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Abstract: The urban heat island effect was first described 200 years ago, but the development of ways
to mitigate heat in urban areas reaches much further into the past. Uchimizu is a 17th century Japanese
tradition, in which water is sprinkled around houses to cool the ground surface and air by evaporation.
Unfortunately, the number of published studies that have quantified the cooling effects of uchimizu
are limited and only use surface temperature or air temperature at a single height as a measure of the
cooling effect. In this research, a dense three-dimensional Distributed Temperature Sensing (DTS)
setup was used to measure air temperature with high spatial and temporal resolution within one
cubic meter of air above an urban surface. Six experiments were performed to systematically study
the effects of (1) the amount of applied water; (2) the initial surface temperature; and (3) shading
on the cooling effect of uchimizu. The measurements showed a decrease in air temperature of up
to 1.5 ◦C at a height of 2 m, and up to 6 ◦C for near-ground temperature. The strongest cooling
was measured in the shade experiment. For water applied in quantities of 1 mm and 2 mm, there
was no clear difference in cooling effect, but after application of a large amount of water (>5 mm),
the strong near-ground cooling effect was approximately twice as high as when only 1 mm of water
was applied. The dense measurement grid used in this research also enabled us to detect the rising
turbulent eddies created by the heated surface.

Keywords: meteorology; urban heat island; urban climate; experimental hydrology; DTS; evaporative
cooling; energy balance

1. Introduction

In the past, the Japanese water throwing tradition known as uchimizu has been used widely to cool
urban surfaces and decrease the air temperature around houses and in gardens. Uchimizu (combination
of uchi for hit or throw, and mizu for water) is a tradition that stems from the 17th century [1]. However,
over the last 50 years, this environmental control method has lost popularity. This has been mainly
caused by a rapid development in technology and by socio-economic change, causing citizens to feel
that traditional methods were too laborious or low class [2]. Nowadays, Japanese megacitie,s such as
Tokyo, are aiming to revive the use of uchimizu to cool the city, especially during hot summer months.
Citizens practicing uchimizu in Japanese urban areas have been found to use less air-conditioning,
which significantly decreases their domestic energy consumption [2]. Additionally, it was found that
the level of outdoor comfort among citizens is higher in areas that applied uchimizu [3].

The comeback of uchimizu is interesting because of its claimed reduction of the Urban Heat
Island (UHI) effect [4]. The UHI is a well-documented phenomenon that refers to higher temperatures

Water 2018, 10, 741; doi:10.3390/w10060741 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0002-4773-9107
https://orcid.org/0000-0002-2513-8255
https://orcid.org/0000-0002-2513-8255
http://www.mdpi.com/2073-4441/10/6/741?type=check_update&version=1
http://dx.doi.org/10.3390/w10060741
http://www.mdpi.com/journal/water


Water 2018, 10, 741 2 of 18

within urbanized areas compared to surrounding rural areas [5]. Urban air temperatures are higher
for various reasons, such as lower amounts of cooling by transpiring vegetation and evaporating water
bodies, lower albedo, and increased heat production by humans, vehicles, and industries. In particular,
during hotter summer months, a strong UHI is associated with increased human discomfort, energy
consumption, health risks, and increased mortality rates [6–8]. In this research, UHI is defined as the
urban canopy UHI [9].

Because one of the main causes of UHI is reduced evaporation, increasing evaporation by
strategical placement of water bodies and green areas is an often used method that leads to local
decrease of temperature. For example, water-retentive artificial turfs have surface temperatures up to
2 ◦C lower than conventional grass turfs [6], and sufficiently watered green roofs cool the ambient air
environment while dry green roofs do not [10]. Although vegetated areas in cities can decrease the
local air temperature by several degrees, several studies have shown that the strongest cooling effect is
provided by open water bodies [11,12].

Evaporative cooling requires water as well as energy from the environment, which is extracted
from the surface or the air. This latent energy flux leads to a decrease in air and surface temperatures.
Practices like uchimizu tackle heat stress in two ways: (1) they decrease the mean radiant temperature
to which the body is exposed by decreasing the surface temperature; and (2) they decrease the actual
air temperature by extracting part of the energy necessary for the water to evaporate.

The revival of uchimizu is promoted by Japanese authorities as a “clever way to feel cool” [13,14].
Also, thanks to this initiative, research on this topic is becoming more frequent in Japan [15–17].
However, pavement watering as a method to cool the ambient temperature is also popular in
France [4,18–20], and the principle is used all over the world to cool the roofs of houses [21–23],
or, for example, the air temperature in railway stations in Japan [24].

Despite the popularity of the method, the number of published studies that have quantified
the cooling effects of uchimizu is very limited. Most studies have only used measurements of the
surface temperature, or the air temperature at a single height, as a measure of the cooling effect.
Air temperature decreases between 1.5 and 2.3 ◦C were reported in these studies. Japanese studies
have reported air temperature decreases of 1.5–3◦ [15,17], and French studies have reported decreases
of 0.4–1.8◦ [4,18].

Experimental work has been very important for the advancement of (urban) hydrology [25],
as has also been demonstrated by previous experimental work on uchimizu. A few studies focused on
measuring the vertical temperature profile. Himeno et al. (2010) [16] by measuring the air temperature
at four heights (0.4, 0.9, 1.5, and 1.8 m), and found that the cooling effect decreases (from 4 ◦C to
2 ◦C) with height. Slingerland (2012) [26] measured a more detailed temperature profile in Rotterdam,
The Netherlands. They concluded that the air temperature profile between 0 and 2 m above a wetted
ground surface is consistently 1–2 ◦C lower than above a dry ground. These differences in observed air
temperature profiles highlight the importance of studying the reduction of air temperature decrease
with increasing height above wet surfaces. High-resolution air temperature profile measurements are
expected to give additional insight into the above described cooling effects of uchimizu.

In this research, a three-dimensional setup was used to measure the air temperature within one
cubic meter of air, right above a wet/dry ground surface, with high spatial and temporal resolution.
Several uchimizu experiments were performed under varying initial conditions. The objective of this
paper was to study and understand the effects of uchimizu under different conditions, such as a varying
initial ground surface temperature, shading of the pavement, and differences in the applied amount of
water. Here, we provide an estimate of the cooling potential of the uchimizu technique as well as an
explanation for the variability of its effectiveness under different initial conditions.
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2. Methods

2.1. Field Site

This paper presents and analyzes measurements of six experiments, with varying initial air
temperature, ground surface temperature, shading, and applied amount of water. The uchimizu
experiments were done on a paved street in an urbanized area at the Delft University of Technology
campus (51.998◦ N, 4.378◦ E), Delft, The Netherlands. All measurements were done on 24 August 2016
between 11:24 and 17:40 local time (LT = UTC + 2). On the 24 August, it was a sunny day with a clear
sky all day long. The air temperature at 2 m varied between 27.4 and 33.0 ◦C, with a relative humidity
between 38.5% and 51.0%, and a wind speed between 0.1 and 0.7 m/s. Global radiation was recorded
at the station of the Rotterdam of the Royal Netherlands Meteorological Institute (KNMI), about 5.9
km from the measurement site.

Two uchimizu measurement locations were used during this experiment (Figure 1), each 3 m × 3 m.
The ground surface consisted of red bricks in a 45◦ herringbone block pavement. The field site was
surrounded by buildings on Northern and Eastern sides at distances of 6 m and 15 m from Location A,
and 5 m and 5 m from Location B. An open field with trees was located in the southwest of the
measurement locations. Location A was shaded by trees approximately between 14:00 and 16:00 LT.
Location B was in full sunlight the whole day. In between Location A and B was the reference location, R.
This location was uninfluenced by wetting and stayed in the sun the whole day.

Brick surface

Building

Grass

Sidewalk

Location A

Trees

Location B

N

10 m

Location R

Figure 1. Sketched map of the field site in Delft, The Netherlands. Measurement locations are 3 × 3 m,
and are not completely to scale on the map. The reference location (R) was a location uninfluenced by
application of water and remained in the sun the whole day.

Wind speed, wind gusts, relative humidity, and air temperature were measured 1.5 and 2.0
m above the ground surface using a HOBO weather station (Onset Computer Co., Bourne, MA,
USA), with a measurement interval of 1 min. The resolution and accuracy of individual sensors
can be found in the Supplementary Material. The wet bulb temperature TW was calculated from
observed relative humidity and air temperature. This weather station was moved together with the
temperature monitoring setup from Location A to B and vice versa. Before each uchimizu experiment,
the ground surface temperature was measured using an infrared temperature sensor (Testo SE & Co.,
Lenzkirch, Germany).



Water 2018, 10, 741 4 of 18

2.2. Distributed Temperature Sensing

To study changes in the temperature distribution near the paved surface during an uchimizu
experiment, this study used Distributed Temperature Sensing (DTS). DTS allows precise and fast
temperature measurements along the length of a glass fibre cable. This technique has, for example,
been used to measure temperature at a high resolution in lakes [27,28], soils [29,30], streams [31],
groundwater [32], and in the atmosphere [33]. A more detailed description of DTS can be found
in [34,35].

DTS allows temperature measurements with sub-centimeter vertical measurement resolution
by wrapping fiber optic cables around a coil or other construction [27]. However, as cables are
often attached to the construction, this can introduce a significant error in observed air temperature
values [36]. The measurement setup used in this study [37] reduced this effect by spanning cables
across the construction without a physical contact between the cable and the construction anywhere in
the region of interest for the temperature measurements (Figure 2).

Figure 2. Measurement setup, consisting of the cage construction (1 m3), for the experiments.

The temperature monitoring setup consisted of a cage construction with 80 vertical bars, spanning
a space of 1 m3 (1 m × 1 m × 1 m). Two bend-proof white-colored fibre optic cables (AFL, part number
SR0015161001) with lengths of 1143 and 1243 m and a diameter of 1.6 mm were spanned within the
cage, resulting in more than 34,000 sampling points. The cables were unequally vertically spaced,
with 3 mm spacing in the lowest 120 mm of the setup, 15 mm spacing between 120 and 200 mm, 35 mm
spacing between 200 and 500 mm, and 80 to 200 mm spacing in the upper 500 mm (the schematics of
the setup can be found in [37]). The cables were connected to the four channels of an Ultima-S DTS
device (Silixa Ltd., London, UK) with a sampling resolution of 12.5 cm and a time interval of 1 min
with a 2 s integration time for each channel. More details about the used setup can be found in [37].
Double-ended calibration was used [38] to achieve high precision monitoring results.

2.3. Experiments

Six uchimizu experiments were done, with the aim of studying the influence of varying initial
ground surface temperatures, shading, and applied amount of water on the cooling effect. An overview
of conducted experiments is presented in Table 1.
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Table 1. Details of the six experiments, with starting time, location, sun or shaded, water applied,
surface temperature before water application (Tg), and links to videos showing the vertical evolution
of temperature during each experiment.

Exp. Time Location Sun/Shade Water Applied Tg (◦C) Link to Video

1 11:24 A sun 1 mm 37.5 ± 1.4 https://youtu.be/SwwEf8-BNxw
2 13:21 B sun 1 mm 40.6 ± 1.1 https://youtu.be/9oVsFIpk5Yg
3 14:33 A shade 1 mm 36.9 ± 4.8 https://youtu.be/bI__iyApdKo
4 15:29 B sun 2 mm 42.6 ± 1.3 https://youtu.be/8WDEklxFj2U
5 16:23 A sun 2 mm 47.7 ± 0.9 https://youtu.be/5sS6C13elTY
6 17:00 B sun >5 mm 41.3 ± 1.9 https://youtu.be/k8ID4dLhDxY

Before each measurement, the temperature monitoring setup was placed at the reference location,
and the ground surface temperature was measured at nine places within the 9 m2 area of the
experimental location (A or B). The values presented in Table 1 are averages of these measurements
and their standard deviations. It can be seen that a wide variety of initial temperatures was covered by
the six experiments. The standard deviation of the ground temperature before the third experiment
was relatively high, because the surface was shaded by a tree, and therefore, the ground temperature
varied depending on the instantaneous position of the shade patches.

Water was applied through pouring and was evenly distributed over the whole 9 m2 of the
experimental location. This took, on average, 1.0–2.5 min. Immediately after the application of water,
the temperature monitoring setup was positioned in the middle of the wet area to monitor the cooling
effect of the evaporating water. To prevent water from running off from this space, a 5 mm threshold
was applied around the measurement area. An experiment ended only when the ground surface was
dry again, based on visual inspection. Each time a new uchimizu experiment started, the weather
station was repositioned to the location of this experiment.

To investigate the influence of water on the cooling rate and change in temperature, different
depths of water were applied: 1 mm (9 L), 2 mm (18 L), etc., until the whole area experienced continuous
surface runoff (i.e., the amount of water was much higher than the 5 mm threshold surrounding the
experimental location). Three experiments were done on Location A and three experiments on Location B
(Figure 1 and Table 1). One of the experiments on Location A was done on a shaded surface to study
the influence of shade. Before the beginning of this experiment, the setup was not placed on the
reference location (R) but close to the measurement location, to ensure the measurements before and
after uchimizu were both taken in the shade of the tree.

2.4. Energy Balance Analysis

To understand the mechanisms behind the varying initial conditions of the experiments, simple
heat transfer balance calculations were done. The intent of this analysis was not to predict the precise
magnitude of the decrease in air temperature, but to assess the potential effect of initial ground surface
temperature on the cooling effect that uchimizu has on air temperature.

The total energy (Etot (kJ/kg)) available to cool the ground (EG) and the air (EA) was calculated as
the sum of energy necessary for increasing the water temperature to the observed temperature of the
ground before the start of the experiment (see Table 1 for each experiment) and the energy necessary
to evaporate the water.

Etot = EG + EA, (1a)

Etot = mwater ∗ Cpwater ∗ ∆T + mwater ∗ L, (1b)

EG = mbrick ∗ Cpclay ∗ (Ts − TW), (2)

where mwater [kg] is the mass of the applied water, Cpwater (4.2 kJ kg−1K−1) is the specific heat of water,
∆T [K] is the temperature difference between the initial pavement temperature and the tap water
(15 ◦C) used for the experiment, and L (2257 kJ/kg) is the latent heat of evaporation. Furthermore,

https://youtu.be/SwwEf8-BNxw
https://youtu.be/9oVsFIpk5Yg
https://youtu.be/bI__iyApdKo
https://youtu.be/8WDEklxFj2U
https://youtu.be/5sS6C13elTY
https://youtu.be/k8ID4dLhDxY
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mbrick [kg] is the mass of the brick pavement cooled by the applied amount of water, Cpclay (1.381 kJ
kg−1K−1), Ts [K] is the measured ground temperature, and TW [K] is the wet bulb temperature.

To simplify the calculation, we assumed that the clay bricks were cooled first because of their
higher thermal conductivity (kclay = 0.48 W m−1K−1) compared to air (kair = 0.03 W m−1K−1). We also
assumed that the bricks were cooled uniformly in both the vertical and horizontal directions. The
amount of energy necessary to cool the brick pavement to the wet bulb temperature (EG) and the total
energy (Etot) were, therefore, calculated first and subtracted to find out how much was left to cool
the air (EA). When the energy available for cooling the air was known, the change in air temperature
(∆Tair) was calculated using

∆Tair =
Etot − EG

mair ∗ Cpair
. (3)

The air temperature change was then divided by this “ventilation coefficient” (Cv [–]) to simulate
the exchange of air in the measured area (A = 1 m2).

Cv = Ugust ∗
EA

kair ∗ A ∗ ∆Tair
(4)

where Ugust [m/s] is the measured gust speed.
All variables in Equations (1)–(4) were known with exception of the mass of the clay bricks

necessary to calculate EG. The density (ρ) of clay is 1746 kg/m3, so with known volume (V) the mass
can be calculated using m = V/ρ. However, to what depth the bricks were cooled by the uchimizu
experiment was not measured. Therefore, a range between 0.1 and 50 mm (thickness of the bricks) was
prescribed, and temperature changes were calculated for each “heat infiltration depth” for the clay
bricks, as well as for the air. Figure 3a shows how much cooling reached the air (∆Tair) after a given
portion of the brick was cooled down to wet bulb temperature by 1 mm of water.
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Figure 3. Analysis of influence of (a) heat-infiltration depth; and (b) wet bulb temperature (TW) and
ground temperature before the beginning of the experiment (Ts) on the cooling power of uchimizu
(∆Ta). Subplot (a) uses the measured values of Ts, TW , and gust speed from the beginning of each
experiment and 1 mm of water. Subplot (a1) shows the same analysis with the actual amounts of water
used in each experiment. Subplot (b) shows a prescribed gust speed of 2.41 m/s (average gust speed),
50 mm of heat infiltration depth, and applied amount of water of 1 mm. The red dots in subplot (b)
show the combination of Ts and TW for each experiment.

Assuming that the ground was cooled to the wet bulb temperature, the energy supplied by the
ground, and consequently, the amount of energy that needed to be supplied by the air, was dependent
on the difference between the wet bulb temperature and the temperature of the ground. The higher
the difference between Ts and TW , the more energy that was supplied by the ground and the less
cooling that was left for the air. Figure 3b) shows the influence of the combination of various wet
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bulb temperatures (TW) and ground surface temperatures (Ts) on the air temperature change (∆Tair)
resulting from the application of 1 mm of water, assuming the whole brick was cooled (50 mm). The red
dots represent the measured combination of Ts and TW at the start of each of our experiment.

Although the energy balance calculation using 1 mm of water resulted in numbers similar to
those measured by previous studies [15,17,26,39], the calculated cooling effect for 2 mm and 5 mm of
water was unrealistically strong (Figure 3a1). When 2 mm of water was used, the calculation predicted
cooling effect was between 11 and 32 ◦C, and for 5 mm, the difference reached 66 to 80 ◦C according to
the used energy balance calculation. For three reasons such a simplified energy balance approach is no
longer applicable when more water is applied, as follows: (1) no additional energy has entered the
system. In reality, energy was constantly being added in the form of incoming solar radiation which
resulted in an increased temperature; (2) all the energy was extracted from the 1 m2 of bricks and the
1 m3 of air above. This assumption was partly addressed by introducing the ventilation coefficient
(Equation (4)) which simulates the exchange of the 1 m3 of air used in the calculation; (3) all of the
water evaporated. It is, however, realistic to assume that a certain amount of water infiltrated and did
not contribute to the cooling. Five, or even two, millimeters of water on brick pavement by far exceeds
the wetting loss of a brick pavement [40]. Hence, infiltration losses will occur. The only effect of this
extra water was the cooling of the brick, according to Equation (1b).

2.5. Overview of Data Analysis Methods

Measurements taken during the six experiments on 24 August 2016 were analyzed from several
perspectives. To simplify the representation of the 3D results, averages of the horizontal layers were
used. In the following section, first, the general horizontal profile is discussed. The vertical profiles for
the reference location and profiles after application of water were compared. The effect of incoming
solar radiation on the temperature measurements was quantified, as well as the effect of the applied
water on the relative humidity of the air. Four aspects of the cooling properties of uchimizu were looked
into with more detail: the effect of the amount of water applied, the effect of shade, the effect of initial
ground temperature, and the general spatial variability in the 3D measurements.

3. Results

3.1. Energy Balance Analysis

The energy balance analysis provided a simplified insight into some of the physical drivers,
such as the effect of the initial ground surface temperatureon evaporative cooling. The calculations
suggested that there might have been no cooling effect for Experiment 5 and strong cooling after the
third experiment. Experiments 1, 2, 4 and 6 were expected to have similar results with cooling effects
between 0 and 2 ◦C. Slingerland (2012) [26] showed that a high amount of water might have a larger
influence than 1 mm of water on the near ground temperatures, which suggests that Experiment 6
might result in different vertical cooling profile than the other experiments.

3.2. General Findings

Figure 4 presents the recordings for the whole day, i.e., horizontal averages of temperature
measured by the setup for each 1-min time step (Figure 4d,e) in relation to instantaneous weather
conditions (Figure 4a–c). The solid vertical lines show the times when water distribution was finished
and the setup and meteorological station repositioned to a new location. This time was considered to
be the beginning of each new uchimizu experiment. The dashed vertical lines in subplots Figure 4d,e
show the times when the setup was repositioned from a measurement location to the uninfluenced
reference location. Since the meteorological station was not repositioned to the reference location and
stayed at the original location until the beginning of a new experiment when it was moved to a new
location, the dashed lines are not present in subplots Figure 4a,c. No vertical lines can be found in
subplot Figure 4b, because the radiation measurements were taken from the KNMI weather station
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in Rotterdam. Finally, in Figure 4e, the red vertical lines depict times when the application of water
began. Equal distribution of the water over the 9 m2 location took around about 1–2 min.
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Figure 4. Measured (a) wind speed; (b) incoming radiation; and (c) temperature and relative humidity
2 m above the ground. Horizontal averages of temperatures over time for (d) all the layers in the setup;
and (e) 9 chosen layers in the setup and 2 temperature sensors (T1500 and T2000 for 1.5 m and 2 m
above the ground, respectively). The vertical, dashed lines show times when the setup was moved from
its original location (A or B) to the reference location (R). The red vertical lines (only in (e)) show times
when the wetting of the surface started. The black vertical lines show the times when the setup was
repositioned on the wet location. The weather station was always repositioned directly from Location
A to B and vice versa at the times indicated by the black vertical lines.

Figure 4e shows the average temperature profiles of several layers in the cube, with focus on the
lowest three layers (13, 16, and 19 mm above the ground). For more detail, please see the cross-sections of
the measurement setup for each time step of each event. Links to videos created from these cross-sections
are provided in Table 1, and can be also downloaded from https://doi.org/10.5281/zenodo.182395 [41].

Temperatures measured from 200 mm up showed, in general, very small differences among the
layers. This suggests that the air above this level was already relatively well mixed by turbulence.
When the setup was positioned on the reference location, the temperature decreased with height.
The application of water took around one minute, and the effect of uchimizu was immediately visible
in the dataset from the moment the application of water started, as the reference location was in
the proximity of the measurement location and the cooling effect stretched beyond the boundary of
the measurement location. After re-positioning of the setup above a wet surface, the vertical profile
changed. The cooling effect was the strongest for the 13 mm layer, followed by the 16 mm layer,
followed by the above-lying layers.

https://doi.org/10.5281/zenodo.182395
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A pocket of warm air formed above the cold layer close to the ground almost immediately after
the application of water. The highest temperatures were measured between 30 and 80 mm (see videos
from Table 1 for more detailed view). This pocket persisted until the end of the experiment.

The measured effect of the added water on the relative humidity (RH) was negligible. The biggest
increase in RH was measured 1.5 m above the ground right after the last experiment (added water
amount over 5 mm) and reached only 2.3%. Fluctuations of several percentage points were also
measured above the dry reference position.

3.3. Effect of Applied Water Amount

To simplify the presentation of the data, we focused mostly on the seven chosen layers in Figure 4e)
and the temperature differences before and after the application of uchimizu. Figure 5 presents the
differences between the horizontal profile measured at the reference location before the uchimizu and
the measurement location after uchimizu (Ta f ter–Tbe f ore). The temperature difference profiles shown in
the diagram are at times when the cooling effect of uchimizu reached its maximum.
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Figure 5. Temperature differences for average value of each layer before and after the uchimizu treatment
(Ta f ter–Tbe f ore). The chosen times are different for each experiment and represent the maximum
temperature drop, i.e., the difference between the maximum temperature before the uchimizu and
the minimum temperature after: For (E1) Tt+6–Tt+1, (E2) Tt+3–Tt−2, (E3) Tt+6–Tt−2, (E4) Tt+8–Tt−2,
(E5) Tt+2–Tt−2, (E6) Tt+7-Tt−3, where t represents the time of uchimizu in minutes. The triangles on the
top show the temperature change measured by the meteostation at 1.5 and 2 m above the ground.

The first three experiments were done with 1 mm of water. The third experiment was conducted
in the shade and will be therefore discussed separately. The first experiment took place in the morning,
when the initial ground temperature and global radiation were relatively low, resulting in only very
weak cooling (−0.7 ◦C) close to the ground. The second experiment repeated the conditions of the
first experiment, but now at Location B and resulted in a stronger cooling effect, especially near the
ground. Near-surface cooling reached −2.9 ◦C, while higher layers of air experienced cooling of
only about −0.3 ◦C, on average. The measured ground surface temperatures before the first and
second experiments were 37.5 ◦C and 40.6 ◦C, respectively. After the water application, the ground
surface temperature was not measured; however the air temperatures measured by the setup 13
mm above the ground reached after uchimizu were 30.2 ◦C and 35.0 ◦C for the first and second
experiments, respectively.
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Double the amount of water (2 mm) was used in the fourth and the fifth experiments.
The temperature difference profile of the fourth experiment was very similar to the profile described in
the second experiment. However, the cooling effect was stronger. Eight minutes after application of
water, the temperature close to the ground dropped 8 ◦C compared to the situation before uchimizu.
Higher up, the cooling reached −2.2 ◦C, on average. In contrast to that, the fifth experiment showed
almost no cooling effect. The zero cooling effect after the fifth experiment was predicted by the energy
balance analysis due to the high Ts−TW difference.

Figure 5 also shows an increase in the near-surface temperature by 4 ◦C for the fifth experiment,
which was not expected. The measured increase in the near-surface temperature at the start of the fifth
experiment might be explained by a large underestimation of Tbe f ore. The initial ground temperature at
Location A at the start of experiment 5 was 47.7 ◦C before the water was applied. Moreover, the setup
was not located at the reference location for more than two minutes. This might not have been sufficient
for the setup to reach equilibrium. Spruit et al. (2016) [42] showed that the response time of DTS to
shock changes in temperature can be up to 1 min.

The fifth experiment cooled the pavement to approximately 38 ◦C but did not result in a colder
layer of air close to the ground surface. As shown in Figure 4d, the lower layers of air continued to be
the warmest at all times during Experiment 5, while the temperature profile inverted at least partly
during all other experiments. A contributing factor for the creation of such a profile may have been the
low wind speed during this experiment as it often dropped to 0 m/s (see Figure 4a).

During the sixth experiment, water was applied until continuous runoff from the area appeared.
The vertical distribution of temperature change during the last experiment differed from the previous
ones, especially in the lower layers. The temperature change of the lowest layer was only a decrease
of 3.4 ◦C, which is 4.6 ◦C less cooling than after the fourth experiment. However, the rapid decrease
in the cooling effect on the following layers was not present after this last experiment. For the first
100 mm, the temperature change decreased only by ∼0.5 ◦C. The uniform cooling that is typical for
higher layers was reached only after ∼400 mm. The wind speed during this experiment was again
very low and might have, similarly to the previous experiment, contributed to a different vertical
temperature profile.

3.4. Effect of Shade

The third experiment was performed in the shade of a tree, and 1 mm of water was applied.
The initial temperature of the pavement was only 36 ◦C. Compared to other experiments, uchimizu
performed in the shade showed the strongest cooling effect on air temperature. The strongest cooling
was measured close to the ground, with a temperature drop of −6.5 ◦C within the first two minutes,
and the maximum temperature decrease, −8.3 ◦C, was reached at at 14:48. For the third experiment,
Figure 4e shows immediate responses by all the measured layers to uchimizu.

Based on the lower Ts−TW difference, the energy balance analysis predicted this experiment to have
the strongest cooling effect. This was mainly due to the lower Ts compared to other experiments. In general,
shade decreases the amount of shortwave radiation that reaches the ground, which consequently leads to
lower ground temperatures compared to sun-exposed locations, but it also leads to a lower amount of
energy available in the system.

The results suggest that shade might increase the air cooling effect of uchimizu. Shashua-Bar et al.
(2009) [43] measured an amplified cooling effect in the shade of trees for grassy areas. Their study,
however, also reported an increase in temperature if the shade was provided by a mesh. Our experiment,
in combination with the energy balance calculated by Equations (1) and (2), shows that, indeed, a better
cooling performance is to be expected if the pavement is shaded.

3.5. Effect of Initial Ground Temperature

The effect of the initial ground temperature was predicted by the energy balance analysis to play
an important role in the cooling efficiency of uchimizu. The results show that, indeed, the experiment
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with the lowest ground temperature (Experiment 3) resulted in the largest amount of cooling and vice
versa. However, if the initial ground temperature was the only driving force, the first experiment
should have resulted in almost as strong of a cooling effect as the third experiment. The initial ground
temperatures of these two experiments differed only by 0.6 ◦C. Nonetheless, the results of the first
experiment showed a very weak cooling effect, as predicted and visualized in Figure 3b, due to the
low wet bulb temperature. Similarly, the fourth experiment was done on a relatively warm surface
(Ts = 42.6 ◦C) and resulted, as expected, in strong cooling comparable to the experiment performed in
the shade.

3.6. Local Variability

The use of the high-resolution temperature monitoring method above a wet surface during a hot
summer day resulted in several interesting insights into the cooling effect of uchimizu, such as a vertical
profile of rising turbulent eddies. Figure 6 allows a more detailed examination of the cooling effect
of uchimizu for the fourth experiment (2 mm of water applied over a sun exposed location) than the
average value profile shown in Figure 5 (dark green line). Compared to the previous figures, Figure 6
shows the absolute instantaneous values of that particular cross-section, not the averages over the
whole layer (as in, for example, Figure 4d)).
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Figure 6. Vertical and horizontal profiles for the fourth experiment measured right before the uchimizu
(15:28), right after (15:29), and 9 min after (15:38). The subplots in column (a) show vertical cross-sections
through the middle of the setup (x = 500 mm), and the subplots in columns (b–d) show horizontal
cross-sections at height h = 13 mm, h = 100 mm, and h = 500 mm, respectively.

Figure 6a shows three vertical cross-sections through the middle of the setup (x = 500 mm) for
the fourth experiment. The top left subplot depicts the situation just before the water was applied,
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which means that the setup was at the reference location, and the two subplots below show the
situation at 1 min and 9 min after the application of uchimizu. Especially in the lowest 200 mm of air,
where the measurement resolution was highest, the creation of turbulence (eddies) can be observed.
The spatial variability of the rising warm air was very well revealed by the fine resolution of the setup.

Figures 6b–d show the horizontal spatial variability of the temperature distribution before and
after the fourth uchimizu experiment. The spatial variability originated primarily from the shape of the
pavement. The herringbone pattern with warm bricks and colder interstices was clearly visible in the
data. This influence could even be seen at 500 mm above the ground (Figure 6d).

Detailed vertical and horizontal cross-sections of the instantaneous temperature also provided
an insight in the effects of insolation and shading. Figure 6b, especially at 15:29, suggests that the
side of the setup where x = 0 was more exposed to sun than the side where x = 1000. This localized
temperature increase was, however, only visible for the lowest layers of the set up and might partly be
an artifact of an unevenly heated pavement.

4. Discussion

4.1. Discussion of Energy Balance Analysis

The results of the six uchimizu experiments were analyzed from different perspectives. Simplifying
the system to a basic energy balance proved to be helpful in understanding the sensitivity to different
variables, such as the wet bulb temperature or the ground surface temperature. As shown by Figure
3b, the energy balance analysis predicted low-to-no cooling effects for the fifth experiment and the
strongest cooling effect for the third experiment. This was indeed what the measurement results
showed. However, the energy balance analysis predicted more cooling when more water was applied.
This was not confirmed by the measurements. The most likely explanation for this overestimation
of the cooling effect for water amounts greater than 1 mm is the infiltration of part the water. With
recorded infiltration rates of at least 10 mm/h for similar brick pavements, a significant part of the
applied water can infiltrate the joints between the bricks [44] so that it is no longer available for
evaporative cooling.

In our energy balance model, the dynamic properties of the atmosphere were represented
simplistically. To include the effect of air exchange by wind, the ventilation coefficient was used
to relate the amount of energy required to cool the air EA with the air temperature decrease ∆Tair.
Similarly, the decrease in turbulence due to the transition of the temperature of the bricks from being
warmer than the air to being colder than the air, as well as the effect of entrainment and vertical wind,
was not taken into account in the calculation. Instead, we continued to use the observed Ugust in
Equation (4).

When it comes to the paving material, it was assumed that the whole brick had the same
temperature as the temperature measured on the surface and that the cooling was homogeneous
throughout the whole volume of the brick. In reality, it is likely that the temperature of the brick
gradually changed from the surface towards deeper layers, but this difference was not monitored
and was not included in the energy balance approach. Instead, the cooling was seen more as a
process starting on the surface, where the water was applied, and proceeded deeper into the brick.
This simplification introduced in our energy balance analysis likely led to an overestimation of the
energy necessary to cool the ground.

The type of pavement seems to play an important role in the cooling effect of uchimizu. The simple
energy balance analysis revealed the importance of the density and heat capacity of the paving material.
Equation (2) shows a direct proportionality between the heat capacity and the energy necessary to
cool the pavement. The same equation then hints at the inverse proportionality between the density
and the energy (m = V/ρ). Surfaces with higher density and lower heat capacity, such as, for example,
asphalt (ρ ≈ 2000 kg/m3, Cp ≈ 0.95 kJ/(kg K), might require less energy for cooling than clay bricks.
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4.2. Discussion of the Experimental Setup

The construction of the setup was specially designed to capture the variation in temperature with
very fine spatial resolution. However, the dense cable spacing in the set-up and the vertical bars of
the walls of the cube may have led to undesired effects, such as reduced ventilation inside and at
the bottom of the construction. Although the ventilation was not restricted totally, the chosen setup
might, to a certain extent, have limited the effective area of cooling to that directly above the wetted
ground surface. The influence of the grid is expected to have been small, since the relative volume of
the optical fibre over the complete setup was only 0.4%. In the bottom 10 cm, the percentage was a
bit higher at 2%. However, the cable nets could induce small-scale convection cells by the physical
tendency to diffuse the temperature interface [37].

Similarly, the grid of the “walls” of the cube provided shading for the area under and behind
the construction causing differences in the influence of radiation along the vertical axis of the setup.
As can be seen by studying the films, this influence was relatively small. Also, in the recordings shown
in the top view of Figure 6 (h = 13 mm), a colder strip due to the shading is visible at x > 800 mm.
The cables within the construction might have affected the amount of incoming radiation, and therefore,
the evaporative cooling. During our fieldwork campaign, it was impossible to quantify the attenuation
of the incoming radiation by the setup. Future work will study this in more detail.

The effect of solar radiation on the temperature monitoring setup is visible from Figure 4e.
As there was very small vertical variation in the temperature measured by the setup above ∼200 mm,
the highest layer of the setup (yellow line in Figure 4e) should have a similar temperature to the
air temperature measured at 1.5 m by the sensors with radiation shields (gray lines in Figure 4e).
However, measurements taken by the shielded sensors collected up to 2 ◦C lower temperatures
than the highest layers of the setup. This difference disappeared when the setup was in the shade
(14:33 until 15:23). The differences between the measurements of the highest layer (859 mm) and the
1.5 m temperature sensor (T859-TT1500) for each time step are shown in Figure 7. The effect of radiation
on the recorded temperatures was around 1 ◦C, on average, when positioned in the sun, and close to
zero for measurements in the shade (−0.02 ◦C). Later in the afternoon (after 16:20) the effect of direct
insolation on the white fibre optic cable decreased again, probably as a consequence of lower incoming
solar radiation. This is in agreement with research done by [45]. They found that the effect of radiation
on DTS can reach up to 2.8 ◦C when the values of incoming shortwave radiation are high. Although,
de Jong et al. (2015) [33] showed smaller effects of solar radiation (−0.4 ◦C ,on average) for 1.6 mm
white cable, the same one used in our uchimizu measurements, we observed an effect of up to about 1.0
to 1.5 ◦C.
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Figure 7. Difference between the temperature measured by the setup at 859 mm and the reference
temperature at 1500 mm (T859-TT1500). The red and blue lines show average values for all time steps
when the setup was positioned in the sun and in the shade, respectively.
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4.3. Discussion of the Measurement Results

The amount of water applied did not show a clear relationship with the cooling effect. Applying
1 mm of water resulted in a relatively weak cooling effect, with the strongest cooling occurring near
the ground. The strong cooling effect recorded after the fourth experiment using 2 mm of water, might
suggest that double the amount of water leads to more cooling. However, the following experiment
with 2 mm of water resulted in almost no cooling and even, an increase in temperature near the ground.
The last experiment, when the surface was fully saturated by water, resulted in a slightly different
profile than all previous experiments. It is possible that the amount of water influenced the thickness
of the lower air layer that was experiencing stronger cooling than the higher, well-mixed air. The
measured differences for small (1–2 mm) and large (>5 mm) amounts of water correspond with
preliminary research done by [26]. The current evaporative cooling effect was also influenced by the
temperature of the applied water (15 ◦C). If, for example, rain water with ambient temperature was
applied, the cooling effect might be lower.

Previous studies done by [15,17,39] reported temperature decreases between 1.5 and 2.3 ◦C,
measured at 1.2 m above the ground, and a more detailed profile done by [16] showed a cooling effect
decreasing from 4 ◦C at 0.4 m above the ground to 2 ◦C at 1.8 m above the ground. Similar values
were measured in our experiment, but with much higher resolution. While Himeno et al. (2010) [16]
measured the effect on four levels, the setup used in this research consisted of 53 horizontal layers.
Similarly, the dense measurement grid in each of these layers allowed for a detailed observation of the
spatial variability in temperature caused by the unevenly heated pavement underneath.

The average values for each horizontal layer, presented in Figure 5, showed a typical profile
of strong cooling close to the ground followed by constant cooling higher up. Air above 200 mm
experienced a similar level of cooling for all measured horizontal layers. Nonetheless, even with
stronger cooling close to the ground, the lowest layer of air (under 200 mm in Figure 6 Side view) stayed
warmer than the air above. The homogeneous temperature of air above 200 mm is inconsistent with
the measurements of [16], who showed variations among the measured levels. This difference might
have been caused by using average values of a horizontal layer rather than using point measurements.
The top view of Figure 6 shows variation by up to 1 ◦C for the higher layers of air (100 and 500 mm),
and up to 3 ◦C for the layer closest to the ground. For this reason, we recommend averaging several
measurement points at one level as a better estimation of the temperature change.

Uchimizu showed promising potential for mitigating the UHI at a local scale by decreasing both the
air and ground temperatures. Decreasing the ground temperature lowers the mean radiant temperature
(MRT) and consequently, increases human comfort. Another factor influencing human comfort is the
relative humidity (RH). Higher levels of RH generally have a negative impact on human comfort.
The effect of uchimizu on RH was measured to be negligible (2.3%) in the climate of The Netherlands,
but implications of increasing the RH should be considered for more humid climates. Human comfort
is influenced by a broad scale of factors and was not explicitly studied in this research. On the other
side, in dry, urban environments, especially during heatwaves, the slight increase in RH might have an
even larger positive impact on human comfort.

The brick pavement showed a distinct change in colour at the moment that all water had
disappeared from the brick. This was the moment at which each experiment was stopped as further
cooling was not expected. As is visible from Figure 4e, temperatures at h = 13 mm were constant
by the end of each experiment and temperatures at h = 100 were already increasing. As expected,
results suggested that at the end of each experiment, the near-surface temperature was still lower at
the experimental location than at the reference location. The conclusion that cooling stops the moment
the pavement is dry seems to be valid. Although it is not within the scope of the current paper, it
would be interesting to continue monitoring after the moment the pavement runs dry to prove this
and to see how quickly the temperature starts to increase again.
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4.4. Outlook

The limitations and uncertainties described above show the need for further research. It was
assumed that all the water evaporated. However, further research is needed to assess how much
infiltrates and how much evaporates. Simultaneous measurements of a profile of areas with and
without uchimizu might provide more accurate quantification of the cooling effect. Alternatively,
application of uchimizu on a plot of artificial street surface on a small scale could also provide an
estimate of the degree of water infiltration.

A second setup measuring simultaneously above a dry surface would also contribute to another
important aspect, the duration of the cooling effect. Information about the time when the cooled
surface and air warmed up again to a temperature of an uninfluenced area cannot be precisely derived
from measurements of a single setup. However, the results of this research suggest that the effect lasts
longer than an hour. As is visible from Figure 4e), the reference location was always warmer than the
measurement location, even after a long measuring period (e.g., 13:20 until 14:20).

More measurements are also necessary to fully understand the effects of shade and initial ground
temperature on uchimizu practices. The results of this study suggest that shade might enhance the
cooling effect of uchimizu. Similarly, a lower ground temperature can be beneficial for cooling by
uchimizu, since less energy is extracted from the ground and more from the air. Such effect, however,
is only confirmed for the warmest and coldest initial ground temperatures measured in our experiment.

This research specifically focused on the temperature change within the 1 m3 of air closest to the
ground. Further research should extend to areas around and above 1 m3. Further research is also
needed for deeper understanding of the effect of evaporation in general and uchimizu, in particular,
on UHI at the city level. The temperature decreases measured in this research showed the potential
for local cooling. However, in order for uchimizu to be used over a whole city, more research needs to
be done to come to a reliable estimate of the decrease in temperature and the amount of water that
would be necessary to achieve this decrease. This water demand is the reason why this topic is also
interesting from a water management point of view.

5. Conclusions

This research focused on quantifying the cooling effect of the traditional Japanese water throwing
tradition of uchimizu on air temperature in an urban environment. The measurements showed a
decrease in air temperature of up to 1.6 ◦C at a height of 2 m, and up to 8 ◦C for near-ground
temperature. The highest rate of cooling was measured for the experiment performed in the shade.
Stronger cooling effects were also predicted for lower initial ground temperatures, especially in
combination with high wet bulb temperatures. The results of the third and fifth experiments agreed
with this hypothesized effect of initial ground temperature; nonetheless, the remaining experiments
did not show this relationship. For applied amounts of water of 1 mm and 2 mm, there was no clear
difference in cooling effect.

We further conclude that the use of high resolution temperature monitoring setups, such as the
one used in this research, can potentially lead to significant improvements in the understanding of
atmospheric processes at a micro-scale. Thanks to the dense measurement grid, we were able to
capture the vertical distribution of temperature over time in high detail. The fine resolution was even
able to capture the rising turbulent eddies created by the heated surface.

Overall, this study sheds promising new light on a traditional cooling method. This simple
water throwing method has the potential to decrease temperatures in impervious and paved parts of
urban areas by using a limited amount of water. Besides its cooling effect, uchimizu practice is also an
opportunity to activate awareness among citizens, and to stimulate citizen participation in solving
heat stress problems and cooling energy saving. Uchimizu is a local technique with proven local effects.
Application at the city scale as an UHI mitigation strategy is beyond the scope of this study but could
provide interesting new insights on urban climate control and water resources management.
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