Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

Log inference on the Ripple Protocol: testing the system with an empirical
approach

Marijn Roelvink', Mitchell Olsthoorn', Annibale Panichela’
!Delft University of Technology

m.a.t.roelvink @student.tudelft.nl, {a.panichella, m.j.g.olsthoorn } @tudelft.nl

Abstract

Ripple is a relatively new payments network that
aims to improve the financial system by unifying its
underlying infrastructure. Given its critical func-
tion, its system must be reliable and free of bugs.
Therefore it should be tested extensively. One of
the test methods that has not been used on it yet is
log inference, a method that has a good potential
for modelling complex communication protocols.
Therefore, we have developed an empirical model
of the Ripple Consensus Protocol by learning a De-
terministic Finite Automaton (DFA) from the log
files of two servers in the Ripple network. We
have also developed a theoretical DFA of the Ripple
Consensus Protocol and compared this to the em-
pirical model to verify that the two systems func-
tion comparably. There has been found one notable
difference between the two models, but whether
this difference has a critical impact remains to be
discussed.

1 Introduction

Ripple is an important up-and-coming payments network for
making reliable global payments without too much delay. It
accomplishes this by connecting our financial institutions in
a unified infrastructure, making money flow as if it were data
[17]. Through this approach, they have a big impact on our
current society as they are improving the infrastructure that
is already in place. 300+ financial institutions are already
using Ripple to do their global payments [19]. As with all
critical systems, it is of paramount importance that these
systems work exactly as expected, e.g. no money gets lost
or transactions get held up. The way Ripple ensures this is
through their consensus protocol.

Debugging and verifying consensus protocols can be
complex and different methods can be employed to track
bugs and to verify that everything is working correctly. One
method that has not yet been used for the Ripple protocol
is performing log inference [12]. This method comprises
three steps: gathering the log files of a validator in the Ripple
network, learning an empirical model from these logs, and
checking whether the implementation of Ripple matches the

corresponding theory. This might be a missed opportunity
as model learning can give a valuable insight into the actual
behaviour of an algorithm and can process hundreds of
trace instances of a routine automatically. Therefore, the
purpose of this research is to develop a model using logs
that are generated by two Ripple validators running in the
live network, and to verify that this model is in line with the
theoretical model of the Ripple Consensus Algorithm.

Model inference is the problem of deriving a minimal state
machine from a series of inputs and outputs. This problem
was first posed by Moore in 1956 [11]. Given that state
machine inference from given data is an NP-hard problem
[5], there have been many different tools and algorithms
developed over the years that could generate near-optimal
models in polynomial time ([10], [3], [9]). For this research,
flexfringe is chosen as tool to apply log inference on the event
logs [22]. Tt can infer different types of state machines and
uses at its core a version of the evidence-driven state-merging
algorithm that was first introduced by Rodney Price [7] and
improved by Kevin Lang[8].

2 The Ripple network

Ripple functions as a distributed ledger [20]. A ledger is a
collection of financial transaction records; it holds the infor-
mation on all the accounts and a history of all the transactions
that were applied to these accounts. The difference with a
normal ledger though is that this ledger isn’t maintained by
one entity, but by multiple instances (nodes). These instances
are often banks, financial institutions or governmental orga-
nizations [4]. Ripple works with ledger versions, each new
ledger version is obtained by applying transactions to the
previous ledger. A ledger version contains three elements:
the current state of all the balances and objects, the set of
transactions that were applied to its previous version to result
in this one, and some metadata such as the current version
number [16].

The nodes are connected through a peer-to-peer network.
When a node shares information, it is accessible for all
the peers in the network [18]. Each node in the network
maintains its own copy of the current ledger. When a
transaction is submitted to one of the nodes, this transaction

gets relayed through the network so that each node can add it
to its ledger. Due to network failure or malicious participants,
some transactions get delayed or manipulated, resulting in
nodes maintaining different versions of the ledger. The main
functionality of the consensus protocol is therefore to ensure
that all nodes eventually have the same valid transactions
applied to their copy of the ledger and that problems such as
the double-spending problem cannot happen [14].

The consensus protocol runs in a continuous sequence
of consensus rounds. Within each consensus round all the
nodes try to agree upon a batch of transactions to apply to
their current ledger, resulting in a new ledger for the next
consensus round. The consensus round itself can be split into
three phases: the open phase, the deliberation phase and the
validation phase.

In the open phase all the nodes collect transactions to apply
to their ledger. These transactions have either been submitted
to the nodes during the open phase or failed to be included in
an earlier consensus round and are tried again. When there
are transactions in the ledger and there has passed a specified
amount of time, the nodes close their ledgers and move on to
the deliberation phase. Transactions that they receive after
this time are added to a waiting list for the next consensus
rounds.

In the deliberation phase the nodes send proposals to
each other about the transaction sets they have composed.
Each node updates its own transaction set depending on how
much support it receives for individual transactions from
other nodes. Transactions are added or removed based on
the number of nodes that support them. When a node has
updated its transaction set, the node sends out a new proposal
for it. It then repeats the cycle of updating its transaction set
based on the new proposals of other nodes and proposing
again. This process converges quickly to a transaction set
that the majority of the nodes agree with. When this happens,
the nodes move on to the validation phase.

In the validation phase, each node starts applying the
previously agreed upon transactions to its ledger. When this
process ends, the nodes calculate the hash of their resulting
ledgers and send it to each other in a signed message. This
message is called a validation. The nodes then proceed to
decide on the next batch of transactions and start a new
consensus round. However, it can happen that a node has
built a defective ledger or has applied a different transaction
set than its peers due to problems such as network failure
or malicious participants. Therefore, a ledger is only fully
validated when a node has received the same validation from
a majority of nodes that it trusts.

During the consensus process, a validator can operate in
four different modes [13]. The two normal modes are propos-
ing and observing. In the proposing mode the validator func-
tions as a full-fledged consensus participant. It participates
in the consensus process and sends out proposals for trans-
action sets. In the observing mode the validator functions as

a silent participant: it keeps track of the proposals of other
nodes, but it doesn’t send out proposals itself. When a new
consensus round starts, a validator always starts in one of
those two modes. However, during the consensus round a
node may receive too many validations for a different ledger
than the one it is working on and conclude that it has been
working on the wrong ledger. When this happens, it switches
from the proposing or observing mode to the wrongLedger
mode and requests from the other nodes the correct ledger.
It also sends a message to the other nodes indicating that its
mode has changed and stops proposing transaction sets. The
node starts practically functioning as if it were in observing
mode. When the node receives the correct ledger, it switches
to switchedLedger mode, and keeps functioning as if it were
observing. Only in the next consensus round can it be in
proposing mode again. This is chosen with the reasoning that
when a validator has received the correct ledger, it probably
still is behind its peers, and should defer to them to decide on
the final transaction set.

3 Methodology

The purpose of this research is to compare an empirical model
with the theoretical model of the Ripple consensus proto-
col. However, to make a good comparison between the two
models, they had to be defined with a similar type of model.
Therefore, the first step of the research was finding a good
model type that could describe both systems. The second
step was then modelling the theoretical system in the same
model representation. Only after this part was finished was
the empirical model developed. We did this to prevent that
we would fit the theoretical model too much to our empirical
model. In this section, we will elaborate on each of the steps
of this process.

3.1 Choosing the model format

In order to model both systems with the same model type, this
model type had to be supported by flexfringe. Flexfringe sup-
ports multiple state machine types such as probabilistic and
non-probabilistic deterministic finite automatons (P/DFA)
and deterministic finite-state transducers like Mealy and
Moore machines. We have chosen to go with a non-
probabilistic DFA. The reason for the non-probabilistic state
machine was that the consensus protocol is in essence deter-
ministic, so a probabilistic model is not applicable. The DFA
was chosen because it provided the most straightforward way
of modelling the consensus protocol.

3.2 Developing the theoretical model

There are three important sources for the construction of the
theoretical model: (1) the Ripple whitepaper [2], which gives
a more abstract overview of the principles of the consensus
algorithm; (2) the Ripple website [20], which gives a more
detailed insight into the function of the consensus algorithm
within the Ripple network; and (3) the Github docs [13],
describing more in detail how the algorithm practically
works. While developing the theoretical model we had to
consider which source to choose as leading example. Relying
on the whitepaper more would ensure that the model adhered

more closely to the original theory and correctness proofs.
However, choosing the Github docs would result in a model
that would be closer to the implementation and in this way
easier to compare to the empirical one. In the end, the Github
docs have been chosen as leading source. This was to ensure
that the model would be less open for interpretation and more
precisely defined according to Ripple’s specifications.

Another consideration was what entry point and final point
to use for the theoretical DFA. A first option was to look at
the lifecycle of a specific ledger version. The starting point
for the DFA would then be the conception of the ledger, e.g.
the moment the consensus round for that ledger starts, and
the ending point would be the moment that the ledger is fully
validated or identified as incorrect. However, there were two
reasons not to use this as scope. The first reason is that the
lifecycle of a specific ledger version can be very variable and
would bring many edge cases with it if we tried to capture
it in a DFA. The second reason is that all the three sources
of documentation have the consensus round rather than the
specific ledgers as main point of view for describing the
process. Therefore, we decided to follow the documentation
in this aspect as well, and chose for a DFA whose initial state
indicates the beginning of a consensus round, and whose
final states mark the ending of a consensus round.

After having settled on these considerations, we developed
the theoretical DFA. We started with defining the main flow
according to the three phases and their subroutines. Then
we combined this with the different modes and created flows
for when the wrong ledger is being used. After a round of
feedback, we adapted the original model and reached a final
version.

3.3 Developing the empirical model

As mentioned before, we have used flexfringe for generating
the empirical model. Creating the model was done in three
parts. The first step was processing the log files into a format
that could be used by the tool. The second step was tuning
the parameters and experimenting with different input sizes
to build the optimal model with flexfringe. The last step was
validating the obtained model by calculating its recall and
specificity.

To make a model that gives a comprehensible description
of the consensus protocol, the logs had to be filtered to
some considerable extent. The first filtering operation was
choosing which level of the logs to use. The logs had 5 levels
of importance: fatal, error, warning, info, debug, and trace.
The debug level has been chosen since it was the narrowest
scope of the logs that still managed to provide a clear picture
of the ongoing processes. The second and most influential
filtering operation was removing messages from parts of the
program that were not related to the consensus protocol. The
Ripple system has of course a whole infrastructure around
the consensus protocol that leaves traces as well. However,
since these parts aren’t considered in the theory of the main
Ripple protocol it wasn’t relevant to include them here.

After this considerable downsizing, only a few other parts
have been filtered out, such as the details of applying the
transactions to the ledger. These processes have namely been
abstracted in the theoretical model as well.

After the filtering, the data was transformed into the
abbadingo format. This format stems from a competition
in 1998 in state machine generation [7] and is used by
flexfringe as input format as well. Each line in the format is a
sequence of strings separated by white spaces. The sequence
represents a route of edges taken through a DFA. Flexfringe
builds with these sequences a prefix tree acceptor, and then
repeatedly merges states in this DFA to make a more com-
pact representation which it returns as result. A prefix tree
acceptor is a DFA built by making states from all the prefixes
occurring in the input sample and constructing a minimal
DFA with them [6]. See Figure 1 for an example. For our
model, the logs were split into traces describing each one
consensus round. This was done by going chronologically
through the logs and cutting them up each time a call for a
new consensus round was encountered.

Figure 1: Example of a prefix tree based on input sample [aa, aba,
bba], taken from De la Higuera [6]

One of the more challenging parts was developing the
model with flexfringe. The tool has many parameters and
different heuristics that it can use to derive a model from
an abbadingo file. The final model was obtained via an
experimental approach. Using a small input sample, we first
developed DFA’s using each of the heuristic types. After
having found a good heuristic resulting in a generalized yet
fitting DFA, the parameters were tuned again with a bit of
trial and error and some pointers from the original developer
of the tool. The input sizes and log sources have also been
varied greatly, but they resulted in similar models.

3.4 Evaluating the empirical model

The last step was evaluating the performance of the model.
This was done using two metrics: recall and specificity.
These two metrics have been defined as in the work of
Mariani et al [10].

Recall measures the completeness of a model, e.g. how
many correct traces it accepts as valid. Given a model M for
a program P and a set of legal traces T obtained by executing

P, the formal definition for the recall of M was determined as:

Recall(M) = number of traces that M accepts

ey

The recall of the final model was calculated by transforming
a part of the logs into abbadingo sequences and checking
whether each sequence would be accepted by the model.
For this we developed a tool that could parse a given DFA
and automatically check what number of traces would be
accepted.

number of traces in T

Specificity is the ability of a model to reject illegal be-
haviour. Similarly, the specificity of a model M for a program
P and a set of illegal traces I for P was defined as:

_ number of traces that M rejects

 ficity(M) = 2
Specificity(M) number of traces in I @

To calculate the specificity, illegal traces had to be generated.
These traces have been generated by permuting each of the
traces of the positive evaluation set into new illegal traces.
The mutations were made by performing one or more del,
swap or swap-r operations on the positive traces. The del
operation removes a random element from the sequence, the
swap operation swaps two consecutive elements with each
other, and the swap-r operation swaps two randomly located
elements in the trace. This method had a probability that these
mutations accidentally generated legal traces, but it turned out
during measuring that this makes for a negligible difference.

4 Results

4.1 Experimental setup

The final empirical model has been developed using the
logs from two different validators (validator 1 and 2) on two
different dates. Both validators are hosted at the Electrical
Engineering, Mathematics and Computer Science faculty
at Delft University of Technology. To catch more irregular
execution paths, logs were chosen on days that the validators
didn’t have a 100% agreement score, e.g. they did not always
validate the same ledgers as their peers. The final abbadingo
file contained 180 sequences from the logs of validator 1,
and 180 sequences from validator 2. The logs from validator
1 were taken from the moment it was rebooted, resulting
therefore in some irregular sequences as the validator needed
to catch up with its peers. The logs from validator 2 came
from a day when validator 2 was presumably performing less
than 100%.

The heuristic that was chosen for developing the model is
called count_driven, the choice for this was empirically mo-
tivated. There were many other parameters that could be
tweaked as well, their final values are listed in Table 1.

4.2 Result

Figure 2 depicts the theoretical DFA from the viewpoint of a
single node. When the node is working on the correct ledger
and no other unexpected events happen, the node will follow
the main flow from the init state to the done or fully-validated
state in a straight line. The states above the main flow handle

Parameter Value
heuristic-name count_driven
data-name count_data
state_count -1
symbol_count -1
sinkcount 0
satdfabound 2000
sataptabound 10

extend 0

extrapar 0.1
sinkson 0

finalred 1
lowerbound 20
blueblue 1
largestblue 1

Table 1: Parameter values used for the empirical model

the case when a node has been working on the wrong ledger.
The state below the main flow handles the premature ending
of a round. This is not expected to happen but nonetheless
included in the Github documentation of Ripple [13] as a
possible event.

Figure 3 outlines the resulting empirical model. This
model is an edited version of the model that was produced
by the flexfringe program. The model in Figure 3 does not
differ in its functioning from the original model, it has just
been simplified and better elaborated to make for better
readability. The edges indicate events and log messages, and
the labels in the states indicate how often they have been
traversed by the traces.

The main flow of the theoretical and empirical model is
similar. The open and deliberation phase are not distinguish-
able from each other in the empirical model because the
logs do not give a clear signal when the validator has closed
its ledger. However, the transition from the deliberation to
the accepting phase is clearly marked by one edge. This
edge with the “peers have converged to consensus” label
is the only one leading from the deliberation phase to the
validating phase. This edge also shows that the validating
phase is only reached when the validator believes that the
nodes have reached a consensus.

However, the different modes of the Ripple protocol have
less impact on the general structure of the empirical model. It
is clearly visible though that when the validator discovers it
has the wrong ledger, it switches to wrongLedger mode and
starts to retrieve the new ledger. Similarly, when the validator
has retrieved the correct ledger it switches to switchedLedger
mode. But regardless of whether the validator has the correct
ledger, when its peers have reached consensus, it still applies
the new transaction set and sends out a validation even if
it is aware that it has the wrong ledger. This case was not

Receivelrelay transaction Close ledge

Wrong Received

Wrong Received
ledger correct ledger

ledger correct ledger

Receivefrelay ransaclion

Wrong
ledger

Wrong
ledger

Deliberate

Receivelrelay lransaclith }

Receive/send proposal

Start new round

Start new round

Round ended
prematurely

Receive proposal

Receive proposal

Consensus
is reached

Consensus is reached

Send validation

Main flow

¥

Apply Finished building
transactions ledger

L is fully
validated

Figure 2: Theoretical DFA of the Ripple consensus protocol

described in the original white paper, due to the fact that
that paper did not take into account that fetching the new
ledger might take some time. This transition was also not
included in our theoretical model. We assumed that applying
transactions on an incorrect ledger would be futile and
therefore not a valid execution path, but it presumably was
the most straight forward way of keeping the validator up to
date. This implementation choice probably also prevented
the code from being too complex and generating too many
edge cases. It is however a distinct difference with the
theoretical model.

A process that does distinctly come forward in this model is
the proposal round. Whenever the validator updates its posi-
tion during the establish phase, it first indicates whether it has
proposals from peers with one of the two “timerentry” edges.
It then proceeds to update its transaction set with the new
proposals, and then checks whether the peers have reached
consensus.

4.3 Evaluation

In table 2 the values for the recall and specificity are given.
For calculating the recall, we used an evaluation set com-
prised of 560 traces. In this set, 280 traces originated from
validator 1, and 280 traces originated from validator 2. We
generated these traces from the log files with the same script
that was used to generate the abbadingo sequences for the
model. All of the traces in the evaluation set have not been
used for developing the model.

To calculate the specificity, we have generated three new
sets from the aforementioned evaluation set by permuting
each sequence in the evaluation set. For each new set, we
increased the number of permutations we applied to each se-
quence. This resulted in one set with one permutation per
sequence, one set with two permutations per sequence, and

one set with three permutations per sequence. For each per-
mutation it was randomly determined whether to apply a del,
swap or r-swap operation and at which location it was to be
applied. As one can see in Table 2, the specificity quickly
converged to one when the number of permutations was in-
creased.

Metric (N=560) Score
Recall 0.9982
Specificity
#permutations=1 | 0.8580
#permutations=2 | 0.9736
#permutations=3 | 0.9948

Table 2: Recall and specificity of the empirical model, calculated
respectively with equation 1 en 2. Each value has been calculated
from a different set with 560 traces.

5 Discussion

The purpose of this paper is to assess to what extent the
empirical model matches the theoretical model. We can
conclude that this is mostly true. The important transitions
from the deliberation phase to the applying of transactions
to the validating are all included in the empirical model
in a straightforward and absolute way. The edges in the
theoretical model that indicated a premature ending of a
round were also not encountered in the empirical model.
This matches the GitHub documentation with the idea that
this should not happen. This shows that even when the
validators are functioning less than perfectly, they still follow
the same main flow. In fact, in each consensus round the
validators have ended in the validation phase. The only
striking difference between the empirical and theoretical

Entering consensus round, ———
validating, synchronised

Ente
valid:

Entering consensus with wrong ledger,start acquiring cormrect one,
change mode from observing to wrongledger

Consensus mode proposing

Updates on transaction sets
proposals for different ledgers
and that the ledger can't be closed yet

Peers have converged
to consensus

(during establish phase, timerentry)

Updates on closing time
and current fransaction set

2102

Maybe validating with the correct or incorrect ledger,
but never proposing with the wrong ledger

n

{

Start applying transaction set
to new ledger

{during establish pha

not pausi

{

We built a new ledger
OR We built a ledger we already had
CR We built a ledger we were acquiring

We are not valid ating Validate ledger and send

validation to all peers

(o

Consensus friggered
check of ledger

Ended with cerfain
closing time

@‘\

Ende
Ended with certain cl

closing time

O
0

we have proposals from other peers

@

#360

——_-_‘E niering consensus round,

wafching, not synchronised

fing consensus round,
ating, not synchronised

Consensus mode observing

create disputes for
another fr: tion set

»

=2549
found M differences between
ours and the other transaction set

We have acquired the correct ledger

Congensus mode has changed from
observing to switchedLedger

We are working on the wrong ledger.
our phase = open, our mode = wrongLedger:

We need to acquire consensus ledger LEDGER:

(during establish phase, timerentry)
ot pausing.no proposals yet from peers

go on to check for consensus Checking whether we have

reached consensus on the transaction set

se, timerentry)
ing

dger fully validated

d with cerfain
osing time

Figure 3: Final empirical model, edited for clarity

model is that even with the wrong ledger the validator still
applies the transactions and builds a new ledger. However,
this should probably not make a big difference in the general
functioning of the Ripple consensus protocol.

Of course, this way of modelling a system is quite lim-
ited in its details. Other tests should be, and are performed
by Ripple and other independent institutes to verify that the
whole system functions as it was specified [15]. Our model
does not indicate for example what Boolean conditions need

to be satisfied to realistically enter certain states. The model
can describe what the order of events should be in the system,
but not what specific details should be causing the transition
from one state to another. A possible solution for this would
be to develop a guarded DFA, like the one described by Mar-
iani et al. [10]. Another limitation of this model is the range
of data it covers. Now there is only data from two validators
originating from two different days due to the time span of
this research. To catch more edge cases the validators should
be monitored over a longer period of time.

6 Responsible research

According to [1], responsible research covers a range of
practices considered as instrumental for building an innova-
tive, open and sustainable society. A few examples of these
practices are considering the implications and consequences
of the research, performing the research in an ethical way,
making results that are beneficial to a wider part of the
community, and being transparent and openly accessible
with the methods and results.

Considering ethical conduct, this research is in a safe
zone since no human interaction or human data was needed
to analyse the Ripple algorithm. As the main purpose of
the research was testing a system, the only place where
there was further possible room for morally ambigu-
ous behaviour was when critical bugs would be discovered
and not properly reported. Luckily, this has not been the case.

One area where one could wonder whether this research
is responsible is whether assisting in developing such a
cryptocurrency system is beneficial for the wider public in
the short-term or long-term run, or only for a small privileged
few. Ripple aims to revolutionize the financial system from
within, by making transactions between each of the financial
institutions go in a unified and seamless way. One could
argue that such an improvement of efficiency mostly helps
the bankers and corporations make more money. However,
Ripple also makes the global financial system available to
people and entrepreneurs over the whole world, regardless
of the currency in their countries and how developed their
banks are. By dramatically reducing the time and cost of
cross-country transactions even small entrepreneurs are
enabled to take a part in the globalisation process [23]. Next
to that, XRP (Ripple’s currency) is also one of the most
sustainable currencies currently on the market [21]. Of
course, there can be held a lengthier debate about the ethical
implications of cryptocurrencies, but we conclude for now
that developing this system has added value for the society
as a whole.

The last consideration on responsibility is whether our
methods and results are transparent and openly accessible.
We have tried as much as was relevant to explain all the steps
in the process of this research. The main results will be dis-
closed in the appendix and the repositories with the code and
all the other results will also be made available. With all these
practices we hope to conclude that the research was done re-

sponsibly.

7 Conclusion

Though this research does not cover all the aspects of the
Ripple system, we can conclude that the Ripple consensus
protocol implementation seems to follow the specifications
of Ripple, given the data that we had. Only one significant
difference has been found between the theoretical and
empirical model, and the obtained empirical model appears
to be coherent.

For future work, other types of models such as guarded
DFA’s could be inferred, and more data could be gathered to
achieve a better representation of the Ripple consensus pro-
tocol. Model inference could also be applied to other ele-
ments of the Ripple infrastructure, to provide a more com-
plete overview of the functioning of the Ripple system.

References

[1] Caixa. What does rri mean? https://www.rri-tools.eu/
research-community, 2020. Accessed: 2020-05-30.

[2] Brad Chase and Ethan MacBrough. Analysis of the xrp
ledger consensus protocol, 02 2018.

[3] Weidong Cui, Jayanthkumar Kannan, and Helen Wang.
Discoverer: Automatic protocol reverse engineering
from network traces. 01 2007.

[4] David Schwartz Dave Cohen and Arthur Britto.
The xrp ledger protocol — consensus and
validation. https://xrpl.org/consensus.html#
the-xrp-ledger-protocol-consensus-and- validation,
2019. Accessed: 2020-06-17.

[5] Mark E. Gold. Complexity of automaton identification
from given data. Information and Control, 37(3):302—
320, 1978.

[6] Colin De la Higuera. Grammatical inference: learning
automata and grammars. Cambridge University Press,
2010.

[7] Kevin Lang, Barak Pearlmutter, and Rodney Price. Re-
sults of the abbadingo one dfa learning competition and
a new evidence-driven state merging algorithm. volume
1433, pages 1-12, 01 1998.

[8] Kevin J. Lang. Evidence driven state merging with
search, 1998.

[9] David Lo and Siau-Cheng Khoo. Smartic: Towards
building an accurate, robust and scalable specification
miner. In Proceedings of the 14th ACM SIGSOFT In-
ternational Symposium on Foundations of Software En-
gineering, SIGSOFT ’06/FSE-14, page 265-275, New
York, NY, USA, 2006. Association for Computing Ma-
chinery.

[10] Leonardo Mariani, Mauro Pezze, and Mauro Santoro.
Gk-tail+ an efficient approach to learn software mod-
els. IEEE Transactions on Software Engineering,
43(8):715-738, 2017.

https://www.rri-tools.eu/research-community
https://www.rri-tools.eu/research-community
https://xrpl.org/consensus.html#the-xrp-ledger-protocol-consensus-and-validation
https://xrpl.org/consensus.html#the-xrp-ledger-protocol-consensus-and-validation

[11] Edward F. Moore. Gedanken-experiments on sequential
machines. Automata Studies, december 1956.

[12] Dr. A. Panichella. Ripple: Improving a major decen-
tralized money transfer network. https://projectforum.
tudelft.nl/course_editions/23/projects/845, 2020. Ac-
cessed: 2020-04-22.

[13] Ripple. Consensus and validation. https://github.com/
ripple/rippled/blob/develop/docs/consensus.md, 2018.
Accessed: 2020-05-05.

[14] Ripple. Consensus principles and rules. https://xrpl.org/
consensus-principles-and-rules.html, 2019. Accessed:
2020-05-03.

[15] Ripple. Consensus protections against attacks and
failure modes. https://xrpl.org/consensus-protections.
html#software-vulnerabilities, 2019. Accessed: 2020-
06-09.

[16] Ripple. Ledger history. https://xrpl.org/
intro-to-consensus.html#ledger-history, 2019. Ac-
cessed: 2020-06-09.

[17] Ripple. Our story. https://ripple.com/company, 2019.
Accessed: 2020-06-17.

[18] Ripple. Software ecosystem. https://xrpl.org/
software-ecosystem.html#rippled-the-core-server,
2019. Accessed: 2020-06-17.

[19] Ripple. Who runs on ripple. https://ripple.com/
customers, 2019. Accessed: 2020-04-22.

[20] Ripple. Xrp ledger overview. https://xrpl.org/
xrp-ledger-overview.html, 2019. Accessed: 2020-05-
16.

[21] Team Ripple. 50 years of earth day: A look at the
sustainability of currency. https://ripple.com/insights/
50-years-of-earth-day-a-look-at-the-sustainability-of-currency/,
Apr 2020. Accessed: 2020-05-31.

[22] Sicco Verwer and Christian A. Hammerschmidt.
flexfringe: A passive automaton learning package.
IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), 2017.

[23] Emi Yoshikawa. Block stars: How dig-
ital assets will help create a sustainable
global economy. https://ripple.com/insights/

block-stars-how-digital-assets- will-help-create-a-sustainable-global-economy/,
May 2020. Accessed: 2020-05-31.

https://projectforum.tudelft.nl/course_editions/23/projects/845
https://projectforum.tudelft.nl/course_editions/23/projects/845
https://github.com/ripple/rippled/blob/develop/docs/consensus.md
https://github.com/ripple/rippled/blob/develop/docs/consensus.md
https://xrpl.org/consensus-principles-and-rules.html
https://xrpl.org/consensus-principles-and-rules.html
https://xrpl.org/consensus-protections.html#software-vulnerabilities
https://xrpl.org/consensus-protections.html#software-vulnerabilities
https://xrpl.org/intro-to-consensus.html#ledger-history
https://xrpl.org/intro-to-consensus.html#ledger-history
https://ripple.com/company
https://xrpl.org/software-ecosystem.html#rippled-the-core-server
https://xrpl.org/software-ecosystem.html#rippled-the-core-server
https://ripple.com/customers
https://ripple.com/customers
https://xrpl.org/xrp-ledger-overview.html
https://xrpl.org/xrp-ledger-overview.html
https://ripple.com/insights/50-years-of-earth-day-a-look-at-the-sustainability-of-currency/
https://ripple.com/insights/50-years-of-earth-day-a-look-at-the-sustainability-of-currency/
https://ripple.com/insights/block-stars-how-digital-assets-will-help-create-a-sustainable-global-economy/
https://ripple.com/insights/block-stars-how-digital-assets-will-help-create-a-sustainable-global-economy/

	Introduction
	The Ripple network
	Methodology
	Choosing the model format
	Developing the theoretical model
	Developing the empirical model
	Evaluating the empirical model

	Results
	Experimental setup
	Result
	Evaluation

	Discussion
	Responsible research
	Conclusion

