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Abstract: Here we investigated a novel layer-based optimization technique to improve the perfor-
mance of a CZTSe solar cell. By using this technique, the optical behavior and electrical properties of
the proposed solar cell improved significantly as a result of the changes in the layer specifications and
the layer materials. The structure of the cell consisted of an absorber laid on a conducting layer and
covered by Indium Tin Oxide (ITO), with ZnO on its top surface. Due to the employment of the CSLO
technique, a p*pn junction was formed between the absorber and window layers, which provided
a lower recombination rate by transmitting more electrons and holes to the contacts. In addition,
the main important parameters affecting the solar cell’s performance such as layer thickness, carrier
lifetime, and total effect density were investigated. According to the results, the proposed CZTSe
solar cell achieved a 32.6% and 79.5% efficiency and fill factor, respectively—which in comparison to
a conventional solar cell is remarkable. Moreover, hybrid structures made by utilizing CZTS-based,
Ge-based CuyZnGeSey, and Si-based CuyZnSiSey with the proposed CZTSe-based solar cell were
implemented and better results were achieved, yielding an efficiency of about 42, 50, and 34% and a
fill factor of 66, 55, and 42%, respectively, due to the materials’ properties.

Keywords: solar cell; CZTS; CZGeSe; CZSiSe; CZTSe; ITO; ZnO; efficiency; performance

1. Introduction

Cuy —II-IV—VI4 quaternary compounds have been of great interest for many years
in sustainable photovoltaics due to their suitable bandgaps, their abundance on Earth
and because they only require cheap fabrication techniques [1]. Among these multi-layer
configurations, Copper Zinc Tin Sulfide (CZTS) is an emerging solar cell absorber that, in
terms of lattice structure, it is similar to chalcopyrite semiconductors such as CuGaSe,,
CulnSe;, and Cu (Ga,In)Sey, but contains only earth-abundant, nontoxic elements and has
a near-optimal direct bandgap energy of Eg~1.5 eV, theoretically determined with high
optical absorption coefficients over 10* cm~! [2]. Therefore, CZTSSe-based solar cells such
as CupZnSnS, (CZTS), CuyZnSnSey (CZTSe), and CupZnSn(S,Se)s (CZTSSe) have many
advantages due to their special properties, which include being eco-friendly, cost-effective,
and highly efficient [3,4]. In addition, CZTSSe-based solar cells have received attention as
excellent absorber layers of photovoltaic cells, since they have nontoxic materials, a simple
fabrication process, and reasonable optoelectronic properties for thin-film solar cells [5].
For instance, their direct bandgap and high absorption coefficient in the visible region are
important factors towards choosing them for the absorber layer in solar cells [6-8]. In fact,
solar cells are considered an important alternative source of green and clean energy [9].
Hence, numerous techniques and solutions have been reported for the optimization of solar
cells and overcoming problem related to this. Improving the performance of solar cells is
generally based on layer-optimizing techniques [10], material selection [11], light-trapping
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methods [12], the use of solar concentrators [13], and the solar cell structure design [14,15].
Regarding this, more works are introduced as follows.

Attafi et al. [10] suggested the use of a silicon Schottky solar cell with a passivation
layer to improve the performance of the solar cell. In another study, Boukortt et al. [11]
used a Cu (Iny,Gax) Se; solar cell to enhance cell efficiency. According to the reported
results, the carrier transport mechanism and conduction band alignment at the CdS/CIGS
interface have led to an increase in efficiency from 12% to 14%. Furthermore, light trapping
methods are used to absorb a significant fraction of the incident sunlight to minimization
reflection [12]. In addition, many types of research show that CuSbS, absorber-based
solar heterostructure cells show enhanced electrical properties [14]. Moreover, a device
architecture with three terminals has been proposed by Antolin et al. [15]. The proposed
solar cell is heterojunction bipolar transistor-based with a simple structure in comparison
to multi-junction designs.

A model of a GaInP material-based p+/n+ single junction solar cell was simulated
by Verma et al. [16] with two passivation layers to increase the efficiency up to 22%. In
this direction, the multiple roles of conjugated polymers in enhancing the environmental
stability and performance of perovskite solar cells were introduced in [17,18]. The most
common hybrid perovskite materials used as absorber layers in perovskite solar cells (PSC)
are methylammonium lead iodide (CH3NH3Pbl3 or MAPbI3) and methylammonium lead
bromide (CH3NH3;PbBr; or MAPbBr3), which enhance the efficiency of cells [19].

Moreover, research works [20,21] have investigated the role of i-aSi:H layers in
aSi:H/cSi heterojunction solar cells, with the implementation of non- or lightly-doped
hydrogenated amorphous silicon layer by Hayashi et al. [20] and the use of overlapped p/i
and n/i a-Si:H layers by Noge et al. [21], which improved cell performance. Furthermore,
another important factor in the design of solar cells is the surface layer shaping [22]. In this
regard, many research projects with various techniques have been reported. For instance,
changing the height of the pillars results in an efficiency increase in devices consisting
of nanopillars of CdTe coated with a very thin layer of CdS. [23]. In fact, these methods
can be used to maximize light absorption and performance optimization. Additionally,
Ergen et al. [24] utilized screen-engineered field effect Cup,O-based solar cells to enable
low-cost and high-efficiency cells. In addition, an optimization of InGaP/GaAs single-
/multi-junction solar cell performance was presented by Kuan et Yuning in [25] to boost
the photovoltaic conversion efficiency, in which when the tunnel junction and back surface
field design was optimized, the cell’s photovoltaic performance was increased.

Hohn et al. [26] proposed four-junction solar cells based on germanium wafer bonding.
The presented structure provided high efficiency, due to employing germanium which
required an optimized Ge cell with rear-side passivation and a mirror. On the other
hand, germanium is an indirect semiconductor that impacts light absorption. In another
study [27], the proposed solar cell employed a combination of the Liquid Phase Crystallized
Silicon and Perovskite techniques to produce a low-cost and high-performance device.
Moreover, different bandgap energies in multi-junction solar cells will change under real
conditions due to temperature variations; this phenomenon causes higher sensitivity to
spectral changes because of the sun’s movement in the sky and atmospheric conditions.

Paswan et al. [28] demonstrated the usage of the CdS as a buffer layer in CZTSSe-based
solar cells, which significantly improved the device’s overall performance. Additionally,
the solar cell proposed by Latrous et al. [29] had optimized absorbent layer doping and an
appropriately chosen metal contact, thereby considerably reducing the recombination rate.
In another paper, Madan et al. [30] used CZTSSe-based SnS thin films for improving the
conversion efficiency of solar cells.

As mentioned previously, the main advantages of CZTSSe-based solar cells are their
non-toxic properties—in contrast to Copper Indium Gallium Selenide (CIGS) solar cells—
that they use earth-abundant, low-cost materials, and their structural simplicity [2,5]. These
advantages make CZTSSe a desirable material for photovoltaic applications. Although the
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improved performance of CZTSSe-based solar cells has been extensively studied, varying
the layer specifications has been investigated by researchers less often.

In this paper, the proposed CZTSe-based solar cell employs the CSLO technique
(CZTSe- based Solar cell Layer Optimization) to achieve high efficiency with a noncomplex
structure by varying the layer specifications, such as selecting the optimum layer thickness
and doping concentration of the layers. The CSLO technique in SILVACO provides the
optimum thickness and doping concentration of layers by varying the layer specifications.
In this technique, the absorber layer is divided into two layers with different doping
concentrations and materials. In addition, the absorber layer is divided into two layers
with different doping concentrations, as shown in Figure 1. In fact, by implementing a
p*pn junction, the number of holes and electrons will be increased on two sides of the
junction, resulting in an increase in the generated current, a decline in the recombination
rate, and an improvement in the efficiency of the solar cell in comparison to conventional
ones. Similarly, the p+ layer and the nearby backside contact made a junction with a
more linear response than a p-type layer (with a lower doping concentration), which led
to performance enhancement. In this technique, the p+ layer provided an extra field,
causing lower carrier recombination by transmitting more electrons to the absorber layer
and collecting more carriers at the contacts simultaneously. Furthermore, the Silvaco TCAD
ATLAS tool was used to measure the performance parameters. The rest of this paper is
organized as follows: Section 2, explains the proposed CZTSe-based solar cell structure
and material selection. Section 3 includes the simulation results and discussion, which
is followed by the conclusions and references. Our study can provide some important
guidance for solar cell device design, fabrication, and optimization based on theoretical
considerations.

Figure 1. Schematic of the proposed CZTSe-based solar cell structure.

2. Modeling and Simulation for Material Selection

A regular structure was modeled for the CZTSe solar cell to analyze and investigate
its performance. Figure 1 shows the schematic structure of the proposed solar cell. As
illustrated in Figure 1, the CZTSSe-based solar cell structure consisted of different layers, in
which CZTSe was used as the absorber layer. Based on the properties of CZTSe, it had an
energy bandgap and absorption coefficient of over 1 eV and 10* ecm ™!, respectively [2]. In
addition, the n-type window layer (such as ZnO) and the p-type absorber layer (CZTSe)
formed a p-n junction. Likewise, the n-type cadmium sulphide (Cds) layer worked as
a buffer layer. The front and back layers of the solar cell were indium tin oxide (ITO)
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transparent conducting layers and MO materials were employed as contacts in the proposed
solar cell design. According to the properties of different materials, higher energy-band gap
(Eg) materials such as window layers (the band gap of ZnO is over 3 eV) help more photons
to easily reach the underlying layers. Thus, bandgap management is very important for
obtaining better performance via the choosing of the best materials. The main idea of
the buffer layer is to provide more routes for photons to be transmitted without being
absorbed, to reduce defects in the absorber layer, and to align the energy bandgap between
the absorber layer and window layer. Moreover, a molybdenum layer was used to increase
light trapping and to reflect more photons back into the CZTSe layer. For the first step, using
TCAD Silvaco software, an ATLAS code was prepared in order to build this structure—
shown in Figure 1. Based on ref [2,5,31], materials were chosen and are detailed in Table 1.

Table 1. Standard material parameters used in the solar cell design shown in Figure 1.

Parameters CuyZnSiSe; CuyZnGeSey CZTS CZTSe Cds ZnO ITO
Band gap (eV) 3 21 1.5 1.04 2.4 3.3 3.6
Electron affinity (eV) 24 34 4.1 4.15 45 4.6 4.2
Dielectric permittivity 7.5 6.8 7 10 10 9 10
Electron mobility
(cm?/Vs) 60 60 60 100 100 100 100
Hole mobility (cm?/Vs) 20 20 20 25 10 10 10
Effective conductance 18
band density (cm/s) 2210
Effective valence band 19
density (cm/s) 1810
Defect density (cm~3) 1% 108 1 x 1013 1 x 1013 1% 1013 6 x 1016 - -

3. Results and Discussion

In this section, to perform the numerical simulations of the device characteristics, a
Silvaco simulator was used to extract the electrical characteristics and optical behaviour
of the proposed solar cell. Moreover, the impact of the carrier lifetime and thickness
on the performance of the solar cell was studied. As shown in Table 2, different cases
with different thicknesses and concentrations of ITO and absorber layers were analyzed.
According to the efficiency results (shown in the tenth row of Table 1), by increasing the
doping concentration of the absorber layer, the efficiency was significantly improved. Thus,
in comparison to cases 1 and 2, where all parameters except the concentration were constant,
increasing doping from 1 x 10% to 1 x 10'® resulted in improved efficiency from 18.86%
to 32%. Indeed, by increasing the doping concentration of the absorber layer (case 2), the
width of the depletion region declined. Therefore, the short circuit current (Jsc) decreased
slightly, since fewer carriers were collected at the contacts as a result of a reduction in
carrier transmission. At the same time, the open circuit voltage (Voc) increased because of
the lower recombination rate of the electron and holes than the rate in case 1, resulting in an
amplification of the efficiency. More holes and fewer electrons in the absorber layer caused
a change in the recombination rate. It is important to choose the doping concentration of
the absorber precisely when the dopant concentration is so high, as more photons will be
absorbed in the buffer layer instead of the absorber layer, and efficiency will be decreased.
Higher doping concentrations lead to lower carrier mobility, higher leakage, and increased
scattering. As such, the optimum doping concentration values were compared for different
cases in Table 2.
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Table 2. Thickness (T) micro meter and doping concentration (C)-change results.

Case 1 Case 2 Case 3-CSLO Case 4-CSLO Case 5-CSLO Case 6-CSLO
Material T C T C T C T C T C T C
ITO 0.03 1 x 10" 0.03 1 x 10Y 0.02 1 x 10" 0.02 1 x 10Y 0.02 1 x 10" 0.02 1 x 10"
ZnO 0.08 1 x 10'8 0.08 1x 10'8 0.08 1 x 10'8 0.08 1x 108 0.08 1 x 10'8 0.08 1 x 10'8
Cds 0.03 1 x 107 0.03 1 x 10V 0.03 1 x 107 0.03 1 x 10V 0.03 1 x 107 0.03 1 x 107
CZTSe 15 18 0.5 1 x 101 ) : } ) R }
(CurZnSnSes) 2 1x10 2 1x10 15 1x 109
0.5 1 x 10
CupZnSnS, - - - - - - 15 1 % 10 - - - -
. 0.5 1 x 10'
CuyZnSiSey - - - - - - - - 15 1 % 101 -
0.5 1 x 10'°
CuyZnGeSey - - - - - - - - - - 15 1 % 10
Efficiency (n%) 18.86 32 32.66 68 62.31 70.64
Voc (v) 0.378 0.548 0.537 0.99 1.2 1.31
Jsc (A/cm?) 0.074 0.073 0.076 0.078 0.074 0.075
Fill Factor (%) 66.79 79.44 79.55 86.03 69.73 71.67
Pmax (W) 0.018 0.032 0.0326 0.068 0.062 0.07

In addition, by decreasing the thickness of the ITO layer and using the CSLO technique
to make p*pn junction (case 3), the efficiency was again increased. Accordingly, it is believed
that the efficiency of solar cells depends on the alignment band of the hetero-interface, and
that the layer-thickness selection caused more light absorbance and less recombination
of electrons and holes, as demonstrated in Table 2. Furthermore, the performance of the
CZTS-based, Ge-based Cu,ZnGeSe,, and Si-based Cu,ZnSiSe, Kesterite solar cells made
with the proposed CSLO technique was analyzed. As illustrated in Table 2, the Ge-based
CupZnGeSey solar cell achieved the best optical and electrical results because of the Ge’s
properties, such as having the best direct energy bandgap among the CZTS-based and
Si-based Cu,ZnSiSey solar cells, providing an over 70 percent efficiency and fill factor,
which represent the ratio of the maximum power to the minimum power (Pmin) and
the ratio of the theoretical power to the maximum power (Pmax), respectively. Indeed,
all of the mentioned parameters are essential for measuring the quality of solar cells. In
Figure 2, the External Quantum Efficiency (the ratio of the anode current to the source
photo current) and the Internal Quantum Efficiency (the ratio of the anode current to the
available photo current) results versus wavelength (nm) for case 1 (without the CSLO
technique) and case 3 (with the CSLO technique) are represented. Figure 2 shows that in
case 3, by utilizing the proposed technique, the EQE was higher than conventional solar
cells made without the CSLO technique. Firstly, it was obvious that the EQE and IQE were
low at short wavelengths (A); as the wavelength increased, they increased dramatically to
reach their maximum values. Then, the IQE remained constant at mid-range wavelengths,
in contrast to the EQE. The quantum efficiency variation versus different wavelengths was
directly related to the number of input photons and their energy levels in comparison to
the bandgap energy of the solar cell [32].

Figure 3 illustrates the spectral response of the proposed solar cell (case 3) against the
wavelength. It is obvious that the available photo current and the cathode current differed
from each other at lower wavelengths due to the lower numbers of photons, but at higher
wavelengths, the trends looked like each other, and the cathode current was significantly
increased. Furthermore, not only was the optical behavior considerably improved, but the
electrical parameters were also increased by the CSLO technique.

Moreover, Table 3 illustrates a comparison of the hybrid structures, with those with
that were combined with CZTSe-based solar cells having a higher efficiency than those
without them. The hybrid structure with the Cu,ZnGeSe, gained the maximum value of
efficiency of 50.112% while the Si-based CuyZnSiSey4 obtained an efficiency of 33.61%, which
was the lowest value. Similarly, Table 4 presents the comparison results of the proposed
CZTSe-based solar cell made with the CSLO technique and other published papers with
CZTSSe-based solar cells. By using the CSLO technique, the performance in comparison to
conventional CZTSSe-based solar cells was significantly improved, yielding an efficiency
of 32.6% and a fill factor of 79.55%.
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Table 3. Comparation results of hybrid solar cells.

Solar Cell Fill Factor (%) Efficiency (%)
hybrid structure (CZTSe and CZTS) 66 41.54
hybrid structure (CZTSe and CuyZnSiSey) 42 33.61
hybrid structure (CZTSe and CuyZnGeSey) 54.82 50.112

Table 4. Comparation results of the proposed solar cell with previously published solar cells.

Reference Fill Factor (%) Efficiency (%)
Conventional CZTSe solar cell (Case 1) 66.79 18.86
Case 3 79.55 32.6
[33] 38.2 4.35
[34] 76.46 17.04
[35] 50.8 £4.1 55+£0.6

In addition, the results of the efficiency variation versus carrier lifetime are depicted
in Figure 4. As shown in Figure 4, the efficiency was increased as a result of an increase in
carrier lifetime. The value of the carrier lifetime was chosen to be similar across different
layers of the proposed solar cell (100 ns) over the entire simulation. Therefore, the carrier
lifetime is an important parameter in solar cell design that affects the improvement of
performance as well [36—40].

35
30

N

>

o

c 15

-

O 10

E 5 ~-Case3 ~-Casel
0

1.00 x 107 1.00 x 10~ 1.00 x 10~ 1.00 x 107

Carrier lifetime (s)

Figure 4. Efficiency variation versus carrier lifetime.

Subsequently, the impact of the absorber thickness on the electrical properties of the
proposed solar cell for case 3 by increasing the p+ layer thickness when the width of the p
region remained unchanged and the conventional case 1 were compared together as shown
in Figure 5a. As demonstrated in Figure 5a, the Jsc varied constantly when changing the
absorber layer from 1 um to 4 um (increased slightly), although the Voc was increased.



Appl. Sci. 2022,12,4119

8of 11

0.078
0.52
0.077
< o | o076 ___
0.43 NE
; 0.075 &
3 s
> S = O 0.074 —°
0.34
0.073
—=\/0c/casel ==\ oc/case3 <=)sc/case3 =¢=Jsc casel
0.25 0.072
0.8 1.8 2.8 3.8
Thickness of absorber (um)
(a)
0.9

—— S
—— PR
et gy

0.1pym 8 pum
Efficiency 6.9 20.47
FF 48.16 69.88
Voc 029 0392
Jsc 0.048 0.0746
Pm 0.007 0.02

=== Thickness = 0.1 ym
«=Thickness = 8 ym

0.3 0.5 0.7 0.9 11

Wavelength (nm)
(b)

Figure 5. (a) Electrical properties versus absorber thickness. (b) EQE versus absorber thickness for
Case 1.

Moreover, by decreasing the absorber layer, the optical properties were decreased. As
illustrated in Figure 5b, the EQE of the solar cell was decreased in lower wavelengths for
case 1. Likewise, the electrical properties of case 1 declined by decreasing the width of the
absorber layer, as demonstrated in Figure 5b. Thus, by selecting the optimum width of the
absorber layer, more advantages will be obtained. In this regard, over the entire simulation,
the optimum value of 2 microns was chosen for the absorber layer for the different cases.

Furthermore, another important parameter is the total effect density of the solar cell.
Therefore, the effect densities of the p*pn junction and the ZnO/ITO layers must be selected
precisely. Due to this, the effect density of the p*pn junction was chosen, as depicted in
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Table 1, to be consistent over the entire simulation, because the main of the purpose of
this article was to study the effects of the proposed CSLO technique in carrier-generating
layers. Furthermore, the impact of ZnO/ITO defect density was investigated. As shown in
Figure 6, by changing the effect density from 1 x 10'® cm 3 to 1 x 10! ecm 3 for case 1, the
efficiency and fill factor (%) decreased. Regarding this, the specifications of the layers must
be considered in the simulation.

—=FF % =w=Efficiency %

1x10'®
70

1x 10"

Efficiency& FF ( %)

1x 10" 1x 1078

Effect Density (Cm™)

Figure 6. Efficiency and FF versus effect density for case 1.

Modeling CZTSe solar cells in a simulated environment as presented here is critical
for data analysis and real fabrication behavior projection. This optimization is beneficial for
the commercial use of CZTSe solar cell technology. Various electrochemical and fabrication
strategies are currently being researched in order to achieve layer specifications similar to
those in Table 2. There are current results that suggest that the Pulsed laser deposition [41],
Spray pyrolysis [42], Vacuum deposition method [43,44], Magnetron sputtering [45], and
sol-gel [46,47] methods could be of use for achieving two divided absorber layers like those
simulated by the CSLO technique.

4. Conclusions

In this work, the CSLO technique was introduced to improve the performance of
CZTSe-based solar cells. Due to utilizing this technique, the efficiency and fill factor were
increased by 12.76% and 13.74%, respectively; the electrical properties were improved as
well. In addition, important parameters that affect the performance of the solar cell, such as
the total effect density, carrier lifetime, and layer thickness, were investigated and simulated.
Moreover, CZTS-based, Ge-based Cu,ZnGeSe,, and Si-based Cu,ZnSiSe, Kesterite solar
cells made with the proposed CSLO technique were simulated. According to the results,
the efficiency was increased in each solar cell by employing the proposed technique.
Furthermore, hybrid structures were compared. As represented here, by employing an
CZTSe-based absorber layer with a CZTS, Cu;ZnGeSey, and Si-based CuyZnSiSey one, the
optical behavior and electrical property were remarkably improved. The optical behavior
improvement was due to tuneable band gaps covering almost the entire solar spectrum
and the high absorption coefficient.
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