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Foreword

The problem presents features of interest.

— Sherlock Holmes in ’The crooked man’

To boldly go where no one has gone before.

— From the opening lines of the television series ’Star Trek’

Sherlock Holmes’ famous dictum gives the reason for starting this (and maybe any)

piece of research: it just seemed an interesting problem. In this case the problem was

to find out what our wind turbine design methods mean: if we follow all standards

and do the best we can, what is the failure probability we obtain?

The ideal when doing PhD work is nicely captured in the second quotation (which

must be the most well known split infinitive of all time): to boldly develop new

methods and make ground breaking discoveries. However it soon becomes clear that

much work has been done before; but if one thinks about it for a moment, one should

not really be put off by this. After all, one of the pillars of science is that things done

before are done again, i.e. checked and verified (a fact that is not always appreciated

enough – why are there no funds for reproducing results for example?).

My ideal was to write a book in the style of ’Numerical Recipes’ by Press et

al. [167], which is not only a comprehensive and clear treatment of numerical meth-

ods (which, incidentally, was used extensively in the present work), but is also a

publication that, rather than only solving the obvious problems, addresses less com-

mon and more tedious extensions too; on top of that it is ’notable for its accessibility

and general not-too-serious tone’ (Wikipedia)1.

As regards the latter, I doubt whether this volume will be ’unputdownable’; but

in relation to the former, I think I have covered the relevant aspects of the subject,

and along the way tied up some loose ends: those things that have been lying around

for years because nobody has the time to investigate them, or rules of thumb that

everybody in the wind industry accepts without bothering to check them. Also I have

tried to explain in detail what I did – it is my experience that there is a tendency

to look down on the simpler details (’We experts know all this already, don’t we?’)

1Now that is a comment I would like to hear about this tome.
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Summary

Wind is becoming an ever more important source of renewable energy: installed

wind turbine power now stands at 60,000 MW worldwide (roughly 60,000 turbines),

providing 0.6% of world electricity demand. In spite of this success, wind energy

has still not made a definitive breakthrough. The main reason for this is that it has to

compete with conventionally generated electricity, which often is cheaper, or at least

appears to be if environmental costs are not taken into account. For wind to make a

really substantial contribution to world energy supply, it is therefore imperative that

the cost of wind energy is brought down even further, which means that wind turbines

must be designed to be exactly as strong as necessary, but no stronger.

Hence there is a need to investigate whether the conventional design procedure

that has been developed over the last decade results in the right degree of conser-

vatism, and if not, how it may be improved. The ideal is to make the design just

conservative enough, i.e. to exactly attain the target failure probability. Because wind

turbines tend to be located in remote areas, the target value is primarily determined

by economic considerations, rather than by public safety issues.

The aims of this work are therefore:

1. To quantify total uncertainty in the design procedure, and the relative impor-

tance of stochastic parameters influencing fatigue loads and strength.

2. To conduct a comparative review of calculation models where necessary.

3. To derive partial safety factors giving minimum unit electricity cost.

Previous work on probabilistic design of wind turbines is discussed. On the basis of

this the scope of the present research is limited to fatigue issues, since extreme loads

have been investigated previously (at least to some degree). Because of the current

market trend, the focus of this work is on pitch controlled, variable speed machines,

although the methods developed are generally applicable.

Following this, some preliminary investigations into economic design are de-

scribed. It is shown that current practice –where wind turbines reach maximum power

at 12–16 m/s wind speed– is optimal, giving capacity factors (average power divided

by rated power) between 15 and 35%. A model is derived for the sum of invest-

ment cost and cost of failures during the turbine’s life, which can be used to establish

optimal partial factors.
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xiv SUMMARY

An inventory of stochastic parameters is made; these are divided into five different

groups: parameters related to the wind climate, the sea climate, the aerodynamics,

the structural model and the material fatigue properties. For each of the parameters

the distribution is estimated, and the models currently used in wind turbine design

(i.e. the procedures used to estimate characteristic parameters and how to use them

in calculations) are reviewed. Two examples of the conclusions drawn about these

models are:

1. The usual load calculation, which uses separate 10 minute periods, misses the

low frequency changes in wind direction that produce large load cycles for the

tower. These cycles do have influence on fatigue damage equivalent loads.

2. The concept of fatigue damage equivalent turbulence is useful, and it is slightly

conservative.

A limit state function is derived using the concept of life fatigue damage equivalent

load range. With the First Order Reliability Method (FORM) and Monte Carlo simu-

lation (both of which yield similar results), yearly failure probabilities due to fatigue

are estimated for a wind turbine that is designed exactly according to the standard,

and installed following common site admission rules. Optimal partial factors are

established, using the annual failure probabilities and the economic model.

The partial factor values found for blades are somewhat smaller than in the stan-

dard, while values for hub, nacelle and tower are higher. The explanation for the

latter is that two things are currently not taken into account in design calculations

according to the standard (at least not explicitly): firstly, variation and bias in fatigue

life prediction; secondly, the fact that a combination of many critical locations (for

example in the tower) yields a larger failure probability than just one location.

The sensitivity of the partial factor optimisation to changes in various assump-

tions made is investigated. These include: what the actual value of the material

fatigue strength is (vs what is required by standards), how severe the actual site wind

regime is (vs what is admissible), the definition of the equivalent fatigue load, the

slope of the S-N curve, the desired wind turbine life, the terrain type (complex terrain

and offshore vs flat smooth uniform terrain), and finally whether calculated loads are

verified by measurements.

The main conclusions of the work are threefold:

1. Given available data, a larger partial (load or material) factor should be used

in fatigue design for cast iron and weld seams. However, the effect of this on

design might be limited since hidden safety exists in the construction: mate-

rial quality and hence fatigue strength are better than assumed, wind turbines

are placed in climates that are more benign than they were designed for, and

finally, dimensions may be determined by stiffness or extreme load considera-

tions rather than by fatigue.

2. The variation of the limit state function is determined mainly by uncertainty

on fatigue strength and fatigue life prediction. Therefore, the way forward is



xv

to accurately establish fatigue properties and calibrate fatigue life predictions

for materials exactly as used in wind turbines. In this way variation may be

reduced (and bias removed), and failure probability estimates may be refined.

If better information is available, hidden safety may be removed and smaller

partial factors used in calculations.

3. The number of critical locations and correlation of loads and fatigue strength

at different locations must be taken into account in calculations to establish

failure probabilities, and must have influence on the partial factors to be used.

Variation and bias of fatigue life predictions must be an explicit input to fatigue

design calculations.
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Samenvatting

Wind is een steeds belangrijker bron van duurzame energie: het totaal geı̈nstalleerd

vermogen staat nu op 60.000 MW wereldwijd (ruwweg 60.000 turbines), goed voor

ongeveer 0.6% van de wereldelektriciteitsvraag. Echter ondanks dit succes is wind-

energie nog niet definitief doorgebroken. De hoofdreden hiervoor is dat geconcur-

reerd moet worden met conventioneel gegenereerde elektriciteit, die vaak goedkoper

is, of dat in ieder geval lijkt als milieukosten niet in rekening worden gebracht. Om

met wind een werkelijk belangrijke bijdrage aan de wereldenergieproductie te leve-

ren, is het noodzakelijk dat de kosten van windenergie nog verder naar beneden wor-

den gebracht, hetgeen betekent dat windmolens precies sterk genoeg moeten worden

ontworpen, maar niet sterker dan dat.

Daarom is het nodig te onderzoeken of de gebruikelijke ontwerpmethode die

gedurende het laatste decennium ontwikkeld is, resulteert in ontwerpen met de ge-

wenste graad van conservatisme, en als dit niet zo is, hoe deze verbeterd kan wor-

den. Het ideaal is om juist conservatief genoeg te ontwerpen, d.w.z. dat men precies

de streefwaarde voor de veiligheid (en daarmee de toelaatbare faalkans) realiseert.

Omdat windmolens zich in het algemeen in afgelegen gebieden bevinden, wordt

de toelaatbare faalkans meer door economische overwegingen bepaald dan door het

vraagstuk van publieke veiligheid.

De doelstellingen van dit onderzoek zijn daarom:

1. Het kwantificeren van de totale onzekerheid in de ontwerpprocedure, alsmede

het relatieve belang van de stochastische parameters die invloed hebben op

vermoeiingsbelasting en -sterkte.

2. Waar nodig het doen van vergelijkend onderzoek naar berekeningsmodellen

die gebruikt worden.

3. Het afleiden van partiële veiligheidsfactoren die minimale eenheidskosten van

elektriciteit geven.

Eerder werk betreffende probabilistisch ontwerp van windturbines wordt besproken.

Op basis hiervan wordt het huidige onderzoek beperkt tot vermoeiing, omdat het

onderwerp ’extreme belastingen’ reeds (tenminste tot op zekere hoogte) onderzocht

is. Vanwege de huidige markttrend gaat de aandacht vooral uit naar pitch-geregelde

variabel-toerentalmachines; ontwikkelde methoden zijn echter algemeen toepasbaar.

xvii
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Hierna wordt enig inleidend onderzoek gedaan op het gebied van economisch ont-

werpen. Er wordt aangetoond dat de gangbare praktijk –waarin windmolens bij

een windsnelheid van 12–16 m/s maximaal vermogen bereiken– optimaal is, en dat

hiermee een capaciteitsfactor (gemiddeld vermogen gedeeld door nominaal vermo-

gen) van 15–35% wordt gehaaald. Er wordt een model opgesteld voor de som van

investerings- en faalkosten gedurende de levensduur van de turbine, dat gebruikt kan

worden om optimale partiële factoren vast te stellen.

Stochastische parameters worden geı̈nventariseerd en vervolgens verdeeld in vijf

verschillende groepen: windklimaat, zeeklimaat, aërodynamica, structuurmodel en

vermoeiing. Voor elke parameter wordt de verdeling geschat, en de gebruikelijke

modellen voor windmolenontwerp (hoe parameters te schatten en te gebruiken in

berekeningen) worden geëvalueerd. Twee voorbeelden van conclusies over modellen

zijn:

1. De gebruikelijke belastingsberekening die gebruik maakt van losse perioden

van 10 minuten, mist laagfrequente veranderingen van windrichting, die grote

belastingswisselingen in de mast veroorzaken. Deze belastingswisselingen

hebben invloed op de equivalente vermoeiingsbelasting.

2. Het concept van vermoeiingsschade-equivalente turbulentie is bruikbaar, en het

is enigszins conservatief.

Een betrouwbaarheidsfunctie wordt afgeleid, gebruik makend van het concept ver-

moeiingsschade-equivalente belasting. Met de eerste orde betrouwbaarheidsanalyse

(FORM) en Monte-Carlosimulatie (die vergelijkbare resultaten geven) worden de

jaarlijkse faalkansen ten gevolge van vermoeiing geschat voor een turbine die pre-

cies volgens de norm is ontworpen, en geı̈nstalleerd volgens de gebruikelijke op-

stellingscriteria. Met de jaarlijkse faalkansen en het economische model worden de

optimale partiële factoren bepaald.

De partiële factor gevonden voor bladen is iets kleiner dan volgens de norm,

terwijl de factoren voor de naaf, de gondel en de mast groter zijn. De verklaring van

dit laatste is dat twee dingen niet (expliciet) worden meegenomen in de ontwerpbere-

keningen volgens de norm: ten eerste variatie en systematische fout in voorspelling

van de vermoeiingslevensduur, en ten tweede het feit dat een combinatie van meer

kritieke plekken (bijvoorbeeld in de mast) een grotere faalkans geeft dan één plek.

De gevoeligheid van de optimalisatie van partiële factoren voor veranderingen in

diverse aannamen wordt onderzocht, zoals de werkelijke vermoeiingssterkte (verge-

leken met de vereiste volgens de norm), het werkelijke windregime (vergeleken met

het toegestane), definitie van de equivalente vermoeiingsbelasting, helling van de

Wöhlerkromme, de gewenste levensduur, terreintype (complex terrein en offshore),

en verificatie van berekende belastingen met metingen.

De hoofdconclusies van het onderzoek zijn drievoudig:

1. Op basis van de beschikbare gegevens zou een grotere partiële factor (belas-

tings- of materiaalfactor) gebruikt moeten worden in het ontwerp voor ver-
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moeiing van gietijzeren delen en lasnaden. Het effect op het ontwerp zou

echter beperkt kunnen zijn omdat er verborgen veiligheid in de constructie zit:

materiaalkwaliteit en daarmee vermoeiingssterkte zijn beter dan aangenomen

wordt in de berekeningen; windmolens worden geplaatst op plekken waar het

windregime milder is dan verondersteld in het ontwerp, en tenslotte kunnen

afmetingen bepaald zijn door overwegingen van extreme belasting of stijfheid

in plaats van vermoeiing.

2. De variatie van de betrouwbaarheidsfunctie wordt voornamelijk bepaald door

de onzekerheid in vermoeiingssterkte en levensduurvoorspelling. Vooruitgang

kan daarom geboekt worden door het nauwkeurig bepalen van de vermoeiings-

eigenschappen van materialen zoals gebruikt in windmolens, en het calibreren

van levensduurvoorspellingen. Op deze manier kan de variatie worden vermin-

derd (en de systematische fout gecorrigeerd), en de schattingen van de faalkan-

sen verbeterd. Als betere informatie beschikbaar is, kan verborgen veiligheid

worden vermeden, en kan gerekend worden met kleinere partiële factoren.

3. In berekeningen om de faalkansen vast te stellen moet rekening worden gehou-

den met het aantal kritieke plekken en correlatie tussen belastingen en vermoei-

ingssterkte op verschillende plekken. De te gebruiken partiële factor moet hier

van afhangen. Variatie en systematische fout in levensduurvoorspelling moeten

expliciet worden meegenomen in vermoeiingontwerpberekeningen.
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Sammenfatning

Vindenergi spiller en stadig vigtigere rolle i el-produktionen; den installerede effekt

er nu ca. 60,000 MW på verdensplan (fordelt på ca. 60,000 møller), svarende til

godt 0.6% af verdens elektricitetsforbrug. Alligevel har vindenergi endnu ikke set

det definitive gennembrud. Hovedårsagen til dette er konkurrencen mod konven-

tionelt genereret elektricitet, som ofte er billigere, eller i det mindste virker sådan,

hvis miljøomkostninger ikke indregnes. Hvis vind skal give et væsentligt bidrag til

verdens energiforsyning, er det afgørende at prisen på vindelektricitet bliver bragt

endnu mere ned, hvilket medfører at vindmøller skal designes praecist så stærke som

nødvendigt, men ikke stærkere end det.

Derfor skal det undersøges om de konventionelle designmetoder som blev ud-

viklet i det foregående årti resulterer i den rigtige grad af konservatisme, og hvis

ikke, hvordan de kan forbedres. Det tilsigtes at opnå et design som er lige konserva-

tivt nok, dvs. som har nøjagtigt den tilsigtede svigtsandsynlighed. Fordi vindmøller

ofte bliver placeret i afsides områder, er de tilsigtede værdier primært bestemt af

økonomiske overvejelser fremfor spørgsmål om offentlig sikkerhed.

Arbejdets målsætninger er derfor:

1. At kvantificere den totale usikkerhed i designproceduren og den relative betyd-

ning af stokastiske parametre som påvirker udmattelselaster og styrke.

2. At lave en sammenligning af beregningsmodeller hvor det skønnes nødvendigt.

3. At aflede partialkoefficienter som giver minimum enhedspris til elektricitet.

Tidligere arbejde med probabilistisk design af vindmøller bliver diskuteret. Da ek-

stremlaster er undersøgt tidligere (til en vis grad), afgrænses det foreliggende ar-

bejde til at omfatte udmattelse. På grund af markedets udvikling fokuseres på pitch-

regulerede variabel-hastighedsmaskiner. Imidlertid kan de udviklede metoder anven-

des generelt.

Der udføres nogle forberedende undersøgelser vedrørende økonomisk design.

Det vises at den nuværende praksis –hvor vindmøller opnår maksimaleffekt ved

12–16 m/s– er optimal, og resulterer i kapacitetsfaktor (middeleffekt divideret med

maksimaleffekt) som er 15–35%. Der afledes en model til at estimere summen af

investerings- og svigtomkostninger i løbet af møllens levetid, som senere bruges til

at bestemme de optimale partielkoefficienter.

xxi
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Der laves en inventarisering af stokastiske parametre, som fordeles på fem grup-

per: vindklimaet, havklimaet, aerodynamikken, strukturmodellen og udmattelses-

egenskaberne. Parametrenes fordelinger estimeres, og modeller der bruges i vindmøl-

lens design (dvs. procedurer til at skønne parametrene og bruge dem i beregninger)

evalueres. To eksempler på konklusioner om modeller er:

1. Den traditionelle lastberegningsprocedure som bruger adskilte 10 minutters

perioder mister lavfrekvente vindretningsændringer som giver store lastcykler

i tårnet. Disse cykler har indflydelse på udmattelseskade-ækvivalente laster.

2. Konceptet af udmattelseskade-ækvivalent turbulens kan bruges, og det er lidt

konservativt.

Der udledes en grænsetilstandsfunktion ved hjælp af udmattelseskade-ækvivalent

lastvidde konceptet. Med en første ordens pålidelighedsmetode (FORM) og Monte

Carlo simuleringer (som giver lignende resultater) estimeres årlige brudsandsynlig-

heder af udmattelsesrevner til en mølle som er præcist normmæssigt designet, og

placeret ifølge de normale opstillingsregler. Med de årlige brudsandsynligheder og

den økonomiske model udledes optimale partialkoefficienter.

Partialkoefficienten til vingerne er lidt mindre end normen foreskriver, mens

værdierne til navet, bundrammen og tårnet er større. Forklaringen på det sidstnævnte

er at to ting ikke er taget i betragtning i normmæssige designberegningerne (i det

mindste ikke eksplicit): for det første, variation og forskydning i udmattelselivs-

forudsigelser, og for det andet, at en kombination af flere kritiske steder (for eksempel

i tårnet) giver større brudsandsynlighed end et sted.

Følsomheden af optimeringens resultater overfor ændringer i forudsætningerne

undersøges. Dette inkluderer: hvad den virkelige udmattelsestyrke er (i forhold

til den normmæssigt påbudte), hvor slemt det virkelige vindregime på siten er (i

forhold til det tilladelige), definition af udmattelsesskadeækvivalent last, Wöhlerkur-

vens hældning, terræntype (kompleks terræn og offshore), og til sidst om bereg-

ningerne blev eftervist med målinger.

Arbejdet fører til tre hovedkonklusioner:

1. Med de data der står til rådighed nu, skal der bruges større partialkoefficient

(last- eller materialefaktor) i udmattelsedesign til støbejerndele og svejsesøm-

me. Alligevel kunne effekten af dette være begrænset, fordi der ligger skjult

sikkerhed i konstruktionen. Materialernes kvalitet og dermed udmattelsestyrke

er bedre end forudsat i beregningerne, møllerne kan være placeret i klimaer

der er mildere end man har designet dem til, og til sidst kan konstruktionens

dimensioner være bestemt af stivheds- eller ekstremlastovervejelser, og ikke af

hensyn til udmattelse.

2. Variation af grænsetilstandsfunktionen bestemmes mest af usikkerhed i udmat-

telsesstyrke og levetidsforudsigelse. Derfor er vejen frem at bestemme udmat-

telsesegenskaber nøjagtigere, og at kalibrere levetidsforudsigelser til materialer

som bruges i vindmøller. På denne måde kan variation reduceres (og forskyd-
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ningen fjernes), og brudsandsynligheder estimeres mere præcist. Hvis man

har bedre oplysninger, kan der fjernes skjult sikkerhed og regnes med lavere

partialkoefficienter.

3. Der skal tages hensyn til hvor mange kritiske steder der er, og hvor meget

lasterne og udmattelsesstyrken i forskellige steder er korreleret, når man bereg-

ner brudsandsynligheder. Dette skal også have indflydelse på partialkoefficien-

ten. Variation og forskydning i udmattelselivforudsigelse skal eksplicit tages

med i designberegninger.
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Chapter 1

Introduction

1.1 Wind turbine use

The development of wind turbine use in the last decade is a success story, as is

witnessed by the fact that wind turbines have become a common sight in the land-

scape. The following figures (mainly provided by the European Wind Energy Asso-

ciation [34]) show the rapid expansion of wind energy:

• The mean annual growth world wide (measured by installed wind turbine power)

over the last decade was 30% (see figure 1.1, next page).

• Currently the world total installed power is 60,000 MW (end 2005). This is

roughly 60,000 turbines, good for more than the entire electricity demand of

the Netherlands (ca 110 TWh/year), or 0.6% of world demand (Madsen [129]).

• Wind generated electricity now is 20% of total consumption in Denmark and

5% in Germany and Spain.

• The estimated number of wind energy related jobs is 72,000 in Western Europe

alone.

• The cost of wind turbines has come down to cae 1100 per kW generator power

installed; the cost of electricity produced to 0.04–0.05 e/kWh on the best land

sites and to 0.06–0.08 e/kWh on inland sites1. In fact, if external costs (en-

vironmental damage due to global warming, acid rain, fine dust et cetera) are

taken into account, wind energy is already cheaper than conventional energy:

the European Commission estimates the external (environmental) costs of fos-

sil fuel use at 0.03–0.04 e/kWh [63].

• The time it takes a turbine to generate the energy that was used for its produc-

tion is only 6–12 months (Lenzen [128]). Therefore, in its 20 year life, the

turbine generates 20–40 times the energy it took to produce it.

1These figures do not include cost of financing.

1
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Figure 1.1: Installed windpower. Source BTM [129].

1.2 Issues

In spite of all the good news wind energy has still not made a definitive breakthrough.

The main reason is of course that it has to compete against conventionally generated

electricity, which often is cheaper, or at least appears to be if environmental costs

are not taken into account. However valid the contention that these costs should be

considered (to create the famous ’level playing field’), economic calculations are still

mainly done with directly visible costs only. If we want a speedy transition to renew-

able energy, it is therefore imperative that the cost of wind energy is brought down

even further, which means that wind turbines must be designed exactly as strong as

necessary, but not more so.

This is even more pressing because wind turbines are growing in size so rapidly:

the size of the average turbine has grown from 50 to 3000 kW in the last twenty-five

years. For small turbines, conservative (= heavy) design was affordable, but this is no

longer the case for current turbines. Their design is closer to the limit, and sometimes

this has led to surprises. Some of these have proved to be costly due to the large

volume of turbines installed: examples are the necessary refitting of gearboxes, and

the occurrence of in-plane resonance in blades on stall turbines. Although both cited

examples are somewhat special, they nevertheless indicate that design procedures are

not quite good enough yet, in spite of the fact that they have considerably grown in

complexity. The first turbines were simply designed for a few conservatively defined
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1. Generate a 3-dimensional turbulent wind field for a chosen 

 mean wind speed that represents a wind speed interval.

2. Perform a step-by-step dynamic analysis on the turbine operating in  

the wind field to obtain force time histories in critical cross sections

3. Convert the force time histories to stress time histories.

5. Scale up the number of cycles in each stress bin in line with the 

predicted number of hours of operation at the chosen wind speed.

6. Repeat steps 1-5 for for different mean wind speeds 

and add all numbers of stress cycles.

4. Derive the number of cycles for each combination of mean stress and 

stress range by rainflow counting stress time histories into ’stress bins’.

7. Factor the stresses and calculate partial fatigue damage 

 for each (number of cycles, mean stress, stress range) combination.

8. Add all partial damage to the total fatigue damage, and check 

whether the component under consideration can hold.

Figure 1.2: Design process for fatigue loads.

extreme situations; nowadays all situations likely to be experienced by the turbine in

its life must be checked for fatigue and ultimate load consequences, with full dynamic

simulations and random wind and wave fields. Flow charts for wind turbine design

are given in figure 1.2 for fatigue loads and in figure 1.3 (p4) for ultimate loads.

There are two areas where the design procedure is less than satisfactory: one is

understanding and modelling rotor aerodynamics, and the other prediction of com-
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1. Generate a 3-dimensional (possibly turbulent) wind field for a 

specified extreme wind condition and/or failure situation

2. Perform a step-by-step dynamic analysis on the turbine operating in the 

specified conditions to obtain force time histories in critical cross sections

3. Repeat steps 1 and 2 as many times as necessary to make 

statistical treatment of extreme values possible

5. Factor the stresses

6. Find the material strength and divide it by the material factor

4. Extract stress time histories and extreme stress value.  

Perform statistical treatment (averaging, extrapolation) as required.

7. Find the stress reserve factor by comparing the factored 

stresses with the reduced material strength.

Figure 1.3: Design process for ultimate loads. Cheng [36] showed that the most accurate way

to find ultimate loads is not by defining extreme events (step 1), but by response extrapolation.

However this is not yet the common method.

ponent life (or fatigue damage) under random loading.

As regards aerodynamics, blade loads are estimated with the Blade Element-

Momentum method (BEM), an approximate method with a number of engineering

corrections that capture the essence of a phenomenon but are lacking precision. How-

ever for design calculations six hours or so of turbine operation (representative of

the turbine’s life of 20 years) must be simulated, and BEM is currently the only

method that can do this fast enough, and has the flexibility to cope with all opera-

tional situations that may arise (Snel [193]). The problem with fundamental meth-

ods, such as Navier-Stokes calculations, is that no models can be built that are small
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and fast enough, and provide realistic loads. In fact reliable prediction of the wind

turbine power curve from first principles is beyond us, even in ideal wind tunnel cir-

cumstances. Nevertheless Navier-Stokes calculations can be used to identify trends,

and thus for improving parametric models incorporated in BEM. The load prediction

problem is becoming even more difficult because wind turbines are installed in com-

plex (mountainous) terrain and in windfarms in increasing numbers. Usually there

are no good wind data for complex sites, and no good wake models are available for

calculations in windfarms2. Also the errors caused by misprediction of aerodynamic

loads may be amplified by resonance. Resonance is an inherent problem to wind

turbines, because they are largely undamped structures, which are being excited by

wind containing energy at all frequencies. All this means that we cannot design a

wind turbine on the basis of theory alone, and must always use measurements for

verification.

The problem of failure through fatigue has been with us since railway construc-

tion began in earnest (∼1850). As far as accurate life prediction is concerned, there

is still no better method than the linear damage summation first proposed by Palm-

gren and Miner, although fracture mechanics might be a candidate (see for example

Eulitz [60], Haibach [77] and Schütz [185]). Of course there has been progress in

the sense that control of material properties has substantially improved, considerable

quantitative knowledge has been gained from testing, and a number of ad hoc rules

have been developed (for example on how a notch influences crack growth). How-

ever it is still not possible to predict the expected life of a component more accurately

than within a factor two or so, even if loads are perfectly known.

Related to aerodynamics and to fatigue is the description of the environmental

parameters that must be used in load calculations (the wind climate and the definition

of design load cases). Until now this was of no great concern, because wind turbines

were mostly installed in flat smooth uniform terrain; however as more and more com-

plex sites are being used for wind power (mountainous areas, possibly with forests,

and also wind farms where turbines themselves influence climate), the matter gains

importance.

Although there is work going on in the problem areas, for the present at least we

must accept that current design procedures are the best ones available, and we should

try to find out how conservative and how inaccurate they are. Once we know that, we

may deal with the less-than-perfect state of affairs by using probabilistic methods, in

which fixed parameters are replaced by stochastic ones. A probabilistic calculation

yields the failure probability, which may then be compared to the target value.

For everyday use it may be convenient to use the partial safety factor3 approach

instead of full probabilistic design, for which the values of the partial safety factors

are derived from the more elaborate probabilistic calculations. In the simplest form

2See section 4.9 for more on windfarm wake effects.
3From now on the shorter expression ’partial factor’ will be used instead of ’partial safety factor’.
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of this approach the characteristic load is multiplied by a load factor and the char-

acteristic material strength is divided by a material factor. Both operations together

intend to give the construction the desired low target failure probability. At present it

is not clear which failure probability level is obtained for the following reasons:

1. To make the design process manageable, common sense decisions must be

made on which load situations to investigate, which models to use, and how to

set characteristic parameters. Many of these procedural decisions have not yet

been investigated in detail.

2. Methods were conceived for solitary turbines in flat open terrain (where they

were also verified to some extent), while current applications are likely to be

in windfarms in complex terrain and offshore.

3. Although load verifications for individual turbines are standard, there has been

no systematic load verification for many turbines in different situations (so we

do not know how good predictions are for more complex situations).

4. Partial factors for loads and materials are mostly taken from building codes;

one does not know to what degree they apply to wind turbines, and to what

failure probability they lead.

While we do not have to be overly pessimistic (after all few turbines collapse, indi-

cating that design is generally on the safe side), the state of affairs is unsatisfactory.

What we would like to have, are recommendations for partial factors which fit the ex-

isting uncertainties, and ensure that some desired safety level is consistently reached

throughout the turbine.

1.3 Previous work

General guidance on wind turbine design calculations can be found in handbooks,

such as Burton [30] and Manwell [142]. Furthermore there are standards for land

based turbines, for example the international IEC 61400-1 [93], and publications by

certification bodies such as Det Norske Veritas [45] and Germanischer Lloyd [70].

More recently offshore wind turbine standards and guidelines have appeared, by

DNV [46, 47], Germanischer Lloyd [71, 72] and by IEC [94]. All these publica-

tions tend to give general procedures for safe design, but are not very specific. Often

various allowed procedures are listed, together with the caveats that are found in most

handbooks. For example, only DNV [47] explicitly prescribes a target failure proba-

bility, but even here it is unclear to which extent the figure is adhered to if DNV rules

are applied.

An overview of work on failure probabilities under fatigue and ultimate loading

in connection with wind turbines is given in table 1.1.The methods for finding fatigue

failure probabilities are closely related to those for ultimate load failures; therefore at

least some of the work on ultimate loading is relevant.
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Cheng’s thesis [36] treats the merits of different extrapolation methods for find-

ing the extreme (ultimate) load response of a wind turbine under combined wind and

wave loading. Tarp-Johansen’s report [204] is an exposition on how to find the fail-

ure probabilities for wind turbine ultimate loading, and which partial factors to use if

wind and gravity loads are combined. He has taken most relevant uncertainties into

account4, and in addition he derives some specific numbers, which have found their

way into IEC 61400-1 [93]. It could be interesting to see if and how the results would

change if the latter work were combined with that by Cheng (Tarp-Johansen only uses

the Gumbel distribution to find extreme wind speeds, while Cheng gives methods for

evaluating different distributions). Ronold [177] does a safety factor calibration for

blades in ultimate flap loading; the First order Reliability Method (FORM) is used

with the measured site load distribution.

If we look at fatigue, there is the PRODETO-project (Braam [24]), which focuses

on blade out-of-plane loads (flap moments). The measured distribution of these loads

is approximated with a generalised Weibull function, of which the first three moments

are functions of 10 minute mean wind speed and turbulence intensity. The advantage

of this approach is that a reasonable guess may be made for load distributions oc-

curring at any wind speed and turbulence intensity, even if no measurements are

available for all combinations of these parameters. A probabilistic design is made

with the First (Second) Order Reliability Method, in which the Weibull distribution

moments are normally distributed stochastic variables. Load and material factors are

derived.

Ronold [176, 178, 179] considers code calibration for wind turbine blade flap

4Tower stability and the uncertainty in buckling models is not considered.

Table 1.1: Summary of previous work (g=gravity, wa=waves, wi=wind)

author fatigue ultimate calib. loads components

Cheng [36] + wi,wa blade, tower

Tarp-Johansen [204] + + wi, g blade, tower

Ronold [177] + wi blade

Braam [24] + + wi,g all

Ronold [176, 178, 179] + + wi blade

Lange [119] + wi blade

Kashef [102], Kelly [106], + wi,g blade

Manuel [141], Veers [220]

Larsen [120] + wi,wa blade, tower

Tarp-Johansen [203] + + wi, g hub, nacelle

Mousten [149] + + wi tower

Veers [219] + wi blade

Dalsgaard Sorensen [198, 199] + + wi,wa,g tower
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loading. He uses the same approach as in the PRODETO-project (in fact, he was

involved in that project), but combines it with the use of the DNV probabilistic code

PROBAN. Although he is not treating all uncertainty aspects, every step necessary

for probabilistic design is described (if measured loads are accepted as given). Some

of the theory used is found in the PRODETO-work as well (Braam [24]).

The work of Lange [119] is similar, but most attention is given to fits of gen-

eralised Weibull distributions to measured loads. In fact, at Sandia much effort has

gone into the parametrisation of blade moments, mostly on blades for Vertical Axis

Wind Turbines (VAWTs) (see Kashef [102], Kelly [106], Manuel [141], Veers [220]).

These loads have been coupled to fatigue life and failure rate estimation programs,

notably FAROW: Fatigue And Reliability Of Wind Turbine Components [236]. An

issue which is raised is whether it is realistic to replace calculated (or measured)

loads with finite amplitudes by a distribution that in principle gives load amplitudes

to infinity. It seems that this question is not yet answered, instead the possibility of

load truncation is offered to the user of FAROW.

Larsen [120] considers the relative contributions of stochastic parameters to total

uncertainty. He determines the influence on uncertainty in load calculations caused

by variation of aerodynamic coefficient, turbulence intensity and material fatigue

properties. He finds that in all cases fatigue properties dominate total uncertainty.

Tarp-Johansen [203] treats the rotor hub, the main shaft and the machine frame.

A limited number of uncertainties is investigated, and partial factors derived for pa-

rameter distributions with different coefficients of variation.

If we finally look at economics, Veers [219, 221] wrote an article in which he

discusses the financial consequences of common and independent cause failures in a

general way, again using the Sandia code FAROW.

More work on economics and optimal inspection intervals was done by Dals-

gaard Sørensen [198, 199] and by Mousten [149], who looks at a specific detail: a

bolt welded to the tower wall. Fatigue tests were used to calibrate a stochastic frac-

ture mechanical model, which was then used to estimate failure probabilities.

1.4 Objectives

It is clear that useful work has been done already, and there are enough ideas to start

from. However most work cited has a theoretical flavour, stopping short of giving

practical numbers, and is therefore not easily used for everyday design (perhaps this

is not surprising, since all authors are working in research institutes linked to the wind

industry in one way or another, rather than at a manufacturer’s). Another problem is

that available publications are unconnected, and dealing with different (reduced) sets
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of stochastic parameters. This makes it difficult to compare results, and to reach firm

conclusions. What is needed, and what this work will attempt to provide, is:

1. A comprehensive study to determine how large total uncertainty (with respect

to fatigue loading) is, and where the main uncertainties in the design process

are. This should direct future research into the most profitable areas, where

total uncertainty can be reduced most. Motivation: only limited studies were

done, usually starting from measured loads (which are then assumed to be ex-

actly known). All studies use short cut assumptions about some uncertainties;

it is not always clear on which evidence these assumptions rest.

2. Where necessary, a comparative review of different models, which should give

recommendations for models and for parameter choice. Motivation: this has

not been done yet. It is unsatisfactory that different models are allowed that

may give significantly different answers.

3. A derivation of partial factors that ensure that the desired safety level is ob-

tained throughout the turbine. Motivation: in previous work some safety fac-

tors have been derived, but results are generally presented as ’examples’ and

it is not clear what the range of validity of the derived factors is.

4. A comparison of partial factors that are derived with values provided by vari-

ous standards. Motivation: while standard values are to some extent arbitrary

and it is better to derive factors from first principles, standards contain consid-

erable knowledge and experience that must not be ignored.

1.5 Scope of this thesis

The intention is to describe all methods in such a way that they can easily be adapted

for any turbine and for any load situation. However because of time constraints,

efforts must be primarily directed at some important areas:

• In the opinion of the author the area of ultimate loads and extrapolation issues

has been reasonably well covered before, in particular by Cheng [36] and by

Tarp-Johansen [204]. Therefore this work will focus on fatigue loads.

• Only pitch controlled variable speed turbines will be considered, because this

is the turbine type that is most common, and it looks like it will only become

more dominant in the future.

• A selection of representative critical locations in the turbine and associated

materials is made, in particular: the blade root (composite materials, such as

glassfibre reinforced glassfibre, epoxy and wood); the rotor hub and the nacelle

machine frame (both cast iron); the tower (welded steel).
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1.6 Organisation

The probabilistic approach starts with setting the target failure probability, either from

safety considerations or by financial optimisation: chapter 2 is dedicated to consider-

ations on how to do this.

In chapter 3 the current wind turbine design procedure is described, to provide

the reader with insight in models that are used. The conventional choices that are

made are listed for later reference.

In chapters 4 to 7 the steps in the design procedure are studied in detail, and the

probability distributions are derived for parameters that are taken to be constant in the

conventional design procedure; where necessary the claims to accuracy of alternative

models are examined. Specifically, chapters 4 and 5 deal with wind and sea climate,

chapter 6 treats aerodynamics and the wind turbine structural model; finally chapter

7 is about material properties and estimation of fatigue damage.

In chapter 8 all information from previous chapters on parameter distributions is

combined, to estimate which failure probability is obtained if the conventional design

procedure is followed. Also the economically optimal partial factors are derived and

compared to partial factors given in standards. In chapter 9 results are examined in

more detail, and their sensitivity to changes in input parameters is investigated.

Finally conclusions and recommendations are found in chapter 10.

Various matters of detail are dealt with in the appendices.

1.7 Nomenclature

This work adheres as much as possible to symbols and terms that are in common

use in the fields of wind energy, fatigue and probabilistic design. Unfortunately this

means that some symbols may have multiple meanings; however from the context

the correct one may usually be inferred. A complete list of symbols is provided in

appendix A; moreover symbols are explained in the main text where they first occur.

Perhaps a few conventions need mentioning:

• Partial safety factors are generally referred to as ’partial factors’, which appears

to be the preferred expression in the probabilistic design community.

• The influence of various parameters is quantified by the change in fatigue dam-

age equivalent load range (see appendix C), which is the constant amplitude

load range that, had it been applied some fixed number of times, would have

produced the same fatigue damage as the actual variable amplitude load spec-

trum. Because the term ’fatigue damage equivalent load range’ is so long, the

shorter ’equivalent load’ is normally used.

• The exponent of the S-N (Wöhler) curve m is commonly called ’slope’; strictly

speaking this is not correct because the slope (derivative) of the curve is in fact

−1/m in a double logarithmic diagram.



Chapter 2

Economic design

We believe in low overhead costs.

— Micon chief engineer John T. Olesen, commenting on the shabby

appearance of the premises of the fast growing company, 1993.

2.1 Introduction

Once it is decided that we want a wind turbine (rather than some other means to

generate electricity), the task is to design the machine in an economic way. In all

cases the goal is to arrive at a design that has the lowest cost per unit of electricity,

averaged over the turbine’s life. However there are two different situations:

1. The target failure probability is determined by safety considerations. This will

be the case if sensitive objects are close to the turbine, or if there is risk of

death or injury.

2. The target failure probability is free. For wind turbines, this is frequently the

case, because they tend to be located in remote areas, where there is no safety

issue. The failure probability yielding the lowest cost is to be found, by bal-

ancing initial investment against costs of service, failure and repair.

To establish the cost exactly is an undertaking in itself; preferably a full life cycle

analysis should be performed in which all costs (including those to the environment)

are taken into account: costs of materials, certification, production, transport, financ-

ing and insurance, inspection and maintenance, and finally decommissioning. Some

of these costs are correlated, for instance if more material is used, less money might

be spent on inspections and maintenance. However, most aspects of the problem may

still be treated independently of the others. Thus, without rendering results invalid we

may concentrate on material costs only (roughly proportional to component mass),

principally determined by the partial factors used, which fix both the dimensions and

the failure probability. Hence to achieve economic design, we must find the optimal

11
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partial factors, either from the preset failure probability (if safety governs) or with

some cost function (if financial considerations are defining).

The fatigue failure probability is not constant; it is zero at turbine installation and

then rises with time. This means that rather than set one fixed number, one should

define the desired behaviour of the failure probability over time, based on some opti-

misation that involves initial investment and cost of inspections and repairs. One may

also do something more simple, like setting a maximum failure probability during the

component’s life, or some target mean. If one derives the failure probability from first

principles, it is possible that the optimal target value or behaviour in time does not

correspond to relevant standard and established figures that are in use (which may

be values that are currently achieved in existing machines (and hence are implicitly

accepted) or code values (which are explicitly accepted)).

When the target failure probability has been established, it can be used as input

to a calculation which yields the corresponding partial factors. How to do this is the

subject of chapters 4–9; this chapter is about establishing the target failure probability

and the cost optimisation function. However first we will digress for a moment to

derive reasonable design conditions (design wind speeds) for a wind turbine, because

it is interesting to see why these speeds are chosen as they are, and because there are

some misunderstandings about the issue.

2.2 Design conditions

The task of a wind turbine is to extract as much electricity as possible from the wind at

reasonable cost. The cost qualification has important consequences for wind turbine

design: it is clear that it is not economic to build a turbine that is so heavy that it

can convert the maximum amount of wind energy to electricity above wind force 12

(hurricane force, more than 115 km/h ≈ 32 m/s). The extra investment would never

be compensated by the extra energy generated, since wind speeds of this magnitude

occur only rarely. So before going into the matter of minimum weight design, a

question that must be answered is: what are economic design conditions?

Two important numbers governing design are the rated wind speed (the lowest

wind speed at which maximum power is reached) and the stop or cut out wind speed.

The rated wind speed may equal the stop wind speed, but it may also be smaller, if

power is limited before the stop wind speed is reached. How must these parameters

be chosen to obtain the lowest electricity cost? It turns out that reasonable values for

these speeds can be found with some basic considerations about how energy output

and turbine investment vary as function of these two speeds.

In what follows we assume the geometry of the turbine to be given. This means

that the flow pattern around the blades and hence the properties of the rotor are fixed,

such as the power coefficient (which is set to the realistic value CP = 0.45 here).

However we are still free to choose rated and stop wind speed, which will influence
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the turbine’s mass and energy output.

It is easy to calculate the average power generated Pavg and the total energy

output E, by integrating the product of the time fraction some wind speed U occurs

f(U) and the power at that wind speed P (U):

Pavg =

Uout∫

Uin

P (U) f(U)dU (2.1)

Here Uin and Uout are the wind turbine start and stop wind speeds. The wind speed

probability density f(U) is typically given by a Rayleigh distribution (Weibull distri-

bution with shape factor k = 2). The life energy production E (in kWh) is:

E = L Pavg (2.2)

where L is the turbine’s life in hours (for example 175,200 hours = 20 years). The

power that can be maximally extracted from the wind at some speed U is:

P (U) = CP
ρ

2
AU3 ≤ 16

27

ρ

2
AU3 (2.3)

Here P is the power, CP the power coefficient, ρ the air density, A the rotor swept

area and U the undisturbed (free stream) wind speed. The maximum value for CP =

16/27 ≈ 0.59, the famous Lanchester-Betz limit1.

Let us assume that the total investment for some reference turbine is an amount c
euros per kW rated (maximum) power2, which would make the investment:

CI = c Prat (2.4)

For current turbines the investment CI is proportional to the rated power Prat, which

typically is the power generated at some speed in the interval 12–16 m/s wind speed

and above. This is approximately true for the investment for most of the turbine,

however some fraction f of the investment will be fixed (for example cost of obtain-

ing permissions, rent for the site, grid connection, production metering). This means

that if we want to optimise (starting from some fixed reference rated power Prat,ref ),

the investment of a the turbine should be expressed more accurately as:

CI = fc Prat,ref + (1 − f)c Prat (2.5)

Equation (2.5) reflects the assumption that the investment CI depends linearly on

rated (maximum) power Prat. Actually, if the rated wind speed equals the stop wind

1It is only a matter of normalisation (to rotor swept area) that CP = 16/27. Actually 3/2×16/27 =

8/9 ≈ 89% of the kinetic energy of the air flowing through the rotor can be extracted. For a discussion

of losses due to mixing in the far wake see Corten [40].
2For land based turbines c ≃ 1100 e/kW, for offshore turbines c ≃ 1500-2000 e/kW (2004).
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speed the power goes with the cube of the wind speed, and forces with the square,

so a constant diameter tower would require wall thickness and investment CI that

are proportional to the power 2/3 of the electric power Prat. However the 2/3 power

function can easily be linearised to have the form of equation (2.5) and it may even

be argued that the ’experimental constant’ c reflects this.

It is important for the validity of our argument whether equation (2.5) still holds

if the rated wind speed is smaller than the stop wind speed. For stall turbines rotor

thrust is almost constant above rated wind speed; for pitch-variable speed machines

rotor thrust decreases, so the answer is ’yes’ for both turbine types: maximum load

is determined by rated wind speed. Combining equations (2.3) and (2.5), the total

investment CI can be written as:

CI = c CP
ρ

2
A

(
fU3

rat,ref + (1 − f)U3
rat

)
(2.6)

in which Urat,ref is the wind speed at which the fixed rated power Prat,ref is reached.

The cost per kWh electricity pkWh is:

pkWh =
CI

E
=

c CP ρA
(
fU3

rat,ref + (1 − f)U3
rat

)

2 L Pavg(Uin, Urat, Uout)
(2.7)

The electricity cost according to equation (2.7) is plotted in figure 2.1. Let us first

consider the case where we simply try to get as much power as possible at any wind

speed: the dotted lines. The rated wind speed Urat equals the stop wind speed Uout:

whenever the wind speed is below the stop wind speed the maximum power according

to equation (2.3) is extracted. It is seen that the minimum electricity cost is reached

with Urat = Uout = 12 m/s if Uavg = 7.5 m/s, and with Urat = Uout = 16 m/s

if Uavg = 10 m/s. If the rated (and stop) wind speed are made larger, additional

investment outweighs extra production, and the electricity cost goes up. Hence the

optimal choice is to set rated and stop wind speeds at these values, 12 and 16 m/s

respectively.

However (considering Uavg = 7.5 m/s) one can do even better by designing a

machine with rated wind speed Urat = 12 m/s, but stop wind speed around Uout = 20

m/s: if the power is limited to the rated power for U > Urat = 12 m/s, the turbine

investment will not increase for higher stop wind speeds, while one does have the

benefit of the extra electricity.

Note that whatever the average wind speed, the electricity cost does not change

significantly for stop wind speeds higher than 20 m/s: the time at these speeds, and

hence the amount of electricity, is negligible. Therefore stop wind speeds higher than

20 m/s are unnecessary from a cost perspective (but they may be desirable because in-

terruptions in windfarm power productions at high wind speeds are unwanted). With

a simple approach we have established that a good choice for the design conditions
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Figure 2.1: Cost of electricity as function of stop (cut out) wind speed according to equation

(2.7). The wind regime has a Weibull distribution with k = 2; c = 1100 e/kW, CP = 0.45,

f = 0.2, L = 20 years. No discounting.

is (see figure 2.1):

12 ≤ Urat ≤ 16 m/s

20 ≤ Uout ≤ 25 m/s

In the example we chose the fixed investment fraction to be f = 0.2; however the

conclusion for the optimal speeds as given above is insensitive to the exact assump-

tions for this quantity.

With the speeds derived the capacity factor e can be calculated, which is the

average power divided by the rated power:

e =
Pavg(Uin, Urat, Uout)

Prat(Urat)
(2.8)

A wind turbine’s capacity factor is to be compared to capacity factors for conven-

tional plants (see table 2.1, next page). Capacity factors for conventional plants are

not 100%, but around 80% due to maintenance and fluctuating electricity demand.

Calculated values for the capacity factor of wind plants are in the range 0.10 ≤ e ≤
0.50 (see figure 2.2, next page), depending on the average and the rated wind speed;

actual figures that are obtained for the capacity factor are 0.15 ≤ e ≤ 0.40. For
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Figure 2.2: Capacity factor e = Pavg/Prat as function of wind speed. The wind follows a

Weibull distribution with shape factor k = 2.

example the German electricity supplier E.ON states that in 2003 a capacity factor

e = 0.16 was realised for 6250 MW installed power (Bouillon [23]; the low number

indicates that wind speeds in Germany are generally low). These lower-than-unity

capacity values are not the result of some inherent defect in wind turbines, but just

originating from a design process homing in on the lowest electricity cost.

In the preceding example design conditions were just rated wind and stop wind

speed; in reality a larger set of parameters is used that is considered to be represen-

tative for a large area, for example the coastal regions of North Western Europe. For

practical reasons wind turbines are not designed for every individual site, but accord-

Table 2.1: Capacity factors for different power plants. Source: Milborrow [145].

Plant Range Average

Coal 68-90% 78%

Gas 68-90% 79%

Nuclear 75-85% 81%

Solar 8-25% unknown

Wind 23-35% 30%
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ing to a class definition. A turbine designed according to a class is then placed in any

location where the climate is judged to be less severe (this may also be in a wind-

farm, where climate is influenced by neighbouring turbines). Thus –if we accept the

standard design procedure as accurate for a moment– almost all turbines are designed

conservatively and are too heavy. The advantages of this approach are fewer approval

documents and fewer logistical problems (all turbines are the same), and reduced fail-

ure probability because of conservatism. The class definitions most used are those

according to IEC 61400-1 (see table 2.2). For offshore wind turbines classes can still

be used for the rotor and the nacelle, but not for the tower and foundation, which must

be suitable for the local wave climate. In fact the entire turbine may be designed site

specifically; this may be advantageous if the batch size is large enough.

2.3 Target reliability from a safety perspective

Failure is not an option.

— Mission Control flight director Gene Kranz, during the rescue of

Apollo 13, 11–17 April 1970.

Whenever there is a disaster, the feeling is that ’this must never happen again’, which

may be translated as: ’a construction must never fail’. However this ideal is unreach-

able in a world of finite resources. Since the amount of money available for life and

investment saving measures is finite, choices must be made, and it is not possible

to have constructions that can never fail. In this section and the next we give some

information about failure probability levels that are commonly accepted, and which

may serve as background when we derive wind turbine optimal failure probabilities

later. The quoted values are not necessarily optimal, only what is in common use.

Table 2.2: IEC 61400-1 wind turbine classes [93].

Class I II III

Representative for offshore coastal inland

Average wind speed 10 m/s 8.5 m/s 7.5 m/s

Wind speed distribution Weibull: equation (3.1) with k = 2
Turbulence intensity prescribed: equation (3.3)

Turbulence spectrum Kaimal recommended: equation (3.4)

Coherence prescribed: equation (3.8)

Wind shear exponent 0.2

Air density 1.225 kg/m3

Yaw error –

Inflow angle (terrain slope) 8 deg

Wake effect prescribed: section 4.9
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Interesting literature exists on how to spend limited resources with optimal re-

sults, for example how to save the maximum number of quality life years (Nath-

wani [151], Rackwitz [171, 172]). Governments take many life saving measures,

e.g. building hospitals, discouraging smoking and drinking, checking food quality,

enforcing road safety laws, and –quite important– requiring the use of standards,

such as building codes. The values of partial factors in codes reflect how much so-

ciety is willing to spend to avoid death and injuries (since larger factors result in

more expensive structures). If the cost for all life saving measures together is esti-

mated, it is found that roughly 106 dollars is spent in developed countries per life

saved (∼30,000 dollars per life year saved). However Tengs [205] found that cur-

rent spending practice is unbalanced with the amount of money spent per life year

saved ranging from 0 to 1011 dollars (1993 dollars). The author notes that ’this kind

of variation is unnerving because economic efficiency in promoting survival requires

that the marginal benefit per dollar spent be equal across investment’. Rational poli-

cies would of course require that the most cost effective measures are taken first, and

that at any time all new measures taken cost approximately the same per life year

saved.

Although the failure probability cannot be zero, obviously it must be small; the

question is how small. Since we are usually interested in risk (defined as: failure

probability times consequences), it is better to ask which risk level is acceptable

instead. A pragmatic approach is to find it from current practice. For example, from

the fact that not more money is spent on road safety, we may infer that currently in

the Netherlands the accepted annual probability of dying in a traffic accident is:

pd =
number of road deaths per year

population
=

103

1.6 × 107
≈ 6 × 10−5 (2.9)

The numbers found in practice can be generalised into a failure probability criterion

(adapted from Vrijling [230]):

Ndi = Pd|fiPfiNpi ≤ 7 × 10−6βiNp (2.10)

where:

Np population [-]

Ndi number of deaths in activity i [-]

Npi number of people taking part in activity i [-]

Pd|fi death probability. given an accident occurs in activity i [-]

Pfi probability of an accident for activity i [-]

βi policy factor [-]

Equation (2.10) expresses that an activity i is allowed if it is expected to claim fewer

than Ndi = 7× 10−6 βiNp deaths per year. The factor βi is a policy factor reflecting

the degree of involuntariness of an activity, and the (perceived) personal influence on
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the risk. It ranges from β = 10 for activities as mountaineering (completely volun-

tary, large personal influence) to β = 0.01 for working in a factory (involuntary, small

personal influence). According to the equation, for car driving in the Netherlands this

means that (β = 1, car driving is not 100% voluntary for many people):

Ndi ≤ 7 × 10−6 × 1 × 1.6 × 107 = 112 (2.11)

Equation (2.10) does not give the expected 1,000, which reflects the fact that it is an

average over many different activities. Of course if we assumed total voluntariness

we would have β = 10 and the answer would come out to ∼1,000. If we apply equa-

tion (2.10) to wind turbines, with β = 0.01 (involuntary, small personal influence)

and Np = 1.6 × 107 (the whole population is ’involved’ to the same degree in the

activity ’being close to wind turbines occasionally’), we get:

Ndi ≤ 7 × 10−6 × 0.01 × 1.6 × 107 ≈ 1 (2.12)

This means that it is acceptable to society that 1 person per year dies in the Nether-

lands in a wind turbine related accident3. Since turbines typically are located in

remote areas and fail during storms when there is even less chance that people are

present, the requirement does not seem difficult to comply with, and it would not im-

pose a limit on allowed failure probability; however this might change if turbines are

going to be placed near roads and railways in larger numbers. Note that for people

involved professionally with wind turbines the equation does not apply; the accepted

personal risk is presumably on par with the value for all people working in an indus-

trial environment, which is pdi = 10−6 per year, or perhaps pdi = 10−5 per year if

we account for the fact that many people in the wind industry have especially chosen

to work just there; in this case the risk is not related to turbine structural integrity, but

rather to labour safety issues, such as electrical and falling hazards.

Building codes are calibrated to reflect the accepted risk level for structures of

which failure will result in casualties. As matters stand, the same failure probabilities

are used for wind turbine design, in spite of the fact that the risk of a person dying

because of a wind turbine collapsing is much smaller, especially offshore.

2.4 Code values

Some wind turbine codes have appeared, such as the Danish standard DS472 [44], the

DNV Guidelines [45], and the German standards [70,71]. The most recent codes are

IEC 61400-1 [93], and DNV-OS-J101 [46]. In DNV-OS-J101, the following values

are given for offshore wind turbines: pF = 10−5 per year for normal safety class and

pF = 10−4 per year for low safety class. In a predecessor of this standard [47], Det

3It should also be possible to derive the acceptable annual number of deaths with the Life Quality

Index method.
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Norske Veritas provides table 2.3 (next page), which is in line with the guidelines of

the Nordic Building Commission [162].

ISO 19902 [95] gives some values for unmanned offshore structures (table 2.4,

next page), which may be considered directly relevant for offshore wind turbines.

Thus the standards agree on a value between 10−5 and 10−4 per year.

2.5 Currently achieved values

In the ’Handboek Risicozonering Windturbines’ (’Handbook for wind turbine risk

assessment’) Rademakers [173] gives the following values (table 2.5). These values

are not inconsistent with the value of pF = 10−3 per year derived by Tarp-Johansen

[204] for extreme events, if it is assumed that most turbines are placed in a more

benign environment than what they were designed for.

One should be skeptical about the accuracy of the numbers. There is no system-

atic collection of failure data (at least not publicly available) and accident reports that

are available usually do not have enough information to reliably judge the nature and

causes of failures. It is not even possible to say whether the numbers are biased to-

wards the optimistic or pessimistic side. There are both reasons to expect figures to

be too low and too high. Too low:

• There is a tendency not to report failures.

• The majority of turbines is still young (there has been no time for cracks to

develop).

Table 2.3: Target annual failure probabilities for components. Source: DNV [47].

Failure consequence

Less serious Serious Very serious

Failure type Low safety class Normal safety class High safety class

Ductile failure with

reserve capacity 10−3 10−4 10−5

(redundant structure)

Ductile failure with no

reserve capacity (warning, 10−4 10−5 10−6

non-redundant structure

Brittle failure (no

warning, non-redundant 10−5 10−6 10−7

structure)

Table 2.4: Target annual failure probabilities for offshore structures. Source: ISO [95].

Structure Manned Unmanned

Annual failure probability 3 × 10−5 5 × 10−4
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• Smaller turbines tend to have some built-in conservatism (because conservative

design is relatively cheap in smaller structures).

Too high:

• Data are for turbines designed 5–15 years ago. Part of the failures may be

attributed to teething problems. Also design methods have improved.

If we want to use the figures to predict failure rates for current turbines of 2–3 MW

power, the most reasonable guess is probably that they may be off by a factor 3 in each

direction (hence the number of digits in the ’Handbook’ figures (table 2.5) suggests

an accuracy that is not really there).

2.6 Target reliability from a financial perspective

The standards that govern wind turbine design are (derived from) civil engineering

standards. Thus the safety level of those standards has implicitly been adopted, a

safety level which guarantees that an acceptably low risk of death and injury is

achieved for structures such as bridges and utility buildings. However the conse-

quences of wind turbine failure (number of dead and injured) are likely to be much

smaller: as noted before, wind turbines are found in thinly populated areas, so the

probability of somebody getting killed or injured if a blade is thrown off or a tower

failing is low; also the impact of the failure outside the area directly affected by

falling parts is essentially zero. Because no expenses are necessary to prevent deaths,

the optimal failure probability for wind turbines may be higher than for other civil

engineering structures. To find out what the optimal value is, we need to know how

much the failure probability changes in relation to the production cost. In particular

we want to minimise the expected difference between costs and benefits:

W (γ) = CI(γ) + CF (γ) + CR(γ) − B(γ) (2.13)

Here the parameter γ is the product of all partial factors4, for example:

γ = γfγmγn (2.14)

with:

4Note that it may not always be possible to multiply all safety factors like in this case.

Table 2.5: Annual failure probabilities (per turbine) currently achieved (Rademakers [173])

Scenario Annual failure probability

Expected 95% confidence

Blade fails 6.3 × 10−4 8.4 × 10−4

Tower fails 2.0 × 10−4 3.2 × 10−4

Nacelle and rotor fall down 5.8 × 10−5 1.3 × 10−4
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B benefits over the turbine’s life (energy sales) [e]

CF cost of failure (for example debris removal [e]

CI investment cost (for the entire installation) [e]

CR cost of component replacement in case of failure [e]

W nett cost function [e]

γ product of all partial safety factors [-]

γf load factor [-]

γm material factor [-]

γn consequence-of-failure factor [-]

The investment cost CI(γ) can be written as some constant (say the investment for

some standard value γ = γ0) plus additional cost incurred if the component under

consideration is made heavier (m is the mass of the component and cm is the unit

cost).

CI(γ) = CI(γ0) + cm
∂m

∂γ
(γ − γ0) (2.15)

The expected value of the cost of failure (removal of stumps and debris) is taken to be

a fraction fF of the standard investment CI(γ0), multiplied by the sum of the failure

probabilities for each year n, discounted with the interest rate r:

CF = fF CI(γ0)
N∑

n=1

pF (γ, n)

(1 + r)n
(2.16)

The annual failure probability in year n is found from the cumulative failure proba-

bilities:

pF (γ, n) = pF,cum(γ, n) − pF,cum(γ, n − 1) (2.17)

Usually the cost of failure is small compared to cost incurred to replace components,

given by:

CR(γ) =

(
fRCI(γ0) + cm

∂m

∂γ
(γ − γ0)

) N∑

n=1

pF (γ, n)

(1 + r)n
(2.18)

The cost of replacing components is defined as a fixed fraction fR of the initial invest-

ment CI(γ0) plus extra cost of making the component under consideration heavier:

if the component we are looking at is designed with a larger safety factor γ (rather

than γ0), replacement is more expensive. For a tower failure, we expect fR ∼ 1 (the

whole turbine is lost), but if we look at blade failures fR may be smaller. It is good

to realise that equation (2.18) has some implicit assumptions (which are discussed in

more detail below):
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1. Investment cost is linearly dependent on the safety factor γ, which strictly is

only valid for small changes in γ (however investigations for a tower actually

showed validity over a great range).

2. The turbine’s life is fixed at N years, and after this time the turbine is always

removed.

3. Failed parts will always be replaced until the period of N years expires.

4. Multiple failures of the same component are neglected because the product

probabilities are small.

The benefits (sales of electricity) over the turbine’s life are (b are the average yearly

benefits):

B =
N∑

n=1

b

(1 + r)n
(2.19)

For convenience, we assume instant replacement of failed components. Hence fail-

ures will not affect benefits, and B(γ) = B = c: we may leave B out of the optimisa-

tion problem. This is reasonable for land turbines; for offshore turbines it is probably

too optimistic because due to bad weather there may go some time before component

replacement is possible. Setting B to be constant also implicitly assumes that hub

height is fixed, otherwise production would be a function of tower height and hence

investment cost. The investment cost for the standard value γ = γ0 is taken as:

CI(γ0) = c Prat (2.20)

with c = e1100 per kW installed power. We normalise the W function by dividing

by CI(γ0) and setting B = 0 (since B is constant this makes no difference in the

optimisation):

w(γ) =
W (γ)

CI(γ0)
=

CI(γ) + CF (γ) + CR(γ)

CI(γ0)
(2.21)

In the special case that CF = 0 we end up with:

w(γ) = 1 − fR +

(
fR +

cm(γ − γ0)

CI(γ0)

∂m

∂γ

) (
1 +

n∑

n=1

pF (γ, n)

(1 + r)n

)
(2.22)

In equation (2.22) we see two factors counteracting each other (1 − fR = constant).

If we increase safety γ, turbine mass increases (the first factor), increasing w and

making the turbine more expensive; on the other hand more mass reduces the sum of

the annual failure probabilities (the second factor), which decreases w.

The model is attractive because finding the safety factor producing the cost func-

tion minimum is easy; also the inherent uncertainties in the probabilistic approach
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limit the value of more complex approaches5. However, equation (2.21) presupposes

a fairly simple minded component replacement strategy. In the extreme case, if the

tower were to fail in year 19 while the design life were N = 20 years, almost the

whole turbine would instantly be replaced, in spite of the fact that the turbine would

be removed in year 20 anyway. This matter deserves some more discussion.

An obvious extension of the model would be including inspections with a cer-

tain probability that cracks are detected and repaired. Dalsgaard Sørensen [198, 199]

looked at such a model, and found that the money that can be spent on inspections is

in the order of e500–2000 per inspection (for break even); these are marginal costs

i.e. the costs for one extra inspection if all machinery (boats, people, equipment) is

already available. His conclusion is that inspections are a promising option for cost

reduction. The author of this work does not entirely agree with this: the amount

of money available does not appear to give much room for inspections, and it ap-

pears that looking from the financial side one might just as well wait until failure as

carry out regular inspections. There are two more arguments against the possibil-

ity of inspection and repair: firstly crack detection is difficult because parts cannot

be well reached, and secondly repair is hard. Blades made of composites and cast

iron components (hub and machine frame) cannot be repaired at all; even the welded

tower construction is difficult to repair, and certainly the factory weld quality cannot

be reproduced in the field. In practice the only ’repair’ possible is to replace parts.

All this is not to say that inspections cannot be desirable from a business point of

view: obviously planning becomes easier if one can detect impending failures6. To

which extent the inspection and repair strategy is feasible can only be settled by doing

detailed calculations with actual numbers.

The important thing for us is that in the economic optimisation it does not make

a big difference what is done: inspections and repairs roughly cost as much as they

save in initial investment. This indicates that one does not have to worry overmuch

about the inspection issue in a financial assessment, which leaves us with the question

to what extent the proposed replacement-of-components strategy reflects reality.

What is the economically optimal strategy? As soon as the wind turbine has

been erected, the money has been spent, and nothing can be done to reverse that7.

Hence from this point on, the business is to generate energy at the lowest unit cost,

given that the machine exists: the decision to be made is whether to spend money on

maintenance and repair, or to scrap the turbine and buy a new one. At some point it

will be cheaper to renew than to continue repairing, and at least in theory, replacing

the existing structure must be considered all the time. In some cases, the renewal

5One may wonder whether this statement does not hold for many other economic models as well.
6Another strategy (not considered here) is rotation, possibly combined with condition monitoring:

parts are replaced before failure occurs, and then repaired in the factory (where ideal conditions may be

created, high quality inspections be done, special tools be used et cetera).
7Except of course sell the turbine, but that would only transfer the decision problem to the new

owner, hence this option is irrelevant to the present discussion.
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point may be far into the future; for example trains and aircraft are repaired (almost)

endlessly.

For the case of wind turbines, we may quantify our options roughly as follows:

the choice is between building a completely new turbine that lasts 20 years and costs

100 units, and replacing components costing anywhere between (say) 5 and 80 units

(assume that the foundation need never be replaced). Both strategies would earn us

a number of years of energy production, but in almost all cases the latter strategy

(repair) would be cheaper. If for example we assume the extra period obtained by

repair to be 5 years, then any replacement costing less than 5/20 × 100 = 25 units

would be sensible. in fact there is no reason why we could not go on indefinitely with

(e.g.) exchanging blades (if spare ones are available).8

Nevertheless there are several reasons why there is an end to the repair process.

Several factors combine to make it attractive to replace old (small) turbines with new

(larger) ones, even if the technical life has not run out (Kouwenhoven [113]):

• Newer machines are cheaper and better (for example initial investment has

been e1000–1200 per kW installed power for a long time now, which means

effectively that wind turbines become a few per cent cheaper every year).

• Suitable sites are in short supply, and the smallest machines tend to occupy the

best sites. More energy could be generated if those turbines were replaced.

• Larger machines mean that projects generate larger profits in absolute terms. It

may be that the unit cost of electricity generation with an old small turbine is

low, but with a new machine much more energy can be generated.

• With time it becomes difficult to obtain spare parts for smaller machines.

• There is a tendency to concentrate wind power in fewer windfarms with larger

units because this is deemed to be more visually appealing.

• There may be (politically driven) financial incentives to replace older, small

machines, with newer, bigger ones.

• There is some ’headache’ threshold to the failure probability (and hence life):

although it might still be financially advantageous to continue with the old fleet,

many failures cause too much hassle. Some minimum reliability of the entire

windfarm is desirable. To put a number to this, an annual failure probability

pF > 0.01 is probably unacceptable for major components. The above extends

to normal maintenance: at a certain point it is just too much trouble to maintain

small wind turbines in relation to the energy output.

In fact, even if it is financially sound policy to continue operating old turbines and

replace components for long periods, it is still expected that turbines that are installed

now will be taken down in 10-15 years, and will certainly not operate beyond 20

8In reality one would take the interest (either public or private) into account, which would tend to

decrease future benefits.
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years. Conversely, in practice all failed parts are replaced until turbine renewal is very

close, which is not optimal either. One may speculate whether human psychology

plays a role here, and puts some limits on following the optimal investment strategy.

On one hand one does not like endless replacements, on the other hand having some

turbines in a wind farm that are not operating is deemed undesirable too, even if the

whole farm is going to be replaced in the near future (of course there is also a public

relations aspect to this).

In the author’s opinion all this justifies using the simple cost function as given

in equation (2.21). Life 20 years is used because this is the life required by IEC

61400-1; in section 9.6 the influence of using life values different from N = 20 years

is investigated (for the blades there is almost no change, for the cast iron components

optimal partial factors are 8% lower, and for the tower 14% lower).

To get back to the cost function proper, we will first be able to find out where the

minimum is in chapter 8. However, which target value of the failure probability (or

reliability index) is economically optimal if there is no human risk at all was already

investigated by Dalsgaard Sørensen [198, 199] for solitary turbines. He finds that for

a range of failure and reconstruction costs and interest rates the optimal reliability

index range is β = 3 – 3.6, corresponding to annual failure probability pF = 2×10−4

– 10−3 (averaged over the turbine’s life; note that these numbers are close to the

highest risk values found in the literature, see tables 2.3 and 2.4, p20). The figures

hold both with and without systematic reconstruction. Three stochastic variables are

used in his probabilistic model, with the following coefficients of variation: on wind

fatigue load: V = 0.15, on stress estimation V = 0.05, on fatigue strength V = 0.15

(total variation is ca V = 0.22). Dalsgaard Sørensen states that this is approximately

the safety level that is obtained if the Danish standard is used with γ = γfγm = 1.42.

Finally as a sidelight, Veers [219] considers the distribution over time of failures

in a windfarm, depending on whether failure causes are independent or common, and

what the financial effects are. No value for the optimal target reliability is derived.

2.7 Some philosophical issues

It may be objected that small values of failure probabilities found from a calculation

have no absolute meaning: they are only relative (or nominal) because of uncertainty

associated with the procedure, and because it is impossible to verify that the values

calculated are correct (Melchers [144]). While this reasoning is formally correct, in

practice some things may be said against it:

• If there are uncertainties associated with the calculation procedure these should

be investigated by sensitivity studies; the result of the calculations would then

be a range of answers (or a most likely answer), but it would not be just any

number.

• It is difficult or impossible to verify small probabilities: however nobody would
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deny that the probability to win the jackpot in a lottery (say that we find by

standard probabilistic methods that the chance of winning is 10−7) has absolute

value, even though this cannot be verified either.

• The probability levels normally found (in wind turbine structures) are of the

order of 10−5, which is 4 standard deviations from the mean. This is still in

the region where we would not expect problems with the validity of probability

theory: it is likely to hold (and is verifiable to some extent).

Another objection against the validity of probabilistic methods is the ’tail problem’,

the problem that we do not know whether some distribution has the postulated shape,

especially far from the mean. For example there may be some minimum and max-

imum material strength, resulting in a truncated strength distribution. However be-

cause we are dealing with many distributions, the shape of the combined distribution

(that determines failure probability) will tend to be normal regardless of the exact

properties of the underlying distribution. And again, with the failure probability mag-

nitude we are dealing with we are not that far out in the tails.

Finally we must confront the fact the wind turbines do not often fail according to

the fatigue failure modes that were imagined in the design. Often structural failures

are the result of a control error or some unforeseen resonance phenomenon. However

this does not invalidate the probabilistic approach; firstly everything is done to avoid

this type of failure, secondly the approach is also a way of identifying weak spots and

achieving consistent (and hence cost effective) design for the entire turbine.
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Chapter 3

Conventional design

3.1 Introduction

In this chapter the conventional wind turbine design procedure is sketched, to provide

the reader with insight in models that are used. In chapters 4 to 7 these models are

examined more closely, and the probability distributions are derived for parameters

that are taken to be constant in the conventional design procedure; where necessary

alternative models are compared.

3.2 General procedure

The conventional design and site admission procedure is sketched in figure 3.1 (next

page). After the design conditions have been selected from the standard, the design

load calculations are done (more on this in section 3.4). Then a prototype is built

and load measurements are done to check the wind turbine calculation model. If nec-

essary the model is adjusted (section 3.5) until reasonable correspondence between

calculated and measured loads is obtained (say ±10% for fatigue damage equivalent

load ranges1 of 10 minute periods). Finally a new load set is produced for the design

of the 0-series with the adjusted model.

At present it does not seem possible to calculate more accurately than this2 (al-

though some investigations are being done where the measured wind history is used

to generate constrained artificial random wind).

Further uncertainty in the design loads is introduced by the fact that a limited

number of load cases is evaluated with different wind seeds for the artificial wind

1The expression ’fatigue damage equivalent load range’ is very long. Therefore the shorter ’equiva-

lent load’ will be used henceforth. For the definition see appendix C
2There is the possibility to base the design loads 100% on measurements. However in most cases

this is not a practical solution (results are only valid for one turbine at one site); besides there would

still be variation in measured loads, even for (seemingly) identical conditions.

29
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Load calculations

Prototype design

Measurements

Estimate of site loads 

(or full load calculation)

Comparison of design 
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Figure 3.1: Conventional design and admission procedure

(for details, see section 4.2.2). If we wish, we may reduce this last uncertainty to an

arbitrarily low level by doing more or longer calculations.

Before wind turbines are installed, site conditions are evaluated, and the site loads

estimated (section 3.6). If site loads are judged to be small enough, the turbine may

be placed at the proposed site.
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3.3 Ideal and simplified calculation

A wind turbine must withstand the environmental conditions, either those defined in

a class representative for a large area (table 2.2, p17), or those at a particular site.

As a thought experiment, assume that we had infinite resources at our disposal: time,

computers, measuring equipment. Then we could reproduce the environment and the

structure in a detailed way to get the right design:

• The atmospheric conditions could reflect reality to a high degree, for example

for every square centimeter of rotor area a measurement of the three local wind

speeds could be done with a 25 Hz sampling frequency.

• The flow around the blades (and the rest of the turbine) could be calculated

with the Navier-Stokes equations (using very small cells of course).

• The structural model of the turbine could consist of tiny elements.

• By sophisticated manufacturing processes, quality control and measurements,

the exact geometry would be established, which would make it possible to

know the stress exactly in any location.

• Crack growth at various critical locations could be evaluated at every time step

in the calculation.

• The whole calculation could be repeated as often as we wanted to get statisti-

cally significant results.

Obviously this approach is not feasible in reality. To be able to do calculations at all,

many simplifying assumptions need to be made. These include:

• Making use of the fact that environmental conditions repeat themselves in time

(for example a few dozen periods of 10 minutes of wind may suffice to repre-

sent 20 years of wind).

• Stationarity: for example that the wind speed has some distribution with mean

and standard deviation that do not change with time.

• Using characteristic (weighed mean) values (for example the 90% fractile value

for the turbulence intensity may represent the turbulence distribution, or ’yearly

mean’ vegetation at some site);

• Using models (for example a simplified structural model that ignores all reso-

nance frequencies above 5 Hz).

• Parameterisations of important processes (for example crack growth).

Thus we end up with a calculation procedure for fatigue loads as given in the list of

steps in figure 1.2 (p3). In the rest of this chapter the assumptions normally made are

described (see table 3.1, next page), and in chapters 4–7 we will discuss in detail the

validity of the calculation models and investigate how parameters that are assumed

to be constant vary in real life.
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There are three possible sources of discrepancy between the simplified approach and

the ideal calculation:

• The model may not be a good enough approximation. For example a measured

turbulence spectrum never has the ideal assumed shape.

Table 3.1: Simplifying design assumptions

area subject model

wind wind speed history small number of disjoint 10 min intervals

wind speed distribution Weibull (k = 2)

wind direction distribution unidirectional or fixed

turbulence intensities constant values

turbulent wind field gaussian (mostly)

- turbulence spectrum standard function

- coherence standard functions

wind shear logarithmic profile or power law

tower shadow potential flow or empirical model

air density constant value

yaw error constant value

inflow angle (slope) constant value

wake effects in windfarm as extra turbulence

complex terrain modification of standard parameters

sea significant wave height simple function of wind speed

wave spectrum standard function

wave shape sinusoidal shape

wind/wave misalignment constant value

drag and inertia coefficients constant value

tide correction on still water level

current constant value

aerodynamics flow through rotor independent annuli

lift and drag adjusted 2D wind tunnel values

tip and root correction engineering model

oblique inflow engineering model

dynamic wake engineering model

dynamic stall engineering model

wind turbine control system behaviour engineering model

cut out wind speed constant value

structure limited number of DOFs

mass/stiffness estimates

geometry ideal and simplified (for FEM)

stresses linear function of forces

material S-N curve const amplitude curve for

behaviour (small) probes with corrections

stress history (rainflow) cycle count

VA fatigue damage sum linear summation by Miner’s rule
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• The representative (weighed) mean parameters used may not be conservative,

or the degree of conservatism is uncertain.

• Only estimates of required parameters are available, and these may be biased.

Even if a long term estimate is correct, the actual parameter values over the

turbine’s life may be different.

3.4 Conventional models

3.4.1 Wind

The first matter to look into is the wind climate in which the turbine must operate. To

be able to do useful load calculations we are forced to describe the complex behaviour

of the air flow at some proposed wind turbine site with a limited number of models

and parameters. The first part of table 3.1 gives the usual wind climate models.

Wind speed history. For fatigue calculations, one starts by reducing the 20-years

wind speed history of ∼106 10-minute intervals to a few dozen characteristic periods.

To do this, the wind turbine operating wind speed range is divided into intervals,

and each interval is assigned a representative average wind speed and turbulence3;

table 3.2 gives an often used division. For each 10-minute interval short term wind

fluctuations are well described by turbulence models (see below). Unfortunately the

fatigue effect of long term-low frequency wind speed variations (over periods of days,

3In IEC 61400-1 ’turbulence’ is called ’turbulence standard deviation’. Here the shorter term ’tur-

bulence’ is preferred.

Table 3.2: Conventional load case definition consistent with IEC 61400-1.

wind speed representative turbulence intensity [-] wind turbine state

interval (bin) wind speed class A class B class C

[m/s] [m/s] ’inland’ ’coastal’ ’offshore’

0–3 3 0.419 0.366 0.314 idling

3–5 4 0.344 0.301 0.258 production

5–7 6 0.269 0.236 0.202 production

7–9 8 0.232 0.203 0.174 production

9–11 10 0.210 0.183 0.157 production

11–13 12 0.195 0.170 0.146 production

13–15 14 0.184 0.161 0.138 production

15–17 16 0.176 0.154 0.132 production

17–19 18 0.170 0.149 0.127 production

19–21 20 0.165 0.144 0.124 production

21–23 22 0.161 0.141 0.121 production

23–25 24 0.157 0.138 0.118 production

>25 30 0.150 0.131 0.112 idling or parked
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say) is removed by this approach: large load cycles caused by the wind speed rising

from zero to storm wind speeds and back again simply do not exist, because the

10-minute intervals are not linked.

Seed and time series length. Each 10-minute load case has its own set of 3 tur-

bulent wind field components (u, v, w), generated with a different random seed. In

this way loads are averaged (wind fields with turbulence producing larger loads are

offset by others with more ’benign’ turbulence), and it is therefore assumed that a

limited number of calculations at each wind speed is sufficient to estimate average

loads. Formerly 2×10 minutes at each wind speed was considered to be enough, but

nowadays more calculations are done. This is not primarily to get the right average

fatigue loads, but because it is required by the standard for load response extrapola-

tion purposes.

Wind speed distribution. How many times each 10-minute interval with a cer-

tain average wind speed occurs in 20 years is described by a Weibull distribution:

F (U) = 1 − exp(−(
U

C
)k) (3.1)

C =
Uavg

Γ(1 + 1/k)
(3.2)

According to IEC 61400-1 the distributions to be used have long term average wind

speeds Uavg = 10 (class I), 8.5 (class II) or 7.5 m/s (class III) and shape factor k = 2.

Wind direction distribution. Except in critical cases, the fact that the wind

comes from different directions is not used; instead all wind is assumed to come

from the same direction (North for example). This is a matter of convenience. If

terrain roughness in all directions is similar, it makes no difference for components

above the yaw bearing, because the turbine yaw system makes the rotor follow the

wind direction. The procedure will result in overprediction of tower loads (see section

4.3) however. If sectors around the turbine are significantly different with respect to

roughness or obstacles, components above the yaw bearing do experience different

loads depending on the wind direction distribution used, and it may be necessary to

do detailed calculations.

Turbulence. In each wind speed bin the turbulence intensity I(U) is taken ac-

cording to the classes in IEC 61400-1 [93] (see table 3.2 and equation (3.3)). The

equation reflects that at low wind speeds turbulence is higher due to thermal effects,

while at higher wind speeds mechanical turbulence due to terrain roughness is domi-

nant. The equation is an approximation for flat open terrain, and tuned in such a way

that it produces 90% fractile turbulence values (approximately mean + 1.3 times the

standard deviation for a lognormal distribution).

Ichar(U) =
σU

U
= Iref

(
0.75 +

c90%

U

)
(3.3)

Here:
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c90% constant = 5.6 m/s

Ichar characteristic turbulence intensity (90% fractile) [-]

Iref reference turbulence intensity (mean value at U = 15 m/s) [-]

A (inland): Iref = 0.16; B (coastal): Iref = 0.14; C (offshore): Iref = 0.12
U mean wind speed at hub height [m/s]

σU turbulence [m/s]

Within each 10-minute period the wind speed is assumed to be normally distributed,

with average U and standard deviation σU = I U . The prescribed turbulence inten-

sity value I(U) is used in the creation of a 3-dimensional stochastic wind field that

is moved through the rotor with a characteristic mean advection speed according to

Taylor. How much power (variance) there is in the wind at a particular frequency is

defined by the power spectral density function S(f). Although there is some free-

dom in the choice of S(f), all spectra must have the same −5/3 slope at high fre-

quencies, and the difference is mostly in the length scales Lk which determine the

shape of Sk(f). A common choice is the spectrum for flat open terrain derived by

Kaimal [98, 99]. In the IEC equation4 it is given by:

fSk(f)

σ2
k

=
4fLk/U

(1 + 6fLk/U)5/3
(3.4)

with:

Lu = 8.1Λ Lv = 2.7Λ Lw = 0.66Λ (3.5)

Λ = 0.7H (Λ ≤ Λmax) (3.6)

where:

f frequency [Hz]

H wind turbine hub height [m]

k index (u = longitudinal, v = transversal, w = vertical)

Lk length [m]

Sk one sided velocity component spectrum [m2/s]

U average wind speed for the period considered [m/s]

Λ length scale [m]

Λmax constant = 42 m

The turbulence values for the three directions u, v, w are set to the following ratios

(for the coordinate system used, see appendix A):

σu : σv : σw = 1 : 0.8 : 0.5 (3.7)

4The IEC formulas (3.4) are slightly different from Kaimal’s original ones (Kaimal [98, 99]).
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Finally the coherence function must be chosen, which defines dependency between

wind speeds at locations some (lateral or vertical) distance r apart. IEC 61400-1

gives the same function for all wind speed components (f is frequency, Lc is a length

scale, U is the mean wind speed)5:

Coh(r, f) = exp


−12

√(
fr

U

)2

+

(
0.12r

Lc

)2

 (3.8)

If the Sandia/Veers model is used for wind field generation, spectrum and coherence

as given here are reproduced exactly, if the Mann model is used, the functions are

somewhat different (see appendix G for details).

Wind shear. If we were to remove all short term wind speed fluctuations, we

would still not find uniform wind speed. Instead the average wind speed U varies

with height, approximately according to:

U(z2)

U(z1)
=

ln(z2/z0)

ln(z1/z0)
(3.9)

where z1 and z2 are heights and z0 is the terrain roughness. Often this profile is

approximated by a power law6:

U(z2)

U(z1)
=

(
z2

z1

)α

(3.10)

For hub height H = 80 m and normal terrain roughness values (z0 = 0.1 m), the

exponent works out to α = 0.14 to conform to the logarithmic profile. IEC 61400-1

prescribes α = 0.2 for fatigue and α = 0.11 for extreme loads.

Values for horizontal wind shear (which could occur in windfarms, or in moun-

tainous terrain) are also given in the standard, but for ultimate load cases only, not for

fatigue load calculations.

Tower shadow. For upwind rotors and circular towers the potential flow model is

assumed to be valid (see for example Burton [30]). For normal blade tower clearance

(1–2 times the tower diameter) the effect of the tower is small. For downwind rotors

an empirical expression is used.

Yaw error (or wind misalignment). The wind turbine head does not follow the

wind direction exactly for two reasons. Firstly wind direction changes are too fast

to follow; this effect is (at least partially) taken into account in the turbulence field.

Secondly the yaw error is difficult to measure: what is used is a wind vane on the

5This is only marginally different from the DS472 equation, that contains only the first term under

the square root sign (DS472 [44]).
6Equations (3.9) and (3.10) can be ’made equivalent’. Let z1 = H (hub height); then require that

the derivatives dU/dz are identical at z = H . Then α = 1/ ln(H/z0).This is also the equation for

turbulence intensity estimation: I ≈ α.
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nacelle (in the rotor wake), a procedure that cannot be expected to give very accurate

results. Therefore it must be assumed that there is a difference between the correct

and the actual yaw position, and a fixed misalignment of 5–10◦ (both positive and

negative) is used in calculations.

Inflow angle. Because the turbine is designed for some wide geographical area,

it must be expected that average wind speed is not always horizontal: obviously this

will be the case for hilly sites. A vertical inflow angle S = 8◦ is therefore used.

Together with the usual 5◦ main shaft tilt (to provide enough blade tower clearance),

this results in 13◦ oblique inflow (a yaw error of 5◦ increases the total inflow angle

to
√

132 + 52 = 14◦, see figure 4.11, p77).

Procedure to find wind speed seen by the blade. To summarise the above, the

steps to find the wind speed seen by the blade are (for a solitary turbine):

1. Start with a constant, uniform wind speed.

2. Add vertical and horizontal wind shear and random turbulence in three direc-

tions to get the ’total’ wind speed.

3. Incorporate the effects of tilt angle, wind direction, yaw error and terrain slope.

4. Take tower shadow into account.

5. Find the local wind speeds at the blade.

6. Convert these to relative wind speeds seen by the blades, taking into account

blade movement and induction.

Air density. The air density is fixed to the value at temperature T = 288 K and

pressure p = 101,325 Pa: ρ = 1.225 kg/m3. For projects above sea level or offshore a

different constant value is used, determined by site pressure and temperature.

Wake effects in windfarms. Wind turbine load calculations presume a solitary

turbine in flat uniform terrain, while in reality more and more turbines are installed in

windfarms, where wakes have an important effect on fatigue loads. One way to deal

with this issue is to use the concept of effective (or equivalent) turbulence, which

is imaginary turbulence that would have produced the same fatigue damage as the

combined effect of actual turbulence and wake effects.

The practical advantage of using effective turbulence is that only a minor modifi-

cation of the usual calculations is necessary; the disadvantage is that material proper-

ties (in the form of the slope of the S-N curve m) enter the load calculation, and that

hence the loads become dependent on the material used and the crack growth model.

This means that at least three parallel calculations would have to be done for blades

(composites, m = 9–12), nacelle (cast iron, m = 6–8) and tower (welded steel, m =

3–4). Clearly this is inconvenient, so only one set of calculations is done for some

high turbulence level, and later a check is performed whenever there is a proposal for

a windfarm where wake effects are important (for more information on the relation

between turbulence and fatigue damage see chapter 7 and appendix C).

In the turbulence wake model each turbine is assumed to have maximally 8 neigh-
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bours7, and only nearest neighbours are supposed to contribute with their wake to

effective turbulence, as follows (Frandsen [64], IEC [93]):

σeff =

[
(1 − Npw)σm

a + pw

N∑

i=1

σm
aw

]1/m

(3.11)

σaw =

√
0.9U2

(1.5 + 0.3si

√
U)2

+ σ2
a (3.12)

where:

m slope of S-N curve [-]

N number of neighbouring turbines [-]

pw fixed probability, pw = 0.06

U wind speed at hub height [m/s]

si distance to neighbouring turbine i normalised by rotor diameter [-]

σa ambient turbulence [m/s]

σaw combined ambient and wake turbulence [m/s]

σeff effective turbulence intensity [-]

Complex terrain. Most of the preceding theory is valid for ’flat smooth uniform

terrain’. The concept is usually stretched somewhat, where ’flat’ includes terrain with

slopes up to 20◦ or so (or at least without flow separation), ’smooth’ can mean ’with

terrain roughness up to z0 = 0.3 m (’high crops and bushes, numerous scattered ob-

stacles’) and ’terrain’ can also mean ’offshore’. Still many sites where turbines are

placed do not fit the description: a present we are looking at very complex mountain-

ous areas, or sites with forests and clearings. If we want to employ the usual calcu-

lation methods, the only thing we can do is to adjust the parameters that are used in

calculations (there is one exception: modern turbulence generators can also produce

non-Gaussian wind fields - this can be used if there are indications that non-Gaussian

7The calculation is easily refined to any number of neighbours, where each neighbour occupies some

sector.

Table 3.3: Adjustment of parameters for complex terrain. Source: Thomsen [206] except for

shear parameter (spectral shape): Morfiadakis [147].

parameter flat terrain complex terrain

wind speed Weibull distribution Weibull corrected for speed up

inflow angle ∼0◦ terrain slope (2–3D average)

turbulence intensity ratios 1.0 : 0.8 : 0.5 1.0 : 1.0 : 0.8

spectrum length scale ratios 1.0 : 0.3 : 0.11 0.7 : 0.3 : 0.1

Mann’s shear parameter Γ 3.9 (Kaimal) 0 (von Kármán)
1According to DS472 [44], in IEC 61400-1 [93] ratios are 1.0 : 0.33 : 0.08
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approach is in order). Thomsen [206] suggests the following changes, which should

be applied for 12 wind direction sectors of 30◦ (table 3.3). Following this procedure

would make 12 separate calculations necessary for one turbine; however in the case

of a wind farm in complex terrain one would normally select the worst case turbine

for the design basis of all, and the computational burden would not be excessive.

Morfiadakis [147] found that the von Kármán spectrum was a good fit for a complex

site on the island of Andros (Greece); this spectrum has turbulence intensity ratios

1 : 1 : 1, which is consistent with Thomsen’s recommendation (measurements were

done at 30 m height, which is a little low for today’s turbines).

3.4.2 Sea

For offshore turbine the set of wind conditions described above needs to be extended

with wave conditions.

Significant wave height. How much the sea surface elevation η varies might

be characterised by the standard deviation ση, but traditionally the significant wave

height Hs has been used for this, which is the mean height (from crest to trough) of

the highest third of all waves. In this work the significant wave height definition used

is:

Hs = Hm0 = 4ση (3.13)

which is slightly different. The significant wave height Hs and the zero crossing

period Tz are usually known as a function of wind speed from measurements or

from hindcast data. Suppose we consider 3 hour periods; for every period we record

the averages of wind speed, significant wave height Hs and zero crossing period

Tz . For every wind speed a matrix is now composed of which the elements are the

frequencies of occurrence of each combination of significant wave height and zero

crossing period8. Unfortunately this leaves us with many different load cases at each

wind speed, so weighed average values for significant wave height and zero crossing

period are computed (see for example Kühn [115]):

Hs(U) =
(∑

piH
m
s,i

)1/m
(3.14)

Tz(U) =

(∑ pi

Tz,i

)−1

(3.15)

The method to get a fatigue damage equivalent significant wave height is analogous

to what was done to include the effect of wind turbine wakes (equation (3.11), see

also appendix C). Again one takes for granted that the material parameter m (slope of

the S-N curve) enters the load calculations in order to simplify them. The procedure

8This matrix is also called scatter diagram.
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results in simple curve fits for significant wave height as function of wind speed, and

zero crossing period as function of significant wave height. The functions may be

made dependent on wind direction.

Wave spectrum. The wave spectrum (that determines how much energy waves

have as function of frequency) most used is the one sided Jonswap spectrum, given

in equation (5.3) (p85); see for example DNV [47]. The spectrum has a peakedness

parameter that makes it possible to tune it to measured data.

Wave kinematics. For fatigue calculations, 2-dimensional waves are assumed,

like those in a (narrow) wave tank. Random Airy waves (first order sinusoidal waves)

are generated according to the appropriate wave spectrum. The procedure is anal-

ogous to wind field generation (see appendix G). For circular cross sections the

McCamy-Fuchs diffraction correction may be used on particle accelerations, which

acts as a low pass filter. The first order calculation is fine for deep water waves,

where the wave height-depth ratio H/d ≤ 0.2, but the wave kinematics are not right

for higher waves. It is especially difficult to find speeds and acceleration at the (vary-

ing) water surface, and the usual approximation is to calculate them at the average

water surface, and stretch the speed and acceleration profiles to wherever the water

surface is at a particular moment (for example Wheeler stretching).

Drag and inertia coefficient. Values for drag and inertia coefficients are derived

from model tests or from standards and handbooks. For cylinders accepted values are

CD = 0.6–1.2 and CM = 1.3–2.0, depending on the Reynolds and Keulegan-Carpenter

numbers, and cylinder roughness (Gudmestad [76]). The influence of appurtenances

(which gives a larger effective diameter) is incorporated by modifying these coeffi-

cients (IEC [94, appendix D.5]).

Wind/wave misalignment. Because it is not practical to do calculations for all

combinations of wind and wave directions, wave/wind collinearity is used. Alterna-

tively some constant misalignment in the order of 20◦ is used, which is probably a

little more accurate. It is important to take the misalignment into account, because

the aerodynamic damping of the structure is small in the direction perpendicular to

the wind speed.

Tide. The (vertical) tide is included by modifying the mean sea level d. The

corrected depth d′ is dependent on the Wöhler exponent m of the material, and is

found by integration of the depth over time:

deq =


 1

T

∫

T

[d(t)]2mdt




1/(2m)

(3.16)

Current. Surface current speeds are usually small (< 1 m/s) in relation to wave

speeds. Therefore one does not bother to calculate the correct modified kinematics:

the current speed is just added to wave speeds.
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3.4.3 Aerodynamics

The most common method to estimate wind turbine loads is the Blade Element-

Momentum (BEM) method (see for example Burton [30] and Snel [193]). This is

currently the only method that is fast and accurate enough to meet the demands made

on load calculations. The basic assumption of this method is that ring shaped volumes

of air flow through a perfectly aligned rotor without influencing each other:

• There is no radial flow.

• The wind field seen by the rotor is undisturbed by the presence of the rotor

itself (apart from induction).

• Forces on blades can be found with simple calculations based on lift and drag

coefficients.

To extend the range of validity of the model, various engineering corrections have

evolved over the years such as:

• 3D correction on 2D lift coefficients (although it is possible to say something

about what the correction should look like, no correction has been found that

consistently improves calculations).

• Prandtl correction for flow around blade tips and blade roots

• dynamic stall model (there is a change of the lift coefficient between two levels

with a time delay).

• Dynamic inflow (there is a wake model with time delay which governs induc-

tion)

• Skew inflow model.

All these models are approximations that capture the essence of a phenomenon. How-

ever it can hardly be a surprise that results are not always as good as desired. It is

therefore essential that calculations are checked against measurements. The errors of

the blade element-momentum method are normally corrected in the load verification

process, by tuning of lift and drag coefficients (for an example in the public domain

see Laino [116]).

3.4.4 Wind turbine

To be able to do calculations it is necessary to use a simplified model of the turbine,

where the structure is reduced to a small number of idealised masses, dampers and

stiffnesses.

Eigenfrequencies (mass, stiffness). Before the turbine is built, masses and stiff-

nesses are estimated. In reality, values may be different and eigenfrequencies will

differ from those calculated with the model.

Structural model. The wind turbine is reduced to a number of connected beams.

At present, the largest computational errors have to do with aerodynamics; by com-
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parison the structural model may be considered to be almost perfect. Normal practice

is to use mode shapes that have all frequencies smaller than 5–10 Hz, which means

that tower first and second bending modes are taken into account, and the first three

blade modes.

Stresses and geometry. From the deformation of the turbine and the accelera-

tion of the parts, the forces in important cross sections can be computed. Then it is

assumed that there is a linear relation between the 6-component stress vector σ and

the 6-component force/moment vector F :

Aσ = F (3.17)

The elements of the matrix A (areas and section moduli) are found with static finite

element calculations (FEM) where unit forces and unit moments are put on the struc-

ture. It is customary to calculate the equivalent stress (von Mises stress) from the 6

stress components, and use this to judge whether failure will occur; to obtain sensible

results in rainflow counting (see below) the equivalent stress is assigned the sign of

the largest tensile stress. These calculation assume that the turbine is manufactured

exactly according to specification, and geometry is perfect i.e. corresponds exactly

to drawings. The inertia of the structure is taken into account in a lumped form in

the calculation of the cross sectional forces; in reality there is of course continuous

inertia, which has an influence on local stresses.

Control system. A simplified model of the wind turbine controller (which con-

trols pitch angle and generator torque) is used, consisting of ideal components, such

as sensors, inertias and time delays. The constants of the model are checked against

some special measurements, for example a step in pitch action.

Cut out wind speed. The fact that the turbine is idling or parked above some

cut out wind speed is taken into account in the load case definition. For example if

the cut out wind speed is 25 m/s, it is assumed that the highest production interval is

23–25 m/s, and the turbine is parked or idling whenever U > 25 m/s.

3.4.5 Material behaviour

The last section of the table deals with material properties and crack growth.

S-N or Wöhler curve. The component fatigue curve may be found from tests on

the component itself, or on representative probes. Sometimes there is no other possi-

bility than to derive the Wöhler curve from constant amplitude tests on small probes,

applying a number of corrections for surface roughness, mean stress, geometry, notch

factor, heat treatment, et cetera.

Rainflow counting. The complex random stress history must be converted to a

table with numbers of cycles and stress ranges, and possibly mean stresses (mean

stress influence is important for cast iron and for blade materials). For this task, the

rainflow method is employed. For details see for example Gudehus [74] or Haibach

[77].
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Fatigue damage. Total fatigue damage is found by adding the damage caused by

each individual load cycle linearly (the Palmgren-Miner rule). In spite of its short-

comings (notably that sequence effects are disregarded), the method it is in near uni-

versal use.

3.5 Load verification and design adjustment

When the design is ready, a prototype is built and a load verification is done, in which

measured loads are compared to calculated loads. In trying to reproduce measured

loads, we allow ourselves some ‘reasonable tuning’ of various parameters. This does

not mean that calculated loads are tweaked until they fit the measurements, but rather

that some parameter values that could not be exactly known before the turbine was

built are adjusted to their correct values. Tuning involves:

1. Eigenfrequencies. Eigenfrequency errors occur because masses, inertias and

stiffnesses had to be estimated before the turbine was built. For example blade

mass and stiffness, drive train stiffness and foundation stiffness may have to

be adjusted (note that for the actual site foundation stiffness might again be

different).

2. Damping. For example, from a braking test the tower damping may be esti-

mated, and the assumed value improved.

3. Blade lift coefficients. Lift coefficients are adjusted until the right equiva-

lent blade flap bending moments are found, while keeping the correct average

power curve, average flap moment and average tower bending moment (this

tuning is somewhat questionable from a physical point of view).

After tuning, the procedure to compare loads is as follows:

1. Select a number of representative 10-minute periods with different wind speeds

and different turbulence levels, so-called ‘load cases’. Periods where the tur-

bine is in the wake of some other turbine, or where there was some turbine

error, are excluded.

2. For each of these load cases, establish the yaw error, the air density and the

turbulence intensity. One may also estimate wind shear, the turbulence spec-

trum and the turbulence coherence function. Generate artificial wind that cor-

responds to the measured wind to the desired degree.

3. Run the calculations and compare the damage equivalent loads for each load

case to the measured ones.

Ideally calculated loads fit measured ones exactly. This is not always the case, and

load correction factors may need to be used in future design calculations. These

factors are a function of location in the wind turbine and a function of wind speed.

For the turbine under consideration a redesign may now be done. Although in this
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way calculated loads can be made to fit measured loads very well, predictive power of

the calibration method is limited to designs that are very close to the one investigated,

and every new design needs to be checked afresh.

3.6 Site admission

In reality site conditions will differ from the class definition. The usual case is that

site conditions are estimated from a few years of measurements, possibly supple-

mented with data from wind atlases or stations nearby. Both for the vector of site

conditions xs and the vector of class conditions xc equivalent load ranges can be de-

rived, which may then be compared. The requirement for installation (site admission

rule) is:

∆Feq(xs) ≤ SRF ∆Feq(xc) (3.18)

where:

∆Feq fatigue damage equivalent load [N, Nm]

SRF stress reserve factor [-]

xc vector of environmental parameters for the class

xs vector of environmental parameters for the site

The stress reserve factor SRF comes into the equation because the design is almost

never optimal in the sense that it is exactly at the limit; usually there is some small

safety margin left, typically 1 ≤ SRF ≤ 1.1. Therefore loads that are more severe

than the class design loads may be admissible. The admission criterion (see figure

3.1, p30) is defined using the derivatives of the equivalent loads with respect to the

components of the parameter vector x. Linearising from the class definition point xc

yields:

∆Feq(xs) ≈ ∆Feq(xc) +
n∑

i=1

∂∆Feq(xc)

∂xi
(xsi − xci) (3.19)

Hence:

n∑

i=1

∂∆Feq(xc)

∂xi
(xsi − xci) ≤ (SRF − 1) ∆Feq(xc) (3.20)

If the stress reserve factor SRF = 1 then equation (3.20) simplifies to:

n∑

i−1

(
∂∆Feq(xc)

∂xi

)
(xsi − xci) ≤ 0 (3.21)
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The method of equation (3.20) is useful in judging the suitability of sites and wind-

farm configurations, especially if wake effects are incorporated as additional turbu-

lence (IEC [93]). In practice equivalent loads are calculated in a few points (for

example for a few values of the turbulence intensity and terrain slopes), and interpo-

lation rather than extrapolation is used.
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Chapter 4

Wind

4.1 Introduction

In chapter 3 and in table 3.1 (p32) the simplifying assumptions were listed that are

made in conventional design practice. These assumptions are best guesses at the

representative situation (for example the characteristic turbulence): the real situation

at a site may be different. As a result of this, actual fatigue loads may be larger or

smaller than estimated.

In chapters 4–7 we examine what the variation and bias are of the stochastic

parameters describing the site and the wind turbine. The importance of a parameter

is judged by examining its influence on relevant local loads1, such as for example

the blade root bending moment. The history of a local load is summarised in the

equivalent load (see appendix C).

Models in common use are examined; some of them are good approximations

of reality, but others perform less than satisfactory. However sometimes we will be

forced to follow the time honoured practice of first listing everything that is wrong

with a certain model, and then end up by using it anyway.

4.2 Wind speed history

4.2.1 Reduction to 10 minute load cases

For reasons of economy, the wind history during the turbine’s life of twenty years

or so is reduced to a few dozen 10 minute periods (or load cases) at certain average

wind speeds: for example 3, 4, 6, . . . , 24, 30 m/s (see table 3.2, p33). It would

be unconservative of course to assume the wind speed to be constant within the load

case: it varies with a distribution that is approximately gaussian in many cases (Mann

1Local loads (usually bending moments) are sometimes called ’sensors’, because these loads are

what would be measured by a strain gauge sensor at the location.

47
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[135], Nielsen [154, 155], for more on non-gaussianity see section 4.5.4). This is of

course what is called turbulence.

While with turbulence we have an accurate description of the wind for each indi-

vidual load case, a disadvantage of the procedure is that large load cycles with periods

longer than 10 minutes will be missed: for example a cycle of a few days: start at 4

m/s −→ production at wind speeds between 4 and 25 m/s −→ idling (stop) at 4 m/s,

will never be found. An approach sometimes used to solve this problem is to have

a number of additional load cases in which the wind speed history has an artificial

low-high-low pattern (start-stop sequence).

Larsen and Thomsen [123] attempted to estimate the size of the effect on fa-

tigue life by constructing an additional peak-trough signal from the global extremes

of each 10 minute load case (in arbitrary order; either the minimum or the maximum

may come first); the order of 10 minute load cases is based on the measured wind his-

tory. They report an increase of fatigue loads that is just on the edge of significance

(see table 4.1). The matter was also investigated by Carlén [32] for four different

sites (Jylland, Nasudden, Sprogø and Tystofte). He found that the transition proba-

bility for changing from one 10 minute average wind speed to another in the next 10

minute interval is well described by Weibull distributions. An analysis of the load

cycles showed that for all sites there were 20,000–25,000 large wind speed cycles per

year with a duration shorter than 3 hours and 100–200 cycles per year with a longer

duration, the latter representing start-production-stop sequences. This circumvents

(at least to some extent) the long standing argument about how long material mem-

ory is: if almost all cycles have a duration smaller than 3 hours, it seems reasonable

to assume that the material ’remembers’ these cycles; at least it is not necessary to

assume memory of months or years. Carlén does not indicate how his results should

be used to estimate additional fatigue damage, but presumably it would be along the

lines of Larsen’s method.

To estimate the influence of large wind speed cycles on all relevant load signals

Table 4.1: Ratio of equivalent fatigue load with and without large low frequency load cycles

for Tystofte. Source: Larsen [123]. In this work, measured wind speeds were normalised to

obtain average 8.5 m/s at hub height, which may explain the difference with Larsen’s results.

Sensor1 material slope m load ratio

Larsen this work

Blade root flap moment My11h1 weld seam 3 1.01 1.03

cast iron 7 1.04 1.04

composite 12 1.08 1.06

Nacelle tilt moment MyNf1 weld seam 3 1.00 1.01

cast iron 7 1.00 1.02

composite 12 1.02 1.06
1For nomenclature see appendix A.
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and to be able to calibrate short cut methods, we will construct a time signal as a

sequence of regular load cases, as follows:

1. Generate twelve different 10 minute load cases at each of the usual wind

speeds: 3, 4, 6, . . ., 24, 30 m/s (12 different wind directions).

2. Generate a wind speed and direction history. A measured wind history could

be used, but an artificial history is preferable for research purposes, if it can

be made to have realistic properties. Fortunately it turns out that a Markov

chain based on the transition matrix of 1 h average wind speeds reproduces the

measured low frequency wind spectrum for a number of sites well. Moreover

spectra for these sites turn out to be similar.

3. Construct a sequence of load cases corresponding to the wind history.

4. Do a rainflow count on the entire history and compare with the conventional

rainflow count.

The details of the procedure are, though interesting, too technical to go into here; the

interested reader is referred to appendix E.

A summary of results is given in table 4.2. The explanation for the large increase

in the nacelle roll (drive train) equivalent moment MxNf is the absence of start/stop

cycles in the simplified load spectrum used here, which would be included in a normal

design calculation2. The increase in tower base bending moments has to do with the

2In the beginning of the work it was decided to use a simplified load spectrum comprising load

cases that give most fatigue damage: production and idling. It now turns out that starts and stops are

important for the nacelle; however since all calculations of equivalent loads are relative (both design

Table 4.2: Influence of large low frequency load cycles on equivalent fatigue loads. Numbers

are equivalent load ratios. Uniform wind direction distribution. Hourly wind directions are

generated with a random walk process, where change in wind speed is governed by the normal

distribution N (µ = 0◦, σ = 15◦).

IEC2 (land) IEC1 (offshore)

Sensor1 m mean std.dev. mean std.dev.

Blade root lead-lag moment Mx11r 12 1.00 0.000 1.00 0.000

Blade root flap moment My11r 12 1.02 0.005 1.02 0.003

Hub lead-lag moment Mx11h 6 1.00 0.000 1.00 0.000

Hub flap moment My11h 6 1.03 0.004 1.03 0.002

Nacelle roll moment MxNf 6 1.06 0.001 1.08 0.002

Nacelle tilt moment MyNf 6 1.01 0.004 1.01 0.003

Nacelle yaw moment MzNf 6 1.01 0.005 1.01 0.004

Tower base moment Mxt0 (E-W) 4 1.05 0.01 1.02 0.004

Tower base moment Myt0 (N-S) 4 1.05 0.01 1.03 0.008

Mudline moment Mxf-20 (E-W) 4 – – 1.01 0.004

Mudline moment Myf-20 (N-S) 4 – – 1.02 0.008
1For nomenclature see appendix A.
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fact that the change of wind direction is normally not taken into account. If it is,

large load cycles are created because the mean load on the tower base is reversed if

the wind turns 180◦. This effect is less for offshore turbines, because a large part

of total load is caused by waves, which produce a symmetric loading pattern. The

procedure to generate artificial long time series is quite stable, as can be seen from

the small standard deviations (table 4.2, all are smaller than 1%); a more important

influence is the wind direction distribution. The algorithm used to generate random

wind direction time histories leads to a uniform wind direction distribution.

In the probabilistic calculations it is assumed that if the right calculations (in-

cluding start-stop sequences) are done, there will be no bias in results, except for the

tower base bending moment. However even in the artificial histories there is some

variation: V ≈ 1% (except for the lead-lag moments). We will use the table figures

in the calculations (influence of deviations from ideal wind speed and wind direction

distributions are dealt with in section 4.3).

4.2.2 Influence of seed factors

Typically the calculation of the load spectrum was done with 2 calculations of dura-

tion 600 s at each wind speed3. This gives 26 load cases (see table 3.2, p33). For each

calculation, random seeds are used for the generation of the wind field; this means

that the turbine life equivalent loads vary: different seeds will yield different loads.

To establish the coefficient of variation of the equivalent loads, 12 load cases of 600

s each, were calculated at 3, 4, 8, . . ., 24, 30 m/s. Each individual wind field was nor-

malised to yield the desired turbulence intensity level. From this collection of load

cases, 100 sets of 26 independent samples were drawn, constituting 100 different re-

alisations of the same load spectrum. Some results are given in table 4.3, together

with some figures for a stall turbine published by Thomsen [207]. Obviously the co-

efficient of variation may be reduced by doing more calculations, for example with

four times the original number all coefficients of variation decrease by a factor two.

While it may turn out that the uncertainty is not large compared to others, it must be

said that doing more calculations is a cheap way of reducing uncertainty; some extra

reduction of variation may be achieved by doing extra calculations at wind speeds

where most fatigue damage occurs.

There are various technical matters regarding the generation of turbulent wind

fields, such as how many points to use, and which frequency interval, and how to

handle loss of variance. However since these hardly introduce additional uncertainty,

they need not concern us here. Details are discussed in appendix G. For more on the

shape of the turbulence spectrum and coherence see section 4.5.2.

loads and actual loads would increase) no change is expected in results.
3With the third edition of IEC 61400-1 [93] the number of load cases was increased to at least 6 for

each wind speed.
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4.3 Wind speed and wind direction distributions

4.3.1 Idealised distributions

Basically one should use the measured site wind speed and direction distributions for

a full load calculation. However for convenience, the combined site wind speed and

wind direction distribution are approximated by simple fits:

• For land based turbines, the wind speed distribution is approximated by a

Weibull fit (equation (3.1)), and all wind is assumed to come from the same

direction. This introduces some conservatism in tower and foundation design

(the rule of thumb is ca 10% overestimation of tower base moments). For land

based turbines this is not a great problem, since the extra investment in tower

and foundation is not overwhelming.

• For offshore turbines, the cost of the foundation is large, and it becomes attrac-

tive to perform a calculation that uses the combined wind speed/wind direction.

Still one might want to approximate distributions from different directions by

Weibull fits.

There are two reasons that the Weibull distribution fits measured distributions well.

Firstly, if one assumes that the North-South and East-West wind speed are indepen-

dent and normally distributed (with zero mean and equal variance), the length of the

sum wind vector has a Rayleigh distribution, a special case of the Weibull distribution

with shape factor k = 2 (Tuller [217]); often this is almost true in reality. Secondly,

the Weibull distribution is really a distribution family, which can be made to fit a

Table 4.3: Coefficient of variation of fatigue damage equivalent load ranges. Weibull distri-

butions U = 8.5 and 10 m/s, k = 2, 26 load cases of 600 s = 15,600 s. Note that Thomsen’s

figures are for a different total calculation time.

This report Thomsen

[207]

Turbine type PRVS stall

Total time [s] 15,600 6,000

Average wind speed [m/s] 8.5 10 10

Equivalent load range m
Blade root lead-lag moment Mx11r 12 0.002 0.002

Blade root flap moment My11r 12 0.014 0.007 0.027

Hub lead-lag moment Mx11h 8 0.003 0.002

Hub flap moment My11h 8 0.018 0.011

Nacelle driving moment MxNf 8 0.017 0.017

Nacelle tilt moment MyNf 8 0.012 0.015 0.030

Nacelle yaw moment MzNf 8 0.010 0.010 0.029

Tower base side-side moment Mxt0 4 0.028 0.030

Tower base fore-aft moment Myt0 4 0.031 0.029 0.058
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Figure 4.1: Wind speed distribution for Den Helder 1972–2002 (transformed to 70 m height)

and Weibull fit. Source: KNMI.

range of different sets of measurements. After all 10-minute simulations are done,

load cycle counting is done for each load case, and the numbers of cycles per load

case are multiplied with a number corresponding to the number of hours at the load

Table 4.4: Normalised equivalent loads for different approximations of the wind speed and

wind direction distribution. Results for the measured Den Helder distributions are set to unity.

speed as measured Weibull fit as measured Weibull fit

direction as measured uniform fit unidirectional unidirectional

eqv. load m
Mx11r 12 1.00 1.00 1.00 1.00

My11r 12 1.00 0.98 1.02 1.00

Mx11h 6 1.00 1.00 1.00 1.00

My11h 6 1.00 0.99 1.00 0.99

MxNf 6 1.00 1.00 0.99 1.00

MyNf 6 1.00 0.99 1.00 0.99

MzNf 6 1.00 0.99 1.00 0.99

Mxt0 4 1.00 0.94 0.55 0.52

Myt0 4 1.00 1.04 1.31 1.29
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Figure 4.2: Wind direction distribution Den Helder 1972–2002 and uniform fit. Source:

KNMI.

case wind speed. To see how much error is introduced by using idealised distributions

we investigate a coastal site that is probably representative for North Western Europe:

Den Helder (Netherlands). In figure 4.1 the wind speed distribution is shown, and in

figure 4.2 the wind direction distribution. In table 4.4 some results are given for four

different calculations. It is seen all loads above the yawing system are independent

of the wind direction distribution used, because the head of the wind turbine follows

the wind direction. Also using a Weibull fit instead of the actual distribution does not

make much difference. For the tower loads we have a different situation: although

the actual wind direction distribution may be approximated by a uniform distribution

with reasonable accuracy, it is conservative to use unidirectional wind. For example,

in case a unidirectional calculation is used for a land based turbine, the conservatism

on the tower base bending moment is 1.29 relative to the measured distributions and

1.29/1.04 = 1.24 relative to the combination Weibull/uniform. In other words, the

loads to be expected in reality are 0.78 and 0.81 times the calculated loads.

Even when the measured wind direction distribution is used, there is still some un-

certainty: the actual wind direction distribution may deviate from the assumed (or

measured) long term wind direction distribution. The question is how much this will

influence tower and foundation loads.
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The influence of variation in wind direction distribution was estimated as follows.

First an omnidirectional calculation was done for the test turbine, with wind coming

from 6 different directions (0, 60, . . . , 300◦). Then rainflow counts were done for

bending moment in 6 wind directions; for each rainflow count a measured 1 year

wind speed and direction distribution was used. Wind speeds were corrected to get

the same overall average wind speed at hub height. Some results are given in table

4.5. It is seen that the coefficient of variation is small: the variation on bending

moment over a 20 year period is only V = 1%. This means that the actual equivalent

load range over the turbine’s life will be distributed with V = 1%.

4.3.2 Estimation of wind speed

The scale parameter C (or the average wind speed Uavg) and the shape parameter k
at a site are normally unknown and must be estimated. This may be done in several

ways:

1. From site measurements. Sometimes wind turbines are placed close to a meteo

station; in those rare cases a long term estimate is directly available. Other-

wise, if it is known in advance where wind turbines are going to be placed,

one may put up a measuring tower to get wind speed measurements. This is

usually done for only a short period (6–12 months); however these wind data

are normally not used directly, but in the Measure-Correlate-Predict procedure

(see below). In the last decade alternatives for meteo masts have become avail-

Table 4.5: Coefficient of variation V of fatigue damage equivalent load ranges due to varia-

tions in wind direction distribution.

Elevation Wind direction V (1 year) V (20 years)

[m ] [◦]

Tower top 0 = NS 0.036 0.008

60 0.024 0.005

120 0.025 0.006

SWL+38 0 = NS 0.051 0.011

60 0.033 0.007

120 0.038 0.008

SWL+13 0 = NS 0.052 0.012

60 0.034 0.008

120 0.039 0.009

SWL 0 = NS 0.053 0.012

60 0.033 0.007

120 0.040 0.009

SWL–20 0 = NS 0.047 0.011

Mudline 60 0.032 0.007

120 0.038 0.008
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able, such as SODAR (SOund Detection And Ranging) and LIDAR (LIght

Detection And Ranging), which have the potential of making measurements

at any height up to a few hundred meters without erecting a tower (see Anto-

niou [4]), and especially for offshore applications satellite measurements (see

for example Hasager [83]).

2. With the Measure-Correlate-Predict (MCP) procedure (see Anderson [1] and

Bass [10]), wind speeds at the site are measured during 6–12 months. Then

the 10-minute or 1-hour values are correlated with one or more meteo stations

nearby, and the correlation is used to predict long term site wind speed from the

long term meteo station wind speed. The strength of MCP is that no assump-

tions about wind or terrain need to be made, except that there is a correlation

between the two sites.

3. With the Wind Atlas Analysis and Application Program procedure (WAsP,

Troen [214]). The two main ideas of WAsP are:

(a) The wind speed at greater heights is independent of the terrain roughness.

(b) There is a simple relation (for example a logarithmic law dependent on

terrain roughness) between wind speed at higher altitudes and close to

ground level.

This makes it possible to find the wind speed at a site by first transforming the

measured wind speed up (at the meteo station) and then down again (at the site).

The reason that WAsP works rather well is that there is a good chance that any

error introduced in the up transform is compensated by a corresponding error

in the down transform.

4. With a large scale Navier-Stokes calculation combined with WAsP. This is an

extension of WAsP. Instead of relying on wind speeds measured at 10 m height,

high altitude wind speed data are used in combination with model flow calcu-

lations. The wind speeds at turbine hub height are found by correcting model

wind speeds with WAsP procedures.

5. With a full Navier-Stokes calculation. Measured wind speeds at several sites

are used for a Navier-Stokes calculation for a limited domain around the wind

turbine site. A problem is that many good wind speed measurements are

needed at the boundary of the domain. Even then it is hard to see how this

procedure can be more accurate than (for example) MCP.

6. With a wind tunnel experiment on a terrain model. This procedure is the ex-

perimental analogon of procedure no 5.

Since MCP and WAsP are the industry standard, we will focus on these two proce-

dures; at present there is no evidence that other procedures are significantly better. In

addition something will be said about satellite measurements.
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WAsP. A primary source of WAsP data is the European Wind Atlas [214], which

provides tests of the procedure for most countries in the European Union. Table 4.6

gives a summary of results. No systematic error was found, but the coefficient of

variation of the cross prediction distribution varies from V = 0.03 for the North Sea

(good) through V = 0.06 for flat terrain (acceptable) to values as high as V = 0.14–

0.25 for complex mountainous terrain (useless). In some cases there are obvious

explanations for discrepancies, and predictions may be improved by taking only sta-

tions from the right group. The problem is that it is not always clear that this grouping

can be done a priori. Some results from other sources are given in table 4.7. These

confirm the findings from the European Wind Atlas.

MCP. On Measure-Correlate-Predict methods, good references are Anderson

[1, 2] and Bass [10], in which 9 different MCP-methods are evaluated. The main

conclusions of Bass [10, p69] are: ’In terms of overall average bias error, the sim-

ple sector ratio method is the best.’ 4 and ’For the best class A method, 95% of all

4Some authors prefer variations of the basic method, see for example King [107] and Woods [237]

Table 4.6: Inaccuracy of cross predictions with WAsP. Source: European Wind Atlas [214].

Values are coefficients of variation of the ratio predicted/measured.

EWA ref region1 all NS best group NS

9.2 Ireland 0.086 9 0.015 3

9.3 United Kingdom and Ireland 0.090 8 0.081 4

9.4 United Kingdom and Scotland 0.100 6 0.054 2

9.5 United Kingdom 0.078 9 0.058 2

9.6 Denmark 0.068 9 0.026 3

9.7 Germany 0.041 7 0.031 5

9.8 Germany 0.119 6 0.041 3

9.9 North Sea 0.033 6

9.10 Netherlands 0.054 6 0.042 5

9.11 Belgium, Luxembourg, Netherlands 0.060 7 0.033 6

9.12 France and Belgium 0.098 9 0.046 4

9.13 France, Germany, Luxembourg 0.045 8

9.14 France (South West) 0.129 7 0.029 5

9.15 France (Massif Central) 0.077 4

9.16 France (Massif Central/Rhone/Med) 0.246 9

9.22 Spain (Canary Islands) 0.158 6

9.25 Portugal 0.169 5 0.044 2

9.28 Italy 0.144 6 0.078 3

9.30 Greece 0.147 7

Average 0.102 0.044

Best 0.033 0.015

Worst 0.246 0.081
1Regions considered to validate WAsP are ’geographically natural’ and may include

(parts of) different countries.
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bias errors, over a range of climatologies and terrain, will lie within ±10% of the

true value.’. If we assume that the errors are normally distributed, this means that the

coefficient of variation of the ratio predicted/measured is V = 0.05. These results are

confirmed by other sources (see table 4.8).

For this report, some additional calculations were done for the Netherlands, for

which the Royal Netherlands Meteorological Institute (KNMI) makes hourly wind

speeds available for all meteo stations. All wind speeds are potential wind speeds

i.e. normalised to 10 m measuring height over open terrain (terrain roughness z0 =

0.03 m). A typical example is given in figure 4.3 (next page). In this case the long

term Schiphol wind speed is predicted 47 times, in each case with one year of hourly

data from IJmuiden; wind speeds from all directions are combined. If we perform

the same procedure for all 1722 station pairs (30,020 yearly wind speed pairs for

Table 4.7: Inaccuracy of wind speed estimates with WAsP from various sources.

Reference, Stations Predictions Mean ratio COV

location NS NP pred/msrd V
Barthelmie [8]

Nysted (DK) 1 2 0.93 -

Omo Stalgrunde (DK) 1 2 1.06 -

Berge [12]

Norway 5 15 1.02 0.08

Frank [66]

Pyhatunturi (SF) 1 1 0.87 -

Sodankyld (SF) 1 1 1.22 -

Hollis [92]

United Kingdom 26 26 1.00 0.15

Landberg [117]

Portugal 5 15 1.01 0.13

Table 4.8: Inaccuracy of wind speed estimates with MCP.

Reference, Station Predictions Mean Ratio COV

location pairs NP pred/msrd V
Anderson [1] (53 sites) unknown 1.00 0.035

Bass [10] 82 unknown 1.00 0.05

Barthelmie [8]

Nysted (DK) 1 2 0.91 -

Omo Stalgrunde (DK) 1 2 1.04 -

This report

Netherlands 1,722 30,020 1.00 0.06

Landberg

Portugal 5 unknown 0.90 0.06

Hollis [92]

United Kingdom 21 21 0.98 0.08
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Figure 4.3: MCP predictions of Schiphol long term wind speed with IJmuiden data.

predictions), we find that the average prediction ratio converges to unity (as it should:

the whole procedure is symmetric), and that the coefficient of variation on predicted

wind speed/actual wind speed ratios is V = 0.06. The distribution of ratios fits a

normal distribution very well, which means that 90% of all predictions are in the

interval 0.90–1.10. This is consistent with Bass [10] who found V = 0.05 (note that

overall wind speed ratios were used for the Dutch predictions instead of the better

sector ratios used by Bass).

With the available data it was investigated whether predictions became better with

smaller distance. The result is seen in figure 4.4 where the coefficients of variation

of all cross predictions for all 1722 station pairs are plotted. Surprisingly, predictions

do not improve at all with smaller distances; in fact there is zero correlation with

distance. This probably has to do with the fact that all local wind speeds are corre-

lated with the same geostrophic wind, and that wind speed variations are due to local

terrain features. If this is true, this would make it possible to improve predictions by

simply using more reference stations (this was not checked).

Satellite measurements. Wind speeds over water can be measured from a satel-

lite with the Synthetic Aperture Radar (SAR), which relies on measuring how much

radiation is back scattered from the sea surface, something that depends on surface

roughness. The roughness in turn is correlated to wind speed at (for example) 10 m
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Figure 4.4: Coefficient of variation of ratio predicted / measured wind speed

height. By calibrating against tower measurements, near perfect long term averages

can be obtained from satellite measurements in spite of the fact that the accuracy of

individual measurements is not very good (±1 m/s). Unfortunately this holds for

wind speeds at 10 m over the water surface, and these values must still be converted

to hub height wind speeds (see section 4.3.3). For further information on satellite

measurements see Barthelmie [7, 9], Hasager [82, 83] and Pryor [170].

In summary: in the author’s view MCP-methods are superior over WAsP for

predicting wind speeds at (ca) 10 m height. They yield a consistent coefficient of

variation V ≃ 0.05 on the ratio predicted/actual wind speed over a range of terrain

types. With WAsP the coefficient of variation may be as high as V = 0.25, depending

on terrain type. For offshore sites satellite measurements may be a good alternative.

4.3.3 Transformation to hub height

The most common methods described in the previous section (MCP, WAsP, SAR)

provide us with an estimate of the wind speed at 10 m height. From this wind speed

the wind speed at rotor hub height (say 70–120 m) must be found5. For the wind

5WAsP can provide estimates at any height (see for example Lange [118]), but the mechanism to

compensate errors in the height transform does not work if the heights at the two sites differ too much,
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speed as function of height there is the well known equation (see e.g. Lange [118]):

U(z2)

U(z1)
=

ln (z2/z0) − Ψ (z2/L)

ln (z1/z0) − Ψ (z1/L)
(4.1)

where:

L Monin-Obukhov length [m]

U wind speed [m/s]

z height [m]

z0 terrain roughness [m]

Ψ stability function [-]

What we see is the logarithmic profile dependent on terrain roughness z0 plus an

atmospheric stability correction Ψ dependent on the ratio of height z and Monin-

Obukhov length L. Turbulence may be produced by shear (speed differences) or

by buoyancy (density differences); the length L is the height at which shear and

buoyancy produce the same amount of turbulent kinetic energy. While equation (4.1)

is based solidly in physics, the problem is that the Monin-Obukhov length L must be

estimated, which can only be done indirectly from temperatures.

As long as wind speeds are high enough (above 6 m/s or so) thermal effects

play no role above land, and neutrality may be assumed (Ψ = 0), at least for the

lowest 50 m or so (Wieringa [235, p37]). Then the wind speed follows a logarithmic

profile determined by terrain roughness z0 and equation (4.1) reduces to equation

(3.9), repeated here:

U(z2)

U(z1)
=

ln (z2/z0)

ln (z1/z0)
(4.2)

Although the wind speed height profile at any particular time may differ considerably

from this equation, as an average it is not a bad estimator (as will be shown). The

roughness of the terrain z0 may be estimated with the Petersen classification or from

measurements of turbulence intensity I at some reference height zr, using:

I(zr) =
1

ln(zr/z0)
(4.3)

which gives for the ’objective terrain roughness’:

z0 = zr exp(−1/I(zr)) (4.4)

For complex terrain it is not possible to use a simple wind speed profile law; the best

solution is probably the use of Navier-Stokes calculations. However for the moment

we ignore this and try to use the turbulence intensity method anyway.

so a larger error must be expected. For the probabilistic calculations presented in this work, it is assumed

that prediction at 10 m height is followed by a height transform.
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Figure 4.5: Prediction of wind speed at hub height. There are 8 sites of which 2 inland, 2

coastal, 3 offshore and 1 complex; prediction heights are between 60 and 116 m. For the

prediction of the speed ratio the average of all wind speeds between 10 and 20 m/s (at 10 m

height) were used. Source: Downey [48]. For all data see table D.7.

Some predictions are shown in figure 4.5. Downey [48] extracted data from the

database winddata.com for all eight sites that have wind speed measurements above

60 m height. The terrain roughness was established with equation (4.4), and a loga-

rithmic profile assumed. It appears that the mean of all 14 predictions is zero, giving

an indication that on average the logarithmic profile is correct; the standard deviation

on the ratio measured/predicted is σ = 0.046. Maybe predictions could be improved,

for example by making separate predictions for each sector and for individual wind

speed bins; however the figure found is probably a conservative upper bound.

So far we have ignored the fact that offshore applications are different from land

sites. Obvious differences are the absence of a fixed terrain roughness and the non-

neutrality of the atmosphere.

Terrain roughness is not a big problem: to estimate ’terrain roughness’ there is

the Charnock equation (see section 4.4), which makes the sea surface roughness de-

pendent on wind speed, but maintains the logarithmic profile. Unfortunately several

authors (Barthelmie [7], Frank [65] and Lange [118]) conclude that possible errors

in roughness estimate are less important than atmospheric stability and stratification.
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In investigations for four different Danish offshore sites, Motta [148] found the fol-

lowing figures for stability (table 4.9), which make it clear that neutrality cannot be

taken for granted.

Lange [118] tried to predict 10 minute average wind speeds at 50 m height using

data gathered at 10 m height. Using variations of equation (4.1) he found biased

(under)predictions of 91–99% (see table 4.10), which however may be improved if

his empirical correction is applied.

Motta [148] found corresponding results for Vindeby, Rødsand and Omø. A loga-

rithmic profile (based on Charnock) tends to underpredict, but if a stability correction

is applied the prediction ratio is close to unity.

McQueen [143] predicted wind speed at 30 m above sea level directly using 13

different methods, for example WAsP and numerical weather prediction methods. It

appears that WAsP (with stability correction) is doing best with errors of 3–10%,

while most other methods are performing worse.

4.3.4 Yearly variation

Even if the long term wind speed U and shape factor k known, one must still consider

variations in yearly mean. Fortunately, the mean for a period of L years has standard

deviation that is reduced by a factor
√

L compared to the yearly value. A summary

of data found is given in tables 4.11 and 4.12. Stations are in coastal and flat terrain

(see appendix D). The coefficient of variation for 20 years wind speed was found to

be VU = 0.015, while Vk = 0.015 for the 20 years average Weibull shape factor6.

6For data for the Netherlands it was found that the shape factor k is weakly correlated with wind

speed (r ∼ 0.3, see table D.1); however since this is a small value and influence of k on loads is

minimal, U and k are assumed to be independent anyway.

Table 4.9: Average stability conditions for four Danish offshore sites. Source: Motta [148].

Class Monin-Obukhov length L [m] Frequency [%]

very stable 0 < L < 200 23

stable 200 < L < 1000 16

neutral |L| > 1000 32

unstable –1000 < L < –200 20

very unstable –200 < L < 0 9

Table 4.10: Offshore wind speed predictions for Rødsand (Nysted) at 50 m height from

measurements at 10 m height using Monin-Obukhov theory. Source: Lange [118, p77]

all data stable data unstable data

mean prediction Upred/Umsr [-] 0.94–0.98 0.91–0.96 0.97–0.99

rms [-] 0.03–0.05 0.03–0.06 0.02–0.03
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4.4 Turbulence intensity

4.4.1 Introduction

The turbulence σU is defined as:

σ2
U =

1

T

∫

T

(
U(t) − U

)2
dt (4.5)

and the turbulence intensity is:

I =
σU

U
(4.6)

where U(t) is the wind speed measured during an interval T , for example 10 min-

utes7. Because turbulence at wind speeds above ca 5 m/s is primarily caused by

terrain roughness, variations in yearly average turbulence intensity are not to be ex-

pected (there are seasonal variations of course in case there is significant vegetation).

However the turbulence is dependent on average wind speed, and moreover even a

plot of 10 minute turbulence values for the same wind speed will show random vari-

ation. Hansen [79] investigated 6 different sites (offshore, mountainous, flat open

7Some authors prefer to detrend the wind speed before calculating the turbulence (i.e. subtract for

example the least squares linear fit from the measured signal). In most cases the difference with the

turbulence according to equation (4.5) is small.

Table 4.11: Coefficient of variation for yearly average wind speed and Weibull shape factor.

region reference average wind speed U shape factor k
1 year 20 years 1 year 20 years

Netherlands table D.1 0.062 0.014 0.065 0.015

Denmark table D.2 0.047 0.011 - -

Northern Germany table D.3 0.065 0.015 0.073 0.016

Table 4.12: Coefficient of variation for average wind speed. Source: Pryor [169]. Note:

Pryor gives coefficients of variation for the energy index, which is proportional to wind speed

to the third power; these have to be divided by ∼ 3 to find the corresponding number for wind

speed (see table D.4).

Country NCEP/NCAR 1960–1989 ECMWF 1990–2001

1 year 20 years 1 year 20 years

Denmark 0.034 0.008 0.031 0.007

Norway 0.030 0.007 0.043 0.010

Sweden 0.037 0.008 0.032 0.007

Finland 0.029 0.007 0.035 0.008

Baltic States 0.041 0.009 0.040 0.009

Iceland 0.030 0.007 0.041 0.009
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terrain; measuring heights from 20 to 200 m), and found that the turbulence distri-

bution at one particular wind speed can be well approximated as being lognormal,

with distribution parameters M and S dependent on wind speed, height and terrain

roughness:

F (σ) = N

(
lnσ − M

S

)
(4.7)

The mean and standard deviation of the turbulence distribution are found with:

µσ = exp(M +
S2

2
) (4.8)

σσ = µσ

√
exp(S2) − 1 (4.9)

For offshore sites Vindeby and Gedser the suitability of the lognormal distribution

was confirmed by Larsen [121], and DNV found the same result for the Danish

coastal site Lammefjord [47, p34]. For heights that are relevant for wind turbines

(50–200 m) we find: M = 1.5–2.3 and S = 0.2–0.3 (≈ V ) for the representative wind

speed 15 m/s (consult Hansen [79] for detailed results). The question now is how

accurately we can predict the average turbulence intensity.

4.4.2 Estimation of average turbulence

To repeat, for flat uniform terrain the relation between turbulence intensity I at hub

height H and terrain roughness z0 is approximately:

I(H) =
1

ln(H/z0)
(4.10)

The terrain roughness may be found with equation (4.4). For offshore, Frandsen (in

IEC 61400-3 [94]) proposes the following. If we combine the well known friction

velocity equation:

U(H) =
u∗

κ
ln

H

z0
(4.11)

with the Charnock equation (Charnock [35]):

z0 = A
u2
∗

g
(4.12)

we get an implicit relation for the friction velocity u∗:

u∗ ln
gH

Au2
∗

= κU(H) (4.13)
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where A = 0.011 for coastal waters, κ ≈ 0.4, g = 9.81 m/s, and the wind speed

U(H) and hub height H are known. The mean turbulence σ is estimated with:

σ ≈ 2.5u∗ (4.14)

As approximation of the fatigue damage equivalent turbulence, the 90% fractile is

estimated by adding 1.3 times the standard deviation to the mean. If the standard IEC

value [93] for the standard deviation of the turbulence σσ is taken:

σ90% = 2.5u∗ + 1.3 × σσ (4.15)

Independent of wind speed, the value for σσ according to IEC 61400-1 is (in [m/s]):

σσ = 1.4 Iref (4.16)

Hence:

σ90% = 2.5u∗ + 1.3 × (1.4 Iref ) (4.17)

The constant Iref is the mean turbulence intensity at hub height at 15 m/s. The proce-

dure gives a reasonable estimate in a qualitative sense: in particular it correctly gives

increasing turbulence intensity at higher wind speeds over water. The only problem

is that the constant A is not very well known. Therefore, to estimate the mean turbu-

lence intensity at hub height I(H) (onshore or offshore) we combine equations (4.4)

and (4.10), which leads to a relation between turbulence intensity at hub height I(H)
and at (low) reference height I(zr):

I(H) =
I(zr)

1 + I(zr) ln(H/zr)
(4.18)

The results of this procedure are shown in figure 4.6 (next page), from which we see

that the average bias is +0.017 (we overestimate) and the standard deviation is σI =

0.008.

4.4.3 Influence on loads

If the turbulence distribution (conditional on wind speed) is known, it is possible to

make a load calculation for every combination of 10 minute wind speed and turbu-

lence. However it is more economical to use one representative value for the turbu-

lence, that ideally produces the same equivalent load range (or fatigue damage) as a

calculation with a large number of different turbulence values.

The first definition of representative turbulence we consider is the 90% fractile

value specified by IEC 61400-1. Because of the lognormal assumption and standard

deviation according to equation (4.16), the mean turbulence is:

µσ = Iref (0.75U + cµ) (4.19)
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Figure 4.6: Prediction of turbulence intensity at hub height. There are 8 sites of which 2

inland, 2 coastal, 3 offshore and 1 complex; prediction heights are between 60 and 116 m.

For the prediction of the turbulence intensity all wind speeds between 10 and 20 m/s (at 10

m height) were used. Source: Downey [48]. For all data see table D.7.

with Iref = 0.12, 0.14, 0.16 and cµ = 3.8 m/s. The 90% fractile representative

turbulence is:

σ90% = Iref (0.75U + c90%) (4.20)

with c90% = 5.6 m/s. The turbulence standard deviation is (5.6 – 3.8)/1.4 = 1.3 stan-

dard deviations above the mean µσ. The prescribed turbulence intensity I90% is:

I90% =
σ90%

U
=

Iref (0.75U + c90%)

U
(4.21)

The second definition of representative turbulence often used is the so-called equiv-

alent turbulence σ̂eq (we give it a hat because it is in fact an estimate of the exact

equivalent turbulence that would produce exactly the same loads as a full calculation

would do):

σ̂eq =




∞∫

0

σmf(σ)dσ




1/m

(4.22)
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where m is the exponent of the relevant component’s S-N curve, and f(σ) is the

marginal distribution of the turbulence. With the lognormal distribution according to

equation (4.7) one finds::

σ̂eq =

[
exp(mM +

1

2
m2S2

]1/m

= exp(M +
m

2
S2) (4.23)

The corresponding approximate equivalent load is:

∆̂F eq = ∆Feq(σ̂eq) (4.24)

The find out how conservative the two definitions of representative turbulence are,

we calculate the exact equivalent load. From load calculations it appears that in good

approximation the equivalent load range at a given wind speed varies linearly with

turbulence σ:

∆F eq(σ) = aσ + b (4.25)

This is so because the aerodynamic loads are (in first approximation) proportional to

the square of the relative wind speed Urel seen by a blade:

F ∝ U2
rel (4.26)

The relative speed can be written as a mean speed multiplied by one plus a fraction

s that is characteristic for the turbulence σ. Because most of the relative speed is

due to the speed of the blade itself (which is constant) and not to the wind speed, the

fraction s is small and:

F ∝ U2
rel = U

2
rel(1 + s)2 ≈ U

2
rel(1 + 2s) (4.27)

If equation (4.25) holds, the exact equivalent load ∆Feq,x at a given average wind

speed is:

∆Feq,x =




∞∫

0

f(σ)∆Fm
eq (σ)dσ




1/m

=




∞∫

0

f(σ)(aσ + b)mdσ




1/m

(4.28)

with f(σ) being the marginal turbulence distribution. This integral can be solved

analytically (appendix C.4). The corresponding exact equivalent turbulence based on

the load integral σeq that would have given ∆Feq,x is:

σeq =
∆Feq,x − b

a
(4.29)
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For wind turbine loads it turns out that the ratio between the correct calculation based

on loads and the approximate calculation based on turbulence is close to unity:

∆Feq,x

∆̂F eq

=

[
∞∫
0

f(σ)(aσ + b)mdσ

]1/m

a

[
∞∫
0

σmf(σ)dσ

]1/m

+ b

≈ 1 (4.30)

The ratio is exactly 1 if either a = 0 (loads independent of turbulence) or b = 0
(loads proportional to turbulence), but also if the turbulence distribution is narrow.

These conditions are satisfied for all wind speeds larger than 5 m/s.

In figures 4.7 and 4.8 it is seen that it is conservative to use equivalent turbulence

intensity (turbulence divided by mean wind speed); the largest deviations occur at low

wind speeds. Fortunately one does not need to worry about this, because almost all

turbulence dependent fatigue damage occurs for wind speeds between 10 and 20 m/s

(see table 4.13). In cases where there is significant fatigue damage for U < 10 m/s,

such as the blade root lead lag moment, the load is largely independent of turbulence,

so it does not matter much which turbulence value is used.

The IEC 90% turbulence intensity value is slightly conservative (approximately

0.01–0.02, say if the exact value is I = 0.15 the 90% fractile is I = 0.165). Again

the largest deviations from the correct approach occur at low wind speeds where no

fatigue damage is incurred (see table 4.13). A detailed calculation in appendix C.4

shows that equation (4.23) is a good estimator of the equivalent turbulence (conser-

vatism less than 0.01).

Table 4.13: Fatigue damage distributions over wind speed intervals [%].

IEC Class I slope m wind speed U [m/s]

<10 10–25 >25

Blade lead-lag moment Mx11r 12 21 79 0

Hub lead-lag moment Mx11h 8 25 75 0

Blade flap moment My11r 12 0 100 0

Hub flap moment My11h 8 2 98 0

Nacelle roll moment MxNr 8 12 88 0

Nacelle tilt moment MyNf 8 1 99 0

Nacelle yaw moment MzNf 8 0 100 0

Tower base side-side moment Mxt0 4 1 27 72

Tower base fore-aft moment Myt0 4 2 98 0
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bulence intensity Îeq with exact equivalent turbulence intensity Ieq,exact found with load

calculations. Wind regime IEC class A with Iref = 0.16.
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4.5 Wind field

4.5.1 Introduction

The IEC 61400-1 standard allows the use of different methods to generate turbulent

wind fields. The methods most commonly used are the Sandia method, developed

by Veers [218] (see appendix G.2) and the Mann method, developed by Mann [133,

134, 138] (see appendix G.5). Both methods go back on the work of Shinozuka and

Jan [190], who seem to have been the first to propose to write a random signal as a

sum of sinusoids with random amplitudes or random phase angles.

There is no doubt that the Veers method is the easiest. However objections raised

against this method are:

1. Wind speed components u and w are uncorrelated in the generated wind field

(while in reality they are).

2. There is no mass conservation.

3. The Navier-Stokes equations are not satisfied.

4. Coherence functions are not in the model, but must be introduced manually.
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Figure 4.9: Length scales for Kaimal spectrum found from wind speed measurements at

three different locations
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It was shown by Veldkamp [223] that problem 1. is unimportant: the Veers wind

fields can be modified to have the right (u, w) coherence (see appendix G.3). How-

ever loads resulting from wind fields having the correct (u, w) coherence are indis-

tinguishable from those resulting from zero coherence wind fields. This is perhaps

not surprising since the wind speed in u direction is by far the most important driver

for loads (80–90%).

It is not known how important problems 2, 3 and 4 are. Various load verifications

were done with Veers wind and Mann wind (within Vestas), but no consistent pattern

emerged.

Nevertheless, all four problems do not exist in the Mann method. Mass conserva-

tion and the (linearised) Navier Stokes equations are inherent parts of the method, and

all coherence functions are automatically generated, as well as the right turbulence

intensity ratios. The only input parameter for the program is a wind shear number.

The method can also be extended to include other boundary conditions, for example

with the requirement that vertical speed is zero at ground level.

A nice feature of the Veers method is its stepwise build up, which makes it

easy to incorporate measured (or otherwise prescribed) wind directly into the gen-

erated turbulence field (see appendix G.4 and Bierbooms and Veldkamp [14]). In the

Mann method the same things can be done, but involving more complex mathematics

(Nielsen [155]).

4.5.2 Spectrum

For open flat terrain the Kaimal spectrum in the IEC 61400-1 formulation is normally

used. The Kaimal spectrum is based on extensive measurements done by Kaimal

[98,99] in Kansas at 5.66, 11.3 and 22.6 m height over open terrain. The IEC equation

for the spectrum is (for the 3 directions k = u, v, w):

S(f)

σ2
k

=
4Lk/U

(1 + 6fLk/U)5/3
(4.31)

Here f is the frequency, Lk is a length scale, U is the average wind speed in wind

direction and σk is the turbulence. There is only one free parameter in the Kaimal

spectrum: the length scale Lk. For the most important spectrum (u, in the direction

of the wind speed U ) IEC 61400-1 prescribes that length scale Lk = Lu = 340 m be

used for heights above 60 m. Actually curve fits for measured spectra yield values

that are somewhat lower, at least for wind speeds up to 25 m/s (see figure 4.9).

It is difficult to find the length scale from a fit to a measured spectrum because

the value found is very dependent on the variance at low frequencies (where the

spectral density S(f) → 4Lk/U ), which in turn depends on the type of windowing

used, and whether or not the signal is detrended. The problem is solved here (to

some extent) by using the average of many unsmoothed spectra. In the Mann model

there are two adjustable parameters: a length scale LM and a shear parameter Γ.
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Of these, the length scale shifts the spectral energy to higher or lower frequencies,

while the shear parameter determines the spectral shape. If it is zero, the von Kármán

isotropic spectrum appears, and if it is set to 3.9, the Kaimal spectrum is recovered,

with –rather convincingly– the correct turbulence ratios for the three wind speed

components8. Mann [133] derived best fit values for a few sites and spectra (see

table 4.14). It is noted that the shear parameters found by Mann are less than the

value that is the best fit for the Kaimal spectrum (Γ = 3.9). This is probably due to

the fact that Kaimal’s measurements were done at small heights, where shear is more

pronounced than at current wind turbine hub heights (50–100 m).

A number of other authors have derived spectrum formulations: for example von

Kármán [101], ESDU [56–59], Morfiadakis [147], Smedman [192], Tieleman [213].

However all of these spectra have similar shapes, and may be approximated by the

Kaimal type spectrum with suitable length scale.

4.5.3 Coherence function

A disadvantage of the Veers method is the coherence function must be input indepen-

dently of the spectrum. This is not the case in the Mann method, where the coherence

functions appear automatically, and are always consistent. Mann found good corre-

spondence with measurements at the Great Belt [138]. Larsen and Hansen [122]

investigated a further 8 sites; on the basis of their data they derive an empirical model

for exponential decay, and they conclude that the Mann coherence is closest to their

measurements,

From the probabilistic perspective it is best to use Mann’s shear parameter as

stochastic variable, because it controls the spectral shape and the coherence functions

in a consistent way, taking into account the fact that they are correlated.

On the other hand the independence of spectral shape and coherence function

in the Veers method gives us the opportunity to investigate the influence of both

parameters (length scale and decay parameter) separately (should we want to).

8As a matter of fact, the dependence of turbulence ratios on the shear parameter Γ makes it possible

to estimate shear directly from the measured standard deviations (σu, σv, σw) without knowing the

spectra.

Table 4.14: Mann length scale and shear parameter for three different locations. The Kaimal

length scale is for the Kaimal spectrum that fits Mann’s best. Source: Mann [134]; length

scales derived by the author.

Site/spectrum character shear parameters Length scale [m]

Mann Kaimal

Great Belt offshore 3.2 61 510

Lamex coastal 2.6 42 270

Kaimal IEC open terrain 3.9 34 340
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4.5.4 Non-gaussian turbulence

Usually turbulence is taken to have a gaussian distribution within 1 to 60 minute

intervals. In reality turbulence is non-gaussian, and the question is to which extent

this invalidates load calculations.

Investigations by Nielsen [155] show that the gaussian assumption is correct to

approximately 2.5 standard deviations from the wind speed mean (99% of all prob-

ability mass). Nielsen [154] provides data for 8 different sites (10–80 m measuring

heights) and finds skewness values lower than 0.2 for all but one site, and kurtosis

values 3±0.3. So while the non-gaussian character may be a problem for the deter-

mination of extreme wind events, as far as fatigue is concerned the assumption is

probably justified.

Thomsen [208] compared loads on a ’gaussian’ and a ’non-gaussian’ site, and

found a small influence on fatigue loads. This is in contrast to Nielsen [154], who

claims that blade flap moments may go up by as much as 20%. Unfortunately he only

looked at operation at 12 m/s with a rather high turbulence intensity of I = 0.2.

While this matter certainly warrants further investigations, we set the matter aside

for now, at least for flat coastal and offshore sites. With a view to further investiga-

tions, information on how to generate non-gaussian wind fields may be found in

Yamazaki [238] and Nielsen [154, 155].

4.5.5 Modelling of uncertainty

As remarked before, the Mann model provides a consistent model of the wind field:

dependent on the shear parameter Γ and the length scale LM all coherence func-

tions are automatically generated, as well as the turbulence ratios in the three direc-

tions (u, v, w). The model is capable of generating a range of wind spectra from the

isotropic von Kármán spectrum (Γ = 0) to the Kaimal spectrum (Γ = 3.9); besides the

length scale may be varied to get even more flexibility. Thus it would be best to use

both Γ and LM as stochastic variables. However because there is not much informa-

tion on length scale we take a shortcut here. Both Γ and LM have more or less the

same influence on loads: they shift energy to higher or lower frequencies. Therefore

it is possible to use only the shear parameter Γ. For flat open terrain we take for the

distribution Γ = N(µ = 3.0, σ = 0.3). The length scale derived by Mann (LM = 34

m) is kept, which corresponds to the IEC length scales given by equation (3.5) (p35).

4.6 Wind shear

IEC 61400-1 assumes neutrality, and prescribes wind shear with a power law giving

the wind speed at height h as function of wind speed at hub height H:

U(h) =

(
h

H

)α

U(H) (4.32)
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with α = 0.2. This is just a curve fit, however for historical reasons it is still widely

used. The physically correct equation is equation (4.1). If we assume neutrality it

reduces to the now familiar:

U(h) =
ln(h/z0)

ln(H/z0)
U(H) (4.33)

If we want to make the two expressions equivalent in the sense that the wind shear

∂U/∂(h = H) has the same value in both equations, we have to set:

α =
1

ln(H/z0)
(4.34)

This gives us the possibility of estimating the power law exponent from the terrain

roughness z0, which may be estimated with Petersen’s classification method, or may

be found from the turbulence intensity measured at reference height zr (compare

section 4.4.2). We reapply equation (4.18) to get:

α(H) = I(H) =
I(zr)

1 + I(zr) ln(H/zr)
(4.35)

Downey [48] predicted wind shear at large (hub) heights using the procedure sketched

above; his results are given in table 4.15. Unfortunately it appears that wind shear

prediction on the basis of turbulence intensity has no added value. For lack of data,

the best recipe is in fact the simplest:

• For flat land sites set α = 0.2.

• For offshore sites set α = 0.1.

• For complex sites, set α = 0.0.

Table 4.15: Wind shear exponent predictions. Source: Downey [48]. See table D.7 for all

data. The exponent found from wind speeds at h1 and h2 is assumed to be the true one, which

is estimated using the roughness (found from turbulence intensity) and the reference height.

Site type h1 h2 hr z0 wind shear exponent [-]

[m] [m] [m] [m] α(h1, h2) α(hr, z0) error

Egmond offshore 70 116 21 9.1e-5 0.09 0.07 –0.01

Horns Rev offshore 45 62 15 5.8e-4 0.13 0.09 –0.04

Læsø offshore 45 62 15 2.3e-4 0.13 0.08 –0.05

Skipheia coastal 72 101 11 3.0e-3 0.12 0.10 –0.02

Tjæreborg coastal 60 90 30 6.9e-3 0.21 0.11 –0.11

Toboel pastoral 45 62 15 4.8e-2 0.20 0.14 –0.06

Cabauw pastoral 80 140 20 9.3e-3 0.16 0.10 –0.05

Oak Creek complex 65 79 10 2.8e-3 -0.02 0.10 0.12

Mean 0.13 0.10 –0.03

Standard deviation 0.07 0.02 0.07
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Figure 4.10: Wind shear exponent measured at Høvsøre (average over 10 minutes; H = 60

and 80 m; wind speed 10–25 m/s; N=13,751)

In all cases we set standard deviation σα = 0.02.

In some other research For Tjæreborg (open terrain on the coast with turbulence

intensity I = 0.02–0.10) the median value for the exponent was found to be α = 0.18

which is close to α = 0.2 (Veldkamp [223]). Measurements from Høvsøre (also on

the Danish west coast) show that very large wind shears may occur. Nevertheless the

median shear (most important for fatigue loads) is α = 0.16 (figure 4.10).

4.7 Air density

In the coastal areas of North Western Europe, yearly average density variations are

small, and air density and wind speed are uncorrelated. Therefore it is just a matter of

finding the correct density value. For some sites (for example in the USA) there are

considerable density variations over the year; however these can be accounted for by

(for example) running two sets of calculations at different densities and combining

results.
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4.8 Inflow angle

The rotor loads are dependent on the angle between wind speed and the normal on

the rotor plane. The total angle is (see figure 4.11):

α(t) =
√

(S(t) + T )2 + (W (t) − Y (t))2 (4.36)

From load calculations it appears that the equivalent loads are well described by linear

functions of the mean angles. Thus the wind direction may be set to W = 0, and we

may skip the dependence on time t. Equation (4.36) simplifies to:

α =
√

(S + T )2 + Y 2 (4.37)

The equivalent load range becomes:

∆Feq(α)

∆Feq(αd)
≈ 1 +

∂Feq

∂α

(α − αd)

∆Feq(αd)
(4.38)

where:

∆Feq equivalent load range [Nm]

S vertical inflow angle ≈ terrain slope [◦]

T rotor tilt [◦]

W wind direction (North = 0◦) [◦]

Y yaw angle (North = 0◦) [◦]

α total inflow angle [◦]

d design (e.g. class value)

As expected, some simulations showed that the equivalent rotor blade loads are al-

most only dependent on α, and that it does not matter whether the main contribution

comes from yaw errors or from terrain slope. To get enough tower clearance, the tilt

angle is usually set at 5◦. Turbines are put up on hill slopes that are 20–30◦; however

the inflow angles are usually much smaller: 0–10◦. Current yaw systems operate by

measuring misalignment on the nacelle. It seems unlikely that the yaw error can be

kept below 5◦, and an average error of 5–10◦ is probably realistic. Because IEC

61400 prescribes the terrain slope to be at least 8◦, a normal design angle is:

α =
√

(5 + 8)2 + 102 = 16.4 deg (4.39)

In this study we set rotor tilt T = 5◦; we assume that the slope S = 0 (constant) for

offshore and for flat terrain, and that it can be determined with an accuracy of ±3◦ in

complex terrain, which gives us a normal distribution with standard deviation 1◦:

S = N(µ = Sest, σ = 1◦) (4.40)

For the yaw error values of 5–10◦ have been reported, so we set:

Y = N(µ = 8◦, σ = 1◦) (4.41)

The values given above do not account for the occurrence of large coherent gusts and

changes of direction.
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Figure 4.11: Definition of wind direction, yaw angle, terrain slope and tilt.

4.9 Wake effects

When turbines are placed in a windfarm, it is inevitable that they will be in each

other’s wake part of the time, which results in increased loads. Much work, both

fundamental and practical, has been done on the development of the wake, on es-

timation of the speed deficit and on the added turbulence; an overview is given by

Vermeer [226]. Perhaps the easiest way of incorporating wake effects on loads is by

using artificial higher turbulence. This is the approach found in IEC 61400 [93] as

proposed by Frandsen [64]. It is a simple model that is calibrated against measure-

ments from a number of windfarms (see equations (3.11) and (3.12) (p38)).

The main objection to the equivalent turbulence approach is that it is too simple

to capture the relevant physics; changes in mean wind speed in the wake are not ac-

counted for, and hence predictions of extreme speeds will be off; also the different

shape of the wake turbulence spectrum compared to free stream conditions is ne-

glected. Furthermore the method was calibrated for flat smooth uniform terrain, and

it is unclear how well it will perform in more complex conditions.

Recently a new approach based on air pollution dispersion theory was published

by Thomsen [210–212]. First the wake of a wind turbine as function of the induc-

tion and the distance behind the rotor is found with a Navier-Stokes calculation (the

rotor is modeled as an actuator disk). Now the rotor is placed in a large turbulence

field; it is continuously ’shedding wakes’ which evolve according to the sequence of

precalculated shapes, as they get further from the rotor. Rotor and wakes are consid-

ered to be part of a large turbulence field, in which the wake is moving downwind

with the average wind speed. At every time step, the (fixed) wake has the lateral
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wind speed that is the integral of the turbulence field’s speeds over the wake circular

area. Integrating this average wake speed over one time step yields the new posi-

tion of the wake in the field. The result of this procedure is a meandering wake. The

method looks promising, for example the fact that no clear distinction is seen between

full wake and half wake operation is neatly explained; also there is good qualitative

agreement with measurements performed on turbines at the Tjæreborg test site. Veri-

fication is ongoing (see Mann [136], where it is shown that the wake indeed persists,

and meanders in fair agreement with predictions based on wind speed measurements

at the rotor).

According to Thomsen [210] the increased turbulence method seems to be good

enough for calculation of fatigue loads (notwithstanding its physical shortcomings);

Jørgensen [97] comes to the same conclusion in an evaluation of measurements from

Middelgrunden windfarm.

If we assume an average wind farm (square configuration with distance 5D and

uniformly distributed wind direction), then the additional turbulence is ca 0.02 ac-

cording to the Frandsen method. Therefore, for now it is assumed that the additional

turbulence intensity is lognormally distributed with mean µ = 0.02 and standard de-

viation σ = 0.01. The windfarm turbulence is added to the natural turbulence before

the turbulence dependent load ranges are estimated.

4.10 Complex terrain

As stated before, the assumptions underlying the estimates given above break down

in complex, mountainous terrain, where terrain slopes are larger than 20◦ and terrain

roughness is larger than z0 = 0.3 m (in fact the whole concept of ’obstacle’ loses

its meaning). In load calculations the usual strategy is to tinker with some input

parameters:

• The speed up for the wind at hub height and the wind shear are estimated with

rules based on experience or theoretical models (for example flow over 2D

hills).

• The inflow angle is determined on the basis of the terrain slope averaged over

a distance of 2–3 rotor diameters upwind.

• Adjusted (u, v, w) turbulence values are used because typically turbulence is

known to be more isotropic, i.e. it is more appropriate to use the von Kármán

spectrum instead of Kaimal’s (see Antoniou [5], Thomsen [206]).

The correct way to proceed would be to do wind speed measurements at hub height;

however tall meteo towers are expensive, especially if it one wants to measure at

more than one wind turbine location. A promising possibility is to use SODAR,

which avoids the necessity of a tower. Maeda [131] used this method to compare the

exact wind shear up to 100 m height with the estimates based on measurements at 20
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and 30 m only. His result show an average estimated exponent for all wind directions

α = 0.17 that is almost correct (the measured value was α = 0.18), but dependent on

wind direction there are errors that have standard deviation σα = 0.08. Here the worst

will be assumed, and values σα = 0.04–0.08 will be investigated.

Alternatively, wind speed estimates may be made using 2D or 3D Navier-Stokes

calculations of the flow, which is a good approach for prediction of wind speed-

height profiles, especially upstream of hills. Bitsuamlak [15] gives an overview;

see for example Eidsvik [54] for some specific calculations (the model HIRLAM in

combination with low altitude measurements is used to model the atmosphere at high

altitudes). Table 4.16 gives an indication of errors in such calculations; wind tunnel

measurements on sinusoidal 2D hills were compared to Navier-Stokes calculations

and to predictions from the National Building Code of Canada (NBCC).

Nielsen [156] published an overview of 20 case studies where windfarm outputs

were predicted on the basis of local wind measurements. Energy production in com-

plex terrain may be off by as much as 50% (Portugal), which translates to ca 15%

wind speed error. However it is difficult to judge results because apparently no strict

protocol was used to ensure that only data that were known a priori were used for

predictions.

Since the NBCC results from table 4.16 probably give a fair impression of the state

of the art, a wind speed coefficient of variation VU = 0.20 will be investigated (the

worst case).

In mountainous terrain exceptional extreme conditions may also occur. Examples

were found in reports of measurements that were done in connection with siting of

wind turbines at complex sites:

• High turbulence intensity: Lausen [125].

• Non-gaussian turbulence: Mann [137].

• Large horizontal wind shear (wind direction shear): Hansen [81].

• Large vertical wind shear: Brandt Christensen [25], Courtney [42], Hansen

Table 4.16: Normalised speed up ratio predictions 40 m over hill crests for sinusoidal 2D

hills. Values are compared to wind tunnel measurements (measured wind tunnel value = 1).

Source: Bitsuamlak [15, figure 9].

shallow hill, H/B = 1/8 steep hill, H/B = 1/4

CFD NBCC CFD NBCC

single hill 0.86 1.05 1.07 1.17

hill 1 0.95 1.10 1.16 1.26

hill 2 1.03 1.24 1.20 1.60

hill 3 1.00 1.26 0.97 1.39

Average 0.96 1.16 1.10 1.36

Coefficient of variation 0.07 0.11 0.10 0.19
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[80], Lausen [125], Nielsen [153].

Judging by the number of references, of the extreme conditions wind shear seems

to be occurring most often. However although (repeated) extreme conditions may

cause difficulties for wind turbines, it is not clear that average fatigue conditions are

significantly worse than on site where the wind is more well behaved.

In this work focus is on getting an impression of how additional uncertainty of the

wind climate in complex terrain affects failure probability, rather than finding exact

values. Based on the available information, distributions are adjusted as follows:

• Standard deviation on wind speed at hub height, wind shear exponent and tur-

bulence intensity are increased.

• More isotropic turbulence is assumed, which corresponds to reducing Mann’s

shear parameter.

The modified distributions are summarised in table 4.17.

Table 4.17: Adjusted mean and standard deviation for complex terrain

parameter FSU terrain Complex terrain

mean std.dev mean std.dev.

wind speed [m/s] Uavg 0.07 Uavg Uavg 0.20 Uavg

turbulence intensity [-] 0.16 0.01 0.16 0.02

wind shear exponent [-] 0.2 0.02 0.1 0.08

Mann’s shear parameter [-] 3 0.3 1 0.6



Chapter 5

Sea

5.1 Introduction

If a turbine is placed in an offshore environment, the set of wind conditions described

in the previous chapter needs to be extended with sea conditions, for estimating com-

bined wind and wave loads. For fatigue, waves are most important: currents and tides

have only minor influence on loads. Suppose that we wanted to do a full calculation,

then we could describe the environmental conditions with sets of five parameters for

each 3-hour period:

• Wind speed.

• Wind direction.

• Significant wave height.

• Zero crossing period (or peak period).

• Wave direction.

We would then lump 3-hour periods with identical conditions together, which would

result in a reduced number of different combinations, each having some frequency of

occurrence. While these five are the most important parameters, there are a few more

things that have to be considered:

• The shape of the wave spectrum, mainly the peak enhancement factor γ and

the peak period Tp (or the zero crossing period Tz).

• The drag coefficient CD.

• The inertia coefficient CM .

• The wave kinematic model.

We will consider these items in the following sections.

81
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5.2 Lumping of load cases

It is not very practical (and not necessary) to do a separate calculation for each 5-

parameter set. Instead parameter sets are lumped into a small number of relevant

combinations, according to some simple (and uncontroversial) rules. The first thing

to do is to sort significant wave height-zero crossing period combinations into wind

speed bins; then the equivalent significant wave height and zero crossing period are

computed according to equations (3.14) and (3.15) (p39). The method to get a fatigue

damage equivalent significant wave height is analogous to what was done to include

the effect of wind turbine wakes (equation (3.11), see also appendix C). Kühn [115]

showed that this method works with negligible loss of accuracy in equivalent loads1.

Moreover it appears that if the real wind direction distribution is used, for each wind

direction all wave directions may be combined into one. Either co-directionality may

be assumed, or some fixed error, typically between 10◦and 20◦misalignment. Thus it

turns out that the lumping issue does not present a problem.

5.2.1 Estimation of significant wave height

When an offshore wind farm is planned for some site, it is possible that no metocean

data are available just there. Then it will be necessary to use data from some other

site close by. Cerda Salzmann [33] looked into this matter for the North Sea, and

found rather small differences in estimated fatigue damage and equivalent load (see

table 5.1). Moreover, for the whole of the North Sea there is an extensive database

(NESS/NEXT, see Peters [166]), so we may consider the long term sea parameters to

be known.

1This was confirmed in work done by Garrad Hassan for the IEC working group that prepared the

wind turbine offshore standard IEC 61400-3.

Table 5.1: Calculated relative fatigue damage and equivalent load at the mudline using wave

data from different sources. Source: Cerda Salzmann [33].

source data type water distance relative relative

depth to shore fatigue equivalent

damage load (m=4)

[m] [km] (Ness/Next=1) (Ness/Next=1)

Argoss N53o satellite 23 66 0.98 0.99

Argoss N52o satellite 20 19 0.77 0.94

IJmuiden MS waverider + 21 37 1.07 1.02

anemometer

MP Noordwijk step gauge + 18 9 0.68 0.91

anemometer

Ness/Next [166] hindcast 19 16 1.00 1.00
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Figure 5.1: Three hour average significant wave height as function of wind speed

(NESS/NEXT database, grid point NL-1)

5.2.2 Yearly variation of significant wave height

From 32 years of NESS/NEXT data (1972-1995) for a grid point close to the first

Dutch windfarm, it appears that the yearly average significant wave height has mean

µ = 1.27 m and standard deviation σ = 0.12 m.2 For the same period, the wind speed

distribution at 10 m over the water surface is described by a Weibull distribution with

average wind speed Uavg = 8.1 m/s and shape factor k = 2. The best fit for the relation

between 3 hour mean values of wind and significant wave height is (Hs,3h in [m] and

U10 in [m/s]):

Hs,3h = 0.0059 U2
10 + 0.0955 U10 (r2 = 0.82) (5.1)

This relation is shown in figure 5.1. For the yearly averages the relation is (Hs,1 year

in [m] and U10,1 year in [m/s]):

Hs,1 year = 0.22 U10,1 year − 0.5 (r2 = 0.94) (5.2)

2In fact, the distribution is well described as being lognormal (median M = 1.27, V ≈ S = 0.12):

F (Hs) = N

(
ln Hs − ln M

S

)
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Figure 5.2: Yearly average significant wave height as function of yearly average wind speed

(from NESS/NEXT database, grid point NL-1)

which is shown in figure 5.2. It is easily verified that the two equations are consistent

with each other if the yearly wind speed distribution is Weibull shaped.

Because wind and significant wave height are closely correlated, we may estab-

lish the sensitivity of wind turbine loads to the combined effects of wind speed and

waves by first doing calculations where the significant wave height is given as func-

tion of wind speed by equation (5.1), and then varying the frequencies of occurrence

of the different load cases to simulate change in wind speed.

5.3 Wave spectrum

Given the wave data that are available, it is often possible to use the wave spectrum

obtained from measurements and hindcast data instead of a synthetic spectrum. How-

ever the severity of the wave loads is mainly determined by the total energy in the

spectrum (i.e. by the significant wave height) and the frequency where most energy

is in relation to the resonance frequency of the structure. Therefore there is no big

problem in using synthetic spectra, even though they may deviate somewhat from the

actual spectrum. The wave spectrum most used is the one sided Jonswap spectrum,



5.3 Wave spectrum 85

0

10

20

30

40

50

0.05 0.10 0.15 0.20 0.25 0.30

Frequency [Hz]

S
(f

) 
[m

²/
s

]

Pierson-M Pierson-M + TMA Jonswap g=3.3 Jonswap g=3.3 + TMA

Figure 5.3: Pierson-Moskowitz and Jonswap spectra, original and with TMA correction.

Significant wave height Hs = 5 m, peak frequency 0.1 Hz.

given by:

SJ(f) = γα(1 − 0.287 ln γ) SPM (f)

= γα(1 − 0.287 ln γ)
5

16

H2
s f5

T 4
p

exp

(
−5

4

(
fp

f

)4
)

(5.3)

With:

α = exp

(
−1

2

(
f − fp

σfp

)2
)

σ = 0.07 for f ≤ fp

σ = 0.09 for f > fp
(5.4)

Where:

f frequency [Hz]

fp spectrum peak frequency [Hz]

Hs significant wave height [m]

SJ Jonswap spectral density [m2/Hz]

SPM Pierson-Moskowitz spectral density [m2/Hz]

Tp peak period [s]
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Figure 5.4: Peak period as function of significant wave height. Data for Munitiestortplaats

IJmuiden, 1990, 1993–95. Data kindly supplied by Rijkswaterstaat (RIKZ).

α exponent [-]

γ peak parameter [-]

σ help parameter [-]

The advantage of this spectrum is that it can be ’tuned’ to any sea state with the

peak enhancement factor γ, while the Pierson-Moskowitz spectrum is meant for fully

developed waves. Additionally the TMA correction may be applied (Van der Tem-

pel [224]). Thus almost any wave climate can be approximated with a synthetic spec-

trum; see figure 5.3 (previous page) for some examples of spectra. The zero crossing

period Tz or the peak period Tp is usually known as function of significant wave

height Hs and can be described with a simple function (see figure 5.4). From this the

peak frequency may be established (fp = 1/Tp). If the significant wave height and

the peak frequency are known, it remains to fix the peak enhancement factor γ. An

estimation formula is given by DNV [47]:

γ = exp

(
5.75 − 1.15

Tp√
Hs

)
3.6 ≤ Tp√

Hs
≤ 5 (5.5)

In figure 5.5 it is seen that the formula somewhat overestimates the peak enhancement

factor found from curve fitting measured spectra.
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Figure 5.5: Peak enhancement factor γ as function of significant wave height. Data for Mu-

nitiestortplaats IJmuiden, 1990, 1993–95. Data kindly supplied by Rijkswaterstaat (RIKZ).

Still the conclusion of this section is that we do not need to introduce extra uncertainty

for the waves, since they are correlated to wind, and various stochastic parameters are

as well known as we care to determine them.

5.4 Wave kinematics

For the calculation of fatigue load on structures in the water, 2-dimensional linear

(Airy) waves are assumed, like those in a very deep, narrow wave tank. The right

combination of waves of different height is created by summing sinusoids of different

frequencies of which the amplitudes are dictated by the wave spectrum. Assuming

linearity admits simple hyperbolic solutions of the speed and acceleration profile; the

profiles from the bottom up to the still water level are stretched (or compressed) to the

actual water level including elevation (see for example Wheeler [234]). If we purely

look at the kinematics of the water, there are four possible problems associated with

the approach:

• If not enough different waves are superposed, statistical properties of (groups

of) waves may be off (section 5.4.1).
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• If the water is not deep enough (compared to wave height) real waves cannot be

approximated by linear ones, and speeds and accelerations are different from

those in first order waves (section 5.4.2).

• Waves are not 2-dimensional, the real wave field is 3-dimensional and has

waves running in different directions.

• If the structure is large compared to the length of a wave it may no longer

be regarded as a vertical line; the structure will change the wave kinematics

(section 5.5).

5.4.1 Wave field generation

Random Airy waves (first order sinusoidal waves) are generated according to the

appropriate wave spectrum, and then superposed. The procedure is analogous to

wind field generation (see appendix G); the advantages of the method are simplicity

and speed. It can easily be extended to generation of waves at multiple points in

space (by phase shifting in the frequency domain) or to 3-dimensional waves (see

Mittendorf [146]).

Tucker [216] cautions against using the fixed amplitude-random phase method

because this would lead to the wrong ’groupiness’ of waves (statistical properties of

wave groups). However according to Elgar [55] there is no problem if enough si-

nusoidal components are used; alternatively the random gaussian amplitude method

may be employed. In the author’s experience there is no problem with today’s com-

puters to use a sufficient number of frequencies for generating waves3.

5.4.2 Wave kinematics

The first order calculation with profile stretching is adequate for deep water waves,

where the wave height-depth ratio H/d ≤ 0.2, but the wave kinematics are not

right for higher waves (see Gudmestad [75] for an overview of the merits of var-

ious stretching methods). It is possible to do efficient second order correction for

random waves, which makes the wave kinematics right up to H/d ≃ 0.3 (see Sand

and Mansard [140, 180], Duncan [49] and Van der Tempel [224]), but this procedure

cannot be practically extended to higher order corrections. The surface elevation may

reasonably be predicted with this sort of correction, but in more extreme cases it is not

accurate enough to find correct speeds and acceleration at the varying water surface,

Alternatives that avoid the kinematics problem are random wave fields created in

a numerical wave tank described by Clauss [38] and Steinhagen [201], and the use

of Boussinesq waves, reported by Madsen [130] and Correa Bomholt Pedersen [39].

Both methods are feasible with currently available computing power, so the question

3In the author’s opinion there is no evidence for special group properties of waves. If enough

frequencies are used in wave field generation, statistical properties will be right.
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which error is introduced by using linear wave kinematics will probably become less

important in the near future.

However state-of-the-art is still first order waves. While speed and acceleration

errors are non-negligible in extreme waves, by nature fatigue waves are smaller (in

relation to depth), which makes it likely that simple models are enough for our needs.

The matter was investigated by van der Tempel and Veldkamp [224] for 70 m

hub height and 15 m water depth; they found small differences in equivalent loads

(see table 5.2). Trumars [215] looked at 80 m hub height and 20 m water depth, and

found that with nonlinear waves fatigue damage is 7% higher with a 1-slope curve

(m = 3) and 51% higher with a 2-slope curve according to Eurocode 3 (m1 = 3, m2

= 5). If this is converted to stress the numbers are 2% (conversion with m = 3) and

11% (conversion with m = 4). At present the best estimate seems to apply a bias of

1.05 (i.e. actual loads are 5% larger than calculated) and standard deviation σ = 0.02.

5.5 Drag and inertia coefficient

If wave speed and acceleration are known, the force on a stationary cylinder cross

section f(z) is obtained with Morison’s equation:

f(z) = CD
ρ

2
U |U |D(z) + CMρU̇

π

4
D(z)2 (5.6)

where:

CD drag coefficient [-]

CM inertia coefficient [-]

f(z) force at height z [N/m]

U wave particle speed (perpendicular to cylinder) [m/s]

Table 5.2: Equivalent fatigue load ranges (bending moments, Wöhler exponent m = 4) for a

92 m, 2750 kW wind turbine on a 70 m tower + monopile (f0 = 0.30 Hz) in 15 m water depth.

Average wind speed 9.6 m/s, omnidirectional loads with measured wind speed and direction

distribution and wind/wave collinearity. Source: Van der Tempel and Veldkamp [224].

Equivalent load range [%] 1st order 2nd order Nonlinear

SWL+10 m

North-South 100 105 101

East-West 100 105 111

SWL

North-South 100 105 102

East-West 100 105 112

SWL-15 m

North-South 100 104 102

East-West 100 105 112
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z height [m]

U̇ wave particle acceleration (perpendicular to cylinder) [m/s2]

ρ water density [kg/m3]

The equation works reasonably well, also for inclined cylinders (canonical values

used are CD = 0.7, CM = 2 and ρ = 1030 kg/m3). Nevertheless there is some difficulty

in finding forces with precision.

Firstly this is because of difficulties with kinematics which were discussed in

section 5.4.2.

Secondly there is the fact that dimensions of the structure are not (always) small

compared to wave length. For the important special case of a cylinder in linear waves

there is an analytical solution according to MacCamy-Fuchs diffraction theory, which

gives a correction on the inertia coefficient and phase angle of the acceleration. The

MacCamy-Fuchs corrected theoretical inertia coefficient C ′
M is given by:

C ′
M =

16

πk2D2

√
[J ′

1(kD/2)]2 + [Y ′
1(kD/2)]2

(5.7)

and the phase lag of the particle acceleration is:

α = arctan
J ′

1(kD/2)

Y ′
1(kD/2)

(5.8)

where:

C ′
M MacCamy-Fuchs corrected inertia coefficient [-]

D cylinder diameter [m]

J ′
1 derivative of Bessel function J1 [-]

k wave number [1/m]

Y ′
1 derivative of Bessel function Y1 [-]

α particle acceleration phase lag [rad]

Effectively the correction works as a low pass filter: high frequency accelerations are

’damped’. Table 5.3 gives some numbers; the correction results in loads that are ca

10% smaller.

Thirdly there is the difficulty of establishing correct values for the drag and the

inertia coefficient. Even in the laboratory there is large variation in individual mea-

sured values, see for example Høgedal [91], Shafiee-Far [188]: values depend on the

Reynolds and the Keulegan-Carpenter number and on cylinder roughness. Typical

variation on individual measurements is 0.5 ≤ CD ≤ 1.0 and 1.0 ≤ CM ≤ 2.0.

However for fatigue applications there is much averaging and therefore one can live

with the constant value approach.

An example of an experiment particularly relevant for us is the Christchurch com-

pliant cylinder experiment, described by Burrows [29] and Najafian [150]. In this
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experiment force measurements were done on a 12 m long 480 mm diameter smooth

cylinder in random seas. The authors present values for CD and CM as function of

the Keulegan-Carpenter number Kc and Reynolds Re for random waves4:

Kc =
2π

√
2

D

u2
rms

σu̇
(5.9)

Re =

√
2urmsD

ν
(ν = 1.43 × 10−6 m2/s) (5.10)

where:

D monopile diameter [m]

Kc Keulegan-Carpenter number [-]

Re Reynolds number [-]

urms root mean square value of wave particle speed [m/s]

σu̇ standard deviation of wave particle acceleration [m/s2]

ν water kinematic viscosity = 1.43 × 10−6 [m2/s]

In the tests Kc = 0–20 which means that loads are inertia dominated, just like in

the case of wind turbine monopiles. The main finding is that the method of using

average values in Morison’s equation works well, although there is large variation in

individual force measurements. If least squares coefficient values for a run are reused

to predict forces, correlations are better then 97% (Burrows [29, figure 3]). Moreover

no significant improvement is possible with more complicated formulations (for ex-

ample with time dependent coefficients). The dominance of inertia is confirmed by

4For one sinusoidal wave with period T , Keulegan-Carpenter and Reynolds reduce to:

Kc =
umaxT

D
Re =

umaxD

ν

Table 5.3: Equivalent fatigue load ranges (bending moments, Wöhler exponent m = 4) for a

92 m, 2750 kW wind turbine on a 70 m tower + 4.6 m diameter monopile (f0 = 0.30 Hz) in 20

m water depth. Average wind speed 10 m/s (IEC class I), uniform wind direction distribution

with wind/wave collinearity.

Equivalent load range [%] normal MacCamy-Fuchs

location 1st order 2nd order 1st order 2nd order

SWL + 68 m 100 100 97 97

SWL + 38 m 100 97 84 85

SWL + 13 m 100 97 84 85

SWL 100 97 84 85

SWL – 10 m 100 98 89 91

SWL – 20 m 100 100 93 95
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some calculations (see table 5.4). It is remarkable that the loads all along the tower

up to the yaw system are influenced by the wave inertia loads. Paradoxically loads

decrease slightly at larger CD-values, this could be because drag forces are out of

phase with inertia forces, and provide some damping. For a turbine with D = 4.6 m

typical values are (at 16 m/s) Kc = 0.75 and Re = 3.2×106. For this low Kc-value

the inertia coefficient is close to CM = 2. The value found for the drag coefficient

is CD = 0.8 for Kc = 17 (however the loads are totally inertia dominated (see table

5.4), so the exact value drag coefficient is not of concern). Unfortunately, since both

the experiment and actual monopiles are in real waves our Re is off by a decade,

possibly making the CM -value invalid.

Probably the best is to stick with the standards, such as API [76] (CD = 0.6–1.2,

CM = 1.3–2.0), ISO [95] and IEC [94]; in the latter standard there are also prescrip-

tions on how to increase coefficients to take care of attachments such as ladders and

J-tubes, and marine growth.

For the probabilistic calculations we assume that the correct values are known,

and that the standard deviation is 0.1, which gives us a range 0.6 for both coefficients:

CD = N(µ = 0.9, σ = 0.1) and CM = N(µ = 2.0, σ = 0.1). The mean values of

the distributions are the values according to Burrows [29] for the Keulegan-Carpenter

numbers representative for fatigue conditions.

Table 5.4: Equivalent fatigue load ranges for different values of the drag coefficient (bending

moments, Wöhler exponent m = 4) for a 92 m, 2750 kW wind turbine on a 70 m tower + 4.6

m diameter monopile (f0 = 0.30 Hz) in 20 m water depth. Average wind speed 10 m/s (IEC

class I), uniform wind direction distribution with wind/wave collinearity.

location CD = 0.0 CD = 0.5 CD = 0.95 CD = 1.5

CM = 2.15

SWL + 68 m 100 100 100 100

SWL + 38 m 101 100 100 99

SWL + 13 m 101 100 100 99

SWL 101 100 100 99

SWL – 10 m 101 100 100 99

SWL – 20 m 101 100 100 99

CM = 1.0 CM = 1.5 CM = 2.0 CM = 2.5

CD = 0.95

SWL + 68 m 96 98 100 104

SWL + 38 m 69 81 100 124

SWL + 13 m 68 80 100 125

SWL 68 80 100 124

SWL – 10 m 67 80 100 122

SWL – 20 m 64 79 100 123
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5.6 Tide

The influence of the tide is predictable and incorporated according to formula (3.16).

Let us check whether this approach is correct.

We would like to replace the changing sea level d(t) by a constant equivalent

level deq, which gives us the same fatigue damage equivalent bending moment at the

mudline. Let us make a couple of simplifying assumptions:

• The monopile has a constant diameter.

• Waves do not change with a change in water level.

• The wave force profile from the mudline (0) to the waterline (d) is only stretched.

For some water level d, the fatigue load range (equivalent bending moment) ∆Meq,0

is found by integrating the cross sectional load f(z):

∆Meq,0 =

d∫

0

f(z) z dz (5.11)

If the still water level changes from d to d′, then we have the corresponding integral:

∆M ′
eq,0 =

d′∫

0

f(z
d

d′
) z dz (5.12)

If we set z′ = z d/d′ then z = z′ d′/d and we find:

∆M ′
eq,0 =

d∫

0

f(z′)

(
z′

d′

d

)
d

(
z
d′

d

)
= ∆Meq,0

(
d′

d

)2

(5.13)

This immediately proves equation (3.16) (repeated here):

deq =


 1

T

∫

T

[d(t)]2mdt




1/(2m)

(5.14)

5.7 Current

The influence of current on fatigue is negligible, because current speeds are typically

below 1 m/s, while particle speeds in waves may be as high as 5-10 m/s. Current

practice is to simply add the current speed to the particle speed, which is accurate

enough.
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Chapter 6

Aerodynamics and wind turbine

6.1 Introduction

In this chapter the errors introduced by using blade element-momentum theory are

discussed, as well as some uncertainties that are created because we have to model

the turbine as a simple idealised structure in our calculations. First the aerodynamics

are treated, and then the wind turbine structure.

6.2 Blade element momentum method

Most aerodynamic load calculations are done with the blade element-momentum

method (BEM), a method that assumes that independent annuli of air go through the

rotor, and that forces on a blade element may be found from relative local wind speed

and blade lift and drag coefficients (usually obtained from two dimensional wind tun-

nel experiments). For reviews of BEM, see Leishman [127], Rasmussen [174] and

Snel [193] (also other methods). All authors express the view that BEM overlooks

important aspects of the flow through a wind turbine rotor, and is especially wrong

when the rotor is in oblique flow. Be that as it may, BEM is the only method quick

enough to do the hundreds of calculations that are now customary, and in fact it man-

ages to reproduce complex real phenomena remarkably well, such as for example

edgewise instability of rotor blades. The main problems of BEM are to a large ex-

tent cured by engineering corrections; furthermore calculations are normally checked

against measurements. Key assumptions underlying BEM are discussed below.

Flow through rotor. It is assumed that only flow perpendicular to the blade axis

contributes to blade forces: in the calculations there is no radial flow along the blade

(while in reality there is). To some extent the effects of radial flow (also in oblique

inflow) may be simulated by modifying the 2D lift and drag coefficient (see below).

Lift and drag. Wind tunnel values from 2D experiments are used, for profiles

with ideal geometry. It is known that there are 3D effects in reality due to radial flow,

95
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and deviations from the ideal geometry due to errors in the manufacturing process:

especially the geometry of the leading edge is important as it influences the flow along

the rest of the chord (for an interesting example, see Corten [41]). Some corrections

on the 2D data have been proposed (Bak [6], Corten [40], Snel [193]), but (to the

author’s knowledge) there are no convincing improvements that always work. Hence

’tuning’ of profile data is done to fit the measured power curve and the measured flap

load ranges. Tuning becomes difficult if devices such as vortex generators or stall

strips are used. Recently a new method was presented to modify the coefficients with

a method that uses a fictitious angle of attack, based on Navier-Stokes calculations

(Wen Zhong Shen [189]).

Dynamic wake. The rotor takes energy out of the wind, and thus the axial wind

speeds behind the rotor are smaller than in front. Also rotation is introduced into the

flow by the reaction forces of the rotor on the air. It appears that, in good approxima-

tion, the speeds seen by the blades are the vectorial average of wind speed before and

after the rotor plane: hence they can be found by subtracting half the difference (the

induced wind speed) from the sum of wind speed before the rotor and blade element

speed. This seems to pose a problem: how can the speeds after the rotor be estab-

lished if the amount of energy taken out by the rotor (which influences the wind speed

after the rotor) has not been found yet? For equilibrium conditions the problem can

be solved by iteration; for transient states the inertia of the wake saves the day. Since

it takes time for the wake to change, the wake situation of the previous time step may

be used for the blade force calculations at the present. Unfortunately the speed of

wake change cannot be found from BEM, and thus some numbers (time constants)

are used that fit measurements and calculations with more advanced methods. Sensi-

tivity analyses with wakes with different time constants have shown that the influence

on loads is small, as soon as some delay (more than 0 seconds) is introduced. See

Snel [194] for further information.

Dynamic stall. For common blade profiles, the blade lift coefficient has an easy-

to-measure stable value up to an angle of attack of ca 25 deg, and for angles of attack

between ca 40 and 180 deg (the exact angle values depend on the profile shape). In

between, two instable situations are possible, with high lift (attached flow) or with

low lift (separated flow). It was found that the situation is reasonably well described

by a time constant governed model that changes the lift coefficient smoothly from

separated to unseparated and vice versa: Øye’s model [165]. Other similar models

are the Beddoes-Leishman model [127] and the Risø fgh-model (Snel [193]). All

these models are engineering models with tuning parameters. Fortunately (as far

as this problem is concerned), at present the trend is towards pitch-variable speed

turbines, where the matter is less important, because operation is mostly at small

angle of attack. The unfortunate side of this is that there is no incentive any more to

solve this flow problem.

Tip and root correction. The Prandtl model is used to take into account flow

around the blade tip and root from the high to the low pressure side (see Burton [30]).
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Oblique inflow. In oblique inflow BEM is not valid. In spite of this, BEM is still

capable of predicting loads with (according to some) surprising accuracy. Again an

engineering model is used, that produces increased wind speed on the upwind rotor

part, and decreased wind speed on the rotor downwind part (one model goes back to

Glauert (1935), see Snel [194] for details and further references). As a matter of fact,

the fact that modelling of oblique inflow is incorrect is not very important for fatigue

calculations, because wind turbines are not supposed to operate in situations with

large inflow angles: the loads become too big (it is important for extreme loading

though).

Tower shadow. For upwind rotors and cylindrical (possibly conical) towers the

potential flow model is assumed to be valid (see for example Burton [30]). Investiga-

tions have shown that this model is conservative (Björck [16], Graham [73]); however

for normal blade tower clearance (1–2 times the tower diameter) the effect is small.

For downwind rotors an empirical expression is used.

6.3 Resulting distribution for BEM uncertainty

Wind turbines are designed using experience with previous models. For example the

same blade profiles are used as before, or corrections on profile data are employed

that are known to have worked on previous blades. In any case load calculations are

always verified by measurements, which means that the shortcomings of the blade

element-momentum theory are not such a serious problem at they appear to be at first

sight.

In the author’s view the main problematic area is the effect of radial flow and its

influence on the lift coefficient; since lift is the main driver for blade loads, blade

root flap moments and tower base bending moments are affected. Thus the amount

of flapping of a blade and the aerodynamic damping of the whole rotor (influencing

tower loads) are usually miscalculated to some degree. Measurements are therefore

essential; however if they are available, measured loads can be fairly well reproduced

if the inflow angle is not too large (sometimes except for the bending moment in the

tower base). Typical data from a load verification are given in figures 6.1 and 6.2

(next page). For individual 10 minute load cases there are considerable differences

(circles, R2 ≈ 0.7); however if results are averaged in 1 m/s wind speed bins the

scatter almost disappears (dots, R2 > 0.9). The reason for the scatter is that loads are

to a large extent determined by the high frequency content of the turbulence at the

rotor, which cannot be predicted from the high frequency content at the measuring

mast ca 250 m upwind. If only load cases are selected where the wind direction is

close to 270 deg (so the rotor sees the measured wind) scatter is hardly reduced; not

even if the measured wind in multiple points is used to generate a constrained wind

field for the load calculation (see Bierbooms [14]).

Because the error is not determined by the accuracy of the load calculations (re-
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Figure 6.1: Comparison of measured and calculated equivalent blade root flap moment range

for 500 10-minute periods (Vestas V90-3 MW). Normalised values, exponent m = 12)

sults converge to the right value if enough cases are considered), the important factor

becomes the bias, which is maximally ∼10%, and hence the coefficient of variation

may be set to V = 0.03 (otherwise more tuning would be done). To establish what

the beneficial effect of load verification and tuning is, we consider the case where no

measured loads are available. Recently a blind experiment was done in which many

institutes tried to predict loads that were measured on a 10 m diameter wind turbine

in the NASA Ames 24×36 m2 wind tunnel (Simms [191], Schreck [184]). Before

the experiment, participants only received geometrical data of the turbine, and 2D

profile data measured in a wind tunnel. Measured results were not revealed until load

predictions had been completed.

While the best predictor was the EllipSys3D CFD-code (Sørensen [200]), of most

interest to us is the performance of BEM-codes that participated. Unfortunately, it

is difficult to judge the results, firstly because some results are so far off that they

almost must be due to gross errors, and secondly because all results are average loads

(not load ranges) in constant flow without turbulence. Main shaft torque predictions

range from 50 to 150% of the true value and blade bending moment predictions from

70 to 130%. We assume here that the coefficient of variation on equivalent fatigue

loads due to inaccurate aerodynamic modelling is V = 0.10–0.15.
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Figure 6.2: Comparison of measured and calculated equivalent tower base fore-aft moment

range for 500 10-minute periods (Vestas V90-3 MW, normalised values, exponent m = 4)

6.4 Control system

In pitch controlled variable speed wind turbines, the control system keeps the power

and rotor speed within bounds. Electrical converters can handle generator speed in-

tervals of 700–1300 rpm, therefore the usual control strategy is (numbers are just

examples):

• At wind speeds below 8 m/s or so, maintain generator constant speed at 800

rpm; power varies with wind speed.

• At wind speeds between 8 and 14 m/s, keep constant tip speed ratio (but within

the interval 800–1100 rpm); speed and power vary with wind speed.

• At wind speeds over 14 m/s, keep constant speed (1100 rpm) and constant

power.

This is just the basic recipe; in fact it does not work that well if it is not improved with

some special measures to take care of the transitions from one state to another, and to

avoid drive train oscillations. Manufacturers are beginning to realise the possibilities

of control systems: the ultimate goal is to keep remove all blade and tower load vari-

ations due to turbulence and oblique inflow, while still obtaining maximum energy

output (see for example Bossanyi [20–22] for overviews - but there is an entire field

devoted to the subject). Things that can be done to get nearer to that goal are to use
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blade pitch control (and to a lesser degree generator torque control) to:

• Damp tower vibrations in fore-aft and side-side direction.

• Nullify the effect of wind shear and wind directions variations (this is usually

called cyclic pitching because all blades make a sinusoidal pitch motion with

120 deg phase shift).

• Keep blade loads completely constant over a revolution by using individual

pitch control, where blade pitch angle depends on root flap moment, or on 3/4

span angle of attack.

All this means that loads will become less dependent on site parameters and that con-

siderable load reductions may be reached; on the other hand one gets increasingly

dependent on correct controller tuning, which is a tricky thing because of many dif-

ferent (undamped) eigenmodes that may get excited, with unwanted consequences

for loads.

In this work the choice is made to use a simple controller that is doing the basic

power and speed control, because that is proven state-of-the-art. This controller is

robust, and that is why it is felt that it can be justified to assume that parameter

changes in the controller will not affect fatigue loads significantly.

6.5 Cut out wind speed

In calculations it is assumed that the wind turbine stops at exactly the specified cut

out wind speed. In reality this may not be the case, because the wind speed must be

determined from an anemometer on top of the nacelle, operating in the rotor wake.

This creates some uncertainty in the actual wind stop wind speed, which has influence

on the equivalent fatigue loads. It is difficult to say what the inaccuracy is, but a

maximum error of ±1 m/s cannot be too far off, which would make the standard

deviation σ = 0.3 m/s. However effect on equivalent fatigue loads is negligible.

6.6 Structural model

There are two methods in use in wind turbine modelling, the finite element method

(FEM) or ’multibody dynamics’ approach (in which the turbine is represented as an

arbitrary number of masses, beams, springs et cetera), and the mode shape approach

(in which modelling is restricted a priori to a number of mode shapes judged to be

relevant, typically mode shapes with frequencies less than 10 Hz). The advantage of

the FEM approach is that any turbine and any support construction can be modeled

with the same method; the mode shape approach is less flexible. The advantage of the

mode shape approach is its great speed: FEM beam modelling generates many high

frequency modes, that make it necessary to either use small time steps or suppress

higher modes with the use of implicit integration schemes. So far it has not been
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shown that the FEM method is more accurate; in fact, an investigation by Thom-

sen [209] in which he compared Stig Øye’s Flex5 (mode shape) and Risø’s HAWC

(FEM/MD), showed identical results. In the author’s view this is not surprising, since

the modelling problem does not have to do so much with mass-damper-spring sys-

tems (which are quite accurate), but with aerodynamics. Incidentally, all calculations

for this work were done with the code Flex5, developed by Stig Øye. Flex5 belongs

to the mode shape family, and has all customary engineering models described in

chapter 6.

6.6.1 Blade representation

Blades may be represented in a more or in a less sophisticated way:

1. Flap and lead-lag mode shapes assumed to be perpendicular to each other. Typ-

ically 2 flap and 1 lead-lag mode with f < 5 Hz are used. In this approach the

blade is assumed to have a beam inside it that is rotated over an angle taken

to be the blade twist at mid span. It can be shown with accurate finite ele-

ment calculations that the first three ’real’ blade modes are very close to these

simplified modes.

2. Combined flap/lead-lag modes. Typically 2 predominantly flap modes and 1

predominantly lead-lag mode are used.

The different approaches are compared in table 6.1 for an arbitrary load case, pro-

duction at 20 m/s. Except for the calculations with 2 modes, results are all close to

each other. If we assume that the 5 mode calculation is accurate, the maximum error

introduced by using only 3 modes is less then 1%, and may be neglected.

Table 6.1: Influence of the number of blade modes (production at 20 m/s). Table values are

the difference in equivalent load compared to the standard approach with 3 modes assumed

to be perpendicular to each other) (Veldkamp [222])

modes (+ = used) 3 perp. 2 3 4 5

1. 0.69 Hz (1Flap) + + + + +

2. 1.31 Hz (1Edge) + + + + +

3. 1.76 Hz (2F) + + + +

4. 3.15 Hz (3F) + +

5. 4.46 Hz (2E) +

load component m difference in [%]

Mx11r 10 0 +2.7 +1.1 +1.6 +2.0

My11r 10 0 -2.7 +0.9 +1.4 +1.0

MxNf 8 0 -3.8 -1.8 -2.1 -1.0

MyNf 8 0 0.0 0.0 +0.9 +0.5

MzNf 8 0 +1.1 -0.5 -0.7 -0.8

Mxt0 4 0 -0.9 +0.4 -0.4 -0.1

Myt0 4 0 +0.4 -0.3 +1.0 -0.1
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6.6.2 Tower representation

Until a few years ago, towers were modeled as springs attached to the nacelle, for

example with two linear springs in horizontal directions and one torsional spring (for

yawing motion). This is all right for short towers (say up to 50 m). Nowadays towers

are so high that it is necessary to include second order effects (bending of the tower

produces an additional bending moment) and higher modes. Modern programs can

have 2×2 tower modes plus 2×2 monopile modes (or even more), resulting in 2×4

bending modes for a tower-monopile combination. It was shown (in some internal

company investigations) that results are identical to results obtained with a full finite

element calculation. Again this source of uncertainty may be neglected.

6.6.3 Eigenfrequency errors

The exact representation of the structure may be of little consequence, but eigenfre-

quency errors may be important because of the energy distribution in wind and in

waves. The variation in eigenfrequency can not be accounted for if there is some

gross design error, like for example tower frequency being close to the wave peak

frequency. The only thing one can do is to look at the variation that occurs in loads if

frequencies vary in a normal design.

For both the tower and the blades the matter was investigated by varying the

stiffness ±10%, which results in 5% change in resonance frequency. For a ’normally

designed’ turbine the influence on loads is small (see tables 6.2 and 6.3), and hence

the uncertainty is simply incorporated with a multiplication factor having a normal

distribution N(µ = 1, σ = 0.01).

Table 6.2: Influence of blade eigenfrequency variation on 20 years equivalent fatigue loads.

Land turbine, IEC class II standard load calculation.

Load m Frequency ratio

0.95 1.00 1.05

Blade root lead-lag moment Mx11r 12 1.03 1.00 0.98

Blade root flap moment My11r 12 1.00 1.00 1.02

Hub lead-lag moment Mx11h 6 1.02 1.00 0.99

Hub flap moment My11h 6 0.99 1.00 1.02

Nacelle roll moment MxNf 6 1.00 1.00 1.00

Nacelle tilt moment MyNf 6 0.98 1.00 1.02

Nacelle yaw moment MzNf 6 0.99 1.00 1.01

Tower base fore-aft moment Myt0 4 1.03 1.00 1.00
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6.7 FEM modelling

The Finite Element Method has been in use for decades now to find stresses in com-

plicated structures, but recently it has become common practice to generate finite

element models of components directly from 3D drawing tools, like ProEngineer.

This makes it possible to establish stresses in critical locations as function of external

loads with high accuracy. Also freedom in FE modelling is limited and agreement in

results from different firms improved. However there is still some room for individ-

ual choices: element and fillet size for example. A full list of possible error sources

comprises:

• Limitations in element size and order (for example 2D plate/shell elements are

used instead of 3D bricks).

• Mesh generation (element shape and mesh size).

• Boundary conditions.

• Selection of critical locations (hot spots).

• Linear transfer function.

• Geometrical deviations.

Mesh generation. To get an idea of the influence of mesh size, test calculations

were done by Bech Lauridzen [11]. For 10 critical locations in a hub unit stresses

were determined, using different mesh sizes. From blade load histories, stress time

histories at critical locations were calculated, which were rainflow counted in the

usual way. Finally fatigue damage and stress reserve factors were established. Re-

sults are given in table 6.4 (next page), where the value of the stress reserve factor

for the coarsest mesh is arbitrarily set to SRF = 1. In this case it is seen that stress

reserve factors tend to increase with smaller mesh size (but not always).

We cannot establish mean conservatism, because it is unknown which calculation

would have been used; however we can establish the coefficient of variation for all

Table 6.3: Influence of tower eigenfrequency variation on 20 years equivalent fatigue loads.

Land turbine, IEC class II standard load calculation.

Load m Frequency ratio

0.95 1.00 1.05

Blade root lead-lag moment Mx11r 12 1.00 1.00 1.00

Blade root flap moment My11r 12 1.01 1.00 1.01

Hub lead-lag moment Mx11h 6 1.00 1.00 1.00

Hub flap moment My11h 6 1.01 1.00 1.02

Nacelle roll moment MxNf 6 1.01 1.00 1.00

Nacelle tilt moment MyNf 6 1.00 1.00 1.00

Nacelle yaw moment MzNf 6 1.01 1.00 1.00

Tower base fore-aft moment Myt0 4 1.05 1.00 0.99
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stress reserve factors, which is V = 0.04. Given the much reduced cost of FEM

calculations at present, it would seem advisable to do sensitivity studies in every

project, to remove this source of uncertainty.

Boundary conditions. A difficulty in determining correct unit stresses is the

influence of boundary conditions. Over the years it has become apparent that hubs

or machine frames cannot just be ’fixed to the infinitely stiff world’, but that detailed

models of supporting elements are necessary, like the main shaft for the hub, or the

yaw bearing plus tower top for the nacelle machine frame.

In the case we consider, the hub is not connected to a main shaft with bolts, but to

a ring bearing located in the front of the nacelle. In the FEM calculation the bearing

may either be considered to be infinitely stiff, or have some finite stiffness EI . Here

E is Young’s modulus and I is some areal moment representative for the bearing, that

was estimated from the dimensions of the bearing ring and rollers. Apart from the

best estimate EI , more flexible bearing rings were also considered with stiffnesses

EI/2 and EI/4.

Results are given in table 6.5, where values of the stress reserve factor are given

for critical locations in the wind turbine hub. Stress reserve factors for the infinitely

stiff case are arbitrarily set to SRF = 1. The pattern that emerges is that critical

locations in the front of the hub (locations 1–4) are not affected at all, while cor-

rect modelling of the stiffness is critical for locations close to where the boundary

conditions are (locations 5–10, and especially 6–7).

Selection of critical locations. The selection of critical locations is not a prob-

lem. Either it is very clear where they are, or else many locations are chosen (which is

no problem with the available computer capacity, in fact all elements may be checked

if one so desires).

Table 6.4: Influence of mesh size on stress reserve factor found in FEM calculations for a

wind turbine hub. Source: Bech Lauridzen [11].

Mesh size [mm] 40 28 22 COV

location 1 edge of 1.00 1.03 1.01 0.02

location 2 a hole 1.00 1.00 1.01 0.01

location 3 1.00 0.97 0.98 0.02

location 4 1.00 1.04 1.01 0.02

Mesh size [mm] 4 3 2.6 2

location 5 fillet 1.00 1.14 1.11 1.11 0.06

location 6 1.00 1.01 1.06 0.98 0.03

location 7 1.00 1.15 1.07 1.03 0.06

Mesh size [mm] 8 5 4 3

location 8 fillet 1.00 1.14 1.16 1.16 0.07

location 9 1.00 1.12 1.05 1.06 0.05

location 10 1.00 1.02 1.06 1.02 0.02

Average 0.04
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Figure 6.3: Comparison of measured and FEM-calculated strain signal. Source: Last [124],

reproduced by permission.

Linear transfer function. A question is how good the linear transfer function is

that is assumed in equation (3.17) (p42), and whether local stresses are simple linear

functions of the varying external loads. Because of the linearity of steel behaviour,

Table 6.5: Influence of boundary conditions on stress reserve factor found in FEM calcu-

lations for a wind turbine hub. The number EI is an estimate of the bearing ring stiffness.

Source: Bech Lauridzen [11].

location no stiff EI EI/2 EI/4
front of 1 1.00 1.01 1.02 1.02

the hub 2 1.00 1.01 1.01 1.01

3 1.00 1.01 1.01 1.01

4 1.00 1.01 1.01 1.01

close to 5 1.00 1.25 1.11 1.01

bearing 6 1.00 1.44 1.29 1.19

ring 7 1.00 1.61 1.68 1.68

8 1.00 1.13 1.11 1.09

9 1.00 0.96 0.95 0.94

10 1.00 0.98 0.98 0.97
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one would of course expect good agreement, and this is what was found by Last

[124], in an experiment where the strain at a weld toe was considered (see figure 6.3,

previous page). The strain was calculated by extrapolation from stresses measured

with strain gauges, and the corresponding calculation was done with data from a

FEM-model, subjected to the same external loads. Correspondence is not perfect but

the correlation coefficient in the example is high: r2 = 0.88.

It is difficult to say what the influence of the last two things (errors in boundary

conditions and transfer functions) is on stress. For want of better information it is

assumed that there is no bias, and that the coefficient of variation is the same as

found in meshing: V = 0.04. This gives a combined coefficient of variation V = 0.06

(this holds for the blade, the hub and the nacelle machine frame; the tower is such a

simple structure that no additional uncertainty needs to be used: V = 0.03).

Geometrical deviations. Real components will generally not have dimensions

specified on drawings, but rather show scatter. Usually requirements are set to ensure

that (for example) 95% of all plates has a thickness larger than the nominal value.

As far as geometrical deviations are concerned, for steel plates investigations

were done by Byfield [31]. He found the following (see table 6.6): dependent on

whether the stress depends on area or on section modulus, the coefficient of variation

varies somewhat, but the distribution N(µ = 1, V = 0.03) seems a good choice for

the circumferential welds in the wind turbine tower.

The same value is also used for other components considered, because no specific

data are available.

Table 6.6: Mean and coefficient of variation of geometrical properties. Source: Byfield [31].

Parameter Eurocode 3 Measured

mean µ COV V mean µ COV V
Area [m2] 1 0.03 0.99 0.022

Section modulus (y) [m3] 1.00 0.019

Section modulus (z) [m3] 0.98 0.029

Inertia (y) [m4] 1 0.03 1.00 0.025

Inertia (z) [m4] 1 0.03 0.98 0.037



Chapter 7

Fatigue

Aussagen wie ”die Miner-regel ist falsch” halten einer sachlichen Prüfung

nicht stand.

— E. Haibach [77]

Die rechnerische Lebensdauerabschätzung schwingbelasteter Bauteile

unter Anwendung von Schadensakkumulationshypothesen gelingt bisher

trotz umfangreicher Anstrengungen auf diesem Gebiet im algemeinen

nicht mit der erforderlichen Zuverlässigkeit.

— P. Heuler [89]

7.1 Introduction

The fifth and last part of the stochastic parameter investigation concerns the fatigue

properties of the material. Even if the climate were exactly known, stresses could be

found with 100% accuracy and the manufacturing process had zero tolerance, there

would still be variation in component life.

Fatigue is the phenomenon that small varying loads may eventually cause failure,

in spite of the fact that they are well below the static yield limit. This happens because

locally there are always stresses higher than the yield limit due to (surface) imper-

fections and associated stress concentration, which cause local plastic deformation.

If the load is varying there may be new plastic deformations with every load cycle,

leading to a micro crack, which via the stage of a ’technical crack’ (a few tenths of

a mm), finally develops into a large crack which will cause collapse. In composites

the failure mechanisms are different, damage may for example be caused by fibre

micro-buckling. The challenge is to predict component life with sufficient accuracy

for any type of variable loading (life is the time until a crack of defined length or

depth is formed, or until collapse). Before going into various approaches, we shortly

107
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discuss some background and definitions1. For comprehensive treatment of the issues

involved, two good references are Haibach [77] and Schijve [183].

7.1.1 S-N or Wöhler curve

The S-N or Wöhler curve (figure 7.1) gives the number of load cycles that can be

withstood as function of the cyclic, constant amplitude (CA) load. It is established

by applying a certain cyclic load to a specimen and recording the number of cycles

until failure, or sometimes until a crack of some predefined size is created. The cyclic

load is defined by the stress ratio R, given by the cycle minimum stress divided by

the maximum:

R =
σmin

σmax
(7.1)

Thus a sinusoidal load which is symmetric around zero has R = −1, while a sinu-

soidal load with zero minimum value has R = 0. Usually the curve (for some fixed

R) is well described with a power law:

N = ND

(
∆σA

∆σ

)m

(7.2)

The fatigue strength (fatigue limit, endurance limit) ∆σA is the load level below

which no failure occurs under constant amplitude loading. The intersection of the

tilted and horizontal part of the curve is at ND cycles, and m (the Wöhler exponent)

is conventionally called the slope of the curve. The number N is the fatigue life if the

load range is ∆σ. The bold curve in figure 7.1 is called the ’Original Miner curve’.

It is derived from the experimental data: the black dots (for some discussion of how

accurately the curve may be established, see appendix C.5).

If the load situation is more complicated than a signal varying with constant am-

plitude, the original curve with fatigue limit is no longer valid. Small load cycles

cannot start a crack (that is why the fatigue limit is found), but can nevertheless con-

tribute to growth of an existing crack (because the crack is a notch that creates large

local stresses). The question is how to modify the original curve to account for the

effect of small cycles. The simplest proposal is to just extend the left part of the curve

with the same slope (Elementary Miner or Corten-Dolan). This seems conservative;

however according to Liu and Zenner [239] the relevant curve for life prediction un-

der variable loading must also be steeper (see discussion below in section 7.1.3).

Another possibility is the correction proposed by Haibach [77], where the slope of

the right part of the curve is taken to be:

mright = 2 mleft − 1 (7.3)

1The following discussion is primarily about metals and not necessarily valid for composites. We

do not consider multiaxial fatigue (for example the Critical Plane Approach), because firstly, almost all

stress situations are two dimensional (critical locations are at the surface) and dominated by one tensile

stress, and secondly, there is no evidence that more complicated methods yield superior results.
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Figure 7.1: S-N or Wöhler curve with different extensions to deal with variable amplitude

loading (schematic).

This is for example seen in the Eurocode 3 S-N curves for welded details (mleft = 3,

mright = 5). Although Haibach provides a theoretical justification for this correction,

it is also appealing on the grounds that the right curve must be somewhere in between

the original and elementary Miner lines.

7.1.2 Scatter

If fatigue tests are done, measurements may not be on the curve, but scatter around it

(figure 7.1). There are two causes for this: firstly there is variation in the time a crack

at the surface starts due to variations in the state of the surface, and secondly there is

variation in the growth speed of the crack, due to variation in material bulk properties

(Schijve [182, 183]). If the surface of a component is smooth and there is no stress

concentration, the first source of variation is most important: most of the time until

failure is spent in the crack initiation stage (Gudehus [74]); the S-N curve tends to

be flat (large exponent m). This is because if loads are large, a crack will start soon

(regardless of the surface condition), while if loads are small, it may take very long

before a crack starts. If the load is smaller than ∆σA life is infinite, because no crack

will be initiated (see figure 7.1, ’Original Miner’). If there is a crack present, like
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there may be in the case of a weld seam, there is (almost) no crack initiation stage,

and the curve will be steeper (small exponent m).

The amount of variation in life at a certain load (number of load cycles until

failure) is expressed by the scatter number TN , the ratio of the life attained by the

best 10% of all test specimens N10% divided by the life attained by 90% of all test

specimens N90%:

TN =
N10%

N90%
(7.4)

If the life distribution F (N) is assumed to be lognormal (and in many cases there is

no evidence to the contrary, Eulitz [60]), then:

F (N) = N

(
lnN − lnMN

SN

)
(7.5)

and the scale parameter SN is (Ninv is the inverse of the standard normal distribu-

tion):

SN =
lnTN

2 Ninv(0.90)
≈ lnTN

2.563
(7.6)

The coefficient of variation on life VN is:

VN =
√

exp
(
S2

N

)
− 1 (7.7)

If SN ≪ 1, then:

VN ≈ SN (7.8)

For completeness we give the median of the distribution:

N50% = MN (7.9)

the mean:

µN = MN

√
expS2

N (7.10)

and finally the standard deviation:

σ = µNVN = MN

√
exp

(
S2

N

) (
exp(S2

N ) − 1
)

(7.11)

If the slope of the S-N curve is m, conversion from life scatter to stress scatter is

straightforward. The scale parameter Sσ and the scatter number Tσ are found with:

Sσ =
SN

m
(7.12)

Tσ = T
1/m
N (7.13)
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The coefficient of variation Vσ can be calculated exactly with an expression similar

to equation (7.7). It may be approximated by:

Vσ ≈ VN

m
(7.14)

This concludes the overview of the distribution formulas to be used in the calcula-

tions.

7.1.3 Variable amplitude loading

If we are dealing with constant amplitude loading, and relevant tests are available, life

prediction is trivial: at some load level the best prediction is simply the median num-

ber of cycles established in the tests. Now consider the case of a random load signal,

consisting of a mix of large and small load cycles. The method most used to make

predictions is the linear damage summation or Palmgren-Miner rule (see appendix

C). However in the case of VA-loading it is usually found that the Palmgren-Miner

rule is unconservative, and overestimates fatigue life. The reason for this is that the

original S-N curve no longer applies under random loading. There are bound to be

some large load cycles in the spectrum, that quickly initiate a crack; once there is a

crack, smaller cycles below the fatigue limit will contribute to fatigue damage. Hence

the first thing that must be done to improve the curve, is to extend it below the fatigue

limit, for instance according to Corten-Dolan, or according to Haibach (see figure

7.1, p109). However Eulitz [60,61] found no life prediction improvement if either of

these extensions were used. A possible explanation for this is that because the crack

initiation stage is short, the component must be treated as sharply notched from the

start, and the S-N curve becomes steeper. Together with the lowering of the fatigue

limit, this forms the essence of the Liu-Zenner correction (see figure 7.2 (next page)

and Zenner [239]), where the curve is rotated around the point of the largest load

cycle. Both the slope m and the fatigue limit ∆σA are modified:

m′ =
m + 3.6

2
(7.15)

∆σ′
A =

∆σA

2
(7.16)

Note that equation (7.15) is consistent with results for welded connections which are

known to have a crack (notch) and have slope m = 3–4 to start with (see Ritter [175]

and Sedlacek [187] (background document for Eurocode 3)). Because there already

is a crack, the slope of the S-N curve should not change if VA-loading is considered

instead of CA-loading. It is easily seen that for m = 3.6 one finds m′ = 3.6 = m.
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Figure 7.2: S-N curve with correction according to Liu and Zenner [110].

7.1.4 Life curve

For many applications, characteristic load spectra have been developed, for exam-

ple Twist (Transport Wing Standard) for airplanes, Wawesta (Walzwerkstandard) for

rolling machines, and Wisper/WisperX for wind turbine blades. All these spectra

have a fixed loading sequence and are scalable, which means that they may for ex-

ample be characterised by the largest load cycle in the spectrum. Thus it becomes

possible to construct a pseudo S-N curve or life curve, where the number of cycles

until failure is given as function of the largest load cycle of the spectrum; in this

case the life curve will of course be to the right of the normal S-N curve for constant

amplitude loading (see figure 7.3).

If the life curve is predicted using Palmgren-Miner linear damage summation it

is often found that life is overpredicted, i.e. the number of cycles until failure found

in test is less than calculated. One way of making the predictions fit observations is

using the relative Miner rule: one simply states that under a certain load spectrum the

(fictitious) damage at failure is D = 0.5 rather than D = 1.

Another way is to prescribe that the life prediction must not be done with the

original experimental S-N curve, but with a curve reduced by multiplication with the



7.1 Introduction 113

Number of cycles Log(N)

S
tr

e
s
s
 r

a
n

g
e
 L

o
g

(d
S

)

dSA

ND

m

Experimental

life curve

Original S-N curve

S-N curve reduced (by q0)

Predicted

life curve

Figure 7.3: Life curve and application of q0 method (relative Miner rule).

stress factor q0. The damage D calculated from a test to failure is:

D =
∑

i

ni

ND

(
∆σi

∆σA

)m

6= 1 (7.17)

We modify the S-N curve on which the prediction was based by a stress factor q0 to

obtain a new damage sum D′ = 1:

D′ =
∑

i

ni

ND

(
∆σi

q0∆σA

)m

= 1 (7.18)

From these two equations it follows immediately that:

D

D′
= D = qm

0 (7.19)

The q0 method may be combined with the Liu-Zenner correction.
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7.2 Fatigue life prediction

7.2.1 Acceptable scatter

If we consider fatigue life prediction, we may define the fatigue damage that a com-

ponent is calculated to be able to sustain as D = 1. Experimental results (the damage

calculated from all actual load cycles sustained) will scatter around this value. The

scatter in experimental damage may be treated in the same way as before with:

TD =
D10%

D90%
(7.20)

with D being the experimental fatigue damage. Schütz [185] gives some guidelines

on which accuracy is acceptable if the life of some individual component is predicted

(see table 7.1). It is interesting to see whether these demands can be met. Eulitz

[61] derived some best possible values for the scatter number TN (scatter on life)

from the test database he compiled. The S-N curve is typically derived as follows:

constant amplitude (CA) tests are done at n∆σ stress levels with nS specimens each

(for example at n∆σ = 4 stress levels, with nS = 5 specimens at each level); thus n∆σ

estimated points of the 50% survival S-N curve are found. The scatter numbers for

variation of individual lives and median life (at one stress level) are related as:

TN,50% = TN

1√
nS (7.21)

Using all his data, Eulitz found average scatter TN,50% = 1.51 for the median life,

i.e. for 50% points of the CA S-N curve at some given load level. For individual

lives found in tests with variable amplitude loading, the average scatter was TD =

3.2. Eulitz considers the two scatter numbers to be independent, because the causes

Table 7.1: Indicative values for lifetime predictions (based on Schütz [185]).

Fatigue damage D90% D10% TD VD

Good 0.67 1.50 2.25 0.324

Acceptable 0.50 2.00 4.00 0.583

Stress factor q0,90% q0,10% Tσ Vσ

m = 4

Good 0.90 1.11 1.22 0.080

Acceptable 0.84 1.19 1.41 0.139

m = 8

Good 0.95 1.05 1.11 0.040

Acceptable 0.92 1.09 1.19 0.068

m = 12

Good 0.97 1.03 1.07 0.026

Acceptable 0.94 1.06 1.12 0.045
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of scatter are different in the case of CA-loading (mainly time to crack initiation)

and VA-loading (mainly the load sequence). Therefore, even if we have a perfect

prediction algorithm, the total scatter cannot be smaller than:

T = exp
(√

ln2 1.51 + ln2 3.2
)
≈ 3.4 (7.22)

for the predictions of the life of an individual component under VA loading based on

the CA S-N curve. The scatter number T = 3.4 corresponds to a coefficient of vari-

ation V = 0.51 on life. Admittedly Eulitz’s considerations are somewhat pessimistic

because uncertainty on the entire CA-curve is likely to be smaller than the uncer-

tainty on one point of the curve (the curve is based on the experiments at all stress

levels, hence the uncertainty is smaller), but even if the curve is known exactly, T =

3.2 is an absolute minimum. This means that Vσ = 0.11 (for welds with m ∼ 4) and

Vσ = 0.08 (for cast iron with m ∼ 6) if we convert from life to stress.

We now discuss various ways to predict fatigue life, to see how well they do

compared to the minimum possible scatter. It must be noted that scatter numbers

given by various authors usually refer to median values i.e. on the basis of more

individual tests the 50% survival damage (or life) is estimated, which is compared to

the prediction. The scatter results given are all experimentally found, no assumption

are made about the origin of scatter.

7.2.2 Synthetic S-N curve

The S-N curve is established on the basis of fatigue tests that are done on small,

smooth specimens under CA loading2. The main reason to do this is that this type

of experiment is comparatively cheap and fast. The S-N curve for ideal material is

then modified in order to make it representative for the actual component. Effects

that have to be taken into account are:

• Size effect. If two specimen have the same geometry but differ in size, the

probability that some crack will develop is greater in the larger specimen, be-

cause there are more weak locations to start from. This is the statistical size

effect (see appendix F.4). Another effect is that the stress situation will be

different in larger specimens.

• Surface roughness. If the surface is not smooth, the situation is like a crack is

already present, and life will be shorter than for a smooth surface.

• Stress concentration factor. Local stress concentration decreases the fatigue

strength, but not as much as would be found if the maximum stress were com-

pared to the S-N curve found. Therefore a ’notch factor ’or ’effective stress

concentration factor’ is estimated to reduce the curve.

2Weld seams are an exception. The equivalent of the small smooth test probe for welds is (in most

cases) a test piece with a short seam, typically 100–200 mm long.
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• Quality. In larger components it is more difficult to obtain the same material

quality. Furthermore, in cast iron there may be gas cavities, slag inclusions and

graphite (flakes or chunks).

• Mean stress. Generally, positive mean stress will reduce fatigue strength, while

a negative mean stress tends to increase it.

After all corrections have been done, a synthetic S-N curve is obtained (see for exam-

ple Gudehus [74] and Haibach [77] for procedures, also to estimate the curve from

static properties only), which ideally should fit results obtained with the large com-

ponent under constant amplitude loading. To estimate the fatigue damage under VA

loading, the rainflow procedure is used to reduce the varying load signal to an ordered

table with triplets of load range, mean load and number of cycles. For each triplet fa-

tigue damage is separately assessed, and assumed to be independent of the rest of the

load history (linear summation according to the Palmgren-Miner rule). The medians

and scatter numbers for fatigue damage D and stress factor q0 are given in table 7.2.

The main problems with the use of synthetic S-N curves are the corrections that have

to be made to go from small smooth probes to large components, which are based

on curve fitting without (sufficient) physical basis, and the incorrectness of the linear

summation rule, in which sequence effects are ignored.

7.2.3 Measured S-N curve

In this approach, tests to arrive at the CA S-N curve are done with the actual compo-

nent, or with specimens that are representative for it in size and/or stress concentra-

tion factor. Thus the exact CA S-N curve is immediately available without the need

for corrections. This obviously solves the correction problem, but not the inadequacy

of the Palmgren-Miner rule. The approach was extensively investigated by Eulitz

(see Eulitz [61], the research was also reported in Eulitz [60] and Kotte [109]). For

steel, cast iron and aluminium, about 300 CA S-N curves were directly obtained from

experiments, and these were used to predict component life found from 2,000 corre-

sponding VA tests; in all the work was based on 18,000 individual tests. A great deal

of attention was paid to details in the procedure: all tests results used were critically

Table 7.2: Results for fatigue life predictions using synthetic S-N curves. Each test represents

a median life prediction on the basis of a CA S-N curve. The damage D is the calculated

damage sustained on failure. Source: Eulitz [61].

material load type number damage D stress factor q0

of tests median scatter TD median scatter Tσ

steel all 317 0.52 12.6

steel tension/compress. 179 0.84 1.65

steel bending 244 0.90 1.63

cast iron all 89 4.07 10.3 1.31 1.60
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re-evaluated and missing information was added where possible; different methods

for estimating the best S-N curve from scattered measurements were compared, as

well as extensions of the S-N curves beyond the fatigue limit and how to count load

cycles. During the work all information was stored in a database (DABEF = Daten-

sammlung Betriebsfestigkeit) which might for example be used for testing fracture

mechanical approaches (see below). The main results relevant to our study are:

• Of all counting methods, rainflow counting with mean stress correction is to be

preferred.

• The Liu-Zenner correction must be used, according to which the S-N curve

is rotated, accounting for the difference between CA and VA loading (Zenner

[239]).

• The medians and scatter numbers for fatigue damage D and stress factor q0 are

given in table 7.3.

7.2.4 Life curve and relative Miner rule

In this approach, tests are done with variable amplitude loading according to some

standardised pseudo random load sequence, for example a gaussian one, or some

spectrum representative for actual loading. If test spectra only differ by a scale factor,

it is possible to define each spectrum by some characteristic stress (for example the

highest stress), and for each characteristic stress plot the number of cycles that was

sustained until failure: the fatigue life curve (figure 7.3, p113). If one assumes that

the damage accumulation rule according to a one slope S-N curve holds, one can

calculate where the life curve ideally should have been. If this is compared to the

experimental life curve one finds a reduction factor that should have been applied

to the original S-N curve to arrive at the correct life prediction. This ratio of the

stresses (which we call q0 following Heuler [88], see equation (7.19)) is assumed to

be constant for a particular shape of the spectrum, and thus some damage D < 1
is allowed (or a reduced S-N curve used). This approach, called the relative Miner

rule, was described by Gassner [68, 69] and further researched by Buch [27, 28] and

Table 7.3: Results for fatigue life prediction using measured S-N curves with Liu-Zenner

correction. Each test represents a median life prediction on the basis of a CA S-N curve. The

damage D is the calculated damage sustained on failure. Source: Eulitz [61].

material load type number damage D stress factor q0

of tests median scatter TD median scatter Tσ

steel tension/compr. 179 0.44 6.2 0.87 1.39

steel bending 244 0.69 8.1 0.91 1.59

cast iron bending 89 1.19 10.4 1.03 1.46

aluminium tension/compr. 219 0.63 6.1 0.92 1.40

aluminium bending 86 1.09 6.5 1.02 1.50



118 Chapter 7 Fatigue

Heuler [88, 89]. Heuler’s approach is simplest, because the equivalent fatigue load

is calculated according to the elementary (one slope) S-N curve and then a factor is

applied to either life or stress to arrive at unity mean predicted life. The results that

were obtained are given in table 7.4. One test (which yields one value for q0) consists

of enough individual fatigue tests to establish the 50% survival CA S-N curve and

the 50% survival life curve. Thus the scatter numbers given refer to median values,

not scatter in individual specimen tests. In individual tests done to establish the life

curve, all load spectra are the same on a cycle by cycle basis (except for a size factor).

7.2.5 Fracture mechanics

In this approach fracture mechanics is used to estimate crack growth. The simplest

forms of fracture mechanics deal with the situation where there is a sizable (tech-

nical) crack, and material behaviour is fully elastic. Given some macro crack, life

until failure can be estimated (Schijve [183]). However in many cases most of the

component’s life is spent in the formation of this technical crack, and once this has

developed into a technical crack (a few tenths of a mm) there is not much time left

until failure. Conventional fracture mechanics is not suitable to treat this situation.

However Vormwald [227, 229] developed a new fracture mechanical approach espe-

cially for microcrack using an energy integral (the PJ -integral), which takes plasticity

and crack closure into account. His approach was further developed by Anthes [3]

and Dankert [43], for an overview see Haibach [77]. Anthes [3] provides some con-

vincing examples that the approach works well for smooth specimens under vari-

able loading: the median life prediction is close to unity, and the scatter number

TD = D10%/D90% = 3.5. Perhaps this approach could be extended to real compo-

nents, but calibration would be necessary. Also it would have to be checked whether

the method is useful for very large numbers of cycles encountered in wind turbines

(108 − 109).

The JCSS probabilistic code [96] describes a simple fracture mechanical method

that must be calibrated against fatigue tests; inaccuracies are accounted for by con-

Table 7.4: Results for fatigue life prediction using the relative Miner rule (q0-approach).

Each test represents one value for q0 derived from a CA S-N curve and a life curve. Numbers

for damage are derived (by the author) from numbers for the stress factor q0 with exponent

m = 5. Source: Heuler [88].

material load type number damage D stress factor q0

of tests median scatter TD median scatter Tσ

steel/ gaussian spectrum 60 (0.42) (4.2) 0.84 1.33

cast Straight line spect. 17 (0.19) (6.9) 0.72 1.47

iron LBF spectrum 123 (0.70) (3.9) 0.93 1.31
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sidering the constants governing crack growth as stochastic parameters. The method

does not take sequence effects into account however.

7.2.6 Overview

In table 7.5 a summary is given of the accuracy that can be reached for lifetime

predictions with various methods for steel and cast iron. A few remarks are in order

here.

Firstly it should be stated that the decimals in the table are only given to achieve

consistency between table numbers. It is clear that as far as accuracy goes, the number

of decimals for life scatter TN should be zero, and for stress scatter Tσ one.

Secondly it is seen that the scatter found by Eulitz [61] is high compared to num-

bers that were found by Heuler [88, 89], while they are essentially using the same

procedure. The difference is that Heuler derives scatter numbers for each individual

random load spectrum, while Eulitz considers many types of random loading simul-

taneously. According to Haibach [77] the large scatter found by Eulitz could (in part)

be due to the fact that VA-test fatigue data from many different sources were used,

which may not be comparable, i.e. laboratories were not using identical procedures

in their experiments. In any case it seems clear that the numbers found by Heuler

provide a lower limit for the scatter that can be obtained with this procedure (relative

Miner rule for standardised pseudo random spectra). Since one only knows the sta-

tistical properties of loading sequences in wind turbines, the situation there may be

worse.

Thirdly, it must be stressed that the numbers found by Heuler and Eulitz are

related to median curves. Essentially both authors compared 50% survival CA S-

N curves with 50% survival VA life curves. If we consider the life of individual

components, we must also take into account variation in individual strength. Eulitz

provides a scatter number (from experiments) TN = 3.2, which translates into Tσ =
1.21 (m = 6) to Tσ = 1.34 (m = 4). These numbers appear to be reasonable, if one

compares them to the scatter in CA tests on welds: Tσ = 1.35 (Olivier [163]), and

Table 7.5: Accuracy of various life prediction methods (numbers as given by the authors are

given in bold). The scatter numbers in columns 2 and 3 represent scatter on medians (life and

fatigue strength). To get the total scatter, these numbers must be combined with scatter on

values in individual predictions.

Life prediction method TN Tσ Tσ Tσ Vσ

medians medians individ. total total

Synthetic S-N curve [61] 10.3-12.6 1.60-1.65 1.3 1.71-1.76 0.21-0.22

Measured S-N curve [61] 6.2-10.4 1.39-1.59 1.3 1.52-1.70 0.17-0.21

Random loading test [88] 5-8 1.31-1.47 1.3 1.47-1.59 0.15-0.18

Fracture mechanics [3] 3.5 1.23-1.37 1.3 1.40-1.50 0.13-0.16
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on cast iron: Tσ = 1.20 (Kaufmann [103, 105], Nerdahl [152]). For a fixed pseudo

random load spectrum there is no reason why scatter should be larger than in CA

tests (Schweiger [186]). However we probably should use a larger number for the

case of wind turbines, because we are not sure of the exact load sequence. In the

table the individual scatter was set to T = 1.3 as a reasonable mean value (for cast

iron T = 1.2, for welds T = 1.2–1.4). Example: the total scatter if random loading

tests are used is:

Tσ,low = exp
√(

ln2 1.31 + ln2 1.3
)

= 1.46 (7.23)

Tσ,high = exp
√(

ln2 1.47 + ln2 1.3
)

= 1.59 (7.24)

It is interesting to compare the numbers in table 7.5 with those given by the Joint

Committee on Structural Safety in their proposal for a probabilistic code for weld

seams [96]. Here the number of cycles until failure in CA tests is assumed to be

lognormally distributed, as is the damage sum reached upon failure under VA loading.

The former has coefficient of variation VN,CA = 0.58, while the latter has VN,V A =

0.3; both distributions are unbiased. The corresponding scatter numbers are (related

to life):

TN,CA ≈ exp (2.56 × 0.58) = 4.4 (7.25)

TN,V A ≈ exp (2.56 × 0.3) = 2.2 (7.26)

If we convert to strength (with exponent m = 3), we find:

Tσ,CA = 4.41/3 = 1.64 (7.27)

Tσ,V A = 2.21/3 = 1.29 (7.28)

The total scatter number Tσ becomes:

Tσ = exp
√

ln2 1.64 + ln2 1.29 = 1.75 (7.29)

And the coefficient of variation Vσ:

Vσ ≈ ln 1.75

2.56
= 0.22 (7.30)

This is the same order of magnitude as the numbers in table 7.5. If we take the

specific numbers for weld seams (table 8.5, p145), we have Vσ,CA = 0.11 and Vσ,V A

= 0.17, which together yield:

Vσ =
√

0.112 + 0.172 = 0.20 (7.31)
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Hence there seems to be agreement on the total scatter on material fatigue properties,

at least for welds. What the JCSS does (apparently) not consider however is that life

predictions may be biased.

Fourthly, the low number for the fracture mechanical approach assumes that the

method is calibrated for real size specimens. At present it is not sure whether the

method could be applied with the same success.

All in all the conclusion is that the methods that take the load sequence into

account (standard random load spectrum and fracture mechanics) have an advantage

over the conventional method that does not, even if it is based on measured S-N

curves. However it is not certain that this advantage can be realised for wind turbines,

since the load sequence is only known in a statistical sense.

The most physical approach would be to model the structure’s strength as some

function decreasing with time, and subject the structure to a representative random

load time history that includes all extremes that naturally occur. One could for in-

stance look at 10 minute loading intervals: each time interval would either result in

some crack growth (possibly zero), or result in failure (if one of the load cycles in

a particular interval are larger than the remaining strength). In this approach there

is no fatigue failure, there is only ultimate load failure: when this happens depends

on how much the structure has deteriorated. The fracture mechanical methods devel-

oped by Vormwald and others could be used in this way (Anthes [3], Dankert [43],

Vormwald [227]). Doing things like this is attractive because the artificial division

between fatigue loads and ultimate loads is removed: in reality of course there is

no such division: there is a continuous spectrum from small to large load cycles.

In some cases it is even possible that what is classified by standards as a 50 years

extreme event, occurs every few months or so.

However this is not (yet) the usual way of doing things: as matters stand, fa-

tigue and ultimate loads are treated separately. This can be done because most of the

component’s life is spent in the crack initiation phase, and the strength is not much

diminished until there is a sizable crack, and failure is imminent (’sudden death’).

The approach is correct if there are few extreme events, because in that case fatigue

damage caused by these events may be neglected. The situation becomes more com-

plicated if large load cycles occur often: still one could deal with the problem by

redefining the set of fatigue load cases to include the right number of extreme events.

7.3 Treatment of uncertainty

Now that we have some data on scatter of fatigue life predictions and on stress factor,

the question is how to use these data in the probabilistic calculation. There are two

uncertainties:

• Scatter on the median damage that is due to load sequence effects. The scatter

numbers found by Eulitz may be the most representative; it is true that scatter
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may be less in Heuler’s life curve prediction method, especially because we

are dealing with only one material (cast iron GGG40 for example), but on the

other hand we do not have the required fatigue data, and neither do we know

the actual load sequence in wind turbines.

• Scatter due to differences between individual components. A priori there is no

reason why the scatter in tests to establish a life curve (with a fixed pseudo

random load spectrum) would differ significantly from scatter on tests to es-

tablish a CA curve. In fact, if influence of the slope is removed by converting

all variation to stress, it may well be argued that standard deviation on fatigue

strength must be close to standard deviation on static strength. Therefore scat-

ter numbers found in CA tests will be used as estimate for scatter in VA tests.

Some fatigue experiments on ∅25 mm notched aluminium cylinders reported

by Schweiger [186] support the contention that scatter under CA and VA load-

ing is similar.

Thus two separate lognormal distributions will be used to model uncertainty in fa-

tigue behaviour, one characterised by Heuler’s scatter numbers, and the other by scat-

ter numbers on CA fatigue tests. The justification to proceed in this way is twofold:

firstly, these are the data are available to us, and secondly, using the data in this way

is (at least) approximately right.

7.4 Material data

7.4.1 Cast iron

Nodular cast iron is used for the nacelle machine frame and for the hub. Because

of complex geometry it is convenient to cast these parts, and nodular cast irons have

good fatigue properties. There are few public references in which fatigue data are

given. Kaufmann [103] is a report of research at the Fraunhofer Institute, in which

investigations are described on large cast iron specimens (40 x 70 mm cross section)

taken from one large block, with a large quality range (from defect free specimens

to specimens having chunky graphite, and with various stress concentration factors),

The report gives all relevant details, such as the exact probe geometries and results of

individual tests. The same research is also described in an article (Kaufmann [105]).

Data are summarised in table 7.6.

For the uncertainty due to fatigue life prediction for VA-loading we have Eulitz’s

data [60, 61], which are for cast iron: median damage D50% = 1.19, TD = 10.4;

median stress factor: q0,50% = 1.03, Tσ = 1.46, Vσ = 0.15.

In this case there are some more data on life prediction: Kaufmann [104] and

Sonsino [196] looked at a range of cast irons (GTS-35, GTW-S38, GGG40, GGG70.

GGG100) treated in various ways to improve fatigue strength: sandblasting, grind-

ing, rolling, and induction hardening. They investigated life under constant loading
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and random loading (gaussian spectrum), both for stress ratios R = −1 and R = 0,

and also tried to predict fatigue life under VA-loading on the basis of the S-N curves

derived from the CA tests, This is essentially what Eulitz did; however no investi-

gation was made into the accuracy of various calculation procedures; it appears that

Kaufmann and Sonsino just used one simple recipe for all damage estimates. Be-

cause there are 58 test series, it is interesting to make some plots of the damages

found, to put the numbers found by Eulitz in perspective. In figure 7.4 (next page) all

data are plotted; the scatter number is TD = 45. On one hand this is not surprising,

since no attempt at all was made to group the data, or to use the optimal prediction

tool: we simply pooled all available data without any critical evaluation. On the other

hand it is disappointing that results are so bad: after all every damage prediction is

based on the measured CA curve for identical specimens, and the method used (S-N

curve with Haibach correction (see figure 7.1, p109) is in common use. In figure

7.5 (next page) all data points for the ’exotic’ treatments are left out (leaving only

grinding, grit blasting and sandblasting). Especially for stress ratio R = -1 the scatter

is reduced dramatically to TD = 8 (Tσ = 1.41 if m = 6), not unlike what was found by

Heuler [88, 89], see figure 7.6 and table 7.7 (p125). Even though this data treatment

is crude, we nevertheless can see that on one hand Eulitz’s numbers are probably not

overly pessimistic, and that on the other hand Heuler’s numbers can be reached if one

limits oneself to a sufficiently homogeneous group of specimens.

Table 7.6: Fatigue data for cast iron GGG40 in CA tests. Specimens are taken from one large

block. Source: Kaufmann [103].

Material Cast iron GGG40

Reference Kaufmann [103]

Treatment Unmachined sandblasted, machined

Quality Defect free, small defects, large defects

Cross section 40 x 70 mm

Loading Constant amplitude; axial, bending

Fatigue data (for small defects, 50% survival)

Slope m 6.5

Knee point ND 2×106

Stress concentration α 1.10 1.75

Stress ratio R –1 0 –1 0

Fatigue strength range ∆σ [MPa] 270 210 210 164

Mean stress sensitivity M 0.29 0.28

Coefficient of variation Vσ 0.07

Scatter number Tσ 1.20
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Figure 7.4: Experimental fatigue damage for various cast irons (ground, grit blasted, sand

blasted, rolled, induction hardened). Source: Sonsino [196].
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Figure 7.6: Stress factor q0 for various cast irons. Source: Heuler [88].

Table 7.7: Estimates of the lognormal distribution of the stress factor q0 for cast iron (see

section 7.1.2. Source: Heuler [88]). Estimates are done with the bootstrap method (Efron

[52, 53]). Minimum and maximum indicate 68% confidence interval.

material parameter minimum median maximum

all cast iron (n = 27) estimated

(GGG, GS, GTS, scale parameter M (median) 0.90 0.93 0.95

GTW, Sikufond) shape parameter S 0.11 0.13 0.15

derived

scatter number Tσ 1.32 1.39 1.47

coefficient of variation Vσ 0.11 0.13 0.15

nodular only (n = 9) estimated

(GGG42, GGG50) scale parameter M (median) 0.83 0.88 0.93

shape parameter S 0.12 0.16 0.19

derived

scatter number Tσ 1.35 1.49 1.65

coefficient of variation Vσ 0.12 0.16 0.20

7.4.2 Welds

Welding is used in the turbine tower and in the rear nacelle frame. A great amount

of testing has been done on fatigue of welds, described for example in the back-
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ground document to Eurocode 3 (Sedlacek [187]) and in the catalogues issued by

DVS (Olivier and Ritter [164]). Results have found their way into the standards Eu-

rocode 3 and the IIW Guidelines [90].

Especially interesting is the work by Köttgen and Olivier [111, 112, 163], that

was partly done in connection with a weld seam failure on the Growian wind turbine.

A number of different weld geometries were investigated, and it turns out that all

S-N curves can be made to collapse into one if the local stress is calculated while

assuming notch radiuses r = 1 mm. Some data are given in table 7.8; according to

the IIW Guidelines [90] it is allowed to use this approach.

A question that may arise if circumferential weld seams in wind turbine towers

are considered, is whether these welds have greater fatigue strength than found in

2D-specimens with limited width: one would expect that cracks in these specimens

always start at the edges because generally the stress situation is more unfavourable

than in the centre, something which is not possible in circumferential weld seams

because there is no edge. However according to Vormwald [228] tests have shown

that this is not the case: cracks do not start more often at edges; nor did one observe

a preference for cracks to start near starts and stops in the weld seam. Hence the

problem of transferability is reduced to finding the fatigue strength of a long homo-

geneous seam based on data found with short seams. This may be done with the

Weibull weakest link model (see appendix F.4).

It is not entirely settled what the slope of the S-N curves for weld details must

be. Eurocode 3 prescribes the same curve for all weld details, with the knee point

at 5×106 cycles, m = 3 for the left part of the curve and m = 5 for the right part

of the curve. The background document to the Eurocode (Sedlacek [187]), that lists

Table 7.8: Fatigue data for weld seams in CA tests (r = 1 mm approach). Source: Köttgen

[111, 112], Olivier [163].

Material Weld seams for low carbon steel

Reference Köttgen [111, 112], Olivier [163]

Treatment Stress relief

Quality

Cross section 8 - 80 mm thickness

Loading Constant amplitude; axial, bending

Fatigue data (local stress values, 50% survival)

Slope m 3.75

Knee point ND ≃ 5×106

Number of cycles N 2 × 106 infinite life

Stress ratio R -1 0 -1 0

Fatigue strength range ∆σ [MPa] 486 348 422 312

Mean stress sensitivity M 0.40 0.35

Coefficient of variation Vσ 0.13 0.11 0.09 0.11

Scatter number Tσ 1.41 1.31 1.25 1.34
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the experimental data, gives a wide range of slopes. It is the author’s impression that

Eurocode 3 has adopted m = 3 as a convenient blanket value that is not too far wrong.

Ritter [175] wrote a report dedicated to the matter, and found that slopes tend to vary

dependent on which weld detail is considered (table 7.9). For plate butt welds, the

dominant weld in wind turbine towers, the slope is m = 3.77 for test pieces and m =

3.46 for H-beams.

As far as damage sum prediction is concerned, according to Sonsino [197] the

median damage for welds under various types of loadings (uniaxial and multiaxial,

CA and VA) is D = 0.45 or lower (down to D = 0.10), with TD = 4 (for exponent

m = 4: Tσ = 1.41; S-N curve reduction q0 = 0.451/4 = 0.82 (Vσ = 0.135). These

numbers fit in with those found by Heuler [88], who provides some data for weld

seams (see figure 7.7). From Heuler’s data points for welds we find the results given

in table 7.10 with the bootstrap method.

Table 7.9: Slope of S-N curve m for various weld details. Source: Ritter [175].

weld type as welded stress relieved

plate butt weld (I, V, X, Y) test piece 3.77 3.98

H-beam 3.46 –

cruciform joint

- double fillet, partial penetration test piece 3.58 –

- double bevel, partial penetration test piece 3.46 –

- double bevel, full penetration test piece 3.52 –

lap joint with fillets test piece 3.57 –

longitudinal weld seam

- double fillet, partial penetration test piece 3.54 –

H-beam 3.36 –

- full penetration test piece 2.93 2.93

H-beam 3.03 –

circumferential weld in shear test piece 4.83 5.32

Table 7.10: Estimates of the lognormal distribution of the stress factor q0 for weld seams

(see section 7.1.2; data source: Heuler [88]). Estimates are done with the bootstrap method

(Efron [52, 53]). Minimum and maximum indicate 68% confidence interval.

material parameter minimum median maximum

weld seams (n = 7) estimated

scale parameter M (median) 0.75 0.80 0.86

shape parameter S 0.12 0.17 0.22

derived

coefficient of variation Vσ 0.12 0.17 0.22

scatter number Tσ 1.37 1.55 1.74
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Figure 7.7: Stress factor q0 for weld seams. Source: Heuler [88].

7.4.3 Bolts

In the blade-hub connections, the hub-main shaft connection, the tower top (yaw

bearing), and the tower flanges bolts are used, usually of quality 8.8 or 10.9. Although

bolt connections will not be further investigated here (bolt connection are redundant,

so failure probabilities are small), some data are given in table 7.11. It is difficult to

give definite numbers for the fatigue strength (these should be obtained by testing);

however most coefficients of variation (on stress) are in the order of Vσ = 0.10.

Two useful publications that treat the subject of bolted connections are the stan-

dard VDI 2230 [225], and a report by Schaumann and Seidel [181] on bolted flanges

in wind turbines. Both publications discuss how to estimate the stress in the bolts

dependent on connection geometry and load, and also give some guidelines on which

fatigue strength to use.
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7.5 Fatigue of blades

7.5.1 Introduction

For composite materials used in wind turbine blades the situation is different from

that for steel and cast iron. Composites represent a heterogeneous group of materi-

als with widely varying properties: as the name ’composites’ implies, a composite

can consist of any combination of materials, although common composites have one

material primarily providing strength (like fibres) and another material acting mainly

as filler (the latter is also adding some strength by keeping the former in place).

Brøndsted [26] gives a handy introduction to all the issues involved, with many refer-

ences; here we are only concerned with uncertainty on fatigue strength; unfortunately

there is more than enough of that in composite materials. The CA fatigue strength

depends on:

• The fibre material (glass, carbon, aramid, wood).

• The volume ratio fibre material to polymer resin (the matrix material which is

filling up the space between the fibres).

• The orientation of the fibres.

• The type of resin (thermoset (polyester, epoxy, vinyl ester) or thermoplastic).

Table 7.11: Fatigue properties for bolts. Note: fatigue strengths are amplitudes, not ranges.

Material Bolt material 8.8, 10.9, 12.9

Treatment Hardened (HR=before rolling, RH=after rolling)

Quality

Cross section M16 - M72

Loading axial loading under pre-stress)

Fatigue data treatm. m ND mat FM/F0.2 fat. str. Tσ COV

[-] [-] [MPa] [-] [-]

Dunkel [50] -

M16 RH 3 10.9 0.7 45 1.31 0.104

Kloos [108]

M16 RH 3 2 × 106 8.8 0.6 65 1.41 0.13

M16 12.8 0.6 68 1.43 0.14

M24 8.8 0.6 63 1.22 0.08

M24 12.9 0.6 63 1.65 0.20

Hanenkamp [78]

M34x4 HR 6 7 × 105 10.9 0.7 78 1.31 0.11

M42x4.5 10.9 0.7 72 1.31 0.10

M48x5 10.9 0.7 76 1.34 0.12

2” UNC 10.9 0.7 48 1.36 0.12

M64x6 10.9 0.7 47 1.22 0.08

M72x6 10.9 0.7 44 1.18 0.06
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• Whether the blades are hand or machine laid, and whether resin infusion is used

to fill the mould (nowadays machine laying and vacuum infusion is standard

procedure; this removes some variation).

• The presence of wrinkles, misalignments and porosities.

• At what temperature and how long the material is cured.

• How sensitive the material is to moisture.

• Size. It is not known precisely how coupon tests relate to full scale tests.

Other than ferrous materials, composite materials may fail not only in tension, but

also in compression (micro buckling of fibres); furthermore fatigue strength is strongly

dependent on mean stress.

7.5.2 S-N curve

Because of different failure modes, it is not possible to use one S-N curve with a

general correction for mean stress. Instead tests must be done for many different

stress ratios. An example of a constant life diagram is given in figure 7.8. It is clear

that the shape of the lines cannot be described by simple models, and that prediction

based on a linear or bilinear diagram must necessarily be off, as also observed by

Nijssen [157] who shows an even more irregular diagram based on many tests (see

also section 7.5.3). Because of all the variation, it is hardly surprising that there

are no generic fatigue data that can be used. Manufacturers do tests on their own

material, and these data are proprietary. However in our calculations we do not need

specific values for the fatigue strength or fatigue strain: we may assume that a blade

was designed according to the standard (i.e. has unity stress reserve factor), and only

need to determine generic uncertainty in the values. From the literature it can be seen

that the scatter on life is TN ≃ 10 (Bond [19], Van Leeuwen [126], Nijssen [161];

however usually no statistical evaluation is included, and the scatter has to be read

from graphs. Fortunately from the OPTIMAT project statistical results from a large

database are available for glassfibre reinforced epoxy (GRE) (Nijssen [157]).

Van Leeuwen [126] showed that variation in fatigue life is not larger for blades

Table 7.12: Some fatigue data for glassfibre reinforced epoxy (GRE) test specimens. Source:

Nijssen [157]; values for TN , Vσ and Tσ are derived from the original data, assuming a

lognormal life distribution.

Test probe R m VN TN Vσ Tσ

MD R0400 -1 9.63 1 8.4 0.09 1.25

0.1 9.96 0.3–1 2.1-8.4 0.03–0.08 1.08–1.24

10 25.35 >1 >12.8 >0.03 >1.09

UD R0300 -1 9.0 1 8.4 0.09 1.27

0.1 9.1 0.3–1 2.1–8.4 0.03–0.09 1.09–1.26
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Figure 7.8: Example of a constant life diagram (schematic). The coloured lines represent the

fatigue strength at the given number of cycles as function of mean stress.

compared to coupons.

Following Nijssen (see table 7.12), we will assume TN = 8.4 for scatter on indi-

vidual fatigue lives. As slope of the curve we will consider values m = 9–12; m =

9–10 is representative for glassfibre materials and carbon fibre, while higher expo-

nents are more fitting for wooden blades. All curves used for calculations are median

minus two standard deviations.

7.5.3 Fatigue life prediction

It is difficult to apply fracture mechanical concepts developed for isotropic, homo-

geneous material. Nevertheless work is going on in this direction; other methods

being investigated are the use of a strength degradation model (Nijssen [159, 160]),

possibly in combination with monitoring the material stiffness as indicator of resid-

ual strength. However the state-of-the-art is still to use the constant life diagram and

Palmgren-Miner summation.

Articles tend to give ad hoc fatigue damage estimation rules fitting the data set

that the author had available. The general approach is to use CA test data for differ-

ent stress ratios to predict the life found in tests with the WISPER-spectrum or the
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reduced WISPERX spectrum (see for example Bond [19], Echtermeyer [51], Man-

dell [132], Nijssen [161]). Usually good results are obtained after a modification

of some sort has been applied to the standard procedure. It is not possible to judge

the general validity of such procedures results to wind turbines, in particular because

the WISPER/WISPERX load spectrum -while being a useful spectrum for compar-

ing results by different investigators and to do at least some testing of prediction

algorithms- is not very representative of real blade loading.

Sutherland [202] investigated for how many R-ratios tests must be done, by com-

paring life predictions with simplified constant life diagrams and with a ’complete’

constant life diagram having 13 R-ratios (see figure 7.8, previous page). He shows

that at least 5 lines are required for typical edgewise loading (R = -2, -1, -0.5, 0.1

and 0.5), while 6 lines are enough for flapwise loading (R = -2, -1, -0.5, 0.1, 0.5

and 0.7). A diagram with only three R-values (which seems to be the customary di-

agram) yields life prediction that are 0.85–0.99 for edgewise loading and 0.22–2.43

for flapwise loading, and hence is not sufficiently accurate. We may conclude that

it is not unrealistic to assume TD = 2.43/0.22 ≈ 10 for damage prediction, which

would translate into Tσ = 101/9 = 1.29, or Vσ = 0.10 (note that the nice thing about

Sutherland’s approach is that variations in material properties do not enter at all in the

life estimates). This scatter results is confirmed to some extent by results of Echter-

meyer [51], who presents obtained lives of 0.2–1.6, i.e. a scatter factor T ≈ 8.

A recent overview and evaluation of prediction methods is given by Nijssen

[158]; his main conclusion is in line with Sutherland’s [202], that constant life di-

agrams based on tests with many R-values yield the best prediction.

Another attempt to describe the entire constant life diagram is the multislope

approach presented by Boerstra [17], in which S-N curves for various R-values are

combined into one by using a variable slope m.

Given the available information, we set TD = 10 for life prediction scatter due

to insufficiently accurate modelling. Unfortunately we have insufficient data to say

anything about bias; however we are helped somewhat by the fact that fatigue curves

for composite are very flat. For example if the bias on life prediction is 0.5, then the

corresponding bias on strength is 0.51/10 = 0.93, which is only a minor correction.
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Optimal partial factors

8.1 Introduction

Now that all relevant probability distributions have been established (chapters 4–7,

for a summary see section 8.7), we can estimate the component probability of failure

due to fatigue loads for any combination of partial factors, design parameters and site

parameters. The procedure to do this is as follows:

1. Choose the parameters for the wind turbine design (for example the wind class

definition according to IEC 61400-1).

2. Choose a site according to the site admission rules (equation (3.20), p44), and

estimate the site parameter distributions (for example the distribution of the

site yearly mean wind speed).

3. Choose a set of partial factors (for example according to IEC 61400-1).

4. Calculate the probability that the relevant wind turbine components fail.

Obviously the procedure sketched above may be used in reverse: partial factors may

be varied until some target failure probability is reached. In particular we are inter-

ested in economic optimisation, where we want to find the partial factors that give us

the lowest electricity generation cost (see section 2.6). The product of partial factors

influences both the mass of a component and its failure probability; thus it is a matter

of balancing extra mass (a larger initial investment for construction material) against

reduced failure probability (and associated smaller cost of failures). It is easy to es-

tablish the influence of the partial factor product on a component’s mass, but how

extra safety influences failure probability is more difficult to assess. To do this, we

have to examine the limit state function, a matter to which we now turn.

It should be noted that no safety factor calibration is carried out, as is done for

example by Ronold [178]. Such a calibration would involve deriving partial factors

for (a subset of) all stochastic parameters, and selecting a set of factors that holds the

failure probability close to the target value for a wide variety of load situations and

133
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critical locations. Instead we consider fatigue failure of four different components

(listed in table 8.1); failure of a component occurs because loads acting on it cause a

crack in a critical location to form and grow. For each component the optimal partial

factor and associated failure probability will be derived, for which the cost function

(incorporating initial investment and cost of replacement of parts) has a minimum.

8.2 Limit state function

Under which conditions a component fails is determined by examining the limit state

function Z, which is the difference of the resistance R(x) and the load S(x):

Z(x) = R(x) − S(x) (8.1)

Both the resistance R(x) and the load S(x) depend on a vector of stochastic parame-

ters x (wind speed, turbulence intensity, fatigue strength, et cetera); the construction

fails if the load S(x) is larger than the resistance R(x), or Z(x) < 0. The probability

of this happening pF = P (Z(x) < 0), defined by the following integral:

pF =

∫

Z(x)<0

f(x) dx =

∫

Rn

f(x) H (−Z (x)) dx (8.2)

Here f(x) is the probability density, and H (−Z (x)) is the Heaviside function,

which is H = 1 if Z(x) < 0 (failure) and H = 0 if Z(x) > 0 (no failure). To

show how the failure probability is found in practice, as example we take the vector

x to be:

tx = (q0, xdim, x∆σA
, Ia, Iwf , Uavg, Y, α,Γ) (8.3)

with:

Table 8.1: List of components, loads acting on it, and consequences of failure.

component load causing failure consequences

blade edgewise moment Mx11r one blade fails and is destroyed

flapwise moment My11r

hub edgewise moment Mx11h the hub fails and is destroyed; the

flapwise moment My11h rotor (hub and blades) falls down

machine frame driving moment MxNr the machine frame (nacelle) fails

tilt moment MyNf and is destroyed; the rotor (hub and

yaw moment MzNf blades) falls down.

tower tower base W-E moment Mxt0 the tower fails, and the entire wind

tower base N-S moment Myt0 turbine collapses
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Ia ambient turbulence intensity [-]

Iwf windfarm added turbulence intensity [-]

q0 stress factor (load sequence reduction factor on fatigue strength) [-]

Uavg long term average wind speed [m/s]

xdim dimension factor (for deviations in section modulus) [-]

x∆σA
material fatigue strength divided by characteristic value [-]

Y yaw misalignment [rad]

α wind shear exponent [-]

Γ Mann’s shear parameter [-]

Although formally both R and S may be functions of every component of x, more

natural dependencies are:

R(x) = R(xR) = R(q0, xdim, x∆σA
) (8.4)

S(x) = S(xS) = S(Ia, Iwf , Uavg, Y, α,Γ) (8.5)

The task is to find the integral given in equation (8.2) by evaluating the resistance

R and the load S. This is what a certification body is doing: given a design, check

whether the resistance R is large enough compared to the load S to achieve the target

failure probability.

In what follows we will assume that both R and S have dimension of moment

[Nm]. However this is not essential and the whole calculation could also be done with

R and S having dimension of stress of force ([Pa] or [N]), or be cast in dimensionless

form.

8.3 Site equivalent fatigue load

When considering fatigue failures, it is convenient to establish both the resistance and

the load as equivalent fatigue load. The advantage of this concept is that any load his-

tory, no matter how complex, can be reduced to one number, which greatly increases

computational efficiency. This comes at the cost of some additional inaccuracy, but

probably not much (see section 9.4 and appendix C).

The site equivalent fatigue load is the load that, when applied Neq times, would

produce the same amount of fatigue damage as the actual random load history; it is

found by calculating the load history representative for the turbine’s life under the

set of site conditions x, and rainflow counting all cycles in that history. The rainflow

procedure converts the random load history into a table of triplets (number of cycles

ni, load range ∆Fi, mean load Fmean,i), that can be used to estimate fatigue damage.

For each load cycle, characterised by extreme values Fmax,i and Fmin,i, we find the

range ∆Fi and the mean Fmean,i:

∆Fi = Fmax,i − Fmin,i (8.6)
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Fmean,i =
1

2
(Fmax,i + Fmin,i) (8.7)

The value of S(x) is for example given by (other definitions of the equivalent load

are possible, see appendix C):

S(x) = ∆Feq(x) =

(∑
ni(x)∆Fm

i (x)

Neq

)1/m

(8.8)

Here ni is the frequency of occurrence for a particular load cycle i; the equivalent

number of cycles Neq may be set to any value1. A common choice is to set Neq =
5 × 106 to enable direct comparison with fatigue tests or standards (for example

Eurocode 3 puts the fatigue limit at 5 × 106 cycles). Alternatively Neq is set to the

number of cycles that a 1 Hz signal would have during the wind turbine’s life; the

advantage of this last choice is that equivalent loads found in calculations for periods

of different length are directly comparable. It is straightforward to calculate the site

equivalent load for any vector x, the only problem is that it is expensive in terms of

computation time.

8.4 Fatigue resistance

The fatigue resistance R of a cross section with associated nominal section modulus

W is:

R(x) = xdimW∆σA (8.9)

where xdim is a factor accounting for deviations from ideal geometry (for example

due to manufacturing inaccuracy), and ∆σA is the fatigue strength (here a stress).

The fatigue strength ∆σA is:

∆σA = q0x∆σA
∆σA,char (8.10)

Here x∆σA
represents the ratio of actual fatigue strength and characteristic fatigue

strength (under constant amplitude loading):

x∆σA
=

∆σA

∆σA,char
(8.11)

The characteristic fatigue strength ∆σchar is for example the 2.3% value (two stan-

dard deviations below the mean). The number q0 is a factor on fatigue strength ac-

counting for the effect that the fatigue damage (the Palmgren-Miner sum) that can be

1The equivalent number of cycles Neq is not equivalent in the sense that (for example) it is deter-

mined as a weighed sum of numbers N . The subscript ’eq’ only indicates that Neq is associated with

equivalent load ∆Feq . A better name would be ’Nref ’ but for clarity we stick with the convention.
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sustained by some critical location (’hot spot’) depends on the properties of the load

spectrum: the frequency distribution of small and large cycles and sequence effects2.

Combining equations (8.9) and (8.10) yields the actual resistance R(x):

R(x) = q0xdimx∆σA
W∆σA,char (8.12)

In a certification process the value of the section modulus W would be taken from

a drawing of the specific turbine under consideration, and one could then proceed

to compare the resistance R with the load S, to establish whether the wind turbine

had sufficient strength. However our aim is to do general calculations for any wind

turbine, and therefore we want to eliminate the section modulus W and express R(x)
directly in terms of the characteristic load effect Savg(xchar). To do this, we use the

conventional design equation, which links the characteristic resistance Rchar to the

characteristic load effect Savg(xchar):

Rchar

γm
= SRFγfSavg(xchar) (8.13)

First a set of characteristic load conditions xchar is defined (for example a wind

regime class according to IEC 61400-1); for fatigue calculations on wind turbines

these conditions are set in such a way that they reflect conservative estimates of rep-

resentative conditions. If we do a full fatigue load calculation with this set of condi-

tions, the result is the average characteristic load effect Savg(xchar)
3. For additional

safety, the load is inflated with the load factor γf ≥ 1, and the characteristic fatigue

strength is reduced by the material factor γm ≥ 1. The stress reserve factor SRF
is not an input to, but a residual of the design process, where dimensions are ini-

tially chosen conservatively and increased if strength is insufficient, but not usually

decreased if there a small extra safety margin. Ideally we would have SRF = 1, but

a more usual situation is SRF ≃ 1.05. Because:

Rchar = W∆σchar (8.14)

Equation (8.12) may be rewritten as:

R(x) = q0xdimx∆σA
Rchar (8.15)

2Because we are dealing with the properties of the load here, it may be argued that (the inverse of)

the factor q0 should be put on loads, rather than on fatigue strength. However this is not essential, and

by defining a reduction on fatigue strength we follow common practice in fatigue literature.
3There is a minor complication here: what we would like to have is the average characteristic load

effect Savg(xchar); but because we are using random wind fields with different seeds in the calcula-

tions, we end up with a characteristic load effect that is different from the average value by a factor

xseed. However it is current practice to evaluate many load cases, all having different wind fields,

resulting in xseed being very close to unity:

S(xchar) = xseedSavg(xchar) ≃ Savg(xchar)

The fact that xseed is a stochastic parameter is taken into account in the calculations, but we will not

burden the discussion with it.
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Using equation (8.13), we eliminate Rchar to get:

R(x) = q0xdimx∆σA
SRF γfγm Savg(xchar) (8.16)

The section modulus W has now been removed and the fatigue resistance R(x) is

defined in terms of a set of characteristic site conditions xchar, and the components

of xR:

q0 parameter for variation in fatigue strength due to load sequence effects

xdim parameter for variation in material dimensions

x∆σA
parameter for variation in constant amplitude fatigue strength

The wind turbine designer would use equations (8.13) and (8.14) to find the section

modulus W , which would then be communicated to the certification body for a check

against the characteristic loads. What we have done is eliminate the wind turbine

specific section modulus in order to make the evaluation of the limit state function Z
valid for any machine.

8.5 Failure probability

To work out the failure probability we need to calculate the integral in equation (8.2),

something that for example may be done with the Monte Carlo method, or with the

First Order Reliability Method (FORM).

The Monte Carlo method works by doing N (simulated) experiments to obtain

an estimate of the failure probability. In every experiment each component xi of the

stochastic variable vector x is randomly sampled according to its distribution, and

the limit state function Z(x) is evaluated. Every time Z(x) < 0, a failure is recorded

(NF is increased by one), and when N experiments have been performed, the failure

probability pF is found with:

pF =
NF

N
(8.17)

The strength of the method is its great generality: any limit state function and any

distribution can be handled; its disadvantage is slow convergence: for example if the

failure probability is in the order of pF = 10−6, then something like 108 numerical

experiments are required to get a reliable answer. If the evaluation of Z is costly it be-

comes important to speed up convergence, and several schemes have been developed

to do this; for details see for example Press [167, 168].

The First Order Reliability Method (FORM) relies on replacing all probability

distributions involved by suitable normal distributions, which make it possible to

approximate the n-dimensional surface consisting of all vectors x for which Z(x) =
0 by a hyperplane. This hyperplane is found with a fast iterative method, and the
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failure probability may then be calculated directly. The advantage of the method is

its speed, which is gained at the price of some (small) loss of accuracy. The theory of

FORM can be found in any book on probabilistic design; a description of the version

used here is given in appendix F.1. What is used is standard FORM, except for the

evaluation of the limit state function Z, which is done with an approximate method

(see below).

Both methods involve evaluation of the Z-function: in the Monte Carlo method

we need function values directly, in FORM we mostly need derivatives, but these can

only be established numerically in our case, so again function values are required. If

we put equation (8.16) back into the limit state function Z (equation (8.1)), we get:

Z(x) = q0xdimx∆σA
SRF γfγmSavg(xchar) − S(x) (8.18)

The work of evaluating Z(x) consists of:

1. Finding the characteristic average load effect Savg(xchar). This is not difficult.

It involves the calculation of (say) 5 load spectra of 26 load cases = 130 load

cases (or some more depending on how sure we want to be of having found

the true average value Savg(xchar)). If characteristic conditions are fixed for a

calculation (for example an IEC class), this only needs to be done once. The

resistance is found by multiplication with the stochastic parameters.

2. Finding the site load effect S(x). This is the real problem, since we need the

site load effect for any vector x that may turn up in the calculation. Worse yet,

the first order reliability method operates with an iterative scheme that needs

values of Z and all its derivatives ∂Z/∂xi (which often can only be found

numerically). Because x has 15–20 independent components, it is not feasible

to redo the whole calculation each time a new value of Z is needed.

What we need is a fast way to estimate Z(x) for any vector x. One way of doing

this is to use Taylor expansion, which may be done from any point x0. In our case

x0 = xchar would be an obvious choice:

Z(x) ≈ q0xdimx∆σA
SRF γfγmSavg(xchar)

− S(xchar) −
∑

j

(xj − xchar,j)

(
∂S

∂xj

)

x=xchar

(8.19)

Establishing each derivative necessitates (as a minimum) one new full calculation (the

fixed point S(xchar) is known already), but calculations need only be done once, so

there is a clear speed advantage in this approach. However the Taylor approximation

is only accurate as long as we do not get too far from the fixed point, which may not

always be the case.

As a matter of fact, if we need accurate derivatives over larger intervals, we may

just as well be smart and use the same amount of work in a more precise approach.

What we do is calculate the value of Z(x) for a few points over the intervals of interest
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of xj and then fit low order polynomials through the points found. If a change in one

variable xj always changes the load S(x) by the same relative amount independent

of the value of other components of x, then S(x) can be written as a product of

independent functions Sj(x):

S(x) =
∏

j

Sj(x) (8.20)

and results will be exact for any x (in appendix F.2 it is shown that the product

approximation of equation (8.23) yields acceptable results for the important site pa-

rameters wind speed and turbulence intensity, and is superior to the first order Taylor

expansion). If we divide equation (8.18) by Savg(xchar) we get an alternative (but

equivalent) limit state function Z ′:

Z ′(x) = q0xdimx∆σA
SRF γfγm − S(x)

Savg(xchar)
(8.21)

Because of assumption (8.20) we have:

S(x)

Savg(xchar)
=

∏

j

S(x = xchar, xj 6= xchar,j)

Savg(xchar)
(8.22)

This may be verified by writing out the product expression. Hence:

Z ′(x) = q0xdimx∆σA
SRF γfγm −

∏

j

S(x = xchar, xj 6= xchar,j)

Savg(xchar)
(8.23)

In summary, if we assume that a change in some component xj changes the site load

by the same relative amount regardless of the rest of the vector x, then the function

S(x) can be accurately calculated beforehand for sufficiently large ranges of xj . In

the Monte Carlo or FORM calculation, the behaviour of Sj(x) is approximated by

first or second order polynomials, something which turns out to give accurate fits, and

also takes care of the problem how to obtain the correct average value for S(x), since

curve fitting removes some noise in the calculations. In standard FORM or Monte

Carlo calculations, the limit state function Z would be evaluated exactly wherever

necessary, for example with the two-level factorial method (Larsen [120]) or if need

be with a complete hypersurface (the response surface). Strictly speaking the product

approximation proposed here makes the method used non-standard FORM.

8.6 Example

To show how the calculation operates in practice, we work out an example calculation

with only 3 stochastic variables. Let us consider a solitary turbine designed for IEC
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class II (average wind speed at hub height Uchar = 8.5 m/s). The estimate of the

climate at the sites where the turbine is to be installed is that the average wind speed

is U = 8.0 m/s, and we assume in this example that the turbulence corresponds exactly

to the one in the standard. We are interested in a fatigue failure of the tower base,

a welded structure. There is only one critical location: the door. There are three

variables, the (normalised) CA fatigue strength x∆σA
, the load sequence stress factor

q0 and the site wind speed U . The vector of basic variables x is:

x =




x1

x2

x3


 =




x∆σA

q0

U


 (8.24)

The variables ∆σA and q0 act on resistance R, while the variable U acts on the load

S. We define the limit state function as:

Z = R0R1R2 − S0S1 (8.25)

Here R0 and S0 are constants, and R1, R2, S1 are functions of the vector x.

Constant parameters. According to IEC 61400-1 partial factors for fatigue de-

sign are load factor γf = 1.0 and material factor γm = 1.27. We assume that the tower

has a stress reserve factor SRF = 1.05 (it is just a little too heavy, this is often the

case in the final design); then the factor R0 is:

R0 = SRF γF γM = 1.05 × 1.0 × 1.27 = 1.33 (8.26)

The site mean fatigue load is taken to be S0 = 0.9, because the wind direction distri-

bution is taken to be unidirectional in the evaluation of this load, while in fact wind

can come from any direction. Next we consider the basic stochastic variables.

1. Variation in normalised fatigue strength. R1(x) = R1(x1) = R1(x∆σA
) =

x∆σA
. For welds the coefficient of variation of the CA fatigue strength is Vx∆σA

=

0.134 (Köttgen [112], table 7.8, p126), and the standard (for example Eurocode 3)

provides the median values minus two times the standard deviation. This means that

the mean of the normalised CA fatigue strength is approximately

µx∆σA
=

1

1 − 2 × 0.134
= 1.37 (8.27)

The distribution is assumed to be lognormal.

2. Variation in stress factor. R2(x) = R2(x2) = R2(q0) = q0. According to the

data in table 7.10 (p127), the best estimates for median and coefficient of variation are

(q0,50% = 0.80, V = 0.17); the estimates that are one standard deviation from these

values are (q0,50% = 0.75, V = 0.12) and (q0,50% = 0.86, V = 0.22) respectively.

3. Uncertainty in wind speed seen by the turbine. The equivalent load depends

on the average wind speed as follows:

S1(x) = S1(x3) = S1(U) = 1 + 0.123 (U − 8.5) (8.28)
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Some values for the equivalent fatigue load (S-N curve slope m = 4 for welds) are

given in table 8.2, together with the values from a linear least squares fit. It is clear

that both sets of values are almost identical. The values in the bottom row are de-

scribed by equation (8.28). There are three sources of uncertainty in the wind speed

influence on the equivalent load:

1. The long term average site wind speed. The wind speed at 10 m height is

for example found with the Measure-Correlate-Predict procedure (MCP) (see

section 4.3.2). The distribution of the prediction is unbiased on average, but

the coefficient of variation varies: VMCP = 0–0.12 with an average of VMCP

= 0.04 (section 4.3). We do two calculations, with VMCP = 0.04 and VMCP =

0.08.

2. The yearly variation in wind speed, which was found to be V1 = 0.06 (section

4.3.4). For wind turbine life L years the coefficient of variation of the wind

speed over the life is VL = V1/
√

L.

3. The uncertainty caused by transforming the wind speed from 10 m height up

to hub height. If we assume a maximum error of 0.5 m/s ≈ 3σ at hub height,

then σ ≈ 0.5/3 = 0.17 and V = (0.5/3)/8.0 = 0.02.

We may estimate the combined coefficient of variation for wind speed with vector

summation. For example for 20 years life:

VU =

√
0.042 +

0.062

20
+ 0.022 = 0.047 (8.29)

Table 8.2: Equivalent fatigue load ranges as function of average wind speed. Bending mo-

ment at the tower base, 20 years life, slope of S-N curve for welds m = 4.

U [m/s] 6 7 8 9 10

∆Feq [kNm] (calculated) 1941 2273 2624 2972 3303

∆Feq [kNm] (linearised) 1938 2280 2623 2965 3307

∆Feq(U)/∆Feq(8.5) 0.69 0.82 0.94 1.06 1.18

Table 8.3: Distribution data for limit state function (equation 8.31)

Stochastic parameter Name Median V Dist.

Average load reduction S0 0.9 - D

Wind speed:

-MCP 1 0.04, 0.08

-Yearly wind speed (20 years) 1 0.06/
√

20
-Height transform 1 0.02

Wind combined (20 years) S1 1 0.047, 0.084 N

Average strength R0 1.33 - D

CA fatigue strength factor x∆σ R1 1.37 0.134 LN

Stress factor q0 R2 0.75, 0.80, 0.86 0.12, 0.17, 0.22 LN
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If the coefficient of variation VMCP is twice as large then:

VU =

√
0.082 +

0.062

20
+ 0.022 = 0.084 (8.30)

Data summary. All data are summarised in table 8.3. To recapitulate:

Z = R0R1R2 − S0S1 (8.31)

With:

R0 = 1.33

R1 = R1(x1) = R1(x∆σA
) = x∆σA

R2 = R2(x2) = R2(q0) = q0 (8.32)

S0 = 0.9

S1 = S1(x3) = S1(U) = 1 + 0.123 (U − 8.5)

Results. The results of the calculation are given in figure 8.1 (next page), for different

estimates of the distribution of the stress factor q0: mean, and mean plus or minus

one standard deviation. The characteristic picture is seen that the cumulative failure

probability is almost zero in the first years, and starts to become significant after

a few years. This is of course due to the fact that the creation of fatigue damage

takes time. Cumulative failure probabilities seem fairly high, something that can be

directly attributed to the large scatter on fatigue life under variable amplitude loading

(or, in stress terms: large scatter on the stress factor q0). However if we look at the

average yearly failure probability found pF = 6×10−4, this figure is not so different

from what is achieved in practice: pF = 2 × 10−4 (see table 2.5, p21), or the figure

pF = 10−3 derived by Tarp-Johansen [203].

Although results are different, it is seen that the exact choice of the q0-distribution

does not have a large influence on what happens in the second half of the turbine’s

life; this is because the estimates of median and coefficient of variation were assumed

Table 8.4: Results of example calculation: influence factor α2, failure probability pF and

reliability index β. V is the coefficient of variation of the stochastic parameters.

Stochastic parameter V α2 V α2

Fatigue strength ∆σA 0.13 0.36 0.13 0.33

Stress factor q0 (median 0.80) 0.17 0.58 0.17 0.54

Wind speed U 0.047 0.05 0.084 0.13

Cumulative failure probability pF (20 years) 1.2 × 10−2 1.6 × 10−2

Reliability index β (20 years) 2.25 2.14

Average yearly failure probability pF,avg 6.0 × 10−4 8.0 × 10−4

Reliability index β (1 year) 3.24 3.16
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Figure 8.1: Tower fatigue failure probability a function of time (example). Note that values

of the median and standard deviation of q0 are combined according to columns in table 7.10.

to be correlated; for example a small value of the median goes with a small coefficient

of variation.

The FORM calculation also provides the influence factors (table 8.4), that indi-

cate how the variation of the limit state function is distributed over the set of stochas-

tic variables. In this case almost all variation is due to uncertainty in the stress factor

q0 and in the CA fatigue strength of welds. If the uncertainty on wind speed estima-

tion is increased, failure probability becomes somewhat larger, but not much because

stress factor and fatigue strength uncertainties are dominating.

8.7 Standard calculation

We estimate the failure probabilities if we were to do a design calculation according

to the standard, and install the turbine on a site exactly corresponding to the assumed

conditions, according to the site admission rule, equation (3.20) (p44). In table 8.5

the design values chosen for all relevant parameters are given. Also the distributions

that are the result of the investigations in the previous chapters are listed.



8.7 Standard calculation 145

Table 8.5: Overview of distributions used in the standard calculation.

site (actual wind turbine) values design

dist. ref. fractile std dev. COV

parameter xr P (xr) σ V xd

low cycle fatigue conservatism N 1 0.5 (see table 4.2) 1

- tower fore-aft moment Myt0 N 1.05 0.5 0.01 1

average wind speed Uavg [m/s] N 8.5 0.5 0.071 8.5

Weibull shape factor k N 2 0.5 0.015 2

wind dir. dist. conservatism D 1 1

- tower fore-aft moment Myt0 N 0.77 0.5 0.01 1

wind field seed N 1 0.5 (see table 4.3) 1

turbulence intensity I N 0.16 0.5 0.01 0.18

wind field shear Γ N 3.2 0.5 0.3 3.9

wind shear exponent α N 0.2 0.5 0.02 0.2

air density ρ [kg/m3] D 1.225 1.225

yaw error Y [◦] N 0 0.5 1 6

inflow angle (slope) S [◦] N 4 0.5 1 8

wake effect model (as turb.) LN 0.02 0.5 0.01 0

significant wave height Hs [m] LN 1.27 0.5 0.03 1.27

wave spectrum peak parameter γ N 2 2

wave nonlinearity N 1.10 0.5 0.03 1

wind/wave misalignment D 1 1

drag coefficient CD N 0.7 0.5 0.1 0.7

inertia coefficient CM N 2.0 0.5 0.1 2.0

tide factor deq D 1 1

current D 1 1

all aerodynamics

- edge mom. Mx11r, Mx11h N 1 0.5 0.01 1

- tower fore-aft mom. Myt0 N 1 0.5 0.03 1

- other moments N 1 0.5 0.03 1

control system D 1 1

cut out wind speed Uout [m/s] N 25 0.5 0.5 25

structural model D 1 1

eigenfrequencies D 1 1

geometry N 1 0.5 0.03 1

FEM unit stresses N 1 0.5 0.06 1

- tower N 1 0.5 0.03 1

fatigue strength x∆σA

- blade (m=12) LN 1 0.023 0.07 1

- cast iron (m=6.3) LN 1 0.023 0.07 1

- weld (m=3.5) LN 1 0.023 0.11 1

stress factor q0

- blade (m=12) LN 1 0.5 0.10 1

- cast iron (m=6.3) LN 0.93 0.5 0.13 1

- weld (m=3.5) LN 0.80 0.5 0.17 1
1Combination of prediction at 10 m, transformation to hub height and yearly variation.
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Each distribution for the actual turbine at some site is characterised by a reference

value xr, the corresponding fractile P (xr), and either the standard deviation σ or the

coefficient of variation V . Furthermore for all components we set the stress reserve

factor SRF = 1 and load factor γf = 1; following common practice, we set the

material factor γm = 1.50 for the blades, γm = 1.27 for the tower and γm = 1.38 for

the hub and the nacelle (cast iron). The results of the calculation according to the

standard are given in table 8.6. There are a few interesting things to be observed

here:

1. Results of the First Order Reliability Method and the Monte Carlo method are

close to each other in all cases. This shows that it is justified to use the faster

FORM in our calculations; of course in some final stage one might always do

an ’exact’ calculation with the Monte Carlo method.

2. For all components most uncertainty is associated with the fatigue strength and

the stress factor (i.e. the fatigue damage sum). For most components these two

parameters are totally dominating, with sum of the variation above 0.60.

Table 8.6: Overview of failure probabilities pF , reliability indices β and influence factors α.

Standard calculation according to IEC 61400-1 class II for L = 20 years life. The definition

of fatigue damage equivalent load includes mean stress influence, except for the tower welds.

load component Mx11r My11r Mx11h My11h MxNr MyNf MzNf Myf0

pF,MC,L 9.3e-5 2.3e-4 1.0e-2 1.5e-2 1.3e-2 3.0e-2 2.0e-2 7.3e-2

pF,FORM,L 9.1e-5 2.1e-4 1.0e-2 1.4e-2 1.3e-2 2.9e-2 1.9e-2 7.2e-2

βFORM,L 3.74 3.53 2.31 2.17 2.21 1.90 2.08 1.46

βFORM,1 4.44 4.26 3.28 3.18 3.20 2.98 3.11 2.69

α2 [%]

Fatigue strength 24 21 18 17 17 14 15 23

Stress factor 48 42 62 59 58 47 52 53

Wind seed 1 1 2

Geometry 5 4 3 3 3 3 3 2

FEM 22 18 15 14 14 11 12 2

Avg. wind speed 3 1 2 3 9 6 10

Weibull shape

Wind dir. dist.

Turb. intensity 4 1 8 6 3

Spectrum shape 1 3

Wind shear 1

Windfarm wake 3 1 4 3 1

Aerodyn. model 4 3 3 2 3 2

Yaw error

Terrain slope

Low cycle fatigue 1

Stop wind speed
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3. Second most important is FEM, for all components but the tower α2 ≥ 0.10.

4. Of moderate importance are average wind speed (for the nacelle and the tower)

and turbulence intensity (for the nacelle).

5. Not important at all are the following uncertainties: Weibull shape factor, wind

direction distribution, the spectral shape (characterised by Mann’s shear pa-

rameter) wind shear, yaw misalignment, inflow angle (terrain slope), low cycle

fatigue, and finally the stop wind speed.

From these results we may immediately draw the conclusion that efforts to reduce

uncertainty should focus mainly on fatigue issues and perhaps on FEM-calculations

(see also section 8.9).

8.8 Optimisation and comparison to standard values

Now that all the machinery to find failure probabilities is in place it is time to return

to the question what the optimal failure probability and target reliability are from a

financial point of view. To recapitulate: we want to minimise the function w(γ),
given by equation (2.21) (repeated here):

w(γ) =
W (γ)

CI(γ0)
=

CI(γ) + CF (γ) + CR(γ)

CI(γ0)
(8.33)

The value of the product of partial safety factors γ for which w(γ) reaches its mini-

mum is the economically optimal one.

For the calculation we use the standard land turbine NM92/2750-70 (see ap-

pendix B). We look at the tower, the blade, the hub and the nacelle in turn. In each

case, we assume that dimensions are fully determined by fatigue loads (something

which is not true, but reasonable because we want consistent fatigue design).

Tower. For the tower the derivative of mass with respect to the total safety factor

(product of partial factors) γ is established by finding the minimum weight tower for

various values of γ. It turns out that the relation safety factor-tower mass is almost

linear, with 1/m0 ∂m/∂γ = 0.7 (where m0 is the tower mass for the base case with

γ0 = 1.27). The fraction repair (or replacement) cost divided by investment cost is

fR = 0.9 because it may reasonably be assumed that almost the entire turbine must be

replaced if the tower fails (see table B.3). Following Dalsgaard Sørensen [198, 199]

the additional failure cost (debris removal and loss of revenue) CF is set to 3% of the

investment cost CI(γ0 = 1.27).

For the tower we investigate the sensitivity of the optimal reliability index to

three factors: the interest rate r, the failure cost fraction fF and the number of critical

locations N .

The optimal tower reliability index β (and therewith the optimal γ) depends on

the interest rate r: if r is larger it is advantageous to invest less now (investing present
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Figure 8.2: Economic weight function w for the tower for various values of the interest rate

r. The failure cost fraction fF = 0.03 and the number of critical location is N = 1. For

r = 5% optimum system reliability index (period 1 year) is β1 = 3.32.

day money is ’expensive’), and to have more failures (since these will occur in the

future they are ’cheaper’ in present day money than if there were no inflation). It is

seen in figure 8.2 that the optimum shifts from β1 = 3.52 to β1 = 3.10 if the interest

rate goes from r = 0% to r = 10%: dependence is not very strong.

The dependence on the failure cost fraction fF is even smaller: the minimum

hardly shifts (see figure 8.3). This is not strange since replacement of 90% of the

entire turbine is more expensive by far than the failure cost.

Figure 8.4 shows the cost function w for any number of critical locations. Ob-

viously the optimal safety factor is smaller in the case of one critical location, than

if there are five or ten locations, in particular because failures must be considered

to be less than perfectly correlated (if not fully independent). Because the tower is

designed to be as light as possible, ideally all locations should have exactly the same

stress reserve factor SRF = 1. In practice this is not achieved, and stress reserve

factors vary typically between 1 and 1.1, with mean value SRF ≃ 1.05. This has the

effect that (in this particular case) the 32 critical locations in the tower with different

stress reserve factors can be treated as 16 equivalent critical locations with SRF =

1. The subjects of multiple critical locations with possibly correlated loads and the

influence of the size of a critical area are treated in more detail in appendix F.3.
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Figure 8.3: Economic weight function w for the tower for various values of the failure cost

fraction fF . The number of critical locations N = 1 and the interest rate is r = 5%. For

fF = 0.03 optimum system reliability index (period 1 year) is β1 = 3.32.
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tions N . The failure cost fraction fF = 0.03 and the interest rate is r = 5%. For N = 1 the

optimal partial factor product is γ = 1.57.
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Blade. For blades the situation is somewhat different, because collapse of a blade

does not destroy the whole structure; in most cases only the blade needs to be re-

placed. Because the cost of replacement is smaller, the optimal reliability index β is

shifted to lower values. In the calculation it is assumed that one blade represents 4%

of the total investment (fR = 0.04). The normalised mass derivative is:

1

m0

∂m

∂γ
= 0.5 (8.34)

This number is based on experience with actual blades. Of course for an ideal thin

walled structure one would expect unity value. Optimisation results are given in table

8.9 (p152).

Hub. There are two possible failure scenarios for the hub. On one hand it may

be argued that there will be no additional damage, and that only the hub is replaced;

however this would require that cracks are detected. On the other hand it may be

assumed that the whole rotor (hub and blades) must be replaced. This seems to be

the more likely case.

The difference with the tower is that the hub is a cast product, and this makes it

relatively cheap to strengthen critical areas since material need only be added locally

(in the tower the welds are critical, and each weld defines the thickness of a 2.4 m

high plate section). It is not easy to say what the normalised mass derivative should

be in reality without doing detailed calculations on the hub. Fortunately the influence

on the optimal safety factor is not all that large, as can be seen in table 8.7. For now

we settle for a value of 0.2, but the value may be determined more accurately if so

desired. It is noted that basically one is interested in the cost derivative rather than

the mass derivative. However the calculation is not sensitive to the price of cast iron:

if the price is higher it is more expensive to strengthen the hub, but on the other hand

a failure with hub replacement is also more expensive.

Nacelle. The calculation of the nacelle machine frame is analogous to that of

the hub; only failure and replacement is more costly. Different failure modes may

be imagined. In the worst case the whole nacelle might fall down: if we assume

that the only things that are not damaged are the tower, the foundation and the grid

connection, together about 30% of total investment, the damaged fraction would be

Table 8.7: Optimal component reliability index for the hub. The assumed failure mode is

collapse of the entire rotor, with replacement costing 20% of the wind turbine (fR = 0.2).

Standard calculation according to IEC 61400-1 class II for L = 20 years life.

normalised mass derivative 0.1 0.2 0.3 0.4 0.5 1.0

optimal reliability index β1 3.81 3.64 3.53 3.47 3.39 3.18

optimal safety factor γ
- number of critical locations N = 1 1.59 1.53 1.49 1.47 1.45 1.38

- N = 10 1.77 1.72 1.68 1.66 1.64 1.59
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fR = 0.7 (see table B.3). In the most favourable scenario (crack detection), only

the nacelle would have to be replaced, giving fR = 0.1. Finally in an intermediate

case, the rotor would fall down (hub and blades), probably taking with it the main

bearing and the main shaft; also the machine frame would have to be replaced. This

comes out to about fR = 0.4. Like we did for the hub we consider mass/safety factor

derivative 0.1 and 0.2; results are given in table 8.8.

Summary. The results of the optimisation calculations are summarised in table

8.9 (next page). Results are only shown for the worst case load component (sensor);

other results are almost identical. The optimal value of the failure probability (and the

product of safety factors) depends on the expected damage in relation to the expected

cost of making the component stronger. Thus it is economically optimal not to invest

much in blade strength, but put the money in stronger machine frames and towers.

The safety factors in table 8.9 (next page) are different from the customary factors,

especially if we take into account the effect of multiple critical locations.

This means that it is advantageous to make the hub, the nacelle and the tower

stronger in the critical areas because the extra material is cheap compared to the fa-

tigue failures that are expected; conversely it pays to make blades less safe because

the cost of losing a few blades is small. Of course the value of the economically op-

timal safety factor says nothing about the desirability of the associated failure proba-

bility from a public relations perspective.

The difference with current practice makes it important to analyse how results

arise. Fortunately, on the whole calculations are robust (see chapter 9). What is new

in the sense that it was not explicitly used in wind turbine calculations before is:

• That variation on CA fatigue strength is combined with variation of the stress

factor q0.

• That the median value of the stress factor q0 is set to a value smaller than unity

i.e. damage prediction is biased to the unconservative side.

• That the increase in failure probability caused by multiple critical locations is

taken into account.

Table 8.8: Optimal component reliability index and safety factor for the nacelle for different

failure modes and replacement cost. Standard calculation according to IEC 61400-1 class II

for L = 20 years life.

normalised mass derivative 0.1 0.2

replacement cost fraction fR 0.1 0.4 0.7 0.1 0.4 0.7

optimal reliability index β1 3.89 4.17 4.29 3.71 4.01 4.13

optimal safety factor γ
- number of critical locations N = 1 1.73 1.84 1.89 1.66 1.77 1.83

- N = 10 1.94 2.07 2.11 1.88 1.99 2.05
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8.9 Reduction of variation

To see where most can be gained by limiting variation of the limit state function, we

assume for each variable in turn that it is deterministic instead of stochastic, i.e. that

we know its value exactly (we ignore the fact that this is not possible for every vari-

able, for example that natural variability in yearly wind speed cannot be influenced).

Arbitrarily we require average yearly failure probability pF = 10−4 (β1 = 3.72, β20 =

2.88), and calculate for each case the necessary product of partial factors γ to obtain

these values.

Results are shown in table 8.10. The conclusion of this calculation is that wind

turbine manufacturers should concentrate their efforts on determining the stress factor

q0 (i.e. the fatigue damage sum) as accurately as possible. For example for the hub,

the required total safety factor could be reduced from 1.52 to 1.27 (Mx11h) and from

1.55 to 1.31 (My11h) respectively (note that the exact numerical values depend on

the required reliability index). There is no other variable of which perfect knowledge

can significantly reduce the overall required safety factor. This does not mean that no

improvement is possible if we had better knowledge of a number of other variables,

it is just that all individual contributions are swamped by uncertainty of fatigue. This

conclusion about the importance of knowing material fatigue properties conforms to

what was found by Larsen [120].

Table 8.9: Summary of results of optimisation of reliability index and safety factor. Standard

calculation according to IEC 61400-1 class II for L = 20 years life.

component blade hub nacelle tower

material composite cast iron cast iron welded steel

load used My11r My11h MyNf Myt0

normalised mass derivative 0.50 0.20 0.20 0.70

replacement cost fraction fR 0.04 0.20 0.40 0.90

failure cost fraction fF 0.01 0.01 0.03 0.03

component reliability index β
- 1 year period 2.70 3.64 4.01 3.32

- 20 year period 1.48 2.78 3.24 2.37

component failure prob. pF

- 1 year period 3.5×10−3 1.3×10−4 3.1×10−5 4.5×10−4

- 20 year period 7.0×10−2 2.6×10−3 6.2×10−4 9.0×10−3

target partial factor γ
- 1 critical location 1.09 1.53 1.77 1.57

- 5 critical locations 1.24 1.66 1.93 1.78

- 10 critical locations 1.29 1.72 1.99 1.86

- 20 critical locations 1.34 1.77 2.07 1.95

standard safety factor 1.50 1.38 1.38 1.27

DNV values (table 2.3) β1 = 4.26; pF,1 = 10−5
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8.10 Influence on turbine investment

It is not easy to say something definite about the influence of using different safety

factors on total cost over the life of the turbine. The turbine total cost (of investment

and of replacement of failed components) is the end result of a lengthy calculation

based on many assumptions (some of these assumptions are examined more closely

in chapter 9). What the optimal safety factor is, depends on the number of criti-

cal locations and the (assumed) replacement cost associated with component failure.

Also it must be stressed that fatigue may not be the governing load; for example hub

dimensions may be determined by stiffness considerations.

In table 8.11 (next page) some indications are given for N = 10 critical locations

and interest rate r = 5%. For each component the expected total cost (excluding

maintenance) over the turbine’s life is estimated with the safety factor currently used,

and with the optimal safety factor. Calculations are independent in the sense that if

one component is considered, all other components are assumed not to fail.

If we take the tower as example, we see that the current safety factor required

by IEC 61400-1, γ = 1.27, results in expected total cost over the turbine’s life that

is 1.32 times the original investment; if a safety factor γ = 1.86 is used instead, total

cost falls to 1.02 times the initial investment. Apparently the number of failures that

Table 8.10: Required total safety factor if one stochastic variable were exactly known. Fac-

tors are only listed if the difference with the case of ’no factors known’ is larger than 0.01.

Target yearly reliability index β1 = 3.72; target yearly failure probability pF,1 = 10−4. Stan-

dard load calculation according to IEC 61400-1 class II for L = 20 years life.

Known factor Mx11r My11r Mx11h My11h MxNr MyNf MzNf Myf0

None 1.33 1.36 1.52 1.55 1.55 1.66 1.59 1.76

Fatigue strength 1.26 1.29 1.45 1.49 1.48 1.60 1.53 1.63

Stress factor 1.18 1.22 1.27 1.31 1.30 1.43 1.36 1.42

Wind seed

Geometry 1.31 1.34 1.50 1.54 1.53 1.65 1.58 1.75

FEM 1.27 1.31 1.46 1.50 1.49 1.61 1.54 1.75

Avg. wind speed 1.53 1.62 1.57 1.70

Weibull shape

Wind dir. dist.

Turb. intensity 1.34 1.63 1.57 1.75

Spectrum shape 1.75

Wind shear

Windfarm wake 1.64 1.58

Aerodyn. model 1.34 1.54 1.53 1.65 1.58

Yaw error

Terrain slope

Low cycle fatigue

Stop wind speed
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is prevented more than offsets the additional cost associated with a heavier tower.

For the blades, the hub and the nacelle we see that it hardly makes a difference

what safety factor we use. The cost function w is very flat, meaning that cost of

extra material balances cost of prevented failures. One could say that the bad news

is that we cannot save much money, but that the good news is that we can have great

reliability at almost no expense. Still 1–2% reduction on total turbine cost is not

negligible, because of leverage it may mean 10–20% difference in profitability of a

project.

Table 8.11: Indication of influence of optimisation on wind turbine cost. Reliability index

β, failure probability pF and cost function w refer to the component as a whole; there are

10 critical locations, and the interest rate r = 0.05. Standard calculation according to IEC

61400-1 class II for L = 20 years life.

component blade hub nacelle tower

material composite cast iron cast iron welded steel

load used My11r My11h MyNf Myt0

normalised mass derivative 0.50 0.20 0.20 0.70

replacement cost fraction fR 0.04 0.20 0.40 0.90

failure cost fraction fF 0.01 0.01 0.03 0.03

standard situation

- yearly reliability index β1 4.26 3.18 2.98 2.69

- yearly failure probability pF,1 1.0×10−5 7.5×10−4 1.4×10−3 3.6×10−3

- safety factor γ 1.50 1.38 1.38 1.27

- value of cost function w 1.00 1.01 1.06 1.32

optimal safety factor

- yearly reliability index β1 2.70 3.64 4.01 3.32

- yearly failure probability pF,1 3.5×10−3 1.3×10−4 3.1×10−5 4.5×10−4

- safety factor γ 1.29 1.72 1.99 1.86

- value of cost function w 1.00 1.00 1.01 1.02



Chapter 9

Sensitivity analysis

9.1 Introduction

In chapter 8 failure probabilities were derived for a turbine which is designed accord-

ing to IEC 61400-1 wind class II, and placed in a class II environment; the optimal

partial factors were calculated, and an estimate made of the effect on total cost if

optimal values are used instead of the standard ones.

The results found are somewhat surprising. To take an example: according to

table 8.9 (p152), blades might be constructed lighter (γ = 1.29 instead of γ = 1.50)

and hub, nacelle machine frame and tower should be made considerably heavier (γ
= 1.7–2.0 instead of the usual γ = 1.27–1.38). In fact, if the standard calculation is

used, the tower 20 years failure probability is estimated to pF = 0.07: out of every

100 towers, 7 are supposed to fail due to fatigue (table 8.6, p146).

Two obvious questions that arise are: ’Why are results as they are?’ and ’Why

are so few wind turbines collapsing if the calculated numbers are to be believed?’.

While this is undoubtedly the most intriguing matter, there are other questions too

that came up during the calculations. Hence questions treated in this chapter are:

1. Fundamental questions:

• Why exactly are the optimal safety factors as high as they are?

• Are failure probabilities found the real values?

• How would results change if certain input parameters were chosen differ-

ently?

2. Interesting questions:

• How do results change if required life is shorter than 20 years?

• How do results change in complex terrain or for offshore sites?

• What advantage is gained if calculated loads are verified with measure-

ments?

155
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9.2 Explanation of results

From the information in chapter 8 and especially table 8.10 (p153) the origin of the

high failure probabilities may basically be inferred, but because the results seem to

defy everyday experience it is worthwhile to discuss the causes in some more detail.

Most of the distributions of stochastic parameters listed in table 8.5 (p145) can

be established with good accuracy. Moreover, the end result of the calculation is

robust against changes in most distributions. The optimal one year period reliability

index β1 = 3.32 for the tower is also normal, and agrees with Dalsgaard Sørensen’s

result [198]. So far there is nothing out of the ordinary.

Two things are different compared to the usual calculations however. Firstly the

uncertainty in fatigue life prediction is explicitly taken into account with the stress

factor q0 that is biased towards the unconservative side (µq0 < 1) and has signifi-

cant variation (Vq0
> 0); this base calculation is designated ’0’ in table 9.1. Three

additional calculations are now done, where we assume that the stress factor q0:

1. Has unity mean µq0 = 1 (is unbiased) and coefficient of variation Vq0
> 0. On

average predicted fatigue life corresponds to actual life.

2. Has biased mean µq0 6= 1 but zero coefficient of variation Vq0
= 0. Fatigue

life is always mispredicted by the same factor.

3. Has unity mean µq0 = 1 and zero coefficient of variation Vq0
= 0. The fac-

tor q0 plays not role at all. This is the implicit assumption in conventional

calculations.

Table 9.1: Influence of different distributions of stress factor q0 on cumulative 20 years

failure probability. Calculation according to IEC class II.

case µq0
Vq0

Mx11r My11r Mx11h My11h MxNr MyNf MzNf Myf0

Blades (composite)

0, 1 1.00 0.10 9.1e-5 2.1e-4

2, 3 1.00 0.00 1.4e-7 2.1e-6

Hub and nacelle (cast iron)

0 0.93 0.13 1.0e-2 1.4e-2 1.3e-2 2.9e-2 1.9e-2

1 1.00 0.13 3.0e-3 4.6e-3 4.2e-3 1.1e-2 6.5e-3

2 0.93 0.00 1.0e-4 4.0e-4 3.4e-4 4.5e-3 1.4e-3

3 1.00 0.00 5.8e-6 3.2e-5 2.6e-5 8.5e-4 2.0e-4

Tower (weld seams)

0 0.80 0.17 7.2e-2

1 1.00 0.17 7.7e-3

2 0.80 0.00 1.6e-2

3 1.00 0.00 1.8e-4

Optimal pF 7.0e-2 2.6e-3 6.2e-4 9.8e-3
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Results are given in table 9.1. We see that bias and variation of the stress factor to-

gether are causing the large estimated failure probability, and by extension the high

optimal safety factors (for the blades, predictions were assumed to be unbiased, be-

cause there is no information justifying other assumptions). If one could for example

show with experiments that the bias assumption is too pessimistic, the tower failure

probability would drop by a factor 10.

Secondly there is the issue of multiple critical locations. The usual approach is to

look at critical locations individually, without bothering to calculate the system fail-

ure probability. Prime motivation is probably ease of calculation, but other arguments

for this practice are:

• There are not many really critical locations (with SRF = 1), so in reality only

one location is relevant. This assumption does not hold any more for today’s

highly optimised structures, like wind turbine towers.

• The standard is conservative enough to deal with this effect. Calculations done

here indicate that this is not the case if the standard is followed to the letter

(without hidden safety).

• Loads and material properties are correlated. There is some merit to this argu-

ment, but in appendix F.3 it is shown that high correlations are required (say

r ≥ 0.7) to see an effect. It is not known to which extent fatigue properties

in various tests cited were correlated. It is therefore possible that correlation

plays a significant role in tower welds.

Both the issue of the stress factor and correlation of failures in multiple critical lo-

cations should be settled by fatigue tests on material as used in wind turbines, if

variation in results is to be limited and partial factors reduced.

9.3 Real failure probability

A question that often comes up when probabilistic calculations are done is: ’Is this

the real failure probability?’. In this case especially the (calculated) large failure

probability of hub, nacelle and tower arouses curiosity: for example, is it true that

seven out of one hundred towers fail after 20 years? What we can do is to compare

the values found with the probabilities that are used in risk assessments for wind

turbines. This is done in table 9.2 (next page); it must be remembered that there are

reasons to be somewhat skeptical of the ’Handbook’ numbers (see section 2.5), so

one does not have to be concerned about a factor 3 difference. On the other hand

a factor 10 or more difference merits an explanation, so we should definitely have

a closer look at failure probabilities found for the nacelle frame and the tower. The

numbers given are (to the author’s knowledge) the best estimate if one sticks to the

letter of the standard, i.e. designs according to the precise degree of (un)conservatism

the standard allows. In practice there is a tendency to do better than the standard, for
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example foundries take pride in casting with very few errors; furthermore machine

welding can be done with quality superior to what is required by the standard.

Still (to take an example) if there are about 2000 wind turbines in the Nether-

lands, one should expect 7 fatigue failures per year, which seems too high by one

order of magnitude. On top of that the effect of multiple critical locations has not

even been incorporated in the calculations. Suppose there are 10 critical weld seams

in the tower, then we would expect to see 70 failures per year (even if material fa-

tigue properties are correlated there should still be an increase in total system failure

probability). However so many failures are not seen to occur. Possible explanations

may be the following:

• Most wind turbines are younger than 10 years, and hence fatigue cracks have

not had time to develop.

• Wind turbines are designed according to a class, for example IEC class II, with

mean wind speed 8.5 m/s. In the Netherlands all locations but Den Helder have

average wind speeds lower than this value. It is probably safe to say that the

majority of wind turbines is placed where wind speeds are 0.5–1 m/s lower

than the class they were designed for.

• Material quality is better than assumed in the standard. Accurate data are con-

fidential, but it is not unreasonable to assume cast iron fatigue strength to be be

10–20% higher (based on static strength tests), and weld seam fatigue strength

20–30% (based on fatigue tests).

• Fatigue may not be governing. For example the plate buckling failure mode

may determine tower plate thickness; also stiffness considerations determine

hub and machine frame wall thickness in some cases.

To investigate the plausibility of the explanations offered, some additional calcula-

tions were done for cast iron and welded components. Results are given in table 9.3

for material properties and in table 9.4 for wind class and turbine age. It appears that

failure probabilities may indeed be brought to levels that do not conflict with reality

Table 9.2: Comparison of component failure probabilities found with values given by Rade-

makers [173] in the ’Handbook for wind turbine risk assessment’ (table 2.5, p21; values

converted to 20 years life). Values from this work are for one critical location and for 20

years life (table 8.6, p146).

failure p1 (this work) p2 (Rademakers) ratio p1/p2

blade fails1 1.1×10−3 4.2×10−3 0.3

nacelle and rotor fall down2 2.2×10−2 1.2×10−3 19

tower fails 7.2×10−2 4.0×10−3 18
1The Handbook value is the probability per turbine that a blade fails. The probability for

an individual blade (given here) is ca 3 times lower.
2Compared to nacelle machine frame failure probability.
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without stretching credulity too much. In fact, if we consider calculation no 4 for

example, failure probabilities are close to the Handbook values (table 9.2). For a na-

celle failure we have 6.9×10−4–1.8×10−3 against the Handbook’s 1.2×10−3, while

for a tower failure we have 2.0×10−3, where the Handbook gives 4×10−3. These

preliminary calculations indicate once more that it is of paramount importance to get

the right material and site data to obtain correct results.

9.4 Equivalent load definition

In the reference calculation the equivalent load with mean stress correction was used

except for weld seams (see appendix C), where it is better to operate on the as-

sumption that in large constructions there will be significant residual stresses (Olivier

[164]). Using this concept means that we assume that the linear Palmgren-Miner rule

is valid if mean stress corrected stresses are used, and that there is no fatigue limit

(following Eulitz [61]). These assumptions may be wrong, which means that the

calculation of the failure probability and the reliability index are off. Nevertheless,

using the approximate equivalent load to estimate the sensitivity of the exact equiva-

lent load to stochastic parameters is probably quite accurate, because all calculations

Table 9.3: Influence of hidden material safety on life fatigue failure probability. The equiv-

alent load definition with mean stress influence is used. Calculation according to IEC class

II for 20 years life. Calculation 0 is the base calculation, while calculations 1–3 assume

different hidden safety factors.

case hidden safety R0 hub nacelle tower

cast iron welds Mx11h My11h MxNr MyNf MzNf Myf0

0 1.00 1.00 1.0e-2 1.4e-2 1.3e-2 2.9e-2 1.9e-2 7.2e-2

1 1.05 1.10 4.6e-3 6.9e-3 6.3e-3 1.5e-2 9.4e-3 3.1e-2

2 1.10 1.20 1.9e-3 3.1e-3 2.8e-3 8.1e-3 4.5e-3 1.2e-2

3 1.15 1.30 8.0e-4 1.3e-3 1.2e-3 4.1e-3 2.2e-3 4.7e-3

Table 9.4: Influence of hidden safety in wind speed and wind turbine age on life fatigue

failure probability. The equivalent load definition with mean stress influence is used. The

hidden safety on cast iron R0 = 1.15, on weld seams R0 = 1.30. Calculation according to

IEC class II for 20 years life. Calculation 3 is the same as in table 9.3, while calculations 4–6

assume different wind speeds and lives.

case hidden safety hub nacelle tower

wind speed life Mx11h My11h MxNr MyNf MzNf Myf0

3 8.5 20 8.0e-4 1.3e-3 1.2e-3 4.1e-3 2.2e-3 4.7e-3

4 8.0 20 6.3e-4 9.3e-4 6.9e-4 1.8e-3 1.0e-3 2.0e-3

5 8.5 10 1.7e-5 4.7e-5 6.7e-5 1.3e-4 1.2e-4 6.3e-4

6 8.0 10 1.4e-5 2.4e-5 5.0e-5 8.6e-5 6.2e-5 2.4e-4
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involve comparison of equivalent loads based on similar load spectra, which is bound

to give similar deviations from the exact equivalent loads (see appendix C.2). One

way to check this contention is to redo the reference calculation of chapter 8 with

different definitions of the equivalent load. The mean stress corrections used before

in the reference calculation were as follows:

• For weld seams we assume no mean stress influence because of residual stresses.

• For cast iron we have (the hub and the nacelle):

∆σeff = ∆σ + 2M σmean (9.1)

Here M is the mean stress sensitivity (see appendix C.2).

• For composites (the blades) the correction is (see appendix C.2):

∆σeff =
∆σ

1 − σmean/UTS
(9.2)

Here the ultimate tensile strength UTS is set to 1.5 times the largest load in

the fatigue spectrum.

Table 9.5: Life failure probability, reliability index and influence factors for standard cal-

culation according to IEC class II for 20 years life. Simplest equivalent load definition: no

mean stress correction and no cut off.

Mx11r My11r Mx11h My11h MxNr MyNf MzNf Myf0

pF,MC,L 9.9e-5 5.3e-4 1.0e-2 2.4e-2 1.8e-2 2.6e-2 2.2e-2 7.3e-2

pF,FORM,L 9.6e-5 4.8e-4 1.0e-2 2.3e-2 1.7e-2 2.4e-2 2.1e-2 7.2e-2

βL,FORM 3.73 3.30 2.31 2.00 2.11 1.97 2.03 1.46

β1,FORM 4.43 4.07 3.28 3.05 3.13 3.03 3.08 2.69

α2 [%]

Fatigue strength 24 19 18 15 16 15 15 23

Stress factor 48 39 62 53 56 51 51 53

Wind seed 1 1 2

Geometry 5 4 3 3 3 3 3 2

FEM 22 17 15 12 13 12 12 2

Avg. wind speed 6 6 6 6 10

Weibull shape

Wind dir. dist.

Turb. intensity 6 5 5 6 7 3

Spectrum shape 1 3

Wind shear 1

Windfarm wake 4 2 2 3 3 1

Aerodyn. model 3 3 3 3 3 2

Yaw error

Terrain slope

Low cycle fatigue

Stop wind speed
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The reference calculation is compared to a calculation where the equivalent load is

not corrected for mean stress (table 9.5), and a calculation where small load cycles

below the cut off limit produce no fatigue damage (table 9.7). For convenience,

results are also summarised in table 9.6. In most cases results are not sensitive to

a change in equivalent load definition; the tower is an exception. Note that there is

virtually no change in the influence factors, regardless of equivalent load definition.

Table 9.6: Life failure probability for different definitions of equivalent load for standard

calculation according to IEC class II for 20 years life. Blades have no cut off.

Mx11r My11r Mx11h My11h MxNr MyNf MzNf Myf0

simple 9.6e-5 4.8e-4 1.0e-2 2.3e-2 1.7e-2 2.4e-2 2.1e-2 7.2e-2

mean stress corr. 9.1e-5 2.1e-4 1.0e-2 1.4e-2 1.3e-2 2.9e-2 1.9e-2 2.1e-2

m.s.c. + cut off 9.1e-5 2.1e-4 2.5e-2 1.7e-2 2.2e-2 3.0e-2 2.1e-2 2.1e-1

best estimate 9.1e-5 2.1e-4 1.0e-2 1.4e-2 1.3e-2 2.9e-2 1.9e-2 7.2e-2

Table 9.7: Life failure probability, reliability index and influence factors for standard calcu-

lation according to IEC class II for 20 years life. Equivalent loads are corrected for mean

stress and fatigue limit (cut off). Blades have no cut off.

Mx11r My11r Mx11h My11h MxNr MyNf MzNf Myf0

pF,MC,L 9.3e-5 2.3e-4 2.6e-2 1.8e-2 2.2e-2 3.2e-2 2.3e-2 2.1e-1

pF,FORM,L 9.1e-5 2.1e-4 2.5e-2 1.7e-2 2.2e-2 3.0e-2 2.1e-2 2.1e-1

βFORM,L 3.74 3.53 1.96 2.12 2.02 1.88 2.03 0.81

β1,FORM 4.44 4.26 3.02 3.14 3.07 2.97 3.07 2.31

α2 [%]

Fatigue strength 24 21 16 16 16 14 15 20

Stress factor 48 42 56 56 56 46 50 48

Wind seed 1 1 1

Geometry 5 4 3 3 3 3 3 2

FEM 22 18 13 13 13 11 12 2

Avg. wind speed 3 5 3 1 10 7 7

Weibull shape

Wind dir. dist.

Turb. intensity 4 3 3 4 8 7 6

Spectrum shape 1 1 10

Wind shear 1

Windfarm wake 3 2 2 2 4 4 2

Aerodyn. model 4 3 3 2 3 2

Yaw error

Terrain slope

Low cycle fatigue

Stop wind speed
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9.5 Exponent of S-N curve

In the probabilistic calculations the exponent of the S-N curve m was considered to

be a fixed number. Although this is not too far from the truth for constant amplitude

loading (many tests have been done for glassfibre composites, for cast iron and for

welds, that show similar exponents), the situation is less clear for life curves, or for

a Liu-Zenner modified curve, the curve that preferably should be used for life pre-

dictions since it gives superior results (figure 7.2, p112). Also data for materials as

presently used in wind turbines are missing in the literature. In appendix C.5 it is

shown that under some reasonable assumptions the estimated slope m from exper-

iments has a distribution with coefficient of variation V ≃ 5–10%: for composites

(m = 9–12) the standard deviation on slope is σm ≃ 0.5, while for cast iron (m =

5–8) and weld seams (m = 3–4) σm ≃ 0.3. To get an impression of the influence of

slope we will look at the original value minus or plus one standard deviation: m±σm

(which covers a 68% interval). The slope is correlated to the fatigue strength with

r2 = 0.77; for convenience full correlation is used, which means that the fatigue

strength changes with the slope (see appendix C.5 for a discussion of this, and all

data).

Results are shown in table 9.8. Changes in failure probability are on the thresh-

old of significance, maximally a factor 2. This is almost entirely due to the fatigue

strength change, as can be inferred from table 9.9, where only the slope of the S-

N curve is changed (suppose we were to use some other material having the same

fatigue strength but a different slope S-N curve). Here almost no change in failure

probability is seen, regardless of slope. The conclusion is that results are insensitive

to errors in the S-N curve exponent m.

Table 9.8: Life failure probability for different slopes m and associated change in fatigue

strength distribution. Standard calculation according to IEC class II for 20 years life. For

each material the table has 3 lines, with mean minus one standard deviation, mean and mean

plus one standard deviation. Slope m and fatigue strength ∆σA are assumed to be fully

correlated.

slope m ∆σA Mx11r My11r Mx11h My11h MxNr MyNf MzNf Myf0

11.4 0.98 1.6e-4 3.5e-4

12.0 1.00 9.1e-5 2.1e-4

12.6 1.02 4.9e-5 1.2e-4

6.0 0.98 1.4e-2 2.1e-2 1.9e-2 3.8e-2 2.5e-2

6.3 1.00 1.0e-2 1.4e-2 1.3e-2 2.9e-2 1.9e-2

6.6 1.02 7.4e-3 1.0e-2 9.7e-3 2.1e-2 1.3e-2

3.2 0.96 1.0e-1

3.5 1.00 7.2e-2

3.8 1.04 5.1e-2
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Table 9.9: life failure probability for different exponents of the S-N curve m. The distribution

of the fatigue strength ∆σA is not changed. Standard calculation according to IEC class II

for 20 years life.

Mx11r My11r Mx11h My11h MxNr MyNf MzNf Myf0

reference 9.1e-5 2.1e-4 1.0e-2 1.4e-2 1.3e-2 2.9e-2 1.9e-2 7.2e-2

composite

- m = 9 8.3e-5 2.1e-4

- m = 10 8.6e-5 2.1e-4

- m = 11 8.8e-5 2.1e-4

- m = 12 9.1e-5 2.1e-4

cast iron

- m = 5 1.0e-2 1.5e-2 1.4e-2 3.4e-2 1.8e-2

- m = 6 1.0e-2 1.4e-2 1.3e-2 3.0e-2 1.9e-2

- m = 7 1.0e-2 1.5e-2 1.3e-2 2.7e-2 1.9e-2

- m = 8 1.0e-2 1.5e-2 1.3e-2 2.5e-2 1.9e-2

weld seam

- m = 3 7.2e-2

- m = 4 7.3e-2

Table 9.10: Summary of results of optimisation. Comparison of 10 years life and 20 years

life (see also table 8.9, p152).

component blade hub nacelle tower

material composite cast iron cast iron welded steel

load used My11r My11h MyNf Myt0

normalised mass derivative 0.50 0.20 0.20 0.70

replacement cost fraction fR 0.04 0.20 0.40 0.90

failure cost fraction fF 0.01 0.01 0.03 0.03

component reliability index β
- 1 year period 2.58 3.58 3.96 3.34

- 10 year period 1.65 2.92 3.37 2.63

component failure prob. pF

- 1 year period 5.0×10−3 1.7×10−4 3.8×10−5 4.2×10−4

- 10 year period 5.0×10−2 1.7×10−3 3.8×10−4 4.2×10−3

target safety factor γ (10 years)

- 1 location 1.06 1.41 1.63 1.37

- 5 locations 1.19 1.53 1.77 1.50

- 10 locations 1.24 1.57 1.82 1.60

- 20 locations 1.28 1.62 1.88 1.66

standard safety factor 1.50 1.38 1.38 1.27

target safety factor γ (20 years)

- 1 location 1.09 1.53 1.77 1.57

- 5 locations 1.24 1.66 1.93 1.78

- 10 locations 1.29 1.72 1.99 1.86

- 20 locations 1.34 1.77 2.07 1.95
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9.6 Wind turbine life

So far all calculations were done with 20 years life. In reality economic life is shorter

than that, the main reason for this being the rapid development of wind turbine tech-

nology. Therefore it is interesting to investigate if and how the safety factors would

change if optimisation were done for 10 years instead of 20. Results are given in

table 9.10 (previous page), where it can be seen that results are somewhat different

from those for 20 years life (for convenience the numbers from table 8.9 (p152) are

repeated). For the blades there is almost no change: optimal partial factors are 4%

lower. For the cast iron components factors are 8% lower and for the tower 14%. The

difference is significant, but not overwhelming.

9.7 Complex terrain

For complex terrain the modified distributions of stochastic parameters as given in

table 4.17 are used, copied here in table 9.11. To get more insight into what is hap-

pening, the distributions of the parameters listed in table 9.11 are first changed to the

new values one at a time, and then all together. We perceive (table 9.12, cases 0–5)

that influence is generally small, except for Mann’s shear parameter (case 4): smaller

shear in the turbulence field gives considerably larger loads. The design value for

Table 9.11: Adjusted distributions (mean and standard deviation) for complex terrain.

parameter FSU terrain Complex terrain

mean std.dev mean std.dev.

wind speed [m/s] Uavg 0.07 Uavg Uavg 0.20 Uavg

turbulence intensity [-] 0.16 0.01 0.16 0.02

wind shear exponent [-] 0.2 0.02 0.1 0.08

Mann’s shear parameter [-] 3 0.3 1 0.6

Table 9.12: Influence of modified parameter distributions for complex terrain on life failure

probability. Standard calculation according to IEC class II for 20 years life.

case dist. chgd Mx11r My11r Mx11h My11h MxNr MyNf MzNf Myf0

0 reference1 9.3e-5 2.3e-4 1.0e-2 1.5e-2 1.3e-2 3.0e-2 2.0e-2 7.2e-2

1 wind speed1 1.0e-4 4.5e-4 1.1e-2 1.9e-2 2.0e-2 6.0e-2 3.5e-2 1.3e-1

2 turb. int.1 9.8e-5 4.6e-4 1.0e-2 1.7e-2 1.3e-2 4.3e-2 2.8e-2 8.1e-2

3 wind shear1 8.3e-5 1.0e-4 9.6e-3 1.0e-2 1.3e-2 1.2e-2 1.3e-2 7.5e-2

4 Mann’s Γ1 3.1e-4 8.0e-4 1.7e-2 2.8e-2 2.1e-2 1.5e-1 5.7e-2 4.0e-1

5 All1 3.3e-4 1.4e-3 1.8e-2 2.7e-2 3.1e-2 1.4e-1 8.4e-2 4.3e-1

6 Mann’s Γ2 7.8e-5 3.4e-4 9.6e-3 1.2e-2 1.8e-2 2.9e-2 3.1e-2 7.2e-2

7 All2 7.8e-5 3.4e-4 9.6e-3 1.2e-2 1.8e-2 2.9e-2 3.1e-2 1.2e-1
1Design value of Mann’s Γ = 3.9. 2Design value of Mann’s Γ = 1.0.
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Mann’s shear parameter according to IEC 61400-1 is Γ = 3.9, while in flat terrain at

current hub heights (70–100 m) Γ ∼ 3.0 should be expected (table 4.14, p72) ; this

gives only a slight increase in loads. However if the same design is used in complex

terrain where the shear parameter is probably closer to Γ = 1.0, there is a larger in-

crease. If we were to use Γ = 1.0 in the design phase (as we should, knowing the

expected real value) there is no big change in failure probabilities (cases 6 and 7).

Clearly change of the spectral shape must be taken into account if calculations

are done for complex terrain. However uncertainty in the calculation is still largely

determined by fatigue properties.

9.8 Offshore

For offshore applications the dependence on wind speed is different. One might say

that the influence of the wind is amplified through the waves; also the influence of

variation of inertia coefficient CM (determining wave loads) must be taken into ac-

count. To investigate all this, again we follow the practice of changing one parameter

at a time. Load cases considered are:

case 0 land reference case, IEC class II (U = 8.5 m/s), wind from the North

case 1 as case 0, but IEC class I (U = 10 m/s)

case 2 offshore, IEC class I, uniform wind direction distribution, CM = 2

case 3 as case 2, but CM = N(µ = 2, σ = 0.1)
case 4 as case 3, but wave forces are multiplied by S0 = 1.05

case 5 as case 4, but CM = N(µ = 2, σ = 0.2)

Only the support construction (tower and monopile) is considered because loads

above the yaw system (tower top) are known not to change compared to the land

situation. Results are listed in table 9.13. From the numbers it appears that failure

probabilities do not change much whatever we do. The only significant influence is

the average value of the inertia coefficient CM , which may be larger than expected

(resulting in a wave load increase, simulated by the factor S0 = 1.05), for example

because of appurtenances or marine growth.

Table 9.13: Influence of modified parameter distributions for offshore sites on life failure

probability. Calculations for 20 years life.

case site U dir σCM
S0 Myt68 Myt38 Myf0 Myf-10 Myf-20

0 land 8.5 N – 1 1.7e-2 5.6e-2 7.2e-2 7.2e-2 6.9e-2

1 ” 10 ” – 1 1.7e-2 5.4e-2 7.0e-2 6.8e-2 6.7e-2

2 offs. 10 unif. 0.0 1 1.7e-2 5.5e-2 7.2e-2 7.2e-2 6.8e-2

3 ” ” ” 0.1 1 1.7e-2 5.6e-2 7.3e-2 7.1e-2 7.1e-2

4 ” ” ” 0.1 1.05 1.7e-2 7.1e-2 1.1e-1 1.0e-1 1.0e-1

5 ” ” ” 0.2 1.05 1.7e-2 7.9e-2 1.1e-1 1.1e-1 1.1e-1
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One may wonder why results are so similar: after all the influence of the wind is

increased through wind driven waves. However what is important for the limit state

function Z (equation 8.23, p140) are the relative changes in load due to changes in

wind speed, given by the derivative:

∂Z

∂U
=

(
1

∆Feq

∂∆Feq

∂U

)

U=Uavg

(9.3)

The values of the relevant derivatives are listed in table 9.14. The general picture is

that there is almost no change from land to offshore.

Table 9.14: Comparison of equivalent bending moment derivatives for onshore and offshore

wind turbine towers. Wöhler exponent m = 4.

load Myt68 Myt38 Myf0 Myf-11 Myf-21

land 0.058 0.087 0.091 0.092 0.093

offshore 0.065 0.087 0.095 0.103 0.105

9.9 Load verification

According to standards one must verify calculated loads by measurements on tur-

bines. This makes sense, and obviously increases the confidence we may have in our

calculations. One would therefore expect some reward or penalty depending on the

extent of the verification. For example if no tests have been done yet, all calculated

loads are to be multiplied by a load factor γf = 1.2; alternatively one could stipu-

late some reduction in safety factor, if a full load verification had been conducted.

Therefore it is interesting to find out what the advantage is of a measurement pro-

gram compared to calculating de novo. Unfortunately (for us) there is now so much

experience with wind turbine load calculations, that it is hard to start completely un-

prejudiced; to get reliable data a special procedure with a tight protocol would have

to be organised. This may be quite time consuming, especially since it is not easy to

Table 9.15: Influence of load verification on 20 years failure probability. Standard calculation

according to IEC class II. The aerodynamic model has no influence on blade root lead-lag

moments, which are dominated by gravity.

case Vaero Mx11r My11r Mx11h My11h MxNr MyNf MzNf Myf0

−1 0.00 – 1.6e-4 – 1.3e-2 1.2e-2 2.7e-2 1.7e-2 7.1e-2

0 0.03 9.1e-5 2.1e-4 1e-2 1.4e-2 1.3e-2 2.9e-2 1.9e-2 7.2e-2

1 0.05 – 3.1e-4 – 1.7e-2 1.6e-2 3.1e-2 2.1e-2 7.5e-2

2 0.10 – 1.0e-3 – 2.8e-2 2.6e-2 4.4e-2 3.2e-2 8.8e-2

3 0.15 – 3.5e-3 – 4.5e-2 4.2e-2 6.2e-2 4.9e-2 1.0e-1
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define which errors are ’normal’ and which errors are ’gross’ and would probably be

detected in the design procedure.

Nevertheless we have the NASA Ames experiments (see section 6.3), which led

us to a coefficient of variation on loads V = 10–15% (except for blade root lead-lag

moments which are gravity dominated). To see what this does to failure probabil-

ities, some calculations with increased uncertainty on aerodynamics are done. Not

surprisingly failure probabilities get smaller if aerodynamic uncertainty decreases

(table 9.15). For the blades the effect is considerable (a factor 20) but for cast iron

and weld seams influence is smaller (a factor 4 and 1.3 respectively).
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Chapter 10

Conclusions and recommendations

In this chapter we look back at the objectives stated in section 1.4 and check to see

whether and to what extent they have been satisfied (sections 10.1–10.3). Section

10.4 gives the usual recommendations for further research.

10.1 Uncertainties

A study has been conducted to determine how large total uncertainty is in the fatigue

design process, and what the main uncertainties are. These have all been quantified:

the distributions of the relevant stochastic parameters have been determined (see table

8.5, p145), and their influence on fatigue damage equivalent loads established. To

find the relative importance of each parameter, program tools have been developed:

a combination of the wind turbine aeroelastic code Flex5 for load calculations and

implementations of FORM and Monte Carlo algorithms that use Flex5 output for

failure probability estimates.

The prediction of fatigue strength and the fatigue damage sum (component life)

are the most important uncertainties by far, covering 50% or more of total variation

of the limit state function. As long as these uncertainties are not reduced, improving

other aspects of the design calculations will not yield any great advantage.

10.2 Review of models

In the process some models in common use were reviewed, in particular:

• Low cycle fatigue model. A program was developed to generate artificial wind

speed histories to estimate realistic load sequences and calculate the effect on

fatigue damage caused by large low frequency load cycles. For the drive train

and the tower the effect of low cycle fatigue is significant and should be taken

into account.
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• Turbulent wind field model. Strictly speaking, within this work no formal com-

parison was done. We repeat the conclusions of Veldkamp [223]: comparing

the Sandia/Veers and the Mann model, no evidence was found that one partic-

ular model predicts loads consistently better; however the Mann model is more

physical in the sense that the wind fields always have consistent properties.

• Equivalent load definition. Three different definitions of equivalent loads were

compared: influence on probabilistic results is limited (a factor ∼2 on failure

probability). For probabilistic calculations any of the three definitions investi-

gated may be used.

• Equivalent turbulence intensity model. Establishing the equivalent turbulence

intensity by direct integration of the turbulence intensity (to the power given

by the slope m of the S-N curve), yields results that are almost the same com-

pared to the exact calculation using equivalent loads. The 90% fractile turbu-

lence intensity given by IEC 61400-1 is conservative by 0.01-0.02. Since the

difference is small and the model simple, it is probably best to stick to the IEC

recommendation.

• Mode shape approach. No evidence was found that more than three blade mode

shapes improve load calculations. A limited number of modes is sufficient to

obtain accurate results.

• Wave load model. Using nonlinear wave modeling has some effect on wave

loads (increase by 5–10%). Inertia (acceleration) forces totally dominate drag

forces in fatigue loading. Hence most attention should go to accurate estima-

tion of the inertia coefficient.

10.3 Partial safety factors

Given the best available data on the distribution of parameters influencing fatigue

loads on wind turbines and fatigue properties of materials, economically optimal

safety factors have been derived with a simple cost model (see table 8.9 (p152) for

details). These factors differ from the ones prescribed by current design standards:

• Larger safety factors should be used for cast iron (hub and nacelle machine

frame) and for welded constructions (tower).

• A smaller safety factor could be used for composites (blades).

The discrepancy with conventional design practice is due to two major causes. Firstly,

uncertainty on fatigue life prediction is not taken into account: for the stress factor

one assumes no variation and no bias, which is unconservative. Secondly, in modern

highly optimised constructions critical locations are treated in isolation, when they

should be considered together (as a chain with a weakest link). The fact that cur-

rent safety factors nevertheless appear to give sufficiently low failure probability in
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practice is explained as follows:

• Material quality is better and hence fatigue strength is higher than assumed.

• Fatigue may not govern, and in effect the advocated larger safety may have

been obtained already.

• Wind turbines are often placed in environments more benign than they were

designed for.

• Due to rapid expansion of the wind turbine market, most turbines are still

young (5–10 years old), and fatigue problems may come later.

The best means to reducing uncertainty and improving design practice (i.e. removing

hidden safety), is by fatigue testing on materials identical to those used in practice,

with specimens of relevant size, both with constant amplitude and variable ampli-

tude loading. Furthermore fatigue damage prediction tools must be examined and

calibrated, and the issue of critical locations with correlated properties should be in-

vestigated.

The influence of adjusting assumptions and values of input parameters on failure

probabilities was investigated (see chapter 9); in general calculations appear to be

stable and results robust.

10.4 Recommendations for further research

10.4.1 Design methods

in order to improve accuracy of the results of probabilistic calculations, and gain

greater insight into the safety margins actually achieved, fatigue life predictions

should be verified against variable amplitude tests on specimens representative of

actual components, preferably with load spectra characteristic of wind turbines. In

this way reliable data on bias and variation can be obtained; the relative Miner ap-

proach may be adopted, using the stress factor q0. An interesting alternative is the

use of fracture mechanics for short cracks (Vormwald [227]) to predict fatigue life.

Due to the large number of critical locations in a wind turbine, their size and

the tendency to design for the same stress reserve factor all through a component

(’simultaneous failure everywhere’), it is necessary that the combined effect of all the

(possibly correlated) critical locations is considered, which could for example result

in the partial factor depending on the number of locations. This holds especially true

for the tower, having hundreds of metres of weld seam where cracks may start.

10.4.2 Materials

Composites (blades)

Indications are that the current constant life diagram with three stress ratio values

is not accurate enough. Current fatigue damage predictions with a limited diagram
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should be checked against life estimates based on a more detailed diagram (and of

course against tests).

Cast iron (Hub and nacelle). The material in use is probably better than assumed

in calculations. Fatigue testing should be done to establish the S-N curve accurately

rather than using literature values.

Welded steel (tower). The weld seam quality is probably better than prescribed

by standards. Fatigue tests should be done to find the correct S-N curve, to establish

whether the variation for machine welding under controlled conditions is smaller than

assumed in standards, and whether individual welds are correlated to a significant

degree.
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[197] C.M. Sonsino and M. Küppers. Fatigue life of welded joints under multiaxial

variable amplitude loading - damage accumulation and the effective equivalent

stress hypothesis. Mat-wiss. u. Werkstofftech., 31:81–95, 2000.

[198] J.D. Sørensen and N.J. Tarp-Johansen. Cost-optimal structural reliability of

offshore wind turbines. In The Science of Making Torque from Wind (CD).

EWEA, April 2004.

[199] J.D. Sørensen and N.J. Tarp-Johansen. Optimal structural reliability of off-

shore wind turbines. In ICOSSAR Rome. ICOSSAR, June 2005.

[200] N.N. Sørensen and J.A. Michelsen. Detaljeret 3D CFD beregning med pro-
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beregning af tårnlaster. In C. Bak, editor, Forskning i Aeroelasticitet - EFP-

2004 R-1509(DA), chapter 4, pages 43–54. Risø, Roskilde, May 2005.

[210] K. Thomsen and H. Aagaard Madsen. A new simulation method for turbines in

wake - applied to extreme response during operation. Wind Energy, 8:35–47,

2005.

[211] K. Thomsen and H.A. Madsen. A new simulation method for turbines in wake

- applied to extreme response during operation. In G.A.M. van Kuik, edi-

tor, The Science of Making Torque from Wind, pages 425–432. Duwind/ECN,

Duwind, Delft University of Technology, April 2004.

[212] K. Thomsen, H.A. Madsen, and G.C. Larsen. En ny metode kan forudsige

detaljerede laster for møller i parker. Technical Report AED-RB-16, Risø

National Laboratory, Roskilde, 2003.

[213] H.W. Tieleman. Universality of velocity spectra. J. Wind Eng. Ind. Aerodyn.,

56:55–69, 1995.

[214] I. Troen and E. Lundtang Pedersen. European Wind Atlas. Risø National

Laboratory, Roskilde, 1989.

[215] J.M.V. Trumars, N.J. Tarp-Johansen, and T. Krogh. The effect of wave mod-

elling on offshore wind turbine fatigue loads. In Copenhagen Offshore Wind,

October 2005.

[216] M.J. Tucker, P.G. Challenor, and D.J.T. Carter. Numerical simulation of a

random sea: a common error and its effect upon wave group statistics. Applied

Ocean Research, 6(2):118–222, 1984.

[217] S.E. Tuller and A.C. Brett. The characteristics of wind velocity that favor the

fitting of a Weibull distribution in wind speed analysis. Journal of Climate

and Applied Meteorology, 23:124–134, 1984.

[218] P.S. Veers. Three-dimensional wind simulation. Technical Report SAND88-

0152 UC-261, Sandia National Laboratories, Albuquerque, 1988.

[219] P.S. Veers. All wind farm uncertainty is not the same: the economics of com-

mon versus independent causes. In AWEA Windpower ’95, Washington DC,

pages 195–204. AWEA, March 1995.

[220] P.S. Veers and S.R. Winterstein. Application of measured loads to wind tur-

bine fatigue and reliability analysis. Journal of Solar Energy Engineering,

120:233–239, November 1998.



190 BIBLIOGRAPHY

[221] P.S. Veers, S.R. Winterstein, C.L. Lange, and T.A. Wilson. User’s manual

for FAROW: Fatigue and reliability of wind turbine components. Technical

Report SAND94-2460, Sandia National Laboratories, Albuquerque, 1994.

[222] H.F. Veldkamp. Flex5 modifications (blade modes). Technical Report RDT

156 A, NEG Micon, September 2003.

[223] H.F. Veldkamp. Influence of wind field modelling on wind turbine fatigue

loads. In European Wind Energy Conference Madrid. EWEA, 2003.

[224] H.F. Veldkamp and J. van der Tempel. Influence of wave modelling on the

prediction of fatigue for offshore wind turbines. Wind Energy, 8:49–65, 2005.

[225] Verein Deutsche Ingenieure. VDI 2230 Systematische Berechnung hoch-

beanspruchter Schraubenverbindungen Zylindrische Einschraubenverbindun-

gen, February 2003.

[226] L.J. Vermeer, J.N. Sørensen, and A. Crespo. Wind turbine wake aerodynamics.

Progress in Aerospace Sciences, 39:467–510, 2003.

[227] M. Vormwald. Anrißlebensdauervorhersage auf der Basis der Schwingbruch-

mechanik für kurze Risse. Technical Report (Heft) 47, Institut für Stahlbau

und Werkstoffmechanik, 1989.

[228] M. Vormwald. Crack initiation in weld seam test specimens. Personal com-

munication (email), 13 April 2006.

[229] M. Vormwald and T. Seeger. The consequences of short crack closure on

fatigue crack growth under variable amplitude loading. Fatigue Fract. Engng

Mater. Struct., 14:205–225, 1991.

[230] J.K. Vrijling, W. van Hengel, and R.J. Houben. A framework for risk evalua-

tion. Journal of Hazardous Materials, 43:245–261, March 1995.

[231] J.K. Vrijling and A.C.W.M. Vrouwenvelder. Probabilistic Design. TU Delft,

2005.

[232] A.C.W.M. Vrouwenvelder. Failure probability for N correlated failure modes.

Personal communication (email), 10 April 2006.

[233] A.C.W.M. Vrouwenvelder and J.K. Vrijling. Probabilistisch Ontwerpen. TU

Delft, 2000.

[234] J.D. Wheeler. Method for calculating forces produced by irregular waves.

Journal of Petroleum Technology, 22:359–367, 1970.

[235] J. Wieringa and P.J. Rijkoort. Windklimaat van Nederland (Wind Climate of

the Netherlands). KNMI/Staatsuitgeverij, Den Haag, 1983.

[236] S.R. Winterstein and P.S. Veers. Theory manual for FAROW version 1.1: A

numerical analysis of the fatigue and reliability of wind turbine components.



BIBLIOGRAPHY 191

Technical Report SAND94-2459, Sandia National Laboratories, January 2000.

[237] J.C. Woods and S.J. Watson. A new matrix method for producing long-term

wind roses with MCP. Wind Engineering and Industrial Aerodynamics, 66:85–

94, 1997.

[238] F. Yamazaki and M. Shinozuka. Digital generation of non-Gaussian stochastic

fields. J. Engng. Mech. ASSC, 114:1183–1197, 1988.

[239] H. Zenner and J. Liu. Vorschlag zur Verbesserung der Lebensdauerabschät-

zung nach dem Nennspannungskonzept. Konstruktion, 44:9–17, 1992.



Index

aerodynamics, 41, 95

air density, 37, 75

blade, 101

blade element momentum theory (BEM),

41, 95

calculations

conventional, 33

capacity factor, 15

co-ordinate system, 195

coherence, 72, 250, 260

(u,w) in Sandia method, 251

complex terrain, 38, 78, 164

control system, 42, 99

cost function, 21

cost of electricity, 12

critical location

multiple, 148, 240

selection of, 104

size of, 243

current, 40, 93

cut out wind speed, 42, 100

design

assumptions, 31, 47

conditions, 12

economic, 11

ideal, 31

simplified, 31

design procedure

conventional, 29

main issues, 3

drag coefficient, 40, 89

dynamic stall, 96

economic design, 11

eigenfrequency, 102

electricity

cost of, 12

equivalent (fatigue) load, 135, 159, 209

equivalent turbulence, 65, 215

conservatism, 67

failure probability, 138

calculation example, 140

code values, 19

currently achieved values, 20

economic values, 21

offshore, 165

optimal, 147

philosophical issues, 26

real value, 157

sensitivity analysis, 155

target, 17

fatigue, 42, 107, 209

damage, 43

estimation of S-N curve, 162, 219

life curve, 112

limit, 215

low cycle, 47, 227

of blades, 129

of bolts, 128

of cast iron, 122

of welds, 125

resistance (R), 136

192



INDEX 193
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Appendix A

Coordinate system and

nomenclature

A.1 Coordinate sytem

In this report the coordinate system of Germanischer Lloyd is used (figure A.1):

• X is the wind direction

• Z is upwards

• Y is to the left when looking at the wind turbine from an upwind position.

xy

z
My

Mz

Mx

BLADE AND HUB NACELLE TOWER

x
Mx

Mz

z

My y

xMy y

Mz

z
Mx

Figure A.1: Definition of co-ordinate systems according to Germanischer Lloyd [70]
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The same definition holds for any location in the wind turbine (with a blade pointing

upwards).

A.2 Load components

Wind turbine loading is characterised by fatigue damage equivalent bending moment

ranges at important location in the structure, such as the blade root and the tower

base. The convention for load component names is in line with the GL coordinate

system (see figure A.1). Because equivalent loads are used, it is necessary to assign

an S-N curve exponent m to each load, which corresponds to the material that is

normally used (see table A.1).

Table A.1: Names of relevant load components and description; default material and corre-

sponding slope of the S-N curve m.

load load (sensor) description material slope

Mx1r blade root edgewise moment (rotating with blade) composite 12

My1r blade root flapwise moment (rotating with blade)

Mx1h hub edgewise moment (fixed, not rotating with blade) cast iron 6

My1h hub flapwise moment (fixed, not rotating with blade)

MxNr main bearing driving moment cast iron 6

MyNf main bearing tilt moment

MzNf main bearing yaw moment

Mxt0 tower base side-side moment weld 4

Myt0 tower base fore-aft moment

Mxf-10 foundation side-side moment 10 m below SWL weld 4

Myf-10 foundation fore-aft moment 10 m below SWL

A.3 Acronyms

BEM blade element-momentum method

CA constant amplitude

CFD computation fluid dynamics

DNV Det Norske Veritas

ECMWF European Centre for Medium-Range Weather Forecsts

FEM finite element method

FORM first order reliability method

GL Germanischer Lloyd

HIRLAM HIgh Resolution Limited Area Model

IEC International Electrotchnical Commission

JONSWAP JOint North Sea WAve Project

LIDAR LIght Detection And Ranging
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MC Monte Carlo

MCP Measure-Correlate-Predict

MD Multibody Dynamics

NBCC National Building Code of Canada

NCAR National Center for Atmospheric Research

NCEP National Centers for Environmental Prediction

PM Palmgren-Miner

PM Pierson-Moskowitz

PRVS pitch regulated variable speed

rpm revolutions per minute

SAR Synthetic Aperture Radar

SODAR Sound Detection and Ranging

SRF stress reserve factor

SWL still water level

VA variable amplitude

WAsP Wind Atlas Analysis and Application Program

WT wind turbine

A.4 Symbols

Note: some parameters are general, and may have different units dependent on where

they are used; for example loads may be forces or moments. In such cases the unit is

given as [*].

Latin symbols

A rotor swept area [m2]

A (highly stressed) area [m2]

A constant in Charnock’s formula [-]

A geometry matrix [*]

A Weibull scale factor [m/s]

A0 reference surface [m2]

a constant [*]

B benefits over a turbine’s life [e]

b yearly benefits [e/year]

b constant [*]

C Weibull scale factor [*]

CD hydrodynamic drag coefficient [-]

CF failure cost [e]

CI investment cost [e]

CM hydrodynamic inertia coefficient [-]

CP power coefficient [-]



198 Appendix A Coordinate system and nomenclature

CR replacement (repair) cost [e]

c constant in IEC turbulence formula [m/s]

c constant for fatigue strength mean stress correction [-]

c investment cost [e/kW]

cm specific investment cost [e/kg]

ctf factor for laod conservatism in tower and foundation [-]

Coh root coherence function [-]

D diameter [m]

d water depth [m]

d′ water depth corrected for tidal influence [m]

di partial fatigue damage [-]

E energy yield [kWh]

E von Kármán energy spectrum [-]

e capacity factor (mean power divided by rated power) [-]

F force [N]

F load [*]

F cumulative probability distribution [-]

∆Feq fatigue damage equivalent load range [*]

f force [N/m]

f fraction of investment [-]

f frequency [Hz, 1/day]

f probability density [-]

f0 resonance frequency [Hz]

fF failure cost fraction [-]

fp spectrum peak frequency [Hz]

fR replacement cost fraction [-]

g acceleration of gravity = 9.81 m/s2

H wind turbine hub height [m]

Hm0 significant wave height [m]

Hs significant wave height [m]

h height [m]

I turbulence intensity [-]

Ieff effective turbulence intensity [-]

Iref IEC reference turbulence intensity (mean value at 15 m/s) [-]

J1 Bessel function [-]

Kc Keulegan-Carpenter number [-]

k wave number [1/m, -]

k Weibull shape factor [-]

L Monin-Obukhov length [m]

L turbine life [year]

Lc turbulence length scale for coherence function [m]

Lk turbulence length scale [m]
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M fatigue strength mean stress sensitivity [-]

M moment [Nm]

M location parameter in lognormal distribution

MN location parameter in fatigue life distribution [-]

m component mass [kg]

m median of Weibull distribution [m/s]

m slope of S-N curve (Wöhler curve) [-]

mij element of Markov matrix (transition probability) [-]

N cumulative normal distribution function [-]

N number of cycles [-]

N number of critical spots [-]

N number of neighbouring wind turbines [-]

N number of (numerical) experiments [-]

N number of time steps [-]

ND number of cycles at knee point in S-N curve [-]

Neq number of cycles for which the equivalent load is calculated [-]

NF number of failures [-]

Ndi number of deaths in activity i [-]

Np number of persons (population) [-]

Npi number of persons involved in activity i [-]

NS number of meteorological stations [-]

n stochastic variable with normal distribution [-]

ni number of load cycles of range i [-]

P power [W]

Pfi probability of an accident in activity i [-]

p pressure [Pa]

p probability [-]

pd probability of fatal injury (death) [-]

pE endurance probability [-]

pF failure probability [-]

pw fixed probability for wake effect calculation [-]

q0 stress factor (reduction for load sequence effects) [-]

R covariance (matrix) [-]

R ratio predicted wind speed / actual wind speed [-]

R resistance [*]

R stress ratio (minimum stress divided by maximum stress) [-]

Re Reynolds number [-]

Ri factor in resistance product function [-]

r correlation coefficient [-]

r discount (interest) rate [-]

r distance [m]

S covariance matrix [*]
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S inflow angle (’terrain slope’) [rad, deg]

S power spectral density [*]

S load [*]

S scale parameter in lognormal distribution [*]

Si factor in load product function [-]

SN scale parameter in fatigue life distribution [-]

s turbulent speed fraction [-]

si distance between turbines divided by rotor diameter [-]

SRF stress reserve factor [-]

T absolute temperature [K]

T main shaft tilt angle [rad, deg]

T time constant [day]

T time period [s]

T wave period [s]

TD scatter parameter for fatigue damage sustained (= D10%/D90%)

TN scatter number for fatigue life [-]

Tp spectrum peak period [s]

Tz spectrum zero crossing period [s]

Tσ scatter number for fatigue strength (= ∆σ10%/∆σ90%)

∆T time step [s]

t time [s]

U wind speed [m/s]

u turbulent wind speed (in wind direction) [m/s]

u standard normally distributed variable [-]

u∗ friction velocity [m/s]

UTL ultimate tensile load [N, Nm]

UTS ultimate tensile strength [Pa]

V coefficient of variation [-]

V (highly stressed) volume [m2]

v turbulent wind speed (in horizontal direction) [m/s]

v standard normally distributed variable [-]

W cost function [e]

W section modulus [m3]

W wind direction [rad, deg]

w normalised cost function [-]

w turbulent wind speed (in vertical direction) [m/s]

x stochastic variable [*]

x∗ design point (vector) in FORM [*]

xchar characteristic parameter vector [*]

x∆σA
fatigue strength stochastic variable [-]

Y yaw angle [rad, deg]

Y1 Bessel function [-]
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Z limit state function [*]

z height [m]

z0 terrain roughness [m]

zr reference height [m]

Greek symbols

α angle [rad, deg]

α constant in formula for Jonswap spectrum [-]

α exponent for wind shear power law [-]

α influence factor [-]

α phase lag [rad]

β reliability index [-]

β policy factor [-]

Γ Mann’s shear parameter [-]

Γ gamma function [-]

γ Jonswap spectrum peak parameter [-]

γ product of all partial (safety) factors [-]

γ0 standard product of partial (safety) factors [-]

γf load factor [-]

γm material factor [-]

γn consequence-of-failure factor [-]

ǫ error [*]

η water surface elevation [m]

κ von Kármán’s constant (≃0.4) [-]

Λ IEC length scale [m]

µ distribution mean [*]

ν kinematic viscosity [m2/s]

ρ correlation coefficient [-]

ρ density [kg/m3]

σ stress [Pa]

σ distribution standard deviation [*])

σU turbulence (standard deviation on wind speed) [m/s]

∆σ stress range [Pa]

∆σA fatigue strength (at knee point in S-N curve) [Pa]

Φ spectral tensor [-]

φ random phase angle [rad, deg]

Ψ stability function [-]

ψ rotation angle [rad, deg]
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Subscripts

10 at 10 m height

10% 10% fractile

1year one year average, one year period

3h three hour average

50% 50% fractile (median)

70 at 70 m height

90% 90% fractile

a ambient

avg average

c (IEC) class

char characteristic

D fatigue damage

D knee point in S-N curve

d design

d death (fatal injury)

dim dimension

eff effective

eq equivalent

F failure

FORM First Order Reliability Method

f foundation

I investment

in cut in (start)

inv inverse

J JONSWAP

k speed component number, k=1 (u), 2 (v), 3 (w)

L life

lcf low cycle fatigue

M Mann

MC Monte Carlo

max maximum

min minimum

msr measured

m mass

m mean

N cycles, life

out cut out (stop)

PM Pierson-Moskowitz

P prediction

p peak
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pred predicted

R repair, replacement of component

r reference

rat rated

ref reference

rel relative

rms root mean square

S station

s significant

s site

seed seed for wind field generation

std standard

t tower

U wind speed

u in wind direction (turbulence)

v horizontal, perpendicular to wind direction (turbulence)

w wake

w vertical (turbulence)

wf wind farm

wdd wind direction distribution

x exact

z zero crossing

σ stress

σ turbulence
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Appendix B

Wind turbine data

B.1 Wind turbine

In many calculations the NM92/2750-70 wind turbine is used (for a picture see the

back cover of the book), which serves as a standard representative machine with the

following properties:

Table B.1: Properties of standard turbine NM92/2750-70

Turbine name NM92-2750-70

Rated power 2750 kW

Rotor diameter 92 m

Rotor position upwind

Rotor tilt 5 deg

Number of blades 3

Hub height 70 m

Control Pitch regulated variable speed

Generator speed 800–1200 rpm

Start wind speed 3 m/s

Rated wind speed 15 m/s

Stop wind speed 25 m/s

B.2 Wind turbine component cost

Below some data on relative cost of components are given. Table B.3 has a summary

of the data that may be used for comparison. Numbers for blades and hub show

reasonable agreement, but this is not so for the nacelle and the tower. For the nacelle

this must be due to differing definitions of what to include (for the present work

we are only concerned with the front part machine frame); for the tower there are

205
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probably differences in height. For completeness full data as found in the references

are given in additional tables:

Table B.2: Properties of main components NM92/2750-70. Total estimated turbine price:

1100 × 2750 = ke 3025.

Component Blade (1) Hub Nacelle Tower

Material composite cast iron cast iron welded steel

Mass [kg] 10,000 25,000 10,000 100,000

Price [e/kg] (Hau [85]) 12 2 2 1.3

Price [e] 120,000 50,000 20,000 130,000

Relative price [%] 4 2 1 4

Standard safety factor γ0 [-] 1.50 1.38 1.38 1.27

Derivative 1/m ∂m/∂γ [-] 0.5 0.1–0.2 0.1–0.2 0.7

Table B.3: Wind turbine component relative cost summary (onshore) [%].

Source table Blades (3) Hub Nacelle1 Tower

Fuglsang [67] B.4 18 3 11 18

Hau [85] B.5 28 2 52 21

Herman3 [86, 87] B.6 12 6 36 24

This work B.3 12 2 1 4
1Definition of what is included in ’nacelle’ is not clear.
2Machine frame only.
3Estimated from table B.6

Table B.4: Wind turbine component relative cost [%] for 1.5 MW passive stall turbine.

Source: Fuglsang [67]

Component Cost onshore Cost offshore

Blades 18.3 12.9

Tower 17.5 12.4

Gearbox 12.5 8.8

Nacelle 10.8 7.6

Grid connection 8.3 17.6

Generator 7.5 5.3

Main shaft 4.2 2.9

Yaw system 4.2 2.9

Controller 4.2 2.9

Foundation 4.2 17.6

Hub 2.5 1.8

Assembly 2.1 2.9

Transport 2.0 2.9

Brake system 1.7 1.2

TOTAL 100.0 100.0
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• Table B.4 is based on a recent book by Hau [85, 2005]; figures for the 1.5 MW

machine are most relevant to our calculations.

• Table B.5 is based on the work of Fuglsang [67], and figures are for a 1.5 MW

passive stall turbine. This means that the cost of the controller (pitch system)

and the electrical system (generator/converter) probably represent larger frac-

tions of the total in current wind turbines. This makes the other components

accounting for a smaller share. From the cost of the blades it can be inferred

that the offshore version of the turbine considered is 18.3/12.9 ≈ 1.4 times

more expensive than the land turbine.

• Table B.6 has some data from the DOWEC project (Herman [86, 87]). Figures

given are for a modern offshore wind farm.

Table B.5: Wind turbine component relative cost [%] for 750 kW stall turbine and 1.5 MW

variable speed turbine (onshore). Source: Hau [85].

Component 750 kW stall 1500 kW var. speed

Blades 34.0 21.0

Blade bearings -.- 3.1

Pitch system 0.8 4.0

Tower 16.4 20.7

Gearbox 12.5 13.6

Nacelle 10.7 6.3

Generator and converter 7.5 10.9

Main shaft (incl. bearings) 3.7 4.3

Yaw system 2.4 3.4

Controller 5.0 7.4

Hub 2.0 2.1

Brake system etc 5.0 3.2

TOTAL 100.0 100.0

Assembly 5.0 5.0
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Table B.6: Relative cost [%] for a 500 MW offshore wind farm. Source: DOWEC (Herman)

[86, 87]

Component Cost share Cost share

of subassembly of total

Hardware incl. transport onshore 53 53

Operation and maintenance 27 27

Assembly, transport and installation 11 11

Retrofit and overhaul 7 7

Decommissioning 1 1

Windfarm design 1 1

Hardware subdivision

Support structure 43 23

Nacelle 32 17

Rotor 25 13

Rotor subdivision

Blades 44 6

Hub 23 4

Pitch system 33 3



Appendix C

Fatigue and equivalent load

C.1 Equivalent load

The advantage of the fatigue damage equivalent load concept is that it reduces a long

history of random fatigue loads to one number, which makes it very easy to compare

different load situations and design modifications. It is derived as follows. If we test

some component with a sinusoidal load (say) we will typically find that the number

of cycles until rupture (life) varies inversely with the load range: the larger the load

range, the shorter the life (see figure C.1, next page). In many cases there is some

limit below which the component life is infinite, or at least very long. This is called

the fatigue strength ∆FD (∆FD may for example be a force range, or a stress range);

if we do an experiment with a load range slightly larger we will get a life of ND

cycles. In double logarithmic representation the Wöhler curve (or S-N curve) will

approximately consist of two straight lines that meet in the knee point (ND, ∆FD)

where the left part has slope 1/m and the right part is horizontal. For every load

∆Fi ≥ ∆FD the number of cycles until failure is smaller than ND and it is found

with the relation describing the curve:

Ni∆Fm
i = ND∆Fm

D (C.1)

or:

Ni = ND

(
∆FD

∆Fi

)m

(C.2)

Miner’s hypothesis is that if some load occurs ni times rather than the allowed num-

ber Ni, a fraction di = ni/Ni of the component’s life has been used. The fraction di

is called partial damage; if the sum of all partial damage
∑

di = 1 the component

fails. With this hypothesis we may find the total damage D of all loads combined:

D =
n∑

i=1

di =
n∑

i=1

ni

Ni
=

n∑

i=1

ni

ND

(
∆Fi

∆FD

)m

(C.3)
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Figure C.1: Wöhler curves (S-N curve)

The fatigue damage equivalent load, is the load that for some arbitrarily chosen num-

ber of cycles Neq would produce the same damage as all actual loads combined, so:

Neq

ND

(
∆Feq

∆FD

)m

=
n∑

i=1

ni

ND

(
∆Fi

∆FD

)m

(C.4)

Which works out to:

∆Feq = N1/m
eq

(
n∑

i=1

ni∆Fm
i

)1/m

(C.5)

Common values for Neq are Neq = 5 × 106, Neq = 107 or Neq = L, where L is the

component’s life in [s], which assumes that the equivalent load has 1 Hz frequency

(this makes it possible to compare load situations of different duration). If we extend

the line with slope m to the right of the knee we may incorporate all load cycles

in the equivalent load. Basically this is not correct, however no great additional

error is introduced. Firstly both design loads and site loads are treated in this way,

which makes it likely that any error in the whole procedure will be cancelled in a

comparison; secondly Eulitz [61] shows that the correctness of damage prediction
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depends only very weakly on how small cycles are treated; all proposals to do this

are just as good (or bad).

The equivalent load assumption also makes it possible to estimate the relative

damage distribution. Using 1 Hz equivalent load ranges, the relative of damage cre-

ated by some load case i occurring is:

drel,i =
di

D
=

Li ∆Fm
eq,i

L ∆Fm
eq

(C.6)

Where Li is determined by the wind speed distribution. With these considerations it

is easily shown that fatigue damage created by loads with wind speed U < 10 m/s

and U > 25 m/s may normally be neglected (see table 4.13, p68).

C.2 Mean stress correction

Composites. Especially for composites (blade materials), the mean load level has

large influence on the fatigue strength, and a modified definition of the equivalent

load is necessary. For convenience we assume the following (see figure C.2, next

page):

• The relation life-fatigue strength is the usual one: Nσm = C.

• Stress and strain are always proportionally related.

• The fatigue strength decreases linearly from the maximum value for zero mean

stress to zero if the mean stress equals the ultimate tensile strength (UTS).

• The Goodman diagram is symmetric around mean stress zero, in particular

the ultimate compressive strength (UCS) equals the ultimate tensile strength

(UTS).

While being appealing for their simplicity, these assumption are in fact not true;

nevertheless they may be allowed because the purpose of the equivalent load is to

compare different situations rather than to make lifetime predictions. In a compari-

son errors will tend to cancel each other. To give this statement some mathematical

background, consider the derivative of the exact equivalent load: ∂∆F/∂x is :

∂∆F

∂x
≈ ∆F (x2) − ∆F (x1)

x2 − x1
=

∆F2 − ∆F1

x2 − x1
(C.7)

while the approximation ∂∆F ′/∂x is:

∂∆F ′

∂x
≈ ∆F ′

2 − ∆F ′
1

x2 − x1
=

(∆F2 + ε2) − (∆F1 + ε1)

x2 − x1
(C.8)

Because of the similarity of load spectra we have for the errors ε:

ε1 ≈ ε2 (C.9)
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Figure C.2: Goodman diagram (idealised)

and:

∂∆F ′

∂x
≈ ∂∆F

∂x
(C.10)

If we set the mean stress σm = 0, then we get (note that we are using amplitudes

σ = ∆σ/2 rather than ranges ∆σ):

Niσ
m
i = NDσm

D (C.11)

or:

Ni = ND

(
σD

σi

)m

(C.12)

However to find correct life Ni for stress amplitude σi the fatigue strength σD(σm =
0) must be modified for the influence of non zero mean stress σm. The simplest

modification is:

σD(σm) = σD(0)

(
1 − |σm|

UTS

)
(C.13)
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which gives:

Ni = ND

(
σD(0)

σi

(
1 − |σm|

UTS

))m

(C.14)

Then the damage D is:

D =
n∑

i=1

di =
n∑

i=1

ni

Ni
=

n∑

i=1

ni

ND


 σi

σD(0)
(
1 − |σm|

UTS

)




m

(C.15)

We require the same damage D if the equivalent stress σeq(0) is applied Neq times:

D =
Neq

ND

(
σeq(0)

σD(0)

)m

=
n∑

i=1

ni

ND


 σi

σD(0)
(
1 − |σm|

UTS

)




m

(C.16)

which finally yields:

Neqσ
m
eq(0) =

n∑

i=1

ni


 σi(

1 − |σm|
UTS

)




m

(C.17)

Note that equation (C.17) is equivalent to equation (C.5) if σm = 0 (or UTS = ∞).

It is easiest to use it if the actual stress combinations (σi, σmi) and UTS are known.

However in many cases these will not be known, and apart from that we would like

to apply the concept to loads rather than stresses. Therefore we must set a reasonable

value for the ultimate tensile load (UTL). Clearly to avoid ’immediate collapse’ in

case the extreme load occurs we must have:

UTL ≥ SRF γf γm max(Fi + Fmi) (C.18)

For ultimate load calculations, it is common practice to have SRF γfγm ≥ 1.5.

Usually ultimate design load situations are defined as to produce higher loads than

found from the fatigue calculations. Therefore it seems reasonable to calculate the

equivalent load ranges for blades with safety margins SRF γfγm = 1.5 . . . 2. The

sensitivity of the calculations to the choice of SRF γf γm will be investigated.

Metals. For metallic materials the situation is similar. However a different mean

stress correction is used1. The dependence of the fatigue strength (amplitude) σA on

mean stress σm is approximated by:

σA(σm) = σA(0) − Mσm (C.19)

1If weld details are not stress relieved, usually no mean stress correction is applied.
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The number M is called the mean stress sensitivity. The expression is easily con-

verted to stress ranges:

∆σA(σm) = ∆σA(0) − 2Mσm (C.20)

If fatigue tests are available for stress ratios R = −1 and R = 0, then the value of the

mean stress sensitivity is found with:

M =
∆σA(σm = 0)

∆σA(σm = ∆σA/2)
− 1 =

∆σA(R = −1)

∆σA(R = 0)
− 1 (C.21)

The fatigue damage di caused by ni load cycles of range ∆σi and mean stress σmi

is:

di =
ni

ND

(
∆σ

∆σA(0) − 2Mσmi

)m

(C.22)

We may determine the effective (fatigue damage equivalent) stress range that would

have given the same fatigue damage:

∆σi,eff =
∆σi

1 − 2Mσmi

∆σA(0)

(C.23)

If 2Mσmi/∆σA(0) ≪ 1 then:

∆σi,eff ≈ ∆σi + 2Mσmi
∆σi

∆σA(0)
(C.24)

If furthermore ∆σi ≃ ∆σA(0) then:

∆σi,eff ≈ ∆σi + 2Mσmi (C.25)

This is the equation used by Eulitz [60, 61]. Clearly it is not equivalent to equation

(C.23), but the advantage is that we do not need to know the fatigue strength ∆σA.

Finally:

Neq∆σm
eff =

n∑

i=1

ni (∆σi + 2Mσmi)
m (C.26)

This means for example that for steel S355 the mean stress correction factor is (Rm

= 500 MPa): M = 0.075, and for cast iron GGG40.3 (Rm = 400 MPa): M = 0.19.

In fact the mean stress corrections are somewhat more complex, with modification of

M for other stress ratios, but this sophistication is unwarranted for present use.

Note that the Goodman diagram is not symmetrical around zero mean stress: for

metallic materials compressive stresses are favourable, and completely negative load

cycles produce zero fatigue damage.
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C.3 Fatigue limit

An objection against the equivalent loads presented so far may be that the existence

of a fatigue limit is not taken into account, which may give a significant difference for

metals. To do this, the calculation of the equivalent load is simply modified to reject

any load cycle below the fatigue strength. The only problem is how to determine the

fatigue strength in terms of loads. A practical solution is the following. Assume that

in the reference situation a component is just designed to the limit, which means it can

withstand a load ∆F if it is applied ND times (the number of cycles corresponding

to the knee in the Wöhler curve):

∆F = SRF γf γm ∆FD (C.27)

If we set the equivalent number of load cycles Neq = ND, then the ∆FD = ∆Feq

and the fatigue limit is just ∆F = SRF γf γm ∆Feq. We cannot neglect all load

cycles smaller than this because cycles below the fatigue limit can still enlarge an

existing crack, but a reasonable cut off limit is (for example used in Eurocode 3):

∆FCO = 0.5 SRF γf γm ∆Feq (C.28)

Finally it must be remarked that the argument presented here is somewhat circular

because basically in establishing the cut off value the fact that some cycles cause no

fatigue damage should be taken into account, while to do this the cut off value must

be known. Of course the problem could be solved iteratively, but in the light of the

inaccuracy of the whole concept of equivalent load this is not necessary.

C.4 Equivalent turbulence

In this section it is shown that the equivalent turbulence approach yields good, slightly

conservative estimates of the equivalent fatigue load, and that the IEC 61400-1 rec-

ommendation to use the 90% fractile turbulence is (perhaps) a little overconservative.

We start by looking at the moments of a lognormal distribution around zero.

Table C.1: Fatigue strength mean stress sensitivity M (Rm is the tensile strength in [MPa]).

material treatment sensitivity source

steel smooth M = 0.00035 Rm − 0.1 Gudehus [74]

cast iron smooth M = 0.00035 Rm + 0.05 Gudehus [74]

cast iron as cast M = 0.28 Kaufmann [104], table 7.6

weld seams as welded M = 0 (no sensitivity) Hobbacher [90]

weld seams stress relieved M = 0.33 Hobbacher [90]

weld seams stress relieved M = 0.40 Köttgen [112], table 7.8
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Let the parameter x be lognormally distributed according to:

f(x) =
1

S
√

2π x
exp

(
−(lnx − M)2

2S2

)
(C.29)

Then the mean and standard deviation of the distribution are:

µx = exp(M +
1

2
S2) (C.30)

σx = µx

√
exp(S2) − 1 (C.31)

In general the mth moment around zero is given by:

∞∫

0

xmf(x)dx = exp

(
mM +

1

2
m2S2

)
(C.32)

This can be proved with the substitution lnx = y (and x = ey):

∞∫

0

xm

S
√

2π x
exp

(
−(lnx − M)2

2S2

)
dx =

∞∫

−∞

emy

S
√

2π ey
exp

(
−(y − M)2

2S2

)
dey =

∞∫

−∞

emy

S
√

2π
exp

(
−(y − M)2

2S2

)
dy =

∞∫

−∞

1

S
√

2π
exp

(
−y2 − (2M + 2mS2)y + M2

2S2

)
dy =

∞∫

−∞

1

S
√

2π
exp

(
−

(
y −

(
M + mS2

))2

2S2
+

2mMS2 + m2S4

2S2

)
dy =

exp(mM +
1

2
m2S2)

∞∫

−∞

1

S
√

2π
exp

(
−

(
y −

(
M + mS2

))2

2S2

)
dy =

exp(mM +
1

2
m2S2) (C.33)
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It is seen that the equation for the mean µx (C.30) is a special case (m = 1) of the

general formula (C.33). If the turbulence σ is likewise lognormally distributed, then

the equivalent turbulence σeq is:

σeq =




∞∫

0

σmdσ




1/m

= exp

(
M +

1

2
mS2

)
(C.34)

Most equivalent load ranges may be expressed in good approximation as:

∆F = aσ + b (C.35)

Then the equivalent load range is:

∆Feq =




∞∫

0

f(σ)∆Fm(σ)dσ




1/m

=




∞∫

0

f(σ)(aσ + b)mdσ




1/m

(C.36)

The standard IEC 61400-1 advocates the use of 90% fractile turbulence based on

the assumption that the equivalent turbulence approach is valid. We may ask how

accurate this is compared to the exact calculation of equation (C.36). The integral for

the equivalent load can be solved analytically using equation (C.33):




∞∫

0

f(σ)(aσ + b)mdσ




1/m

=

[
m∑

k=0

(
m

k

)
akbm−k exp(kM +

1

2
k2S2)

]1/m

(C.37)

We may rewrite this as:

∆Feq =

[
m∑

k=0

(
m

k

) (
a exp(M +

1

2
kS2)

)k

bm−k

]1/m

(C.38)

Because k ≤ m:

∆Feq ≤
[

m∑

k=0

(
m

k

) (
a exp(M +

1

2
mS2)

)k

bm−k

]1/m

(C.39)

∆Feq ≤
[(

a exp(M +
1

2
mS2) + b

)m]1/m

(C.40)

∆Feq ≤ a exp(M +
1

2
mS2) + b (C.41)
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∆Feq ≤ aσeq + b (C.42)

By this we have proved that the equivalent turbulence approach is conservative. We

may further investigate how conservative it is. Clearly the expression is exact for

cases where either a = 0 or b = 0, and a good approximation when S is small.

To check the equations given above, the average turbulence intensity was calcu-

lated for the important wind speed interval 10-20 m/s. It turns out that equivalent tur-

bulence intensity according to equation (C.34) is a good approximation of the exact

load equivalent turbulence intensity (equation C.38), as can be seen in tables C.2–

C.4. The 90% fractile tends to be 0.01–0.02 too conservative; in other words, instead

Table C.2: Comparison of different fatigue load equivalent turbulence intensities for IEC

61400-1 (Class A, Iref = 0.16) [93]. Average for 10 < U < 20 m/s.

Effective turbulence intensity m = 4 m = 8 m = 12

90% fractile (IEC) 0.176 0.176 0.176

Equation (C.34) 0.163 0.165 0.166

Exact Mxt0 0.162 Mx11h 0.163 Mx11r 0.163

Myt0 0.162 My11h 0.160 My11r 0.165

MxNf 0.166

MyNf 0.165

MzNf 0.165

Table C.3: Comparison of different fatigue load equivalent turbulence intensities for Lam-

mefjord (measured turbulence distribution from DNV [47]). Average for 10 < U < 20 m/s.

Effective turbulence intensity m = 4 m = 8 m = 12

90% fractile (IEC) 0.160 0.160 0.160

Equation (C.34) 0.143 0.147 0.151

Exact Mxt0 0.137 Mx11h 0.140 Mx11r 0.141

Myt0 0.142 My11h 0.144 My11r 0.147

MxNf 0.148

MyNf 0.146

MzNf 0.145

Table C.4: Comparison of different fatigue load equivalent turbulence intensities for Vindeby

(measured turbulence distribution from Hansen [79]). Average for 10 < U < 20 m/s.

Effective turbulence intensity m = 4 m = 8 m = 12

90% fractile (IEC) 0.099 0.099 0.099

Equation (C.34) 0.088 0.091 0.094

Exact Mxt0 0.082 Mx11h 0.079 Mx11r 0.080

Myt0 0.083 My11h 0.086 My11r 0.089

MxNf 0.087

MyNf 0.084

MzNf 0.084
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of adding 1.3 times the turbulence intensity standard deviation to the mean turbulence

intensity, 0.5 times the standard deviation would be enough (however equation (C.34)

is to be preferred).

C.5 Estimation of S-N curve from tests

Because of the method of equivalent loads that is used for all calculations, it is con-

venient to treat the exponent (or slope) of the S-N curve m as a fixed variable. While

it may be true that the slope is fixed, we do not know exactly what the value is. In

practice, the S-N curve used for the fatigue damage estimates would be found as

follows:

1. The constant amplitude S-N curve is established with tests.

2. The life curve is found with tests using representative variable amplitude load

spectra;

3. The Liu-Zenner correction (or something similar) is applied to the original

curve;

4. The stress factor q0 is adjusted to make life predictions based on the Liu-Zenner

curve fit experiments;

5. Steps 2–4 may be repeated with different VA load spectra to get the best curve

for life predictions.

One might skip step 1, and only use the life curve without any correction for life

predictions; but hope is that the approach sketched here has more general validity.

However, whichever curve is used, it is necessarily established on the basis of a

limited number of experiments.

To get more insight in how accurately we can establish an S-N curve with this

procedure (and whether our assumption of treating m as fixed is justified), we do

some idealised numerical Monte Carlo experiments. Because we are only interested

in the how much the slope m varies if it is derived from experiments, we may bypass

all things that make it difficult to find representative S-N curves: we simply assume

that there is some underlying S-N curve of the usual shape, and that test results scatter

around it. Random test data are generated and the S-N curve derived, as would be

done if real experimental data were available. If one scans the literature, it appears

that some reasonable assumptions about typical fatigue experiments for finding the

curve are:

• The real material fatigue behaviour can be described with a one slope power

law curve Nσm = c.

• The experimental lives of individual speciments scatter around the median ac-

cording to a lognormal distribution, and the scatter number TN is constant

along the curve.
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• The fatigue strength amplitude is one third of the yield strength (for conve-

nience we set the real median fatigue strength σA = 1) at some fixed number

of cycles ND (since we are interested in uncertainty in the estimate of m it is

immaterial here what value ND has).

• Three times 10 ’experiments’ are done at stress levels σ = 2, 1.5 and 1.0 times

the fatigue strength. Other set ups are possible, and one may discuss how many

test at which levels should be done –for example tests at intermediate levels do

not yield much information: to fix a slope it is better to test ’at the ends’ of the

line– but some experimentation shows that in essence Monte Carlo results do

not change much under different strategies; most important is the total number

of experiments.

With the Monte Carlo method 1000 pseudo-experimental sets of results are generated.

At each stress level the maximum likelihood median is determined, and through the 3

points a least squares line is drawn (this works better than a least squares fit through

all points, which tends to yield curves that are too flat). This gives us estimates of the

exponent m̂ and the constant ĉ. Hence the estimate of the curve is given by:

Nσm̂ = ĉ (C.43)

And the estimated fatigue strength σ̂A:

σ̂A =

(
ĉ

ND

)1/m̂

(C.44)

Note that it is not necessary to estimate the number of cycles ND; because we as-

sumed a one slope curve, it is fully determined by the slope m and the fatigue strength

σA at ND cycles.

Results are given in table C.5. It turns out that all estimates are normally dis-

tributed. The slope m̂ and the fatigue strength σ̂A at ND are correlated with r2 =

0.6 i.e. larger slope corresponds to larger fatigue strength. This is just a matter of

geometry: if the fatigue strength had been defined at stress level 1.5 (the midpoint of

the line), correlation would have been close to zero.

Table C.5: Estimates of parameters defining the S-N curve (1000 simulations): slope m and

fatigue strength σA.

material table inputs estimates (mean and std deviation)

slope scatter slope fatigue strength

m TN Tσ µ̂m σ̂m µ̂σA
σ̂σA

composite 7.12 9.00 8.40 1.27 9.02 0.52 1.00 0.027

composite - 12.00 10.00 1.21 12.01 0.56 1.00 0.022

cast iron 7.6 6.33 3.45 1.21 6.34 0.30 1.00 0.023

weld seam 7.8 3.50 3.63 1.41 3.52 0.32 1.00 0.043
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It is seen that the coefficient of variation on slope Vm = σm/µm ∼ 5–10%. Fortu-

nately the standard deviation on fatigue strength σσA
is only a few percent, which is

much smaller than standard deviation on individual test results.
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Appendix D

Wind data

Table D.1: Variation in yearly average wind speed and Weibull shape factor for some stations

in the Netherlands. Coefficients of variation are calculated for 1 year average values; r(U, k)
is the correlation coefficient for wind speed U10 and shape factor k10. Source: KNMI.

period U10 U80 VU10
k10 Vk10

r(U, k)
Station [year] [m/s] [m/s] [-] [-] [-] [-]

s225 IJmuiden 46 6.5 8.8 0.071 2.1 0.059 0.33

s229 Texelhors 19 7.2 9.8 0.058 2.2 0.087 0.50

s235 Den Helder 29 6.1 8.3 0.045 2.0 0.062 0.24

s240 Schiphol 52 5.4 7.3 0.059 1.9 0.058 −0.04

s242 Vlieland 7 7.2 9.8 0.047 2.1 0.055 0.64

s250 Terschelling 26 6.9 9.4 0.049 2.1 0.076 0.35

s252 K13 14 7.8 9.7 0.082 2.3 0.058 0.29

s254 Noordwijk 12 7.5 9.4 0.037 2.1 0.051 0.46

s270 Leeuwarden 41 5.3 7.1 0.054 1.9 0.079 0.49

s310 Vlissingen 42 5.5 7.5 0.050 2.0 0.047 −0.06

s321 Europlatform 15 7.8 9.8 0.062 2.2 0.054 0.47

s330 Hoek van Holland 41 6.5 8.8 0.106 2.1 0.098 0.77

s343 Geul 18 6.0 8.1 0.082 2.2 0.042 0.09

s348 Cabauw 16 4.7 6.4 0.048 1.8 0.066 0.38

s350 Gilze-Rijen 42 4.5 6.0 0.073 1.9 0.079 0.39

Average 28 6.3 8.4 0.062 2.1 0.065 0.35

223



224 Appendix D Wind data

Table D.2: Variation in yearly average wind speed at 10 m height for some stations in Den-

mark. Source: Energi og Miljødata.

region period average speed std deviation COV

[m/s] [m/s] [-]

North Jutland 1989–2001 5.1 0.25 0.050

West Jutland 1989–2001 5.6 0.28 0.049

Bornholm 1989–2001 5.1 0.24 0.047

Fyn 1989–2001 4.4 0.19 0.044

Average (1 year) 5.0 0.24 0.047

Table D.3: Variation in yearly average wind speed and Weibull shape factor at 10 m height

for some stations in Germany. Source: Deutsche Wetterdienst.

station period U10 σU VU k σk Vk

[m/s] [m/s] [-] [-] [-] [-]

Sylt 1960–99 7.2 0.32 0.044 2.6 0.25 0.097

Schleswig 1960–99 4.3 0.25 0.057 1.9 0.08 0.042

Hamburg 1960–99 4.3 0.33 0.064 1.9 0.12 0.064

Helgoland 1960–99 7.4 0.61 0.082 2.1 0.19 0.088

Average (1 year) 0.065 0.073

Table D.4: Variation in yearly wind energy index for some countries. Source: Pryor et

al. [169].

Country NCEP/NCAR 1960-89 ECMWF 1990–2001

% Mean StDev COV Mean StDev COV

Denmark 88 9 0.10 88 8 0.09

Norway 89 8 0.09 87 11 0.13

Sweden 90 10 0.11 94 9 0.10

Finland 92 8 0.09 96 10 0.10

Baltic States 91 11 0.12 101 12 0.12

Iceland 91 8 0.09 83 10 0.12

Table D.5: Wind speed estimates for Nysted (Rødsand). Source: Barthelmie [8].

Method Description Wind speed

WAsP Rødsand 96–98/Tystofte 83–97 8.7

Weibull Rødsand 96–98/Tystofte 83–97 8.8

MCP Rødsand 96–98/Tystofte 83–97 8.6

WAsP Rødsand 96–99/Tystofte 83–97 9.0

Weibull Rødsand 96–99/Tystofte 83–97 9.0

MCP Rødsand 96–99/Tystofte 83–97 8.6

Observed Rødsand 96–99 9.5

Average error [m/s] -0.7

Coefficient of variation [-] 0.021
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Table D.6: Wind speed estimates for Omø Stålgrunde (Source: Barthelmie [8].

Method Description Wind speed

WAsP Omø Stålgrunde 96–98/Tystofte 83–97 8.3

Weibull Omø Stålgrunde 96–98/Tystofte 83–97 8.3

MCP Omø Stålgrunde 96–98/Tystofte 83–97 8.1

WAsP Omø Stålgrunde 96–99/Tystofte 83–97 8.3

Weibull Omø Stålgrunde 96–99/Tystofte 83–97 8.3

MCP Omø Stålgrunde 96–99/Tystofte 83–97 8.1

Observed Omø Stålgrunde 96–99 7.8

Average error [m/s] +0.4

Coefficient of variation [-] 0.012
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Table D.7: Prediction of wind speeds and turbulence intensity at hub height H from mea-

surements at low height in [m/s]. Source: Downey [48]. The terrain roughness z0 is estimated

from the turbulence intensity at the lowest height; the wind shear exponent α is estimated for

the largest height. In the calculations all available data between 10 and 20 m/s were used.

station type height wind speed [m/s] turbulence intensity [-]

(z0 in [m]) [m] Umsr Upred ∆U Imsr Ipred ∆I
Egmond offshore 116 13.6 14.1 0.4 0.054 0.071 0.018

z0 = 9.1e-5 70 13.0 13.5 0.5 0.061 0.074 0.013

α = 0.09 21 12.3 12.3 0.0 0.081 0.081 0.000

Horns Rev offshore 62 14.7 14.5 −0.3 0.070 0.086 0.016

z0 = 5.8e-4 45 14.1 14.1 −0.1 0.078 0.089 0.011

α = 0.13 30 13.6 13.5 0.0 0.085 0.092 0.007

15 12.7 12.7 0.0 0.099 0.099 0.000

Læsø offshore 62 14.5 13.8 −0.7 0.066 0.080 0.014

z0 = 2.3e-4 45 13.9 13.4 −0.5 0.070 0.082 0.012

α = 0.13 30 13.2 13.0 −0.2 0.078 0.085 0.007

15 12.2 12.2 0.0 0.090 0.090 0.000

Skipheia coastal 101 16.6 17.0 0.5 0.065 0.096 0.031

z0 = 3.0e-3 72 15.9 16.5 0.6 0.072 0.099 0.027

α = 0.12 41 15.3 15.6 0.3 0.086 0.105 0.019

20.5 14.4 14.4 0.0 0.104 0.113 0.010

11 13.4 13.4 0.0 0.122 0.122 0.000

Tjæreborg coastal 90 16.1 14.9 −1.1 0.084 0.105 0.022

z0 = 6.9e-3 60 14.7 14.3 −0.5 0.096 0.110 0.014

α = 0.21 30 13.2 13.2 0.0 0.119 0.119 0.000

Toboel pastoral 62 16.2 15.5 −0.7 0.126 0.140 0.014

z0 = 4.8e-2 45 15.2 14.8 −0.4 0.139 0.146 0.007

α = 0.20 30 13.9 13.9 0.0 0.158 0.155 −0.003

15 12.4 12.4 0.0 0.174 0.174 0.000

Cabauw pastoral 200 17.1 17.0 −0.1 0.074 0.100 0.026

z0 = 9.3e-3 140 17.2 16.4 −0.7 0.086 0.104 0.018

α = 0.16 80 15.7 15.5 −0.3 0.107 0.110 0.004

40 14.2 14.3 0.1 0.128 0.120 −0.009

20 13.1 13.1 0.0 0.130 0.130 0.000

Oak Creek complex 79 16.6 17.9 1.3 0.088 0.097 0.010

z0 = 2.8e-3 65 16.7 17.6 0.9 0.094 0.099 0.005

α = -0.02 50 16.3 17.1 0.8 0.099 0.102 0.003

10 14.3 14.3 0.0 0.122 0.122 0.000



Appendix E

Low cycle fatigue

E.1 Transition matrix

It has often been argued that the conventional approach to load calculations in which

only 10 minute (or 1 hour) intervals are considered, characterised by a mean wind

speed and (Gaussian) turbulence, misses large load cycles that are created by very low

frequency wind speed variations (periods of days). To estimate the size of this effect

we consider an artificial sequence of these load calculations that is representative for

real wind speed histories.

It is not entirely straightforward how to generate wind speed history of 10 minute

or 1 hour intervals with the right properties. For example, if a one step Markov chain

is used we may run into trouble because the correlation function for such a chain is

rapidly decaying, and low frequency phenomena are not well represented. If on the

other hand we use the method of Shinozuka [190] (combined with Yamazaki’s [238]

algorithm to obtain the desired Weibull wind speed distribution), we will tend to

find persistence that is larger than in reality, because the methods disregards phase

information (phase angles are assumed to be random). Kaminsky [100] advocates

the use of an embedded Markov procedure, in which a low and high frequency chain

are superposed. In investigating this method it was found however that a single chain

based on 1 hour average wind speeds yields spectra that are quite similar to measured

ones. Moreover, the transition matrices and spectra for various sites are so similar

that is seems justified to represent them by one synthetic matrix.

The Markov transition matrix is found as follows. First all wind speeds are trans-

formed to the height where the mean wind speed would have been 8.5 m/s. Then each

1 h period is binned into 2 m/s intervals (0–3, 3–5, . . . , 23–25, 25 and over). Each

transition is characterised by the from wind speed and the to wind speed. A transition

Uj → Ui is counted by increasing matrix element mij by 1. There is no reason why

we should not look at the signal in reverse, so we also increase element mji by 1.

This will ensure detailed balance (see below), and that the eigenvector of the matrix
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equals the wind speed distribution. When we are done, every column is normalised

to make the sum of probabilities equal to unity.

It turns out that the transition probabilities from one wind speed bin to another

are well described by Weibull distributions. For average wind speed 8.5 m/s and 2

m/s bins, Weibull curve fitting yields the result that the Weibull size factor A and the

median m are given by linear functions (in good approximation):

A = aAUfrom + bA (E.1)

m = amUfrom + bm (E.2)

Where:

A Weibull scale factor [m/s]

aA constant = 0.969

am constant = 0.960

bA constant = 0.723 m/s

bm constant = 0.458 m/s

m median [m/s]

Ufrom ’from’ bin wind speed mean value [m/s]

Because the median of a Weibull distribution and the scale factor are related:

m = A (ln 2)1/k (E.3)

The shape factor k can be found with:

k =
ln ln 2

ln(m/A)
(E.4)

This prescription yields a transition matrix that is very close to the average of 10

measured ones (for each site the wind speed history was blown up to achieve average

wind speed 8.5 m/s, i.e. wind speeds were transformed to the height where this speed

would occur), and the matrix will yield a wind speed distribution close to the desired

one (U = 8.5 m/s, k = 2), but not exactly. A problem with the synthetic matrix is that

it generates a signal which is not time reversible, i.e. if we take the signal generated,

reverse it and regenerate the matrix, the new matrix will not be identical to the original

one. To get time reversibility and the correct wind speed distribution, we must have

the following. Let the transition matrix be M and the desired wind speed frequency

is pi for wind speed interval i, then for any mij :

pjmij = pimji (E.5)

This property, which is also called ’detailed balance’ means that the process moves

from wind speed interval i to j just as often as it moves from wind speed interval j
to i. 1

1Note that our definition of the transition matrix has columns summing to unity, not rows.
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The matrix built from measurements has the first property automatically if we

build the matrix by counting transitions and input every transition in elements mij

and mji and in pi and pj . The wind speed distribution will of course be the measured

one, and not necessarily the desired one.

The synthetic matrix will only approximately have the desired properties. We

may rectify this by applying the Metropolis-Hastings algorithm (see Hastings [84]

and Chib [37]). The original algorithm modifies the matrix by shifting probability

mass from off-diagonal element to main diagonal elements; unfortunately this tends

to destroy the fit of the individual Weibull distributions. For our purpose it is bet-

ter to use a modified, iterative version of the algorithm that relies on redistributing

probability mass between sets of mirror off-diagonal elements mij and mji:

1. Redistribute probability mass over mij or mji to comply with equation (E.5).

Set the new elements m′
ij and m′

ji to:

m′
ij =

pi

pi + pj
(mij + mji) (E.6)

m′
ji =

pj

pi + pj
(mij + mji)

2. Apply this procedure to all pairs (mij , mji) where i 6= j.

3. Renormalise all columns to restore unity column sums.

4. Go to step 1 and repeat the procedure until detailed balance is achieved.

This simple tweaking procedure by and large preserves the original matrix: only

small changes are made in some elements. The matrix found with the Weibull distri-

bution given above and subsequent correction is given as table E.2 (next page).

Table E.1: Meteo stations used

station period time measuring average wind speed

height at measuring height

[h] [m] [m/s]

Netherlands

Cabauw (s348) 1988–2003 121,900 10.0 4.7

Den Helder (s235) 1974–2002 262,600 10.0 6.1

Europlatform (s321) 1985–2003 158,200 29.1 8.8

K13 (s252) 1981–2001 154,100 73.8 9.6

MP Noordwijk (s254) 1991–2002 112,700 27.6 8.4

Texelhors (s229) 1973–2002 246,000 10.0 7.2

Vlieland (s242) 1996–2002 61,400 10.0 7.2

Denmark

Risø 1996–2002 14,700 125.0 7.6

Tystofte 1982–1999 149,300 39.3 6.5

Sweden

Nasudden 1992–1995 29,100 96.0 7.5
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Apart from wind speed changes something must be assumed for wind direction changes.

It turns out that the change in wind direction for 1 hour means is well (enough) de-

scribed by a normal distribution with 0 mean and standard deviation 15◦. Figure E.1

shows the power spectral density of a wind speed history generated with the matrix

given above. It is seen that the Markov chain signal fits the measured signal well,

and is also close to the (unity normalised, one-sided) spectrum for Tystofte derived

by Kristensen [114]:

S(f) =
4T

1 + (2πfT )2
(E.7)

where:

f frequency [1/day]

S power spectral density [m2/s2/day]

T time constant = 0.84 days

While this method is fine for generating wind speed histories, the wind direction

history is not completely satisfactory: the resulting wind direction distribution is uni-

form, while in reality the wind is known to have a dominant direction. This could

be solved by generating separate histories for E-W and N-S wind speeds, which have

normal distributions with non-zero means (for North-Western Europe) and are uncor-

related.

Table E.2: Markov transition matrix for IEC class II wind regime (U=8.5 m/s, k=2)

A 1.41 2.82 4.60 6.49 8.43 10.37 12.33 14.27 16.24 18.18 20.13 21.94 23.98 26.20

m 1.10 2.48 4.25 6.14 8.06 10.00 11.95 13.88 15.83 17.75 19.68 21.46 23.47 25.66

k 1.50 2.97 4.65 6.62 8.45 10.09 11.88 13.09 14.40 15.57 16.37 16.82 17.31 19.35

U 0.5 2 4 6 8 10 12 14 16 18 20 22 24 26

0.5 0.53 0.06

2 0.43 0.70 0.13

4 0.04 0.24 0.65 0.17 0.01

6 0.01 0.21 0.63 0.19 0.01

8 0.01 0.19 0.61 0.21 0.02

10 0.01 0.18 0.60 0.23 0.02

12 0.01 0.17 0.59 0.24 0.03 0.01

14 0.01 0.16 0.57 0.25 0.04 0.01

16 0.01 0.15 0.56 0.27 0.05 0.01

18 0.01 0.14 0.54 0.28 0.05 0.01

20 0.01 0.14 0.53 0.29 0.06 0.02

22 0.01 0.13 0.51 0.29 0.07

24 0.01 0.12 0.48 0.28

26 0.02 0.15 0.63
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Figure E.1: Power spectral density of 1 hour mean wind speed for Tystofte (unity normalised

area). The fit is according to equation (E.7).

E.2 Calculations

A total of 13 × 12 = 156 load calculations were done for wind speeds 3, 4, 6, . . ., 24,

30 m/s; for every wind speed 12 calculations of 10 minutes were done, at angles 0, 30,

. . ., 330◦. Once we have a wind history, either from measurements or an artificial one,

it is possible to construct long term load time series, simply by stringing together 10

minute time series according to this history. The load histories are rainflow counted,

and the equivalent load is calculated and compared to the conventionally calculated

one for the same load history.

For the artificial time series, which wind direction to select is determined by

finding the new wind direction from the old one by adding a random angle from the

appropriate normal distribution N(0◦, 15◦), which results in a series of 1 hour mean

wind directions having any value between 0◦and 360◦with a uniform distribution. To

determine which load case to use, the new angle is rounded to the nearest multiple of

30◦.

Table E.3 (p232) presents the ratios of equivalent loads incorporating large cycles

with conventional calculations, for the standard IEC class II calculation with uniform

wind speed distribution and for 5 meteo stations for which measured wind histories

are available (turbine hub height is assumed to be at the level where the average wind
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Figure E.2: Large cycles due to low frequency wind speed variations: wind speed.

speed is 8.5 m/s). Results for various stations agree very well with each other, and

also with the IEC class II calculations. Some graphical results of the calculations are

given in figures E.2–E.5.

Table E.3: Influence of large low frequency load cycles on equivalent fatigue loads. Table

numbers are the ratio of calculations with and without large load cycles, for the same mea-

sured wind speed and direction histories, which are normalised to average wind speed 8.5

m/s. Note that the wind speed distributions thus obtained are not necessarily Weibull; nor

are wind direction distributions uniform. Hourly wind directions for the IEC II wind regime

are generated with a random walk process, where change in wind speed is governed by the

normal distribution Φ(µ = 0◦, σ = 15◦).

Load Mx11r My11r Mx11h My11h MxNr MyNf MzNf Mxt0 Myt0

Exponent m 12 12 6 6 6 6 6 4 4

IEC II 1.00 1.02 1.00 1.03 1.06 1.01 1.01 1.03 1.03

IEC II1 1.00 1.04 1.00 1.04 1.06 1.02 1.03 1.05 1.06

Cabauw 1.00 1.02 1.00 1.03 1.07 1.01 1.01 1.02 1.03

Den Helder 1.00 1.02 1.00 1.03 1.06 1.01 1.01 1.02 1.03

K13 1.00 1.02 1.00 1.03 1.05 1.01 1.01 1.02 1.03

Vlissingen 1.00 1.02 1.00 1.03 1.06 1.01 1.01 1.02 1.03

Tystofte 1.00 1.03 1.00 1.04 1.09 1.01 1.01 1.03 1.05
1Results as in first line, but normalised against exact Weibull distribution.
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Figure E.3: Large cycles due to low frequency wind speed variations: blade root flap mo-

ment. Load ratio r = 1.05 for exponent m = 12 (blade) and r = 1.03 for m = 6 (hub).
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Figure E.4: Large load cycles due to low frequency wind speed variations: main shaft driving

moment. Load ratio r = 1.06 for exponent m = 6.
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Figure E.5: Large load cycles due to low frequency wind speed variations: tower base bend-

ing moment. Load ratio r = 1.07 for exponent m = 4.

Of course from the time series the number of start stop cycles may be derived as well,

see table E.4, which would for example enable us to judge the effect of setting stop

wind to different values.

Table E.4: Start stop cycles. Average of 5 wind histories. Note: start-stop hysteresis at high

wind speeds was not taken into account.

IEC I; U = 10 m/s IEC II; U = 8.5 m/s

start wind speed stop wind speed cycles cycle time cycles cycle time

[m/s] [m/s] [-] [h] [-] [h]

4 4 2,564 45 3,328 43

4 25 158 116 46 136

25 4 153 126 43 122

25 25 221 24 29 13

all all 3,095 52 3,446 45



Appendix F

Some notes on probabilistic

methods

F.1 First Order Reliability Method

The idea of the First Order Reliability Method is to linearise the limit state function

Z around the design point x∗, which is the point fulfilling Z(x) = 0 with the highest

probability density (’the point with the highest failure probability’). This means that

the surface Z = 0 is approximated by a hyperplane. If all distributions of the vector

x are (approximated by) normal distributions, the amount of probability mass in the

region where Z < 0 is found from the distance β (the reliability index) of point x∗ to

the point of the mean value of Z:

β =
µZ

σZ
(F.1)

The reliability index β is found with an iterative method. Schemes of various degrees

of sophistication are found in books on probabilistic design; this particular one is

taken from Vrouwenvelder and Vrijling [231, 233], and is valid for non-correlated

variables.

What we need to do is find the design point x∗, which is the point of the hyper-

plane where Z has the highest probability density, and the point that will give us the

most accurate linearisation of Z:

Z(x∗
i ) = 0 (F.2)

The first estimate of the design point x∗ is:

x∗
i = µi = µxi

(F.3)

The expected value of the limit state function µZ is:

µZ = Z(µi) (F.4)
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The variance of Z in the design point is found with:

σ2
Z =

n∑

i=1

(
σi

(
∂Z

∂xi

)

xi=x∗
i

)2

(F.5)

For later use, we calculate the influence factors αi:

αi =
σi

σZ

(
∂Z

∂xi

)

xi=x∗
i

(F.6)

As long as β has not been calculated (see equation F.9), we use the estimate:

β =
µZ

σZ
(F.7)

This gives us a new estimate of the design point:

x∗
i = µi − αiβσi (F.8)

We repeat the calculations of equations (F.5–F.8) until a stable design point x∗ is

found. If this is the case we get an improved value of β with:

β =
Z(x∗) +

∑n
i=1

∂Z
∂xi

(µi − x∗
i )

σZ
(F.9)

and start the cycle to find x∗ again, until β is also stabilised. Finally the failure

probability pF is:

pF = N(−β) (F.10)

So far we have assumed normality for all distributions. However if the distribution

of some component xi is not normal, it is replaced by a normal distribution that has

the same cumulative probability and probability density in point x∗
i before evaluat-

ing equation (F.5). This is done as follows: for the equivalent normal distribution

N(µN , σN ) to have the same cumulative probability as the actual distribution, we

must choose mean µN and standard deviation σN in such a way that:

x∗
i = µN + kσN (F.11)

We may find k from the cumulative probability F :

k = Nstd,inv (F (x∗
i )) (F.12)

For the derivatives (or probability density functions f ) we have (φ is the marginal

normal distribution approximation of f ):

f(x∗
i ) = φ(x∗

i , µN , σN ) =
φstd(k)

σN
(F.13)
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Hence:

σN =
φstd(k)

f(x∗
i )

(F.14)

Finally the mean µ′
i and the standard deviation σ′

i of the replacement normal distri-

bution are:

σ′
i = σN =

φ(0, k)

f(x∗
i )

(F.15)

µ′
i = µN = x∗

i − kσ′
i (F.16)

This method is used in its standard form, except for the fact that the limit state func-

tion Z and its derivatives are approximated instead of calculated exactly (see next

section), because it is too expensive to evaluate Z in every point x.

F.2 Approximation of limit state function

In section 8.5 the following equation for the limit state function Z(x) was derived:

Z ′(x) = q0xdimx∆σA
SRF γfγm −

∏

j

S(x = xchar, xj 6= xchar,j)

Savg(xchar)
(F.17)

The site load S(x) is approximated by a product function, rather than a first order

Taylor expansion, because this improves accuracy. Figures F.1 to F.4 (p238–239)

show how the product approximation performs for the two important site parameters

wind speed and turbulence intensity; it is seen that accuracy is satisfactory over the

ranges 7.5 ≤ U ≤ 10 m/s and 0.05 ≤ I ≤ 0.30. For the tower base bending moment

the Taylor approximation is also plotted (figure F.4). The Taylor expansion from the

central point (U = 8.5 m/s, I15 = 0.15) cannot capture the divergent behaviour of the

lines representing actual loads, while the product approximation can.
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Figure F.1: Estimation of equivalent blade root moment with product approximation (PA).
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Figure F.2: Estimation of equivalent hub root moment with product approximation (PA).
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Figure F.3: Estimation of nacelle tilt moment with product approximation (PA).
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F.3 Multiple critical locations

In the main section of the book it is tacitly assumed that all possible failures in critical

locations are completely independent of each other. This is a reasonable assumption

since most variation is in fatigue properties, and the variation that is used is in fact

variation that was found in fatigue tests with identical loading, i.e. possible common

cause failure because of correlated loads has been taken into account already; still in

the case of a structure like a tower it may be argued that the entire component was

probably welded in the same way with the same quality, and fatigue properties of

individual critical locations may well be correlated.

Let us look a little further into the matter. In the tower under consideration there

are 32 weld seams, and hence N = 32 possibly critical locations. If we go for com-

plete independence (ρ = 0), this means that the failure probability of the tower is

approximately 32 times larger than the failure probability of a single critical location.

In fact if all locations have the same failure probability, then:

pF,N (ρ = 0) = 1 − (1 − pF,1)
N ≈ NpF,1 (F.18)

Now let us assume that failures are correlated with some correlation coefficient ρ.
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Figure F.5: System yearly failure probability as function of number of critical locations N
and correlation coefficient ρ. The failure probability for one location is 10−4 (β = 3.72).
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Obviously if there is perfect correlation ρ = 1, and:

pF,N (ρ = 1) = pF,1 (F.19)

We are looking for an expression for pF,N for all values 0 ≤ ρ ≤ 1. We assume that

all critical locations have the same limit state function Zi, which is:

Zi = β − ui

√
1 − ρ − v

√
ρ (F.20)

Here ui and v are standard normally distributed variables. Because all Zi have the

component v
√

ρ in common, they will be correlated with correlation coefficient ρ.

Since u and v are independent, the variance of Zi is:

var(Zi) = σ2
Zi

= 1 − ρ + ρ = 1 (F.21)

and hence the correlation ρ(Zi, Zj) is:

ρ(Zi, Zj) =
covar(Zi, Zj)√
var(Zi) var(Zj)

= ρ (F.22)

The failure probability for all failure modes combined is (limit state function Z < 0):

pF,N = p(Z < 0) =

∞∫

−∞

p (Z1 < 0 ∨ ... ∨ ZN < 0) f(v)dv (F.23)

This integration can be done with the Monte Carlo method, but it is also possible to

use normal integration (Vrouwenvelder [232]):

pF =

∞∫

−∞

(
1 −

[
1 − N(−β′

]N
)

f(v)dv (F.24)

with:

β′ =
β − v

√
ρ√

1 − ρ
(F.25)

Results of the integration are given in figure F.5. The value chosen for the yearly

failure probability of one location is pF,1 ∼ 10−4, corresponding to reliability index

β = 3.72. It turns out that a reasonable approximation of the curves is:

pF,N (ρ) =
(
1 − ρ2

)
pF,N (0) + ρ2pF,1 (F.26)

With the approximation for small failure probabilities:

pF,N (ρ) =
(
N − Nρ2 + ρ2

)
pF,1 (F.27)
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Figure F.6: Distribution of fatigue stress reserve factors for tower critical locations.

So far we assumed that all critical locations had the same failure probability: actually

this is not the case. A typical example of a tower optimised with respect of fatigue

is given in figure F.6. It is seen that all factors are larger than unity; the average

value is SRF = 1.06. This means that we are conservative if we demand that the

failure probability for individual locations is the system failure probability divided by

N . The question is: given usual design practice, which failure probability should we

demand for individual locations? For this particular case the answer is that we require

the failure probability to be 14 times smaller than the system failure probability index

(see table F.1). If all critical locations had SRF = 1 the requirement woud be a factor

32; however since the average stress reserve factor is SRF = 1.06 the total effect of

the 32 locations is the same as 14 locations with SRF = 1.

Dalsgaard Sørensen [198, 199] considered a 3-piece tower design with only 6

critical locations (because each piece has constant wall thickness), of which only 2

locations contribute significantly to total failure probability. Given current design

practice resulting in highly optimised towers, this may be to be too optimistic. While

material fatigue properties may be correlated, it is seen that a high correlation coeffi-

cient is required (say r ≥ 0.7) to have significant effect. Hence the failure probability

requirement for individual locations should be more stringent than in the case of one

location (figure F.5).
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F.4 Size of critical location

Besides the matter of the number of critical locations, we have to consider the statis-

tical size effect. This is the effect that if two components of the same shape are com-

pared, the larger one will have smaller fatigue strength, simply because the highly

stressed surface area where a crack might start is larger. This can be made precise

with the Weibull weakest link model. If the fatigue strength of a specimen with ref-

erence area A0 is Weibull(C, k) distributed, then the failure probability pF,A0
given

load ∆σ is:

pF,A0
= p(∆σA < ∆σ) = 1 − exp

[
−

(
∆σ

C

)k
]

(F.28)

where ∆σA is the fatigue strength. The probability of endurance (survival) pE,A0
is:

pE,A0
= 1 − pF,A0

= exp

[
−

(
∆σ

C

)k
]

(F.29)

If there are n small areas, with stress ranges ∆σi the total endurance probability is

found by multiplying individual probabilities, which comes down to adding expo-

nents:

pE = exp

[
−

n∑

i=1

(
∆σi

C

)k
]

(F.30)

For an arbitrary stress distribution over an area A this generalises to:

pE = exp


−

∫

A

(
∆σi

C

)k dA

A0


 (F.31)

The scale parameter is related to the median fatigue strength with:

C =
∆σA0,50%

(ln 2)1/k
(F.32)

Table F.1: Calculation details for tower (reference period 1 year). The safety factor γ is

chosen to obtain yearly failure probability pF = 10−3 for one location; there are 32 critical

locations with average SRF = 1.06.

Location Stress reserve factor Failure probability Reliability index

Worst location 1.00 1.0×10−4 3.72

System (32 locations) 1.00 3.2×10−3 2.73

System (32 locations) 1.06 1.4×10−3 2.99

Equivalent number of critical locations: 1.4×10−3/1.0×10−4 = 14
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Hence the endurance probability is:

pE = exp


− ln 2

∫

A

(
∆σi

∆σA0,50%

)k dA

A0


 (F.33)

Now we may derive an equivalent stress range, by comparing the real stress situation

with an arbitrary stress pattern with the standard situation where we have constant

stress range ∆σeq over an area A0, and demanding that the endurance probabilities

are the same:

exp


− ln 2

∫

A

(
∆σ

∆σA,50%

)k dA

A0


 = exp

[
− ln 2

(
∆σeq

∆σA,50%

)k A0

A0

]
(F.34)

This may be simplified to:

∫

A

∆σk dA

A0
= ∆σk

eq (F.35)

and finally we get:




∫

A

∆σk dA

A0




1/k

= ∆σeq (F.36)

Suppose that we have two components with the same shape but with different sizes

A1 and A2; the stress patterns are the same, for example the same constant stress in

both cases. Then the equivalent stresses are related as:

∆σeq,2

∆σeq,1
=

(
A2

A1

)1/k

(F.37)

This means that the larger part acts as if it sees a stress that is larger than the actual

stress by a factor (A2/A1)
1/k.

The Weibull shape factor k is found by equating the coefficient of variation of a

Weibull distribution with the standard deviation (on stress) of the S-N curve:

√
Γ(1 + 2/k)

Γ2(1 + 1/k)
− 1 = Vσ (F.38)

The astute reader will have noticed that the assumption that the fatigue strength is

Weibull distributed is contrary to the assumption of lognormality used so far. How-

ever the Weibull distribution is just used as an analytical convenience, basically the

integration can be done for any distribution. From equation (F.36) it is clear that only
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Table F.2: Weibull shape factor k as function of coefficient of variation Vσ.

Coefficient of variation Vσ 0.05 0.10 0.15 0.20

Weibull shape factor k 24.95 12.15 7.91 5.80

stresses close to the maximum in some critical location contribute, because the stress

ratio is raised to some power k; in the literature one sees usually values k > 10.

This justifies the usual critical location approach, where it is assumed that only the

(infinitesimally small) critical location may be considered without doing the stress

integral.

It is a matter of some debate whether the integration should be over length, sur-

face area or volume. This depends of course on where cracks are likely to start, and

geometry. For example Kaufmann [104] gives a simple volume recipe for cast iron:

the reduction factor on fatigue strength is:

∆σV2

∆σV1

=

(
V90%,1

V90%,2

)v

(F.39)

where:

V90% volume with stress larger than 90% of maximum stress [mm3]

v exponent

v = 0.09 for 300 ≤ V90% ≤ 8000 mm3

v = 0.01 for V90% > 8000 mm3

∆σ fatigue strength [Pa]

We may check the value k = 1/0.09 ≃ 11 against the known coefficient of variation

on the S-N curve for cast iron, which is Vσ = 0.07, giving k = 17.6. Although the

values are not quite the same, at least the magnitude is all right; the difference may

(for example) have to do with the fact that Kaufmann used a volume integral, while

a surface integral might be more appropriate.

For the case of weld seams a fatigue strength reduction factor dependent on thick-

ness is prescribed in Eurocode 3, but there is no reduction based on seam length.

Indications are that the Weibull model conforms to reality: for example Haibach

[77] (citing Böhm [18]) and Flacelière [62] report reasonable agreement to theory.

Still a model like this needs calibration: reference fatigue strength and the reference

volume must be determined (the exponent k can be found from the distribution of

fatigue strength).

For a cast structure like the hub it is straightforward to apply the model; it is not

clear whether the model could be used for circular weld seams in the tower. Still it

seems obvious that the longer a weld seam, the larger the failure probability must be.
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Appendix G

Wind field generation methods

G.1 One dimensional case

For ease of understanding, first the 1-dimensional case of wind generation for one

point in space is considered in some detail. Suppose we consider the wind speed

variation in time u(t) in the rotor plane. For N samples, the wind speed signal u(t)
can be written as a sum of cosines and sines:

u(t) =

j=N/2∑

j=0

Aj cos j2π∆ft + Bj sin j2π∆ft (G.1)

The total time considered is T , and there are N samples ∆T apart. Hence:

N∆T = T (G.2)

And the lowest non zero frequency is:

∆f =
1

N∆T
=

1

T
(G.3)

With N/2 frequencies the highest (Nyquist) frequency is:

fN/2 =
N

2
∆f =

1

2∆T
(G.4)

If the mean wind speed is U , a box of length L = UT is transported through the wind

turbine rotor. Define the wave number kj :

kj = j∆k = j
2π

L
= j

2π

UT
(G.5)

Then the wind speed can be written as a function of the spatial co-ordinate in the box

x = Ut (Taylor’s frozen turbulence hypothesis):

u(x) =

j=N/2∑

j=0

Aj cos j∆kx + Bj sin j∆kx (G.6)

247
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From which it immediately follows that:

∆k =
2π

U
∆f (G.7)

Let us consider the two-sided power spectrum S2. The covariance R of the signal at

2 points in space as a function of the distance r is defined as the expectation value of

the product of the 2 signals:

R(r) = 〈u(x)u(x + r)〉 (G.8)

And the spectral density S2(k) is the Fourier transform of R:

S2(k) =
1

2π

∫
R(r)e−ikrdr (G.9)

In practice the power spectral density S2(k) is known, and our task is to generate an

artificial wind signal u(t) from it that has the right power as a function of frequency

and has the same probability distribution as measured wind (in many cases a normal

distribution is assumed, for the validity of this assumption see Nielsen [155]).

The fast Fourier transform (FFT) of the wind speed signal u(t) (equation G.1) is

a vector Z, with N complex components. The question is now: how must the com-

ponents of Z be chosen to arrive at a wind speed signal with the right properties after

the inverse FFT? The requirement is that for each component of Z (that represents a

sinusoid) the power (expectation of the square of the signal) must fit the integral of

the power spectral density S2 over a wave number interval:

〈
Z2
−j

〉
=

〈
Z2

j

〉
=

(j+ 1

2
)∆k∫

(j− 1

2
)∆k

S2(k)dk (G.10)

The vector Z does not contain the amplitudes A and B from equation (G.6), but

rather a linear combination of them (this is a consequence of the FFT). For each

combination of negative and positive wave numbers k = (−j∆k j∆k) we have a

partial vector ∆Z(−k, k) defined as:

∆Z(−k, k) = (Z−j Zj) (G.11)

If all partial vectors are inverse FFT’ed, one finds:

u(t) =

j=N/2∑

j=1

(Z−j + Zj) cos j∆kx + (Z−j − Zj) sin j∆kx (G.12)

Comparing this to the earlier definition (G.6):

u(x) =

j=N/2∑

j=0

Aj cos j∆kx + Bj sin j∆kx (G.13)
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It is clear that:

A(k) = Zj + Z−j B(k) = Z−j − Zj (G.14)

Conversely, the numbers Z−j and Zj can be expressed as combinations of A and B:

∆Z(−k, k) =

(
Z−j

Zj

)
=

(
A(k)−iB(k)

2
A(k)+iB(k)

2

)
(G.15)

The partial variance ∆σ2(f) is:

∆σ2 =
A2 + B2

2
=

(∆Zj + ∆Z−j)
2 + (∆Zj − ∆Z−j)

2

2
= 2∆Z2

−j = 2∆Z2
j (G.16)

Combining with equation (G.10) it is found that:

∆σ2 = 2∆Z2
−j = 2

(j+ 1

2
)∆k∫

(j− 1

2
)∆k

S2(k)dk =

(j+ 1

2
)∆k∫

(j− 1

2
)∆k

S1(k)dk (G.17)

So if the components of Z fit the variance requirement, the resulting sinusoids with

amplitudes A,B fit it too, as required. It only remains to generate the right Zj .

Define C(k) as follows:

C(k) =

√√√√√√

(j+ 1

2
)∆k∫

(j− 1

2
)∆k

2S2(k′)dk′ =

√√√√√√

(j+ 1

2
)∆k∫

(j− 1

2
)∆k

S1(k′)dk′ (G.18)

Then the right expectation value for the partial variance ∆σ2 = (A2 + B2)/2 may be

obtained by setting:

A =
√

2C cos φ B =
√

2C sin φ (G.19)

With ϕ a random phase angle uniformly distributed over [0, 2π]. The corresponding

Z-values are easily found from A and B (equation G.15). Another possibility is:

Z−j = Cn1 Zj = Cn2 (G.20)

Where n1 and n2 are random numbers drawn from a standard normal distribution

N(0, 1). This last possibility is usually preferred because the process now is truly

gaussian.
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G.2 Veers method

For a complete description of this method (also known as the Sandia method) see

Veers [218]. Consider a number of points in space p = 1 . . . P . For point p am-

plitudes Apj and Bpj are found for every frequency (for example with the uniform

phase angle method) (eqn G.19):

up(t) =

j=N/2∑

j=0

Apj cos j2π∆ft + Bpj sin j2π∆ft (G.21)

To elaborate:

ϕpj = arg(Apj + iBpj) (G.22)

Apj =
√

A2
pj + B2

pj cos ϕpj (G.23)

Bpj =
√

A2
pj + B2

pj sinϕpj (G.24)

All speeds are uncorrelated. To obtain the desired coherence between two points r (=

row) and c (= column) one needs the coherence matrix element:

Cohrc(f,∆r, U) =
Src(f, U)√

Srr(f, U)Scc(f, U)
(G.25)

Element Cohrc contains the coherence for frequency f = j∆f and speed U for two

points r and c, distance ∆r apart; it is easily derived that the ’co-coherence’ for two

sinusoids with phase difference ∆ϕ is:

CohC = cos ∆ϕ (G.26)

While the ’quad coherence’ is:

CohQ = i sin∆ϕ (G.27)

Since the coherence matrix is positive definite, it may be Cholesky decomposed:

HHT = Coh (G.28)

The diagonal of the matrix Coh has unity elements, while all off diagonal elements

will contain numbers between −1 and +1, typically smaller when the distance be-

tween points gets larger. Now the desired correlated speed signal for each point p
is:

up,cor(t) =

N/2∑

j=1

P∑

i=p

Apj cos j2π∆ft + Bpj sin j2π∆ft (G.29)
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This means that the correlated signal for point p is made up of contributions from

point p itself and from all other points with higher numbers. For reasons of efficiency,

the summation will not be done in the time domain, but in the frequency domain, and

the time signal generated with the inverse FFT. The procedure is repeated three times

for all three wind speed components.

An advantage of the Veers method is that the points may have any position, and

that an efficient circular grid may be used for wind turbine applications. Somewhat

inelegant is the fact that mass conservation is not obeyed, that the correlation between

speed components u and w is zero, and that autospectra and co-spectra (or coherence

functions) must be input by hand.

G.3 Modified Veers method

It is not difficult to introduce the right (u, w) coherence, following a proposal by

Tubino and Solari [195] (there is no need to do something about the other coherences

(u, v) and (v, w) because they are very close to zero anyway). The idea is to gener-

ate uncorrelated amplitudes in some co-ordinate system rotated over an angle. The

correlated amplitudes for u and w are then found by projection. Since both speed

components are linear combinations of the same set of amplitudes, they will be cor-

related. The equations are given below. Start with the 1-point (u, v, w) covariance

matrix S, which is (assume Suv = Svw = 0):

S(f, Um, r) =




Suu 0 Suw

0 Svv 0
Suw 0 Sww


 (G.30)

The variances S are thought of as vectors along the x, y and z-axis. The eigenvalues

γ of this matrix represent power spectral densities (vectors) in a new co-ordinate

system. They are:

γ1 =
1

2

(
Suu + Sww +

√
(Suu − Sww)2 + 4S2

uw

)

γ2 = Svv (G.31)

γ3 =
1

2

(
Suu + Sww −

√
(Su − Sww)2 + 4S2

uw

)

The corresponding eigenvectors represent (the directions of) two independent stochas-

tic processes. They are found by rotating the u and w unit vectors over an angle ψ
given by:

ψ = arctan

(
Suu − Sww −

√
(Suu − Sww)2 + 4S2

uw

2Suw

)
(G.32)
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The wind speeds (u, v, w) may be found from projections of γ on the original axes,

as follows:

u(f, t) =
√

2γ1∆f cos ψ cos(2πft + φ1) +
√

2γ3∆f sinψ cos(2πft + φ3)

v(f, t) =
√

2γ2∆f cos(2πft + φ2) (G.33)

w(f, t) = −
√

2γ1∆f sinψ cos(2πft + φ1) +
√

2γ3∆f cos ψ cos(2πft + φ3)

The speeds u and w are formed as linear combinations of independent stochastic

processes, and have the desired 1-point coherence. The (u, w) correlated speeds for

every point go into the Veers procedure described above. The co-spectrum Suw used

may for example be the one found by Kaimal with total correlation ρ = 0.5 [98, 99].

A value for the correlation ρ of this magnitude was also found by Bergstrøm [13] and

with the Mann method if Γ = 3.9 to obtain the Kaimal spectra [133].

If Suu ≧ Sww then for the zero coherence case Suw = 0, one finds: γ1 = Suu,

γ2 = Svv, γ3 = Sww, ψ = 0, and the original Veers method is recovered. If Suu <
Sww then γ1 and γ3 must be exchanged to maintain consistency with the Suw = 0
case, and

ψ = arctan

(
Sww − Suu −

√
(Suu − Sww)2 + 4S2

uw

2Suw

)
(G.34)

For details and background refer to the paper by Solari and Tubino [195].

G.4 Incorporating measured wind

A nice thing about the Veers method is that measured wind can easily be incorporated

into the artificial wind field, which makes it possible to reproduce measured wind

fields, at least in some circular area around the position of an anemometer. This is a

consequence of the way the Veers method works:

1. Sinusoids with independent random phase angles are generated for point 1.

2. The same is done for point no 2, but the originally independent random phase

angles are modified to satisfy coherence with point 1.

3. The same is done for all subsequent points P (3 ≤ P ≤ N ). For every point

P , the random phase angles are modified to satisfy coherence with preceding

points 1 . . . P − 1.

Because one is completely free to chose the phase angles for the first point, one may

just as well feed in the angles found from a Fourier transform of the measured wind.

This procedure may be extended to the first Nm measurement points; there is no

need to worry about coherence because the measurement points automatically have

the right coherence. The rest of the procedure goes through exactly as before. Of

course one still has to input the spectrum and coherence by hand. The best estimate
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for the spectrum is probably the average of the measured spectra, while the coherence

function can be made to resemble the measured coherence.

Mann’s method (see below) is capable of incorporating any predefined wind event

in 3 dimensions (gust, shear, direction changes), but the mathematics is more complex

(see Nielsen [155] for a description of methods, and Mann [135, 139] for examples).

G.5 Three dimensional case (Mann’s method)

All the above is generalised into 3 dimensions in the Mann method, which is de-

scribed in detail in publications by Mann himself [133,134,138]. However when the

method was programmed for this work, it appeared that there are some tricky tech-

nicalities that make it difficult to get the desired results with the method; therefore it

seemed worthwhile to record some of the author’s experience.

The method starts out with the 3 × 3 covariance matrix R, which gives the co-

variance of speed components ui and uj a function of a separation vector r between

2 points in space:

Rij(r) =
〈
ui(x)uj(x + r)

〉
(G.35)

The spectral tensor Φij(k) is the 3-dimensional Fourier transform of the covariance

matrix R (in the 3D Fourier transform (for example) the wind speed is seen as the

product of 3 sine functions in the 3 directions x, y and z). The spectral tensor (matrix)

Φij is a function of the wave number vector k =T (k1 k2 k3):

Φij(k) =
1

8π3

∫
Rij exp(−ik.r)dr1dr2dr3 (G.36)

The spectral tensor is the 3D generalisation of the 1D power spectral density S, also

giving the component cross-spectral densities. Now as before, suppose that the wind

speed vector u is given by the inverse Fourier transform of a process Z(k) (which is

a N × 3 matrix of random numbers). Part of Z(k) is ∆Z(k):

∆Z(k) =
(

Ax Ay Az

)
(G.37)

With ∆Z constrained by:

〈
∆ZT

j (k)∆Zj(k)
〉

=

∫∫∫

∆k1∆k2∆k3

Φij(k)dk1dk2dk3 (G.38)

The expected value of the transpose of ∆Zi multiplied by ∆Zj (the covariance ma-

trix of ∆Z) equals the spectral tensor integrated over a volume ∆k = ∆k1∆k2∆k3

(centred on k) representing an amount of variance in a block ∆k. The constraint is

met if ∆Z is defined as:

∆Z = Cn (G.39)
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The 3-row column vector n(0, 1) has three components which are random numbers

that are standard normally distributed (µ = 0, σ = 1). The matrix C is the (non

unique) ‘square root’ of the spectral tensor Φ(k) integrated over ∆k = ∆k1∆k2∆k3:

CT (k)C(k) =

∫∫∫

∆k1∆k2∆k3

Φij(k)dk1dk2dk3 (G.40)

The matrix C may be found with the Cholesky decomposition, but in a large part of

wave number space (where k = |k| ≥ 3) the spectral tensor function Φ is smooth,

and it is a good enough approximation to write:

CT (k)C(k) ≈ Φ(k)∆k1∆k2∆k3 (G.41)

In that case a matrix C may be found directly with:

C(k) ≈

√
E(k0)

4πk2
0

∆k1∆k2∆k3




k2ζ1
k0

k3−k1ζ1+βk
k0

−k2

k0

k2ζ2−k3−βk1

k0
−k1ζ2

k0

k1

k0

k0k2

k2 −k0k1

k2 0


 (G.42)

A complete overview of the underlying equations is given in Mann [133, 134] and

in IEC 61400-1 [93]. Here it is only important to note that the expression under the

square root sign represents the total energy (half the variance), which is the energy

density multiplied by the volume of a box ∆k. The matrix expression produces a

linear combination of the components of vector n multiplied by the right variance.

The special (or maybe magical is a better word) thing about the matrix is that a vector

with three independent random numbers is transformed into a vector that represents

3 wind speed components that obey mass conservation and the Navier Stokes equa-

tion. Of course the magic is really in the equation of the tensor Φ, in which mass

conservation and Navier-Stokes equations have been incorporated.

Finally the wind field is found with the inverse Fourier transform:

u =
∑

k1k2k3

eix.k∆Z(k) (G.43)

Or:

u =
∑

k1k2k3

eix.k C(k)n(k) (G.44)

Note that for each wind speed component (u, v, w) a separate 3D Fourier transform

must be done.
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I
II

III

IV

Figure G.1: Loss of variance in generation of wind fields (schematic). Note logarithmic

scales.

G.6 Technicalities

Loss of variance. The ideal spectra stretch from zero frequency to infinity, which is

not the case for simulated spectra. A typical practical simulation period is 614 s (a

little over 10 min), thus the lowest non-zero frequency found in the FFT 4096 points)

is 1/614 = 0.0016 Hz, and the highest (2048/614 = 3.3333 Hz. Hence the simulated

spectrum covers the frequency interval 0.0008–3.3341 Hz. All variance outside the

interval is lost (figure G.1, areas I and IV). However in measurements the variance is

found with:

σ2
U =

N∑

i=1

(Ui − U)2

N − 1
(G.45)

This amounts to removing the zero frequency component of the signal, which is

exactly area I; furthermore it is easily verified that area IV amounts to only a few

percent, so in the Sandia-Veers method areas II+III can be ’blown up’ to compen-

sate, In the Mann method that leaves us to deal with the loss in area III, which is a

consequence of the fact that not the entire wave space is sampled, but only part of
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it, especially in crosswind directions. One argument is that this loss does not matter,

since it constitutes high frequencies that would be filtered out by the turbine anyway.

However some informal investigations with more points in the rotor plane indicated

that the variance loss in area III does have some influence on loads, and that it is

probably better to normalise the variance of the turbulence field (area II) back to the

desired value (for instance measured with sonic equipment). For the IEC 61400-1

Kaimal spectrum, the variance loss in areas I and IV is found as:

∆σ2 =

∆f/2∫

0

S1(f)df +

∞∫

(N+1)∆f/2

S1(f)df =

=

∆f/2∫

0

4L/U

(1 + 6fL/U)5/3
+

∞∫

(N+1)∆f/2

4L/U

(1 + 6fL/U)5/3
=

= 1 − (1 + 3∆fL/U)−2/3 + (1 + 3(N + 1)∆fL/U)−2/3 (G.46)

where:

L length scale [m]

N number of samples [-]

S1 One sided spectral density [m2/s]

U wind speed [m/s]

∆f frequency interval [Hz]

∆σ2 variance loss [m2/s]

Trends. Another problem is whether measured turbulence should be detrended or

not. Trends will increase measured variance. Since the simulated wind signal has no

trend, the ’trend variance’ appears elsewhere in the spectrum. The correct procedure

would perhaps be to measure the trend distribution, and add a similar random trend

to the generated wind field.

Variation between 10 minute turbulence values. Turbulence measurements

show variation between measurements (see for example Hansen [79]). One does

not find the same variation in artificial wind fields, although the gaussian amplitude

method give some. However as long as one is interested in mean loads (and not

extremes) it is perfectly justified to use unity normalised turbulence fields without

variation.

Periodicity. Wind fields generated with the Veers method are periodic in u-

direction, while wind fields generated with the Mann method are periodic in all 3

directions. Periodicity in u-direction is no problem, since the time scale in u-direction

is large. Problems with periodicity in v and w direction are avoided by generating a

wind field with dimensions 2D × 2D = 4D2, of which only the centre D × D is

used (D = rotor diameter).
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Of this square finally only πD2/4 ≈ 80% is used, which is 20% of the original points.

Zero wave numbers. The sheared tensor cannot be calculated for k1 = 0 be-

cause zeros appear in the denominator in some matrix elements, and they become

undefined. However since wave number k1 = 0 represents the constant wind speed,

it is no problem to leave this wave number out, except for variance loss. The variance

that is taken into account is the variance in two blocks in wave number space defined

by:

k1

∆k1
∈

[
−N1 + 1

2
;−1

2

]
∪

[
1

2
;
N1 + 1

2

]

k2

∆k2
∈

[
−N2 + 1

2
;
N2 + 1

2

]
(G.47)

k3

∆k3
∈

[
−N3 + 1

2
;
N3 + 1

2

]

Box dimensions. The dimensions of the box that is transported through the rotor

are chosen as follows. The length of the box in wind direction is L1 = N1U∆T , with

N1 = 2048 or 4096 and ∆T = 0.15 s. This yields time series of 307 or 614 seconds

(5 or 10 minutes). For the Mann algorithm L2 = L3 = 2D (of which only D × D
output). The number of points is 32× 32, of which 16× 16 are output. This strategy

yields cells that are not cubic. For example for an 80 m rotor at 16 m/s wind speed:

∆x = U ∆t = 16 × 0.15 = 2.4 m

∆y = 80 / 16 = 5 m

∆z = 80 / 16 = 5 m

IEC 61400 [1] recommends that points represent cubes, but this is impractical with

a view to loss of variance and frequency content. At present the author does not see

any objection to bricks rather than cubes: all the statistics of the wind field appear to

be all right.

Fast Fourier transform. The fast Fourier transform used in the program is

FourN (Press [167,168]). Basically this would be inefficient, because only real num-

bers need to be transformed (not complex). However this is remedied by producing

two wind fields at the same time, using the real and the imaginary part of the trans-

form.

For N1 = 4096, N2 = N3 = 32, a total of 4096×32×32 = 4, 194, 304 numbers

need to be stored for each Fourier transform. With 4 byte reals, this means ca 17 MB.

Because the FourN algorithm uses complex numbers, this must be multiplied by 2, to

get 33 MB. Finally there are 3 wind speed components, giving a memory requirement

of ca 100 MB. This is no problem for modern PCs.

Recently even faster FFTs have appeared; there is a web site devoted to the

’Fastest Fourier Transform in the West’ (www.fftw.org).
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Efficient calculation of C matrix and spectral tensor. For every wave vector

k the spectral tensor must be calculated i.e. the average value of the tensor elements

over a volume ∆k1∆k2∆k3.

CT (k)C(k) =

∫∫∫

∆k1∆k2∆k3

Φij(k)dk1dk2dk3 (G.48)

For large k (|k| ≥ 3) it is not necessary to calculate the spectral tensor integral, since

Φ is smooth, and it is accurate enough to approximate it with:

CT (k)C(k) ≈ Φ(k)∆k1∆k2∆k3 (G.49)

In this case the decomposition ’by hand’ (the C matrix, equation G.42) can be used,

and the tensor need not be calculated. Some further increase in efficiency is gained

by pre-computing some common coefficients, such as squares of the wave numbers

and the value of the von Kármán energy spectrum.

If |k|<3 however, the integration must be performed because the approximation

is not accurate enough. Because the k1 increment ∆k1 is small, the 3-dimensional

integral can however be approximated by a 2-dimensional one:

CT (k)C(k) ≈ ∆k1

∫∫

∆k2∆k3

Φij(k)dk2dk3 (G.50)

The 2-dimensional integration may for example be done with a nested application of

the routine qromb, which uses trapezoid integration with Richardson extrapolation

(Press [167, 168]). It is a good idea to do integration in double precision, and check

on relative and absolute error.

Mann advocates transforming the integral with the use of the sinc(x) = sin(x)/x
function, but the author found no advantage in doing this. It is possible that the inte-

grand becomes somewhat smoother, and easier to integrate. However the integration

described above works fine.

Arctan function. To evaluate C (or Φ), a help parameter C2 must be calculated,

which is given by Mann [133]:

C2 =
k2k

2
0

(k2
1 + k2

2)
3/2

arctan

(
βk1

√
k2

1 + k2
2

k2
0 − βk30k1

)
(G.51)

It is important to realise that the arctan function to be used is the arctan that yields a

value between -π and π, i.e. expression G.51 is equivalent to:

C2 =
k2k

2
0

(k2
1 + k2

2)
3/2

arg(x + yi) (G.52)
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With:

x = k2
0 − βk30k1 (G.53)

y = βk1

√
k2

1 + k2
2

And the argument normalised to a value between -π and π. This arctan function is

called arctan2 in some programming languages.

Energy integral. For every vector k (with length k) a help parameter β must be

calculated, that uses the integral of the von Kármán energy spectrum. Mann’s article

calls for the use of the hypergeometric function 1F2. He points out that the value is

proportional to the integral of the three dimensional energy function (half the power

spectral density) E(k) = E(k):

β(k) =
γ

k2/3
√

1F2

(
1
3 , 17

6 , 4
3 ,− 1

k2

) =
cγ

k

√√√√√
∞∫

|k|

E(p)dp

(G.54)

In fact the proportionality constant c is:

c =

√
55

6

Γ(5/6)√
πΓ(1/3)

≈ 1.476 (G.55)

The energy spectrum E(k) is the non-dimensionalised von Kármán spectrum, given

by:

E(k) =
55

9

Γ(5/6)√
πΓ(1/3)

k4

(1 + k2)17/6
≈

1.453k4

(1 + k2)17/6
(G.56)

For each vector k the energy spectrum integral must be calculated, so it pays to pre-

compute it. This is done as follows:

1. Set k = 0.

2. Calculate
∫

E(k) from k to ∞ (= 1.5 if k = 0).

3. Calculate
∫

E(k + 1) =
∫

E(k) minus the integral
∫

E(k) over [k, k + 1].

4. Go to step 2.

Through the table values cubic splines are constructed. For large k (for example

k > 400) the integral can also be approximated by:

∞∫

k

E(p)dp ≈

∞∫

k

1.453p4

(1 + p2)17/6
dp ≈

∞∫

k

1.453

p5/3
dp =

2.180

k2/3
(G.57)

It is easier to use the energy integral because this makes it unnecessary to get a routine

for the (somewhat obscure) hypergeometric function. However the two functions are

equivalent, so it is really a matter of taste.
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G.7 Some results

All auto- and cross spectra can be found by integration of the spectral tensor:

Sij(k1, ∆y, ∆z) =

∞∫

−∞

∞∫

−∞

Φij(k) exp(ik2∆y + ik3∆z)dk2dk3 (G.58)

For autospectra the distances in y and z direction are zero (∆y = ∆z = 0), and the

expression simplifies to (i = j:

Sij(k1) =

∞∫

−∞

∞∫

−∞

Φij(k)dk2dk3 (G.59)

For shear parameters from Γ = 0 to Γ = 5 the total variance was calculated (the

integration was done from k1 = 0.001 to k1 = 100, for k1 ≤ 0.001 the spectrum was

assumed to be constant, and for k1 ≥ 100 decreasing according to the −5/3 power

law). The figures given in table G.1 agree well with the values taken from figures

published by Mann [133, 134].

As an interesting sidelight it is noted that if the variances for wind speed com-

ponents u, v, and w can be measured with sufficient accuracy (for example with a

sonic anemometer), the shear parameter Γ can immediately be estimated from the

turbulence ratios; and this parameter in turn fixed the shape of all autospectra and

cross spectra (coherence functions), except for the length scale.

In figure G.2 a comparison is given between the spectra found with direct in-

tegration and (average) spectra recovered from a wind field generated with Mann’s

method. Clearly it can be seen that there is large variation at low frequencies, and

variance loss at high frequencies.

Comparison of known spectra with integration For the von Kármán spectrum

the coherence functions are known analytically. For example the lateral coherence

for speed component U is (see Mann [138, p19]):

Coh(k1, D) =
2

Γ(5/6)

(
ζ

2

)5/6 (
K5/6(ζ) − ζ

2
K1/6(ζ)

)
(G.60)

Table G.1: Variance values.

shear variance variance ratios

Γ σ2
u σ2

v σ2
w σ2

u/σ2
u σ2

v/σ2
u σ2

w/σ2
u

0 1.00 1.00 1.00 1.00 1.00 1.00

1 1.16 1.06 1.04 1.00 0.91 0.90

2 1.65 1.24 1.02 1.00 0.75 0.62

3 2.41 1.46 0.95 1.00 0.61 0.39

4 3.34 1.66 0.87 1.00 0.50 0.26

5 4.40 1.85 0.80 1.00 0.42 0.18
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Figure G.2: Comparison of Mann spectra found by direct integration and recovered from a

generated wind field. The shear parameter Γ = 3.9, which produces the Kaimal spectra.

with:

ζ =
√

k2
1D

2 + D2/L2 (G.61)

where:

D separation distance [m]

K modified Bessel function of second kind of fractional order

k1 wave number [1/m]

L length scale [m]

ζ help parameter [-]

The coherence can also be found by integrating:

Coh(k1, δ) =

∞∫

−∞

∞∫

−∞

Φij(k)eik2δdk2dk3

∞∫

−∞

∞∫

−∞

Φij(k)dk2dk3

(G.62)
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This is a difficult integral to find numerically, but Mann [138, appendix A] gives a

procedure with cubic splines which is very effective.
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