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Computational reduction of optimal hybrid vehicle energy management
Carlos Armenta, Sébastien Delprat, Rudy R. Negenborn, Ali Haseltalab, Jimmy Lauber, and Michel

Dambrine

Abstract— Pontryagin’s Minimum Principle is a way of solv-
ing hybrid powertrain optimal energy management. This paper
presents an improvement of a classical implementation. The core
of this improvement consists in relaxing the tolerance on some
intermediate steps of the algorithm in order to reduce the number
of iterations and thereby reducing the number of operations re-
quired to compute an optimal solution. The paper describes both a
classical implementation of Pontryagin’s Minimum Principle as well
as the improved version. Numerical simulations are conducted on
an academic example to demonstrate the benefits of the proposed
approach.

Index Terms— Optimal control, control applications, nu-
merical algorithms.

I. INTRODUCTION

HYBRID powertrains use at least two energy sources for their
propelling, and at least one of them is reversible. A control

strategy is needed to manage the power-split between the different
sources such that a criterion, for instance, the fuel consumption is
minimized.

In simulation over a priori known mission, the problem is to com-
pute an optimal solution to the energy management problem. It can
be obtained, for instance, using Dynamic Programming. It consists
of reformulating the energy management problem as a shortest path
problem within an oriented graph with positive costs [1] [2] [3]. It
can handle both state and control constraints seamlessly. Still, it is
subject to the so-called ’curse of dimensionality’ that restricts the
algorithm to problems with a single energy storage system. Another
approach is based on Pontryagin’s Minimum Principle (PMP) [4] [5].
This approach provides the necessary conditions that allow computing
the optimal solution. The resulting algorithm is more computationally
efficient than DP, but it cannot handle state constraints.

Real-time control algorithms can be derived from optimal con-
ditions. They are known as Equivalent Consumption Minimization
Algorithms [6]. Considering potential real-time applications, for
instance, within the Model Predictive Control framework, the reduced
computational cost of the PMP based algorithms is of importance.
Improving optimal control algorithm efficiency is also of interest for
topology an sizing optimization. It consists in choosing the powertrain
components and also the way they should be connected [7] [8]. This
is typically done by solving many optimization problems for different
numerical settings (such as component power rating, energy storage
capacity) over a large set of mission profiles. This procedure can be
computational intensive since it relies on an almost exhaustive search.
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As a result, improving the optimal control algorithm efficiency allows
either expanding the search space or reducing the computation time.

Problem statement: The classical implementation of the PMP-
based algorithm consists of two major optimization sub-problems.
First, at each instant, the control is a solution to an instantaneous
optimization sub-problem that depends on an additional parameter
denoted as co-state and second, the co-state is the root of a function
which is computed using a bisection search.

Contribution: The algorithm is modified to improve the computa-
tional efficiency of the algorithm significantly. The underlying idea is
that both sub-problems do not need to be solved with high accuracy
before their convergence toward the optimal solution. As a result,
the intermediate solutions are computed using weak but sufficient
accuracy by exploiting the convexity properties of both subproblems.

Organization: The results of this work are presented as follows:
Sect. II briefly introduces the theoretical background on PMP and
how it can be used to obtain a numerical solution to a hybrid
powertrain optimal energy management problem; Sect. III details
how to improve the classical approach; Sect. IV puts the proposed
improved control scheme and the classical one at test in an academic
example in simulation; conclusions are given in Sect. V.

II. PRELIMINARIES

In this paper, a series hybrid vessel is considered. In order to
focus on the proposed improvement, a simplified hybrid powertrain
model is considered with perfect energy storage and a perfect DC/DC
converter. However, the presented algorithm can be extended to other
hybrid powertrain topologies with more detailed models.

A. Series Hybrid topology
In the series hybrid topology, the vessel is exclusively propelled

by the electric motor, see Fig. 1. The propelling power is supplied to
this traction motor by the energy storage system (typically a battery)
and/or the Auxiliary Power Unit (APU).

The latest can be a fuel cell system [9] or, as in this paper, an ICE
coupled to a generator. The power to be delivered to the load (i.e.
traction motor) is denoted by w, and it is subject to the following
power split equation:

w(t) = y(t) + u(t), (1)

with y(t) ∈
[
y, y

]
being the battery power and u(t) ∈ [0, umax]

the APU output power. In order to lighten the expressions, the

Fig. 1. Powertrain diagram
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dependence on the time variable t is omitted when there is no
ambiguity. The battery state of charge dynamics is:

ẋ(t) = f(u,w) =
−y(t)

Q
=
u(t)− w(t)

Q
, (2)

where Q is the storage capacity and x the battery state of charge.
The APU fuel consumption to be minimized is given as:

min
u(·)

J [u] =

∫ T

0
ṁf (u(τ))dτ, (3)

with the fuel mass flow rate ṁf assumed to be convex in u.
Considering eq. (1) and both the APU output power and DC/DC
limitations, the set of admissible inputs is defined as U(w) = [u, u]
with u = max(0,−y + w(t)) and u = min(umax,−y + w(t)).

B. Pontryaging’s Minimum Principle

In simulation, the required power profile w(t) to be supplied to
the load is known over the optimization horizon [0, T ]. It can be
measured on an existing vessel or computed using a velocity profile
and a model [10]. The vessel energy management can be formulated
as an optimal control problem:

min
u(·)

J [u] =

∫ T

0
ṁf (u(τ))dτ (4)

subject to

ẋ = f(u,w), (5)

U(w) = [u, u] , (6)

x(0) = x0 and x(T ) = xT , (7)

with x0 and xT the initial and final state of charge.

C. Necessary conditions for optimality

Let us define the Hamiltonian function as:

H(u, λ, w) = ṁf (u) + λT f(u,w), (8)

with λ being the co-state. PMP establishes a necessary condition for
optimality [5]:

∂H

∂λ
= ẋ(t) (9)

∂H

∂x
= −λ̇(t) (10)

u(t) = arg min
ν∈U

H (ν, λ(t), w(t)) . (11)

According to (2) and (10), the co-state is constant:

λ̇(t) = 0⇒ λ(t) = λ0, ∀t ∈ [0, T ] , (12)

λ0 being a constant to be determined. Furthermore, it is assumed that
the Hamiltonian is convex in the control. As a result, PMP optimality
conditions are also sufficient. From (11), let us denote the optimal
policy by Π, a function depending on the load power w(t) and the
co-state value λ0:

u(t) = Π (λ0, w(t)) = arg min
ν∈U

H (ν, λ0, w(t)) . (13)

Thus, the original optimal control problem is reduced to a Boundary
Value Problem (BVP) parametrized by a single unknown λ0:

ẋ(t) = f (Π (λ0, w(t)) , w(t)) , (14)

x(0) = x0, x(T ) = xT . (15)

Considering any arbitrary value for λ0, the initial state of charge x0
being known, the final state of charge value x(T ) can be determined
by direct integration:

x(T ) = x(0) +

∫ T

0
f(Π(λ0, w(t)), w(t))dt. (16)

Finally, the initial costate λ0 is the root of the following defect
function:

g(λ0) = x̃T (λ0)− xT . (17)

In order to solve the optimal control problem, one must solve two
sub-problems: (i) the Hamiltonian minimization (11) and (ii) the co-
state computation (17).

In order to prove that it is possible to find λ0 such that g(λ0) = 0,
let us introduce the following property

Theorem 2.1: Let λ0 ≤ 0, −∂ṁf/∂u be a strictly decreasing
function with respect to u, and f defined in (2), then the optimal
policy Π is a decreasing function with respect to λ0 and there is a
monotonic increasing relation between the value of λ0 and the final
state of charge x(T ).

Proof: Let us first consider the uc the unconstrained solution
to the Hamiltonian minimization:

uc = arg min
ν

H (ν, λ0, w(t)) . (18)

H has a local minimum if ∂H/∂u = 0, then

∂H

∂u
(uc, λ0, w)=

∂ṁf

∂u
(uc)+

1

Q
λ0 =0⇒ λ0 =−Q

∂ṁf

∂u
(uc) ,

(19)
since −∂ṁf/∂u (uc) is a strictly decreasing function with respect
to uc, the relation between the optimal control uc and λ0 is strictly
decreasing.

The Hamiltonian being convex in u, and considering the control
saturation such that u ∈ U(w), the optimal policy (solution to the
constrained Hamiltonian minimization (13)) is:

u = min(u,max(u, uc)). (20)

As a result, the optimal control policy Π is a monotonic decreasing
function of λ0. The second assertion follows from the latter and
Lemma 1 in [11].

Theorem 2.1, implies that g(λ0) is only a monotonic function of
λ0 (and not a strictly monotonic one). Due to the control saturation
u ∈ U(w), the reachable final state of charge set for x(T ) is
bounded. As a result, g has a null derivative for small and large
λ0 values that may induces numerical issues when solving (21)
using root finding algorithms such as Newton’s method. Instead,
derivative-free algorithms are preferred and the bisection method
is considered. The co-state is obtained by numerically solving the
following optimization:

λ0 = arg min
λ∈[λ,λ]

|g (λ)| , (21)

with g being monotonic, there always exist sufficiently small (resp.
large) λ (resp. λ) such that g(λ) > 0 > g(λ).

In order to numerically estimate the integral in eq. (16), the Euler
numerical quadrature is used:

x(T ) ≈ x(0) +

N−1∑
i=0

f(Π(λ0, w(i · s)), w(i · s))s, (22)

with s as the sampling period and T = (N − 1) · s.
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D. Classical algorithm implementation

To solve the Hamiltonian minimization (11), the control is gridded
and the Hamiltonian is evaluated at each node. The grid size is
denoted by M and at every instant i = 0, 1, . . . , N , the control grid
is Ugrid(i). Let us denote by ugrid(i, k) the elements of Ugrid(i)
sorted from the smallest to the largest such that ugrid(i, k) <
ugrid(i, k+1), ∀k = 0, . . . ,M . The considered grid for the classical
algorithm is defined as follows:

ugrid(i, k) = ν(i) + k (ν(i)− ν(i)) /M, (23)

∀i = 0, . . . , N and ∀k = 0, . . . ,M with ν(i) = u, ν(i) = u.
As a result, the optimal policy (13) is replaced by the following
approximation:

Πgrid (λ0, w(i · s)) = arg min
νk∈Ugrid(i)

H (νk, λ0, w(i · s)) , (24)

with Ugrid(i) defined as follows

Ugrid(i)={ugrid(i, k), ∀k=0,. . .,M}. (25)

This way, for a given λ0 and w(i ·s), the optimal control is estimated
with an accuracy εN :∣∣Πgrid (λ0, w (i · s))−Π (λ0, w (i · s))

∣∣ < εN , (26)

with εN =
u−u
2N .

The final state of charge is estimated Euler quadrature:

x̃(T ) = x(0) +

N−1∑
i=0

f(Πgrid(λ0, w(i · s)), w(i · s))s. (27)

The co-state is obtained by computing the roots of the following
defect function using a bisection search:

g̃(λ0) = x̃T (λ0)− xT . (28)

Algorithm 1 shows the detailed procedure. Although being quite
simple and widespread [12] [13] [14] [15], this algorithm can be
improved. First, let us note that to ensure a good accuracy on the
optimal policy the grid Ugrid is defined with a constant number of
vertices N large enough. During the initial iterations of the bisection
algorithm, the co-state value is far away from the final one. As a
result, all these iterations are carried out with a fine grid even if a
high accuracy on the control is not needed at that stage. In this paper,
we propose to adapt εN according to the accuracy required by the
bisection algorithm. As a result, the overall number of Hamiltonian
evaluations is reduced.

Algorithm 1 Classical algorithm

1: Set λ, λ and the inputs w(t), xT , NT , umax, y, y
2: Define Ugrid
3: do
4: λ0 = (λ+ λ)/2
5: for i = 0 to N − 1 do
6: Πgrid(i) = arg min

νk∈Ugrid

H(νk, λ0, w(i · s))

7: end for
8: Compute x̃(T ) using (27)
9: if x̃(T ) > xT then

10: λ = λ0
11: else
12: λ = λ0
13: end if
14: while |x̃(T )− xT | > ∆

Fig. 2. Tracking of the optimal control

III. IMPROVED ALGORITHM IMPLEMENTATION

As the Hamiltonian minimum is not computed exactly but esti-
mated using the grid Ugrid, one should carefully track the actual
value of the true optimal control policy Π with respect to the grid
vertices. As a result, the improved algorithm consists in reducing
the grid Ugrid to the smallest required set and adapting it at each
iteration. At every instant i = 0, 1, . . . , N , Ugrid(i) is a vector whose
entries are the elements from the set (25) sorted from the smallest
to the largest. Thus, it is possible to define the numerical estimate of
the optimal control Πgrid and the control brackets u−, and u+ as
follows:

k = arg min
νk∈Ugrid(i)

H(νk, λ0, w(i · s)), (29)

Πgrid(i) = νk, (30)

u−(i) = νk−1, (31)

u+(i) = νk+1. (32)

As depicted in Fig. 2, the actual control input that minimises
the Hamiltonian, namely Π, is always bracketed by the interval
[vk−1, vk+1] due to the Hamiltonian convexity. The grid can be
refined using a smaller step size εN and then, at the next iteration
the difference vk+1−vk−1 will be reduced, and so the approximation
of the optimal solution will be closer to its actual value. The final
state of charge x(T ) obtained using the optimal control (22) is also
bracketed by x̃u− and x̃u+ , with :

x̃u−=x(0)+

N−1∑
i=0

f(u−(i),w(i·s))s, x̃u+=x(0)+

N−1∑
i=0

f(u+(i),w(i·s))s. (33)

In order to implement the bisection algorithm, it is necessary to
determine if the final state x(T ) is greater or lower than xT (step 9
of Algorithm 1). Exploiting Theorem 1, three cases may occur:

• x̃u− , x̃u+ > xT , then the optimal final state for this co-state
exceed the target x̃(T ) > xT . At each instant i, the optimal
control u(i) is lower than u+(i). Any value above u+(i) can
be removed from Ugrid(i):

Ugrid(i)←Ugrid(i) ∩
{
ν ∈ Ugrid(i) : ν ≤ u+(i)

}
∀i = 0, . . . , N. (34)

• x̃u− , x̃u+ < xT , then the optimal final state for this co-state
subceed the target x̃(T ) < xT . At each instant i, the optimal
control u(i) is greater than u−(i). Any value below u−(i) can
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be removed from Ugrid(i):

Ugrid(i)←Ugrid(i)∩
{
ν ∈ Ugrid(i) : ν ≥ u−(i)

}
∀i = 0, . . . , N. (35)

• x̃u− < xT < x̃u+ , then the location of the actual x̃(T ) with
respect to xT is unknown. It is therefore necessary to refine the
grid according to Theorem 3.1 (step 10) by adding two extra
values and removing Πgrid(i) from the grid:

Ugrid(i)←Ugrid(i) ∪
[

2u−(i)+u+(i)

3
,
u−(i)+2u+(i)

3

]
− {Πgrid(i)}, ∀i = 0, . . . , N. (36)

The intuitive idea is to add gridding points closer and closer to the
optimal value. Also, by this method, at the beginning of the algorithm,
Ugrid might contain a small number of points to be evaluated in (11).
Algorithm 2 shows the detailed procedure.

Algorithm 2 Improved algorithm

1: Set λ, λ and the inputs w(t), xT , N , umax, y, y
2: do
3: Initialize λ0 = (λ+ λ)/2
4: for i = 0 to N − 1 do
5: k(i) = arg min

νk∈Ugrid(i)
H(νk, λ0, w(i · s))

6: u−(i) = νk−1
7: u+(i) = νk+1

8: end for
9: Compute x̃u− and x̃u+ according to (33).

10: if (xT − x̃u−)(xT − x̃u+) > 0 then
11: if x̃u− > xT then
12: λ = λ0
13: Remove values in Ugrid according to (34)
14: else
15: λ = λ0
16: Remove values in Ugrid according to (35)
17: end if
18: else
19: for i = 0 to N do
20: Refine Ugrid according to (36)
21: end for
22: end if
23: while |xT − x̃u− | > ∆ || |xT − x̃u+ | > ∆

Theorem 3.1: Let Hj(u), with j = 1, 2, . . . , p be a sequence
of convex functions on a convex domain D, and assume that the
sequence converges to a function H(u). Then H(u) is convex.

Proof: Assume by contradiction that we have a pair of points
u1, u2, and 0 < α < 1 such that, defining u = αu1 + (1 − α)u2,
we have

H(u) > αH(u1) + (1− α)H(u2). (37)

On the other hand, from the convexity assumption −Hj(u) +
αHj(u1) + (1 − α)Hj(u2) ≥ 0, ∀j. Taking the limit, we have
H(u) ≤ αH(u1) + (1− α)H(u2), which contradicts (37).

Consider the sequence {Hn(u)} of Hamiltonian convex functions,
such that the value of the co-state λ0 determines every element of the
sequence. Thus, if λ0 converges using the bisection algorithm then,
from Theorem 3.1, the sequence of Hamiltonian functions converges
to a convex function H(u).

Each time the grid is refined according to (36) a new pair of optimal
control brackets u− and u+ will be included within it for the next

iteration. Then, two sequences {u−n },{u+n } are defined, where the
subscript n stands for the number of refinements in the grided set.
For a specific n in the sequence, two cases might occur:

1) u−n = u−n−1 and u+n =
u−n−1+2u+n−1

3
.

2) u−n =
2u−n−1+u+n−1

3
and u+n = u+n−1.

The convergence of the improved algorithm toward the optimal
solution is then guaranteed by the Theorem 3.2.

Theorem 3.2: Let {u−n }, {u+n } be a pair of bounded sequences in
the interval [a, b], with u−1 < u+1 and defined by the following rule

u−n=


u−n−1 H

(
2u−n−1+u

+
n−1

3

)
>H

(
u−n−1+2u+n−1

3

)
2u−n−1+u+n−1

3
otherwise

u+n=


u+n−1 H

(
u−n−1+2u

+
n−1

3

)
>H

(
2u−n−1+u

+
n−1

3

)
u−n−1+2u+n−1

3
otherwise

for any n > 2 and any convex function H . Then the sequences
{H(u−n )}, {H(u+n )} converge, moreover, they converge to the same
limit.

Proof: Suppose that H
(
2u−n−1+u

+
n−1

3

)
< H

(
u−n−1+2u+n−1

3

)
holds, then

H(u−n ) = H(u−n−1) and H(u+n ) = H

(
u−n−1 + 2u+n−1

3

)
.

Considering that

H

(
2u−n−1 + u+n−1

3

)
< H(u+n ) ⇐⇒

H(u+n ) < 2H(u+n )−H

(
2u−n−1 + u+n−1

3

)
.

Since H is convex the following holds:

H
(
u+n

)
≤2H

(
u+n

)
−H

(
2u−n−1+u

+
n−1

3

)
≤ 2

3
H
(
u−n−1

)
+

4

3
H
(
u+n−1

)
−
(

2

3
H
(
u−n−1

)
+

1

3
H
(
u+n−1

))
= H

(
u+n−1

)
.

Thus, H
(
u+n
)
≤ H

(
u+n−1

)
. The proof is analogous in the other

case. Since the sequences {H(u−n )} and {H(u+n )} are monotonically
decreasing and bounded, then they converge to a minimum and, H
being convex, they converge to its global minimum.

IV. EXAMPLE

In this section, the classical and the improved algorithms are
applied to a CTV vessel in operation over two days. In order to focus
on the algorithm performances, a simplified model is considered. The
relation between the number of Hamiltonian evaluations required by
the classical algorithm against the improved one for different values
of accuracy is presented for comparison.

The load w(t), is computed using a model that relates the propeller
power as a function of the ship speed profile, see Fig. 3, and the vessel
characteristics [16]. The load value is w(t) = 2πnpQp; where np is
the propeller speed, and Qp is the propeller torque. For the sake of
simplicity, a squared resistance-speed function is considered, and it is
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Fig. 3. Ship speed profile (above) and the effective power profile (below)

assumed that the wake factor is constant. Moreover, the relationship
between the shaft speed and propeller speed is established as follows:

np =
1− fw
JD

vs, (38)

where fw is the wake factor, D is the propeller diameter, J is the
advance ratio, and vs is the vessel speed. Considering that the ship
uses a fixed-pitch propeller with a constant operation point, then
the advance ratio J remains constant, and the propeller speed is
proportional to the speed of the ship. Then, the propeller torque is
established using the equation

Qp = KQρn
2
pD

5, (39)

where KQ is the torque coefficient, which can be expressed as a
polynomial in terms of J and since J is a constant, KQ is a constant.

The vessel and energy storage system parameters are presented
in Table I. The bisection algorithm parameters are λ = −500
and λ = 0, with the boundary conditions x0 = xT = 0.5.
The simulation time step size for the ship model is s = 56s
while N = 1382. To make a fair comparison of both algorithms,
the solutions must be computed with the same accuracy εN . So,
first, for a given final state of charge accuracy ∆, the improved
algorithm is executed, and the final optimal control accuracy εN
is obtained. Then the classical bisection algorithm is run using εN
as a control grid accuracy in (24). 40 values of the final state of
charge tolerance ∆ linearly spaced within the interval [0.005 0.2] are
considered. The accuracy achieved by the improved algorithm ranges
from εN = 42.2 (kW) down to εN = 0.7 (kW), depending on the
tolerance value. Fig. 4 shows the number of Hamiltonian evaluations
that were performed with both algorithms for different tolerance
values. The computed costate for the optimal solution that matches
the boundary condition with a tolerance ∆ = 0.5% is λ = −2.573
for both algorithms. Let us define the improvement factor µ(εN )
as the ratio of Hamiltonian evaluations between the classical and

Symbol Description Value Units
D Propeller Diameter 0.5 m
ρ Density of sea water 1024 kg/m2

J Advance ratio 0.73 -
fw Wake factor 0.19 -
KQ Propeller torque coefficient 0.0199 -
Q Battery capacity 150 CAh

TABLE I
MODEL PARAMETERS

Fig. 4. Number of Hamiltonian evaluation: classical approach vs
improved approach.

improved algorithm. The effectiveness of the improved algorithm is
illustrated in Fig. 5, showing that even for a very sparse control grid,
generated using εN = 42.2 kW , the improvement factor is greater
than 473. For a very refined grid the improvement factor can reach
values greater than four orders of magnitude. It is important to notice
that as long as εN tends to 0 the ratio tends to grow exponentially,
making it clear that the more accurate the solution is required, the
more efficient the improved algorithm is. The optimal solution which
matches the boundary condition with a tolerance ∆ = 0.5% with
λ = −2.573, the running time for the classical algorithm is 827.4459
seconds, whereas, for our proposal it is 9.4249 seconds.

V. CONCLUSION

An improvement of the classical implementation of an algorithm
used for solving hybrid powertrain optimal energy management has
been presented. It has been shown that the number of computations
of the Hamiltonian is significantly reduced using the proposed
algorithm, even in the cases where the required accuracy is low. The
methodological improvement has been demonstrated over a simplified
series hybrid case and a recorded mission profile. Future work will
be devoted to the extension to more complex vessel architectures
encountered in maritime applications.

Fig. 5. Relation between the number of operations of the classical and
the improved approach
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