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Abstract 

Due to the extensive usage of automotive radars on vehicles, mutual interference among radars on the road is becoming 
considerable. To address this , we propose a time domain strategy based on deep reinforcement learning (DRL). This approach 
helps avoid mutual interference for automotive radars in the time domain without extra communications. The numerical 
simulation results demonstrate that the proposed approach can avoid interference as effectively as frequency hopping. Moreover, 
the time domain strategy has more advantages than frequency hopping when encountering dynamic interference. 

1 Introduction 

Automotive radars are essential in the advanced driver 
assistance system. Among them, frequency modulated 
continuous wave (FMCW) radar has become one of the most 
popular choices due to its broad operational capability and low 
cost. However, as the number of FMCW radars equipped on 
vehicles increases rapidly, mutual interference among 
different radar devices arises inevitably in busy areas. Strong 
interference could mask weak targets and raise ghost targets, 
leading to a higher traffic accident risk. Therefore, it is crucial 
to mitigate interference for the safety purpose. 

Various approaches have been investigated to counter 
mutual interference. Some studies have developed signal 
processing methods operated on the received signal to cancel 
interference [1], [2]. These methods exploit the differences 
between interference and target echoes in time, frequency, or 
time-frequency domain to suppress interference with slopes 
different from the victim radar, i.e., incoherent interference. 
However, when facing coherent interference which has an 
identical slope to the transmitting signal of the radar, these 
signal processing methods are no longer suitable. Other 
researchers have presented new radar systems or waveform 
designs [3], [4], [5], which spread interference in the frequency 
spectrum to avoid ghost targets. These methods are able to 
suppress coherent interference and improve detection 
performance. Nevertheless, they require new system and 
hardware designs as well as more complicated processing.  

Over recent years, many resource allocation methods have 
been proposed to avoid interference. Some achieve cognitive 
radar approaches based on reinforcement learning (RL) [6], [7]. 
They exploit the information of the electromagnetic 
environment to implement spectrum allocation to prevent 
collisions in the frequency domain. However, their capabilities 
are limited by the spectrum resource. When facing more 
interference, spectrum allocation operated on finite bandwidth 

becomes inadequate to maintain both detection and anti-
interference performance. In [8] and [9], time offset is 
introduced to avoid mutual interference in the time domain. 
They utilize radar and communication networks to realize 
centralized or localized resource allocation. However, these 
cooperative schemes heavily rely on communication. 

In this paper, we propose a non-cooperative time domain 
method for automotive radar to avoid mutual interference. The 
proposed method only uses the information extracted from the 
received signal of the radar itself to make decisions, which 
does not demand any communications. The execution of the 
method is modelled as an MDP and implemented by deep Q-
learning.  
 
2. Methodology 

2.1 Signal Model 

In general, the transmitted signal of the FMCW automotive 
radar in one single chirp can be expressed as  

 

where , , and  denote the centre frequency, sweep slope, 
and sweep duration of one single chirp, respectively. Once the 
maximum detection range  is determined, the maximum 
time delay  can be calculated as 

 

where  denotes the speed of light. After dechirping, the 
maximum beat frequency  is determined as  

 
Ideally, we assume that the cut-off frequency of low-pass filter 
(LPF) used after dechirping is equal to . For simplicity, 
we assume that the transmitted signal is reflected by point 
targets, neglecting the multipath effect and clutters. Besides 
the echo of targets, the received signal could also contain 
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transmitted signals from other automotive radars which are 
regarded as interference.  

2.2 The Time Domain Strategy for Interference Avoidance 

Since several methods [1], [2], [7] have been proposed to 
mitigate incoherent interference, we concentrate on coherent 
interference here, i.e., interference shares the same sweep 
slope and pulse repetition interval (PRI) with the victim radar. 

According to the corresponding relationship of  and 
, it can be inferred that if the time delay between the 

transmitted signal and received signal is not within the range 
of , the received signal will be removed by LPF. 
Inspired by this, we propose the time domain strategy for 
interference avoidance. As depicted in Fig. 1, the radar adjusts 
its transmitting time to avoid interference. Practically, the 
transmitted signal of the victim radar is delayed by , which 
changes the beat frequency between the transmitted signal and 
interference so that the interference would be filtered out by 
LPF after dechirping. For convenience, we set a time reference 
here. The transmitting time delay  of the radar and the arrival 
time delay  of the interference are all defined relative to 
the time reference.  

 
Fig. 1. Time domain strategy. 

2.3 Markov Decision Process Modelling of Interference 
Avoiding 

The execution process of the joint strategy is formulated as 
an MDP model which can be described by the tuple 

. The state space  is the set of 
all possible states that the radar can reach. The state 

 consists of the radar’s frequency domain 
state  (i.e., centre frequency), time domain state  (i.e., 
transmitting time delay), and the SINR of the received signal. 

The action space  can be defined as 
, in which the action  consists of the radar’s actions in the 

frequency domain and time domain. Given  available 
frequency domain states and  available time domain states, 
the size of  is . However, the size of  is not 
countable due to the SINR with continuous values. The 
transition probability function  presents the 
probability distribution of reaching states  from state  by 
taking action . The reward function  presents the 
immediate reward obtained after transitioning to state  from 
state  by taking action .  

At each time step, SINR is used to evaluate the radar’s 
action. The metric is defined as follows:  

 

where  , , and  are respectively the beat signal of targets, 
interference, and noise reserved after dechirping and low-pass 
filtering. The immediate reward r is calculated by the SINR:  

 

where  is the threshold to give positive or negative 
reward, which can be set based on the requirement for target 
detection practically.  presents an upper bound of 
available SINR for reward normalization, which is usually 
relative to the noise level. In this paper, we assume that the 
SINR of the received signal can be estimated accurately, and 
the estimation is not going to be discussed. 

A policy  is utilized to choose the action based on the 
current state: . The state-action sequence based on 
policy  in one episode is defined as a trajectory 

,  and  denote the 
initial state and the terminal state of the episode, respectively. 
The cumulative reward starting from time step  on this 
trajectory is 

 

where  is the discount factor weighting the future 
reward. To chase a high SINR, the radar is expected to perform 
a trajectory getting as much cumulative reward as possible 
with an optimal policy which is 

 
There may be more than one optimal policy, but they share the 
same state-action value function [10]. Here, the Q function 

 denotes the state-action value function for a policy  
which is defined as the expectation of  starting from , 
taking the action , and thereafter following the policy : 

 

Then, the goal for the optimal policy  is to find the optimal 
Q function  enabling the radar to choose the optimal action 

 at each time step: 
 

2.4 Deep Reinforcement Learning Based Implementation of 
the Proposed Method 

We choose Q-learning to optimize the Q function for its 
faster convergence and sample reusability.At every time step, 
Q-learning updates the value function as follows:  

where  denotes the learning rate, and  is the TD error for 
updating:  

 

The current state  could only present the interference 
situation in the current passband, but it can be inadequate for 
radar to make an effective decision. To provide more 
information about interference, we extend the state  to 

fbmax
t

f

Bound of passband

τmax td

PRI

Interference
Transimitted signal

t

f

Time reference

τintf
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, which contains the states of the latest 
 time steps within one episode. While adding more 

observations, the extended state  greatly enlarges the state 
space. To tackle such a complex state space, Q-network is used 
as the approximation of the Q function. The architecture of the 
network is shown in Fig. 2. At each time step, the extended 
state , i.e., a sequence of some recent states, is input into a 
gated recurrent unit (GRU) layer to extract information about 
interference. Then, the output of the GRU layer is input into 
dense layers to calculate the Q values of all actions. 

 
Fig. 2. The architecture of Q-network. 
 

In training, several skills are employed to train the Q-
network:  
1) Double Q-networks: Two networks, evaluation network 

 and target network , are used to relieve 
training instability. Specifically,  will be updated 
every time step while  will be updated to  by an 
interval of numbers of time steps. When updating , 

 is used to calculate the value of  chosen by 
.  for updating is rewritten as  

 

and the parameters of Qeval, , is updated by 

 

2) -greedy exploration: To avoid the Q-network being 
trapped in suboptimal actions, the radar will randomly 
choose actions by the exploring probability :  

 

3) Experience replay:  is defined as 
the transition of the time step . The replay buffer stores 
a number of recent transitions. If the number of stored 
transitions reaches the upper limit, the oldest transition 
will be replaced by the latest one. At every time step, 

 is trained on a batch of transitions randomly picked 
from the replay buffer. Besides improving sample 
efficiency, experience replay can also break the 
correlation among consecutive samples that could harm 
the training. 

 
3 Numerical Simulation 

3.1 Simulation Settings 

3.1.1 Radar Settings: Parameter settings of the victim radar are 
listed in Table 1. We assume 3 available states for radar in both 
frequency and time domains. One-hot vector is used to 
represent these parameter states. The interference shares 
identical sweep parameters with the victim radar, including 

centre frequency, sweep slope, sweep duration, bandwidth, 
and PRI. 

Table 1 Parameter settings of victim radar 
Parameter Value 

Centre frequency  [GHz] 76.5, 77.0, 77.5 
Sweep slope [MHz/us] 10 
Sweep duration [us] 50 
Bandwidth [MHz] 500 
Pulse repetition interval [us] 60 
Chirp number per frame 128 
Sampling frequency [MHz] 20 
Maximum detection range [m] 120 
Maximum beat frequency [MHz] 8 
Maximum delay  [us] 0.8 
Time domain state  [× ] 0, 1, 2 

3.1.2 Scenario Settings: Simulation settings of training and test 
are shown in Table 2. Here,  denotes the 
discrete uniform distribution on the finite set , 
and  denotes the continuous uniform distribution on 
the interval . Since the arrival delay of the interference 
signal accounts for both the distance and transmitting time of 
the interference source, the delay time  is given directly 
for simplicity. Here, static scenario and dynamic scenario are 
defined. In the simulation, the targets and interference will be 
randomly initialized at the beginning of each episode. An 
episode has a number of time steps, and only one frame of the 
signal will be transmitted, received, and processed in each time 
step. The frame’s duration is less than 10 ms, which is too short 
for moving targets and interference sources to significantly 
influence the signal in the passband. Therefore, the duration of 
each time step is neglected in the static scenario, which means 
that both targets and interference remain constant in one 
episode. In the dynamic scenario, the interval between time 
steps is enlarged so that the relative motion of targets and 
interference sources could have a noticeable effect. For 
instance, one interference can move into or out of a passband, 
which could influence the radar’s behaviour. Specifically, the 
distance of the target and the delay time of interference will be 
updated before each time step:  

 

 

where  and  denote the distance of the target 
and the delay time of interference at time step .  and 

 are the relative velocities of the target and interference 
source. For simplicity, the amplitudes and velocities of targets 
and interference would not change in one episode. If the 
distance of a target or  of interference is out of the range 
shown in Table 2, the item will be replaced by a new one 
randomly initialized. 

 

 

 

GRU Dense Q(St, at)St
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Table 2 Simulation settings 

Parameter 
Value 

Training Test 

Point-like 
target 

Number  
Amplitude  
Distance [m]  
Velocity relative to 
the victim radar [m/s] 

 

Interference 

Number  6  18 
Amplitude  
Velocity relative to 
the victim radar [m/s] 

 

Delay time [× ]  
Signal-to-noise ratio [dB] 10 

Time steps per episode 40 200 
Time step interval [ms] 125 

3.1.3 RL Settings: The settings of RL are listed in Table 3. The 
following radar agents are set in training and test:  

1) Radar-Fixed: The agent’s parameter state are 
fixed to (77 GHz, ).  

2) Radar-F: The agent executes frequency hopping, but its 
 is fixed to .  

3) 3) Radar-T: The agent executes the time domain strategy, 
but its  is fixed to 77 GHz.  

The Q-network consists of one GRU layer and two dense 
layers. A ReLU activation is used after the first dense layer. 
The input of the Q-network is the one-hot vector of the current 
parameter state concatenated with the SINR, and the output is 
the Q-values of each available parameter states. So the output 
shapes of Radar-F or Radar-T, i.e., the neuron numbers of the 
second dense layer, is 3. During training, the learning rate  
and the exploration probability  are exponentially decaying to 
the minimum episode by episode. 

Table 3 RL settings 
Item Value 

Q-network 
architecture 

Layer Number of neurons 
GRU 16 
Dense 1 32 
Dense 2 3 

( , ) [dB] (0, 11) 
γ 0.99 
β 0.01  0.00001 
ϵ 1  0.05 

Maximum capacity of  20 time steps 
Replay buffer capacity 50000 

Replay batch size 4 × 32 
 updating interval 200 time steps 

3.2 Simulation Results 

The random initialization of interference in each episode 
leads to a large variance during sampling, subsequently 
making RL training difficult and unstable. To deal with the 
instability, the number of time steps per episode is reduced in 
training, and it takes tens of thousands of episodes for agents 
to reach convergence. In particular, the radar agents are first 
trained to converge in the static scenario and then retrained in 

the dynamic scenario. After training, the radar agents are tested 
with the interference number varying from 6 to 18. For each 
number of interference, the agents are tested for one thousand 
episodes in both dynamic and static scenarios. The test results 
are shown in Fig. 3, and the overall performance of 
interference avoidance is demonstrated in Table 4. The 
avoidance ratio is defined as the proportion of the time steps 
without interference in the passband. Besides the average 
SINR, the avoidance ratio presents the interference avoiding 
performance of the radar agent. 

 
(a) 

 
(b) 

Fig. 3. The test result versus various numbers of interference. 
(a) Average SINR in the static scenario. (b) Average SINR in 
the dynamic scenario. 
 
Table 4 The overall performance of interference avoidance 

Radar agent 
SINR [dB] Avoidance ratio [%] 

static dynamic static dynamic 
Fixed −5.23 -5.96 18.64 16.30 

F 0.65 -0.88 39.29 33.70 
T 0.76 -0.51 39.86 35.22 

Among the three agents, Radar-Fixed has the worst 
performance on interference avoidance. Compared to Radar-
Fixed, Radar-F and Radar-T all perform much better. Notably, 
their performance is almost the same in the static scenario, 
which proves the ability of the proposed time domain strategy. 
The reason is that the numbers of available states in the time 
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and frequency domains are the same, and the interference is 
distributed uniformly in both domains when initialized. In the 
dynamic scenario, all these agents suffer performance 
degradation due to the continuously changing interference.  
However, Radar-T slightly outperforms Radar-F. The dynamic 
of interference in the time domain is more regular than that in 
the frequency domain, so it is easier to avoid interference in 
the time domain, especially when facing more interference. 

Fig. 4 shows the state transitions and the performance on 
SINR of the three radar agents in one episode as the 
interference number is 12 in the dynamic scenario. The 
average SINR of Radar-Fixed, Radar-F, and Radar-T are  
-17.69 dB, 0.33 dB, and 1.33 dB, respectively. Both Radar-F 
and Radar-T will react immediately if a sudden drop in SINR 
caused by dynamic interference occurs. They almost always 
get a higher SINR than Radar-Fixed during the whole episode.  
However, Radar-T performs more stably than Radar-F. Since 
it is more difficult to predict the dynamic of interference, 
Radar-F switches its parameter state much more frequently, 
even if it does not suffer a low SINR. 
 
4 Conclusion 

In this paper, we propose a non-cooperative time domain 
strategy to avoid interference for FMCW automotive radar. 
The proposed strategy is implemented by utilizing Markov 
Decision Process model and deep reinforcement learning. The 
numerical simulation demonstrates the effectiveness of the 
method. The proposed time domain strategy shows a better and 
more stable performance than frequency hopping in the 
dynamic scenario. 
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Fig. 4. Test result of one episode in the dynamic scenario. Parameter state index setting is {Index : ( ) | 
0 : (76.25, 1), 1 : (76.75, 0), 2 : (76.75, 1), 3 : (76.75, 2), 4 : (77.25, 1)}. 
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