consecutive convolutional layer. The in-
puts of the convolutional layers are ’same’ padded,
resulting in equal output width and height. The
convolutional layers combine the inputs both spa-
tially and temporally. Sub-sampling decreases the
temporal dimension by a factor of two by using the
max-pooling operation. To obtain the SpO2 satu-
ration, the feature extraction result is flattened and
linearly combined. To the output, a value of 95 is
added for numerical stability.

3.3.2 Model 2

In contrast to model 1, model 2 first performs
channel-wise feature extraction followed by channel
mixing. Channel-wise feature extraction implies 1d
’same’ padded convolution followed by batch nor-
malization, dropout and temporal sub-sampling ap-
plied twice to each RGB channel. The 1-d convo-
lution only combines the inputs temporally. The
number of filters of the first convolutional layer is
equal for each colour channel and determined by
the Hyperband algorithm. The second 1-d convo-
lutional layer reduces the initial number of filters by
a factor of 2. The channel-wise feature extraction
outputs are concatenated after which 3 linear layers
are applied, each with ReLU as activation function.
After flattening and linearly combining the channel
mixing result, 95 is added for numerical stability.
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Figure 4: Model structures for predicting SpO2 saturation, proposed by Mathew et al. [20]. Model 1 first
spatially combines the input, after which it performs spatial and temporal combining by performing convolution
and pooling. Model 2, in contrast to model 1, performs channel-wise convolution and pooling first. Model 3
interleaves channel combining and convolution. Figure is copied from [20].

3.3.3 Model 3

The third model interleaves channel combination
and channel mixing. First, a linear layer which
combines the input spatially is applied to the input,
followed by the ReLU activation function. Then
2-d convolution is applied to the result of the lin-
ear layer, followed by batch normalization, dropout
and sub-sampling. The 2 × 2 max-pooling opera-
tion is applied as sub-sampling technique, which
decreases the input both temporally and spatially
by a factor of 2. The number of filters of the first
interleaving layer is reduced by a factor of 2 for each
interleaving layer and is determined by the Hyper-
band algorithm. The result of 4 interleaving layers
is flattened and linearly combined to a single value,
to which 95 is added to obtain the SpO2 saturation.

3.4 Hyperband parameter optimiza-
tion

The hyper-parameters and model structure are cho-
sen by the bandit-based parameter optimization
process called Hyperband [18]. The parameters
that are tuned include the learning rate, the ini-
tial number of filters, kernel size, dropout, batch
normalization, and the number of nodes in each
layer. Hyperband is an elimination based parame-
ter selection procedure where the best performing
parameters, in terms of validation error, are kept
for more iterations. This process drastically speeds

up the parameter search and trades-off between ex-
ploration (i.e. the number of configurations exam-
ined) and exploitation (i.e. the extensivity to which
the configurations are examined). Hyperband re-
quires 2 inputs, which are the maximum number of
iterations per configuration R and the proportion
of configurations that is discarded each round η.
Finally, the selected parameter configurations for
each experiment can be found on our Github3

4 Experiments

This section first describes the dataset used. Sec-
ondly, the performed experiments are elaborated
upon. Finally, the results are presented.

4.1 PURE dataset

The PURE dataset [35] consists of 10 participants
each performing 6 tasks. These tasks are the fol-
lowing: 1) Sitting still as much as possible and
looking into the camera. 2) Talking while avoid-
ing additional head motion. 3) Head movements
parallel to the camera plane. 4) The same as the
previous task, however, the speed of the head mo-
tion doubled. 5) Orienting the head towards tar-
gets placed around the camera, to simulate small
rotations. 6) Same as the previous task, however

3Configurations available in the /trained models folder
on https://github.com/jimkok9/oxygenSaturation.
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with larger head rotations that are on average 35◦.
For our experiments, only task 14 is examined since
the other tasks are related to head motion, which
is not part of this study. The participants sit in
front of the camera at approximately 1.1 meters.
The light comes through a large frontal window,
where clouds result in illumination changes over
time. The videos were captured with the RGB
eco274CVGE camera with a resolution of 640x480
at 30 frames per second. The oxygen saturation
is measured with a pulse oximeter (CMS50E) at a
sampling rate of 60Hz.

4.2 Leave-One-Participant-Out

To examine how accurately the models are able to
predict a relatively constant SpO2 value, experi-
ments are performed on participants who sit still
in front of the camera. This type of task can be
considered the easiest task in the datasets, whereas
the other tasks introduce additional deliberate mo-
tion artefacts caused by head movements. Each of
the 10 participants is used for testing once while
the rest is used for cross-validation. For cross-
validation, we use n− 1 folds, where n is the total
number of participants. The Hyperband parameter
R, the maximum number of iterations per config-
uration, is set to 81 and η, the proportion of con-
figurations that is discarded each round, is set to
3. This setting is empirically determined, based on
the size of the PURE dataset, to obtain a trade-off
between training time and exploration. Since the
hyper-parameters, weights and structure are tuned
and trained to n− 2 participants, they are selected
at the last fold of the Hyperband iteration with the
lowest summed cross-validation loss.

4.3 Neural networks and RoR per-
formance

This experiment aims to give insight into how the
models are able to generalize to different persons.
The performance of the neural networks are com-
pared to the traditional RoR method, in a facial
based environment with changing natural lighting
conditions. The questions it tries to answer are:
(1) Are the models able to predict a relatively con-

4Examples of this task are shown in Figure 8a and 8c.

stant SpO2 value of participants that the model has
not seen. (2) Are the models able to improve upon
the traditional ratio-of-ratios methods. For this ex-
periment, the parameters of the spatially averaged
RGB time-series inputs X ∈ R3×(t·fps) are set to
t = 10s with a sliding window of 0.2 seconds (i.e.
6 frames). According to the authors of the mod-
els [20], the neural network input segments should
be an order of magnitude longer than 1 heartbeat
cycle to add resilience against sensing noise. We
have chosen Gudi et al.’s [15] relatively large area
RoI selector, since it provides smoother rPPG sig-
nals in comparison to Casalino et al.’s [6] relatively
dense area RoI selector.

4.3.1 The proposed models’ capability

To answer question (1), the models are first trained
on the raw (i.e. unprocessed) signals, of which
the results are shown in Table 1a, 1b and Figure
5a. The training mean is defined as the mean of
the pulse oximeter’s measurements of the train-
ing set. As can be seen from Table 1b, all re-
sults by the models have a relatively high negative
correlation with the training mean. Whereas, Ta-
ble 1a shows that the correlation with the ground
truth is positive yet relatively low. The negative
train correlation and positive test correlation em-
pirically demonstrate that the models do not sim-
ply minimize the error by outputting the mean of
the training set. The results of the models trained
on the raw signal show relatively low test correla-
tions. Therefore, we hypothesise that the raw sig-
nals contain noise that the models are not able to
extract and significantly affects the SpO2 predic-
tions.

To verify the hypothesis that the raw signals con-
tain noise that the models are not able to extract,
the models are trained on the band-pass (0.7−4Hz)
filtered signals, instead of the raw signals. The
results are shown in Table 2a, 2b and Figure 5b.
The correlation with regard to the ground truth
improved significantly with respect to training on
the raw signal, by comparing the results in Table
1a and 2a. On top of that, models 2 and 3 show im-
provement in both mean absolute error (MAE) and
root mean square error (RMSE). The improvement
in test correlation and error metrics indicates that
predictions are more accurate. Despite model 1
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achieving a higher correlation, the MAE and RMSE
remained relatively stable. The results of this sub-
experiment strengthen the hypothesis that the raw
signals contain noise, that the models are not able
to extract.

The hypothesis is further examined by narrow-
ing the band-pass filter based on the participant’s
heart rate. In this sub-experiment, the models are
trained on heart rate band-pass filtered signals (i.e.
frequency HR±0.2Hz), where the heart rate is ob-
tained from the pulse oximeter at the timestamp of
the centre of the window. Since the heart rate can
change over time, the centre of the window is cho-
sen to obtain a more representative value. Results
are shown in Table 3a, 3b and Figure 5c. For all
models, the test correlation decreases and the error
metrics increase, with respect to the broad band-
pass filtered results. On top of that, all the models’
test MAE and RMSE increase in comparison to the
raw signal and 0.7− 4Hz band-pass filtered signal
results. The decrease in test correlation and high-
est error rates suggest that valuable oxygen satu-
ration information is being filtered out. Referring
back to question (1), the models show the potential
to predict oxygen saturation in the given setting.
The broad static band-pass filtering improves the
models’ results, whereas the narrow dynamic heart
rate band-pass filter seems to respectively degrade
performance. In conclusion, we empirically showed
that the models are capable of predicting oxygen
saturation but require carefully selected band-pass
signal filtering.

4.3.2 Proposed models vs RoR

For question (2) ”Are the models able to improve
upon the traditional ratio-of-ratios methods in a
facial based environment.”, the RoR method is ex-
amined and compared against the models in a sim-
ilar setup as in question (1). First, the compari-
son is made between the trained models and the
RoR methods tuned to the same unfiltered train-
ing set, of which the results can be seen in Figure
5a. Table 1a shows that the correlation for the
RoR methods is lower than all the models and the
MAE and RMSE are higher than all the models,
which indicates that the RoR method is to a lesser
extend able to learn the SpO2 saturation. Further-
more, Table 1b shows that the train correlation of

the RoR method is significantly higher and train
error metrics are significantly lower than the mod-
els. This indicates that the RoR method is biased
towards the average of the training set. In this set-
ting, therefore, the models are outperforming the
RoR method.

Correlation MAE RMSE

Model 1 0.31 1.34 1.61
Model 2 0.36 1.13 1.44
Model 3 0.29 1.45 1.62
RoR -0.66 1.49 1.85

(a) Results with respect to the GT.

Correlation MAE RMSE

Model 1 -0.49 0.86 1.25
Model 2 -0.49 0.61 0.82
Model 3 -0.33 0.91 1.25
RoR 0.61 0.27 0.34

(b) Result with respect to the mean
of the training set.

Table 1: Models trained on raw signal (i.e. unfiltered)
and RoR tuned to raw signal comparison, for steady
experiment. The ground truth and training mean for
each test participant is shown in Figure 5a.

Table 2a shows the results of the 0.7−4Hz band-
pass filtered signal. This table shows that the RoR
test correlation is significantly lower than all the
models. The RoR method error metrics are inferior
to the models’, except for the MAE of model 3.
Table 2b shows that the RoR is, likewise as for
the raw signal tuning, biased towards the training
mean. As in the raw signal scenario, the models
outperform the RoR method by a large margin.

Table 3a shows the comparison with regard to
the HR filtered signal and indicates that the RoR
method in terms of test error rates performs rela-
tively similar to the models. However, for the RoR
method the error metrics are less meaningful, since
the test correlation is negative. Furthermore, Table
3b shows that the RoR is the most correlated with
the training mean.

With regard to question (2) ”Are the models
able to improve upon the traditional ratio-of-ratios
methods in a facial based environment.”, we have
shown that all models exhibit superior results in
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training on the raw and broad static band-pass fil-
tered signals. The HR band-pass filtered results
showed that the RoR method in terms of error met-
rics performs similar to the models. However, the
negative RoR ground truth correlation makes these
lower errors less meaningful.

Correlation MAE RMSE

Model 1 0.41 1.36 1.57
Model 2 0.64 0.98 1.21
Model 3 0.51 1.32 1.44
RoR -0.05 1.28 1.66

(a) Results with respect to the GT.

Correlation MAE RMSE

Model 1 -0.17 1.09 1.41
Model 2 -0.41 0.73 0.92
Model 3 -0.28 1.08 1.42
RoR 0.20 0.45 0.55

(b) Results with respect to the mean
of the training set.

Table 2: Models trained on band-pass (i.e. 0.7− 4Hz)
filtered signal and RoR tuned to band-pass filtered sig-
nal comparison, for steady experiment. The ground
truth and training mean for each test participant is
shown in Figure 5b.

Correlation MAE RMSE

Model 1 0.36 1.69 1.78
Model 2 0.48 1.54 1.59
Model 3 0.16 1.73 1.83
RoR -0.53 1.42 1.80

(a) Results with respect to the GT.

Correlation MAE RMSE

Model 1 -0.08 1.22 1.68
Model 2 -0.27 1.34 1.63
Model 3 0.07 1.08 1.32
RoR 0.62 1.42 1.80

(b) Results with respect to the mean
of the training set.

Table 3: Models trained on heart rate band-pass (i.e.
frq HR±0.2Hz) filtered signal and RoR tuned to heart
rate band-pass filtered signal comparison, for steady
experiment. The ground truth and training mean for
each test participant is shown in Figure 5c

(a)

(b)

(c)

Figure 5: Model comparison based on training on raw
signal (a), 0.7−4Hz band-pass signal (b) and HR band-
pass filtered signal (c). The ground truth is the mean of
the pulse oximeter measurements of a test participant.
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4.4 End-to-end neural networks

This sub-experiment makes use of the same 3 mod-
els as in the previous experiment, however, the
RGB skin averaging procedure is replaced by the
Appearance model convolutional neural network.
For this experiment, the parameters of the spatially
averaged raw RGB time-serie inputs X ∈ R3×(t·fps)

are set to t = 2s with a sliding window of 2 seconds
(i.e. non-overlapping windows). We have chosen
these parameters since Casalino et al. [7] obtained
a relatively high correlation, on the raw signal ob-
tained with their RoI selector. They used the RoR
method in the same settings on the PURE dataset.
The questions we aim to answer are: (1) Are con-
volutional neural networks able to learn facial fea-
tures that contain SpO2 related information. (2)
Are convolutional neural networks able to improve
upon traditional RoI selector methods.

4.4.1 Learning SpO2 related facial features

To answer question (1), all 3 previously used mod-
els are trained in combination with the Appearance
model, which outputs a weighted facial skin pixel
average. The learned masks of the 300th frame
are shown in Figure 9, for each model and par-
ticipant. The 300th frame is chosen to reduce head
motion distortion at the start of the video. The
forehead in the selected frames is excluded since
some participants’ forehead is covered by hair and
we are interested in general facial features. The
learned masks definitely show their capability to
exclude certain facial features (e.g. Figure 9ad,
9ah and 9aj the eyes and Figure 9g, 9o and 9al
parts of the mouth). We have shown the capa-
bility of the Appearance model to exclude certain
facial features, however, is it also capable of in-
cluding certain facial features that contain SpO2

related information. According to the literature
[8, 12], the cheeks, forehead and nasal area contain
the strongest rPPG signal and thus most SpO2 re-
lated information. Although sub-optimal solutions
are obtained by selecting large parts of the image
(e.g. Figure 9j and 9n), some masks show promising
results in selecting the areas of interest (e.g. Figure
9b, 9an and 9ai the cheek and nose and Figure 9m
the nose). Therefore, question (1) ”Are convolu-
tional neural networks able to learn facial features
that contain SpO2 related information.” can be an-

swered by that the constructed end-to-end neural
networks show promising results in including and
excluding SpO2 related facial features.

4.4.2 Traditional RoI selection vs convolu-
tional soft-attention masks

Now, that we have shown the capability of the Ap-
pearance model to learn SpO2 related facial fea-
tures, we are interested in question (2) ”Are con-
volutional neural networks able to improve upon
traditional RoI selector methods”. To answer this
question, all 3 models are trained on the RGB
traces obtained by the RoI selectors by Casalino
et al. [6], Gudi et al. [15] and in combination with
the first DeepPhys soft-attention mask (i.e. the
Appearance model).

Figure 6a shows the result of model 1 trained in
combination with the Appearance model and both
traditional RoI selectors. The corresponding Table
4 shows that the Appearance model achieves the
lowest RMSE, however, performs worst in terms of
correlation. As can be seen in Figure 6a, the Ap-
pearance model achieves the lowest absolute error
for test participants 1, 5, 6, 8 and 9. This shows
the potential improvements that can be achieved
by CNNs over traditional RoI selector methods.
Referring back to the examination in question (1),
the masks of these participants show relatively high
skin pixel weights in the SpO2 related facial regions.

Correlation MAE RMSE

Appearance model -0.19 1.62 1.95
Casalino et al. -0.05 1.55 1.98
Gudi et al. 0.01 2.38 2.68

Table 4: Model 1 RoI selector comparison in terms of
ground truth correlation, Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE).

Figure 6b and Table 5 show results of the RoI
selector methods in combination with model 2.
Casalino et al.’s method achieves the highest per-
formance in terms of correlation and error metrics.
The Appearance model achieves the lowest abso-
lute error for test participants 1, 4, 5, 6 and 8.
This again shows a correlation with the relatively
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high quality learned masks. Furthermore, the re-
sult of the Appearance model are impacted by out-
lier test participant 10, where the mask includes
features of the mouth as shown in Figure 9am. By
removing the 10th test participant, the correlation
significantly increases from -0.10 to 0.29.

Correlation MAE RMSE

Appearance model -0.10 2.02 2.29
Casalino et al. 0.33 1.88 2.11
Gudi et al. 0.20 1.93 2.21

Table 5: Model 2 RoI selector comparison in terms of
ground truth correlation, Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE).

Figure 6c and Table 6 show the results with re-
gard to model 3. Like the results of model 2,
Casalino et al.’s method achieves the best results
for all 3 metrics. However, the lowest absolute er-
ror is obtained by the Appearance model for half of
the total number of test participants. To be more
specific, it obtains the lowest absolute error for par-
ticipants 1, 5, 6, 9 and 10. With regard to question
(2), the CNN weighted RoI selector is capable of
improving over traditional RoI selectors, however,
is dependent on the quality of the learned masks.

Correlation MAE RMSE

Appearance model -0.42 1.60 2.15
Casalino et al. -0.05 1.55 1.80
Gudi et al. -0.52 2.43 2.58

Table 6: Model 3 RoI selector comparison in terms of
ground truth correlation, Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE).

4.4.3 Weight visualisation

In Figure 12 the first linear layer of model 2, which
combines the RGB channels, is examined for the
test participants where significant performance dif-
ference is achieved by the masks and traditional RoI
selectors. The first 2 examined test participants are
4 and 5, for which the Appearance model achieved
superior performance. From Figure 12a and 12c
can be seen that the absolute red and blue channel
weight correlation of the Appearance model for par-
ticipant 4 and 5 is the highest. Furthermore, Figure
12b and 12d show that all RoI selector methods

(a) Model 1

(b) Model 2

(c) Model 3

Figure 6: Model 1 (a), 2 (b) and 3 (c) RoI selector
comparison. RoI selectors used are described in Gudi
et al. [15] and Casalino et al. [6]. The RGB traces
of the Appearance model are obtained by multiplying
DeepPhys’ first soft-attention with the input image.
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have relatively low absolute red and green chan-
nel weight correlation for these participants. The
Appearance model showed inferior performance for
participant 7, which is accompanied by relatively
low absolute red and blue channel weight correla-
tion (Figure 12e) and absolute lowest red and green
channel weight correlation (Figure 12f). For par-
ticipant 8, the Appearance model outperforms and
shows a relatively high correlation in both the ab-
solute red and green channel weights (Figure 12h)
and the red and blue channel weights (Figure 12g).
Whereas, the traditional RoI selectors show either
relatively high absolute correlation for the red and
green channel weights or the red and blue channel
weights. Lastly, for participant 10, Gudi et al.’s RoI
selector achieved superior performance with an ab-
solute error of 0.02, whereas the prediction of the
Appearance model can be considered as an outlier.
Gudi et al.’s absolute red and blue weight correla-
tion is with a value of 0.38 the highest, whereas the
absolute red and green channel weight correlation
of the Appearance model is the lowest.

These observations are in accordance with the
optophysiological properties of oxygenated and de-
oxygenated haemoglobin, shown in Figure 2. To
be more precise, the relatively large difference in
extinction coefficients of the blue wavelength with
respect to the green wavelength are in accordance
with the perceived performance. With this weight
visualisation sub-experiment, we have shown a cor-
relation between performance and RGB weight
combination, which is in turn influenced by the RoI
selector method used.

4.5 Adapted DeepPhys

For this sub-experiment, an adapted version of
DeepPhys [9] is used to investigate whether sin-
gle frame differences contain SpO2 related informa-
tion. Instead of heart and breathing rate, Adapted
DeepPhys outputs SpO2, which can be considered
a more difficult task. This is because for SpO2 es-
timation, in contrast to heart and breathing rate
estimation, both the timestamps and amplitude of
the peaks of the rPPG signal need to be accurately
determined. Furthermore, Adapted DeepPhys does
not normalize the frame differences to keep the
SpO2 related RGB information intact. In this
experiment Adapted DeepPhys is trained sequen-

tially and non-sequentially on the face extracted
frames. The sequential training inputs consist of 2-
second non-overlapping windows, whereas the non-
sequential training inputs consist of 128 batch sizes
of frame differences randomized over time and par-
ticipants. The 2-second non-overlapping windows
are chosen to keep the settings of the previous sub-
experiment the same. The 128 batch size is chosen
since this is the initial DeepPhys setting for HR
based training. The question this sub-experiment
aims to answer is: (1) Do single frame differences
contain SpO2 related information.

With regard to question (1), Figure 7 and Ta-
ble 7a show that the way Adapted DeepPhys is
trained has a significant influence on the perfor-
mance. Sequentially trained Adapted DeepPhys
achieves higher performance than non-sequential
training, with respect to the mean of the test set,
in terms of correlation and MAE. Table 7b shows
that the non-sequentially trained Adapted Deep-
Phys, with respect to the mean of the training
set, has lower MAE, RMSE and higher correla-
tion than sequentially trained Adapted DeepPhys.
This indicates that non-sequential Adapted Deep-
Phys is more biased towards the training means.
Furthermore, by comparing Tables 4, 5 and 6 with
Table 7a, sequentially trained Adapted DeepPhys
achieves superior performance in terms of correla-
tion, MAE and RMSE with respect to the end-to-
end neural networks investigated in Section 4.4, re-
gardless of which RoI selector method is used.

Correlation MAE RMSE

Non-sequentially 0.11 1.45 1.62
sequentially 0.38 1.32 1.69

(a) Results with respect to the GT.

Correlation MAE RMSE

Non-sequentially -0.24 0.67 0.82
sequentially -0.53 1.40 1.60

(b) Results with respect to the mean
of the training set.

Table 7: The results of Adapted DeepPhys, which
is trained non-sequentially and sequentially. Non-
sequential inputs consist of single frame differences of
128 batch sizes. Sequential inputs consists of 2 sequen-
tial second non-overlapping windows. The ground truth
and training mean for each test participant is shown in
Figure 7.
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Figure 7: The results of Adapted DeepPhys trained se-
quentially and non-sequentially. Non-sequential inputs
consist of single frame differences of 128 batch sizes.
Sequential inputs consists of 2 sequential second non-
overlapping windows.

To further investigate whether single frame dif-
ferences contain SpO2 related information, the
learned convolutional soft-attentions masks are ex-
amined. Figure 10 and 11 show respectively the
sequentially and non-sequentially learned masks of
each participant. The fact that the non-sequential
trained model is relatively more biased towards the
training mean shows coherence with the learned
masks. To be more specific, non-sequential train-
ing shows respectively less attention to SpO2 re-
lated areas (e.g. Figure 10c shows that sequential
trained Adapted DeepPhys learns the cheek areas,
whereas non-sequential trained Adapted DeepPhys
includes parts of the right eye 11f). Furthermore,
Figure 11f, 11u and 11ad show that for participant
2, 7 and 10 non-sequential training gives out of pro-
portional weights to dense areas.

In conclusion, the way Adapted DeepPhys is
trained has significant influence on the perfor-
mance. Sequentially trained Adapted DeepPhys
achieved promising results and outperformed the
window-based end-to-end neural networks. Fur-
thermore, the learned convolutional soft-attention
masks showed coherence with the performance
achieved by the training methods. These findings
shows that single subsequent frames difference po-
tentially contain subtle skin colour changes which
are related to SpO2 estimation.

5 Discussion

The first leave-one-participant-out sub-experiment,
in which the raw (i.e. unprocessed) signals are
input to the neural networks, empirically showed
that the 3 networks are able to pick up a pro-
portion of the signal of interest. In this setting,
model 2 achieved the highest correlation with a
value of 0.36. To enhance the learning process of
the models, the signals are band-pass filtered from
0.7 to 4Hz. This corresponds to a range of 42 to
240 heartbeats per second. The highest correla-
tion is again achieved by model 2 and significantly
increased from 0.36 to 0.64, with respect to raw
signal training. Remarkably by further narrowing
down the band-pass filter range to the heart rate
frequency, degraded performance is perceived. This
indicates that important information is contained
outside the HR filtered ranges (i.e. frq HR±0.2Hz).
Model 2 achieved the highest correlation of 0.48 for
the HR based filter, which is nevertheless higher
than the highest correlation of 0.36 obtained from
raw signal training. The superior performance of
model 2 on the raw signal, broad band-pass and
dynamic band-pass filter signal training is in accor-
dance with the explainability of the model struc-
ture, which is based upon traditional SpO2 esti-
mation methods. Furthermore, the correlation of
model 2 increased with respect to raw signal train-
ing by 77.78 %, for the broad band-pass filtered
signal training, and by 33.33 %, for dynamic HR
band-pass filtered signal training. This suggests
that future work should carefully select the band-
pass signal filtering range.

Next, we compared the performance of the neu-
ral networks against the performance of the RoR
method in the same settings. The results suggest
that the RoR oversimplifies the problem by pre-
dicting values near the mean of the training set,
and thus fails in a facial based setting with chang-
ing natural lighting conditions. The superior re-
sults achieved by the models indicate that we need
a more complex procedure to estimate non-contact
SpO2 measurements from the face in a relatively
uncontrolled environment. In conclusion, the RoR
based method fails in this type of setting regardless
of the signal preprocessing method used, whereas
the models seem to be able to mitigate the induced
facial challenges.
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The second sub-experiment investigated differ-
ent RoI selection methods. To be more precise,
two traditional hard pixel assignment RoI selectors,
with relatively large and small areas, and the soft-
attention masks learned by a convolutional neu-
ral network are examined. This sub-experiment
showed that the used RoI method has a significant
influence on the SpO2 estimation. The Appearance
model in combination with the SpO2 predictor net-
works showed promising results on a large subset
of the test participants, however, produced outliers
due to wrongly learned masks. The fact that we
trained the end-to-end neural networks on the rela-
tively small PURE dataset could be the reason for
degraded performance. Nevertheless, the Appear-
ance model showed the capability of learning facial
features that inherently contain SpO2 related in-
formation. On top of that, it showed to be able
to exclude facial features where the rPPG signal
is less prominent. The rPPG related signals can
differ per person, therefore one of the strengths of
the convolutional soft-attention masks is the pro-
vided flexibility. Nevertheless, only the first soft-
attention mask of DeepPhys’ Appearance model is
used in our end-to-end neural network, which re-
sults in less sophisticated facial features. This led
to the investigation of Adapted DeepPhys, which
consists of two soft-attention masks and is based
on frame differences. Finally, the weakness of this
current study that should be addressed in future
work is the fact that we use cropped facial regions,
where the forehead is not included. The term end-
to-end neural network is not completely appropri-
ate, because of the fact that we first track and crop
the face. Future work could include examination
of the performance of applying the networks on the
non-cropped images, on possibly larger datasets.

In the final sub-experiment, an adapted version
of DeepPhys was trained sequentially and non-
sequentially to investigate whether single frame dif-
ferences contain SpO2 related information. Se-
quentially trained Adapted DeepPhys outperforms
non-sequentially trained Adapted DeepPhys signif-
icantly, emphasizing the importance of the way
the network is trained. Participant specific skin
characteristics (e.g. skin colour and temperature)
could potentially be the cause of the diminished
performance of non-sequential training. Neverthe-
less, the sequentially trained Adapted DeepPhys

model showed superior performance with respect
to the SpO2 predictor models combined with the
RoI detector methods. This indicates that single
frame differences are a potential source of SpO2

related information. Adapted DeepPhys, which is
based on single frame differences, achieved a higher
correlation than the window-based models trained
on the raw signal. Although Adapted DeepPhys
achieved superior correlation, we would not rec-
ommend using it with regard to SpO2 estimation.
The reason for this is that window-based networks
take into account time sequences that minimally
contain one heartbeat cycle. This makes it pos-
sible for the window-based networks to determine
the minimum IL and maximum IH light intensity
of a cardiac cycle, where the principles of SpO2

estimation are based upon. Finally, DeepPhys’
relatively large network size and the fact that it
uses 2 soft-attention masks could be the reason
for the improved performance. Therefore, with
regard to future work, more complex and sophis-
ticated window-based end-to-end neural networks
(e.g. extending Adapted DeepPhys to a window-
based network by applying 3D convolutional neu-
ral networks) should be examined to improve the
current state-of-the-art.

In conclusion, we showed that the RoR method
fails in a facial based relatively uncontrolled envi-
ronment. Neural networks in combination with tra-
ditional RoI selector methods were able to mitigate
the induced lighting challenges and outperformed
the RoR method. Furthermore, our constructed
end-to-end neural networks showed promising re-
sults by replacing hard skin pixel RoI selection with
learned convolutional soft-attention masks. Fi-
nally, our Adapted DeepPhys model showed that
even single frame differences are a potential source
for obtaining SpO2 related information. Sequen-
tially trained Adapted DeepPhys obtained superior
performance over our constructed window-based
end-to-end neural networks, and thereby empha-
sizes the performance gap that needs to be bridged
in this field.
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Appendices

A PURE dataset

(a) (b)

(c) (d)

Figure 8: Examples of frames of the PURE dataset (left column), with their corresponding cropped image (right
column). The images are extracted from the video sequence of participant 1 for the steady experiment.
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B Appearance model’s soft-attention mask 1

(a) Test participant 1 (b) Model 1 (c) Model 2 (d) Model 3

(e) Test participant 2 (f) Model 1 (g) Model 2 (h) Model 3

(i) Test participant 3 (j) Model 1 (k) Model 2 (l) Model 3

(m) Test participant 4 (n) Model 1 (o) Model 2 (p) Model 3

(q) Test participant 5 (r) Model 1 (s) Model 2 (t) Model 3

Figure 9: Learned masks of the cropped 300th frame for each participant (first column) of the Appearance model
trained in combination with model 1 (second column), 2 (third column) and 3 (fourth column). For privacy
reasons the persons are made unrecognizable.
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(u) Test participant 6 (v) Model 1 (w) Model 2 (x) Model 3

(y) Test participant 7 (z) Model 1 (aa) Model 2 (ab) Model 3

(ac) Test participant 8 (ad) Model 1 (ae) Model 2 (af) Model 3

(ag) Test participant 9 (ah) Model 1 (ai) Model 2 (aj) Model 3

(ak) Test participant 10 (al) Model 1 (am) Model 2 (an) Model 3

Figure 9: Learned masks of the cropped 300th frame for each participant (first column) of the Appearance model
trained in combination with model 1 (second column), 2 (third column) and 3 (fourth column). For privacy
reasons the persons are made unrecognizable.
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C Adapted DeepPhys trained sequentially

(a) Test participant 1 (b) Mask 1 (c) Mask 2

(d) Test participant 2 (e) Mask 1 (f) Mask 2

(g) Test participant 3 (h) Mask 1 (i) Mask 2

(j) Test participant 4 (k) Mask 1 (l) Mask 2

(m) Test participant 5 (n) Mask 1 (o) Mask 2

Figure 10: Results for Adapted DeepPhys trained sequentially. The first column represents the cropped 300th

frame of the video sequence of each participant. The second column displays the learned soft-attention masks
1 and the third column displays the learned soft-attention masks 2. For privacy reasons the persons are made
unrecognizable.
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(p) Test participant 6 (q) Mask 1 (r) Mask 2

(s) Test participant 7 (t) Mask 1 (u) Mask 2

(v) Test participant 8 (w) Mask 1 (x) Mask 2

(y) Test participant 9 (z) Mask 1 (aa) Mask 2

(ab) Test participant 10 (ac) Mask 1 (ad) Mask 2

Figure 10: Results for Adapted DeepPhys trained sequentially. The first column represents the cropped 300th

frame of the video sequence of each participant. The second column displays the learned soft-attention masks
1 and the third column displays the learned soft-attention masks 2. For privacy reasons the persons are made
unrecognizable.

24



D Adapted DeepPhys trained non-sequentially

(a) Test participant 1 (b) Mask 1 (c) Mask 2

(d) Test participant 2 (e) Mask 1 (f) Mask 2

(g) Test participant 3 (h) Mask 1 (i) Mask 2

(j) Test participant 4 (k) Mask 1 (l) Mask 2

(m) Test participant 5 (n) Mask 1 (o) Mask 2

Figure 11: Results for Adapted DeepPhys trained non-sequentially. The first column represents the cropped
300th frame of the video sequence of each participant. The second column displays the learned soft-attention
masks 1 and the third column displays the learned soft-attention masks 2. For privacy reasons the persons are
made unrecognizable.
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(p) Test participant 6 (q) Mask 1 (r) Mask 2

(s) Test participant 7 (t) Mask 1 (u) Mask 2

(v) Test participant 8 (w) Mask 1 (x) Mask 2

(y) Test participant 9 (z) Mask 1 (aa) Mask 2

(ab) Test participant 10 (ac) Mask 1 (ad) Mask 2

Figure 11: Results for Adapted DeepPhys trained non-sequentially. The first column represents the cropped
300th frame of the video sequence of each participant. The second column displays the learned soft-attention
masks 1 and the third column displays the learned soft-attention masks 2. For privacy reasons the persons are
made unrecognizable.
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E Model 2 weight visualization

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 12: The comparison of the RGB channel weights of the first linear layer of model 2 trained in combination
with traditional RoI selectors (i.e. Gudi et al. [15] and Casalino et al. [6]) and DeepPhys’ Appearance model,
as described in Section 4.4. The first column displays the weights of the red and blue channel, and the second
column displays the weights of the red and green channel.
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2
Basic Deep Learning concepts

In this chapter, the basic Deep Learning concepts used in our research are explained and are intended
as refreshments. The readers who are already familiar with the concepts can feel free to skip over this
Section.

2.1. Linear Layers
This sub-section describes the basics of linear layers using Figure 2.1. A linear layer has an input
and output layer consisting of an arbitrary number of nodes. The value of an output layer’s node is
computed by multiplying each node of the input layer by the corresponding weights of the node of the
output layer. A constant value, called the bias, is added to the results of the multiplication. In other
words, the nodes of the output layer are a linear combination of the nodes of the input layer.

Figure 2.1: Example of a 3-node linear layer. Image obtained from https://ashwinhprasad.medium.com/pytorch-
for-deep-learning-nn-linear-and-nn-relu-explained-77f3e1007dbb

2.2. Convolutional layers
Convolutional neural networks (CNNs) [14] consist of convolutional layers and are inspired by the nat-
ural visual perception mechanism of living creatures [7]. CNNs have shown their adequacy in a wide
variety of image processing tasks (e.g. image classification [16, 24] and object detection [3, 6]).
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Figure 2.2 shows an example of a convolutional layer. The output is obtained by sliding a kernel
of arbitrary size, which is in this example 3 × 3, over the input image. The centre pixel of the kernel
corresponds to the location of the output value, which is computed by multiplying the kernel weights
with their corresponding input value.

Figure 2.2: Example of a convolutional layer with a 3 × 3 kernel. Image obtained from https://medium.com/ai-
salon/understanding-deep-self-attention-mechanism-in-convolution-neural-networks-e8f9c01cb251.

2.2.1. Padding
Determining the border pixels of the image is in the given example not possible since this would result
in the kernel exceeding the boundaries of the image. This is so-called ’valid’ padding and we, therefore,
lose the boundary values of the image. For our research ’same’ padding is used, which is also known
as zero padding, where the values outside the image are set to 0. This allows the kernel to determine
the boundary values, which results in the same input and output size.

2.3. Pooling
The pooling operation downsamples the input image, depending on the kernel size. Figure 2.3 shows
an example of the max and average pooling operation. In this example, a 2 × 2 kernel is slid over the
image in a non-overlapping way, as shown by the colours. The stride is defined as the number of pixels
the kernel moves horizontally and vertically. To make the 2 × 2 kernel non-overlapping, the stride is
set to 2. Finally, in the case of max pooling the maximum value of the region, indicated by a particular
colour, is output and in the case of average pooling the average value.

2.4. Activation functions
Neural networks try to approximate an arbitrary function, which is also known as the true function.
The loss of the neural network is determined by the loss function, output of the neural network and
the corresponding ground truth (i.e. the output of the true function). The true function can be either
linear or non-linear, therefore, non-linearity needs to be added to the linear layers. This can be done by
making use of activation functions [19] (e.g. the binary step and sigmoid function). In this sub-section,
we will dive deeper into two activation functions used in our research, which are the Rectified Linear
Unit (ReLU) and the hyperbolic tangent (TanH) function.

The ReLU function 𝑓(𝑢) outputs 𝑢 if 𝑢 is larger than 0, else it outputs 0, as defined in Equation 2.1
and shown in Figure 2.4. The output range of ReLU is [0,∞] and the derivative is defined in Equation
2.2, of which the usefulness will be explained in Section 2.5.

𝑓(𝑢) = {𝑢, if 𝑢 ≥ 0
0, otherwise

=max(0, 𝑢) (2.1)

𝑓′(𝑢) = {1, if 𝑢 ≥ 0
0, otherwise

(2.2)
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Figure 2.3: Example of a 2× 2 kernel max and average pooling operation, with a stride of 2. Image obtained from
[25].

The symmetric TanH function, with output range (−1, 1), is shown in Figure 2.5 and defined as in
Equation 2.3. The corresponding derivative is defined in Equation 2.4. The property of the TanH func-
tion is that relatively large positive and negative input values correspond to derivatives approximately
equal to 0. Whereas, the derivatives for input values close to 0 are significantly higher.

𝑓(𝑥) = 2
1 + 𝑒−2 − 1 (2.3)

𝑓′(𝑥) = 1 − 𝑓(𝑥)2 (2.4)

Figure 2.4: The Rectified Linear Unit (ReLU)
activation function. Image obtained from [15].

Figure 2.5: The Hyperbolic Tangent (TanH)
activation function. Image obtained from [9]

2.5. Training neural networks
In our work, the neural networks are trained by a process called mini-batch gradient descent [17], which
updates the weights and biases of the nodes based on a loss criterion computed over a certain number
of samples (i.e. the batch size). In contrast to updating the weights over a batch, gradient descent up-
dates the parameters (i.e. weights and biases) over the entire dataset and stochastic gradient descent
(SGD) updates the parameters for each sample [17].
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2.5.1. Gradient descent
Figure 2.6 shows an example of gradient descent, where the objective of is to minimize the cost function
𝑓(𝑥) = 1

2𝑥
2. The minimum is at 𝑥 = 0 and for values 𝑥 > 0 the derivative 𝑓′(𝑥) is larger than 0 and for

𝑥 < 0 the derivative 𝑓′(𝑥) is negative. Furthermore, the cost function 𝑓(𝑥) is prior unknown but can be
explored according to Equation 2.5. This implies that we can minimize the cost by moving small steps
in the opposite direction of the gradient as specified in Equation 2.6. By setting the step size 𝛼 too high,
the approximation specified in Equation 2.5 does not hold any more. This can result in overshooting
the minimum.

𝑓(𝑥 + 𝛿) ≈ 𝑓(𝑥) + 𝑓′(𝑥) ⋅ 𝛿 (2.5)

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 − 𝛼𝑓′(𝑥), where 𝛼 is the step size. (2.6)

Figure 2.6: Example of gradient descent. Image obtained from the Deep Learning course slides given by J.C. van
Gemert at the TU Delft.

2.5.2. Backpropagation
Backpropagation [2] is a way to update the parameters of the network based on gradients. First, the
sample(s) are forward passed through the network, which means that the input values are propagated
through the network. Secondly, the result of the forward pass (i.e. the output of the network) is used to
compute the loss, according to the used loss criterion. Finally, the gradients of the loss are computed
over the sample(s) with respect to the weights and biases of the network. After computation of the
gradients, one of the variants of gradient descent (i.e. SGD, gradient descent or mini-batch gradient
descent) can be performed.



3
Non-contact oxygen saturation

estimation
This chapter first describes the principles of oxygen saturation estimation. Secondly, non-contact oxy-
gen saturation estimation by RGB camera and two traditional skin pixel trace extraction methods are
described.

3.1. Pulse oximetry
Conventionally, peripheral oxygen saturation (SpO2) is measured by a pulse oximeter which requires
being in contact with the skin. In contrast to arterial oxygen saturation (SaO2), which is measured by
taking blood samples, SpO2 is measured non-invasively at the skin surface [13]. The LEDs of a pulse
oximeter commonly emit light at a wavelength of 660𝑛𝑚 (i.e. red light) and 940𝑛𝑚 (i.e. infrared light)
[21]. At the infrared wavelength, as can be seen from Figure 3.1, oxygenated haemoglobin (O2Hb)
absorbs more light than deoxygenated haemoglobin (HB). At the red wavelength it is reversed; Hb
has a higher extinction coefficient than O2Hb. By measuring the lighting changes of the skin at 2
wavelengths over time, which depend on the corresponding extinction coefficients of Hb and HbO2,
the peripheral oxygen saturation can be determined.

Figure 3.1: Extinction coefficients of oxygenated and reduced hemoglobin at the red to infrared wavelengths.
Image obtained from [21].
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3.1.1. Ratio-of-ratios
The difference in light absorption of HbO2 and Hb at 2 different wavelengths is utilized to compute the
ratio-of-ratios (RoR). Blood is continuously transported through the body in a pulsating manner by the
heart. During 1 heart cycle, the amount of arterial blood fluctuates, which is referred to as the alternating
current (AC). The direct current (DC), which does not fluctuate during a heart cycle, consists of tissue,
venous blood, and non-pulsatile arterial blood [21]. The AC and DC at the red and infrared wavelength
can be used to compute the RoR, as shown in Equation 3.1. The RoR is in turn linearly related to
oxygen saturation, of which a derivation can be found in Section 3.1 of our scientific article.

𝑅𝑜𝑅 =
𝐴𝐶𝑟𝑒𝑑
𝐷𝐶𝑟𝑒𝑑

𝐴𝐶𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑
𝐷𝐶𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑

(3.1)

3.2. Non-contact based SpO2 estimation by RGB camera
Non-contact based oxygen saturation estimation by RGB camera relies on the difference in extinction
coefficients of HbO2 and Hb at the human visual wavelength spectrum, as shown by Figure 3.2. For
RGB cameras the blue or green wavelength is used instead of the infrared wavelength, which is used for
pulse oximeters. Similar to pulse oximeter contact-based SpO2 estimation, the authors in [18] defined
the ratio-of-ratios for non-contact RGB video sequences as in Equation 3.2, in where AC is computed
as the standard deviation and DC as the mean of the corresponding channel over a specified time
period.

𝑆𝑝𝑂2 = 𝐴 − 𝐵
𝐴𝐶𝑟𝑒𝑑/𝐷𝐶𝑟𝑒𝑑
𝐴𝐶𝑏𝑙𝑢𝑒/𝐷𝐶𝑏𝑙𝑢𝑒

(3.2)

Figure 3.2: Extinction coefficients of oxygenated and reduced hemoglobin at the human visual wavelength spec-
trum. Image obtained from [12].

The method of obtaining the physiological related signals in a non-contact based manner, by a
camera, is called remote photoplethysmograph (rPPG) [5]. To obtain the physiological related signals,
from cameras, spatial averaging over SpO2 related facial regions is performed.

3.2.1. Region of interest selection
In our paper, we use 2 traditional Region-of-Interest (RoI) selectors, introduced byCasalino et al. [1] and
Gudi et al. [8]. Casalino et al.’s method is designed for non-contact oxygen saturation measurements,
whereas Gudi et al.’s method is initially designed for heart rate (HR) and heart rate variability (HRV)
estimation. The selected RoI by Gudi et al.’s method is larger than each of the RoIs of Casalino et al.’s
method. This results in Gudi et al.’s method to obtain relatively smoother signals, as shown in Figure
3.3. However, the pulsatile component for Gudi et al.’s method is generally diminished with respect
to Casalino et al.’s method. This is because of the fact that we spatially average over a larger region,
where most likely not all pixels contribute equally to the constructed rPPG signal.



3.2. Non-contact based SpO2 estimation by RGB camera 35

(a) Trace obtained by Gudi et al.’s RoI selector. (b) Trace obtained by Casalino et al.’s RoI selector.

Figure 3.3: The red trace obtained by the two traditional RoI selector from test participant 10, for the task of sitting
still.

Casalino et al.’s method first uses Dlib’s pre-trained face detector to crop the face. Secondly, Dlib
is used to obtain the 68 facial landmark points as shown in Figure 3.4a. The 68 landmark points are
used to select the corner points of the regions of interest to include as much skin as possible. The
RoIs include the forehead, left cheek and right cheek and are shown in Figure 3.4b. The centre box
containing parts of the nose and mouth is used for tracking head movements. To be more specific,
feature points are selected in this box according to [20]. Then Kanade-Lucas-Tomasi’s method [22] is
used to track the feature points in each frame. A feature point is selected if both eigenvalues 𝜆1 and 𝜆2
of matrix 𝑍 = [ 𝑔

2
𝑥 𝑔𝑥𝑔𝑦

𝑔𝑥𝑔𝑦 𝑔2𝑦 ], where 𝑔𝑥 and 𝑔𝑦 are respectively the gradients in the 𝑥 and 𝑦 direction,

are above a predefined threshold 𝛼. The selected feature points in the image correspond to the most
prominent corner points. The number of selected points can be tuned by changing 𝛼; the lower alpha
themore points are selected and vice versa. Subsequent frames are usually highly correlated with each
other. The horizontal 𝜉 and vertical 𝜂 pixel displacement from the frame at time 𝑡 to the next frame at
time 𝑡 + 𝜏 can be modelled according to Equation 3.3 [22]. For the equation to hold, the lightning
environment is assumed to be static. Changes in lighting conditions due to for instance head motion
and sunlight violate this assumption. The displacement d is chosen such as to minimize the error taken
over a predefined window size. The previous (𝑥𝑖 , 𝑦𝑖) and updated points (𝑥𝑖+1, 𝑦𝑖+1) in the central box
are used to determine the transformation matrix 𝐻, as defined in Equation 3.4. The transformation
matrix is in turn used to update the RoI corner points. Then, each RoI is spatially averaged for each
frame to obtain the rPPG signals, as shown in Figure 3.4c. The rPPG signal of each RoI is analyzed
in the frequency domain. Finally, the rPPG signal of the RoI where the heart rate frequency is most
prominent is chosen.

𝐼(𝑥, 𝑦, 𝑡 + 𝜏) ≈ 𝐼(𝑥 − 𝜉, 𝑦 − 𝜂, 𝑡), where 𝐼(𝑥, 𝑦, 𝑡) is the pixel intensity at location (𝑥, 𝑦) at
time 𝑡, 𝜏 is the time between 2 subsequent frames and d = (𝜉, 𝜂) is the displacement vector
in the x and y direction.

(3.3)

[
𝑥𝑖+1
𝑦𝑖+1
1
] = 𝐻 [

𝑥𝑖
𝑦𝑖
1
] , where 𝐻 is the transformation matrix. (3.4)
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(a) The 68 facial landmark points. Im-
age obtained from [11].

(b) Example of the
3 RoIs selected by
Casalino et al. Im-
age obtained from
[1].

(c) Spatial averaging performed over
each channel and each RoI. Image ob-
tained from [1]

Figure 3.4: Casalino et al.’s pipeline. The 68 landmarks (a) are used to determine the RoI corner points (b). For
each frame the red, green and blue channel intensity is averaged over each RoI to obtain the rPPG signals (c).

Gudi et al.’s [8] region of interest selection method first employs the Viola-Jones algorithm [23] to
detect the face and fits an active appearance model [10] to it. The facial landmarks determined by the
active appearance model are used to define the RoI, which is shown in Figure 3.5.

Figure 3.5: The region of interest selection procedure introduced by Gudi et al. The R,G and B traces are obtained
by spatial averaging over the RoI for each frame. Image adapted from [8].



4
Proposed deep learning models

This chapter elaborates upon the deep learning models used in our research, which are used to esti-
mate oxygen saturation in a non-contact manner.

4.1. First neural networks for camera based SpO2 prediction
Mathew et al. [12] introduced the first 3 non-contact video hand based models for SpO2 estimation,
which are shown in Figure 4.1. The neural networks are the current state-of-the-art in non-contact
oxygen saturation estimation from the hands. Neural networks have not been applied to the face
before and our work examines how these models perform in a facial based setting. This section dives
deeper into the rationale of these models.

Figure 4.1: The 3 proposed non-contact based SpO2 estimation neural networks. Image obtained from [12].

4.1.1. Model 1
Model 1 first combines the averaged R, G and B pixel intensities spatially by applying 3 linear layers.
After spatial combination, the result is both temporally and spatially combined by applying 2 convolu-
tional layers, which are interleaved with max pooling. Max pooling ensures that maxima and minima in
the signal are maintained. This is important for determining the alternating current (AC) component in
non-contact SpO2 estimation. After the convolutional layers, the result is flattened to predict the SpO2
saturation. Finally, this model is the least complex out of the 3 models in terms of number parameters.

4.1.2. Model 2
Model 2 first combines the averaged R, G and B pixel intensities over time, by applying 1-d convolutional
layers in combination with max pooling. After temporally combining the signal, it is spatially combined

37
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by applying linear layers. Finally, to predict the output SpO2 saturation the result of the linear layers is
flattened and linearly combined, which is both a spatial and temporal combination. Since the number
of feature maps is propagated to the linear layers, this model is more complex than model 1 in terms
of number of parameters.

4.1.3. Model 3
Model 3 interleaves channel combination with convolutional layers. The input is first spatially combined
by a linear layer. The result after applying the linear layer is combined both spatially and temporally
by the convolutional layer, which in turn is combined by the max pooling operator. The result of the 4
interleaving layers is flattened and linearly combined to predict the SpO2 output. Finally, this model is
the most complex out of the 3 models in terms of number parameters.

4.2. DeepPhys
DeepPhys [4], which is shown in Figure 4.2, is the first end-to-end deep convolutional neural network
for heart and breathing rate estimation. DeepPhys consists of a Motion model, which takes as input the
normalized frame differences, and an Appearance model, which takes as input the current frame. The
Appearance model consists of two convolutional soft-attention masks and is used to determine regions
that contain the signal of interest. The Motion model uses the change in colour between subsequent
frames to determine the output. The purpose of training the Motion model in combination with the
Appearancemodel is to give attention to regions that based on single frame differences contain relevant
information with regard to the to be determined physiological output.

Figure 4.2: DeepPhys; the first end-to-end deep convolutional neural network for heart rate and breating rate
estimation. The Appearance model of DeepPhys uses 2 convolutional soft-attention masks to learn weighted
facial regions that are related to the physiological signal of interest. Image obtained from [4].

4.2.1. Appearance model
Instead of the traditional RoI selector methods, we use the first part of the Appearance model of Deep-
Phys to obtain the rPPG signal, as shown in Figure 4.3. The final 1 × 1 convolutional layer combines
the by layer 2 resulting features maps 𝑥 into a single feature map 𝜎(w𝑥+𝑏) ∈ ℝ1𝑥32𝑥32. This is done by
applying the convolutional weight w to 𝑥, followed by adding the bias b and applying the sigmoid acti-
vation function 𝜎. The output of the appearance model is the L1 normalized convolutional soft-attention
mask 𝑞. This is computed by element-wise multiplying the single feature map 𝜎(w𝑥 + 𝑏) by the height
𝐻 and width 𝑊 of the input image and element-wise dividing the result by the L1-norm of 𝜎(w𝑥 + 𝑏)
times 2, as shown in Equation 4.1. The dot product of the input image (i.e. 𝐶(𝑡)) and the output of
the Appearance model 𝑞 is normalized to obtain the weighted average R, G and B pixel intensities.
This process is repeated for input 𝐶(𝑡) up to 𝐶(𝑡 + 𝑤𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒), where 𝑤𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 is the number of
frames contained in the window. The weighted average R, G and B intensities are concatenated over
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time, which results in input 𝐼 ∈ ℝ3𝑥𝑤𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒. The input 𝐼 acts as input to the models designed for
SpO2 estimation. Finally, the models are trained separately on the RGB traces.

𝑞 = 𝐻⋅𝑊⋅𝜎(w𝑥+𝑏)
2||𝜎(w𝑥+𝑏)||1

, where 𝜎 is the sigmoid function, 𝐻 is the height and𝑊 is the width.
The convolutional weight w ∈ ℝ1𝑥1𝑥32 and bias 𝑏 are applied to feature maps 𝑥 ∈ ℝ32𝑥32𝑥32.

(4.1)

Figure 4.3: Appearance model in combination with SpO2 predictor networks. The convolutional soft-attention
mask of the Appearance model is used to compute the weighted average of the input image. The resulting R,G
and B intensities are concatenated over time, which act as input the SpO2 models. Image adapted from [4, 12].

4.2.2. Adapted DeepPhys
To compute oxygen saturation, instead of heart and breathing rate, we have adapted DeepPhys. The
adapted network can be seen in Figure 4.4. The first part that is adjusted is the cropped input size.
For the original DeepPhys network the input images are of size 36𝑥36, which includes, besides parts
of the face, the background. The resolution for Adapted DeepPhys is reduced to 32𝑥32 by applying
bicubic interpolation. Bicubic interpolation is chosen since it reduces noise caused by subtle head
motions. By lowering the resolution, more computational efficiency and smoother signals are obtained.
Furthermore, the forehead in the cropped areas is not included, since for some participants in the PURE
dataset the hair occludes parts of the forehead. By not including the forehead it makes it easier for the
Appearancemodel to learn global features. Secondly, we do not normalize the frame differences, which
act as input to the Motion model. Normalizing the frame differences would result in loss of SpO2 related
information. This is because we are interested in the change in intensity of the R, G, and B channels
with respect to each other. Finally, instead of outputting the difference (i.e. 𝑝(𝑡 + 1)−𝑝(𝑡)), we directly
output the SpO2 saturation.
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Figure 4.4: Adapted DeepPhys, which consists of the Motion and Appearance model. The Appearance model
takes as input the first of the two consecutive frames, whereas the Motion model takes the difference of the two
consecutive frames as input. The output of Adapted DeepPhys is the SpO2 saturation. Image adapted from [4].
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