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Summary

Fibre metal laminates, such as Arall or Glare, can offer improved proper-
ties compared to monolithic materials. Glare for example shows improved
fatigue, residual strength, burn-through, impact and corrosion properties
with respect to aluminium 2024, together with a considerable weight re-
duction and competitive costs. A large research program has proven the
technological readiness of Glare and the fibre metal laminate has seen
its application today in the primary structure of the Airbus A380 super
jumbo.

However, the effect of temperature on the performance of the fibre
metal laminates has not been fully characterised. Differences in thermal
expansion coefficients cause residual stresses after curing of the laminate.
In service the temperature of the aircraft skin can vary between -55 up to
70 ◦C due to solar radiation and convection, which will affect the thermal
and mechanical properties of Glare. A detailed understanding of the be-
haviour of these laminates is necessary for further improvement of their
performance and durability. With the increase in complexity of structures
and material systems, the need for powerful design tools becomes evident.

In this thesis, the thermo-mechanical behaviour of fibre metal lami-
nates has been characterised via experimental testing and numerical mod-
elling. Experimental tests have been performed to determine the tempera-
ture-dependent thermal and mechanical behaviour of unidirectional (UD)
glass-fibre epoxy. Calculations based on these test results at room tem-
perature and 80 ◦C for the tension and shear stiffness of three different
composite laminate lay-ups showed a good agreement with experimental
test results. The UD glass-fibre epoxy data is used as input for the finite
element model, together with aluminium 2024-T3 data from the literature.

Glare laminates with a special lay-up have been experimentally tested
to determine the effect of temperature and mechanical loadings on the
laminate characteristics. The test results show that the off-axis and tem-
perature effect can give a reduction of 24% in ultimate strength at room
temperature due to off-axis loading and a further reduction of 17% at
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iv SUMMARY

80 ◦C temperature. For standard Glare from the literature, where tests
at elevated temperature have only been performed in fibre direction, the
strength and stiffness reductions are at most 12% compared to room tem-
perature.

Numerical simulation is a very powerful tool to investigate the be-
haviour of materials and structures. Therefore, a thermo-mechanical finite
element model, based on a solid-like shell element and including thermal
expansion and heat transfer, has been developed to capture the behaviour
of Glare in a fully three-dimensional state. The through-the-thickness tem-
perature and stress distributions can thereby be determined, which allows
for a straight-forward implementation of damage and plasticity models.
Moreover, the solid-like shell element is ideal for thin-walled (aerospace)
structures since it can have high aspect ratios without showing Poisson-
thickness locking, which occurs in standard continuum elements, and can
have multiple layers in one element.

To account for physical nonlinearities, a strain hardening model for the
aluminium 2024-T3 and an orthotropic damage model for the UD glass-
fibre epoxy layers in Glare are used. The strain hardening behaviour of
aluminium has been modelled with a yield function based on an isotropic
Von Mises plasticity formulation. An exponentially saturating hardening
law has been assumed, which gives a good agreement with the experimen-
tal aluminium 2024-T3 stress-strain curve. A return-mapping algorithm is
used to project the stress back onto the yield surface when the stress state
violates the loading condition.

The concept of continuum damage mechanics is used, with a separate
damage parameter for fibre and matrix, to describe the appearance of mi-
crocracks that lead to ultimate failure. The equivalent strain measure is
obtained by rewriting the yield function of the orthotropic Hoffman plas-
ticity model into a strain-based format. The damage parameters are di-
rectly implemented into the stiffness matrix to avoid undesirable coupling
terms in the damage matrix. The simulations of the shear and tensile test
in transverse direction show a good fit with the experimental curves for
the UD glass-fibre epoxy.

The transient behaviour is captured by taking the heat capacity, in-
ertia forces and damping into account. Park’s method is used to solve
the dynamic system of equations. The good performance of the thermo-
mechanical solid-like shell element and the transient solver have been
demonstrated for a single element under thermo-mechanical loadings and
the snap-through of a cylindrical panel subjected to a concentrated load.

Via a number of benchmark tests for practical applications the obtained
numerical model is compared with the experimental test results. Blunt
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notch test simulations have been performed on Glare3-3/2-0.4 and on a
special Glare laminate (tested at 0, 45, 67.5, and 90◦off-axis angle), which
show a good agreement with experimental results. Simulations of off-axis
tensile tests on a 0/90 composite, tensile tests on standard Glare laminates,
and off-axis tensile tests on special Glare laminates with additional fibre
layers in -45 and 45◦direction, also showed a good agreement with exper-
imental results.

The thermo-mechanical solid-like shell element and the experimentally
obtained material data, presented in this thesis, together create a powerful
simulation tool for the effective and accurate characterisation of fibre metal
laminates under thermo-mechanical loadings.
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Notation

Latin symbols
A Area mm2

B Transformation matrix (strain-displacement/temperature) m−1

cp Specific heat coefficient J/g-K
C Damping matrix Ns/m
d Notch diameter mm
d Damping operator kg m/s
D Shell thickness director -
DGL Tangential stiffness matrix for Green-Lagrange strains GPa
Dα Thermal expansion matrix Pa/K
E Young’s modulus GPa
E1 Young’s modulus in fibre direction GPa
E2 Young’s modulus in transverse direction GPa
Ek Covariant surface vector -
F Deformation gradient tensor -
f Yield or damage loading function -
f Force vector N
g Plastic potential -
g Gravitation vector m4/s2

gk Base vectors in the deformed configuration -
Gij Shear modulus GPa
Gk Base vectors in the undeformed configuration -
h Thickness mm
hc Convective heat transfer coefficient W/m2-K
hr Radiative heat transfer coefficient W/m2-K
h History vector of the generalised momentum kg m/s
H Interpolation matrix -
I Identity matrix -

vii



viii NOTATION

J Jacobian -
k Material conductivity matrix W/m-K
k1 In-plane heat conduction coefficient in fibre direction W/m-K
k2 In-plane heat conduction coefficient in transverse direction W/m-K
k3 Out-of-plane heat conduction coefficient W/m-K
K Global stiffness matrix GPa
Kc Convection matrix W/m-K
Ke Element stiffness matrix GPa
Kk Conductivity matrix W/m-K
Kr Radiation matrix W/m-K
l Length mm
m Direction of the plastic flow -
n Outward normal to surface -
S Surface m2

t Time s
tβ Modified time-step s
t Boundary traction MPa
u Displacement vector m
u̇ Velocity vector m/s
ü Acceleration vector m/s2

v Deflection mm
v Generalised momentum auxiliary vector kg m/s
V Volume m3

wi Integration weights -
W Width mm
Wint Internal work J
Wext External work J
qc Convection heat flux W/m2

qr Radiation heat flux W/m2

Q Heat flow input W
x Position of a material point in the deformed state -
X Position of a material point in the undeformed state -
Ze Transformation matrix for global to element coordinate system -

Greek symbols
α Rayleigh damping factor µm/m-K
α1 Thermal expansion coefficient in fibre direction µm/m-K
α2 Thermal expansion coefficient in transverse direction µm/m-K
β Rayleigh damping factor -
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γ Shear strain or Rayleigh damping factor -
γ Green-Lagrange strain tensor -
δ( ) Virtual variation of a quantity -
δij Kronecker delta -
∆( ) Increment of given quantity -
ε Strain -
ε̃ Equivalent strain -
ε Eulerian strain tensor -
ζ Curvilinear coordinate -
η Curvilinear coordinate -
θ Temperature (see the additional notes) K or ◦C
Θ Isoparametric coordinates vector -
κ Hardening parameter, or damage history parameter -
κ Curvature m−1

λ̇ Plastic flow (plastic multiplier) -
Λ Matrix consisting of (derivatives of) shape function vectors -
µ Shell tensor -
νij Poisson’s ratio -
ξ Curvilinear coordinate -
Π Vector of isoparametric shape functions -
ρ Density g/cm3

σ Stress MPa
σB Stefan-Boltzmann constant W/m2-K4

σ Piola-Kirchhoff stress tensor MPa
τ Shear stress MPa
τ Cauchy stress tensor MPa
φ Fibre orientation angle degree
φ Displacement field vector m
ψ Factor including emissivity and geometric view factors K3

Ψ Residual function -
ω Internal stretch parameter, or damage parameter -
ωf Fibre damage parameter -
ωi Matrix damage parameters -
Ω Damage matrix -

Mathematical operators
˙( ) Material time derivative (undeformed or Lagrangian configuration)

( )′ Spatial time derivative (deformed or Eulerian configuration)
(̂ ) Nodal representation of a given quantity
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( )T Transpose of a given matrix
( )−1 Inverse of a given matrix
det( ) Determinant of given matrix
div ≡ tr

(∂( )
∂x

)

Divergence in the deformed configuration
Div ≡ tr

(∂( )
∂X

)

Divergence in the undeformed configuration
grad ≡ ∂( )

∂x
Gradient in the deformed configuration

∇ ≡ ∂( )
∂X

Gradient in the undeformed configuration
tr(A) ≡

∑n
i=1 aii The trace of a given matrix A with order n

∑

( ) Summation of given quantity

Indices
b Bottom
c Compression, or convection
e Specific element
env Environment
ext External
el Elastic
gross Gross value, i.e. considering the total width
GL Green-Lagrange
int Internal
k Conductivity
max Maximum
n Normal to the surface
nel Number of elements
net Net value, i.e. considering the effective width
nint Number of integration points
pl Plastic
r Radial, or radiation
RT Room temperature
t Top, or tangent
trial Trial, i.e. estimation
u Ultimate
y Yield
0 Undeformed state
1 Fibre direction
2 Transverse direction, perpendicular to the fibre direction
3 Out-of-plane direction
α Thermal quantity
φ Circumferential
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Abbreviations
Arall Aramid reinforced aluminium laminate
BWP Batch Witness Panel
CLT Classical Laminate Theory
FML Fibre Metal Laminate
FVF Fibre volume fraction
Glare Glass reinforced aluminium
ID Identification number
L Longitudinal direction (aluminium rolling and 0◦fibre layer direction)
LT Longitudinal transverse direction (in-plane)
MVF Metal Volume Fraction
RT Room temperature
SEM Scanning Electron Microscope
ST Sideways transverse direction (out-of-plane)
UD Unidirectional

Additional notes
In addition to the list of used symbols, indices, and abbreviations some other
conventions have to be mentioned. In the chapters about the numerical modelling
a vector-matrix notation is applied in this thesis. However, in the description
of the thermo-mechanical solid-like shell element tensor notation is used. This
tensor notation is transformed into the vector-matrix notation when the element
stiffness matrix and the internal force vector are set up. Here, the engineering
strains γ = (ε11, ε22, ε33, 2ε12, 2ε23, 2ε31) are applied. The stresses are collected in
the vector σ with: σ = (σ11, σ22, σ33, σ12, σ23, σ31).

In principle, bold letters represent a vector or a matrix. The corresponding
components are denoted by a subscript and sometimes by a superscript. The su-
perscript refers to the contra-variant basis which is applied to describe the solid-
like shell element. A subscript preceded by a comma, e.g. ( ),λ denotes the partial
derivative with respect to λ. The range of indices belonging to the vector-matrix
or tensor notation is introduced when they are applied first.

The temperature can be expressed in degrees Celsius unless radiation is in-
volved, in that case the temperature unit is given in degrees Kelvin ( K = ◦C +
273.15).
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Chapter 1

Introduction

Aviation has taken a giant leap since the first powered flight in aviation
history made by the Wright brothers in 1903. Today, the new Airbus A380
super jumbo speaks to the imagination with its sheer size. This aircraft
could not have been realised without the invention of new technologies.
Besides performance and costs, durability is a major issue in aircraft de-
sign and the search for care-free or even self-healing materials and struc-
tures continues.

With the increase in complexity of structures and material systems the
need for powerful design tools becomes evident. The finite element method

Figure 1.1: The first powered flight in aviation history made by Orville
Wright in 1903 at Kitty Hawk, North Carolina.
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2 CHAPTER 1. INTRODUCTION

has become very popular and will also be used in this thesis to charac-
terise the thermo-mechanical behaviour of fibre metal laminates. Though
an extensive experimental test program has been carried out on Glare, still
a more fundamental knowledge of the material behaviour, especially re-
garding the effect of temperature, is required. After the description of the
background and objectives of this research the chapter is finished with an
outline of the thesis.

1.1 Background

Since the Second World war, metals—especially aluminium, steel and tita-
nium—are predominantly used in the primary aircraft structure. Fatigue
related problems arose amongst others after the pressurisation of the fuse-
lage and the reduction of the skin thickness to increase the aircraft econ-
omy. These problems, such as crack growth and multiple-site damage,
have been effectively dealt with.

Though accidents still happen, the year 2004 was the safest in com-
mercial aviation since the end of the Second World War according to the
International Air Transport Association (IATA 2005). In accidents 428 peo-
ple died, approximately as much as in 1945, but in 1945 less than 9 million
flew while last year about 1.8 billion people travelled by air. For compar-
ison: only in the Netherlands, with 16 million inhabitants, the number of
people killed in traffic accidents was about 881 in 2004 (which is the low-
est number since the Second World War), as stated by the Centraal Bureau
voor de Statistiek (CBS 2005). The aim of the IATA is to reduce the number
of fatalities even further with one hundred people before 2007.

These figures show that air travel has reached an eminent safety level,
but there are still many opportunities for further improvement left. For the
aircraft industry there are three major technology drivers: performance,
costs and durability (of which safety aspects are part) with costs being by
far the most important one. Besides the improvements in metals through
new alloys and manufacturing processes, the use of composites has in-
creased. An extensive use of composites is however mostly limited to
commuters and military aircraft. In these areas the form-flexibility and
high stiffness properties are highly valued, whereas costs are less impor-
tant (due to the high demands or the already labour-intensive process).

A real break-through in the application of composites has not yet been
seen, though the recently launched Boeing B787 Dreamliner is designed
to be a 50%-composite aircraft (Boeing 2005), due to several reasons. An
important issue is the damage tolerance of composites. This has led to the
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definition of barely visible damage, which despite the difficult detection
can already mean a large reduction in strength and stiffness of the struc-
ture. Though, in the search for a care-free structure, fatigue-insensitive
materials such as composites are likely to play an important role.

In light of the previous considerations, the development of fibre metal
laminates is a logic one, in which the best of both worlds are combined.
The fatigue performance of Arall and Glare is for example much improved
compared to conventional aluminium alloys and the residual strength is
higher. However, the use of different constituents also raises new ques-
tions especially regarding the thermo-mechanical properties. Differences
in thermal expansion coefficients cause residual stresses after curing of the
laminate. In service, when the temperature can vary between -55 up to 70
◦C due to solar radiation and convection, internal stresses can be expected
as well. For asymmetric lay-ups this will lead to secondary bending.

On the other hand, the combination of constituents appears to possess
unexpectedly good thermal insulation as observed by (Roebroeks 1997).
This property leads to a relative low temperature on the inside of Glare
panels in burn-through tests. Moreover, the final burn-through time in-
creases significantly, as shown by (Hooijmeijer and Kuijpers 1999). For
civil passenger aircraft, a considerable number of fatalities, in otherwise
survivable accidents, are associated with the effects of fire. (van der Kevie
1997) mentions a number of about 19 fatalities per accident involving fire,
which has a frequency of occurrence of about 1.5% per ten million flight
hours. The application of Glare in the fuselage skin could therefore mean
a major improvement in aircraft safety.

Between July 1997 and January 2003 the Glare Research Program was
carried out, which was initiated by Structural Laminates Industries and
later guided by the Fibre Metal Laminates centre of Competence. In this
extensive program the faculty of Aerospace Engineering, the Dutch Aero-
space Laboratory and Stork-Fokker participated to achieve readiness for
the application of Glare technology in the Airbus A380, see (Vlot 2001a).
Besides experimental testing, analytical and numerical methods were es-
tablished to reduce time-consuming and expensive testing. However, the
further development of fibre-metal laminates is important in order to keep
a competitive edge with respect to other materials, such as aluminium-
lithium, or carbon reinforced polymer. The aircraft design tends to shift
more and more towards analytical and numerical methods as the structure
and material systems become increasingly complex and the requirements
more difficult to achieve. A commonly used numerical method to analyse
the structure and to include the specific material behaviour is the finite
element method.
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1.2 Objectives

The aim of the current research is to characterise the thermo-mechanical
behaviour of fibre-metal laminates. A profound understanding of the be-
haviour of these laminates is necessary for further improvement of the
performance and durability.

In line with the previously mentioned trend in aircraft design from
experiments towards numerical methods, a thermo-mechanical finite el-
ement model will be developed. This model, based on a displacement-
based (mechanical) solid-like shell element, will be able to capture the
thermal and mechanical behaviour in a fully three-dimensional state. To
account for physical nonlinearities the following numerical models will be
derived:

• A strain hardening model which accounts for the isotropic material
behaviour of the metal part in fibre metal laminates, and in specific
the aluminium 2024-T3 in Glare.

• An orthotropic damage model which accounts for the fibre and ma-
trix damage in the fibre layers, i.e. the unidirectional glass-fibre
epoxy layers in Glare.

The transient behaviour is captured by taking the heat capacity, inertia
forces and damping into account. Especially the rate of heat transfer is
here of interest. For experimental characterisation, derivation of model
input data, and model verification the following program is pursued:

• Experimental tests are performed on glass-fibre epoxy to determine
the thermal and mechanical material characteristics. The data is used
as input in the finite element model together with experimental data
for the aluminium.

• Experimental tests are performed on Glare laminates to determine
the effect of temperature and mechanical loadings on the laminate
characteristics. An overview of the available data from the literature
will be given as well.

Via a number of benchmark tests for practical applications, the obtained
numerical model is compared with the experimental test results.

1.3 Outline

The research presented in the current thesis consists of both experimental
and numerical work performed in two different departments at the faculty
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of Aerospace Engineering. The experimental program has been carried
out at the Structures and Materials Laboratory, which is amongst others
used by the Aerospace Materials department. The numerical tools have
been developed in the Engineering Mechanics department. The multi-
disciplinary contents of the thesis implies that readers with different pro-
fessional backgrounds may utilise the results. Therefore, in Chapter 2,
fibre metal laminates are described in detail. Beside the development of fi-
bre metal laminates (in particular Arall and Glare), the constituents and
variants, and the main characteristics are given. Also the concerns re-
garding the thermo-mechanical behaviour are discussed, which will be
the main focus of the present thesis.

In Chapters 3 and 4 the experimental results on, respectively, the Glare
constituent properties and Glare laminates are discussed. The aim of Chap-
ter 3 is to determine the temperature-dependent thermal and mechanical
properties of glass-fibre epoxy and aluminium in the common service tem-
perature range of a conventional airliner. The data will be used as input in
the numerical thermo-mechanical model. In Chapter 4 the effect of tem-
perature on the Glare laminates is shown, which will be used for verifica-
tion of the model as well.

Chapter 5 describes the general numerical framework, which is used
to set up the numerical model and to perform the simulations. In the
geometrically and physically nonlinear finite element model the thermo-
mechanical behaviour is taken into account. In Chapter 6 the element de-
scription is specified. A solid-like shell element is used to cover the be-
haviour of fibre-metal laminates. The element can have a very high aspect
ratio, consist of more layers, and gives a 3D stress-state description. Thus,
it allows for the modelling of delamination through the use of interface
elements and for easy implementation of physical nonlinearities, such as
strain hardening and damage growth.

The topic of strain hardening is dealt with in Chapter 7, in which a Von
Mises model is used. Simulations of blunt notch tests are performed and
compared with experimental test results. In Chapter 8 the effect of fibre
and matrix damage of the glass-fibre epoxy is included in the numerical
model. An orthotropic damage model is described, which is derived from
a strain-based Hoffman model. The calibration of the model is done with
the experimental test results on glass-fibre epoxy described in Chapter 3.

In Chapter 9 the transient analysis is further detailed. Especially the
rate of heat transfer is discussed, while the dynamic mechanical response
is only briefly mentioned. Finally, in Chapter 10 conclusions are drawn on
the performed research and results.
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Chapter 2

Fibre Metal Laminates

The concept of combining metal and fibre layers into a so-called fibre
metal laminate is discussed in this chapter. A brief historical background
is given of the development of two specific laminates, Arall and Glare, at
the Delft University of Technology. The constituents and build-up of Glare
are described in Section 2.2 and the main characteristics in Section 2.3. The
characteristics include the high fatigue resistance and residual strength of
the material, which were the original objectives in the Glare development.

The different thermal and mechanical behaviour of the constituents
also raises new questions, especially in relation with temperature. The
difference in thermal expansion of aluminium and glass-fibre epoxy for
example leads to internal residual stresses after curing. What will as a
consequence of the internal stresses happen in a notched area in the struc-
ture when it is subjected to mechanical or thermal loadings?

By means of numerical simulations or experiments the behaviour of the
notched laminate can be investigated, see for example the experimental
blunt notch test set-up depicted in Figure 2.1. The effect of temperature on
the thermo-mechanical laminate properties will be discussed more elabo-
rately in Section 2.4. Experimental results describing the effect of tempera-
ture on the constituents and on Glare laminates will be given in Chapters 3
and 4 respectively.

2.1 The development of Arall and Glare

The history of the development of fibre metal laminates, in particular Arall
and Glare, has been well documented by (Vlot 2001a). A short overview
can also be found in (Vlot 2001b). The aircraft manufacturer De Havilland,
famous from the wooden fighter-bomber aircraft ’Mosquito’, was the first

7
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Figure 2.1: Experimental blunt notch test set-up. The specimen can be
subjected to a high temperature by means of a temperature chamber (not
depicted).

to use metal bonding. A suitable adhesive for metal bonding was dis-
covered in the early 1940’s by a British researcher named De Bruijne from
Cambridge University. At the same time glass fibres became available on a
large scale together with polyester resins that could be cured without high
pressure, see (van Tooren 1998). With the introduction of metal bonding
and the use of composites by Schliekelmann, who had worked as a trainee
at De Havilland in 1946, two major technologies incorporated in Glare be-
came in use at the Fokker company in the 1950’s.

Though metal bonding was introduced as an alternative for machin-
ing with less investment costs and as an improvement of the compression
properties, the laminated structure also appeared to have good fatigue
properties due to the crack bridging effect: The inner layers of a laminated
material were bridging the fatigue crack in the outer layer. This was an
important finding since by then fatigue had become a major issue in avi-
ation due to the Comet accidents, that took place only two years after the
introduction of the aircraft in 1952 (Figure 2.2). The cyclic loading of the
pressurised cabin caused fatigue crack initiation around rivet holes near
the windows and escape/equipment hatches, which led to rupture and
explosive decompression of the fuselage.

The damage tolerance of the laminates was even further improved by



2.1. THE DEVELOPMENT OF ARALL AND GLARE 9

Figure 2.2: On 2 May 1952, the world’s first commercial jet airline service
commenced with the departure from London’s Heathrow Airport by De
Havilland Comet G-ALYP.

adding fibres to the adhesive, which started in the late 1970’s. Moreover,
by using unidirectional fibres, the loads in the cracked metal layers were
transmitted to the fibres via the adhesive, thus unloading the metal layers
and slowing down the crack growth in these layers. This effect is called ’fi-
bre bridging’. Fatigue tests on Arall performed by (Marissen 1988) showed
the potential of fibre metal laminates as the crack growth rate could be re-
duced by a factor 10 to 100. Since the late 1970s aircraft were designed to
be damage tolerant and unstable crack growth, found in the two Comets,
was prevented by means of crack stoppers and fail-safe structures with
multiple load paths, frequent inspection and repair.

Due to the ageing of the aircraft fleet new fatigue problems arose how-
ever, which became apparent in an accident with a Boeing 737 of Aloha
Airlines in 1988. The presence of accumulated fatigue cracks at many riv-
ets, called multiple site damage, caused one-third of the upper fuselage to
be teared open, as shown in Figure 2.3. Fatigue again became an important
issue that stimulated the further development of Arall.

However, a disadvantage of the Arall material was the residual tensile
stress in the metal layers after curing due to the different coefficients of
thermal expansion. Moreover, the aramid fibre yielded a too low resid-
ual strength for a cross-ply laminate, absorbed moisture and was sensitive
to environmental degradation. The aramid fibres also behaved weakly un-
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Figure 2.3: Accident with a Boeing 737 of Aloha Airlines in 1988 due to
multiple site damage showing the importance of fatigue for ageing aircraft
and of proper inspection and maintenance.

der compression and would be damaged and break after closure of a crack
under loading conditions similar to that of a fuselage, which was discov-
ered by (Homan 1984). By post-stretching, the internal stress distribution
could be reversed to create compression in the aluminium and tension in
the fibres. The fibre breakage phenomenon was also not shown anymore
for the stretched Arall laminates. However, this meant extra costs in the
manufacturing process and it left part of the laminate as waste, since the
edges of the laminate needed to be clamped.

With the commercial introduction of Arall products, a new version of
the fibre metal laminate with glass fibres instead of aramid fibres was be-
ing developed in the late 1980s and early 1990s. The material became
known as Glare, the acronym for Glass reinforced aluminium. Carbon
fibres, which have an even higher stiffness to weight ratio than aramid
or glass fibres, were not considered due to their electrical conductivity
that could give rise to significant corrosion problems. Instead, (Vermeeren
1988) came up with a carbon-titanium laminate for high temperature ap-
plication in space structures. The pioneer in the Glare development was
(Roebroeks 1991), who changed his Ph.D. research from Arall to Glare.
The road towards the application of Glare in a primary aircraft structure
still had several years to go, since material and operational cost reduction
due to weight savings only was not enough. New production techniques,
such as the splicing concept meant a major breakthrough for Glare. It al-
lowed for larger panels, reduced the number of parts and thus reduced the
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manufacturing costs. In a paper by (Vogelesang, Schijve, and Fredell 1995)
newly discovered beneficial Glare features and properties, amongst which
the splicing concept and the impact and fire resistance, were published.

Characteristics Units Airbus A380 Boeing 747

Length [m] 73.0 70.7
Wingspan [m] 79.8 64.4
Height [m] 24.1 19.4
Cabinewidth [m] 6.6 6.1
Max. take-off weight [tons] 560 397
Max. fuel capacity [tons] 250 175
Max. engine thrust [kN] 311 282
No. of passengers 555 416
Maximum range [km] 15000 13450
Price [million $] 218 198

Table 2.1: Comparison between the characteristics of the Airbus A380 and
the Boeing 747.

In July 1997 a large project was started for basic Glare technology de-
velopment, subsidised with 34 million euros by the Dutch Ministry of Eco-
nomic Affairs. The project was initiated by Structural Laminates Indus-
tries (which later merged in the Fibre Metal Laminates centre of Compe-
tence) and had the faculty of Aerospace Engineering, the Dutch Aerospace
Laboratory (NLR) and Stork-Fokker as participants. The project, which
was first known as GTO (Glare Technologie Ontwikkeling) and later as
GRP (Glare Research Program) has run until January 2003 and during
this period the technology readiness of Glare was proven and accepted
for final application in the new Airbus A380 super jumbo, depicted in Fig-
ure 2.4. This aircraft fills the gap for the large-aircraft segment in the Air-
bus family and will give strong competition to the Boeing 747. Table 2.1
shows the characteristics of both aircraft. The leap forward of the Airbus
A380 in aircraft size and economics could only be made possible with the
introduction of new technologies such as Glare. A brief overview of im-
portant developments and test results for Glare from 1997 through 2000
was presented by (Gunnink, Vlot, de Vries, and van der Hoeven 2002). In
April 2001 the Fibre Metal Centre of Competence was founded to support
customers worldwide in the development, design and production of fibre
metal laminate applications.

Though the important issues regarding the behaviour and application
of Glare have been solved thanks to the extensive test programs, certainly
not all questions have been addressed. Especially in the field of the tem-
perature effect on the material properties a more thorough understanding
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Figure 2.4: The new Airbus A380 super jumbo, in which Glare will be ap-
plied on a large scale, before take-off from Le Bourget at the Paris Airshow.
Photograph by Hans Weerheim.

was still lacking. This will be further discussed in Section 2.4. First the
Glare constituents and build-up of the standard configurations and the
main characteristics of Glare will be discussed.

2.2 The constituents and build-up

Five different standard Glare configurations have been designed until now
with either aluminium 7475-T761 and FM906 epoxy, which are the newest
laminates designated as High Strength Glare, or aluminium 2024-T3 in
combination with FM94 epoxy. The specific fibre lay-up and each their
own beneficial characteristics, as shown in Table 2.2 given by (Roebroeks
2001). In between two aluminium alloy sheets two, three or four unidirec-
tional glass-fibre epoxy layers are laid-up in specified orientations.

A schematic picture of the laminate build-up and stacking sequence is
given in Figure 2.5. The unidirectional glass-fibre epoxy layer on their turn
consists of S2-glass-fibres, approximately 10 µm thick, embedded in FM94
epoxy adhesive resulting in a nominally 0.127 mm thick prepreg with a
fibre volume fraction of 59%. Although the epoxy adhesive is very weak
compared to the fibres it provides a very high bond-strength between fibre
and metal layers and between the individual fibres. These bond lines often
remain intact until cohesive adhesive failure occurs, (Roebroeks 2001).
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Figure 2.5: Typical laminate lay-up for Glare and stacking sequence in
case of an even and uneven number of fibre layers (with 0◦, ±45◦or
90◦unidirectional glass-fibre epoxy).

The initially developed configurations, Glare 1 and Glare 2, only have
fibres in one direction together with respectively aluminium 7075-T6, later
replaced by 7475-T761, and aluminium 2024-T3. Both configurations have
excellent fatigue properties and extremely high strength. This makes them
ideally suited for application in structural parts with mainly one load di-
rection, such as stringers and crack stoppers. The aluminium 7475-T761 in
Glare 1 improves the yield stress of the laminate. Nowadays, the Glare 1
laminate has been replaced by a whole new family of laminates with alu-
minium 7475-T761 in combination with FM906 epoxy (in stead of FM94
epoxy) and similar lay-ups as the original Glare 2 to 6. The 180◦C cur-
ing system of FM906 has an improved behaviour at elevated temperature
compared to the conventional 120◦C curing system of FM94 epoxy.

For fuselage applications in 1990 ’cross-plied’ variants were defined:
Glare 3 with 50% of the fibres in one direction and 50% in the transverse
direction and Glare 4 with twice as many fibre layers in one direction as in
the other direction. Glare 4 is especially suited for locations in the fuselage
where the load in the one direction is twice as high as in the other direc-
tion. Glare 3 on the other hand is designed for the crown panels of the
fuselage where this ratio is one-to-one, due to the combination of pressure
loads and the bending of the fuselage under its own weight. Two more
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material grades have been developed; Glare 5, which shows in particular
good, impact behaviour and has been applied in cargo floors. Glare 6 has
improved off-axis and shear properties and was designed for structural
parts with high shear loading.

Material Sub Metal layers Fibre layersa Main beneficial
grade Alloy type Thickness Orientationb Thickness characteristics

[mm] [◦] [mm]

Glare 2 A 2024-T3 0.2-0.5 0/0 0.254 fatigue, strength
B 2024-T3 0.2-0.5 90/90 0.254 fatigue, strength

Glare 3 - 2024-T3 0.2-0.5 0/90 0.254 fatigue, impact
Glare 4 A 2024-T3 0.2-0.5 0/90/0 0.381 fatigue, strength

in 0◦direction
B 2024-T3 0.2-0.5 90/0/90 0.381 fatigue, strength

in 0◦direction
Glare 5 - 2024-T3 0.2-0.5 0/90/90/0 0.508 impact
Glare 6 A 2024-T3 0.2-0.5 +45/-45 0.508 shear, off-axis

properties
B 2024-T3 0.2-0.5 -45/+45 0.508 shear, off-axis

properties
Glare HSc - 7475-T761 0.3-0.4 see 2-5 see 2-5 fatigue, strength,
(with FM906) yield stress
a The number of orientations and the thickness listed in this column are equal to

the number of UD glass-fibre epoxy prepregs (each nominally 0.127 mm thick)
and the total lay-up thickness in between two aluminium layers respectively.

b All aluminium rolling directions in standard laminates are in the same orien-
tation; the rolling direction is defined as 0◦, the transverse rolling direction is
defined as 90◦.

c High Strength (HS) Glare has similar standard fibre lay-ups for Glare 2 to 5,
though with aluminium 7475-T761 and FM906 epoxy instead of aluminium
2024-T3 and FM94 epoxy.

Table 2.2: Material composition and main beneficial characteristics of
Glare laminates. Source: (Roebroeks 2001).

For Glare 2, Glare 4, and Glare 6 two sub variants exists named A and B,
where the whole fibre lay-up has obtained a 90◦rotation. All standard lam-
inates are laid-up symmetrically and start with the orientation indicated
in Table 2.2 (and in the centre layer as well in case of uneven number of fi-
bre lay-up stacks). The designation of a specific Glare lay-up, for example
Glare 4B-4/3-0.4 consists of the grade (4), the sub variant (B), the number
of aluminium sheets (4) and fibre lay-up stacks (3), and the aluminium
sheet thickness (0.4) respectively.

The UD glass-fibre epoxy layers between two aluminium layers are
stacked symmetrically for Glare 2, Glare 4 and Glare 5. This is not the case
for Glare 3 and Glare 6 lay-up which therefore needs further definition.
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For Glare 3 the first UD glass-fibre epoxy layer, which is laid on the outer
aluminium layer, is placed in the aluminium rolling direction (0◦). In case
of a Glare 3 with an uneven amount of fibre layers, the first UD glass-
fibre epoxy layer laid-up in the centre section during production is in the
aluminium rolling direction (0◦). For Glare 6 the situation is comparable,
where in case of Glare 6A the 0◦direction in the definition of Glare 3 is
replaced by +45◦and for Glare 6B the 0◦direction is replaced by -45◦.

The thickness sheet metal in the Glare laminates can vary between 0.2
and 0.5 mm for aluminium 2024-T3, and between 0.3 and 0.4 for the alu-
minium 7475-T761. Different aluminium layer thicknesses can in practice
be combined in one laminate in order to change the metal volume fraction
and thereby adapting the properties.

Usually a skin panel is a unique product that consists of the baseline
skin and a number of doublers, wherein the orientation of the fibre layers,
the thicknesses, etcetera can be varied. Thus, special lay-ups can be build
for critical parts in the aircraft structure, that are highly and multi-axially
loaded, for example around cutouts. Static test performed at room and
elevated temperature on thick special-lay-up Glare are described in Chap-
ter 3. In the next section the advantages of Glare will be further discussed.

2.3 Characteristics of Glare

The development of Glare was initiated by the fact that the fatigue resis-
tance of bonded metal sheets could even be further improved by adding
unidirectional fibres as we saw in Section 2.1. Since glass-fibres are known
to be fatigue insensitive it could be asked why the aluminium is still needed.
There are several reasons. An important reason is that the aluminium in-
creases the (impact) damage tolerance, which has been an issue for com-
posites since the large-scale introduction in the 1970s. Further on the alu-
minium allows for easy material handling and construction. Glare mate-
rial can be milled, drilled, riveted, etcetera in a similar way as monolithic
aluminium. The glass fibre epoxy layers on their turn also increase the
residual strength of the laminate.

However, there are more advantages of Glare showing that the mate-
rial combines the ’best of both worlds’. The glass-fibre epoxy layer prevent
the occurrence of through-the-thickness corrosion, as shown in Figure 2.6.
Moreover, it was found that the thin aluminium 2024-T3 alloy sheet used
in Glare is significantly more corrosion-resistant compared to thicker sheet
often used in aircraft. The much faster quench of the thin sheet after rolling
results in less alloy elements at the crystal boundaries of the material, re-
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Figure 2.6: Corrosion in Glare is limited to the outer aluminium layer,
whereas in monolithic aluminium through-the-thickness corrosion is
reached eventually.

sulting in an improved corrosion behaviour, see (Roebroeks 2001).
Complementary to the corrosion protection of the glass-fibre epoxy,

the aluminium sheet offers protection of the glass-fibre epoxy layers for
degradation due to moisture and ultraviolet-radiation, which both can be
a serious threat to the laminate strength and stiffness. The sealant used
to prevent moisture penetration at rivet or bolt holes in a conventional
aluminium structure at the same time inhibits the moisture absorption in
Glare laminates.

Further on, the glass-fibre epoxy layers have a considerably lower weight
than monolithic aluminium, 1.96 versus 2.77 g/cm3, and can offer approx-
imately 10% material and 20-30% structural weight reduction even for
’cross-plied’ laminates. Since in aircraft design the selection of a material
is always a trade-off between many technical, financial and environmen-
tal issues, weight is not the only factor, though it is an important one. A
weight reduction of one kilogram in the structure means that less lift has
to be generated, which reduces the drag and fuel consumption, thus re-
ducing the weight further, etc. This so-called ’snowball effect’ therefore
has a large impact on the aircraft efficiency and operating costs.

The glass fibres show a favourable strain rate effect; when the strain in
the fibres is applied faster the strength and stiffness of the fibres increase.
This leads to a better impact resistance for Glare than monolithic alu-
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Figure 2.7: Glare leading edges as used in the Airbus A380 horizontal and
vertical tail plane. Courtesy Fibre Metal Laminates centre of Competence.

minium. For aramid fibres the strain rate effect is much less pronounced
and therefore the impact properties of Arall are less than for Glare. (Vlot
1991) showed that at low velocities Glare is as good as monolithic alu-
minium and superior to carbon fibre composites, while at higher speeds
Glare outperforms aluminium thanks to the strain rate effect and the in-
creased strain hardening caused by the fibres. For this reason, Glare is ap-
plied in the horizontal and vertical tail plane leading edges of the Airbus
A380, which besides the aerodynamic function must be able to withstand
bird impact (Figure 2.7). The numerical modelling and simulations of the
bird impact on the leading edge has been presented in a two-part paper;
(McCarthy, Xiao, Petrinic, Kamoulakos, and Melito 2004) and (McCarthy,
Xiao, McCarthy, Kamoulakos, Ramos, Gallard, and Melito 2004).

An important feature shown after impact is that the damage in Glare,
permanent deformation and denting of the aluminium layers, can be eas-
ily found by visual inspection. Delamination, matrix cracking or fibre
breakage was also found to be limited to the dented area, see impact over-
view given by (Hagenbeek 2001). In impact tests with ice-balls to simulate
hailstorm encounters during approach, see Figure 2.8, damage or delami-
nation was not even found at all (Hagenbeek 1999).

Composites on the other hand do not deform plastically and with barely
visible damage on the outside, the laminate can show large delaminations
and fibre/matrix damage at the inside. The Glare 5 variant has extra fi-
bre layers to optimise the impact properties and in 1990 this variant was
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Figure 2.8: No damage or delamination shows after etching away the outer
aluminium layer of a Glare 4B-4/3-0.5 specimen, impacted with a 5.7 cm
ice ball at a speed of 140m/s.

implemented in the Boeing 777 cargo floor.
In addition to the excellent impact properties it was also found that

Glare had good burn-through resistance. Boeing performed fire resistance
tests up to 1200 degrees Celsius, which showed that Glare prevented fire
from penetrating for more than fifteen minutes. In Figure 2.9 a picture of
the burn-through test set-up is shown. The outer aluminium layer quickly
melted, but the next layers were able to withstand the flame temperature.
While the adhesive carbonised and separated the layers, the insulation
was improved and the inside air temperature remained in the order of
only one hundred degrees Celsius, (Roebroeks 1997) and (Vlot 2001b). The
high value of the heat conduction coefficient for aluminium in this case is
favourable for the heat transfer to the surrounding structure. Both damage
and fire resistance were demonstrated in a blast-resistant cargo container,
shown in Figure 2.10, which was developed by Galaxy Aviation Security
and tested by the FAA in 1995. The container is able to withstand the
harmful effects of a blast and any flame resulting from the blast is fully
contained, (Evancho 2001).

In the early stage of the development Glare was perceived as a mate-
rial, which had to be transformed to the right shape by the same standard



2.3. CHARACTERISTICS OF GLARE 19

Figure 2.9: Burn-through test set-up to simulate an aircraft post-crash fire
condition.

manufacturing tools, such as rubber or stretch forming, as for monolithic
aluminium. However, this approach would not lead to success due to
the high material costs for Glare and formability limits of the material.
The splicing concept and self-forming technique were invented, which
allow for relatively easy manufacturing of large structural components.
In a splice two adjacent aluminium sheets are connected through unin-
terrupted fibre layers and optional internal or external doublers. Self-
forming means the use of open moulds to produce complete panels, i.e.
the skin with stringers and additional doublers, generally in two curing
cycles. Both concepts meant a competitive pricing for Glare, since panel
prices become comparable, and a break-through in the application of Glare.

This new manufacturing technique for Glare also opened up the way
to explore the tailoring of the structure even further. Extra doublers can
be added, for example at cutouts, to locally strengthen the structure in the
desired direction. Thus by changing the total lay-up, the laminate can be
tailored to obtain optimal advantage of the diverse properties. A thick
special-lay-up obtained with this approach is tested at room and elevated
temperature in Chapter 4. Methods to calculate the total stress-strain be-
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Figure 2.10: Glare blast-resistant cargo container. Courtesy Galaxy Avia-
tion Security.

haviour of the laminate must account for the anisotropy of the glass-fibre
epoxy layers and the aluminium plasticity, see also (Hagenbeek, van Hen-
gel, Bosker, and Vermeeren 2003).

The high material costs and the lower stiffness compared to aluminium
are drawbacks of Glare, which indicates that the material should be ap-
plied in fatigue sensitive tension loaded areas, for example in fuselage
structures, and manufactured in large-scale (semi-final) products as dis-
cussed previously. The possibility of laminate tailoring allows to improve
for example the shear properties at desired locations, however the analysis
tools also need to be more advanced. The use of different ingredients into
one laminate also raises new issues compared to monolithic aluminium,
such as the effect of moisture, local defects, or residual stresses after curing
due to differences in the thermal expansion coefficients. The temperature
related issues will be discussed in the next section.

2.4 The effect of temperature

In the search for optimal performance, aluminium and fibre-reinforced
epoxy are combined in Glare to obtain ’the best of both worlds’. However,
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both materials react very differently to temperature thus raising new ques-
tions that need to be addressed. The properties of the Glare constituents
can be found in Chapter 3, which presents aluminium 2024-T3 data and
the results of a thermal and mechanical test program on glass-fibre epoxy.

The difference in thermal expansion coefficients for aluminium and
glass-fibre epoxy causes residual stresses in the laminate after curing. At
120◦C the epoxy adhesive starts to solidify by building cross-links in the
material. When cooling down from the initial (assumed) stress-free tem-
perature at 120◦C , the aluminium sheets shrink more than the glass-fibres.
The contraction is prevented and leads to tension in the aluminium and
compression in the fibres. Calculations based on Classical Laminate The-
ory by (Hagenbeek, van Hengel, Bosker, and Vermeeren 2003) show that
for Glare 3-3/2-0.3 at room temperature the residual stresses in the alu-
minium are approximately 20 MPa in tension and 78 MPa in compression
for the 0◦glass-fibre layer, when loaded in the 0◦direction. In the 90◦glass-
fibre layer the residual stress is much smaller, around 5 MPa in tension. It
should be noticed also that the coefficients of thermal expansion are de-
pendent on the temperature as well, see Sections 3.2 and 3.4.

The glass-fibre epoxy has a much smaller thermal conductivity coeffi-
cient than aluminium and therefore acts as an isolator. The thermal con-
ductivity of Glare is dominated by the behaviour of the glass-fibre epoxy
and is very low as well. Temperature has a large influence on the thermal
conductivity of glass-fibre epoxy, though the conductivity remains only
a fraction of that of aluminium. The difference in specific heat for alu-
minium 2024-T3 and glass-fibre epoxy is not that large, 0.89 versus 0.91
J/g-◦C respectively at room temperature (see Sections 3.2 and 3.4). Both
materials show a clearly temperature-dependent behaviour of the specific
heat, which is described in more detail in Chapter 3. Besides the thermal
conductivity, the heat capacity is an important property for example if we
want to determine how quickly the aircraft skin heats up due to solar ra-
diation.

Thus far, the effect of temperature on the thermal properties and the
internal stress distribution has been indicated. The temperature also influ-
ences the rate of moisture ingress (Borgonje and van der Hoeven 2001) and
the fatigue properties (Alderliesten 2001). From a structural point of view
the effect of temperature on the mechanical properties is very important.
Due to the plasticising of the epoxy at elevated temperatures the strength
and stiffness can be largely reduced. In Chapters 3 and 4 test results in-
cluding the temperature effect will be discussed for the Glare constituents
and standard and special Glare laminates.
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2.5 Summary

The development of fibre metal laminates started with the idea to im-
prove the fatigue performance of bonded monolithic aluminium sheets by
adding fibres to the adhesive. With the replacement of the aramid fibres
with glass fibres the best of both the composite and metal world was fur-
ther explored and Glare laminates were born. Besides fatigue resistance,
the material offers higher residual strength, weight reduction, improved
impact and corrosion properties, and better fire resistance than monolithic
aluminium. With the splicing concept large structural panels can be made
at a cost-effective price. The lower yield stress and shear properties can be
improved by aluminium 7475-T761 and extra fibre layers under 45◦.

Though the important issues regarding the behaviour and application
of Glare have been solved thanks to an extensive test program, certainly
not all questions have been addressed. Due to the difference in thermal
expansion coefficient for aluminium and glass-fibre epoxy it is clear that
after curing residual stresses will be present in the laminate. However,
the thermal properties, such as the thermal expansion coefficient, thermal
conductivity and the heat capacity, are also dependent on the temperature.
The temperature affects the mechanical properties of Glare as well, due
to the plasticising of the epoxy at elevated temperatures. In Chapters 3
and 4 the effect of temperature on the Glare constituents, and standard
and special Glare laminates is determined and described in detail.



Chapter 3

The Glare constituents’ data

In the previous chapter the lay-up configuration and constituents of Glare
were already mentioned together with the main advantages of both the
aluminium and the glass-fibre epoxy as present in Glare. In this chapter
the thermal and mechanical behaviour of the Glare constituents will be
described in detail.

In the introduction the importance and background of a separate in-
vestigation on the constituents will be discussed in conjunction with the
physical phenomena we want to capture and the corresponding scale of
modelling. In the consecutive sections thermal and mechanical proper-
ties of the separate glass-fibre and epoxy matrix, the unidirectional (UD)
glass-fibre epoxy, the composite lay-up from UD glass-fibre epoxy, and the
aluminium 2024-T3 are given as obtained by testing or literature in case of
aluminium.

A bottom-up approach is followed, starting from the ingredients to-
wards the complete laminate, to gain insight in the accuracy of the mate-
rial data. The data will be used in the numerical thermo-mechanical model
described in this thesis. For verification of the model an overview of test
results on Glare laminates, including the effect of temperature, is given in
the next chapter.

3.1 Introduction

Glare consists of alternating layers of UD glass-fibre epoxy and thin alu-
minium sheets, as described in the previous chapter. The behaviour of
these two constituents is different, both mechanical and thermal. The UD
glass-fibre epoxy for example is a strongly orthotropic material with com-
plex damage mechanisms for the fibre and matrix, whereas aluminium is

23
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an isotropic material that shows plasticity. Though it should be mentioned
that due to the rolling process thin aluminium sheets obtain a different
behaviour in longitudinal (rolling) direction and transverse direction. Ex-
pansion, conduction, and heat capacity also show this orthotropy for the
UD glass-fibre epoxy and isotropy for aluminium. The different behaviour
of the Glare constituents requires a specific material model for UD glass-
fibre epoxy and for aluminium to capture the total laminate behaviour.

One could also follow an engineering approach and determine the be-
haviour of the whole Glare laminate for each property and configuration.
From this data the correlation between the property values of each config-
uration can then be established. An example of this approach is the Metal
Volume Fraction (MVF) method described by (Roebroeks 2000). Though
this method reduces the elaborate testing of laminate lay-ups, still many
tests on possible laminate lay-ups with inherently complex failure modes
(which are determined by both aluminium and the glass-fibre epoxy layers
in several orientations) remain necessary. Not yet to speak of the influence
temperature can have in all this. Thus, for studying the total laminate be-
haviour too many variables exist, which makes an accurate investigation
of the influence of one of the variables on the behaviour difficult.

For a numerical model to describe the behaviour of fibre metal lami-
nates, and more specifically Glare, accurate material property data is nec-
essary. As discussed above deriving the input data for the laminate as a
whole is not a good option. Since the constituents show a different ther-
mal and mechanical behaviour they each require their specific material
model and there are too many variables that influence the Glare laminate
behaviour. However, the scale of modelling, which depends on the phe-
nomena we want to capture, still needs to be determined. Important phys-
ical phenomena that influence the strength and stiffness of a Glare lami-
nate are the effect of plasticity in the aluminium, fibre and matrix damage,
delamination, and the effect of temperature on the material properties.

Creep could also play a role, though is expected to be limited. The
FM94 glass-fibre epoxy used in Glare was amongst others selected due
to the absence of creep effects in fibre direction in the temperature range
from -55 ◦C to 80 ◦C, as stated by the manufacturer in (Cytec Engineered
Materials 2000). The mentioned temperature range is the common service
temperature range of the conventional airliner and therefore also consid-
ered in the material description of this thesis.

The physical phenomena mentioned above all play an important role
on a length scale of 0.1 mm to 1.0 m, the mesoscopic scale, which is the in-
termediate level between the macroscopic (larger than 1.0 m) and the mi-
croscopic scale (less than 0.1 mm). At the macroscopic scale whole struc-
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Figure 3.1: The microscopic scale: a SEM picture of a UD glass-fibre epoxy
cross-section with voids. Magnification: 300x.

tures, such as for example aircraft fuselages are considered. Whereas at
the micro scale small (hair) cracks and fibres become visible such that for
example fibre volume fraction or void content can be determined, see Fig-
ure 3.1. The mesoscopic scale is the meeting ground of failure mechanisms
and structural effects and therefore is of special interest.

The fibre layers as present in Glare can be homogenised to form an
orthotropic or quasi-isotropic composite layer. However, it is more advan-
tageous to consider the elementary unidirectional ply. The properties of
all possible lay-ups can directly be determined from the elementary ply
properties, assuming the different plies interact but do not change each
other’s properties and all mechanisms are captured with this approach.

Tests on cross-ply lay-ups have been performed to check the prediction
methods for the lay-up, based on the elementary ply. The elementary ply
properties itself can be compared with property estimates from the fibre
and matrix separately. Thus a bottom-up approach is followed which sup-
plies the links between the different levels of homogenisation and clarifies
if the total laminate behaviour is the combination of all individual plies
(tested in isolation).
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3.2 The S2 glass-fibre and FM94 epoxy

In this section the properties of the separate S2 glass-fibre and the epoxy
are discussed and the UD glass-fibre epoxy ply properties at room tem-
perature are calculated. Despite the fact that both the S2 glass-fibre and
the FM94 epoxy are commonly used materials, it is hard to find accurate
and complete data. Specific FM94 epoxy data for the thermal and me-
chanical properties has not been found. The internal data information
sheet of (Structural Laminates Industries 1993b) mentions S2 glass-fibre
and AF163-2 epoxy. Most data comes from (Matweb 2004), which besides
S2 glass-fibre data gives general epoxy properties. In Table 3.1 below the
S2 glass-fibre and epoxy properties at room temperature are listed. The ef-
fect of temperature on the properties has not been found in the literature.

Property Unit S2 glass-fibre Epoxy UD laminate

E1 [GPa] 86.9 (88.0f) 3.9a (1.85f) 53.7 (54.0f)
E2 [GPa] 86.9 (88.0f) 3.9a (1.85f) 9.1 (9.4f)
ν12 [-] 0.23 (0.33f) 0.37b (0.33f) 0.29 (0.33f)
G12 [GPa] 35.3c (33.1f) 1.4c (0.695f) 3.4 (5.5f)
α1 [µm/m-◦C] 1.6 (5.2f) 100.0 (75.0f) 4.5 (6.1f)
α2, α3 [µm/m-◦C] 1.6 (5.2f) 100.0 (75.0f) 41.0 - 55.2d (26.2f)
cp [J/g-◦C] 0.737 1.0 0.84
k1 [W/m-◦C] 1.121e- 1.45 0.166e- 0.2 0.74e- 0.95
k2, k3 [W/m-◦C] 1.121e- 1.45 0.166e- 0.2 0.43e- 0.53
ρ [g/cm3] 2.46 1.2 1.96 (2.0f)
a Estimated stiffness value based on (Spies 1978) and (Shenoi and

Wellicome 1993).
b Poisson’s ratio is taken from (Shenoi and Wellicome 1993).
c Calculated value with G12 = E/2(1 + ν12).
d Calculation is based on the alternative rule of mixtures given by

(Hyer 1998).
e Constituents’ data is taken from (Graafmans 1995). The calcu-

lation for the UD laminate is based on this data and a rule of
mixtures given by (Behrens 1968).

f (Structural Laminates Industries 1993b) data and calculation
(1993a), based on Classical Laminate Theory found for example
in (Spies 1978), (Gürdal, Haftka, and Hajela 1998), (Jones 1999)
and (Hyer 1998) amongst others.

Table 3.1: Calculation of the glass-fibre epoxy properties from S2 glass-
fibre and epoxy data from literature and a fibre volume fraction of 60%. If
not stated otherwise the constituents’ data is taken from (Matweb 2004).

From the separate fibre and matrix properties the UD glass-fibre epoxy
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ply properties can be calculated assuming a fibre volume fraction of 60%.
This is a general value for prepregs and confirmed by (Hagenbeek 2004b)
in which SEM pictures, as shown in Figure 3.2, have been used for the FVF
determination. Different calculation methods, from a simple or alternative
rule-of-mixtures to a (Voigt 1889) or (Reuss 1929) bound derivation, have
been used to come up with realistic calculations. The details can be found
in (Hagenbeek 2004b), here we will only mention the results, which will
be compared with tested UD glass-fibre epoxy material in the next section.

Figure 3.2: SEM picture of a UD glass-fibre epoxy cross-section used for
the determination of the fibre volume fraction. Magnification: 300x.

From Table 3.1 it is clear that a concise calculation of the UD glass-fibre
epoxy material properties is difficult for several reasons. There is a large
variety in property data of the ingredients and specific data for FM94 does
not exist. Further on, different calculation methods can be used, which
is also a cause of variation in the outcome. The difference in the calcula-
tion by (Structural Laminates Industries 1993a) and (Hagenbeek 2004b) is
for example 62% for the shear modulus G12 and 53% for the thermal ex-
pansion coefficient in transverse direction (either α2 or α3), therefore the
calculated values do not provide a sound basis as input data for numeri-
cal models. Moreover, the test values are only given at room temperature,
and most properties are expected to be temperature dependent.
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3.3 The UD glass-fibre epoxy lamina

In the previous section the calculation of the UD glass-fibre epoxy prop-
erties showed that they do not provide a sound basis as input data for
(numerical) models and can only serve as an estimate. Moreover, the tem-
perature dependency of the properties cannot be derived, since the values
are only given at room temperature. Therefore it is necessary to perform
both thermal and mechanical tests on the UD glass-fibre epoxy lamina in
the temperature range from -55 ◦C to 80 ◦C, which is the common service
temperature range of the conventional airliner.

In the next section the experimental test set-up will be briefly discussed.
Details can be found in the test report written by (Hagenbeek 2004b).
An overview of the thermal and mechanical results will be given in Sec-
tions 3.3.2 and 3.3.3 respectively, together with a comparison with the
calculated properties from Chapter 2 and mechanical tests performed on
cross-ply laminates by (Out and Hagenbeek 2002), and (Hagenbeek 2004a).
In the mentioned references the shear modulus of the UD glass-fibre epoxy
lamina is determined from a tensile test with fibres under ±45◦.

3.3.1 Experimental test set-up

In the test report by (Hagenbeek 2004b) thermal and mechanical tests per-
formed on the elementary unidirectional FM94 glass-fibre epoxy ply are
described. Tensile, compression and shear tests have been performed in
fivefold at -55 ◦C, room temperature, and 80 ◦C. These temperatures all fall
in the temperature range from -55 ◦C to 80 ◦C, which is the common service
temperature range of the conventional airliner. Though, it should be men-
tioned that higher temperatures of the aircraft skin have been found on the
ground and (Tessmer, Waitz, Rolfes, Ackva, and de Vries 2003) included
convection at takeoff to reduce the determined material temperature.

In this temperature range the epoxy manufacturer (Cytec Engineered
Materials 2000), states that no creep effects are present in the FM94 glass-
fibre epoxy in fibre direction (similar to the aluminium). Though creep
might be present perpendicular to the fibre direction in the glass-fibre
epoxy, the effect is expected to be small in a Glare laminate and therefore
no creep tests have been performed. Additional tests have been performed
in transverse direction (LT) to determine the stiffness at intermediate tem-
peratures. In tension the additional tests are performed at 40, 50, 60, 65, 70,
75 and 80 ◦C, in compression at 60, 70 and 75 ◦C, and in shear at -55, -20,
0, 20, 40, 60, 65, 70, 75, 80 ◦C. In these cases only one specimen, in stead of
the standard 3 to 5 specimens, for each type of test is used. This specimen
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is loaded repeatedly to a low stress level to avoid that matrix damage will
influence the next test, at the above-mentioned temperatures.

The thermal tests include the determination of coefficients of thermal
expansion in both 0 (L) and 90 degrees direction (LT) and heat capacity
of the glass-fibre epoxy. The coefficients of thermal expansion are deter-
mined in the temperature range from -70 to 100 ◦C. The out-of-plane (ST)
thermal expansion coefficient α3 is equal to the in-plane transverse (LT)
coefficient α2 due to the transverse isotropy of the glass-fibre epoxy. The
temperature range for the determination of the heat capacity is from -55 to
180 ◦C. The heat conduction listed in this report is derived with equations
and data from literature and has not been tested. Qualitative analysis,
i.e. (micro) voids content and fibre volume fraction (FVF), on the material
is done by means of ultrasonic C-scan and Scanning Electron Microscope
imaging.

In Table 3.2 below the test matrix is given, which lists all performed
thermal and mechanical tests, corresponding test standards, and the num-
ber of specimen used for the specific tests. The panel consists of a unidi-
rectional (UD) FM94 glass-fibre epoxy lay-up with 16 layers, [0]16, and a
total nominal thickness of 2.0 mm (16 x 0.127 mm).

Test Test norm Number of specimens
0◦direction (L) 90◦direction (LT)

-55 ◦C RT 80 ◦C -55 ◦C RT 80 ◦C

Tensiona (ISO-527-5 1997)/ (ASTM-D3039 2000) 5 5 5 5 5 5
Compressionb (ISO-14126 1999) 5 5 5 5 5 5
Shearc (ASTM-D-5379 1999) 5 5 5 5 5 5
Expansion (ISO-11359-2 1999) 1 1
Heat capacity (ASTM-1269E 2001) 1
SEM 8
a Additional tests to determine the tension stiffness in transverse direction (LT) have

been performed at intermediate temperatures, viz.: 40, 50, 60, 65, 70, 75 and 80 ◦C.
b Additional tests to determine the compression stiffness in transverse direction (LT)

have been performed at intermediate temperatures, viz.: 60, 70 and 75 ◦C.
c Additional tests to determine the shear stiffness in transverse direction (LT) have

been performed at intermediate temperatures, viz.: -55, -20, 0, 20, 40, 60, 65, 70, 75,
80 ◦C.

Table 3.2: Test matrix for thermal and mechanical tests on UD glass-fibre
epoxy.
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3.3.2 Mechanical properties of UD glass-fibre epoxy.

The mechanical test results for UD glass-fibre epoxy are listed in this sec-
tion. From the measured stress-strain curves in tension, compression, and
shear, several material properties can be derived: the Young’s or shear
modulus and the Poisson’s ratios in fibre and (longitudinal) transverse di-
rection, the ultimate strength and strain (in case of a correct failure mech-
anism in the test). An overview of the results is given here, details can
be found in the test report, see (Hagenbeek 2004b). In Table 3.3 the me-
chanical glass-fibre epoxy properties at room temperature are shown and
compared with the calculated values based on the constituents’ data and
a fibre volume fraction of 60%, see Section 3.2. The value for the shear
modulus of 3.7 GPa is equal to the mean test value found by (Out and Ha-
genbeek 2002). The correspondence with the mean value of 3.6 GPa for
the UD glass-fibre epoxy lamina determined in the report on the compos-
ite lay-up properties, see (Hagenbeek 2004a), is also very good.

Property Unit Test Calculation Difference [%]

E1 (Ec1) [GPa] 50.6 (49.9) 53.7 5.8
E2 (Ec2) [GPa] 9.9 (10.8) 9.1 -8.8
ν12 (νc12) [-] 0.32 (0.30) 0.29 -10.3
ν21 (νc21) [-] 0.063 (0.067) 0.05 -28.2
G12 (Gc12) [GPa] 3.7 3.4 -8.8
εu1 [%] 2.5 (4.5) a

εu2 [%] 0.5
a The experimental value is extrapolated to 4.5% strain for

use in the numerical model.

Table 3.3: Tested and calculated (see Section 3.2) mechanical UD glass-fibre
epoxy properties at room temperature.

In Figure 3.3 the extrapolated uniaxial tension/compression stress-strain
curves for UD glass-fibre epoxy in fibre direction are given at the three test
temperatures: -55, 22 (room temperature), and 80 ◦C. The extrapolation is
performed since the tests do not give and ultimate strain value in this di-
rection. It is assumed that the ultimate tensile strain is 4.5%, which is a
general value from Glare tension test results with correct failure mode. In
the tests the ultimate strain is not reached and the specimens fail at the
clamping, which is an undesired failure mode. The use of tabs might im-
prove the failure strain, however a correct failure mode is often hard to
obtain in composite testing. In compression the same ultimate strain of
4.5% as in tension is assumed, though this value is rather arbitrary since
in both the current testing and in Glare testing an undesired (though ex-
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Figure 3.3: Extrapolated uniaxial stress-strain curves for UD glass-fibre
epoxy in fibre direction (L) at -55, 22 (room temperature), and 80 ◦C.

pected) failure mode is found, that is buckling or failure at the edge of the
open section in the test fixture.

In Figure 3.4 the experimental uniaxial tension/compression stress-
strain curves for UD glass-fibre epoxy in transverse direction (LT) are given
at the three test temperatures: -55, 22 (room temperature), and 80 ◦C. In
this case the given failure strains are indeed ultimate strains, since a cor-
rect failure mode was found in the tests. From this figure it is clear that
there is a significant drop in tension stiffness at 80 ◦C. The epoxy matrix is
very sensitive for high temperature.

The experimental in-plane shear stress-strain curves for UD glass-fibre
epoxy at -55, 22 (room temperature), and 80 ◦C are found in Figure 3.5. The
curves are derived from the (Iosipescu) test specimens with the applied
loading in fibre direction (L), which show an earlier failure than the spec-
imens loaded transverse to the fibre direction (LT), namely; 4.3% versus a
(by the test norm limited) value of 5.0% at room temperature respectively,
see (Hagenbeek 2004b). The difference in failure strain can be explained
by the axial loading of the fibres in this direction after undesirable bend-
ing in the test fixture. Like the tension stiffness, the shear stiffness has a
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Figure 3.4: Uniaxial stress-strain curves for UD glass-fibre epoxy in trans-
verse direction (LT) at -55, 22 (room temperature), and 80 ◦C.

significant drop at 80 ◦C, which is predominately due to the sensitivity of
the epoxy matrix for high temperature.

The effect of temperature on the tangent tension, compression and shear
stiffness of the UD glass-fibre epoxy is summarised in Figure 3.6 for the
fibre direction (L) and Figure 3.7 for the transverse direction (LT). The ad-
ditional tests for the stiffness determination at intermediate temperatures
have been used to obtain the behaviour in the whole temperature range
of -55 to 80 ◦C. The shear stiffness in both figures is determined from the
tests with the applied loading in fibre direction.

The (Military Handbook 2002) states that composite laminates should
not be used in a temperature range, where the properties do not increase
or decrease rapidly and where the glass-transition point is above the max-
imum operating temperature. Both conditions are not met for the FM94
epoxy as can be seen in Figures 3.7 and 3.9. Though, the overall effect on
a Glare laminate is small (see Chapter 4), the use of an epoxy with higher
glass-transition point, such as FM906, is sensible.
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Figure 3.5: Shear stress-strain curves for UD glass-fibre epoxy with ap-
plied loading in fibre direction (L) at -55, 22 (RT), and 80 ◦C.
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Figure 3.6: Effect of temperature on the tangent tension, compression and
shear stiffness in fibre direction (L) of the UD glass-fibre epoxy.
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Figure 3.7: Effect of temperature on the tangent tension, compression and
shear stiffness in transverse direction (LT) of the UD glass-fibre epoxy.
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3.3.3 Thermal properties of UD glass-fibre epoxy

The results of the thermal expansion coefficients and the heat capacity tests
for UD glass-fibre epoxy at room temperature are given in Table 3.4. The
conductivity coefficients for UD glass-fibre epoxy, derived from literature
test result for Glare and aluminium ,see (Hagenbeek 2004b), are listed in
this table as well. The test results are compared with the calculation of
the glass-fibre epoxy properties from S2 glass-fibre and epoxy data from
literature and a fibre volume fraction of 60%, as described in Section 3.2.

Property Unit Test Calculation Difference [%]

α1 [µm/m-◦C] 3.9 4.5 15.4
α2 [µm/m-◦C] 49.7 41.0 - 55.2 -17.5 / 11.1
cp [J/g-◦C] 0.91 0.84 -7.7
k1 [W/m-◦C] 0.929a 0.74 - 0.95 -20.3 / 2.3
k2, k3 [W/m-◦C] 0.544a 0.43 - 0.53 -21.0 / -2.6
a The data is derived from test data for Glare and alu-

minium.

Table 3.4: Tested and calculated (see Section 3.2) thermal UD glass-fibre
epoxy properties at room temperature . If not stated otherwise the con-
stituents’ data is taken from (Matweb 2004).

In Figure 3.8 the thermal expansion coefficients are given in the tem-
perature range from -75 to 105 ◦C. From the figure it is clear that the co-
efficient in fibre direction (L) decreases above room temperature. At 105
◦C the value is only 3.9 % of the value at 22 ◦C, whereas the coefficient in
transverse direction (LT) shows a significant increase of more than twice
the value at room temperature (219 % increase).

The specific heat also shows a clear temperature dependency, as shown
in Figure 3.9. Apart from the steady increase with temperature, around 67
◦C a peak is found. The region around this peak, from 45 to 80 ◦C indicates
the glass-rubber transition region of the epoxy matrix. In this region also
a significant change in expansion coefficient is found as described above
and shown in Figure 3.8.

The out-of-plane (ST) thermal conductivity has been derived from Glare
3-3/2-0.2 and aluminium 2024-T3 literature test data. Based on this data a
linear out-of-plane (ST) thermal conductivity behaviour is assumed in the
temperature range of -100 to 100 ◦C for both the Glare and the aluminium,
see (Hagenbeek 2004b). This yields a linear behaviour for the UD glass-
fibre epoxy, shown in Figure 3.10. The in-plane transverse (LT) thermal
conductivity for UD glass-fibre epoxy is taken the same as the out-of-plane
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Figure 3.8: The thermal expansion coefficients of UD glass-fibre epoxy in
fibre (L) and transverse direction (LT) as a function of temperature.

(ST) thermal conductivity, since the material is transversely isotropic. In fi-
bre direction (L) a similar linear relationship between the temperature and
the thermal conductivity is assumed and adapted to a calculated value at
room temperature, since test data in this direction is not available for UD
glass-fibre epoxy. Other approaches and formulae for the calculation of
the transverse conductivity are possible and discussed and validated by
(Rolfes and Hammerschmidt 1995).

The thermal conductivity in fibre direction is 71% larger than in trans-
verse direction, though still just 0.7% of the aluminium 2024-T3 value in
the temperature range of -100 to 100 ◦C. The UD glass-fibre epoxy behaves
as an isolator in comparison with the aluminium and will dominate the
behaviour of Glare, see test report by (Hagenbeek 2004b).
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Figure 3.9: The specific heat of UD glass-fibre epoxy as a function of tem-
perature.
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Figure 3.10: The thermal conductivity coefficients in fibre (L) and trans-
verse dir. (LT, ST) of UD glass-fibre epoxy as a function of temperature.
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3.4 Composite lay-up properties

From the properties for the UD glass-fibre epoxy the properties of a spe-
cific composite laminate lay-up can be calculated by summing up over the
thickness. This approach is followed in the Classical Laminate Theory and
in this section it will be shown that this indeed gives a good agreement
with test results for [0/90]4s, [0/90/0]3s, and [0/90/±45]2s composite lam-
inate lay-up configurations. The tests have been performed for tension
and shear at both room temperature and 80 ◦C. The results can be found
in detail in the test report on the composite lay-up properties, see (Hagen-
beek 2004a). Here we will give an overview of the most important results.
In Figures 3.11 through 3.13, and 3.14 through 3.16 a comparison between
the tested and calculated tension and shear stiffness respectively is de-
picted for the [0/90]4s, [0/90/0]3s, and [0/90/±45]2s composite laminate
lay-ups.
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Figure 3.11: Comparison of tested and calculated tangent tension stiffness
for the [0/90]4s composite laminate lay-up.

The maximum difference between theory and test for the tensile tests
is 9.1%, in general the difference is however much smaller, see (Hagen-
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Figure 3.12: Comparison of tested and calculated tangent tension stiffness
for the [0/90/0]3s composite laminate lay-up.

beek 2004a) for the exact numbers. The difference can be largely influ-
enced by the scatter in the results, which reaches up to ±7% from the mean
value. For the shear tests maximum difference is larger than for the ten-
sion tests and reaches up to 19.7%, in general the difference is however
much smaller, see (Hagenbeek 2004a) for the exact numbers. Also in this
case the difference can be largely influenced by the scatter in the results,
which reaches up to ±13.8% from the mean value.
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Figure 3.13: Comparison of tested and calculated tangent tension stiffness
for the [0/90/±45]2s composite laminate lay-up.
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Figure 3.14: Comparison of tested and calculated tangent shear stiffness
for the [0/90]4s composite laminate lay-up.
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Figure 3.15: Comparison of tested and calculated tangent shear stiffness
for the [0/90/0]3s composite laminate lay-up.
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Figure 3.16: Comparison of tested and calculated tangent shear stiffness
for the [0/90/±45]2s composite laminate lay-up.
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3.5 The aluminium 2024-T3 sheet material

Thermal and mechanical temperature properties of aluminium 2024-T3
sheet material are available to a large extent at room temperature in the lit-
erature, see for example (Aluminum Association 1982) and (Hatch 1983).
The effect of temperature on the properties is much more limited, but the
(Military Handbook 1998) presents a very extensive research.

3.5.1 Mechanical properties of aluminium 2024-T3

An overview of the mechanical properties of aluminium 2024-T3 sheet ma-
terial, with thickness between 0.254 and 0.508 mm, at room temperature is
given below in Table 3.5.

Property Unit Value

E [GPa] 72.4
Ec [GPa] 73.8
ν12 [-] 0.33
G12 [GPa] 27.2

Table 3.5: Mechanical properties of aluminium 2024-T3 sheet material at
room temperature (Military Handbook 1998).

The aluminium stress-strain curve in longitudinal or aluminium rolling
direction is different from the (longitudinal) transverse direction, as shown
in Figure 3.17. Up to 1% strain this curve is obtained directly from the
(Military Handbook 1998), beyond 1% the curve is obtained by shifting
the curve for cladded aluminium upward. The clad layer gives the sheet a
better corrosion protection and in combination with an anodising process
a suitable surface for a paint or adhesive. This cladding is not expected
to change the overall stress-strain curve, though the strength of the sheet
slightly decreases.

The difference in longitudinal (rolling) direction and the (longitudinal)
transverse direction is due to the rolling process of the aluminium sheet
and gives a distinct difference in the yield value in the two directions. This
effect is however not taken into account in the model, which is shown in
Figure 3.17 as well. The model is based on the average of the two direc-
tions and can be described by an exponential power law. In compression
the same strain hardening behaviour is assumed.

The directionality of the aluminium is less significant when compared
with the enormous scatter in stress-strain curves of different sources. This
is evident from Figure 3.18 where a variety of stress-strain curves from
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other sources are given; (Military Handbook 1998), (van der Hoeven and
Nijhuis 2004), and (Schipperen 2001a). The major sources of this scatter in
the test results is expected to be caused by differences in material speci-
fication and in the manufacturing process between companies, this is in-
dicated by the test curves of (Schipperen 2001a) for both Hoogovens and
Alcoa aluminium.

In Figure 3.19 the effect of the temperature on the tangent stiffness in
tension, compression, and shear is given for aluminium 2024-T3. In this
figure a gradual decrease in stiffness with temperature can be found for
the given loadings.
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Figure 3.17: The aluminium 2024-T3 stress-strain curve based on (Military
Handbook 1998) in longitudinal (L) and transverse direction (LT).
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Figure 3.18: Stress-strain curves for aluminium 2024-T3 in transverse di-
rection (LT) from several sources, viz.; (Military Handbook 1998), (van der
Hoeven and Nijhuis 2004), and (Schipperen 2001a).
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Figure 3.19: Effect of temperature on the aluminium 2024-T3 tangent ten-
sion, compression, and shear stiffness.
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3.5.2 Thermal properties of aluminium 2024-T3

In Table 3.6 the thermal properties for aluminium 2024-T3 at room temper-
ature are listed. The values are taken from the (Military Handbook 1998).

Property Unit Value

α [µm/m-◦C] 22.4
cp [J/g-◦C] 0.89
k [W/m-◦C] 122.2
ρ [g/cm3] 2.77

Table 3.6: Thermal properties and density of aluminium 2024-T3 at room
temperature.

In Figures 3.20, 3.21, and 3.22 the thermal expansion coefficient, the
specific heat, and thermal conductivity as a function of temperature are
given. The curves are based on the data from the (Military Handbook
1998).
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Figure 3.20: The thermal expansion coefficient of aluminium 2024-T3 as a
function of temperature.
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Figure 3.21: The specific heat of aluminium 2024-T3 as a function of tem-
perature.
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Figure 3.22: The thermal conductivity of aluminium 2024-T3 as a function
of temperature.
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3.6 Summary

Starting from the S2-glass-fibre and the epoxy data available in the liter-
ature the thermal and mechanical properties of UD glass-fibre epoxy at
room temperature can be calculated. Test results for the UD glass-fibre
epoxy showed that these calculations give a rough estimate, since the
available ingredient data for literature is not always consistent, but also
different calculation methods can be used. The temperature-dependent
thermal and mechanical behaviour of UD glass-fibre epoxy has been de-
rived from tests. With the test results at room temperature and 80 ◦C, cal-
culations have been performed with the Classical Laminate Theory on the
tension and shear stiffness of three different composite laminate lay-ups:
[0/90]4s, [0/90/0]3s, and [0/90/±45]2s. These calculations on their turn
showed a good agreement with tension and shear tests on the previously
mentioned composite laminate lay-ups. Finally, an overview was given of
the thermal and mechanical properties of aluminium 2024-T3 as obtained
from literature.
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Chapter 4

Experimental tests on Glare

In Chapter 3 an overview of the constituents’ data of Glare has been given.
This data serves as input for the numerical model described in the chap-
ters hereafter. The sensitivity of the epoxy to high temperatures, the strong
directionality of the fibre (and to a minor extent the aluminium) layers,
and the (in general multi-axial) loading condition all play a role in the be-
haviour of the laminate. The given test results on standard Glare laminates
from the literature only show the effect of temperature in fibre direction
and give only limited insight in the laminate behaviour.

Therefore, the results of a large experimental test program on the static
strength of thick special-lay-up Glare laminates are described as well. In
these tests both the effect of the off-axis angle and the temperature is inves-
tigated. The test results give insight in the behaviour of the special-lay-up
Glare laminates and will be used for verification of the numerical model.

4.1 Introduction

Tests have been performed for 0◦on-axis, and 45◦, 67.5◦, and 90◦off-axis
angles at room temperature and 80 ◦C. From the total test program on 16.6
mm and 9.1 mm thick special-lay-up Glare laminates, given in (Hagenbeek
2002a) and (Hagenbeek 2002b) respectively, only the results of the latter
are given here.

Both laminate lay-ups are asymmetrically built up from a Glare 3 base-
line, with Glare 6 and Glare 2 (under 45◦off-axis angle) lay-up configura-
tions as doublers at one side (see Chapter 2). The configurations are used
around door and window cut-outs in order to improve the strength and
stiffness locally. In total seven glass-fibre epoxy layers in 0◦and 90◦direction,
eight in 45◦and two in -45◦direction are present in the 9.1 mm thick lami-

49
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nate, together with fifteen aluminium layers of 0.4 mm or 0.3 mm thickness
(in case of two layers).

Off-axis testing on several alternative, i.e. quasi-isotropic and fanned,
laminates for Glare3 were performed by (Dop 2002). With calculations he
showed that the maximum difference between the real and apparent stiff-
ness was less than 0.5%, due to the fact that the two main direction had a
stiffness with the same order of magnitude. Further more, no serious edge
delaminations were found after testing, which indicated that the standard
narrow dog bone configuration of the tensile test specimen could be used.
Therefore, the standard tensile test specimen configuration has been used
as well in the off-axis tensile tests presented in this thesis.

Further details on the exact lay-up and the test set-up can be found
in the test report by (Hagenbeek 2002b). Only the tension, compression,
blunt notch, and shear test results are listed here, and not the compression
filled hole and bearing test results. In Figure 4.1 some of the compression
test results are shown as an example.

Figure 4.1: Side view of compression test specimens for the 9.1 mm thick
special-lay-up Glare tested at 67.5◦off-axis angle (left four) and 0◦on-axis
angle (right four) at room temperature.

The slight curvature due to the asymmetric lay-up of the specimens af-
ter curing causes secondary bending . The difference in measured strain at
the front and back of the specimen is however small (in the order of 0.2%
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strain for compression, and less for tension and blunt notch) and an aver-
age value has been determined. The scatter in the results is very limited,
the standard deviation is in most cases less than 2% of the mean value.
For the exact values the reader is referred to the test report, see (Hagen-
beek 2002b).

Besides the testing on thick special-lay-up Glare laminates, a large num-
ber of tests on Glare laminates have been performed in the literature. An
overview of all the test performed on Glare before June 2000 is given by
(Ypma 2000). For the tension, compression, blunt notch and shear test re-
sults the overview of the temperature effect for these laminates is given
here.

4.2 Test results including temperature and off-
axis effect

4.2.1 Tension tests on special and standard Glare

In table 4.1 the tension properties of the 9.1 mm thick special-lay-up Glare
are given. From the results in this table it can be seen that the 45◦off-axis
direction is the strongest test direction and the 67.5◦off-axis direction is
the least strong (and stiff) direction, as expected. However, at 80 ◦C the
difference in strength between the 45◦off-axis direction and the 0◦on-axis
and 90◦off-axis direction becomes less pronounced, and the stiffness in the
latter directions is even better.

φ θ E σy σu E/E RT σy/σy RT σu/σu RT ν12 ν21 ν13

[◦] [◦C] [GPa] [MPa] [MPa] [%] [%] [%] [-] [-] [-]

0 RT 55.3 277.2 525.0 100.0 100.0 100.0 0.27 0.37 0.33
0 80 52.6 265.9 468.4 95.1 95.9 89.2 - - -
45 RT 55.2 251.4 547.4 100.0 100.0 100.0 0.39 0.34 0.32
45 80 50.8 245.4 470.9 92.0 97.6 86.0 - - -
67.5 RT 53.9 238.8 416.4 100.0 100.0 100.0 0.33 0.30 0.37
67.5 80 48.9 225.0 345.8 90.7 94.2 83.0 - - -
90 RT 55.5 252.5 515.0 100.0 100.0 100.0 0.27 0.36 0.32
90 80 52.9 241.4 446.2 95.2 95.6 86.7 - - -

Table 4.1: The effect of temperature and off-axis angle on the tension prop-
erties of 9.1 mm thick special-lay-up Glare, as given by (Hagenbeek 2002b).

The yield and ultimate strength are minimal in 67.5◦off-axis direction,
239 MPa and 416 MPa respectively, which is due to the absence of fibres
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in loading direction and a lower aluminium yield value in this direction.
For aluminium 2024-T3 the yield value in rolling direction (0◦direction)
is largest and in transverse direction (90◦direction) smallest. An ultimate
strength reduction of 24% is found in the (least stiff) 67.5◦off-axis direction
with respect to the (stiffest) 45◦off-axis direction at room temperature.
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Figure 4.2: The effect of temperature and off-axis angle on the tensile stiff-
ness, yield and ultimate strength of 9.1 mm thick special-lay-up Glare with
respect to the 0◦direction at room temperature, see (Hagenbeek 2002b).

The Young’s modulus and tangent modulus (in the plastic region) de-
crease at elevated temperature, and the yield and ultimate strength de-
creases likewise. In 67.5◦off-axis direction the decrease in yield and ulti-
mate strength due to temperature is largest, 6 and 17%, and the values at
elevated temperature are 225 MPa and 346 MPa respectively. Thus on top
of the above mentioned ultimate strength reduction of 24% due to off-axis
loading (with respect to the 45◦off-axis direction), a reduction of 17% due
to the 80 ◦C temperature is found in 67.5◦off-axis direction. In Figure 4.2
the effect of the temperature and the off-axis angle on the tensile stiffness,
yield and ultimate strength is shown. The values of these quantities are
given as a percentage of the values in 0◦direction at room temperature.

In Table 4.2 the test data from (Ypma 2000) for three different Glare
3 lay-up configurations is given. The tensile stiffness shows an increase
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of at most 3% at -55 ◦C, and a decrease of 4% at 70/80 ◦C with respect
to the room temperature values. The tensile yield and ultimate strength
respectively increase with at most 4 and 11% at -55 ◦C, and decrease with
at most 5 and 12% at 70/80 ◦C. In Figure 4.3 the effect of temperature on
the tensile stiffness of the standard Glare laminates is shown. The values
are given with respect to the value at room temperature.

From the tension test results on the special-lay-up and standard Glare
it can be seen that the strength and stiffness reduction due to temperature
and/or off-axis angle can be significant. The design of the lay-up config-
uration for the structure should therefore adequately match the expected
loading conditions, since the strength and stiffness reduction is much less
pronounced when loaded in fibre direction.

φ θ E σy σu E/E RT σy/σy RT σu/σu RT Note
[◦] [◦C] [GPa] [MPa] [MPa] [%] [%] [%]

Glare 3 3/2 0.3
L RT - - 689.0 - - - a,b

LT RT - - 673.0 - - - a,b

L -55 55.5 275.0 - 104.7 103.8 - c

L RT 53.0 265.0 - 100.0 100.0 - c

L 70 47.0 252.0 - 88.7 95.1 - c

Glare 3 3/2 0.4
L RT 58.7 305.9 647.3 - - - d

LT RT 58.8 280.2 640.1 100.0 100.0 100.0 d

LT 80 56.1 278.5 581.2 95.4 99.4 90.8 d

Glare 3 5/4 0.4
L -55 58.9 311.5 751.6 102.7 100.7 110.6 e

L RT 57.3 309.3 679.8 100.0 100.0 100.0 e

L 70 55.5 305.0 609.8 96.7 98.6 89.7 e

LT -55 58.4 267.9 729.0 100.6 101.8 110.5 e

LT RT 58.0 263.1 659.6 100.0 100.0 100.0 e

LT 70 56.0 260.8 583.0 96.5 99.1 88.4 e

a (Roebroeks 1996).
b (Boertien 1996).
c (Horst 1995).
d (van der Hoeven and Schra 1999).
e (van der Hoeven and Schra 2000).

Table 4.2: The effect of temperature on the tension properties of standard
Glare laminates, see (Ypma 2000).
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Figure 4.3: The effect of temperature on the tensile stiffness of standard
Glare laminates with respect to the value at room temperature.
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4.2.2 Compression tests on special and standard Glare

In Table 4.3 the compression properties of the 9.1 mm thick special-lay-
up Glare are given. From the results in this table it can be seen that the
90◦off-axis direction is the stiffest and the 67.5◦off-axis direction is the less
stiff test direction. The stiffness in 45◦off-axis direction is lower than ex-
pected (it should still be the stiffest direction), though the yield and failure
strength still have the largest values in this direction, 282 MPa and 375
MPa respectively.

The yield and failure strength are minimal in 67.5◦off-axis direction,
264 MPa and 338 MPa respectively, which is due to the absence of fi-
bres and the lower aluminium yield value in this direction. The yield
value in rolling direction (0◦direction) is larger than in transverse direc-
tion (90◦off-axis direction). The yield and failure strength reduction (in
the (least strong) 67.5◦off-axis direction) is respectively 6% and 10% of the
(strongest) 45◦off-axis direction at room temperature. In Figure 4.4 the

φ θ E σy σf ν12 ν21 ν13

[◦] [◦C] [GPa] [MPa] [MPa] [-] [-] [-]

0 RT 53.6 274.6 367.9 0.28 0.37 0.31
45 RT 54.2 281.5 374.7 0.32 0.37 0.26
67.5 RT 52.1 264.2 337.5 0.32 0.31 0.30
90 RT 54.6 281.5 362.6 0.28 0.37 0.28

Table 4.3: The effect of the off-axis angle on the compression properties of
9.1 mm thick special-lay-up Glare as given by (Hagenbeek 2002b).

effect of the off-axis angle on the compression stiffness, yield and fail-
ure strength is shown for the 9.1 mm thick laminate with respect to the
0◦direction. The effect of temperature has not been tested.

In Table 4.4 the overview is shown of compression tests for standard
Glare laminates at elevated temperature, as given by (Ypma 2000). The
compression stiffness and yield strength respectively increase with at most
4 and 9% at -55 ◦C, and decrease with at most 4 and 5% at 70/80 ◦C with
respect to the room temperature values. In Figure 4.5 the effect of tempera-
ture on the compression stiffness of the standard Glare laminates is shown.
The values are given with respect to the value at room temperature.

The compression test results on the special-lay-up and standard Glare
show similar trends for the strength and stiffness reduction due to off-axis
angle and also temperature, for standard Glare, as the tensile tests in Sec-
tion 4.2.1. Thus also in compression the design of the lay-up configuration
for the structure is important to avoid strength and stiffness reductions.
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Figure 4.4: The effect of off-axis angle on the compression stiffness, yield
and failure strength of 9.1 mm thick special-lay-up Glare with respect to
the 0◦direction, as given by (Hagenbeek 2002b).

φ θ E σy E/E RT σy/σy RT Note
[◦] [◦C] [GPa] [MPa] [%] [%]

Glare 3 3/2 0.4
L RT 60.7 308.3 - - a

LT RT 60.8 319.9 100.0 100.0 a

LT 80 58.3 303.2 95.9 94.8 a

Glare 3 5/4 0.4
L -55 61.5 318.6 103.7 108.7 b

L RT 59.3 293.1 100.0 100.0 b

L 70 58.9 285.6 99.2 97.4 b

LT -55 60.6 319.7 103.0 104.7 b

LT RT 58.9 305.4 100.0 100.0 b

LT 70 57.4 289.2 97.5 94.7 b

a (van der Hoeven and Schra 1999).
b (van der Hoeven and Schra 2000).

Table 4.4: The effect of temperature on the compression properties of stan-
dard Glare laminates, see (Ypma 2000).
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Figure 4.5: The effect of temperature on the compression stiffness of stan-
dard Glare laminates with respect to the value at room temperature.
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4.2.3 Blunt notch tests on special and standard Glare

The blunt notch properties of the 9.1 mm thick special-lay-up Glare are
given in Table 4.5 . The test results in this table show that the 45◦off-axis
direction is the stiffest and strongest and the 67.5◦off-axis direction is the
least stiff and strong test direction, as expected. The yield and blunt notch
strength are minimal in 67.5◦off-axis direction, 234 MPa and 361 MPa (net,
285 MPa gross) respectively, which is due to the absence of fibres and the
lower aluminium yield value in this direction as explained previously for
tension and compression. The yield and blunt notch strength reduction in
the (least strong) 67.5◦off-axis direction is respectively 5% and 17% of the
(strongest) 45◦off-axis direction at room temperature.

φ θ E σy σgross σnet E/E RT σy/σy RT σgross/σgross RT ν12 ν21 ν13

[◦] [◦C] [GPa] [MPa] [MPa] [MPa] [%] [%] [%] [-] [-] [-]

0 RT 55.0 275.5 323.2 410.0 100.0 100.0 100.0 0.25 0.36 0.32
0 80 49.2 252.0 308.1 390.8 89.5 91.5 95.3 - - -
45 RT 55.8 247.3 342.4 434.3 100.0 100.0 100.0 0.39 0.29 0.25
45 80 49.3 233.4 324.5 411.7 88.4 94.4 94.8 - - -
67.5 RT 53.0 234.0 284.5 360.9 100.0 100.0 100.0 0.33 0.30 0.32
67.5 80 49.1 215.5 266.3 337.7 92.6 92.1 93.6 - - -
90 RT 55.7 250.8 313.3 397.4 100.0 100.0 100.0 0.26 0.38 0.35
90 80 50.1 232.0 297.8 377.8 90.0 92.5 95.0 - - -

Table 4.5: The effect of temperature and off-axis angle on the blunt notch
properties of 9.1 mm thick special-lay-up Glare, see (Hagenbeek 2002b).

The Young’s modulus and tangent modulus (in the plastic region) de-
crease at elevated temperature, and the yield and ultimate strength de-
creases likewise. In 67.5◦off-axis direction the decrease in ultimate strength
due to temperature is largest, 6%, and the value at elevated temperature is
338 MPa.

The maximum decrease in yield strength value of 9% is found in the
0◦on-axis direction, though the 67.5◦off-axis direction was expected to give
the maximum decrease. The decrease in 0◦direction seems too large in
comparison with the 90◦off-axis or 45◦off-axis direction and the observa-
tions in the tensile tests. The minimum yield strength value at elevated
temperature is 216 MPa for the 67.5◦off-axis direction.

The effect of temperature on the blunt notch ultimate strength is smaller
than for the tensile ultimate strength, 6 versus 17% decrease respectively.
In Figure 4.6 the effect of the temperature and the off-axis angle on the
blunt notch yield and ultimate strength is shown. The values of these
quantities are given as a percentage of the values in 0◦direction at room
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Figure 4.6: The effect of temperature and off-axis angle on the blunt notch
stiffness, yield and ultimate strength of 9.1 mm thick special-lay-up Glare
with respect to the 0◦direction, as given by (Hagenbeek 2002b).

temperature.
In Table 4.6 the blunt notch test data from (Ypma 2000) for Glare 3-3/2-

0.3 is given. The ultimate (gross and net) strength shows a large increase
of 13% at -55 ◦C. At elevated temperature, the strength initially decreases
to 3% at 60 ◦C, but then increases again even to 2% at 80 ◦C. Scatter in the
results might well cause this since the deviation of the ultimate strength
values at elevated temperature is small with respect to the room temper-
ature value. In Figure 4.7 the effect of temperature on the blunt notch
stiffness of the standard Glare laminates is shown. The values are given
with respect to the value at room temperature.

Thus, the blunt notch test results on the special-lay-up and standard
Glare show a similar off-axis behaviour as the tension and compression
test. The strength and stiffness reduction due to elevated temperature
however is very limited for the special-lay-up Glare. For the standard
Glare laminate the reduction due to elevated temperature is even smaller
and can be neglected.
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φ θ d W σgross σnet σgross/σgross RT Note
[◦] [◦C] [mm] [mm] [MPa] [MPa] [%]

Glare 3 3/2 0.3
L RT 3.3 25.0 432.0 497.7 - a

L RT 4.8 25.0 392.0 485.1 - a

L RT 4.8 50.0 427.0 472.0 100.0 b

L 55 4.8 50.0 418.0 462.0 97.9 b

L 60 4.8 50.0 416.0 460.0 97.4 b

L 65 4.8 50.0 424.0 469.0 99.3 b

L 70 4.8 50.0 422.0 467.0 98.8 b

L 75 4.8 50.0 423.0 468.0 99.1 b

L 80 4.8 50.0 437.0 484.0 102.3 b

LT -55 25.0 100.0 475.0 633.3 113.1 c

LT RT 25.0 100.0 420.0 560.0 100.0 c

LT 80 25.0 100.0 435.0 580.0 103.6 c

a (Boertien 1996).
b (Borgonje 2000).
c (Bär 1992)

Table 4.6: The effect of temperature on the blunt notch properties of stan-
dard Glare laminates, see (Ypma 2000).
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Figure 4.7: The effect of temperature on the blunt notch stiffness of stan-
dard Glare laminates with respect to the value at room temperature.
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4.2.4 Shear tests on special Glare

The shear properties of the 9.1 mm thick special-lay-up Glare are given in
Table 4.7. The table shows that the shear yield value is largest in 45◦off-axis
direction, 140 MPa. Most of the fibres run parallel to the shear load direc-
tion in this case, which increases the strength. The 90◦off-axis direction is
with the same reasoning the weakest direction.

φ θ G σy G/G RT σy/σy RT

[◦] [◦C] [GPa] [MPa] [%] [%]

0 RT 23.4 135.0 100.0 100.0
0 80 18.1 116.0 77.4 85.9
45 RT 27.7 139.5 100.0 100.0
45 80 22.9 120.0 82.7 86.0
67.5 RT 21.6 134.0 100.0 100.0
67.5 80 19.6 129.0 90.8 96.3
90 RT 20.3 115.0 100.0 100.0
90 80 19.6 106.0 96.3 92.2

Table 4.7: The effect of temperature and off-axis angle on the shear proper-
ties of 9.1 mm thick special-lay-up Glare as given by (Hagenbeek 2002b).

At elevated temperature the 0◦on-axis direction shows the largest de-
crease in shear modulus (22.6%) and the largest decrease in yield (14.1%).
The large decrease in shear modulus in 45◦off-axis direction is presum-
ably caused by fibre reorientation (shearing) to which the laminate is most
prone in this test direction. The largest value for the shear yield is there-
fore found in 67.5◦off-axis direction, 129 MPa. Only in this test direction
all fibres are able to carry (some of) the shear load, despite the non-optimal
orientation in general. The reduction of the yield due to the temperature
is the least in this direction. The largest shear modulus at elevated tem-
perature is still found in 45◦off-axis direction, 23 GPa. In Figure 4.8 the
effect of the temperature and the off-axis angle on the shear yield strength
is shown. The values of these quantities are given as a percentage of the
values in 0◦direction at room temperature.

Shear test results on the off-axis or temperature effect for standard
Glare configurations are not given in the overview of (Ypma 2000).
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Figure 4.8: The effect of temperature and off-axis angle on the shear yield
strength of 9.1 mm thick special-lay-up Glare, see (Hagenbeek 2002b).
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4.3 Summary

The off-axis and temperature effect can be large. For the 9.1 mm special
lay-up Glare a reduction of 24% in ultimate strength is found at room tem-
perature in the least stiff 67.5◦off-axis direction with respect to the stiffest
45◦off-axis direction. The 80 ◦C temperature gives a further maximum
found reduction of 17% of the ultimate strength value in 67.5◦off-axis di-
rection. The maximum shear stiffness reduction is 22.6%, which is found
in the 0◦direction. The effect of temperature in compression cannot be
mentioned, since no tests at elevated temperature have been performed.

At other angles the effect of temperature is less, but still more than 13%.
The off-axis and temperature effect on the stiffness and the yield strength
is clearly less. In shear the 45◦off-axis direction has the largest stiffness
and yield strength, and the 90◦direction is in this case the weakest direc-
tion. The largest stiffness and yield strength reduction is however found
in the 0◦direction. For standard Glare, where tests at elevated temperature
have only been performed in fibre direction, the strength and stiffness re-
ductions are at most 12%.

The test results for the special lay-up Glare indicate that a strong ac-
count must be given to the possible strength and stiffness reductions due
to off-axis loading and/or temperature. The test results on standard Glare
only show the effect of temperature in fibre direction. The sensitivity of
the epoxy to high temperatures, the strong directionality of the fibre (and
to a minor extent the aluminium) layers, and the (in general multi-axial)
loading condition all play a role in the behaviour of the laminate. The test
results give only limited insight and show that the laminate behaviour can
best be considered in a model that take all factors separately into account.



64 CHAPTER 4. EXPERIMENTAL TESTS ON GLARE



Chapter 5

General numerical framework

5.1 Introduction

The test results discussed in the previous chapter only describe the lam-
inate behaviour for specific loading and environmental conditions. In
general the most critical test cases are selected, since it is impossible to
account for all possible variations in the laminate lay-up and test con-
ditions. To gain more insight in the laminate behaviour and avoid the
time-consuming and costly testing a model is needed that takes all factors
separately into account. By considering the constituents the effect of each
layer on the total laminate properties can be determined.

In the derivation of the model it is important to consider the possible
interaction effects between the material properties, the mechanical field
(i.e. the displacements or stresses) and the thermal field (i.e. the temper-
ature distribution). The thermal and mechanical properties of a material
are influenced by the temperature of the material. The specific heat, ther-
mal conduction and density of materials depend on the temperature, see
Figure 5.1 (1). To be able to include this the temperature-dependency of
the Glare constituents have been determined in Chapter 3. On the other
hand, the temperature distribution within the material is determined by
the thermal properties of the material (2). The stress state or mechanical
field, due to internal or external forces, are determined by the mechan-
ical properties of the material (3). The mechanical field also influences
the mechanical properties of the material. Materials can have a hardening
behaviour and the transformation kinetics (microstructure and mechani-
cal properties) depend in this case on the stresses (4). Heat generated by
plastic deformations warms the material up, thereby changing the temper-
ature field in the material. Deformations of the material may thus change

65
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Figure 5.1: Coupling between thermal field, mechanical field and material
properties

the temperature distribution in the material (5). In the present thesis this
effect will not be taken into account. Heating and cooling of a material
causes thermal expansion and shrinkage, and may generate stresses in the
material (6).

The governing equations and solution techniques for the displacement
based finite element model are presented in this chapter. The equations
form the general framework for the numerical element described in the
chapters hereafter. The finite element method is used to obtain the system
of thermo-mechanical equations and solve them in a numerically efficient
way. The framework for the implementation of physical nonlinearities,
such as plasticity and damage, into the model is given as well.

5.2 The Finite Element Method

To obtain a realistic thermo-mechanical model, including geometrical and
physical nonlinearities such as plasticity and damage, the finite element
method is very well suited. Starting from the fundamental laws of me-
chanics and thermodynamics a thermo-mechanical system of equations
is derived to describe the behaviour of the considered body or structure.
In the finite element method the structure is subdivided into a number
of finite elements and the weak formulation of the governing thermo-
mechanical equations is discretised. That is, the thermo-mechanical be-
haviour of these elements is described as a function of the displacements
and temperatures of some characteristic points, the nodes, of the element.
Neighbouring elements are connected in a physically consistent manner
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at the boundaries by applying boundary conditions for the displacements.
Depending on the type of analysis we want to perform, that is static

or dynamic, the final system of equations and solution procedure is ob-
tained. The nodal displacements of each element are obtained when the
total system of equations is solved. Since the thermo-mechanical equa-
tions are in general nonlinear an incremental iterative solution procedure,
the Newton-Raphson method, is required. The efficient numerical way to
solve the system of equations is one of the main advantages of the finite
element method. From the nodal displacements the strains and stresses
can be calculated in any point in the element and structure.

5.3 Governing equations and discretisation

5.3.1 The mechanical system of equations

The general three-dimensional equations of motion of an elementary vol-
ume V in a continuum can be written in matrix-vector notation as follows

divτ + ρg = ρü , (5.1)

where the vector τ contains the six independent components of the stress
tensor, referred to as Cauchy stresses. The scalar quantity ρ is the mass
density and the vector u is the displacement vector. A superimposed dot
denotes differentiation with respect to time and a superimposed double
dot implies that a quantity is differentiated twice with respect to time,
which means that ü is the acceleration vector. The first term on the left-
hand side denotes the divergence of the stress vector τ , and the second
term on the left refers to the internal body forces. The term on the right-
hand side denotes the acceleration force.

In actually measured dynamic responses of structures dissipation of
energy is observed during vibration. In practice the element damping pa-
rameters are difficult to find, in particular because the damping properties
are frequency dependent. For this reason, the damping matrix is in general
constructed using the mass and stiffness matrix of the complete element
assemblage together with experimental results on the amount of damping.

Although, in our case mechanical damping is of less interest, for the
transient heat transfer analysis the ’thermal damping’ matrix consists of
the heat capacity of the material, which certainly is of interest. It deter-
mines the rate of heat adsorption or heat loss, for example of the aircraft
skin during take-off after an initial heat-up due to solar radiation, and will
be further discussed in Section 5.3.4.
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5.3.2 The weak formulation of the mechanical system

The description of the motion of the body in Eq. (5.1) is given in a strong
sense. By applying the principle of virtual work a weak form of the equa-
tion can be obtained, by setting
∫

V

δuT [divτ − ρü + ρg]dV = 0 , (5.2)

in which δ denotes the variation of a given quantity. The principle idea is
to replace the equation of motion by a virtual work equation in which a
residual force integrated over the volume of the body equals zero. With
aid of Green’s theorem
∫

V

δuT divτdV = −

∫

V

δεTτdV +

∫

S

δuTτ n̄dS , (5.3)

Eq. (5.2) can be transformed into
∫

V

δuTρüdV +

∫

V

δεTτdV =

∫

V

δuTρgdV +

∫

S

δuT tdS , (5.4)

where we used the fact that at the boundary S the traction is required that
either

t − τ n̄ = 0 , (5.5)

with t the boundary traction and n̄ the outward normal to the surface of
the body, or

un̄ = us , (5.6)

with un̄ the displacements at the boundary and us the prescribed displace-
ments. The second term on the left-hand side of Eq. (5.4) is the internal
virtual work, δWint, and the right-hand side is the external virtual work,
δWext. The equations up to this point have been derived with reference to
the deformed configuration. The Eulerian strains in this case read:

ε =
1

2

(

∂u

∂x
+

(

∂u

∂x

)T
)

. (5.7)

To obtain all quantities with respect to the undeformed configuration a To-
tal Lagrange approach is applied. The Cauchy stress tensor is transformed
into this reference configuration via

τ =
ρ

ρ0

FσFT , (5.8)



5.3. GOVERNING EQUATIONS AND DISCRETISATION 69

where σ denotes the second Piola-Kirchhoff stress tensor which represents
the stresses in the undeformed configuration, and F is the deformation
gradient tensor, defined as

F =
∂x

∂X
=
∂(X + u)

∂X
= I +

∂u

∂X
. (5.9)

In this equation the vector X refers to the position of a material point in the
undeformed state of the structure, x refers to the deformed state, and u is
the displacement of the same material point, where all vectors are defined
in an ortho-normal frame of coordinates. By the fact that there is mass
conservation we can write

ρdV = ρ0dV0 , (5.10)

where ρ0 and V0 refer to the undeformed state. The internal virtual work
can thus be written as

δWint =

∫

V0

δεTFσFTdV0 . (5.11)

The strains can be expressed with respect to the undeformed reference
configuration as well by introducing the Green-Lagrange strain tensor:

γ =
1

2

(

FTF − I
)

. (5.12)

Together with Eq. (5.12) the virtual Eulerian strain tensor δε in Eq. (5.11)
can be replaced by

δεTFFT = δγT . (5.13)

The total virtual work equation can finally be written as a function of
the second Piola-Kirchhoff stress tensor and the corresponding conjugate
Green’s strain tensor:
∫

V0

δuTρ0üdV0 +

∫

V0

δγTσdV0 =

∫

V0

δuTρ0gdV0 +

∫

S0

δuT tdS0 . (5.14)

In order to obtain the finite element representation the virtual work equa-
tion given in Eq. 5.14 must be discretised.
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5.3.3 Discretisation of the mechanical system

The finite element representation of the virtual work equation for the dy-
namic motion can be obtained by dividing the body into a number of finite
elements. For each element the displacement field ue can be interpolated
by

ue = Heûe ; u̇e = He ˙̂ue ; and üe = He ¨̂ue , (5.15)

and the relation between the strains and the nodal displacements is ob-
tained as

γe = Beûe ; and γ̇e = Be ˙̂ue . (5.16)

The matrix Be and He map the displacements ûe at the nodes of the ele-
ment onto the strains γe and displacements ue for each element e respec-
tively. Decomposing the integrals in the virtual work equation into a sum
of integrals over the volume V e

0 and surface area Se
0 of a number of k finite

elements gives

k
∑

e=1

∫

V e
0

δûeTρe
0H

(e)THe ¨̂uedV n
0 +

k
∑

e=1

∫

V e
0

δû(e)TB(e)TσedV e
0 =

k
∑

e=1

∫

V e
0

δû(e)Tρe
0H

(e)TgdV e
0 +

k
∑

e=1

∫

Se
0

δû(e)TH(e)T tedSe
0 . (5.17)

The mass matrix of the structure can be written as the summation of the
mass of each individual element Mm:

M =
k
∑

e=1

∫

V e
0

ρe
0H

(e)THedV e
0 . (5.18)

The element body forces and element surface forces can be assembled in
the external load vector fext:

fext =
k
∑

e=1

∫

V e
0

ρe
0H

(e)TgdV e
0 +

k
∑

e=1

∫

Se
0

H(e)T tedSe
0 . (5.19)

The internal forces of the element can likewise be assembled in the internal
force vector fint:

fint =
k
∑

e=1

∫

V e
0

ρe
0B

(e)TσedV e
0 . (5.20)
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The general equilibrium equations governing the dynamic response of a
mechanical system of finite elements as given in Eq. (5.17), for example
a beam in vibration due to a sudden load application, must hold for any
admissible δû and thus can be written as follows:

M¨̂u = fext − fint . (5.21)

The effect of energy dissipation in the dynamic response of the me-
chanical system can be taken into account by introducing velocity-dependent
damping forces. According to (Bathe 1996), these forces can be added as
additional contributions to the body forces:

fext =
k
∑

e=1

∫

V e
0

ρe
0H

(e)T [g − κeH ˙̂u]dV e
0 +

k
∑

e=1

∫

Se
0

H(e)T tedSe
0 . (5.22)

Where κm denotes the damping property parameter of element m. In this
case we find for the total system

M¨̂u + C ˙̂u = fext − fint . (5.23)

where the damping matrix Cm of each element is written for the total
damping of the finite element assembly as follows:

C =
k
∑

e=1

∫

V e
0

κeH(e)THedV e
0 . (5.24)

Beside the inertia and stiffness forces, as present in Eq. 5.21, Eq. 5.23 also
includes the damping forces on the left-hand side of the equation.

In the derivations no specification of the finite element itself has been
given. The virtual strains δγe and virtual displacements δue of the ma-
terial point in each element are described by the Eqs. (5.15) and (5.16) as
a function of the virtual nodal displacements δûe of the finite element.
Therefore, still a large number of formulations for the matrices Be and He

are possible. In Chapter 6 the Eqs. (5.15) and (5.16) will be derived for
the thermo-mechanical solid-like shell element. Here the element type,
the order of approximation of the displacement field and the shape of the
element will be described.

5.3.4 The thermal system of equations

The thermal system of equations is calculated with the general heat trans-
fer equations from the first law of thermodynamics:

ρ0ε̇+ Div q = σ · Ḟ + ρ0r , (5.25)
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where ε̇ and Ḟ denote the material time derivative of the internal energy
and the deformation gradient respectively, ρ0 is the mass density in the
undeformed reference configuration, and σ is the Cauchy stress tensor.
Further, the vector q represents the heat flux due to conduction and the
scalar r the heat supply due to external sources, such as radiation. Thus,
the first term on the left gives the internal energy of the body, and the
second term the heat conduction. The terms on the right-hand side are the
stress power, which can be regarded as the internal energy production,
and the external energy supply.

In the further derivation we will only consider solids for which we can
assume that the material particles of the body are at rest. The deformations
of the structure are assumed not to generate heat and a corresponding
change in the temperature field, which can for example be found in metal
forming processes. The heat transfer conditions are considered as being
decoupled from the stress conditions. Phase changes in the material will
not be considered either. The latent heat in case of a phase transition of the
material (i.e. for example melting or solidification) should be taken into
account if the temperature rises above the phase transition point. The ma-
terial parameters can be temperature-dependent in the following deriva-
tion. With Gibbs relation for elastic materials as given by (Liu 2002),

θη̇ = ε̇−
1

ρ0

σ · Ḟ , (5.26)

the energy balance given in Eq. 5.25 can be written as follows:

ρ0θη̇ + Div q = ρ0r . (5.27)

Thus, the stress power, i.e. the work done by the internal stress, does not
dissipate energy in case of an elastic material. Moreover, also for inelastic
materials that for example exhibit a strain hardening behaviour, as dis-
cussed in Chapter 7, we will assume that the amount of heat produced
due to deformation can be neglected.

To derive an expression for the entropy η we introduce the following
definition for the specific heat c, see (Liu 2002):

c ≡ −
∂2Ψ

∂θ2
θ , (5.28)

where Ψ is the Helmholtz or free energy. When the specific heat is as-
sumed to be constant, i.e. independent of the temperature, the entropy
can be found directly upon integration,

η ≡ −
∂Ψ

∂θ
=

∫ θ

θ0

∂2Ψ

∂θ̃2
dθ̃ = c ln

θ

θ0

, (5.29)
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where the scalar θ0 denotes the reference temperature of the body. From
Eq. 5.29 it follows that the material time derivative of the entropy η̇ can be
written as

η̇ = c

(

θ̇

θ

)

, (5.30)

where θ̇ is the temperature flux. When the thermal conductivity is as-
sumed to be independent of the temperature the classical Fourier’s law of
heat conduction is found,

q = −k∇θ , (5.31)

where k is the thermal conductivity tensor and the temperature distribu-
tion ∇θ is defined as

∇θ =
[

∂θ
∂x

∂θ
∂y

∂θ
∂z

]

, or in compact notion: ∇θ =
[

θ,x θ,y θ,z

]

. (5.32)

The thermal conductivity matrix k can be orientation-dependent and the
exact form depends on the material class. For an orthotropic material it
reads:

k =







kxx 0 0

0 kyy 0

0 0 kzz






. (5.33)

In case of an isotropic material all diagonal terms are equal to each other.
There are more material classes, see (Carslaw and Jaeger 2003) for a de-
tailed overview, but only the isotropic and orthotropic cases will be used
in this thesis. With the above mentioned specific models for the entropy η
and the heat flux q, the thermal system of equation reads

ρ0cθ̇ + Div q = ρ0r . (5.34)

With the equations the effect of a certain heat source on the temperature
distribution can be determined. The rate of change in temperature, the
dynamic response, is in this case determined by the thermal conduction
and the heat capacity of the material, i.e. the amount of heat the material
can ’store’ or ’dispose’ as a function of time. Using similar descriptions as
in the mechanical system of equations we can denote ρ0r as the external
thermal loading, k as the thermal equivalent of the elastic stiffness in the
mechanical system, and ρc as the thermal ’damping’ term. Further on we
will see that this is important for combining and solving the mechanical
and thermal system of equations simultaneously.
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5.3.5 The weak formulation of the thermal system

To obtain the finite element solution the principle of virtual temperatures
is applied similar to the principle of virtual displacements. All procedures
are directly applicable, however in this case the equation is solved for the
scalar of unknown temperature:
∫

V0

δθ[ρ0cθ̇ + Div q − ρ0r]dV0 = 0 . (5.35)

Rewriting the second term between the brackets according to the algebraic
rule given below
∫

V0

Div(δθq)dV0 =

∫

V0

∇δθ · qdV0 +

∫

V0

δθDiv qdV0 , (5.36)

the following expression for Eq. 5.35 is found
∫

V0

δθρ0cθ̇dV0 −

∫

V0

∇δθ · qdV0 =

∫

V0

Div(δθq)dV0 +

∫

V0

ρ0rdV0 . (5.37)

By applying the divergence theorem we arrive at
∫

V0

δθρ0cθ̇dV0 −

∫

V0

∇δθ · qdV0 =

∫

S0

δθq · ndS0 +

∫

V0

ρ0rdV0 . (5.38)

The heat flux q has been defined in Eq. 5.31 with Fourier’s law of heat
conduction. Further on, there are several boundary conditions encoun-
tered in the heat transfer analysis. The temperature and heat flow can be
prescribed at specific points and surfaces of the body. Thus, we can state
the following boundary conditions at the surface of the body that must be
satisfied:

θ = θS onSθ , (5.39)

and

kn∇θ · n = qS onSq , (5.40)

where θS is the known surface temperature on Sθ, kn is the thermal con-
ductivity of the body, n denotes the coordinate axis in the direction of
the unit normal vector n (pointing outward) to the surface. Further on,
qS is the prescribed heat flux input on the surface Sq of the body, with
Sθ ∪ Sq = S, and Sθ ∩ Sq = 0. Eq. 5.38 can thus be written as
∫

V0

δθρcθ̇dV0 +

∫

V0

∇δθk∇θdV0 =

∫

Sq

δθqSdS +

∫

V0

δθqBdV0 , (5.41)
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where qB = ρ0r is the internally generated heat (excluding the heat ca-
pacity effect) due to an external heat source. Together both terms on the
right-hand side are generally denoted by Q, the heat flow input.

In order to be complete, though not implemented in the model, it is
shown below that radiation can be treated as a heat flux acting on the
surface similar to convection. Thus both convection and radiation can be
included in qS . For convection a medium is required as a heat transport
carrier. A distinction between free and forced convection can be made.
Free convection can only take place in a gravitation field and is therefore
not found in space. An example is the air in a specific region which warms
up and rises due to the lower density. Forced convection takes place when
a fluid is moved by external forces and thereby brings about the heat trans-
port. In many cases the heat transport between a solid with temperature
θS and its fluid environment with temperature θenv is considered.

The heat flow due to convection qS is modelled according to Newton’s
law and is given by

qS = hc(θenv − θS) , (5.42)

in which hc is the heat transfer coefficient for convection, which may be
temperature-dependent. In contrast to heat conduction and convection no
medium or temperature difference between two bodies or a body and its
environment is required for heat radiation. Equilibrium exist in case that
both bodies generate and absorb radiation in equal quantity. However, the
temperature of the body and its surface condition have a strong influence
on the outgoing radiation.

Radiation can be subdivided in radiation interchange between two bod-
ies and between a body and its environment. In the latter case the temper-
ature of the external radiative source θr is assumed to be known. The heat
flow due to radiation is modelled according to the Stefan-Boltzmann law
and is given by

qS = ψσB(θ4
r − θ(S)4) , (5.43)

where σB is the Stefan-Boltzmann constant, and ψ incorporates the emis-
sivity of the radiant and absorbing materials and the geometric view fac-
tors of the considered surfaces. By factoring θ4

r − θ(S)4 Eq. (5.43) can be
written similar to the convection Eq. (5.42),

qS = hr(θr − θS) , (5.44)

where for hr the following expression is found:

hr = ψσB(θ2
r + θ(S)2)(θr + θS) . (5.45)
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The Kirchhoff assumption can be applied, which states that the emission
and absorption of radiation are equal to each other. This assumption holds
true if the temperature is not too high, and is for example not valid any-
more for space re-entry vehicles. For the surface heat flow we can write
with the previously derived formulations for convection and radiation:
∫

Sq

δθqSdS =

∫

Sc

δθhc(θenv − θS)dS +

∫

Sr

δθhr(θr − θS)dS . (5.46)

5.3.6 Discretisation of the thermal system

The governing heat transfer equations can be discretised as follows for an
element m;

θe = Heθ̂ ; (5.47)

θ̇e = He ˙̂
θ ; (5.48)

θS(e) = HS(e)θ̂ ; (5.49)

∇θe = Beθ̂ , (5.50)

where θ̂ is the vector of nodal point temperatures and He and Be are the
element temperature and temperature-gradient interpolation matrices re-
spectively. The matrix HS(e) is the surface temperature interpolation ma-
trix. The derived thermal system of equations can be used in transient
nonlinear analysis. The system is solved using an iterative solution proce-
dure, for example the Newton-Raphson method.

It is important to notice that in the convection and radiation surface
heat flow both contain the unknown surface temperature θS . When for a
given time-step t+ ∆t the nodal point temperatures at the end of iteration
i are written as

t+∆tθi =t+∆t θ(i−1) + ∆θi . (5.51)

The incremental change in convection and radiation heat flow can be taken
together with the conduction term on the left-hand side. For convenience
we will leave out the superscript t + ∆t in the following equations. With
the division of the temperature in the temperature at the previous iteration
and the incremental temperature change, Eq. (5.41) can be rewritten as

Ciθ̇
i
+ (Kk(i−1) + Kc(i−1) + Kr(i−1))∆θi = Q − Qk(i−1) , (5.52)
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where the heat capacity matrix C is denoted as

Ci =
k
∑

e=1

∫

V e

(ρcp)
(e)iH(e)THedV e ; (5.53)

the conductivity matrix Kk(i−1) as

Kk(i−1) =
k
∑

e=1

∫

V e

B(e)Tk(e)(i−1)BedV e ; (5.54)

the convection matrix Kc(i−1) as

Kc(i−1) =
k
∑

e=1

∫

Se
c

h(e)(i−1)
c HS(e)THS(e)dSe ; (5.55)

and the radiation matrix Kr(i−1) as given below:

Kr(i−1) =
k
∑

e=1

∫

Se
r

h(e)(i−1)
r HS(e)THS(e)dSe . (5.56)

The heat conduction in the previous iteration is defined as

Qk(i−1) =
k
∑

e=1

∫

V e

B(e)Tk(e)(i−1)Beθ(i−1)dV e , (5.57)

and the heat flow input Q is determined as

QB(i) + Qc(i−1) + Qr(i−1) , (5.58)

where QB , without the rate of heat stored within the material, is given by

QB(i) =
k
∑

e=1

∫

V e

H(e)T qB(e)dV e , (5.59)

the convection heat flow by

Qc(i−1) =
k
∑

e=1

∫

Se
c

h(e)(i−1)
c HS(e)THS(e)(θenv − θ

(i−1))dSe , (5.60)

and the radiation heat flow as

Qr(i−1) =
k
∑

e=1

∫

Se
r

h(e)(i−1)
r HS(e)THS(e)(θr − θ

(i−1))dSe . (5.61)
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When no convection and radiation conditions are considered, in linear
transient analysis the thermal system of equations reduces to

Cθ̇ + Kkθ = Q . (5.62)

The matrices C and Kk in this case are not time-dependent. For a steady-
state situation the heat transfer equations further reduce to the following
model:

Kkθ = Q . (5.63)

The matrix formulation of the complete dynamic thermo-mechanical
model in general form can be presented as
[

Mu

0

][

¨̂u
¨̂
θ

]

+

[

Cu

Cθ

][

˙̂u
˙̂
θ

]

+

[

Ku

Kθ

][

û

θ̂

]

=

[

F

Q

]

. (5.64)

Through the off-diagonal terms in the stiffness-conductivity matrix a cou-
pling between the temperature and the displacements due to thermal ex-
pansion can be made. This will be further detailed when deriving the gov-
erning equations in specific for the solid-like shell element in Chapter 6. In
case of a dynamic system of equations an implicit time-integration proce-
dure is used to obtain the solution of the (total) system. This will be shown
in Section 5.4.1. The general procedure to solve (nonlinear) steady-state
problems is outlined in Section 5.4.2. The solution procedure is further
specified in Section 5.4.3 with the Newton-Raphson incremental-iterative
method. In this method the load is applied in a number of load increments
to assure accuracy and proper convergence.

5.4 Analysis and solution procedure

5.4.1 Transient analysis

The (nonlinear) equations of motion derived in the previous section take
into account the dynamic behaviour, that is the acceleration and velocity,
of the structure. In this way the most complete and accurate model is
obtained, however it also requires more complicated solving techniques
than linear static problems. Here we will describe a specific implicit time-
integration solver called Park’s method [(Park 1975a), (Park 1975b), and
(Hughes 2000)]. The method has been implemented in the finite element
platforms Stags (Rankin, Brogan, Loden, and Cabiness 1997) and B2000
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(Remmers 1998) and is a linear multi-step method, in which the term ’lin-
ear’ denotes the form in which the method is expressed. The second order
differential Eqs. (5.23) can namely be rewritten as first order differential
equations by means of Jensen’s transformation algorithm, (Jensen 1974) as
follows:

v̇ = fext − fint , (5.65)

where the vector v, called the generalised momentum auxiliary vector, is
defined as

v = M ˙̂u + d(û) , (5.66)

where d is the damping operator, which can be defined as

d(û) = αMû + βfint(û) + γC̄û , (5.67)

where α, β, the Rayleigh damping factors, and γ are scalars and C̄ is a
matrix. If we choose the scalars to be zero, the matrix C̄ coincides with
our previously denoted damping matrix C and we can write

v = M ˙̂u + Cû . (5.68)

The general time integration procedure that has been used in the present
thesis is Park’s Method. In the procedure it is assumed that a solution is
known at time-step n−1 and that the history vectors for the displacements
hu

n−1 and the generalised momentum hv
n−1 exist. The aim of the procedure

is to advance the solution at time-step n − 1 to time-step n, thus ∆t =
tn − tn−1. First v̇ is calculated directly from the external and internal load
vector at time-step n− 1:

v̇n−1 = fext(tn−1) − fint(ûn−1) . (5.69)

In case n = 0 the generalised momentum is

v = M ˙̂u + Cû , (5.70)

else the equation reads:

vn−1 = hv
n−1 + tβv̇n−1 , (5.71)

where hv
n−1 is the history vector of the generalised momentum and tβ =

∆tβ0 is the modified time-step. The history vectors hv
n and hu

n at time-step
n are determined as follows:

hv
n = ∆tbv̇

n − av
n ; and hu

n = ∆tbv̇
n − au

n , (5.72)
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where the history vectors au
n and av

n are computed as

au
n =

mα
∑

i=1

αiun−i ; and av
n =

mα
∑

i=1

αivn−i . (5.73)

The history vectors bu̇
n and bv̇

n are computed as

bu̇
n =

mβ
∑

i=1

βiu̇n−i ; and bv̇
n =

mβ
∑

i=1

βiv̇n−i , (5.74)

with the integration formulas

mα
∑

i=0

αiun−i = ∆t

mβ
∑

i=0

βiu̇n−i ; and
mα
∑

i=0

αivn−i = ∆t

mβ
∑

i=0

βiv̇n−i . (5.75)

In the formulas above αi and βi are integration constants, and mα and mβ

determine the starting procedure to build the history vectors hu
n and hv

n.
Once the history vectors are determined the equation of motion can be
solved for un via an iterative procedure, for example a Newton-Raphson
method, in which a trial un is used. The Newton-Raphson method will be
discussed in Section 5.4.3. The equation of motion becomes

g(un) = Mun + tβCûn + t2βfint(ûn) − Mhu
n − tβh

v
n − t2βfext(t) = 0 , (5.76)

and from this u̇n can be calculated via

u̇n = (un − hu
n)/tβ , (5.77)

and the step number can be advanced from n to n + 1, the vectors un, u̇n,
hv

n, and hu
n are stored. The time-step is incremented from t to t + ∆t, and

if t < tmax the whole loop is repeated. To build the history vectors hv
n

and hu
n in Eqs. (5.76) and (5.77) a starting procedure is needed in the in-

tegration procedure. For the Park formula, mα = 3, so that two starting
algorithms are required. The parameters for the first two steps and for
the full Park method are given in Table 5.1. Park’s method combines the
Gear’s 2 and 3 step methods, see (Gear 1971), with equal weight to obtain
an unconditionally stable method with less damping as a result. The start-
ing algorithms have a worse accuracy compared to the full Park method,
but the stability level is the same.
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Method β0 β1 α1 α2 α3

Park (1st step) 6
10

4
10

-1
Park (2nd step) 6

10
2
10

- 12
10

2
10

Park (full) 6
10

- 15
10

6
10

- 1
10

Table 5.1: Linear multi-step scheme for Park’s method, including 1st and
2nd step.

5.4.2 Nonlinear static analysis

In case only static problems are considered, the acceleration vector ¨̂u and
velocity vector ˙̂u are zero. Static problems can be divided into linear and
nonlinear problems. For a linear elastic problem the constitutive relation
can be written as

σm = Dmγm = DmBmûm , (5.78)

and thus for the linear elastic stiffness matrix K we can write

K =
k
∑

m=1

∫

V m
0

BmTDmBmdV m
0 . (5.79)

The virtual internal energy from Eq. (5.23) then becomes

fint = Kû . (5.80)

The system of equations is solved by minimising the residual function Ψ:

Ψ = fext − fint . (5.81)

In case of physically nonlinear material behaviour there is no linear
stress-strain relation. The stress increment ∆σ depends nonlinearly on
the strain increment ∆γ. The strain increment in turn can be a nonlin-
ear function of the continuous displacement field ∆u, and for the stress
increment we can thus write

∆σ = f(∆γ(∆u)) . (5.82)

The stress increment ∆σ can be linearised as

∆σ =

(

∂σ

∂γ

)(

∂γ

∂û

)

∆u . (5.83)
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At a specific time in the loading process the material tangent stiffness ma-
trix is

Di =

(

∂σ

∂γ

)

. (5.84)

From the virtual internal work equation the derivative ∂γ/∂u can be iden-
tified as the differential operator L. Together with the fact that ∆u can be
written as H∆û we arrive at

∆σ = DiLH∆û = DiB∆û . (5.85)

The stress at time t+ ∆t can be written as

σt+∆t = σt + ∆σ . (5.86)

Since static problems are considered, it should be noted that ”time” is used
here to order events in the mechanical process and has no physical mean-
ing. When we substitute this into the virtual work Eq. (5.17) we obtain

k
∑

e=1

∫

V e
0

δû(e)TB(e)TσtmdV e
0 +

k
∑

e=1

∫

V e
0

δû(e)TB(e)T∆σdV e
0 = fext . (5.87)

Rewriting this equation using the expression for the external virtual work
fext and the expression for the stress increment ∆σ gives

k
∑

e=1

∫

V e
0

δû(e)TB(e)Tσt(e)dV e
0 +

k
∑

e=1

∫

V e
0

δû(e)TB(e)TDt
iB

e∆ûedV e
0 =

k
∑

e=1

∫

V e
0

δû(e)Tρn
0H

(e)Tgt+∆tdV e
0 +

k
∑

e=1

∫

Se
0

δû(e)TH(e)T tt+∆t(e)dSe
0 . (5.88)

Thus, in an iterative procedure, the system of equations can be solved for
the unknown displacements. To obtain an accurate method and to assure
proper convergence, an incremental-iterative procedure is proposed in the
next section.

5.4.3 The incremental-iterative solution procedure

With the system of equations derived in the previous section, Eq. 5.88, the
deformation of the structure can be described. To solve the system for
the nodal displacements, a Newton-Raphson procedure can generally be



5.4. ANALYSIS AND SOLUTION PROCEDURE 83

used. In the incremental-iterative solution method the load is applied in a
number of load increments. In general the structure shows a geometrically
nonlinear behaviour, which means that there are large deformations that
consequently require a suitable measure. Also a physically nonlinear be-
haviour can be present, where the stress is related to the strain via a non-
linear function. A properly converged solution is difficult to obtain for
large loading steps. The response of inelastic materials is path-dependent,
which means that the value of the stress depends on the followed strain
path. To predict the structural behaviour accurately small strain incre-
ments are necessary. To solve for the new displacements Eq. (5.81) is lin-
earised. The error which is caused by the linearisation is corrected via
a number of i equilibrium iterations. Thus for each load increment the
change of the displacements dûi+1

n+1 is calculated via

dûi+1
n+1 = K−1

t (f t+∆t
ext − fint,n) . (5.89)

Applying

Kt =
k
∑

e=1

∫

V e
0

B(e)TDt
iB

edV e
0 , (5.90)

gives

Kt∆û = f t+∆t
ext − f t

int , (5.91)

where the matrix Kt represents the tangent stiffness of the structure to
a small load increment. Upon summation over all iterations, the total
change of the displacements per load increment ∆ûn+1is calculated:

∆ûi+1
n+1 =

i+1
∑

j=1

dûj
n+1 . (5.92)

From this, the total displacements ûi+1
n+1 are determined:

ûi+1
n+1 = ûn + ∆ûi+1

n+1 , (5.93)

and the residual Eq. (5.81) can be written as

Ψ =
k
∑

e=1

∫

V e
0

(Beûi+1
n+1)

T (σn)i+1
n+1dV

e
0 − fn+1) . (5.94)

The iterations are carried out up to the point that the residual reaches a
user-defined convergence criterion. The stress update σi+1

n+1 is calculated
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from the stress σn and nodal displacements ûn of the previous equilibrium
state n via

(σe)i+1
n+1 = (σe)n + ∆σe(∆γe(ûn,∆ûi+1

n+1)) , (5.95)

where the stress increment ∆σ is a (nonlinear) function of the strain in-
crement ∆γ, which is itself a function of the displacement history and the
displacement increment. The stress is updated with the total increment,
and not after each iteration to avoid spurious unloading in case of elasto-
plastic calculations. The matrix Kt is the tangent stiffness matrix and can
be calculated as

Kt =
k
∑

e=1

H(e)TKe
tH

e . (5.96)

This matrix consists of two contributions which both are functions of the
nodal displacements ûe:

Ke
t = Ke

σ + Ke
0 =

k
∑

e=1

∫

V e
0

B(e)TσedV e
0 +

k
∑

e=1

∫

V e
0

B(e)T

(

∂σ

∂γ

)(

∂γ

∂û

)

dV e
0 ,

(5.97)

where the matrix Ke
σ is dependent on the current state of stress and the

matrix Ke
0 is a function of the material tangent stiffness (∂σ/∂γ). In case

of elasto-plastic calculations, that is for physically nonlinear behaviour,
the total derivative (dσ/dγ) must be applied. In Chapter 6 the matrices
Ke

σ and Ke
0 will be described for the solid-like shell element.

In the description of the Newton-Raphson method the structure was
assumed to be loaded incrementally by an external force vector. Thus, the
solution procedure has been described for load-control conditions. How-
ever, in the procedure also a displacement-control can be followed. In this
case the prescribed deformation at certain points of the structure is used to
determine the corresponding internal force vector, which can be regarded
as the initially applied load.

The Newton-Raphson procedure described in this section is in general
adequate. However, the procedure is not very efficient and fails at limit
points when strong physical nonlinearities are present. Displacement-
control can be solution, but in case of snap-back phenomena also fails.
A path-following technique as introduced by (Riks 1970) can be used. The
method is amongst others described by Hashagen and is not described in
this thesis.
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5.5 Physical nonlinearities

The relation between the stresses and strains can be nonlinear in case of
strain hardening or damage, which will be discussed in detail in Chap-
ters 7 and 8 respectively. For both the strain hardening and the damage
model a loading function is used to describe the occurrence of plasticity or
damage. The advantage of the 3D solid-like shell herein is the straightfor-
ward way the physically nonlinear models can be included.

5.5.1 Strain hardening

As shown in Eq. (5.95) the stress-strain relation can be written as

σi+1
n+1 = σn + ∆σ(∆γ(ûn,∆ûi+1

n+1)) , (5.98)

where for an elastic material ∆σ is a linear function of the strain ∆γ:

∆σi+1
n+1 = D∆γi+1

n+1 , (5.99)

with D the linear elastic stiffness operator. However, the materials used
in fibre-metal laminates, fibre-composites and metals, in general show a
nonlinear stress-strain behaviour due to strain hardening or damage. To
capture these phenomena a loading or yield function is introduced that
bounds all possible stress states in a material point. Stress states inside the
contour specified by the yield function only cause elastic deformations,
while stress states on this yield surface give rise to elasto-plastic deforma-
tions. By definition stress states outside this yield contour are not possible.

The loading function can be either be expressed as a function of strain
or stress as will be used for the strain hardening model:

f(σ, κ) = σ̃(σ) − σ̄(κ) ≤ 0 , (5.100)

where κ is the hardening parameter which determines the yield strength
scalar σ̄ by a so-called hardening law. The equivalent stress σ̃ is a func-
tion of the current stress state σ. The hardening parameter κ memorises
the largest value attained during the loading history and can therefore
only increase. This means that the rate of strain hardening κ̇ must be non-
negative. If the loading function is negative, unloading occurs and there
is no strain hardening. If the loading function is zero, further loading can
take place and the rate of the plastic multiplier λ̇ ≥ 0. Loading or unload-
ing in any material point can be formalised by applying the Kuhn-Tucker
conditions:

f ≤ 0 , λ̇ ≥ 0 , f λ̇ = 0 , (5.101)
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The inelastic strains are irreversible and remain after removal of the
load. The total strain γ̇ can be decomposed into and elastic component ε̇el

and an inelastic component ε̇pl, respectively

γ̇ = ε̇el + ε̇pl . (5.102)

The elastic strain rate ε̇el is related to the stress rate σ̇ via the elastic stiff-
ness matrix:

σ̇ = Dε̇el . (5.103)

The plastic strain rate ε̇pl can be written as a product of the magnitude of
the plastic flow λ̇ and the direction of the plastic flow m:

ε̇pl = λ̇m . (5.104)

In general we can write for the direction of the flow

m =
∂g

∂σ
, (5.105)

where g(σ, κ) is called the plastic potential. When the function g coincides
with the strain hardening function f the flow direction is orthogonal to the
yield surface. In that case we speak of an associated flow rule, otherwise
of a non-associated flow rule, and we can write

ε̇pl = λ̇
∂f

∂σ
. (5.106)

The value of the multiplier λ̇ can be determined from the requirement that
during plastic flow the stresses remain bounded. In Chapter 7 this is fur-
ther discussed for the Von Mises yield function in which an associated
flow rule is applied.

The hardening parameter is integrated along the loading path via

κ =

∫

κ̇dt . (5.107)

There are several hardening hypotheses available in the literature to define
the rate of the hardening parameter κ̇. The strain hardening hypothesis
reads:

κ̇ =

√

2/3(ε̇pl)TTε̇pl , (5.108)

where T is a diagonal matrix defined as T = diag[1, 1, 1, 1/2, 1/2, 1/2], which
takes into account that the shear strains in the vector ε are in fact the dou-
ble engineering shear strains.
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5.5.2 The return-mapping algorithm

In the elasto-plastic analysis a return-mapping algorithm is used to deter-
mine the stress state which satisfies the Kuhn-Tucker conditions of Eq. (5.101)
at each point of the applied loading path. Starting from a given state n for
which the stress σn, the total strain γn, and the hardening parameter κn

are known, the new total strain is determined from

γi+1
n+1 = γn + ∆γi+1

n+1 , (5.109)

where the strain increment ∆γ i+1
n+1 follows from the displacement incre-

ment ∆γ̂. With this strain increment an estimation of the new stress, the
so-called trial stress, is made:

σtrial = σn + D∆γ . (5.110)

If the yield condition given in Eq. (5.100) is satisfied for this trial stress
there will be only elastic deformations. When the yield condition is vi-
olated, that is when f(σtrial, κ) > 0, the stress state lies outside the yield
surface and a return-mapping algorithm is applied to map back the stress
onto the yield surface. At the same time the plastic strains and hardening
parameter increase.

To obtain an unconditionally stable algorithm, a fully implicit Euler
backward method is applied in which all stress-dependent quantities are
determined at σ = σn+1 and κ = κn+1. The new stress σn+1 is calculated
with

σn+1 = σtrial − D∆εpl|n+1 , (5.111)

where we used the decomposition of the total strain increment into an elas-
tic and a plastic part, similar to Eq. (5.102). In accordance with Eq. (5.106),
the incremental plastic strain is given by

∆εpl|n+1 = ∆λn+1
∂f

∂σ
|n+1 . (5.112)

The method is called implicit since neither ∆λn+1 nor σn+1 (and corre-
spondingly the normal to the yield surface n and the flow direction m) can
be calculated directly. An additional equation is required, which comes
from the compliance with the yield function at the end of the load step:

f(σn+1, κn+1) = 0 , (5.113)

or, since κn+1 = κn+1(λn+1), Eq. (5.113) can also be written as

f(σn+1, λn+1) = 0 . (5.114)
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Evaluate the yield function: f = σ̃trial − σ̄(κn) .

Determine the new ∆λ: ∆λκ+1 = ∆λκ − [ df

d∆λ
]−1f .

The yield function depends on ∆λ, i.e.: f = f(∆λ).

Yield surface reached?: |f(σ, κ)| < εtolerance.

Stress map-back: σn+1 = σtrial − ∆λn+1D
∂f

∂σ
|n+1.

If f > 0, plastic, else elastic deformation: σn+1 = σtrial.

Update the stress: σn+1 = σtrial − ∆λk+1
n+1D

∂f

∂σ
|n+1.

Determine the new hardening parameter κk+1
n+1.

Compute the strain increment ∆γn+1: ∆ûn+1 → ∆γn+1.

Calculate the trial stress: σtrial = σn + D∆γn+1.

Figure 5.2: Algorithmic procedure for the strain hardening analysis. For
each iteration and at each integration point the listed operations need to
be performed.
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Eqs. (5.111) and (5.114) in total form seven equations with seven un-
knowns, viz. the six stress components of σn+1 and λn+1. The nonlin-
ear system of equations is solved via a Newton-Raphson procedure. First
Eq. (5.111) is re-casted in a similar form as equation Eq. (5.114):

g(σn+1, κn+1) = σn+1 − σtrial + D∆εpl|n+1 = 0 . (5.115)

The system is now solved as
[

σk+1
n+1

λk+1
n+1

]

=

[

σk
n+1

λk
n+1

]

− J−1

[

g(σk
n+1, λ

k
n+1)

f(σk
n+1, λ

k
n+1)

]

, (5.116)

with k the iteration counter of the local Newton-Raphson iteration and the
matrix J represents the Jacobian of the system:

J =

[

∂g

∂σ
∂g

∂γ
∂f

∂σ
∂f

∂γ

]

. (5.117)

The procedure for the strain hardening analysis is summarised in Fig-
ure 5.2.

5.5.3 The consistent tangent stiffness matrix

As described in Section 5.4.3, the nonlinear system of equations is lin-
earised in the finite element formulation. The linearised system is solved
in an iterative Newton-Raphson procedure until convergence is reached.
A consistent linearisation of the tangent stiffness matrix is important for
the performance of the Newton-Raphson iteration, which is expressed in
the computation time and robustness of the method. In a full Newton-
Raphson procedure the use of a consistent tangent stiffness matrix, in
which the effects of plastic flow on the stiffness are included, is very ad-
vantageous compared to a conventional tangent stiffness matrix. It can
typically reduce the number of iterations necessary to obtain a converged
solution by a factor of two, as indicated by (de Borst and Sluys 1999). To
obtain the consistency, the linearisation must be consistent with the stress
update in the return-mapping algorithm. The consistent tangent stiffness
matrix can be derived by differentiating Eq. (5.111) with respect to ∆λ, ∆κ,
and γ:

dσ

dγ
=

∂σ

∂∆γ
+

∂σ

∂∆λ

∂∆λ

∂∆γ
+

∂σ

∂∆κ

∂∆κ

∂∆γ
=

∂σ

∂∆γ
+

[

∂σ

∂∆λ
,
∂σ

∂∆κ

]

[

∂∆λ
∂∆γ
∂∆κ
∂∆γ

]

,
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(5.118)

where we used the fact that γ can be decomposed into a constant part
γn and a non-constant, strain increment ∆γn+1. The residuals defined in
Eqs. (5.114) and (5.115) must be zero when convergence in the local return-
mapping is obtained. When these residuals are collected in the residual
vector r = (f,g), a total differentiation of r with respect to ∆γ can be
written as
[

∂∆λ

∂∆γ
,
∂∆κ

∂∆γ

]

= −J−1

(

∂r

∂σ

)(

∂σ

∂∆γ

)

, (5.119)

where J is the Jacobian given in Eq. (5.117). The Jacobian is obtained for
the values ∆λn+1 and ∆κn+1 that lead to convergence in the local return-
mapping algorithm. When Eq. (5.119) is applied in Eq. (5.118) the consis-
tent tangent stiffness operator can finally be written as

dσ

dγ
=

∂σ

∂∆γ
−

[

∂σ

∂∆λ
,
∂σ

∂∆κ

]

J−1

(

∂r

∂σ

)(

∂σ

∂∆γ

)

. (5.120)

It should be noted that the consistent tangent stiffness matrix is only use-
ful in a full Newton-Raphson procedure, since then the stiffness matrix is
updated during iteration and the plastic flow is included.

5.5.4 Damage growth

In damage mechanics the degradation of the material due to the devel-
opment of microcracks is accounted for by one or more scalar or tensor-
valued internal damage variables, see (Lemaı̂tre and Chaboche 1990). As
in standard plasticity, the influence of the material history on the stress
evolution is incorporated via a number of internal variables. Unload-
ing, however, occurs elastically in plasticity models, whereas in damage
mechanics the degradation of the elastic stiffness is taken into account.
Simple elasticity-based damage formulations give a secant unloading to
a stress-free and strain-free state in the origin. The damage variables are
defined by the ratio of the cracked volume over the total volume of a piece
of material.

The degradation of the material can be taken into account through the
principle of equivalent stress or equivalent strain. In the first case the
strain in a damaged material will be higher at equal stress than in a un-
damaged material. In the latter case the stress in the damaged material is
lower than in the undamaged material at equal strain. Since the classical
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finite element method starts from the assumption of known strains in the
integration points and the stresses are calculated from these strains, the
principle of equivalent strain is used.

In the material model the damage is taken into account as a reduction
of the stiffness of the material. In the case of an isotropic material this
damage parameter can be represented by a single scalar variable, in which
all damage effects are added and reflected. The constitutive relation can
be written as

σ = (1 − ω)Dγ , (5.121)

in which σ and γ are the stresses and strains in the integration point re-
spectively, and D is the virgin isotropic elastic stiffness matrix, either ex-
pressed in terms of bulk modulus κ and shear modulus µ or in terms of
Young’s modulus E and Poisson’s ratio ν. The damage parameter of the
material is given by ω.

For anisotropic materials a scalar damage variable is no longer suf-
ficient to describe the occurrence of damage in the different directions.
(Cordebois and Sideroff 1982) proposed to take a damage matrix in these
situations. The constitutive relation then changes to

σ = (I − Ω)Dγ , (5.122)

where I is the unit matrix and Ω the damage matrix. For continuum el-
ements with a non-zero Poisson’s ratio there is an indirect coupling be-
tween the degradation of the stiffnesses in the individual directions. The
individual damage parameters of the ply are therefore difficult to deter-
mine. A simple model for anisotropic damage can be used where the
damage matrix depends on a single scalar parameter ω, i.e. Ω = Ω(ω).

Matrix damage growth is controlled by the damage loading function

f(γ̃, κ) = γ̃ − κ , (5.123)

where κ is a history-dependent parameter, which reflects the loading his-
tory and γ̃ is the equivalent strain. From an initial value κ0 it grows and
memorises the largest value ever attained by the equivalent strain γ̃. If the
loading function is negative, unloading occurs and the history-dependent
parameter does not increase, i.e., κ̇ = 0. If the loading function is zero,
further loading can take place and the history-dependent parameter in-
creases, κ̇ ≥ 0. Damage will occur if the value of the loading function
exceeds a threshold value. The threshold value is then adjusted to the
new situation and growth of damage is determined by exceeding this new
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value in next steps. This structure can be formalised in the same way as
for plasticity with the Kuhn-Tucker conditions:

f ≤ 0 , κ̇ ≥ 0 , f κ̇ = 0 . (5.124)

Similar to plasticity models, the damage theory is completed by defining
an evolution law for the damage variable ω as a function of the history-
dependent parameter κ:

ω = ω(κ) . (5.125)

As in the one-dimensional case 0 ≤ ω ≤ 1, the initial value ω = 0 rep-
resenting the state of the fully intact material, and the final value ω = 1
representing the state where there is a total loss of coherence.

The solution procedure in the damage analysis looks as follows. Simi-
lar to the strain hardening analysis we start from a given state n for which
the stress σn, the total strain γn, and the damage parameter κn are known.
The new total strain is determined from

γi+1
n+1 = γn + ∆γi+1

n+1 , (5.126)

where the strain increment ∆γ i+1
n+1 follows from the displacement incre-

ment ∆γ̂. By evaluating the damage loading function, Eq. 5.123, the new
damage parameter κn+1 can be determined. In case there is loading κn+1

is:

κn+1 = γ̃ . (5.127)

With the new damage parameter, the damage variable ω can be updated,
the new damage matrix Ω(ω) can be determined, and the new stresses can
be calculated, i.e.,

ωj+1 = ω(κj+1) , (5.128)

Ωj+1 = Ω(ωj+1) , (5.129)

and

σj+1 = (I − Ωj+1)Dγj+1 . (5.130)

However, as we will observe in Chapter 8, these relationships are inter-
dependent and need to be solved simultaneously in an implicit solution
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Compute the equivalent strain: γ̃j+1 = f(γj+1).

Evaluate the damage loading function: f(γ̃, κ) = γ̃j+1 − κj .

If f(ε̃, κ) ≥ 0, κj+1 = γ̃j+1 (loading), else κj+1 = κj (unloading).

Damage surface reached?: |f(γ, κ)| < εtolerance.
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Determine the trial damage parameter κtrial
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Figure 5.3: Algorithmic procedure for the damage analysis. For each it-
eration and at each integration point the listed operations need to be per-
formed.
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procedure. When we write the three equations in similar form as the dam-
age loading function, we obtain:

f(ωn+1, κn+1) = γ̃(ω) − κ = 0 , (5.131)

g(σn+1, ωn+1) = σ − (I − Ω(ω))Dγ = 0 , (5.132)

h(κn+1, ωn+1) = ω − ω(κ) = 0 . (5.133)

Eqs. (5.131) and (5.133) in total form eight equations with eight unknowns,
the six stress components of σn+1, ωn+1, and κn+1. The nonlinear system
of equations is solved via a Newton-Raphson procedure.
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, (5.134)

with k the iteration counter of the local Newton-Raphson iteration and the
matrix J represents the Jacobian of the system:

J =







∂f

∂σ
∂f

∂ω

∂f

∂κ
∂g

∂σ
∂g

∂ω

∂g

∂κ
∂h
∂σ

∂h
∂ω

∂h
∂κ






. (5.135)

The solution procedure now looks similar to the return-mapping algo-
rithm discussed in Section 5.5.2. The complete procedure for the damage
analysis is shown in Figure 5.3.

Thus in the damage analysis first the state of deformation is deter-
mined and the occurrence of damage is evaluated. If damage occurs the
stiffness matrix is adapted and the new damage parameter is determined,
which sets the new damage threshold. An incremental iterative procedure,
such as for example the Newton-Raphson method, is required to perform
the analysis. In this procedure the derivative of the constitutive relation
is necessary, which for the constitutive relation with anisotropic material
behaviour is given by

σ̇ = (I − Ω)Dγ̇ − Ω̇Dγ , (5.136)
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in which Ω̇ is the derivative of the damage matrix with respect to a virtual
time. For the derivation of a consistent tangent stiffness matrix it is nec-
essary that this derivative is written as a function of the derivatives of the
deformations Ω̇γ = Ω∗γ̇, leading to

σ̇ = (I − Ω)Dγ̇ − Ω̇Dγ = (I − Ω)Dγ̇ − Ω∗Dγ̇ = Dtγ̇ . (5.137)

Whether this tangent stiffness matrix is symmetrical depends on the for-
mulation of the damage growth law. In Chapter 8 the derivation of an
orthotropic damage model is discussed in detail following the general out-
line given above.

5.6 The Jem/Jive numerical software

Numerical software is necessary to solve the thermo-mechanical system
of equations for a specific structure. In some standard finite element pack-
ages, such as Marc or Abaqus, special user-defined subroutines, for exam-
ple the strain hardening behaviour of a material, can often be introduced.
However, these packages still only allow for the use of pre-defined ele-
ments. Open-source packages, such as Diana or B2000, give more freedom
to the user, though within the limits of the numerical framework. Two C++
toolkits, named Jem and Jive, have been developed by the company (Ha-
banera 2005), which provide the necessary tools while maintaining the
flexibility. The Jem toolkit provides the basis for robust and modular soft-
ware, while Jive is used to transform a partial differential equation into a
system of equations and solve it subsequently. The thermo-mechanical el-
ement described in Chapter 6 has been included in a tailor-made program
in which the transient and nonlinear static analysis can be performed.
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5.7 Summary

In this chapter the thermo-mechanical system of equations have been de-
rived from the fundamental laws of mechanics and thermodynamics. The
finite element method is applied to solve the system in a numerically effi-
cient way.

To do so, the considered body or structure is divided into a number
of finite elements and the weak formulation of the governing thermo-
mechanical equations is discretised. Depending on the type of analysis we
want to perform, i.e. static or dynamic, the final system of equations and
solution procedure is obtained. Since the thermo-mechanical equations
are nonlinear an incremental iterative solution procedure, the Newton-
Raphson method, is required.

To include physical nonlinearities, such as strain hardening or damage
growth, a loading function is introduced to bound all states of stress into a
material point. In case of strain hardening a return-mapping algorithm is
used to project the stress back onto the surface of the loading function (i.e.
the yield surface) when the stress state violates the loading function.

For damage growth, the damage parameter affects the tangent stiffness
matrix and the new stress state can directly be determined. With the gen-
eral framework given, the next important step in the application of the
finite element method is the formulation of the element itself, which is
done in the next chapter. In Chapters 7 and 8 the hardening law and re-
spectively the damage growth law will be given together with the specific
loading functions.



Chapter 6

The thermo-mechanical solid-like
shell element

6.1 Introduction

Aerospace structures, especially in the fuselage sections, are thin-walled
structures. In these parts metal fatigue due to pressurisation and depres-
surisation of the fuselage is a serious threat to the structure, as indicated in
Section 2.1. The fuselage skin is also the first barrier against fire penetra-
tion. Fibre metal laminates could be very suitable materials in the fuselage
due to the previous mentioned factors.

However, the use of different constituents also raises new questions es-
pecially regarding the thermo-mechanical properties. Differences in ther-
mal expansion coefficients of the fibres and the aluminium cause residual
stresses after curing of the laminate. The aluminium layers are loaded in
tension, the fibres are loaded in compression after the curing process. In
service, when the temperature can vary between -55 up to 70 ◦C due to so-
lar radiation and convection, (varying) internal stresses can be expected as
well. This influences the fatigue crack initiation and can lead to secondary
bending for asymmetric lay-ups. The effect of temperature on the static
and dynamic properties of fibre metal laminates is more complex than for
monolithic aluminium and must be quantified.

The use of standard continuum elements to model thin-walled struc-
tures, as the fuselage skin, may lead to problems. They tend to show
Poisson-thickness locking when their aspect ratios (i.e. the ratio of element
length over its width) are too high. As a result, the elements become overly
stiff. (Rolfes, Noack, and Taeschner 1999) showed the un-coupled thermo-
mechanical 3D-analysis process of composite structures which uses a shell

97
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finite element model throughout. The mechanical part in their research
consists of to the thermally induced stresses, which are also calculated in
transverse direction, see also (Rolfes, Tessmer, and Rohwer 2003).

An alternative is the so-called solid-like shell element given by (Parisch
1995), which can describe the behaviour of fibre metal laminates in a fully
three-dimensional state and which can handle failure mechanisms like
cracking and delamination in connection with interface elements. In this
chapter the construction of a thermo-mechanical solid-like shell element
including thermal expansion and heat transfer is described. The combined
thermo-mechanical system of equations is solved simultaneously.

6.2 Element definitions

The use of standard continuum elements to numerically model thin-walled
structures, as the fuselage skin, may lead to problems. Since the kinematic
relations of standard continuum elements do not account for variations of
the strain in thickness direction, they tend to show Poisson-thickness lock-
ing when their aspect ratios (i.e. the ratio of element length over its width)
are too high. As a result, the elements become overly stiff, (Bischoff and
Ramm 1997). For fibre metal laminates the thickness of the individual lay-
ers is even smaller and the effect of Poisson-thickness locking thus more
present.

An alternative is the so-called solid-like shell element as derived by
(Parisch 1995). This element consists of 8 or 16 external nodes, each with
three translational degrees of freedom, see Figure 6.1. Four internal de-
grees of freedom are used to add a quadratic term to the displacement
field in the thickness direction (the so-called internal ’stretch’ of the ele-
ment). Hence, the strain varies linearly over the thickness instead of being
constant and Poisson-thickness locking is avoided. This implies that the
element can also be used in thin applications.

A solid-like shell element was used by (Hashagen 1995) to describe
the behaviour of fibre metal laminates in a fully three-dimensional state
and to be able to model failure mechanisms and delamination (in connec-
tion with interface elements). (Remmers and de Borst 2001) showed that a
combination of delamination buckling and delamination growth could be
modelled with the solid-like shell element as well.

The 8 or 16 external nodes have three degrees of freedom in the case
of only mechanical loading, since only the displacements are considered.
For the thermo-mechanical solid-like shell element each external node has
four degrees of freedom, the three displacements, ûx, ûy, and ûz, and the
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Figure 6.1: Geometry of the sixteen-noded thermo-mechanical solid-like
shell element. Each geometrical node I contains at least three degrees of
freedom, and a fourth degree of freedom at the corner nodes [ûx, ûy, ûz, θ̂]I .
Each internal node J has one degree of freedom: ŵJ .

temperature at the node θ̂. By adding the temperature degree of freedom
only at the corner nodes of the sixteen-noded element eventual numerical
instability, due to a difference in order for mechanical and thermal strain,
can be avoided, see Section 6.2.4.

6.2.1 Geometry and kinematical description

Consider the thick shell shown in Figure 6.2. The position of a material
point in the shell in the undeformed configuration can be written as a func-
tion of the three curvilinear coordinates [ξ, η, ζ]:

X(ξ, η, ζ) = X0(ξ, η) + ζD(ξ, η) , (6.1)

where X0(ξ, η) is the projection of the point on the mid-surface of the shell
and D(ξ, η) is the thickness director in this point:

X0(ξ, η) =
1

2
[Xt(ξ, η) + Xb(ξ, η)] ; (6.2)

D(ξ, η) =
1

2
[Xt(ξ, η) − Xb(ξ, η)] . (6.3)

The subscripts (·)t and (·)b denote the projections of the variable onto the
top and bottom surface, respectively. The position of the material point
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Figure 6.2: Kinematic relations of the regular solid-like shell element in
undeformed and deformed position. The dash-dotted line denotes the
mid-surface of the shell.

in the deformed configuration x(ξ, η, ζ) is related to X(ξ, η, ζ) via the dis-
placement field φ(ξ, η, ζ) according to:

x(ξ, η, ζ) = X(ξ, η, ζ) + φ(ξ, η, ζ) , (6.4)

where

φ(ξ, η, ζ) = u0(ξ, η) + ζu1(ξ, η) + (1 − ζ2)u2(ξ, η) . (6.5)

In this relation, u0 and u1 are the displacements of X0 on the shell mid-
surface, and the thickness director D, respectively:

u0(ξ, η) =
1

2
[ut(ξ, η) + ub(ξ, η)] ; (6.6)

u1(ξ, η) =
1

2
[ut(ξ, η) − ub(ξ, η)] , (6.7)

and u2(ξ, η) denotes the internal stretching of the element, which is col-
inear with the thickness director in the deformed configuration and is a
function of an additional ’stretch’ parameter w:

u2(ξ, η) = w(ξ, η)[D + u1(ξ, η)] . (6.8)

In the remainder, we will consider the displacement field φ as a function
of two kinds of variables; the ordinary displacement field u, which will be
split in a displacement of the top and bottom surfaces ut and ub, respec-
tively, and the internal stretch parameter w:

φ = φ(ut,ub, w) . (6.9)
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6.2.2 The base vectors and the metric matrices

The base vectors at the material point in undeformed configuration Gi can
be found by differentiating the position vector X with respect to the iso-
parametric coordinates Θi = [ξ, η, ζ]:

Gκ =
∂X

∂Θκ
= Eκ + ζD,κ ; κ = 1, 2 ; (6.10)

G3 =
∂X

∂Θ3
= D , (6.11)

where (·),κ denotes the partial derivative with respect to Θκ. Eκ is the
covariant surface vector, which is the projection of the base-vector Gκ on
the mid-surface and is defined as

Eκ =
∂X0

∂Θκ
. (6.12)

The base vectors of the shell in the deformed configuration gi are found in
a similar fashion:

gκ =
∂x

∂Θκ
= Eκ + u0,κ + ζD,κ + ζu1,κ + h.o.t. , (6.13)

g3 =
∂x

∂Θ3
= D + u1 − 2ζu2 + h.o.t. . (6.14)

The higher order terms (h.o.t.) in Eqs. (6.13) and (6.14) contain terms up
to the fourth order in the thickness coordinate ζ and the derivatives of the
stretch parameter u2 with respect to ξ and η. In the remainder, these terms
will be neglected without a significant loss of accuracy of the kinematic
model (Parisch 1995).

The metric tensors G and g can be determined by using the base vec-
tors Gi and gi in Eqs. (6.10) - (6.14):

Gij = Gi · Gj ; gij = gi · gj . (6.15)

Elaboration of the expressions yields the following components of the met-
ric tensor in the undeformed configuration:

Gκλ = Eκ · Eλ + ζ [Eκ · D,λ + Eλ · D,κ] ; (6.16)
Gκ3 = Eκ · D + ζD,κ · D ; (6.17)
G33 = D · D , (6.18)
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and in the deformed configuration (again neglecting the terms which are
quadratic in thickness direction):

gκλ = (Eκ + u0,κ) · (Eλ + u0,λ) + ζ
[

(Eκ + u0,κ) · (D,λ + u1,λ)

+ (Eλ + u0,λ) · (D,κ + u1,κ)
]

; (6.19)

gκ3 = (Eκ + u0,κ) · (D + u1) + ζ
[

(D + u1) · (D,κ + u1,κ)

− 2(Eκ + u0,κ) · u2

]

; (6.20)
g33 = (D + u1) · (D + u1) − ζ4(D + u1) · u2 . (6.21)

We can rewrite these relations as

Gij = G0
ij + ζG1

ij ; (6.22)

gij = g0
ij + ζg1

ij , (6.23)

where G0
ij and g0

ij correspond to the constant terms in Eqs. (6.16) - (6.21),
whereasG1

ij and g1
ij correspond to the terms that vary linearly with respect

to the thickness ζ . For the derivation of the Green strains also the so-called
contravariant triad Gj is applied. It can be calculated with the covariant
triad in the following manner:

Gj = (Gij)
−1Gi . (6.24)

The contravariant base vector Gj is related to the contravariant surface
vector Ek via the so-called shell tensor µj

k, (Ogden 1984):

Gj = µj
kE

k; µj
k = (δj

k − ζḠj
k)E

k . (6.25)

In Eq. (6.25), Ḡj
k denotes the mixed variant metric tensor which is calcu-

lated with the contravariant and the covariant tensor components as fol-
lows, see Eq. (6.22) (Parisch 1995):

Ḡj
k = G0 jmG1 mk . (6.26)

6.2.3 Green-Lagrange and thermal strain field

The Green-Lagrange strain tensor γGL, which defines the mechanical strains,
is written conventionally in terms of the deformation gradient F:

γGL =
1

2
(FTF − I) . (6.27)
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The deformation gradient F can be written as a function of the covariant
base vector in the deformed configuration gi and the contravariant base
vector in the undeformed reference configuration Gi:

F = gi ⊗ Gi . (6.28)

Inserting this relation in Eq. (6.27) we can write the Green-Lagrange strain
tensor in terms of the contravariant basis Gj :

γGL = γGL
ij Gi ⊗ Gj ; (6.29)

where:

γGL
ij =

1

2
(gij −Gij) . (6.30)

Substituting Eq. (6.25) in this relation yields

2γGL = (gij −Gij)(δ
i
k − ζḠi

k)(δ
j
l − ζḠj

l )E
k ⊗ El . (6.31)

After some manipulations, the strain tensor can be written in terms of the
membrane mid-surface strain εij and the bending strain ρij according to

2γGL = (εij + ζρij)E
i ⊗ Ej . (6.32)

The components can be calculated as follows, (Parisch 1995):

2εκλ = Eκ · u
0
,λ + u0

,κ · Eλ + u0
,κ · u

0
,λ ; (6.33)

2εκ3 = Eκ · u
1 + u0

,κ · D + u0
,κ · u

1 ; (6.34)

2ε33 = u1 · D + D · u1 + u1 · u1 ; (6.35)
2ρκλ = D,κ · u

0
,λ + u1

,κ · Eλ + u1
,κ · u

0
,λ + D,λ · u

0
,κ + u1

,λ · Eκ + u1
,λ · u

0
,κ

− [Eτ · u
0
,λ + u0

,τ · Eλ + u0
,τ · u

0
,λ]Ḡ

τ
κ

− [Eκ · u
0
,ν + u0

,κ · Eν + u0
,κ · u

0
,ν ]Ḡ

ν
λ ; (6.36)

2ρκ3 = D,κ · u
1 + u1

,κ · D + u1
,κ · u

1 ; (6.37)

2ρ33 = − 4d · w . (6.38)



104 CHAPTER 6. THE THERMO-MECHANICAL SOLID-LIKE SHELL ELEMENT

The virtual strain components of Eqs. (6.33) - (6.38) read:

2δεκλ = eλ · δu
0
,κ + eκ · δu

0
,λ ; (6.39)

2δεκ3 = δu0
,κ · d + eκ · δu

1 ; (6.40)

2δε33 = 2d · δu1 ; (6.41)
2δρκλ = δu0

,κ · eλ + d,κ · δu
1
,λ + δu1

,λ · eκ + d,λ · δu
0
,κ

− [δu0
,τ · eλ + eτ · δu

0
,λ]Ḡ

τ
κ

− [δu0
,κ · eν + eκ · δu

0
,ν ]Ḡ

ν
λ ; (6.42)

2δρκ3 = d · δu1
,κ + d,κ · δu

1 ; (6.43)

2δρ33 = − 4[2w · δu1 + d · dδw] . (6.44)

The thermal expansion strain tensor γα can also be written in terms of the
contravariant basis Gj :

γα = γα
ijG

i ⊗ Gj , (6.45)

where

γα
ij = θ Gij , (6.46)

and θ is the relative temperature. In shell theory small strains are consid-
ered and therefore the expansion strains are derived with reference to the
undeformed configuration. This implies that there is no coupling between
the thermal expansion and the deformation, the expansion is stress-free.
Substituting Eq. (6.25) in the thermal strain field relation yields

γα = θ Gij(δ
i
k − ζḠi

k)(δ
j
l − ζḠj

l )E
k ⊗ El . (6.47)

Similar to the Green-Lagrange strain tensor, the thermal strain tensor can
be written in terms of the membrane mid-surface strain εij and the bending
strain ρij according to

γα = (εij + ζρij)E
i ⊗ Ej , (6.48)

where in this case we find

εακλ = θEκ · Eλ ; (6.49)
εακ3 = θEκ · D ; (6.50)
εα33 = θD· D ; (6.51)
ρα

κλ = θ [Eκ ·D,λ + Eλ ·D,κ]

− θ [Ḡτ
κ ·Eν + Ḡν

λ ·Eτ ] ; (6.52)
ρα

κ3 = θD,κ ·D ; (6.53)
ρα

33 = 0 . (6.54)
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The components of the strain tensor εij , ρij refer to the in general non-
orthogonal triplet Ei spanned at the material point in the undeformed
reference configuration. For composite materials it is convenient to de-
fine the strains in a local ortho-normal reference system lj provided by the
characteristic material direction (e.g. fibre orientation) of the individual
layer. The strain tensor can be transformed to the local reference frame as
follows:

γij = (εij + ζρij)t
i
kt

j
l ; tik = Ei · lk . (6.55)

For the finite element implementation the variation of the thermal strain
field δγα is derived:

δεακλ = δθEκ · Eλ ; (6.56)
δεακ3 = δθEκ · D ; (6.57)
δεα33 = δθD· D ; (6.58)
δρα

κλ = δθ [Eκ ·D,λ + Eλ ·D,κ] − δθ [Ḡτ
κ ·Eν + Ḡν

λ ·Eτ ] ; (6.59)
δρα

κ3 = δθD,κ ·D ; (6.60)
δρα

33 = 0 . (6.61)

The thermal strain increment ∆γα is normally needed in an iterative solu-
tion scheme. It can be derived as

∆εακλ = ∆θEκ · Eλ ; (6.62)
∆εακ3 = ∆θEκ · D ; (6.63)
∆εα33 = ∆θD· D ; (6.64)
∆ρα

κλ = ∆θ [Eκ ·D,λ + Eλ ·D,κ] − ∆θ [Ḡτ
κ ·Eν + Ḡν

λ ·Eτ ] ; (6.65)
∆ρα

κ3 = ∆θD,κ ·D ; (6.66)
∆ρα

33 = 0 . (6.67)

Due to the symmetry of the shear components of the Green’s strain tensor,
the engineering strain components can be collected in the vector γGL. The
vector γGL(E) is applied since εij and ρij refer to the covariant components
of the Green’s strain:

∂γGL(E) =





















δε11 + ζδρ11

δε22 + ζδρ22

δε33 + ζδρ33

δ2ε12 + ζδ2ρ12

δ2ε23 + ζδ2ρ23

δ2ε31 + ζδ2ρ31





















= H0

























δu0
x

δu0
y

δu0
z

δu1
x

δu1
y

δu1
z

δw

























ε+ρ

+H1

























δu0
x,1

δu0
y,1

δu0
z,1

δu1
x,1

δu1
y,1

δu1
z,1

δw,1

























+H2

























δu0
x,2

δu0
y,2

δu0
z,2

δu1
x,2

δu1
y,2

δu1
z,2

δw,2

























. (6.68)
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For the thermal strain tensor we find:

∂γα(E) =





















δεα11 + ζδρα
11

δεα22 + ζδρα
22

δεα33 + ζδρα
33

δεα12 + ζδρα
12

δεα23 + ζδρα
23

δεα31 + ζδρα
31





















= Hα
0

[

δθ0

δθ1

]

α

; (6.69)

with the matrices H0, Hα
0 , H1 and H2:

H0 =





















0 0 0

0 0 0

0 dT 0

0 0 0

0 eT
2 0

0 eT
1 0





















+ ζ





















0 0 0

0 0 0

0 −4wdT −2dTd

0 0 0

0 dT
,2 0

0 dT
,1 0





















= Hε
0 + ζHρ

0 ; (6.70)

Hα
0 =





















ET
1 E1 0

ET
2 E2 0

DTD 0

ET
1 E2 0

ET
2 D 0

DTE1 0





















+ ζ





















0 2ET
1 [D,1 − Ḡ1

1]

0 2ET
2 [D,2 − Ḡ2

2]

0 0

0 ET
1 [D,2 − Ḡ2

2] + ET
2 [D,1 − Ḡ1

1]

0 D,2D

0 DTD,1





















= Hα
0 + ζHα

0 ;

(6.71)

H1 =





















eT
1 0 0

0 0 0

0 0 0

eT
2 0 0

0 0 0

dT 0 0





















+ζ





















dT
,1 − [2eT

1 Ḡ
1
1 + eT

2 Ḡ
2
1] eT

1 0

−eT
2 Ḡ

1
2 0 0

0 0 0

dT
,2 − [eT

2 Ḡ
1
1 + 2eT

1 Ḡ
1
2 + eT

2 Ḡ
2
2] eT

2 0

0 0 0

0 dT 0





















= Hε
1 +ζHρ

1 ;

(6.72)
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H2 =





















0 0 0

eT
2 0 0

0 0 0

eT
1 0 0

dT 0 0

0 0 0





















+ζ





















−eT
1 Ḡ

1
2 0 0

dT
,2 − [eT

1 Ḡ
2
2 + 2eT

2 Ḡ
2
2] eT

2 0

0 0 0

dT
,1 − [eT

1 Ḡ
1
1 + 2eT

2 Ḡ
2
1 + eT

1 Ḡ
2
2] eT

1 0

0 dT 0

0 0 0





















= Hε
2 +ζHρ

2 .

(6.73)

The matrices H0, Hα
0 , H1 and H2 contain the vectors ei, d, d,i. These vectors

consist of a part which is independent on u and a part which is dependent
on u. Thus, also H0, Hα

0 , H1 and H2 consist of a u-independent and a
u-dependent contribution.

6.2.4 Constitutive relations

The stress tensor consists of a mechanical induced part and a thermal ex-
pansion part. The mechanical stress tensor can be written as the relation
between the second Piola-Kirchhoff stress and the Green-Lagrange strain
tensor. The thermal stress tensor is written in a similar way with the ther-
mal strain tensor. Thus:

σ = DGLγGL − Dαγα , (6.74)

where DGL is the tangent stiffness matrix for the Green-Lagrange strains
and Dα is the thermal expansion matrix, which consists of the thermal
expansion coefficients times the bulk modulus:

Dα =





















α1D11 0 0 0 0 0

0 α2D22 0 0 0 0

0 0 α3D33 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





















. (6.75)

The thermal expansion in composites is in general orthotropic; the expan-
sion is different in fibre direction and transverse to the fibre direction. The
thermal strain tensor δγα

ij is a function of the virtual temperature field in
the element and will be derived similar to the derivation of the virtual
Green tensor δγGL

ij as function of the virtual displacement δû as performed
by (Hashagen 1998). The thermal expansion provides the coupling be-
tween the temperature field and the displacement field. Vice versa, strong
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deformations could cause thermal heat in the structure. However in the
current derivation this effect is not considered as it plays a minor role in
an aircraft structure.

For the 16 node element only at the 8 corner nodes the temperature
is included. For the displacement field second-order shape functions are
thus used and for the temperature field first-order functions. In this way
both the mechanical strain, due to mechanical loading, and the thermal
strain, due to expansion, are of the same order. The mechanical strain
follows from the displacement variation and the thermal strain follows
directly from the temperature distribution times the thermal expansion
coefficient in a given direction. Hence, both the displacements due to me-
chanical loading and due to thermal loading have a constant distribution
over the element. Same order shape functions for the temperature and
displacement field can lead to slightly different values at the integration
points within one element, and causes a so called ”checkerboard” pattern
in the calculation field which can lead to a non-convergent solution. With
the different order in shape functions this problem is avoided.

The internal degrees of freedom, which are used to add a quadratic
term to the displacement field in the thickness direction, are not able to
support an external loading and are eliminated on element level by con-
densation as suggested by (Parisch 1995).

6.2.5 The temperature field

The thermal system of equations, neglecting the deformation energy, was
given by Eq. 5.34 as derived in Section 5.3.4:

ρ0cθ̇ + Div q = ρ0r . (6.76)

where ρ0 is the mass density, c is the specific heat, θ is the temperature, q is
the thermal conductivity, and r is the external heat flow input. Or written
with the principle of virtual temperatures, according to Eq. 5.41:

∫

V0

δθρcθ̇dV0 +

∫

V0

∇δθk∇θdV0 =

∫

Sq

δθqSdS +

∫

V0

δθqBdV0 , (6.77)

where ∇θ is defined as

∇θ =
[

θ,x θ,y θ,z

]

, (6.78)
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and the thermal conductivity matrix k in case of an orthotropic material is

k =







kxx 0 0

0 kyy 0

0 0 kzz






. (6.79)

To add the temperature field calculation in the solid-like shell element it
is convenient to use the same approach as for the displacement field. The
temperature field is also fully three-dimensional. we can write the (change
in) temperature field ψ(ξ, η, ζ) as a function of mid-surface (change in)
temperature and the thickness coordinate ζ in the same way as for the
displacement (although it has no physical meaning here):

ψ(ξ, η, ζ) = θ0(ξ, η) + ζθ1(ξ, η) . (6.80)

The components θ0 and θ1 describe the change in temperature of the mid-
surface X0 and the shell thickness director D, respectively. When θt and θb

denote the change in temperature of top and bottom surface, respectively,
the change in temperature can be calculated via

θ0(ξ, η) =
1

2
[θt(ξ, η) + θb(ξ, η)] , (6.81)

θ1(ξ, η) =
1

2
[θt(ξ, η) − θb(ξ, η)] . (6.82)

Similar to the virtual Green-Lagrange strains and thermal strains the vir-
tual temperature change can be collected in the vector δq(E)in the covari-
ant basis:

δq(E) =







δq11
δq22
δq33






=







δθ0
,1 + ζδθ1

,1

δθ0
,2 + ζδθ1

,2

δθ1






= Hθ

0

[

δθ0

δθ1

]

+Hθ
1

[

δθ0
,1

δθ1
,1

]

+Hθ
2

[

δθ0
,2

δθ1
,2

]

; (6.83)

where the matrices Hθ
0, Hθ

1 and Hθ
2 are

Hθ
0 =







0 0

0 0

0 1






Hθ

1 =







1 ζ

0 0

0 0






Hθ

2 =







0 0

1 ζ

0 0






. (6.84)
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6.3 Finite element implementation

6.3.1 The shape functions

The shape functions must be determined to map the virtual nodal dis-
placements and temperatures onto the virtual displacements in each mate-
rial point. The strains εij and ρij , measured with respect to Ei, are mapped
onto the local system lj . The value of the displacement u and the temper-
ature θ are approximated by the value at the nodes of the element and the
shape functions:

























δu0
x

δu0
y

δu0
z

δu1
x

δu1
y

δu1
z

δw

























ε+ρ

=

























Π0 0 0 0

0 Π0 0 0

0 0 Π0 0

Π1 0 0 0

0 Π1 0 0

0 0 Π1 0

0 0 0 Πw

























[7×(3N+4)]

δû = Λδû ; (6.85)





















δu0
x

δu0
y

δu0
z

δu1
x

δu1
y

δu1
z





















α

=





















Π0
α 0

Π0
α 0

Π0
α 0

0 Π1
α

0 Π1
α

0 Π1
α





















[6×(2N)]

δθ̂ = Λαδθ̂ ; (6.86)

























δu0
x,κ

δu0
y,κ

δu0
z,κ

δu1
x,κ

δu1
y,κ

δu1
z,κ

δw,κ

























=

























Π0
,κ 0 0 0

0 Π0
,κ 0 0

0 0 Π0
,κ 0

Π1
,κ 0 0 0

0 Π1
,κ 0 0

0 0 Π1
,κ 0

0 0 0 Πw
,κ

























[7×(3N+4)]

δû = Λ,κδû , (6.87)

and;
[

δθ0
,κ

δθ1
,κ

]

=

[

Π0
,κ 0

0 Π1
,κ

]

[2×(2N)]

δθ̂ = Λ,κδθ̂ , (6.88)
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where the vector of the virtual nodal displacements is written as follows:

δûT = (δu1
x, . . . , δu

N
x , δu

1
y, . . . , δu

N
y , δu

1
z, . . . , δu

N
z , δw1, . . . , δw4) , (6.89)

and the first 3N components represent the displacement of the nodes in
the directions i1, i2, and i3 of the global reference i and the last four com-
ponents represent the internal degrees of freedom. The parameter N is
sixteen in case of a sixteen-noded element. The vector of the virtual nodal
temperatures can be written as

δθ̂
T

= (δθ1, . . . , δθN ) . (6.90)

The vectors Π0, Π1, Πw, Π0
,κ, Π1

,κ, and Πw
,κ are composed of the iso-paramet-

ric shape functions for a eight-noded shell element. The eight biquadratic
shape functions for an eight-noded shell element are denoted by ψi(ξ, η),
and the vectors Πi(i = 0, 1) can be composed as follows for the sixteen-
noded element:

Π0 =
1

2
(ψ1, . . . , ψ8, ψ1, . . . , ψ8) ; (6.91)

Π1 =
1

2
(−ψ1, . . . ,−ψ8, ψ1, . . . , ψ8) ; (6.92)

Π0
,κ =

1

2
(ψ1,κ, . . . , ψ8,κ, ψ1,κ, . . . , ψ8,κ) ; (6.93)

Π1
,κ =

1

2
(−ψ1,κ, . . . , ψ8,κ, ψ1,κ, . . . , ψ8,κ) . (6.94)

The vectors Π0
α and Π1

α are composed of four bilinear shape functions for
a four-noded shell element denoted by φi(ξ, η). These vectors account for
the thermal expansion for which only the eight corner nodes of the sixteen-
noded solid-like shell element can be used to obtain a linear temperature
distribution and thus a linear thermal strain contribution. In this way the
mechanical strain and the thermal expansion strain are of the same order
and a checkerboard pattern in the solution field is avoided.

Π0
α =

1

2
(φ1, . . . , φ4, φ1, . . . , φ4) ; (6.95)

Π1
α =

1

2
(−φ1, . . . ,−φ4, φ1, . . . , φ4) . (6.96)

The vectors Πw and Πw
,κ are also composed of bilinear shape functions

φi(ξ, η):

Πw = (φ1, φ2, φ3, φ4) ; (6.97)
Πw

,κ = (φ1,κ, φ2,κ, φ3,κ, φ4,κ) . (6.98)
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6.3.2 Stress independent part of the stiffness matrix

The virtual Green’s strain vector δγ (E) can be rewritten by substitution of
the matrices H0, H1 and H2:

δγ(E) = (H0Λ + Hα
0Λα + H1Λ,1 + H2Λ,2)δû = B(E)δû . (6.99)

To set up the constitutive relation the strains δγ (E) have to be transformed
to the local system lj . With the factor λij

kl:

λij
kl = tikt

j
l ; with : tik = Ei · lk , (6.100)

the physical engineering components of the strains δγ (l) in the local frame
of reference lj are obtained. The matrix B(E), which relates the displace-
ments to the strains in the general non-orthogonal triplet Ei, can be trans-
formed to the matrix B(l), which relates the displacements to the physical
engineering strains in the local system lj :

δγ(l) = B(l)δû . (6.101)

The gradient ∂γ/∂û, which is also required to set up the stiffness matrix,
differentiates the strains with respect to the displacement field:

∂γ

∂û
= B(l) . (6.102)

In the iterative Newton-Raphson solution procedure the tangent stiffness
matrix Kt is used to calculate the change of the displacements da. It can
be calculated via

Kt =
k
∑

e=1

(He)TKe
tH

e . (6.103)

The matrix Ke
t can be derived from the internal force vector pe. In prin-

ciple, pe consists of two parts, namely Be and σe. Both contributions are
functions of the nodal displacements ûe. Applying the chain rule for the
differentiation of the residual Ψ the matrix Ke

t consists of two parts, a
stress-independent part and a stress-dependent part, and reads:

Ke
t = Ke

0 + Ke
σ =

∫

V e
0

BeT ∂σ

∂γ

e∂γ

∂û

e

dV e
0 + Ke

σ . (6.104)

The matrix Ke
σ is dependent on the current state of stress and the matrix

Ke
0 is a function of the material tangent stiffness (∂σ/∂γ). However for
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elasto-plastic situations the total derivative dσ/dγ instead of the partial
derivative must be applied. The first part of the stiffness matrix equals

Ke
0 =

∫

V0

BTDB(
√

detGij)dξdηdζ . (6.105)

The integration over the volume is carried out via Gauss integration. The
integration in the thickness direction is split up into a number nl of sub-
integrations over the different layers. Then, the strains and stresses are
calculated with respect to the material directions of the different layers.

6.3.3 Stress dependent part of the stiffness matrix

The evaluation of the second part of the stiffness matrix, the stress de-
pendent part Ke

σ of Eq. (5.96), is essentially not different for the thermo-
mechanical solid-like shell element compared to the purely mechanical
element, since the incremental change of the virtual thermal expansion
strain is zero. For completeness the derivation of the stress dependent of
the stiffness matrix is given here, which starts with the calculation of the
incremental change d of the virtual strains

2d(δεκλ) = δu0
,κ · du

0
,λ + δu0

,λ · du
0
,κ ; (6.106)

2d(δεκ3) = δu0
,κ · du

1 + δu1 · du0
,κ ; (6.107)

2d(δε33) = 2du1 · δu1 ; (6.108)
2d(δρκλ) = δu1

,κ · du
0
,λ + δu0

,λ · du
1
,κ + δu1

,λ · du
0
,κ + δu0

,κ · du
1
,λ

− [δu0
,τ · du

0
,λ + δu0

,λ · du
0
,τ ]Ḡ

τ
κ

− [δu0
,κ · du

0
,τ + δu0

,τ · du
0
,κ]Ḡ

τ
λ ; (6.109)

2d(δρκ3) = δu1
,κ · du

1 + δu1 · du1
,κ ; (6.110)

2d(δρ33) = − 8[δu1 · ddw + δwd · du1 + wδu1 · du1] . (6.111)

When the following matrices are introduced:

Ωµ =







Πµ 0 0 0

0 Πµ 0 0

0 0 Πµ 0






; Ωµ

τ =







Πµ
,τ 0 0 0

0 Πµ
,τ 0 0

0 0 Πµ
,τ 0






; (6.112)

Ωw =
[

0 0 0 Πw
]

; (6.113)

Cτ = Ḡ1
τΩ

0
,1 + Ḡ2

τΩ
0
,2; with: τ = κ, λ and µ = 0, 1; (6.114)
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Then, the incremental change of virtual strains can be written as a function
of the nodal displacements

2d(δεκλ) = δûT (Ω0
,κ)

TΩ0
,λdû + δûT (Ω0

,κ)
TΩ0

,λdû ; (6.115)

2d(δεκ3) = δûT (Ω0
,κ)

TΩ1dû + δûT (Ω1)TΩ0
,κdû ; (6.116)

2d(δε33) = 2δûT (Ω1)TΩ1dû1 ; (6.117)

2d(δρκλ) = δûT (Ω1
,κ)

TΩ0
,λdû + δûT (Ω0

,λ)
TΩ1

,κdû

+ δûT (Ω1
,λ)

TΩ0
,κdû + δûT (Ω0

,κ)
TΩ1

,λdû

− δûT (Cκ)
TΩ0

,λdû − δûT (Cλ)
TΩ0

,κdû

− δûT (Ω0
,κ)

TCλdû − δûT (Ω0
,λ)

TCκdû ; (6.118)

2d(δρκ3) = δû,κ · du
1 + δu1 · dû,κ ; (6.119)

2d(δρ33) = − 8[δû(Ω1)TdΩwdû + δûT (Ωw)TdTΩ1dû

+ wδûT (Ω1)TΩ1dû] . (6.120)

The incremental change of virtual strains refer to the covariant compo-
nents, while the stress components refer to the local system lj . Therefore
the factor ωmn is introduced for the set-up of the stress dependent part of
the stiffness matrix:

ωmn = tmk t
n
l σkl ; with: tji = Ej · li . (6.121)

By applying Eqs. (6.115) - (6.120) and Eq. (6.121) in Eq. (5.96) the nonlinear
contribution of the stiffness matrix can be written as

Ke
σ =

∫

V0

[

ω11(Ω0
,1)

TΩ0
,1 + ω22(Ω0

,2)
TΩ0

,2

+ ω33(Ω1)TΩ1 + ω12

(

(Ω0
,1)

TΩ0
,2 + (Ω0

,2)
TΩ0

,1

)

+ ω23

(

(Ω0
,2)

TΩ1 + (Ω1)TΩ0
,2

)

+ ω31

(

(Ω0
,1)

TΩ1 + (Ω1)TΩ0
,1

)

+ ζω11

(

(Ω1
,1)

TΩ0
,1 + (Ω0

,1)
TΩ1

,1 − (C1)
TΩ0

,1 − (Ω0
,1)

TC1

)

+ ζω22

(

(Ω1
,2)

TΩ0
,2 + (Ω0

,2)
TΩ1

,2 − (C2)
TΩ0

,2 − (Ω0
,2)

TC2

)

− ζω33

(

4w(Ω1)TΩ1 + 4(Ω1)TdΩw + 4(Ωw)TdTΩ1

)

+ ζω23

(

(Ω1
,2)

TΩ1 + (Ω1)TΩ1
,2

)

+ ζω31

(

(Ω1
,1)

TΩ1 + Ω1)TΩ1
,1)

)
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+ ζω12

(

(Ω1
,1)

T (Ω1
,2)

TΩ0
,1 + (Ω1

,1)
TΩ1

,2 + (Ω0
,2)

TΩ1
,1 − (C1)

TΩ0
,2)

− (C2)
TΩ0

,1 − (Ω0
,1)

TC2 − (Ω0
,2)

TC1

)]

(
√

det(Gij))dξdηdζ . (6.122)

Integration of the volume is carried out via Gauss integration.

6.3.4 The strain increment and internal force vector

With Ke
σ and Ke

0 the tangent stiffness Ke
t of the solid-like shell element

is fully defined. However, to solve for the displacements of the structure
also the internal force vector pe(û) must be evaluated. This can be ac-
complished by calculating the stress increment ∆σ. Based on the strain
definition, the strain increment can be calculated in the following manner:

2∆εκλ = eλ · ∆u0
,κ + eκ · ∆u0

,λ + ∆u0
,κ · ∆u0

,λ + 2∆θEκ · Eλ ; (6.123)

2∆εκ3 = eκ · ∆u1 + d · ∆u0
,κ + ∆u0

,κ · ∆u1 + 2∆θEκ · D ; (6.124)

2∆ε33 = 2d · ∆u1 + ∆u1 · ∆u1 + 2∆θDκ · D ; (6.125)
2∆ρκλ = eλ · ∆u1

,κ + d,κ · ∆u0
,λ + ∆u1

,κ · ∆u0
,λ

+ eκ · ∆u1
,λ + d,λ · ∆u0

,κ + du1
,λ · ∆u0

,κ

− [eλ · ∆u0
,λ + eλ · ∆u0

,λ + ∆u0
,λ · ∆u0

,λ]Ḡ
λ
κ

− [eκ · ∆u0
,τ + eτ · ∆u0

,κ + ∆u0
,κ · ∆u0

,τ ]Ḡ
τ
λ

+ 2∆θ [Eκ ·D,λ + Eλ ·D,κ] − 2∆θ [Ḡτ
κ ·Eν + Ḡν

λ ·Eτ )] ; (6.126)
2∆ρκ3 = d,κ · ∆u1 + d · ∆u1

,κ + ∆u1
,κ · ∆u1

,κ + 2∆θD,κ ·D ; (6.127)

2∆ρ33 = − 8wd · ∆u1 − 4d · d∆w − 4∆wd · ∆u1 − 4w∆u1 · ∆u1 . (6.128)

Using the matrices defined in Eq. (6.112) and after transformation into the
local system lj the physical engineering strain increment can be calculated
as a function of the nodal displacement increment ∆û. Subsequently, the
stress increment ∆σ is calculated by premultiplying the strain increment
with the linear elastic stiffness matrix D. The new total stress is calculated
via:

(σe)i+1
n+1 = (σe)n + ∆σe(∆γe(ûn,∆ûi+1

n+1)) , (6.129)

in which σn and ûn represent the stress and the nodal displacements of
the previous equilibrium state n. When physically nonlinearities are con-
sidered the stress increment is obtained via the return-mapping algorithm.
The new stress σ is premultiplied with the matrix B(l) to obtain the inter-
nal force vector pe.
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6.3.5 Modifications of the stiffness matrix

Two modifications of the stiffness matrix, described by (Hashagen 1998),
are given here as well in order to be complete. The first is the condensation
of the element stiffness matrix Kt due to the fact that the internal degrees
of freedom are not used explicitly to obtain the equilibrium equation 5.81.
The second modification is related to the problem of shear locking for the
eight-noded solid-like shell element, which is solved by an assumed shear
strain approximation.

Condensation of internal degrees of freedom

The condensation of the internal degrees of freedom is performed only
for the mechanical system of equations and not for the heat transfer. As
shown in Eq. 5.92, within every iteration the displacement increment ∆ûi+1

is determined:

∆ûi+1 = ∆ûi + dûi+1 . (6.130)

where the vector dûi+1 is calculated through the evaluation of the lin-
earised system:

[

K0 + Kσ

]

[

dûi+1

dŵi+1

]

=

[

Ki
uu Ki

uw

Ki
wu Ki

ww

][

dûi+1

dŵi+1

]

=

[

pi
u

pi
w

]

−

[

f i

0

]

. (6.131)

And therefore, the change in the displacements of the internal degrees of
freedom is determined as

dŵi+1 = −K−1
ww

∣

∣

∣

∣

i

[Ki
wudû

i+1 − pi
w] . (6.132)

When the latter formulation of dŵi+1 in Eq.6.132 is used in Eq.6.131, the
following expression for Ke

t , Eq. 5.97, is found:

Ke
t = −Ki

uu − Ki
uwK−1

ww

∣

∣

∣

∣

i

Ki
wu . (6.133)

The internal force vector of the element pe can be written as

pe = [pi
u − Ki

uwK−1
ww

∣

∣

∣

∣

i

pi
w] . (6.134)
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Assumed natural strains

The concept of the assumed natural strains is used to overcome the locking
phenomenon, which has been observed for the four-noded shell element
(Andelfinger 1991) and for the eight-noded solid-like shell element as well
(Parisch 1995). The eight-noded solid-like shell element belongs to the
same class as the four-noded shell element when the order of the element
is considered. The reason of the locking, namely the overestimation of the
shear strains, has been treated by (Bathe and Dvorkin 1986) through the
introduction of so-called assumed shear strains.

The transverse shear strains εκ3 are calculated with the following ap-
proximation:

ε23 = fCε
C
23 + fAε

A
23 ; (6.135)

ε13 = fBε
B
13 + fDε

D
13 . (6.136)

The quantities εSκ3 in Eqs. 6.135 and 6.136 represent the transverse shear
strains in the four sampling points A through D, which are located on the
mid-surface and the four sides of the eight-noded element as shown in
Figure 6.3. The coordinates of the sampling points are given in Table 6.1.

The virtual shear strains in the sampling point εSκ3 are calculated with

2δεSκ3 =
1

4
[(eκ − d), (−eκ + d), (eκ + d), (−eκ + d)]S











δuJ

δuK

δuL

δuM











, (6.137)

where

eS
κ =

1

4
[−xJ − xK + xL + xM ] ; and: dS =

1

4
[xJ − xK + xL − xM ] . (6.138)

The superscripts J,K,L,M in Eqs. 6.137 and 6.138 represent the nodes of
the side on which the sampling point S is located, as given in Table 6.1.
In case of the eight-noded element two rows of the matrix B(E) (Eq. 6.99),
2δε23 and 2δε13, are replaced by Eqs. 6.135 and 6.136. From the latter equa-
tions also the nonlinear contributions to the stiffness matrix can be calcu-
lated, and the terms corresponding to ω13 and ω23 in Eq. 6.122 are replaced
by

KANS
σ =

∫

ω23[fDD̄D
23 + fBD̄B

23] + ω13[fAD̄A
13 + fCD̄C

13]dV0 . (6.139)
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Sampling Coordinates Nodes
point ξ η J K L M

A 0.0 -1.0 5 1 6 2
B 1.0 0.0 6 2 7 3
C 0.0 1.0 8 4 7 3
D -1.0 0.0 5 1 8 4

Table 6.1: Sampling points where
the transverse shear strains εSκ3

are determined in the assumed
shear strain concept.

B

A D

C
4

8

5

7

6

2

η
ξ

1

sampling point

thermo-mechanical node
internal node

ζ

Figure 6.3: Geometry and location of
the sampling points A-D of the eight-
noded thermo-mechanical solid-like
shell element.

The quantities D̄S
κ3 are the mapping matrices, which perform the correct

multiplication of the nodal displacements, that are obtained when the non-
linear contributions of the assumed shear strains are set up as follows:

d(δεSκ3) =
1

8

[

(duM − duJ),−(duL − duK), (duL − duK),−(duM − duJ)
]











δuJ

δuK

δuL

δuM











.

(6.140)

Eq. 6.140 can be rewritten in matrix form as

d(δεSκ3) =
(

δuJ , δuK , δuL, δuM
)

DS
κ3











duJ ,

duK ,

duL,

duM











, (6.141)

where the mapping matrices DS
κ3 in the sampling points are given as

DS
κ3 =

1

8











−I3 0 0 I3

0 I3 −I3 0

0 −I3 I3 0

I3 0 0 −I3











. (6.142)

The matrix D̄S
κ3 is obtained by expanding DS

κ3 using all displacements of
the element, since the matrix DS

κ3 is defined with the displacements of the
four nodes J,K,L, and M .
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6.4 Benchmark tests

In this section a number of examples is presented to demonstrate the per-
formance of the thermo-mechanical solid-like shell element. In the first
two examples a strip is considered which is subjected to a heat source.
The analysis is performed with an eight-noded element in both cases. The
aspect ratio S = l/h is high, S = 100 in example 1 and S = 100/236 in
example 2. The third example is a thick-walled cylinder with a different
temperature on the inside and the outside. For all examples analytical so-
lutions are available and presented as well.

6.4.1 Strip subjected to a heat source

Consider the aluminium 2024-T3 strip depicted in Figure 6.4, which is
clamped at one end and free to expand at the other end. The right end
of the strip is subjected to a equally distributed heat source Q equal to
0.275 W. The thermal conductivity k according to Section 3.5.2 is 0.1222
Wmm−1◦C−1. The height of the strip h is 0.3 mm, the length l is 300 mm,
and the widthw is 30 mm. The thermal expansion coefficient α is 22.4·10−6

◦C−1 and the equally distributed heat sourceQ can be collected in the point
heat sources Q/4 that act on the corner nodes. The strip is numerically
modelled with 10 elements and the aspect ratio of each element is there-
fore S = l/h = 100.
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Figure 6.4: Strip subjected to a heat source.

The relative temperature is set to zero at the clamped side (temperature
boundary condition):

θ(0) = 0 . (6.143)
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The temperature due to the heat source will rise linearly with respect to the
distance from the clamped side where x = 0. The temperature at distance
x can be calculated analytically as:

θ(x) =
Qx

kA
, (6.144)

where Q is the heat source, k is the thermal conductivity and A is the
cross-sectional area of the strip. The distributed temperature over the strip
causes free expansion at the right end, which can be calculated analytically
as

εα = α

∫

θ(x)dx , (6.145)

and

uα = εαl , (6.146)

where εα is the expansion strain, θ is the distributed temperature over the
strip and uα is the total expansion. If we fill in the given values, at the
free edge the following relative temperature, expansion strain and total
expansion are found:

θ(l) = 75.0 ◦C ,

εα = 8.4 · 10−4 ,

uα = 0.25 mm . (6.147)

Numerically the same values are found.

6.4.2 Bi-material strip subjected to a heat source

Now a bi-material strip is considered, where two strips with different ther-
mal expansion coefficient are bonded together, see Figure 6.5. The strip is
subjected to a constant temperature θ of 2.5 ◦C in this case. An aluminium
2024-T3 strip of 0.3 mm on top of a glass-fibre epoxy layer of 0.127 mm will
be considered here, with the fibre orientation in the length of the strip. The
other dimensions are taken similar as in the previous example, 300 mm for
the length l, and 30 mm for the width w. In this case two times 10 elements
are used to model both strips numerically.

The thermal expansion coefficients α1 for the aluminium and α2 for
the glass-fibre epoxy are respectively 22.4 · 10−6 ◦C−1 and 3.9 · 10−6 ◦C−1,
which are taken from Sections 3.5.2 and 3.3.3 respectively. The aluminium
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Figure 6.5: Bi-material strip subjected to a heat source.

stiffness is 72.4·103 N/mm2 and the stiffness of the glass-fibre epoxy layer
is 50.6·103 N/mm2 in fibre direction, as can be found in Chapter 3 as well.
The temperature boundary condition is set to a zero relative temperature
at the clamped side:

θ(0) = 0 . (6.148)

The relation between the curvature κ and stiffness of the two materials,
and the difference in their thermal expansivity is given by (Clyne 1996):

κ = 6E1E2(h1 + h2)h1h2(α1 − α2)θ/C , (6.149)

where,

C = (E2
1h

4
1 + 4E1E2h

3
1h2 + 6E1E2h

2
1h

2
2 + 4E1E2h1h

3
2 + E2

2h
4
2) , (6.150)

and E is the Young’s modulus, h is the thickness, θ is the relative tempera-
ture and the subscripts 1 and 2 refer to the first and second component of
the bi-material strip.

To derive the maximum deflection v at the edge, the curvature κ must
be integrated twice over the length of the strip, since:

κ =
d2v

dx2
. (6.151)

Integrating and substituting the boundary conditions yields the deflection.
At the edge, where x = l, the maximum deflection is found, and with the
given input values we find:

vmax = 5.54 mm. (6.152)

Numerically a value of 5.53 mm is found for the maximum deflection. The
results are in good agreement.
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6.4.3 Thick-walled cylinder subjected to temperature

An infinitely long, thick-walled cylindrical tube is subjected to a different
temperature at the inside and the outside wall. This will lead to a non-
linear temperature field over the thickness. The cylinder will expand and
this will introduce stresses. The cylinder with inside radius, a, and outside
radius, b, has an inside wall temperature, θa, and an outside wall temper-
ature, θb, relative to the reference temperature, θo.

The problem can be treated as an axisymmetric problem with a two-
dimensional deformation field. The strain, in this case, is symmetric with
respect to the axis of rotation and the shear strains are zero. The problem
is independent of the angle φ, and all quantities are functions of r only.
The numerical solution is obtained with the thermo-mechanical solid-like
shell element. The derivation of the analytical solution is described in Ap-
pendix A.

φ

θb

θa

a
b

zr

Figure 6.6: Thick-walled cylinder subjected to temperature.

The analytical solution for the temperature field in radial direction is
given by Eq. (A.14),

θ(r) =
1

ln b/a
(θa ln

b

r
+ θb ln

r

a
) . (6.153)

For the displacement field in radial direction the following expression has
been derived, Eq. (A.33),

ur = D1r +D2r ln r +D3
1

r
. (6.154)

For the radial and circumferential strains and stresses the expressions,
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found in Eqs. (A.34) - (A.35) and Eq. (A.36) - (A.37), read

εr = D1 +D2(1 + ln r) −D3
1

r2
, (6.155)

εφ = D1 +D2 ln r +D3
1

r2
, (6.156)

σr = 2(λ+G)D1 + (λ+ 2G)D2 + 2(λ+G)D2 ln r − 2GD3
1

r2
− κα∆θ ,

(6.157)

σφ = 2(λ+G)D1 + λD2 + 2(λ+G)D2 ln r + 2GD3
1

r2
− κα∆θ . (6.158)

The integration constants are determined from the boundary conditions
for the radial stress σr = 0 when r = a or r = b, and can be found in
Eqs. (A.38) - (A.40).

O

y

xa=1.0 m
b=2.0 m

θa = 400◦C

θb = 100◦C

Figure 6.7: Numerical model for the thick-walled cylinder.

For the numerical solution the Jem/Jive finite element package and
the 8-node thermo-mechanical solid-like shell element has been used to
calculate the temperature and displacement field. The thermo-mechanical
coupling consists of the thermal expansion, due to the difference in tem-
perature at the nodes. The cylinder is axial symmetric for both the x-axis
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and the y-axis, and only a quarter of the cylinder needs to be modelled. At
the y-axis the boundary conditions prevent the movement in x-direction,
and at the x-axis the movement in y-direction is prevented. The number
of elements in radial (and circumferential) direction is doubled in each se-
quential calculation from 1 to 8 elements. The results of the analytical and
numerical solution are listed for the example below.

Example

Let a = 1.0 m, b = 2.0 m, θa = 400◦C, and θb = 100◦C. Further more
for the material parameters we choose E = 1.0 (MPa), ν = 0.0, and α =
20.0 · 10−6 ◦C−1 . The following parameters can be determined with this
data;

λ =
νE

(1 + ν)(1 − 2ν)
= 0 , (6.159)

G =
E

2(1 + ν)
= 0.5 , and (6.160)

κ =
E

1 − 2ν
= 1.0 . (6.161)

And for the analytical solution the following integration constants are
found with Eqs. (A.38) - (A.40); D1 = 8.328 · 10−3, D2 = −4.328 · 10−3, and
D3 = −4.0 · 10−3. With Eq. (6.153), and Eqs. (6.154) - (6.158) the tempera-
ture, displacement, strains, and stresses at each point in the cylinder can
be calculated. In Table 6.2 the values at the inner wall, where r = a = 1.0 m
and θa = 400◦C, and at the outer wall, where r = b = 2.0 m and θb = 100◦C,
are listed.

Property Formula Units Inner wall Outer wall
(r=a=1.0 m and θa=400◦C) (r=b=2.0 m and θb=100◦C)

ur D1r + D2r ln r + D3
1
r

[m] 4.3281· 10−3 8.6562· 10−3

εr D1 + D2(1 + ln r) − D3
1
r2

[-] 8.0· 10−3 2.0· 10−3

εφ D1 + D2 ln r + D3
1
r2

[-] 4.3281· 10−3 4.3281· 10−3

σr (λ + 2G)εr + λεφ − κα∆θ [MPa] 0.0 0.0
σφ λεr + (λ + 2G)εφ − κα∆θ [MPa] -3.6719· 10−3 2.3281· 10−3

Table 6.2: Values of the displacement, strain, and stress in radial and cir-
cumferential direction at the inner and outer wall of the cylinder.

The results of the analytical and numerical temperature and displace-
ment calculation can be found in the Figures 6.9 and 6.10 below. In Fig-
ure 6.11 and 6.12 the analytically determined strain and stress field are
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given. From Figure 6.13 and 6.14 give the convergence rate can be ob-
tained, where the error is determined for each step in mesh-refinement
(from 2 and 4 elements towards 8 elements).

x

y

O

Figure 6.8: Numerically determined temperature distribution for the
thick-walled cylinder.

By taking four elements in radial direction, the temperature field and
displacement field can already be calculated quite accurately. The order
of the error is near the value of 2 in both cases. This means that the error
reduces by a factor 4 when the mesh-refinement is doubled.
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Figure 6.9: Analytically and numerically determined temperature field in
radial direction.

1 1.2 1.4 1.6 1.8 2
Radius [m]

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

D
is

pl
ac

em
en

t [
m

]

Analytical solution
1 element
2 elements
4 elements
8 elements

Figure 6.10: Analytically and numerically determined displacement field
in radial direction.
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Figure 6.11: Strain in radial and circumferential direction.
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Figure 6.12: Stress in radial and circumferential direction. When the Pois-
son’s ratio ν is taken zero and stiffness E 6= 1, values can directly be mul-
tiplied with E to obtain the stresses in that case.
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Figure 6.13: Error determination for the temperature.
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Figure 6.14: Error determination for the displacement.
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6.5 Summary

Experiments on Glare showed the excellent fatigue and fire resistance of
this fibre metal laminate, which could mean a major improvement in air-
craft safety. To understand and calculate the effect of temperature on the
material the solid-like shell element developed in earlier research is ex-
tended to include thermal expansion and heat transfer. With the thermo-
mechanical solid-like shell element finite element simulations can be per-
formed to investigate the thermal effects for Glare in detail. The simula-
tion will be used to analyse the material behaviour for in-service tempera-
ture conditions (-55 up to 70 ◦C). Two examples (performed for aluminium
2024-T3 and glass-fibre epoxy) show the good agreement between analyti-
cally and numerically determined expansion and deflection of a long, thin
strip consisting of a homogeneous material or two materials with different
thermal expansion.



130 CHAPTER 6. THE THERMO-MECHANICAL SOLID-LIKE SHELL ELEMENT



Chapter 7

The isotropic hardening model

In the thermo-mechanical solid-like shell element description in Chapter 6
geometrically nonlinear behaviour is included. Beside geometrical nonlin-
earities also physical nonlinearities, such as strain hardening and damage
growth, can be observed when loading fibre metal laminates. The strain
hardening behaviour of aluminium will be modelled in this chapter using
an isotropic Von Mises plasticity formulation. The three-dimensional state
description of the solid-like shell allows for a straightforward implemen-
tation. The strain hardening model is used in a number of blunt notch
simulations and compared with experimental test results.

7.1 Introduction

For aluminium, as in general for most metals, the inelastic response is
characterised by a strain hardening behaviour. In Figure 3.17 of Chap-
ter 3 the aluminium stress-strain behaviour in tension has been shown. In
this chapter we will derive a plasticity model for multi-dimensional stress-
states.

In general, aluminium can be regarded as an isotropic material. How-
ever, due to the rolling process especially in thin sheet the grains obtain a
preferred direction, which causes anisotropy in the mechanical properties.
The difference between the stress-strain behaviour in rolling direction and
the transverse direction can be substantial, as indicated by Figure 3.18. In
(Hashagen 1998) the anisotropic aluminium behaviour is taken into ac-
count using a Hoffman yield function.

In the current chapter however, we will use an isotropic Von Mises
yield function for several reasons. One reason is that the difference be-
tween the rolling and transverse direction is overshadowed by the scat-
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ter in aluminium stress-strain curves obtained by different sources, as can
be clearly observed from Figure 3.18. Thus, the value of a more detailed
model depends on the accuracy of the input data. Moreover, the complex-
ity of the more detailed anisotropic Hoffman model is increased over an
isotropic model and is therefore known to be less robust. The general solu-
tion procedure for the system of equations including hardening has been
described in Chapter 5.

The isotropic hardening model will be calibrated with the experimen-
tal test results for aluminium 2024-T3 given in Chapter 3. Thus, the alu-
minium stress-strain behaviour for an arbitrary loading condition can be
determined. In combination with the glass-fibre epoxy properties, the
blunt notch behaviour of standard and special Glare laminates will be sim-
ulated in several benchmark tests.

7.2 The aluminium hardening behaviour

7.2.1 The Von Mises yield criterion

In the general numerical framework described in Chapter 5, the concept
of a loading or yield function was introduced to bound all possible stress
states in a material point. Stress states inside the contour specified by the
yield function only cause elastic deformations, while stress states on this
yield surface give rise to elasto-plastic deformations.

Many yield functions have been proposed to capture the isotropic or
anisotropic plasticity behaviour, but here the commonly used pressure-
independent Von Mises plasticity formulation is used. This formulation
is the classical smooth approximation of the Tresca yield function to as-
certain the unique definition of the gradient to the yield surface and thus
avoid difficulties in the incremental stress-strain relation. Starting from
the general form of the yield function as given in Eq. 5.100:

f(σ, κ) = σ̃(σ) − σ̄(κ) ≤ 0 , (7.1)

where σ̃(σ) defines the Von Mises yield contour, see for example (de Borst
and Sluys 1999), according to

σ̃(σ) =
√

1/2[(σI − σII)2 + (σII − σIII)2 + (σIII − σI)2] , (7.2)

where σI, σII, and σIII are the principal stresses. The Von Mises yield con-
tour can also be written, by using the second deviatoric stress invariant J2

in Eq. 7.2, as

σ̃(σ) =
√

3J2 . (7.3)
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The flow theory of plasticity in this case utilises the Von Mises yield con-
tour and is therefore also named the J2-flow theory. The definition of the
second deviatoric stress invariant J2 is

J2 = 1/2σTPσ , (7.4)

where the matrix P is written as follows:

P =





















2/3 −1/3 −1/3 0 0 0

−1/3 2/3 −1/3 0 0 0

−1/3 −1/3 2/3 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2





















. (7.5)

The yield function can thus be rewritten as

f(σ, κ) =
√

3/2σTPσ − σ̄(κ) ≤ 0 , (7.6)

The advantage of the factor 3/2 becomes clear in pure uniaxial tension
when the yield function simply reduces to the uniaxial yield strength σ̄.
If during loading the yield function becomes equal to zero, plastic defor-
mation will take place. If, during unloading, the yield function becomes
less than zero, a purely elastic behaviour is retrieved. Thus, unloading or
reloading up to yield is a purely elastic process.

7.2.2 The hardening law

The yield strength σ̄ is a function of the hardening parameter κ in Eq. 7.6.
The following exponentially saturating hardening law is assumed for σ̄:

σ̄(κ) = σ̄0 + (σ̄u − σ̄0)(1 − e−ξκ) , (7.7)

where σ̄0 is the initial yield stress, σ̄u is the ultimate stress, and ξ is the
hardening rate. The hardening parameter κ is typically dependent on the
strain history via invariants of the plastic strain tensor εpl. Here, the strain
hardening hypothesis is used, i.e., the evolution of the hardening parame-
ter is assumed to be related to the second invariant of the strain tensor as
follows (see also Eq. 5.108):

κ̇ =

√

2/3(ε̇pl)TTε̇pl . (7.8)
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The value of κ is obtained upon integration over the loading path. The
loading history of the yield function only depends on the scalar-valued
hardening parameter, which means that the yield surface can only expand
or shrink. Thus, an isotropic hardening behaviour is found in this way.

When we use an associative flow rule, i.e. the plastic flow is written
as m = n = ∂f/∂σ, and apply the Von Mises yield function of Eq. 7.6 in
Eq. 5.106 the plastic strain rate reads:






εpl
1

εpl
2

εpl
3






=

λ̇

2σ̄







2σ1 − σ2 − σ3

2σ2 − σ3 − σ1

2σ3 − σ1 − σ2






. (7.9)

This expression can now be used in Eq. 7.8 to determine κ̇, which leads to

κ̇ =
λ̇

σ̄

√

1/6[2σ1 − σ2 − σ3)2 + (2σ2 − σ3 − σ1)2 + (2σ3 − σ1 − σ2)2] , (7.10)

which after reworking leads to

κ̇ = λ̇ . (7.11)

The rate of the plastic flow λ̇ is thus equal to the strain hardening rate κ̇.

7.2.3 The uniaxial stress-strain curve

When we consider a test in uniaxial tension, (σ1, σ2, σ3) = (σ, 0, 0), a gen-
eral experimental approach to determine the hardening diagram for met-
als, the associated flow rule according to Eq. 7.9 gives

ε̇
pl
1 =

1

2
λ̇[2,−1,−1]T . (7.12)

Thus, ε̇pl
1 = λ̇, or by using Eq. 7.11 ε̇pl

1 = κ̇, i.e. the uniaxial plastic strain in
loading direction coincides with the hardening parameter. The hardening
model for aluminium 2024-T3 can therefore directly be obtained from the
uniaxial tensile test given in Figure 3.17 of Chapter 3, and is given by

σ̄(κ) = 335.0 + (471.0 − 335.0)(1 − e−21.57κ) , (7.13)

The experimental and simulated uniaxial stress-strain curve for aluminium
2024-T3 with the derived hardening law are depicted in Figure 7.1. From
this figure it can be seen that the hardening law used in the model gives a
good agreement with the experimental aluminium stress-strain curve over
the whole strain range. The model, however, predicts a sharper transition
from the elastic to the plastic region compared to the experimental curve.
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Figure 7.1: The aluminium 2024-T3 stress-strain curve (average of longi-
tudinal and transverse direction), together with the model based on an
exponentially saturating hardening law.

7.3 Benchmark tests

In this section a number of benchmark tests are performed on Glare lami-
nates to demonstrate the hardening model presented in this chapter. The
Glare laminates consist of aluminium layers, for which the hardening model
is used to describe the elasto-plastic behaviour, and glass-fibre-epoxy lay-
ers, in which damage plays a role. For consistency with the experiments, a
damage model is used for the glass-fibre epoxy layers. The damage model
will be discussed in detail in Chapter 8.

In the first example a Glare3-3/2-0.4 blunt notch simulation is com-
pared with experimental data and a simulation found in the literature. The
second example considers the blunt notch test simulation for the special
Glare laminates previously discussed in Section 4.2.3. All layers are de-
fined in one (or two) elements, though by taking one element for each layer
the model can become more accurate in thickness direction, see (Hashagen
1998).
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7.3.1 Blunt notch test on a standard Glare laminate

A Glare3-3/2-0.4 laminate was tested by (Meziere 2000) to determine the
starting point of different failure mechanisms, such as matrix damage, de-
lamination and fibre breakage. A number of specimens were used and
loaded up to several stages of the ultimate load. A finite element analysis
was performed by (Schipperen 2001b) on this laminate to compare the fail-
ure starting points and the load-displacement curve. Thus, the numerical
blunt notch simulation performed in this section can directly be compared
with the experimental results obtained by (Meziere 2000) and the numeri-
cal results obtained by (Schipperen 2001b) for the Glare3-3/2-0.4 laminate.

The Glare3-3/2-0.4 specimen has a length of 200 mm, a width of 50
mm, and a notch size of 5.0 mm, of which only a quarter is modelled for
reasons of symmetry. The specimen has a nominal thickness of 1.708 mm
(0.127 mm for each fibre layer) and is tested in the longitudinal direction.
In Figure 7.2 the finite element mesh for the quarter model of the specimen
is shown. The model consists of 816 eight-noded elements.

∆F

w
=25

m
m

r=2.5 mm y

x

O

l=100 mm

Figure 7.2: Finite element mesh for the the Glare3-3/2-0.4 blunt notch
specimen (quarter model).

In Figure 7.3 the numerically obtained stress-strain curve for the Glare3-
3/2-0.4 blunt notch specimen is given together with the experimental and
numerical results found in the literature. The points of first and 76%
matrix damage, and fibre breakage obtained numerically by (Schipperen
2001b) are given as an indication as well. The numerical analysis per-
formed by (Schipperen 2001b) was done using two different aluminium
models, indicated by ”high” and ”low” in the figure, derived from two
different experimental sources, as shown in Figure 3.18. From the figure
it can be seen that the agreement between the numerical simulation and
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Figure 7.3: Comparison between the stress-strain curve obtained from the
numerical Glare3-3/2-0.4 blunt notch simulation and the resulting curves
obtained from experimental and numerical data in the literature.

both the experimental and numerical stress-strain curves from the litera-
ture is good and corresponding to the analysis with the ”low”-aluminium
of (Schipperen 2001b).

In Figure 7.4 the Von Mises stress distribution in the aluminium layer(s)
of the Glare3-3/2-0.4 laminate is given. The plots are determined at three
different Von Mises stress levels in the undisturbed (free field) region of
the blunt notch specimen, viz. σ0 equals 250, 300, and 340 MPa. From this
figure it can be seen that the plasticity region starts at the right edge of the
notch, due to local stress concentrations, and gradually spreads over the
whole specimen upon continued loading.

In the figure the stress distribution in the fibre layers at the cross-section
can also be seen. The Von Mises stress is plotted here as well, which how-
ever approximately equals the stress in loading direction due to the small
contribution of the other directions.
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b) σ0 = 300 MPa

a) σ0 = 250 MPa

c) σ0 = 340 MPa

Figure 7.4: The numerically determined Von Mises stress distribution in
the aluminium layer(s) of the Glare3-3/2-0.4 laminate. The indicated Von
Mises stress levels σ0 are the values in the undisturbed region of the blunt
notch specimen.
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7.3.2 Blunt notch tests on special Glare laminates

Experimental blunt notch results for special Glare laminates have been
discussed in Section 4.2.3. In this second benchmark test, blunt notch sim-
ulations are performed on this special Glare laminate with 0, 45, 67.5, and
90◦off-axis angles. The obtained stress-strain curves are compared in this
section with the experimental curves obtained by (Hagenbeek 2002b).

The dimensions of the special Glare specimen are 200 mm for the length,
a width of 30 mm, and a notch size of 6.35 mm. In this case a full model
is necessary due to the asymmetric lay-up. In Figure 7.5 the finite element
mesh for the full specimen model, which consists of 2560 eight-noded el-
ements, is shown. In thickness direction two elements are chosen with
a condensed but overall symmetric lay-up. Thus, secondary bending is
not considered for which the exact representation of the lay-up would be
required.
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Figure 7.5: Finite element mesh for the special Glare blunt notch specimen
(full model).

In Figures 7.6 and 7.8 the numerically obtained stress-strain curves for
the special Glare blunt notch specimen are given at respectively room tem-
perature and 80 ◦C together with the experimental results obtained by (Ha-
genbeek 2002b). From Figure 7.6 it can be seen that the agreement between
the numerical simulation and the experimental stress-strain curves is very
good in case of the 0 and 90◦off-axis angles. The blunt notch simulation
for the 45 and especially the 67.5◦off-axis angle, depicted in Figure 7.8,
show more deviation from the experimental results, though still a good
agreement is found.

It should however be noted that the maximum strain found in all the
simulations is more than twice as large compared to the experimental re-
sults. This might be caused by the secondary bending in the experimental
test specimens, which is neglected in the simulations.
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Figure 7.6: Comparison between the numerical (up to 3.2% strain) and ex-
perimental stress-strain curves obtained for the special Glare blunt notch
specimens tested at 0 and 90◦off-axis angles at room temperature.
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Figure 7.7: Comparison between the numerical and experimental stress-
strain curves obtained for the special Glare blunt notch specimens tested
at 0 and 90◦off-axis angles at 80◦C. The simulation runs up to 3.2% strain.
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Figure 7.8: Comparison between the numerical and experimental stress-
strain curves obtained for the special Glare blunt notch specimens tested
at 45 and 67.5◦off-axis angles. Simulations run up to 2.3 and 3.4% strain in
case of the 45 and 67.5◦off-axis angle respectively.
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7.4 Summary

In this chapter the strain hardening behaviour of aluminium has been
modelled. The yield function is based on an isotropic Von Mises plasticity
formulation. The three-dimensional state description of the solid-like shell
allows for a straightforward implementation.

The orthotropy in aluminium sheet material due to the rolling process
can be substantial, but has not been taken into account since the differ-
ence between the rolling and transverse direction is overshadowed by the
scatter in aluminium stress-strain curves from different literature sources.
Moreover, the complexity of the more detailed anisotropic Hoffman model
is increased over an isotropic model and is therefore known to be less ro-
bust.

The yield strength σ̄ is a function of the hardening parameter κ and an
exponentially saturating hardening law has been assumed for σ̄. Due to
the associative flow rule, it is found that κ̇ = λ̇, and the hardening model
for aluminium 2024-T3 can therefore directly be obtained from the uniaxial
tensile test given in Figure 3.17 of Chapter 3. The hardening law used in
the simulations gives a good agreement with the experimental aluminium
2024-T3 stress-strain curve.

Benchmark tests have been performed on a Glare3-3/2-0.4 blunt notch
specimen and on the special Glare laminate (tested at 0, 45, 67.5, and
90◦off-axis angle, at room temperature and 80 ◦C ) previously discussed in
Section 4.2.3. The simulations showed a good agreement with the results
found in the literature. The maximum strains reached in the simulations is
however twice as large compared to the experimental results, which might
be due to the non-included effect of secondary bending.



Chapter 8

The orthotropic damage model

8.1 Introduction

To capture the damage and failure behaviour of the glass-fibre epoxy, a
damage model will be included. In this chapter the modelling of ma-
trix damage and fibre failure is described for the unidirectional glass-fibre
epoxy ply at room temperature and at 80◦C. From this elementary ply all
possible laminate lay-ups are determined and the failure behaviour can
directly be related to the material testing performed for the unidirectional
glass-fibre epoxy in Chapter 3.

For the material model the concept of continuum damage mechanics
is used, which is described in detail by (Lemaı̂tre and Chaboche 1990)
and (de Borst and Sluys 1999) amongst others. The concept was intro-
duced by (Kachanov 1958) to describe creep failure in metals. Failure
was characterised by a scalar damage variable, that represents the ratio
of the damaged material to the initial, undamaged material. (Lemaı̂tre
and Chaboche 1978), amongst others, extended the concept to other types
of loading and failure by using tensor-valued damage variables. More
recently, the approach is increasingly used in the failure analysis of lami-
nated composites in combination also with temperature. (Allix, Bahlouli,
Cluzel, and Perret 1996) modelled the temperature dependent mechanical
behaviour of carbon-epoxy laminates with strain energy based damage
mechanics. Anisotropy and thermal residual stresses are taken into ac-
count by (McCartney 1998) who described the transverse crack formation
in cross-ply laminates.

A straightforward and accurate orthotropic damage model is given by
(Schipperen 2001a) for transverse matrix cracking. The occurrence and
growth of damage in this reference is governed by a strain measure, which
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is determined from the Hoffman plasticity model in a strain-based for-
mulation. It is emphasised that other failure criteria could be used, e.g.
Hashin-Rotem, Tsai-Hill or Puck-Schneider, of which many have been eval-
uated by (Sun, Quinn, Tao, and Oplinger 1996). The damage parameters
are directly implemented into the stiffness matrix. The same approach
will be followed here with some modifications to include fibre failure and
to assure a good correspondence with the material test data.

8.2 The glass-fibre epoxy damage behaviour

The general outline for the damage modelling has been given in Section 5.5.4
and shown in Figure 5.3. Thus, an implicit incremental-iterative solution
procedure will be applied. The equivalent strain measure, the damage
growth laws, and the damage matrix will be detailed in this section. Spe-
cific material models for the unidirectional glass-fibre epoxy layer will be
given as well, based on the experimental test data derived in Chapter 3.

8.2.1 The equivalent strain

For the definition of the equivalent strain γ̃ a constitutive assumption is
needed, which can be, similar to plasticity, any invariant measure of the
total strains or of the elastic energy per unit mass. Thus the equivalent
strain γ̃ can also be obtained by rewriting the yield function of the or-
thotropic Hoffman plasticity model in a strain-based format. For a contin-
uum material the Hoffman yield function with isotropic softening is given
by

Φ(σ̃, σ̄) = σ̃ − σ̄ = 0 , (8.1)

where the equivalent stress σ̃ is defined as

σ̃ =
√

1/2σTPσ + σTq , (8.2)

with the following definitions for P and q ,

P =





















2(α4 + α6) −2α4 −2α6 0 0 0

−2α4 2(α4 + α5) −2α5 0 0 0

−2α6 −2α5 2(α6 + α5) 0 0 0

0 0 0 6α7 0 0

0 0 0 0 6α8 0

0 0 0 0 0 6α9





















, (8.3)
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qT = (α1, α2, α3, 0, 0, 0) , (8.4)

and the stress tensor σ,

σT = (σ11, σ22, σ33, σ12, σ23, σ31) . (8.5)

The softening of the model is represented by the softening parameter σ̄,
while the parameters αi depend on the yield values of the material ac-
cording to
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(8.6)

The parameters σ̄t
ii, σ̄c

ii, and σ̄ij are the yield values in tension, compression
and shear respectively, which in case of hardening do not remain constant
but depend on the hardening parameter. The strain hardening models for
unidirectional glass-fibre epoxy have been derived from the experimen-
tal test results of Section 3.3.2 together with the relation between κ and
both γ22 and γ12. Simulations of a test with loading perpendicular to the
fibres and a simple shear test at room temperature and at 80◦C, depicted
in Figures 8.2 and 8.3, are used to obtain a (linear) calibration between κ
and both γ22 and γ12 at κ0 = 0.045. The resulting hardening models as
a function of κ are given in Table 8.1. Since the UD glass-fibre epoxy is
transversely isotropic σ̄33t = σ̄22t and σ̄23 = σ̄13 = σ̄12, and further the val-
ues in compression are taken similar as in tension. In case there is no strain
hardening, than the parameter σ̄0 = σ̄ = σ̄t

11 in Eq. 8.6.
To obtain the equivalent strain of the damage formulation, the yield

function is rewritten with the help of Hooke’s law into a strain-based for-
mulation. The stiffness can be reduced due to the presence of damage, and
therefore a tensor Dω is used which will be further detailed in Section 8.2.2.
The damage loading function in terms of the equivalent strain is thus

f(γ̃, κ) =
1

D11

√

1/2γTDωTPDωγ + γTDωTq − κ . (8.7)

The tensorP and the vector q are the same as in the plasticity formulation,
except for the softening parameter σ̄0 which is substituted by the equiva-
lent strain threshold κ0.
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Property Values in different ranges of κ [MPa]
at room temperature at 80◦C

σ̄11t = 2277.0 1984.5
σ̄11c = σ̄11t

κ < 0.045 κ ≥ 0.045 κ < 0.045 κ ≥ 0.045

σ̄22t = 15.94 −1.372 · 103κ2 + 4.311 · 102κ 1.0 −1.010 · 103κ2 + 1.253 · 102κ

σ̄22c = σ̄22t

σ̄33t = σ̄22t

σ̄33c = σ̄22t

κ < 0.045 κ ≥ 0.045 κ < 0.045 κ ≥ 0.045

σ̄12 = 15.94 −8.183 · 103κ6 + 1.974 · 104κ5 1.0 3.894 · 104κ3 − 3.951 · 103κ2

−1.920 · 104κ4 + 9.678 · 103κ3 +1.860 · 102κ

−2.705 · 103κ2 + 4.190 · 102κ

σ̄23 = σ̄12

σ̄13 = σ̄12

Table 8.1: The modelled strain hardening curves for unidirectional glass-
fibre epoxy at room temperature and at 80◦C based on the experimental
test results of Section 3.3.2.

The damage loading function determines if damage growth will occur,
as mentioned in Section 5.5.4. If so, the damage parameters are updated
via a damage growth law and the constitutive relation between the stress
and strain is affected. Beside this, the damage surface is also expanded
similar to the strain hardening concept in the plasticity model.

The experimental curves of the UD glass-fibre epoxy tested in trans-
verse direction at room temperature and 80◦C, depicted in Figure 8.2, show
instantaneous failure and corresponding drop in stress after the ultimate
stress is reached. However, from a numerical point of view it is better to
avoid a discontinuity in the material model, since it can lead to numerical
instability in the calculation process. Therefore, after the ultimate stress is
reached in the strain hardening branch a consecutive softening branch is
introduced in the numerical damage model. The equivalent strain mea-
sure of Eq. 8.7, as given by (Schipperen 2001a), is modified as follows to
ascertain a monotonically increasing κ:

κ =

∫

κ̇dt , (8.8)

where

f( ˙̃γ, κ̇) =
1

D11

√

1/2γ̇TDTPDγ̇ + γ̇TDTq − κ̇ . (8.9)
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8.2.2 The effect of damage on the stiffness matrix

The constitutive relation between the stress and strain for an orthotropic
damage model was given in Section 5.5.4 as σ = (I−Ω)Dγ. However, this
formulation can cause an undesirable influence of the damage parameter
in one direction on the other directions through the off-diagonal terms in
the elastic stiffness matrix. To avoid this effect, the damage parameters are
directly implemented into the stiffness matrix, which yields

Dω=





















(1 − ωf )D11 (1 − ω)D12 (1 − αω)D13 0 0 0

(1 − ω)D12 (1 − ω)D22 (1 − ω)D23 0 0 0

(1 − αω)D13 (1 − ω)D23 D33 0 0 0

0 0 0 (1 − αω)D44 0 0

0 0 0 0 (1 − αω)D55 0

0 0 0 0 0 D66





















.

(8.10)

Matrix cracking in the unidirectional glass-fibre epoxy layer is covered in
the model by the damage parameter ω. The factor α determines the degree
of damage of the less influenced directions with respect to the damage
parameter. The stiffness in fibre direction D11 is not affected by the matrix
cracking and has its own damage parameter ωf . Nonlinearities in fibre
direction could be taken into account with this parameter, though (since
the glass-fibre epoxy behaves linearly elastic in this direction) it will be
used here to include ultimate fibre failure.

8.2.3 The damage growth laws

The damage parameters are controlled in general by a damage growth
law which depends on the damage-history parameter κ (that equals the
equivalent strain in case of damage growth). For matrix cracking an expo-
nentially decaying law is chosen, given by

ω = 1 − e−ξ(κ−κ0)2 , (8.11)

where κ0 is the damage threshold and ξ is the damage growth rate. Since
matrix cracking affects the stiffness in more directions it is important to
choose the damage growth law such that the material behaviour in all
loading directions is correctly predicted.

The experimental test results at room temperature and 80◦C, for the
tests loaded perpendicular to the fibres and in shear as listed in Section 3.3.2,
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are used to calibrate the model. In Table 8.2 the damage growth laws for fi-
bre and matrix damage in unidirectional glass-fibre epoxy are given (with
the factor α = 0.7). Below the threshold value κ0 the damage parameters
ωf and ω are zero (or equal to the maximum attained value in a previ-
ous loading condition). Beyond the threshold, matrix damage starts to in-
crease according to the given exponential law and finally reaches the value
of 1.0. This value is reached beyond the point of ultimate failure and al-
lows for the softening branch in the stress-strain curve. For fibre damage a

Property Values in different ranges of ε11 or κ [-]
at RT / 80◦C at room temperature at 80◦C

ε11 < 0.045 ε11 ≥ 0.045 ε11 ≥ 0.045

ωf = 0.0 0.939 − 0.939 · exp−500·(ε11−0.045) 0.99 − 0.99 · exp−500·(ε11−0.045)

κ < 0.045 κ ≥ 0.045 κ ≥ 0.045

ω = 0.0 1 − exp−300.0·(κ−0.045)2 1 − exp−300.0·(κ−0.045)2

Table 8.2: The damage growth laws for fibre and matrix damage in uni-
directional glass-fibre epoxy at room temperature and 80◦C based on the
experimental test results of Section 3.3.2.

maximum strain criterion is used for the strain in fibre direction. Beyond
this point of ultimate fibre failure an exponentially decaying function is
chosen to avoid numerical instabilities.

8.3 The tangent stiffness matrix with damage

In the general outline of the damage model as described in Section 5.5.4
the stress is evaluated from the given strain. For an efficient computa-
tional procedure, the tangent stiffness matrix can be derived by a consis-
tent linearisation of the stress-strain relation. The derivative of the chosen
exponential damage growth law of Eq. 8.11 is given by

ω̇ = 2ξ(κ− κ0)e
−ξ(κ−κ0)2κ̇ , (8.12)

where the derivative of κ has components in all strain directions, and is
written as

κ̇ =
∂κ

∂γ
γ̇ =

1

2κD11

(

Dω
jiPjkD

ω
klγl +Dω

jiqj
)

γ̇ii . (8.13)

The total derivation of the first row of the tangent stiffness matrix can be
determined from the stress-strain relation in this direction, as can also be
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found in (Schipperen 2001a):

σ1 = (1 − ωf )D11γ11 + (1 − ω)D12γ22 + (1 − αω)D13γ33 , (8.14)
σ̇1 = (1 − ωf )D11 ˙γ11 + (1 − ω)D12 ˙γ22 − ω̇D12γ22 + (1 − αω)D13 ˙γ33

− αω̇D13γ33 , (8.15)

Thus, the terms of the tangent stiffness matrix read:

Dω
11 t =

∂σ̇1

˙γ11

= (1 − ωf )D11 − b∗11D12γ22 − αb∗11D13γ33 , (8.16a)

Dω
12 t =

∂σ̇1

˙γ22

= (1 − ω)D12 − b∗22D12γ22 − αb∗22D13γ33 , (8.16b)

Dω
13 t =

∂σ̇1

˙γ33

= (1 − αω)D13 − b∗33D12γ22 − αb∗33D13γ33 , (8.16c)

Dω
14 t =

∂σ̇1

˙γ12

= −b∗12D12γ22 − αb∗12D13γ33 , (8.16d)

Dω
15 t =

∂σ̇1

˙γ23

= −b∗23D12γ22 − αb∗23D13γ33 , (8.16e)

Dω
16 t =

∂σ̇1

˙γ31

= −b∗31D12γ22 − αb∗31D13γ33 , (8.16f)

where the following abbreviation has been used for ease of formulation:

b∗ii = 2ξ(κ− κ0)e
−ξ(κ−κ0)2

(

1

2κD11

(

Dω
jiPjkD

ω
klγl +Dω

jiqj
)

)

γ̇ii . (8.17)

The other terms of the tangent stiffness matrix have been derived in a sim-
ilar manner, the resulting formulation is given below:

Dω
21 t = (1 − ω)D12 − b∗11D12γ11 − b∗11D22γ22 − b∗11D23γ33 , (8.18a)

Dω
22 t = (1 − ω)D22 − b∗22D12γ11 − b∗22D22γ22 − b∗22D23γ33 , (8.18b)

Dω
23 t = (1 − ω)D23 − b∗33D12γ11 − b∗33D22γ22 − b∗33D23γ33 , (8.18c)

Dω
24 t = − b∗12D12γ11 − b∗12D22γ22 − b∗12D23γ33 , (8.18d)

Dω
25 t = − b∗23D12γ11 − b∗23D22γ22 − b∗23D23γ33 , (8.18e)

Dω
26 t = − b∗31D12γ11 − b∗31D22γ22 − b∗31D23γ33 , (8.18f)

Dω
31 t = (1 − αω)D13 − αb∗11D13γ11 − b∗11D23γ22 , (8.19a)

Dω
32 t = (1 − ω)D23 − αb∗22D13γ11 − b∗22D23γ22 , (8.19b)

Dω
33 t = D33 − αb∗33D13γ11 − b∗33D23γ22 , (8.19c)

Dω
34 t = − αb∗12D13γ11 − b∗12D23γ22 , (8.19d)

Dω
35 t = − αb∗23D13γ11 − b∗23D23γ22 , (8.19e)

Dω
36 t = − αb∗31D13γ11 − b∗31D23γ22 , (8.19f)
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Dω
4i t = − αb∗iiD44γ12 for i = 1, 2, 3 , (8.20a)

Dω
44 t = D44 − αb∗12D44γ12 , (8.20b)

Dω
45 t = − αb∗23D44γ12 , (8.20c)

Dω
46 t = − αb∗31D44γ12 , (8.20d)

Dω
5i t = − αb∗iiD55γ23 for i = 1, 2, 3 , (8.21a)

Dω
54 t = − αb∗12D55γ23 , (8.21b)

Dω
55 t = D55 − αb∗23D55γ23 , (8.21c)

Dω
56 t = − αb∗31D55γ23 , (8.21d)

Dω
6i t = 0 for i = 1, 2, 3, 4, 5 , (8.22a)

Dω
66 t = D66 . (8.22b)

It should be noted that the tangent stiffness matrix is non-symmetric in
this case.

8.4 Simulated and experimental stress-strain curves

In the previous sections the damage model has been described and cal-
ibrated with the experimental data at room temperature and 80◦C. The
simulated and experimental stress-strain curves are given in this section
to indicate the accuracy of the calibration.

Fibre damage

In Figure 8.1 the simulated and experimental tensile stress-strain curve
in fibre direction are shown for unidirectional glass-fibre epoxy at room
temperature and 80◦C. The overview of the experimental test results for
the Glare constituents can be found in Chapter 3 and further details are
mentioned by (Hagenbeek 2004b).

It should be noted that the experimental curve is a modelled average
curve from a number of individual tests and the fibre failure is indicated
as a sudden and instantaneous drop to a zero stress level. The aim in
the damage model is to capture the behaviour up to failure and to avoid
numerical instabilities afterwards, rather than to give an exact descrip-
tion of the failure behaviour (which shows variation over the individual
tests). The exponential decaying law defined in 8.2.3 to avoid the numeri-
cal instabilities after fibre failure can be clearly observed in Figure 8.1. The
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simulation is performed with a single (eight-noded) element, which is re-
strained on one end and with a prescribed displacement on the other end
(in fibre direction).
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Figure 8.1: The simulated and experimental tensile stress-strain curve in
fibre direction for unidirectional glass-fibre epoxy at room temperature
and 80◦C.

Matrix damage

Figure 8.2 gives the simulated and experimental tensile stress-strain curve
perpendicular to the fibre direction for UD glass-fibre epoxy at room tem-
perature and 80◦C. As described for the fibre failure above, the failure is
indicated as a sudden and instantaneous drop to a zero stress level. In this
case numerical instabilities are avoided by introducing a softening branch,
as mentioned in Section 8.2.3. A faster softening of the material would
probably better describe the physics, but is difficult to obtain with the cur-
rent model. The difficulty is related to the large difference in stiffness and
failure strain between the glass-fibres and the epoxy matrix (compare, e.g.,
the scales in Figures 8.1 and 8.2). The rate κ̇ decreases due to a decreasing
stiffness and counteracts the damage growth. The simulation is performed
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with a single (eight-noded) element, which is restrained on one end and
with a prescribed displacement on the other end (in transverse direction).
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Figure 8.2: The simulated and experimental tensile stress-strain curve per-
pendicular to the fibre direction for unidirectional glass-fibre epoxy at
room temperature and 80◦C.

In Figure 8.3 the simulated and experimental shear stress-strain curve
(loaded in fibre direction) are shown for UD glass-fibre epoxy at room tem-
perature and 80◦C. At room temperature, the simulation agrees fairly well
with the experimental curve up to 2% strain, then starts to deviate more
considerably. The simulation in this case is a simple shear test, performed
with a single (eight-noded) element. In transverse direction all nodes are
restrained, in fibre direction one side is restrained and the other side has a
prescribed displacement.

The damage model is thus able to capture the UD glass-fibre epoxy
behaviour at room temperature and 80◦C and in the different directions
with reasonable accuracy. In the next section, a number of benchmark tests
will be performed to demonstrate the behaviour of the damage model for
composite and Glare laminates.
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Figure 8.3: The simulated and experimental shear stress-strain curve for
unidirectional glass-fibre epoxy at room temperature and 80◦C.

8.5 Benchmark tests

8.5.1 Off-axis tests on 0/90 cross-ply glass-fibre epoxy

A first benchmark test to demonstrate the performance of the damage
model is the simulation of a 0/90 composite with tensile loadings under
different off-axis angles. The test specimens mentioned in Section 3.4 have
a length of 150 mm (without the clamped area) and a width of 25 mm,
see (Hagenbeek 2004a). In the numerical model, 150 elements are used
and one end is restrained in the loading direction and the other end is un-
restrained in both the loading and perpendicular to the loading direction,
as shown in Figure 8.4. The off-axis angles are 0, 7.5, 15, 22.5, and 45◦.

The simulated and experimental tensile stress-strain curves are shown
in Figure 8.5. From this figure it can be seen that up to 1% strain all simu-
lations closely match the experimental results. Beyond this strain the sim-
ulation for 0 and 45◦off-axis angle still show a good agreement with the
experimental curves, but the simulations for 7.5, 15, 22.5◦start to deviate
from the experimentally found curves.
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Figure 8.4: Finite element mesh for the simulation of the 0/90 composite
test specimen which is tested for several off-axis angles.
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Figure 8.5: The simulated and experimental tensile stress-strain curves for
a 0/90 glass-fibre epoxy composite tested with 0, 7.5, 15, 22.5, and 45◦off-
axis angle.
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The absence of a further stiffness reduction after 1% can be explained
by the implementation of the UD glass-fibre epoxy in the damage model,
as given in Section 8.4. However, in the experimental tests the layers might
already show damage due to fibre shearing (which is not covered in the
model). This phenomenon becomes visible in the test specimens at larger
strains.

8.5.2 Tensile tests on standard Glare laminates

In the second benchmark test the simulated and experimental tensile stress-
strain curves are compared for three different Glare grades with an equal
number and thickness of aluminium layers: viz. Glare2-3/2-0.3, Glare3-
3/2-0.3, and Glare4-3/2-0.3. The differences between the simulation of
each Glare grade can thus directly be related to the glass-fibre prepreg lay-
up in between the aluminium layers.

x

y

r=500 mm
∆u

w=10 mmw
=6.25

m
m O

l=50 mm

l=150 mm

Figure 8.6: Finite element mesh of the tensile test specimen (quarter
model).

For the aluminium layers, the hardening model presented in Chap-
ter 7 is taken. The stress-strain curves for each Glare grade are considered
in the longitudinal (L) direction and the longitudinal transverse (LT) di-
rection. The simulations are performed at room temperature, for which
experimental stress-strain curves from the literature are available, and at
80◦C, which are used to indicate the change in stress-strain behaviour of
the specific laminates.

On the Glare2-3/2-0.3 in longitudinal transverse (LT) direction a small
mesh-refinement study has been carried out with meshes of 2x25, 4x50,
4x100, and 8x200 elements. A limited mesh-dependency has been found,
only the first step in the refinement gives some minor difference, as shown
in Figure 8.7. The major source of mesh-dependency is localisation, which
can for example be dealt with by a gradient method, see (de Borst and
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Figure 8.7: The simulated and experimental tensile stress-strain curve for
Glare2-3/2-0.3 in L and LT direction.

Muhlhaus 1992) for plasticity and (Peerlings, de Borst, Brekelmans, and
de Vree 1996) in case of damage. A quarter model of the tensile test spec-
imen with 200 (4x50) eight-noded elements, as depicted in Figure 8.6, is
therefore used to perform the rest of the simulations.

From Figure 8.7 it can be seen that for Glare2-3/2-0.3 the agreement
between the simulated and experimental tensile stress-strain curve in the
longitudinal (L) direction (at room temperature) is excellent. Up to 2%
strain, the behaviour in longitudinal transverse (LT) direction is captured
accurately as well.

In the hardening model a distinct transition at the yield point has been
chosen in order to obtain an accurate fit of the whole aluminium 2024-T3
stress-strain curve. For this reason and due to the fact that we have an
isotropic hardening model, the initial yield region in LT direction is not
captured. Beyond the 2% strain, the contribution of the glass-fibre epoxy
matrix is still present and can explain the deviation between simulation
and experiment.

For Glare3-3/2-0.3 the agreement between the simulated and experi-
mental tensile stress-strain curve (at room temperature) is very good as
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Figure 8.8: The simulated and experimental tensile stress-strain curve for
Glare3-3/2-0.3 in L and LT direction.

well. In the simulation the L and the LT direction are identical. Again the
aluminium yield behaviour in LT direction is not captured by the isotropic
hardening model and beyond 2% strain the deviation between simulation
and experiment increases to about 12.5% at the ultimate strain.

Similar results as for Glare3-3/2-0.3 are found for Glare4-3/2-0.3. In L
direction the deviation between the ultimate stress in the simulation and
the experimental test is 7.0%, which is less than found for Glare3-3/2-0.3,
and in LT direction the deviation is larger, namely 14.5%. These results
confirm the fact that the deviation beyond 2% strain is caused by the con-
tribution of the glass-fibre epoxy matrix that is still largely intact.

As indicated by all figures, the damage and hardening model are able
to capture the behaviour (at room temperature) of the three given Glare
grades very accurately, especially up to 2% strain. It should be noted that
no additional tuning (beside the glass-fibre epoxy and aluminium descrip-
tion) of the model has been performed, which confirms the accuracy of the
gathered input data.

In the next section the tensile stress-strain curves of a special Glare lam-
inate tested under various off-axis angles are considered. In this laminate
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Figure 8.9: The simulated and experimental tensile stress-strain curve for
Glare4-3/2-0.3 in L and LT direction.

glass-fibre epoxy layers in +45 and -45◦direction, so called doublers, are
added to a Glare3 baseline laminate.
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8.5.3 Tensile tests on special Glare laminates

In Section 4.2 the tensile test results on a special Glare laminate are shown,
as given by (Hagenbeek 2002b). In the same reference the tensile stress-
strain curves are found for 0, 45, 67.5, and 90◦off-axis angle, which are
compared in this section with simulations at room temperature and 80◦C.
As mentioned in Section 4.2, the special laminate has a Glare3 baseline
laminate and in addition doublers with fibre layers in +45 and -45◦direction.
In this case a full model of the tensile test specimen with 1600 (8x200)
eight-noded elements, as depicted in Figure 8.10, is used to perform the
simulation. In the simulation, a prescribed displacement is used, which
rules out any secondary bending of the asymmetric lay-up.

x

∆ur=500 mm

l=300 mm
w=12.5 mm

w
=20

m
m

l=50 mm l=50 mm

y

Figure 8.10: Finite element mesh of the tensile test specimen (full model).

The agreement between the simulated and experimental tensile stress-
strain curve of the special Glare laminate in the L and LT direction is very
good at room temperature, especially up to 2% strain, and at 80◦C, as can
be seen in Figures 8.11 and 8.12. In the simulation there is no difference
between the L and LT direction, due to the isotropic aluminium model
and the given fibre lay-up. Similar to the results of the simulations for
the standard Glare laminates in Section 8.5.2, beyond 2% strain the devia-
tion increases to about 8.5% when the experimental test specimen shows
failure. The difference in failure strain between the experiment and the
simulation, which shows failure at 4.5%, is most likely due to secondary
bending in the experimental test specimen.

In Figure 8.13 the simulated and experimental tensile stress-strain curve
are given for the 45 and 67.5◦off-axis angle at room temperature and 80◦C.
The experimental curves with 45 and 67.5◦off-axis angle are well captured
by the simulations, though again failure is found earlier in the experiment.

The benchmark tests for the special Glare laminate show that the model
can capture the behaviour of more complex build-up laminates very well.
Similar to the results for the standard Glare laminates beyond 2% strain
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Figure 8.11: The simulated and experimental tensile stress-strain curves of
a special Glare laminate in L and LT direction at room temperature.

the deviation between simulation and experiment increases due to the
glass-fibre epoxy matrix contribution that is still largely intact and the or-
thotropy of the aluminium sheet is not covered.
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Figure 8.12: The simulated and experimental tensile stress-strain curves of
a special Glare laminate in L and LT direction at 80◦C.
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Figure 8.13: The simulated and experimental tensile stress-strain curves of
a special Glare laminate for 45 and 67.5◦off-axis angle.
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8.6 Summary

In this chapter the damage model for the UD glass-fibre epoxy behaviour
has been described. The model uses the concept of continuum damage
mechanics, where a damage variable is used to denote the ratio between
the damaged and the undamaged area. For fibre and matrix damage a
separate damage parameter is taken. The equivalent strain measure is ob-
tained by rewriting the yield function of the orthotropic Hoffman plastic-
ity model into a strain-based format.

The damage parameters are directly implemented into the stiffness ma-
trix to be able to avoid an undesirable influence of the damage parameter
in one direction on the other directions. In the model not only expansion
but also shrinkage of the damage surface is allowed by calculating the
damage-history parameter κ incrementally. Thus, beside strain hardening
also a softening branch can be modelled for the glass-fibre epoxy, which is
especially useful to avoid numerical instability.

The experimental data for the UD glass-fibre epoxy at room temper-
ature and 80◦C, given in Section 3.3.2, is used to calibrate the damage
model. The simulations of the shear and tensile test in transverse direc-
tion show a good fit with the experimental curves, though only a slow
softening branch could be obtained in transverse direction.

The benchmark tests to simulate the off-axis tensile tests on a 0/90 com-
posite, tensile tests on standard glare, and off-axis tensile tests on special
glare laminates (at room temperature and 80◦C) with extra fibre layers in
-45 and 45◦direction, show a very good agreement with the experimental
results. The slow softening branch found in tranverse direction for the UD
glass-fibre epoxy can explain the deviation at room temperature between
the simulated and experimental stress-strain curves at larger strains (be-
yond 2% for the Glare tests). However, the ultimate strengths found in
the Glare simulations are never more than 15% off from the experimental
values.



Chapter 9

The transient model

In this chapter the transient model, described in general in Chapter 5, is
further detailed. This model allows us to investigate the response of the
structure in time due to dynamic thermo-mechanical loadings. A transient
analysis can for example be performed to determine the rate at which the
aircraft skin is heated up due to an external heat source, or to study me-
chanical vibrations due to an impact.

Two benchmark tests are presented to demonstrate the performance
of the thermo-mechanical solid-like shell element and the transient solver.
In the first test a vibration due to a mechanical, thermal and combined
thermo-mechanical loading is considered to validate the element. In the
second test the ability of the transient solver is demonstrated for the snap-
through of a cylindrical panel subjected to a concentrated load. The result-
ing deflection is compared with numerical solutions obtained with Park’s
method for different time steps, and with results for another transient al-
gorithm given by (Kuhl and Ramm 1996).

9.1 Introduction

Since temperature can largely affect the properties of especially the glass-
fibre epoxy, see Chapter 3, it is important to determine the temperature
field that is reached in the structure. This can be done by taking the rate at
which heat is stored in the structure into account in the model. This will
provide the development of the temperature distribution (also in thick-
ness direction), the stress distribution due to differences in temperature as
well as expansion, and the ultimate temperatures or steady state reached
within a specific time. The simulations can be used to investigate the
thermo-mechanical behaviour of the laminate in time and to found for
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example the choice of a worst case temperature used in design.
The mechanical behaviour of the structure can also depend on time,

for example due to impact. If the loads are applied rapidly, with respect
to the natural frequencies of the system, inertial forces need to be consid-
ered; i.e. a truly dynamic problem needs to be solved. Since in actually
measured responses of structures it is observed that energy is dissipated
during vibration, which in vibration analysis is usually taken into account
by introducing velocity-dependent damping forces.

Another reason to perform a transient analysis could be the fact that the
material properties are time-dependent. The stiffness, damping or even
the mass matrix are dependent on the temperature, since these matrices
consist of material properties such as the Young’s and shear modulus, and
the mass density. In the same way the heat capacity and heat conduction
matrix depend on the temperature, and therefore on its turn depend on
time before a steady state temperature is reached.

To include the temperature-dependency into the model would mean
that we have to determine the derivatives of all the mentioned matrices,
such as stiffness, heat capacity, etc. The advantage of doing so is however
small, since in general the main interest will lie in the structural behaviour
for a given temperature (field) and less in the process in which this is
reached. Moreover the effort to implement such temperature-dependency
into the model would be very large. Thus, if we are interested in the effect
of temperature on the structure, the thermo-mechanical material proper-
ties at this temperature will simply be used.

9.2 Dynamic system response

In order to calculate the dynamic response of the structure due to thermo-
mechanical loadings, Eq. 5.64 has to be solved:
[

Mu

0

][

¨̂u
¨̂
θ

]

+

[

Cu

Cθ

][

˙̂u
˙̂
θ

]

+

[

Ku Kuθ

Kθ

][

û

θ̂

]

=

[

F

Q

]

. (9.1)

Where through the off-diagonal terms in the stiffness-conductivity matrix
Kuθ a coupling between the temperature and the displacements due to
thermal expansion has been made as described in Section 6.2.4. The so-
lution technique described in Section 5.4.1 for transient analysis, called
Park’s method, can be used to solve the system of equations. This method
has been implemented in the Jem/Jive numerical software, described in
Section 5.6. Corresponding to Eq. 9.1 we therefore need to construct the
mass and damping matrices for each element, beside the stiffness matrix.
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9.3 Benchmark tests

In this section two benchmark tests are presented to demonstrate the per-
formance of the thermo-mechanical solid-like shell element and the tran-
sient solver. In the first example a single element is subjected to either a
heat source, a mechanical loading, or a combination of both. The applica-
tion of the thermal loading will result in a gradual increase in temperature
when a transient analysis is performed where the heat capacity is taken
into account. But it will also result in a mechanical vibration induced by
the thermal expansion.

In the second example the ability of the transient solver is demon-
strated. In this case, the snap-through of a cylindrical panel subjected to
a concentrated vertex load is simulated. The resulting deflection is com-
pared with numerical solutions obtained with Park’s method at different
time steps and with results for the Constraint Energy Momentum Algo-
rithm (CEMA), another transient algorithm, given by (Kuhl and Ramm
1996).

9.3.1 Dynamic response to thermo-mechanical loadings

A single eight-noded shell element is respectively subjected to a heat source,
a mechanical load and a combination of both loadings. The element is
clamped at one end and free to expand at the other end. The numbers in
this example are chosen such that the thermally and mechanically induced
vibration are of the same order of amplitude and wavelength.

The equally distributed heat source Q at the right end is equal to 10560
W and the thermal conductivity k is 2200 Wmm−1K−1. The equally dis-
tributed mechanical load F is 1.0 N. Further more and elastic material with
a stiffness E of 2.0 · 106 Pa is taken. The Poisson’s ratio is assumed to be
zero. The dimensions of the element are 1.0 mm for the height h, the length
l, and the width w. The thermal expansion coefficient α is 1.0 · 10−6 ◦C−1.

The relative temperature is set to zero at the clamped side (temperature
boundary condition):

θ(0) = 0 . (9.2)

The steady-state temperature due to the heat source has a linear distribu-
tion over the length of the element. The temperature at distance x can be
calculated analytically as:

θ(x) =
Qx

kA
, (9.3)
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Figure 9.1: The temperature change with respect to time.

whereQ is the heat source, k is the thermal conductivity andA is the cross-
sectional area. The distributed temperature over the strip causes free ex-
pansion at the right end, which can be calculated analytically as

εα = α

∫

θ(x)dx , (9.4)

and;

uα = εαl , (9.5)

where εα is the expansion strain, θ is the distributed temperature and uα

is the total expansion. At the free edge the following relative steady-state
temperature, expansion strain and total expansion are found:

θ(l) = 4.8 ◦C ,

εα = 2.4 · 10−6 ,

uα = 2.4 · 10−6 mm . (9.6)

In the transient analysis the element reaches this steady-state tempera-
ture distribution after approximately eight milliseconds with a chosen spe-
cific heat Cp of 10.0 J/g-◦C and a mass density ρ of 1.0 g/mm3, as shown
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Figure 9.2: The effect of thermal and mechanical loadings on the dynamic
behaviour without damping.
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Figure 9.3: The effect of thermal and mechanical loadings on the dynamic
behaviour with damping.
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in Figure 9.1. The expansion which is a result of this temperature field
increases gradually in time and causes a vibration. In Figure 9.2 the vi-
bration due to the thermal loading is depicted together with the vibration
due to a mechanical and a combined thermo-mechanical loading. From
this figure it can be seen that the thermo-mechanical curve is a superposi-
tion of the thermal and the mechanical curve. In Figure 9.3 the results are
shown in case damping is taken into account with a damping coefficient
of 500.0.

9.3.2 Cylindrical panel subjected to a concentrated load

To demonstrate the ability of the transient solver, a snap-through of a
cylindrical panel subjected to a concentrated vertex load is considered. In
Figure 9.4 the geometry, material properties and boundary/loading con-
ditions for the cylindrical panel are shown. In the first 200 milliseconds
the concentrated load increases to its maximum value of 50 · 106 Newton
and is kept constant at this value up to 300 milliseconds. Due to symmetry
only one quarter of the panel has to be modelled, which is done with 64
eight-noded elements. The example has been treated in a paper by (Kuhl
and Ramm 1996) for shell elements. The choice was made to constrain
the bottom-side (instead of the top-side) of the solid-like shell at the edges
where rotation is allowed. Constraining the top-side however would give
different results. To be able to capture the deflection of the panel at the
concentrated vertex load accurately the time step has to be chosen below
the wave time. The wave time is the time necessary for the stress wave
to travel through the material. There are two types of waves that can be
distinguished, the shear wave:

vs =

√

µ

ρ
, (9.7)

and the pressure wave:

vp =

√

2µ+ λ

ρ
, (9.8)

where λ and µ are the Lamé elastic constants defined as:

µ =
E

2(1 + ν)
, (9.9)

and the pressure wave:

λ =
νE

(1 + ν)(1 − 2ν)
, (9.10)
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With the values for the properties, shown in Figure 9.4, a shear and pres-
sure wave speed of 4899 m/s is found, which means that the smallest (crit-
ical) wave time is

t∗ =
h

v
= 2.04 · 10−5 . (9.11)

In Figure 9.5 the snap-through of the panel, at 150 ms,is shown. The
deflections of the panel at the concentrated vertex load are compared in
Figure 9.6 with Park’s method for five different time steps. The first three
are below the determined critical wave time, viz. 0.005, 0.01, and 0.02 ms
and indicate that Park’s method gives a clear convergence in the results.
The two extra time steps for which the simulation is performed are 0.5 and
1.0 ms, which shows that the accuracy of the obtained solution is lost and
that there is numerical damping in the method.

The results of the deflection of the panel at the concentrated vertex load
for Park’s method (for time steps 0.02 ms, 0.5 ms and 1.0 ms) is compared
in Figure 9.6 with the Constraint Energy Momentum Algorithm (CEMA)
mentioned by (Kuhl and Ramm 1996) (with time step 1.0 ms).

It is emphasised that the CEMA method of (Kuhl and Ramm 1996) is
applied in combination with shell elements. The results of the simulation
with the solid-like shell can therefore not directly be compared, but are
used as an indication of the trend in the deflection and the ability of the
transient solver. The sixteen-noded solid-like shell elements would have
the same order for the interpolation functions as the eight-noded shell el-
ements, but the results will still be influenced by the different boundary
conditions.

A similar snap-through behaviour of the eight-noded solid-like shell
as for the eight-noded shells is found. The CEMA method, with time step
of 1.0 ms, shows a remarkably good correspondence with the vibration of
the panel after snap-through found with Park’s method and a time step
of 0.02 ms. The CEMA method thus shows much less numerical damping
than Park’s method at a time step much larger than the critical time step.
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Figure 9.4: Geometry, finite element mesh, material properties, and
boundary/loading conditions for the cylindrical panel subjected to a con-
centrated vertex load.
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Figure 9.5: Snap-through, at 150 ms (top), 165 ms (middle), 180 ms (bottom
picture) of the cylindrical panel subjected to a concentrated vertex load.
The colours indicate the Von Mises stresses in the panel.
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Figure 9.6: Time-history for the snap-through of the cylindrical panel in
case of Park’s method presented in this thesis (in combination with eight-
noded solid-like shells) for five different time steps.
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case of the CEMA method mentioned in (Kuhl and Ramm 1996) (together
with eight-noded shell elements) and Park’s method presented in this the-
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9.4 Summary

In this chapter the transient model, which has been described in general
in Chapter 5, has been detailed. Since temperature can largely affect the
properties of especially the glass-fibre epoxy, see Chapter 3, it is important
to determine the temperature field that is reached in the structure.

This can be done by taking the rate at which heat is stored in the struc-
ture into account in the model. The thermo-mechanical system of equa-
tions in the transient analysis is solved with Park’s method as described
in Section 5.4.1. The analysis can thus provide the development of the
temperature distribution, the stress distribution due to differences in tem-
perature as well as expansion, and the ultimate temperatures or steady
state reached within a specific time.

The mechanical behaviour of the structure can also depend on time,
for example due to impact. If the loads are applied rapidly, with respect
to the natural frequencies of the system, inertial forces need to be con-
sidered; i.e. a truly dynamic problem needs to be solved. The dissi-
pation of energy during vibration, which is observed in actually mea-
sured responses of structures, is usually taken into account by introducing
velocity-dependent damping forces.

Two benchmark tests have been presented to demonstrate the perfor-
mance of the thermo-mechanical solid-like shell element and the transient
solver. A thermo-mechanical transient analysis on a single element has
been performed, which shows a gradual increase in temperature and a me-
chanical vibration. In a second example the ability of the transient solver,
based on Park’s algorithm, and the performance of the solid-like shell ele-
ment have been demonstrated for the snap-through of a cylindrical panel
subjected to a concentrated load. The resulting deflection shows a similar
trend as the numerical solution obtained for shell elements with the con-
straint energy momentum algorithm (CEMA), given by (Kuhl and Ramm
1996). The latter shows less numerical damping than Park’s method at
time steps larger than the critical time step.



Chapter 10

Conclusions

The thermo-mechanical finite element model developed in this thesis rep-
resents a very powerful simulation tool. The model is based on a solid-like
shell element, which can have multiple layers in one element and allows
for high aspect ratios without showing Poisson-thickness locking, which
occurs in standard continuum elements. Therefore, the element is very
suitable for the thin-walled aerospace structures where Glare is applied.

The three-dimensional state description of the solid-like shell allows
for a straightforward implementation of the hardening and damage model.

A good fit of the hardening and damage model with the experimen-
tal curves for aluminium 2024-T3 and the UD glass-fibre epoxy could be
obtained, though for the latter only a slow softening branch, included to
avoid numerical instability, was obtained in transverse direction.

Off-axis stiffness calculations, based on the experimental UD glass-
fibre epoxy results and the Classical Laminate Theory, on the tension and
shear stiffness at room temperature and 80 ◦Cof three different composite
laminate lay-ups, [0/90]4s, [0/90/0]3s, and [0/90/±45]2s, showed a good
agreement with experimental tests results.

The transient thermo-mechanical behaviour can be captured by the
model using Park’s method to solve the dynamic system of equations. The
good performance of the thermo-mechanical solid-like shell element and
the transient solver have been demonstrated in benchmark tests.

The experimental test results for the special lay-up Glare show that a
strong account must be given to the possible strength and stiffness reduc-
tions due to off-axis loading and/or temperature. Simulations and tests
show a reduction of 24% in ultimate strength at room temperature due to
off-axis loading and a further reduction of 17% at 80 ◦C temperature.

Blunt notch test simulations have been performed on Glare3-3/2-0.4
and on the special Glare laminate (tested at 0, 45, 67.5, and 90◦off-axis an-
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gle). Furthermore, (off-axis) tensile tests were simulated for a 0/90 com-
posite, standard Glare laminates, and special Glare laminates with addi-
tional fibre layers in -45 and 45◦direction. All benchmark tests showed a
good agreement with experimental results.



Appendix A

Analytical solution for the
thick-walled cylinder

In Section 6.4.3 the example is given of an infinitely long, thick-walled
cylindrical tube subjected to a different temperature at the inside, θa, and
the outside wall,θb, relative to the reference temperature, θo. This will lead
to a non-linear temperature field over the thickness. The tube will expand
and this will introduce stresses. In this appendix the analytical solution
for the temperature distribution and displacement in radial direction are
derived. Further more the expressions for the strains and stresses in radial
and circumferential direction are determined.

The problem can be treated as an axisymmetric problem with a two-
dimensional deformation field. The strain, in this case, is symmetric with
respect to the axis of rotation and the shear strains are zero. The problem is
independent of the angle φ, and all quantities are functions of r only. The
cylindrical tube has an inside radius, a, and outside radius, b, as depicted
in Figure 6.6. If body forces are zero, the only equilibrium equation, which
is in the radial direction, becomes

∂σr

∂r
+
σr − σφ

r
= 0 . (A.1)

The strain-displacement equations in polar coordinates are

εφ =
ur

r
; εr =

∂ur

∂r
; εz =

∂uz

∂z
, (A.2)
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which can be written as a function of the stresses

εφ =
1

E
[σφ − ν(σr + σz)] + α∆θ , (A.3)

εr =
1

E
[σr − ν(σφ + σz)] + α∆θ , (A.4)

εz =
1

E
[σz − ν(σr + σφ)] + α∆θ . (A.5)

The term α∆θ denote the strain due to thermal expansion where the dif-
ference in temperature ∆θ is determined as follows

∆θ = θ(r) − θo . (A.6)

The general heat transfer equations, as listed in Eq. (5.34), are

ρ0cθ̇ + Div q = ρ0r . (A.7)

The first and second term on the left-hand side of the equation represents
the temperature change for the material and for thermal conduction re-
spectively. The right-hand side denotes the heat flow input, including
convection and radiation from the surface. For a stationary and source-
free temperature field and assuming Fourier’s law of heat conduction, the
heat balance equation reduces to

k∇2θ = 0 ,where ∇ is defined as ∇ =
∂

∂x
+

∂

∂y
+

∂

∂z
. (A.8)

Since the temperature is a function of r only, θ = θ(r), and by assuming an
isotropic heat conduction, the equation becomes, in polar coordinates,

∂2θ

∂r2
+

1

r

∂θ

∂r
≡

1

r

∂

∂r
(r
∂θ

∂r
) = 0 . (A.9)

After integrating twice the solution for θ(r) is

θ(r) = A1(ln r + A2) , (A.10)

The integration constants A1 and A2 are determined from the boundary
conditions

θo + θ(r) = θin a for r = a (A.11)
θo + θ(r) = θin b for r = b (A.12)
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Where θo is the uniform reference temperature. With θ(a) = θin a − θo = θa

and θ(b) = θin b − θo = θb, the constants are

A1 =
θb − θa

ln b/a
; A2 =

θa ln b− θb ln a

θb − θa

, (A.13)

and the solution for the temperature field in radial direction becomes

θ(r) =
1

ln b/a
(θa ln

b

r
+ θb ln

r

a
) . (A.14)

Since the tube is considered to be long, the plain strain conditions apply
and hence εz = 0.

εz =
1

E
[σz − ν(σr + σφ)] + α∆θ = 0 , (A.15)

And for σz we can derive

σz = ν(σr + σφ) − Eα∆θ , (A.16)

Substituting Eq. (A.16) into Eqs. (A.3) and (A.4) gives

εφ =
1

E
[σφ − ν(σr + ν(σr + σφ) − Eα∆θ)] + α∆θ , (A.17)

εr =
1

E
[σr − ν(σφ + ν(σr + σφ) − Eα∆θ)] + α∆θ . (A.18)

Thus, after multiplying with E, the stress σr can be expressed as

σr =
1

1 − ν2
Eεr +

ν(1 + ν)

1 − ν2
σφ −

1 + ν

1 − ν2
Eα∆θ , (A.19)

And by filling in Eq. (A.19) into Eq. (A.18) the stress σφ can be written in
terms of strains and after some elaboration we find,

σφ = [
νE

(1 + ν)(1 − 2ν)
+

E

(1 + ν)
]εφ +

νE

(1 + ν)(1 − 2ν)
εr −

E

(1 − 2ν)
α∆θ .

(A.20)

The stresses σr and σφ can be listed shortly as

σr = (λ+ 2G)εr + λεφ − κα∆θ , (A.21)
σφ = λεr + (λ+ 2G)εφ − κα∆θ , (A.22)
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where

λ =
νE

(1 + ν)(1 − 2ν)
; G =

E

2(1 + ν)
; κ =

E

1 − 2ν
. (A.23)

Substituting εφ = ur

r
and εr = ∂ur

∂r
,

σr = (λ+ 2G)
∂ur

∂r
+ λ

ur

r
− κα∆θ , (A.24)

σφ = λ
∂ur

∂r
+ (λ+ 2G)

ur

r
− κα∆θ , (A.25)

Substituting these expressions in Eq. (A.1) gives, after some elaboration.

∂

∂r
[
∂ur

∂r
+
ur

r
−

κα

(λ+ 2G)
∆θ] = 0 , (A.26)

After integrating once and filling in Eq. (A.14) for θ, which is a function of
r as well, we obtain

∂ur

∂r
+
ur

r
= B1 +

κα

(λ+ 2G)
(A1A2 − θo) +

κα

(λ+ 2G)
A1 ln r , (A.27)

whereA1 andA2 can be found in Eq. (A.13). The equation can be rewritten
in a simplified form

∂ur

∂r
+
ur

r
=

1

r

∂

∂r
(rur) = C1 + C2 ln r , (A.28)

where

C1 = B1 +
(A1A2 − θo)κα

(λ+ 2G)
; C2 =

A1κα

(λ+ 2G)
. (A.29)

Integrating this equation yields

ur =
1

r

∫

[C1r + C2r ln r]dr =
1

4
(2C1 − C2)r +

1

2
C2r ln r + C3

1

r
, (A.30)

where partial integration has been used
∫

r ln rdr =
1

2
r2 ln r −

∫

1

2
r2 1

r
dr =

1

2
r2 ln r −

1

4
r2 + C . (A.31)

With the following notations,

D1 =
1

4
(2C1 − C2); D2 =

1

2
C2; D3 = C3 . (A.32)
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Eq. (A.30) can be rewritten as

ur = D1r +D2r ln r +D3
1

r
. (A.33)

Only C1 and C3 are unknown constants, thus D1 and D3 must be deter-
mined. Using Eq. (A.2) we obtain

εr =D1 +D2(1 + ln r) −D3
1

r2
, (A.34)

εφ =D1 +D2 ln r +D3
1

r2
. (A.35)

Substituting the expressions for εφ and εr into Eqs. (A.21) and (A.22) gives

σr = 2(λ+G)D1 + (λ+ 2G)D2 + 2(λ+G)D2 ln r − 2GD3
1

r2
− κα∆θ ,

(A.36)

σφ = 2(λ+G)D1 + λD2 + 2(λ+G)D2 ln r + 2GD3
1

r2
− κα∆θ , (A.37)

and from the boundary conditions for the radial stress σr = 0 when r = a
or r = b, the integration constants can be determined,

D1 =
1

2(λ+G)

1

b2 − a2

[

−
(λ+G)A1κα

(λ+ 2G)
(b2 ln b− a2 ln a) + κα(b2θb − a2θa)

]

−
A1κα

4(λ+G)
(A.38)

D2 =
1

2

A1κα

(λ+ 2G)
(A.39)

D3 = −
1

2G

a2b2

a2 − b2

[

−
(λ+G)A1κα

(λ+ 2G)
ln b/a+ κα(θb − θa)

]

(A.40)
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gemischter Finiter Elemente für Flächentragwerke. Ph. D. thesis, Uni-
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Samenvatting

Vezel metaal laminaten, zoals Arall of Glare, zijn in staat betere eigen-
schappen te bieden in vergelijking tot monolitische materialen. Glare bij-
voorbeeld laat betere vermoeiings-, reststerkte-, brandwerendheid-, impact-
en corrosie-eigenschappen zien dan aluminium 2024, met daarnaast een
aanzienlijke gewichtsbesparing en concurrerende kostprijs. Een groot on-
derzoeksprogramma heeft aangetoond dat de Glare technologie volwassen
is en het vezel metaal laminaat heeft inmiddels zijn toepassing gevonden
in de primaire constructie van de Airbus A380 superjumbo.

Desondanks is het effect van temperatuur op het gedrag van vezel
metaal laminaten nog niet volledig gekarakteriseerd. Verschillen in uitzet-
tingscoëfficienten veroorzaken restspanningen in het laminaat na het uit-
harden. Tijdens het gebruik kan de temperatuur van de vliegtuighuid
variëren tussen -55 en 70 ◦C door zonnestraling en convectie, wat van
invloed is op de thermische en mechanische eigenschappen van Glare.
Een goed begrip van het gedrag van deze laminaten is noodzakelijk om
de prestaties en duurzaamheid ervan verder te kunnen verbeteren. Door
de toename in complexiteit van constructies en materiaal-samenstellingen
wordt het belang van krachtige ontwerp-technieken duidelijk.

In dit proefschrift is het thermo-mechanisch gedrag van vezel metaal
laminaten gekarakteriseerd door middel van experimenteel testwerk en
numerieke modellering. Experimentele testen zijn uitgevoerd om het tem-
peratuur-afhankelijke gedrag van unidirectionele (UD) glasvezel-epoxy te
bepalen. Berekeningen, gebaseerd op deze test resultaten, bij kamertem-
peratuur en 80 ◦C voor de trek- en schuifstijfheid van drie verschillende
composiet lay-ups kwamen goed overeen met experimentele test resul-
taten. The UD glasvezel-epoxy data dient als invoer voor het eindige ele-
menten model, samen met aluminium 2024-T3 data uit de literatuur.

Glare laminaten met een speciale lay-up zijn experimenteel getest om
het effect van temperatuur en mechanische belasting op de laminaat-eigen-
schappen te bepalen. De test resultaten laten zien dat het off-axis en tem-
peratuur effect een reductie van 24% in ultimate sterkte kunnen geven bij
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kamertemperatuur ten gevolge van off-axis belasting, en een verdere re-
ductie van 17% bij een temperature van 80 ◦C. Voor standaard Glare uit de
literatuur, waarvoor testen bij verhoogde temperatuur alleen in vezelricht-
ing zijn uigevoerd, is de afname in sterkte en stijfheid ten hoogste 12% in
vergelijking tot kamertemperatuur.

Numerieke simulatie is een zeer krachtig middel om het gedrag van
materialen en constructies te onderzoeken. Daarom is er een thermo-
mechanisch eindig elementen model ontwikkeld, gebaseerd op een solid-
like shell element inclusief thermische expansie en warmtetransport, om
het gedrag van Glare in een volledig drie-dimensionale toestand te kun-
nen beschrijven. De temperatuur- en spanningsverdeling in dikte richting
kan daarbij worden bepaald, zodat schade- en plasticiteitsmodellen direct
geı̈mplementeerd kunnen worden. Bovendien is het solid-like shell ele-
ment ideaal voor dunwandige (luchtvaart-) constructies, omdat het hoge
aspect ratio’s kan hebben zonder Poisson-locking in dikterichting te ver-
tonen, wat voorkomt in standaard continuum elementen, en omdat het
meerdere lagen in een element kan hebben.

Om fysische niet-lineariteiten mee te nemen wordt er een plasticiteits-
model gebruikt voor aluminium 2024-T3 en een orthotroop schade-model
voor de UD glasvezel-epoxy lagen in Glare. Het verstevigingsgedrag van
aluminium is gemodelleerd met een vloei-criterium gebaseerd op een iso-
trope Von Mises plasticiteit formulering. Er is een exponentieel-verzadig-
ende verstevigingswet verondersteld, wat een goede overeenkomst met
de experimentele aluminium 2024-T3 spannings-rek kromme geeft. Een
return-mapping algorithme wordt gehanteerd om de spanning terug op
het vloei-oppervlak te projecteren als de spanningstoestand de belastings-
condities overtreedt.

Het concept van continuum damage-mechanica is toegepast, met een
aparte schade-parameter voor vezel en matrix, om het verschijnsel van
micro-scheuren te beschrijven wat leidt tot het uiteindelijk bezwijken. De
maat voor de equivalente rek wordt verkregen door het vloei-criterium
uit het orthotrope Hoffman plasticiteits-model om te schrijven in een rek-
gebaseerd formaat. De schade-parameters worden direct in de stijfheids-
matrix geı̈mplementeerd om ongewenste koppeling termen in de schade-
matrix te vermijden. The simulaties van de schuif- en trektesten in transver-
sale richting sluiten goed aan bij de experimentele krommen voor de UD
glasvezel-epoxy.

Het transiente gedrag kan worden bepaald door de warmte capaciteit,
de traagheidskrachten en de demping mee te nemen De methode van Park
wordt gebruikt om het dynamische stelsel van vergelijkingen op te lossen.
De goede eigenschappen van het thermo-mechanische solid-like shell el-
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ement en van de transient solver zijn gedemonstreerd voor een enkel ele-
ment met thermo-mechanische belastingen en voor het doorknikken van
een cilindrisch paneel onder een geconcentreerde belasting.

via een aantal benchmark testen voor praktische toepassingen is het
verkregen numerieke model vergeleken met experimentele test resultaten.
Blunt notch simulaties zijn uitgevoerd op Glare3-3/2-0.4 en op een speci-
aal Glare laminate (getest met 0, 45, 67.5, en 90◦off-axis hoek), en laten een
goede overeenkomst zien met experimentele resultaten. Simulaties van
off-axis trektesten op een 0/90 composiet, trektesten op standaard Glare
laminaten, en off-axis trektesten op speciale Glare laminaten met addi-
tionele vezellagen in -45 en 45◦richting, laten ook een goede overeenkomst
met experimentele resultaten zien.

Het thermo-mechanisch solid-like shell element en de experimenteel
verkregen materiaal data, gepresenteerd in dit proefschrift, creëren samen
een krachtig simulatie-gereedschap voor een effectieve en accurate karak-
terisering van vezel metaal laminaten onder thermo-mechanische belastin-
gen.
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