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Abstract

We tracked the largest volunteer security information shar-
ing community known to date: the COVID-19 Cyber Threat
Coalition, with over 4,000 members. This enabled us to ad-
dress long-standing questions on threat information sharing.
First, does collaboration at scale lead to better coverage? And
second, does making threat data freely available improve the
ability of defenders to act? We found that the CTC mostly
aggregated existing industry sources of threat information.
User-submitted domains often did not make it to the CTC’s
blocklist as a result of the high threshold posed by its au-
tomated quality assurance using VirusTotal. Although this
ensured a low false positive rate, it also caused the focus of
the blocklist to drift away from domains related to COVID-19
(1.4%-3.6%) to more generic abuse, such as phishing, for
which established mitigation mechanisms already exist. How-
ever, in the slice of data that was related to COVID-19, we
found promising evidence of the added value of a community
like the CTC: just 25.1% of these domains were known to
existing abuse detection infrastructures at time of listing, as
compared to 58.4% of domains on the overall blocklist. From
the unique experiment that the CTC represented, we draw
three lessons for future threat data sharing initiatives.

1 INTRODUCTION

For years now, research has consistently found that threat data
feeds each cover just a fraction of the landscape. Numerous
comparisons have been made among different threat intelli-
gence sources and they all find very little overlap: feeds are
dominated by data points that appear only in a single source
and in no other one. This holds across the spectrum of threat
data, from freely available blocklists and abuse feeds [1, 2]
to closed industry sources [3], all the way up to the most
expensive feeds at the high end of the market [4]. It points
to poor coverage of the threat landscape, a problem for the
industry and — more importantly — for its customers. To il-
lustrate: anti-phishing companies missed a large portion of

the phishing sites targeting their customers, while those sites
were being discovered by their competitors [5].

While prior work on threat intelligence sources demon-
strated the problem of low coverage, it does not discuss how
it could be overcome. One obvious and often proposed so-
lution is more data sharing. This typically takes place in
informal trusted communities of specialists or in formalized
sharing agreements among firms, such as the Cyber Threat
Alliance [6] and the Anti-Phishing Working Group [7], which
often demand reciprocity, or ‘quid pro quo’, in order to avoid
free-riding behavior. This forms a high entry barrier for access
to the shared data, as not everyone has enough to contribute
in order to gain access, and so benefits are typically limited
to corporate entities. Non-participants can only get access to
the separate services of these firms. In economic terms, such
sharing arrangements create club goods, not public goods.

A potentially more effective form of information sharing
would go beyond these boundaries: open to any contribu-
tor, with free access for anyone to the pooled data. Under
normal conditions, market incentives would prevent such a
public good from emerging. Generating quality threat in-
formation costs money and firms have to recoup their in-
vestments. However, the 2020 global pandemic gave rise
to a real-world experiment that temporarily suspended nor-
mal economics in data sharing: the COVID-19 Cyber Threat
Coalition (CTC) [8]. The CTC was a volunteer-based re-
sponse where firms and individuals shared threat intelligence
on pandemic-related threats posed by cybercriminals as well
as nation states [9]. The coalition’s mission was “to operate
the largest professional-quality threat lab in the history of
cybersecurity” and reduce gaps in availability and coverage
of existing defense mechanisms [8, 10]. After 3 months, over
4,000 individuals and organizations had signed up, with com-
panies like Symantec, Microsoft and Cofense contributing
data [11, 12]. Contrary to sharing based on quid pro quo, the
resulting blocklist was freely available to anyone.

Does such large-scale open data sharing actually improve
our defenses against threats? To the best of our knowledge, re-
search on the effectiveness of large data-sharing arrangements
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is extremely sparse. More than a decade ago, Moore and Clay-
ton studied the inner workings of crowdsourcing at PhishTank,
but not its impact on mitigation [13]. Thomas et al. found that
a Google-based threat exchange could have more impact than
existing standalone anti-abuse pipelines [14] but access to the
pooled data in the exchange was restricted. A recent study on
VirusTotal did not analyse the information-sharing aspects of
the service nor its impact, but evaluated the aggregation of
detection results of the participating vendors [15].

In this paper, we set out to extend the literature on data-
sharing arrangements by learning from the CTC experiment.
We investigate two questions: (i) By pooling data from its
community, did the CTC improve coverage of COVID-19-
related threats over existing defenses? And (ii) Did publishing
threat data in a freely available blocklist improve the ability
of defenders to act against threats, compared to the existing
abuse mitigation infrastructure? To answer these questions,
we first describe the organizational setup of the CTC and ob-
serve how the community pooled data and conducted quality
assurance. We then evaluate the blocklist through manual clas-
sification of a sample and by identifying false negatives for
COVID-19-related domains. Next, we conduct longitudinal
measurements to infer who acted when against domains on the
CTC blocklist: registry, registrar, browser vendor, or security
provider? We end by identifying key lessons for improving
the impact of open large-scale data sharing mechanisms.

In sum, our contributions are:

e We present the first empirical evaluation of a large and open
threat sharing community, the COVID-19 Cyber Threat
Coalition, and describe its mechanisms for producing and
vetting threat intelligence.

e We find that user contributions were heavily skewed, with
just 10 users making 90% of contributions. Further, the
high threshold posed by the indicator vetting process, which
relied on VirusTotal, resulted in a mere 5.14% of user-
contributed indicators actually being propagated to the
blocklist. Instead, most data came from commercial firms,
and at least part of this was vetted against a lower threshold.

e We show that the CTC list went well beyond the scope of
just COVID-19-related threats. Generic phishing made up a
large portion of the blocklist: domains containing the word
whatsapp (2.8%) outnumbered those containing keywords
related to COVID-19 (2.6%).

e Based on longitudinal measurements, we demonstrate that
for 58.4% of the domains on the CTC blocklist, existing
abuse-mitigation mechanisms were faster: domain-level or
client-side interventions had already taken place before the
domains appeared on the blocklist. For COVID-19-related
domains, this share is smaller: 25.1%, which is evidence
of added value of the community. The remaining portion
was intervened against later or not at all. This means that
the blocklist improved the ability of defenders to protect
themselves. Its impact could have been larger, if it had not
depended as much on VirusTotal for vetting indicators.

2 THE CTC COMMUNITY

The CTC started as a Slack community on March 19 — a week
after the WHO declared COVID-19 a pandemic. Joshua Saxe,
a security specialist at Sophos, founded the community out
of a “personal sense of alarm”, conceiving it as a “crisis com-
mons model” where “traditional competition and grievance
[were] set aside in a moment of exceptional need” [16]. The
CTC founders articulated objectives for the community and
then set up community support services for volunteers to join
and participate. We also joined and revealed ourselves as
researchers interested in learning more about how the com-
munity was functioning. The CTC’s mission was threefold:
fostering collaboration across organizations to uncover other-
wise missed threats, producing professional-grade output that
the community can rely on, and prioritizing the public good
over the interests of individual actors [8].

2.1 Information products

The CTC set out to publish an open high-quality blocklist
containing COVID-19-themed abuse to “supplement the ex-
isting defensive structure” by setting up a “separate threat
intelligence platform dedicated just to pandemic-related cy-
ber activity” [10, 17]. Blocklist data was published on the
CTC’s website from March 29, 2020 onwards [18]. In May,
it reported that over 60,000 distinct IP addresses had been
consuming the blocklist [19]. Initially, they offered two types
of lists: one with vetted indicators of compromise (IOCs) and
a larger list with unvetted IOCs submitted by the community.
The latter was eventually discontinued to “produce the highest
quality feeds with the least amount of false positives possi-
ble” [20]. Within the vetted category, four blocklist files were
available: for domains, URLs, IP addresses and file hashes.
The latter two, however, have remained empty at all times.
Our analysis focuses on what is arguably the main list, i.e.,
the domain list.

The technical indicators were supplemented by threat ad-
visories and community meetings. The advisories featured
themes like phishing and ransomware related to COVID-19,
trends in pandemic-related domain registrations, and the se-
curity challenges of remote work. They were published on
the CTC website! and sent out via a mailing list every week
from April 6 until May 26. From April 16 onward, commu-
nity leaders also organized online community meetings or
‘town halls’ hosted on Zoom and archived on YouTube [21].
These webinars were intended to disseminate findings from
the reports, to update the community on changes to the CTC
procedures and infrastructure, to interview representatives
of security companies, and to allow for Q&A with the com-
munity leaders. For the first two months, town halls were
organized weekly; after June 11, the CTC planned to organize
them every two weeks, but no town halls took place since.

"https://wuw.cyberthreatcoalition.org/advisories
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Figure 1: Member activity on the CTC Slack workspace
peaked 1.5 weeks after the community was founded [19].

2.2 Community structure

The primary means of collaboration in the Cyber Threat Coali-
tion was a Slack workspace. The aim of this Slack workspace,
which anybody could join, was for members of the secu-
rity community to share information and make the necessary
contacts for interventions [22]. After a brief period of un-
structured posts, the workspace was organized into themed
channels for posting community updates, IOCs per topic (e.g.,
web, email, malware), and region-based networking. Mem-
bership grew to 1,500 in one week [23] and to over 4,000
after 3 months [24]. Members were requested to add their
affiliation and job title to their screen name, although this
information was not validated. Of the users who indicated
a country in their username, around half came from North
America, around a third from Europe (mainly the United
Kingdom and the Netherlands), 3% from Australia, with the
rest scattered around the world. Based on stated affiliations,
the CTC counted representatives of security vendors, health-
care providers, CERTS, financial institutions, domain name
infrastructure providers, major technology firms and law en-
forcement agencies among its members. Activity peaked at
the end of March and then slowly decreased (Figure 1). By
July, the public channels saw much less activity, with daily
posts in the single digits, and no official announcements were
made except for a single update in February 2021 stating that
the CTC was in “low battery mode” but “evolving”.

The community had a simple organizational structure [19]:
a ‘steering committee’ functioned as administrators for the
community, with its members committed to “sacrificial” time
contributions [22], leading teams for various tasks like vetting
process development, advisory writing, and media outreach.
Within the larger community, over 100 ‘vetted volunteers’
[25] underwent identity verification via their social media
profiles to obtain access to private channels, where more
sensitive data could be shared [22].
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Figure 2: Counts of unique domains newly seen in the CTC
AlienVault OTX group and on the CTC blocklist (logarithmic
scale), and the proportion of AlienVault OTX domains that
were propagated to the CTC blocklist.

3 PRODUCTION OF THE BLOCKLIST

In this section, we describe how the CTC’s prime information
product was sourced and vetted. Four sources fed the CTC
blocklist: (i) user contributions on Alienvault OTX; (ii) user
contributions via a Slackbot; and industry lists from both (iii)
named and (iv) unnamed vendors.

Initially, TT sharing was ad hoc, consisting of community
members posting free-form IOCs, first in the general Slack
channel and soon after in field-specific channels (e.g., for
email and domains). After one week, the CTC set up groups
for machine-readable TI sharing on AlienVault OTX [23].
Users could submit IOCs to the CTC Slack workspace. After
they had been checked for maliciousness , indicators were
published on the ‘vetted’ list [22]. In June, the CTC intro-
duced a Slackbot that let users contribute indicators as well
as vet indicators supplied by other users [11]. We describe
these two vetting mechanisms in subsection 3.2. Further, com-
mercial security providers contributed “hundreds of millions
of indicators per day” [22] outside of the AlienVault group,
although these were also subject to the same vetting proce-
dure. These indicators appear to represent the vast majority
of domains on the final vetted blocklist, as demonstrated in
Figure 2. Known industry contributors to the CTC are Syman-
tec [12], Microsoft and Cofense [11], but other vendors have
asked to remain anonymous [22].

3.1 User contributions on AlienVault OTX

We analyze the indicators contributed to the CTC group on
AlienVault OTX, using the API to gather all submissions over
time. By July 2020, 738 users had been accepted into the
CTC’s closed AlienVault OTX group. Only 47 users actually
contributed IOCs — 10 of whom made 90% of all contribu-
tions (Figure 3). The two heaviest contributors did so on a
fixed schedule, and described drawing on newly registered
domains and certificate transparency for their lists. Others
added more opportunistically, with a downward trend over
time. In general, recipients were often left guessing as the
source or method behind the contributed indicators.
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Figure 3: Daily count of unique domain indicators contributed
to the CTC AlienVault OTX group, with the top 10 and other
contributors ranked on the total number of contributions over
time.

In other words, even though the community has over 4000
members, only 1-2% of them contributed indicators, with 10
users contributing the bulk. This skewed distribution resem-
bles the pattern found in the PhishTank community project,
where volunteers collect and classify phishing sites [13]:
there, the top 10 contributors made 69.9% of submissions
and 57.4% of votes [26]. It also resembles free and open
source software (FOSS) development, where a tiny fraction
of contributors supplies most code and most others only con-
tribute once, typically in the form of a bug report [27]. As we
discuss in the next section, most user contributions to the CTC
never made it past the vetting stage (see also subsection 3.2).
At the outset, a large proportion of AlienVault submissions
made it to the CTC blocklist, but after the list was reset on
April 12 (subsection 4.2), domains added to the CTC block-
list came mostly from named and unnamed industry sources.
Over the entire period of our data collection, just 1.23% of
domains on the blocklist came from user contributions on
OTX.

3.2 Quality assurance

The community admins instituted vetting mechanisms for sub-
mitted indicators, in order to “provide reasonable assurance
that what we re-share with the public are examples of truly
malicious artifacts” [16]. Initially, vetting consisted of a pool
of volunteers manually verifying maliciousness of submitted
indicators. The workflow was eventually automated using a
security orchestration service that integrated VirusTotal: if a
domain received 10 or more hits, this would lead to a domain
being marked as malicious and propagated to the blocklist.
A domain with between 4 and 10 hits would require manual
review, while for fewer than 4 hits, it would be marked as
“clean” [11] and dropped.

Although automation allowed for higher volumes of in-
dicators to be processed, this workflow left the community
with three problems. First, only indicators that were already
known to be malicious by many VirusTotal scanners could be
added to the blocklist. Earlier research has consistently found

very low overlap among TI sources [1, 4], so requiring that
indicators are found by 10 scanners imposes a high threshold
to propagation. It meant that just 5.14% of domains from the
AlienVault OTX group made it onto the blocklist. Moreover,
VirusTotal aggregates labels from 84 established automated
scanners, negating the community contribution aspect of the
CTC. The second problem: some of the contributed industry
sources, in particular Cofense [11], were seen as reliable, yet
their indicators did not appear on the vetted blocklist as too
few VirusTotal scanners flagged them. As a solution, the CTC
admins lowered the thresholds for these trusted sources [11].

The third problem was how to evaluate the indicators that
fell in-between the thresholds for ‘clean’ or ‘malicious’. At
first, this was done manually by a small pool of volunteers. It
is unlikely that they could keep up with the overall volume,
so probably these indicators did not make it onto the vetted
list. On June 11, the CTC admins announced a new Slackbot
that would allow all members to contribute to vetting [11].
Upon request, the bot would serve a domain or URL to an
individual user for evaluation. It resembled crowdsourcing
mechanisms like PhishTank, albeit without the built-in val-
idation of multiple users checking the same indicator. The
bot potentially increased the scalability of manual vetting and
would allow indicators to be included long before VirusTotal
would provide enough ‘hits’. The downside was that vet-
ting might be done by members with unverified expertise or
even potentially adversarial motives. Unfortunately, when the
crowdsourcing functionality arrived by June, the peak of user
activity had already passed, so it came too late to actually
change the vetting process. Despite this process, some false
positives slipped through, leading domain owners to join the
CTC Slack workspace and request removal from the blocklist.

4 EVALUATION OF THE BLOCKLIST

In this section we address our first research question: By
pooling data from its community, did coverage of COVID-
19-related threats improve over existing defenses? First, we
manually label a sample of domains to evaluate the nature of
new IOCs appearing on the CTC blocklist. Second, we track
the evolution of the blocklist composition, and measure its
focus on COVID-19-related abuse. Third, we measure the role
and impact of VirusTotal on the vetting process. Fourth, we
estimate the coverage of COVID-19-related domains through
a comparison with external sources.

4.1 Manual classification of domains

Our first assessment of the blocklist content is to manually
inspect a sample of domains. Over the course of 5 days (17-22
May 2020), we took a daily sample of 50 domains that were
newly added to the CTC blocklist. We visited those within 4
hours of their appearance on the list, in order to minimize the

1152 31st USENIX Security Symposium
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Figure 4: Manual classification of 500 domains, visited at
two moments in time.

chance that the domain would already be affected by a coun-
termeasure. We navigated to the site with Microsoft Internet
Explorer 11 in a virtual machine on a computer located in the
Netherlands. If necessary, we translated page contents using
Google Translate. After one week, we visited each site again
to see if anything had changed. As a reference, we carried
out this process not only for the CTC blocklist but also for a
COVID-19 blocklist published by DomainTools [28].

We based our label taxonomy on existing classifications
[29, 30]. In many cases, the labeling could be applied in a
straightforward manner, such as with parked domains. Some
categories contain more ambiguity. When we were uncertain
about what the appropriate label was, we took a conservative
approach and counted them as true positives, giving the block-
list publishers the benefit of the doubt. As shown in Figure 4,
out of 250 domains visited from the CTC list, we encountered
just 5 cases of COVID-19 related abuse (2%), including phish-
ing sites themed with the pandemic and sites selling dubious
protective materials. The CTC list also included 21 examples
(8%) of internet abuse that was not visibly tied to COVID-19,
such as generic phishing sites, counterfeit products and phar-
maceuticals — although it is conceivable that these domains
were in fact used in a campaign that somehow played upon
COVID-19, for example in a spam run. We deemed 3 web-
sites as legitimate — and therefore false positives on the list
(1%). The majority of domains were unavailable (71%).

The DomainTools list contained more examples of actual
COVID-19 related abuse (6%), but at the cost of more false
positives (13%), many of which had in common that they
contained keywords related to the pandemic, such as a Wuhan-
based welding hardware supplier.

When revisiting the domains after one week, we saw minor
changes (4% overall), most of which were previously unavail-
able domains becoming reachable as parking pages. We saw
seven examples (1.5% overall) of generic abuse not related to
COVID-19 becoming active in this interval of one week.
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Figure 5: Evolution of the composition of the CTC vetted
domain blocklist.

4.2 Composition of the blocklist

Where subsection 4.1 analyzed a sample, further analysis in
this paper is based on the full CTC blocklist of vetted do-
mains from March 31 up to July 1, 2020, during the peak of
community activity. We retrieved this list once a day starting
March 31, every hour starting April 4, and every five min-
utes from April 15 onward. Over time, the vetted domain
blocklist steadily grew (Figure 5), reaching 46,103 domains
on July 1, 2020. Cumulatively, 46,832 fully qualified do-
main names (FQDNs) on 27,096 unique second-level domain
names (SLDs; i.e., domains that can be bought from a reg-
istrar) appeared on the vetted list by July 1, 2020. Domain
removals were rare, except when the list was reset on April 12
due to the shift towards automated vetting [24] which suggests
that stale entries were not purged from the list, potentially
generating false positives after cleanup or takedown of a ma-
licious domain?. Further, we suspect that back-end changes
caused a temporary eight-day blockage in updates, followed
by the addition of 5,918 domains on June 22, as users reported
download issues around the same time [24]. The list contin-
ued to be updated until December 6, 2020, albeit without
much community input, after which the list remained avail-
able, but no longer changed, indicative of dwindling efforts
in the CTC.

Given the CTC’s objective to track COVID-19-related
abuse, we examine the coverage of the blocklist in this area.
For this purpose, we generated 370 COVID-19-related key-
words in 15 languages (see Appendix A). At its peak, over
5,000 domains containing such keywords were registered
every day [31]. However, over our measurement period,
only 1,229 (2.6%) out of the 46,832 domains seen on the
CTC blocklist contain at least one keyword. The share of
COVID-19-related domains was stable between 1.4% and
3.6% throughout time, except before the list reset on April
12, when up to 73% of the (much shorter) list was COVID-
19-related’.

21 ,140 domains were removed; of these domains, 38.8% re-emerged at
some later point in time.

30ut of the 1,140 domains removed then, 826 were COVID-19-related,
of which 474 would never return.
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Provider Phishing (%) Malware (%) Other (%) Total flagged
GSB* 27462 (96.8) 1017 (3.6) 364 (1.3) 28383
VirusTotal** 40132 (85.7) 6680 (14.3) 20 (0.0) 46832

* Domains may be assigned to multiple abuse types.
** By majority vote over engines with a specific abuse classification.

Table 1: Abuse types for domains on the CTC list as identified
by Google Safe Browsing (GSB) and VirusTotal.

Overall, generic phishing was much more frequent: 17.3%
of domains matched a brand tracked by PhishTank*: the
keyword whatsapp occurred in 2.8% of domains, making
it more prevalent than all pandemic-related keywords com-
bined. Likewise, Google Safe Browsing and VirusTotal clas-
sify 96.8% and 85.7% of flagged domains respectively as
engaging in phishing (Table 1).

Our findings contrast with the CTC’s stated goal of sharing
“high quality threat intelligence related to the COVID-19 pan-
demic” [32]. The small share of COVID-19-related domains
suggests that the collected TI goes beyond COVID-19-specific
abuse, and instead captures any abuse observed during the
pandemic. This could be the result from automated submis-
sion processes, with generic TI sources being redirected to
the CTC instead of curated and targeted feeds. It also seems
directly related to the decision to move to vetting based on
VirusTotal. Before that shift, the proportion of COVID-19-
related domains was much higher. Afterwards, the list relied
on the ability of existing scanners to detect the abuse and
therefore it converged on conventional forms of abuse, po-
tentially discarding highly relevant IOCs on new threats. We
revisit this issue in subsection 4.4.

4.3 Effect of VirusTotal scanners on vetting

We independently replicated the CTC’s vetting procedure
based on VirusTotal, in order to gain insight into the effects
on the outcomes. We requested VirusTotal data once a day
for all domains that up to that date had appeared on the CTC
blocklist, from April 28 until July 1, 2020.

Any domain with more than 10 detections in VirusTotal
was automatically considered to be vetted as malicious. We
indeed observe that domains meeting that criterion make up
the large majority (88.7-97.2%) of domains throughout our
measurement period (Figure 6). We also see a smaller set
(2.8%—-11.3%) of domains with between 4 and 10 detections,
which suggests that they either went through the manual re-
view process or they came from trusted industry feeds that
were vetted against a lower threshold (subsection 3.2). The
share of domains with fewer than 4 detections is negligible,
which indicates that the industry sources contributed only do-

“https://www.phishtank.com/target_search.php; the list was
pruned to reduce the likelihood of false positives, and no lookalike terms
were added.

# scanners with detection as 'malicious’
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Figure 6: Evolution of the proportion of domains with a given
detection count by VirusTotal domain scanners at the time of
presence in the CTC blocklist.
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Figure 7: Distribution of domains that were (not) detected by
Google Safe Browsing (GSB) over the number of detections
by VirusTotal engines.

mains that were already known to multiple security vendors
in VirusTotal.

No domain was marked as malicious by more than 27 of
VirusTotal’s 84 domain scanning engines; this low ratio is
consistent with that found by Peng et al. [15]. Among the 84
scanners, only 23 detected over 5% of vetted domains, and 21
scanners detected over 5% of the domains with COVID-19-
related keywords in them. In other words, the CTC threshold
for vetting is quite high: 10 detections means that a domain
is already known to nearly half of all engines that contribute
a non-trivial amount of detections.

As an external corroboration, we determine whether do-
mains on the CTC list were also flagged by Google Safe
Browsing (GSB). We find that the more VirusTotal engines
detect a domain, the more likely it is to also be flagged by
GSB (Figure 7). We confirm with a x? test that the distribu-
tions of VirusTotal engine counts for domains that are and are
not detected by GSB significantly differ (x> = 14595, critical
value at o = 0.05: 40.113, p < 0.0001). The CTC’s threshold
of 10 detections is close to the crossover where more domains
are flagged by GSB than are not (11 detections). While this
supports a low false positive rate, the threshold also makes it
very hard for the CTC to contribute new threat intelligence
beyond that of existing anti-abuse infrastructure.
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Figure 8: Detection rates for the top 10 engines in VirusTotal
sorted by maximum detection rate.

Overall, slightly fewer scanners tend to detect malicious
domains as our measurement period progresses (Figure 6).
Among the top 10 engines (Figure 8), most have a consistent
detection rate and therefore contribution over time. AegisLab
WebGuard achieved a high detection rate only after mid May:
this is a possible indicator that they may have then started
ingesting the CTC blocklist, instead of proactively flagging
domains and therefore contributing to the vetting process.
Decreasing detection rates for Avira and ESET may translate
into a decreased contribution to the vetting process over time.
Once a domain was included on the vetted blocklist, few ad-
ditional engines marked it as malicious (Figure 9), even as its
listing duration increased; a larger increase was only visible
for the earliest listed domains. This suggests that the vetting
decision by the CTC was based on stable detections by the
scanners, so domains warrant their near-indefinite presence
on the vetted list (subsection 4.2).

In summary, the CTC vetted list comprised (only) domains
where a relatively large proportion of security scanners agree
on their maliciousness, making false positives unlikely. How-
ever, it is also required that at least 10 VirusTotal scanners
flag a domain. Unless these scanners successfully adapt to the
novel COVID-19-related abuse, this strict threshold causes
many false negatives. This led to a problem for the CTC:
their whole rationale was to “supplement the existing defen-
sive structure”. If the existing scanners were to adapt, then
the CTC no longer supplemented them. If they did not adapt,
then using them for vetting while maintaining a high threshold

# scanners with detection as 'malicious’

| BEROPEE BN BN BN BN RN RS 16-27
- L

100

% domains on vetted list
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Figure 9: Proportion of domains with a given detection count
by VirusTotal domain scanners given the duration a domain
has been present on the vetted list.

also meant that the CTC no longer supplemented them. This
reaffirms our observation in subsection 4.2 that instead of cap-
turing COVID-19-related abuse not seen in other TI sources,
as was the CTC’s primary target, the CTC list rather contained
primarily ‘generic’ TI on which many existing sources (here
VirusTotal scanners) agreed. While the TI may therefore
conform to the CTC’s goal of being of “high quality” (few
false positives), the trade-off is that coverage of the threats for
which it was set up is undermined (many false negatives). To
empirically evaluate this trade-off, we explore the coverage
of COVID-19-related domains in the next subsection.

4.4 Coverage of COVID-19 related malicious
domains

What COVID-19-related malicious domains were missed by
the CTC? For this question, we use passive DNS data from
DNSDB by Farsight Security, produced through passive, real-
time collection and aggregation of DNS query-response traffic
between authoritative servers and recursive resolvers around
the world [33]. In particular, we expect higher coverage
through DNSDB where discovery of malicious domains may
be harder: subdomains as well as top-level domains (TLDs)
without available registry zone files (usually ccTLDs).

In order to evaluate the CTC blocklist quality, for each
day between March 1 and June 30, 2020, we extracted from
DNSDB all FQDNs that match our COVID-19-related key-
words from subsection 4.2. In total, we obtain 3,011,717
COVID-19-related domains that contain at least one keyword.
We want to know which of these domains are flagged by
security vendors as being malicious. In total, 188,305 do-
mains were flagged by at least 1 VirusTotal scanner; however,
162,406 of these are flagged by only one scanner (Fortinet).
As presented in Figure 10, 5,767 domains were flagged by
4 to 10 scanners, while only 610 domains were flagged by
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Figure 10: Proportion of COVID-19 keyword domains of sub-
section 4.2 detected by a given number of VirusTotal domain
scanners. The CTC vetting process used a threshold of 10.

the CTC’s threshold of 10 or more scanners. Of these, 535
domains were on the CTC blocklist. According to Google
Safe Browsing, the majority of these domains were related to
social engineering (562 — 92.13%) followed by malware (33 —
5.40%) and unwanted software (15 — 0.24%). Recent work
reported similar patterns in keyword-matched COVID-19 do-
mains [34, 35].

We found 75 COVID-19-related domains in DNSDB that
had more than 10 detections on VirusTotal and therefore met
the inclusion criterion of the CTC’s vetting process, yet were
not included on the CTC vetted list. These missed domains
are therefore false negatives of the CTC vetted list. In Table 2,
we compare how false negatives and domains on the CTC
vetted list are distributed across TLDs. While there are no sig-
nificant differences per TLD type, we can observe differences
in how ccTLDs are represented. For instance, . gg is the most
prominent ccTLD among the false negatives, whereas it does
not appear in the top 10 ccTLDs for domains on the CTC list.

TLD Type # False Negatives # CTC domains
gTLD 99  (80.49%) 1,042 (84.78%)
gr'TLD 3 (2.44%) 3 (0.24%)
ccTLD 21 (17.07%) 183 (14.89%)
gg 3 (1429%) ru 41  (22.40%)
ga 2 (9.52%) cl 20  (10.93%)
eu 2 (9.52%) cc 18 (9.84%)
u 2 (9.52%) tk 14 (7.65%)
pl 2 (9.52%) br 9 (4.92%)
tk 2 (9.52%) ed 7 (3.83%)
de 2 (9.52%) ml 6 (3.28%)
su 1 (4.76%) gq 6 (3.26%)
co 1 (4.76%) ca 5 (2.73%)
us 1 (4.76%) in 4 (2.19%)

Table 2: Number of false negatives versus CTC vetted do-
mains per TLD.

In sum: the CTC blocklist contained false negatives on
COVID-19-related abuse, possibly because of the CTC set-
ting a high threshold of 10 detections on VirusTotal. Fur-
thermore, that threshold caused an extreme reduction in how

many COVID-19-related domains made it onto the blocklist,
resulting in more false negatives compared to using lower
thresholds. Of course, all of this underlines again the more
fundamental problem that the CTC’s reliance on VirusTotal
undermines its goal to cover threats that are not well covered
by existing anti-abuse infrastructure.

5 IMPACT OF THE CTC BLOCKLIST

In this section we address our second research question: Did
publishing threat data in a freely available blocklist improve
the ability of network defenders to act against threats, com-
pared to the existing abuse mitigation infrastructure? We
combine various data sources to understand which, how and
when actors intervene to take down domains on the blocklist,
and produce a longitudinal measurement of these countermea-
sures. We look specifically at domain-level interventions and
client-side interventions. Registrars, registries and hosting
providers are responsible for domain-level interventions. This
method protects all users, as it prevents them from access-
ing the domain, but is relatively invasive, as the intervention
cannot be circumvented; it may therefore be applied more
cautiously [36]. Client-side interventions inherently only pro-
tect those clients who enable the intervention, but may be able
to respond more quickly and aggressively to threats. For the
blocklist of the CTC to improve the ability of defenders to act
against COVID-19-related threats, it should flag domains that
existing defenses do not act against or it should flag domains
more quickly than existing defenses.

5.1 Domain-level interventions

A core countermeasure is the takedown of a website. This is
requested by law enforcement agencies, by targeted organi-
zations, or specialized — e.g., brand-protection — companies
acting on their behalf [37-39]. The takedown can subse-
quently be implemented at (sub)domain level by registries,
registrars and/or hosting providers. We measure takedowns
by registrars and registries primarily through ‘Extensible Pro-
visioning Protocol’ (EPP) status codes [40, 41] within the
WHOIS domain registration data: we consider a domain as
taken down when the EPP status codes CLIENTHOLD for reg-
istrars and SERVERHOLD for registries respectively are set,
which indicates that the domain is not delegated, i.e., activated
in the DNS [40, 42] 5. We retrieve historical WHOIS domain
registration data for all vetted domains through VirusTotal,
on July 6 and 7.

In total, 6,635 (30.8%) out of the 21,524 distinct second-
level domains where we could obtain WHOIS data saw either

3 As noted by Alowaisheq et al. [38] and confirmed by our own observa-
tions, other status codes (in particular *PROHIBITED) are at best unreliable
indicators of takedown, and often reflect registry- or registrar-specific behav-
ior (e.g., default configurations).
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Intervention by

TLD type  #domains  Registry  Registrar p-value Any v/
New gTLDs 4714 45.2% 20.6% < 0.0001 56.3%
Legacy gTLDs 14604 2.7% 23.9% < 0.0001 26.0%
ccTLDs 2206 3.9% 4.7% 0.181 8.3%

Total 21524 12.1% 21.2% < 0.0001 30.8%

Table 3: Registry and registrar interventions on second-level
domains from the CTC blocklist, grouped by TLD type, with
p-value given for  test.

a registrar or a registry intervention®. The coverage and actors
of domain-level interventions depends on the type of TLD
(Table 3). The intervention rate was the highest among new
gTLDs (56.3%), with most enacted by registries as they must
comply with the most stringent requirements [43]. Mean-
while, on legacy gTLDs (com/net/org), intervention is less
prevalent (26.0%) and rather fell to registrars, as this has his-
torically been their responsibility [44, 45]. Finally, ccTLDs
saw relatively little intervention (8.3%), potentially owing to
their independence in setting (abuse) policies [46—48]. Conse-
quently, assuming the CTC list contained useful TI, it could
have acted as a complementary defense where other interven-
tions were less common, in this case especially for ccTLDs.
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Figure 11: Delay between the first appearance of a domain on
the CTC blocklist and interventions by registries, registrars
or Google Safe Browsing (GSB).

Next, we measure if appearance on the CTC list is more
timely than these interventions, as this would provide those
using the blocklist with an advance warning of a live threat
before it is intervened upon. We find that if an intervention
did take place, it was usually faster than the CTC: 61.3% of
registry and 77.1% of registrar interventions already occurred
before the domain appeared on the vetted CTC list (Figure 11).
In cases where the CTC blocklist does predate the interven-
tion, the delay tends to be small.This therefore suggests that
for the share of domains that registrars and registries do in-
tervene upon, their malicious contents were mostly already
unavailable by the time the domains appeared on the CTC
vetted list, so end users would not need the CTC’s blocklisting
to be protected from those domains.

SFor 35 domains, we ignore the intervention as it occurred before January
1, 2020 and is therefore unlikely to be COVID-19- or CTC-related.
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Figure 12: Empirical survival function for domains on the
CTC blocklist where WHOIS registration data is available.
We measure lifetime from domain creation until registry or
registrar intervention or first appearance on the CTC list.

Another way to see this effect is that for newly registered
domains, interventions by registries and in particular regis-
trars tend to occur closer to the registration time than CTC
blocklisting (Figure 12). This may indicate close monitoring
of new and suspicious domains by registrars and registries
that results in more immediate action than the publication of
the malicious domain on the CTC blocklist. However, the
CTC list covers many more domains, suggesting that reg-
istrars and registries may be more careful in taking action
against domains, especially once they are older, while the
CTC captures TI more broadly. Moreover, the CTC list may
also include more novel threats that registrars and registries
are not well able to detect and take down. This is further
supported by interventions across domains on the blocklist
that contain any of the COVID-19 keywords from subsec-
tion 4.2: we see registry or registrar interventions for 185
out of 821 COVID-19-related second-level domains (22.5%),
lower than the 30.8% seen across the whole list (x> = 32.591,
p < 0.0001) even though multiple registries and registries
had subjected COVID-19-related domains to additional veri-
fication [49-51]. The CTC list is therefore even more com-
prehensive for this novel abuse type: 68.3% and 49.3% of
domains appear on the CTC blocklist before a registry or
registrar intervention respectively, meaning the CTC blocklist
is also more proactive and therefore more useful in flagging
COVID-19 domains than domains overall.

5.2 Client-side interventions

Client-side solutions such as domain scanning engines, fire-
walls, DNS-based filters and browser interstitials provide a
complementary countermeasure by blocking access to mali-
cious content, although only for their users. These solutions
typically generate or ingest threat intelligence — such as the
CTC blocklist — in order to determine if a resource should be
considered as malicious [1, 4]. Note that VirusTotal, which
the CTC used to confirm maliciousness, and its constituent
scanners also serve as client-side solutions. We discussed
in subsection 4.3 how only 23 of its 84 engines succeed at
detecting at least 5% of domains on the CTC blocklist, rein-
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Figure 13: NXDOMAIN responses (i.e., blocking interventions)
by the Quad9 DNS resolver, indicating ingestion of the CTC
blocklist on May 6.

forcing the blocklist’s utility, as it can be ingested separately
to complement the other engines’ protection.

Browser-based intervention Major browsers check every
URL that a user navigates to against the Google Safe Brows-
ing (GSB) service, and display a warning interstitial when
the URL is known to be malicious [52], which therefore has
the potential to protect a large user base. We use the Google
Safe Browsing API’ to receive hash prefixes of detected mali-
cious URLs®. We retrieved an initial state on April 17, 2020,
and afterwards collected updates every half hour until July
15, which allowed us to determine when a domain was first
flagged. Throughout our measurement period, 28,383 do-
mains on the CTC list (60.6%) were flagged at some point,
meaning that the CTC list provides some complementary pro-
tection. However, as discussed in subsection 4.3, the domains
that GSB fails to flag tend to have fewer detections by Virus-
Total engines (Figure 7), suggesting that their malicious status
is less agreed upon. By the end, 20,962 domains (44.8%) re-
mained flagged: it is unclear whether GSB removes domains
because they are no longer considered malicious, or automati-
cally after a certain delay. Importantly, GSB performs worse
on COVID-19-related domains, at some point flagging 302
out of 1,229 domains (24.6%, x> = 713.858, p < 0.0001).
This might reflect that these COVID-19-related domains con-
tain more scams and forms of abuse outside of the normal
scope of GSB, which is focused on the conventional abuse
categories of phishing, malware and spam. The CTC list may
therefore provide greater benefits for these domains. While
GSB does not achieve full coverage, if it flags domains, it
does so before the CTC in 96.3% of general cases, and 98.0%
of COVID-19 domains (Figure 11), with remaining domains
being added quickly to GSB after their first appearance on
the CTC list. The CTC list therefore leaves users vulnerable
for longer across the domains that GSB detects, and would
only be useful if its additional domains consisted of novel TI.

DNS-based intervention Quad9 is a public DNS resolver
that blocks malicious domains by responding to queries with

Thttps://developers.google.com/safe-browsing/v4d

8Discrepancies exist between the output of the Google Safe Browsing API
and actual browser interventions, a.o. due to “data sharing restrictions” [53].
Our data are therefore an approximation of the latter interventions.

NXDOMAIN [54]. We retrieved DNS records for all vetted
domains from Quad9 [55] once a day from April 10 until
June 21. Quad9 relies on threat intelligence from at least 18
providers [55] and was reported to include the CTC blocklist
from May onward [19]. This inclusion proved beneficial:
before May 6, Quad9’s detection rate was 30% at its lowest
point (70% for COVID-19-related domains), but from then
onward Quad9 included almost all of the blocklist (Figure 13).
This shows that the CTC blocklist managed to incorporate
threat intelligence that was unknown to at least some security
service providers.

In summary, did the CTC improve the ability of defenders
to act against threats, compared to existing abuse mitigation
infrastructures? We find that for 58.4% of the FQDNs on the
CTC blocklist, existing abuse mitigation pipelines at the do-
main level or in the browser were all faster than the CTC at in-
tervening. For these domains, the pooling and sharing of data
in a public blocklist then provided little additional value. For
the remaining 41.6%, defenders — such as public and private
organizations or managed security service providers — who
ingested the open CTC blocklist did however improve their
ability to defend themselves, compared to relying on existing
anti-abuse pipelines. This advantage was even more sizeable
for COVID-19-related domains, at 74.9% additional coverage,
showing once again that the CTC was more effective when
focusing on its original goal of collecting COVID-19-related
abuse. One additional indication of the CTC’s utility occurred
in May 2021, when the DNS provider Quad9 started ingest-
ing the CTC list. This created an almost complete overlap
between the CTC blocklist and Quad9’s client-side interven-
tions, leading to better protection for its users. To put it briefly:
if actors in abuse mitigation intervened, they tended to do so
more quickly than the CTC, but often they didn’t intervene,
so the list improved the ability of defenders to act, especially
on COVID-19-specific threats.

6 ETHICS

Our study describes a threat information sharing community
that anyone could join [32] but was nevertheless not public:
information was TLP : GREEN, i.e., restricted to the community
[56]. Throughout this work, we adhere to the CTC’s Code
of Conduct [57]. In accordance with the cited “Chatham
House Rule”, we take great care to prevent identifying any
community members because this might impact them profes-
sionally, except for the founder, who has publicly stated his
role. Further, we do not cite from observed conversations,
as this might impede trust in the confidentiality of this and
future threat information sharing initiatives. To still provide
a rich image of the community, we rely on public sources
such as the CTC’s webinars [21] and interviews with steering
committee members [10, 16, 17, 58, 59]. The blocklist that
we analyze in-depth has been made fully public by the CTC
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[18]. The lead author’s institutional review board (IRB) has
approved this study design.

7 DISCUSSION

We have described collaboration in the Cyber Threat Coali-
tion community, which removed many of the entry barriers
normally present on threat information sharing arrangements.
The CTC relied on Slack and AlienVault OTX groups to
pool threat information, then vetting it through VirusTotal
before making the resulting blocklist freely available. To
learn whether this unique arrangement led to improved threat
defenses, we investigated two questions.

First, by pooling data from its community, did the CTC
improve coverage of COVID-19-related threats over existing
defenses? We find that the CTC primarily consolidated ex-
isting sources, rather than produce or propagate new threat
intelligence. Just 10 users contributed most of the domains in
the CTC’s AlienVault group and over time, user contributions
on the blocklist were outstripped by data from named and un-
named security firms. The community drifted away from its
initial goal of tracking pandemic-related abuse: on the CTC
blocklist, domains with COVID-19-related keywords (2.6%)
were overshadowed even by those with simply the keyword
whatsapp (2.8%). General phishing domains eventually made
up most of the CTC blocklist. This drift was caused by the
reliance of the CTC on VirusTotal for vetting domains to be
propagated on its blocklist: it required 10 detections by Virus-
Total engines. This high threshold meant that the resulting list
tended to reproduce the detection of conventional abuse by an-
tivirus engines, rather than contribute new threat intelligence
focused on COVID-19. In terms of coverage of these latter
threats, we found 75 false negatives — domains that should
have been on the list according to the standards of the CTC
itself, yet were missing. Thousands more COVID-19-related
domains might have been missed by the CTC, with the exact
number depending on what threshold one chooses in terms of
VirusTotal detections.

Second, did publishing threat data in a freely available
blocklist improve the ability of network defenders to act
against threats, compared to the existing abuse mitigation
infrastructure? Our analysis presents a dual view on who
acted on domains listed by the CTC and when. On the one
hand, no actor achieved full coverage in their interventions —
be it at domain-level or client-side — meaning that the CTC
vetting process succeeded in delivering an aggregated, more
complete set of malicious domains warranting action. This is
perhaps best demonstrated by its inclusion in the Quad9 DNS
service. On the other hand, where actors in abuse mitigation
did intervene, they were usually faster. For 58.4% of the
FQDNss on the blocklist, the CTC lagged in incorporating the
indicators in its list. Here, they provided little added value —
in particular because other interventions such as domain take-
downs or browser interstitials typically have a much wider

reach. For the small fraction of COVID-19-related domains,
the CTC blocklist was more effective in terms of coverage
and improving existing defenses. Here, the apparent lack of
focus of the CTC on COVID-19-related abuse impaired the
overall utility of its blocklist.

Based on our findings, we draw three lessons for future
open source threat information sharing initiatives. Our first
lesson is that scaling up the community does not automat-
ically lead to better pooling of threat information. In just
a few weeks’ time, the CTC managed to set up a pipeline
for collecting, vetting, and disseminating threat intelligence.
Throughout its progression, CTC admins repeatedly pressed
members to “signal boost our social media posts”, inviting
more people to join the community [22]. Possibly, the admins
had assumed that network effects would only increase as the
community grew, and did not anticipate the dynamics of a vol-
unteer organization. The CTC did not capitalize as much as it
could have on its pool of 4,000 volunteers: contributions on
AlienVault were made by just a fraction of community mem-
bers. This is in line with earlier research on open source soft-
ware development (subsection 3.1). However, that research
also found that open-source communities have a long-tail of
members with small contributions, like a bug report. Along
the same lines, the CTC could have benefited from indicator
vetting by its members (our second lesson). Scaling up the
CTC community may also have disincentivized threat infor-
mation sharing, because it exacerbated the free-rider problem:
having a large number of untrusted participants may have
discouraged some contributors from sharing indicators that
were sensitive or that they feared would be used commercially
by other firms.

The second lesson is that openness of the community re-
quires a scalable quality assurance process for the con-
tributed indicators. The CTC chose to fulfill that need via
VirusTotal, but thereby undid some of the benefits of pooling
new threat information in the first place. As described in
subsection 3.2, indicators had to meet a threshold level of
10 scanners in VirusTotal before they were propagated to the
CTC blocklist. Only 21 scanners were able to detect more
than 5% of the indicators on the blocklist, so a threshold of
10 means that half of the dominant scanners need to already
detect the indicator before it was shared and published. Al-
though this workflow is scalable and produced a blocklist with
a low number of false positives, it also meant that valuable
indicators that were not yet known to the dominant Virus-
Total engines were discarded because they did not meet the
threshold. In light of the CTC’s mission, it was ironic that this
particularly affected indicators related to COVID-19. Had the
CTC’s solution for manual vetting of indicators, the Slackbot,
come earlier, then it might have prevented the impact of re-
lying on VirusTotal. Crowdsourced vetting of indicators can
be successful, as PhishTank has shown [13]. User participa-
tion had already tapered off, however, when the Slackbot was
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introduced, so the transition away from VirusTotal was not
successful.

The CTC was founded on the premise that existing abuse
and threat information sharing mechanisms were unsuit-
able or unprepared for the risks posed by COVID-19-related
abuse [10] and that a new response was needed. Our third
lesson is that existing threat intelligence and abuse mitigation
structures are actually quite resilient and able to adapt to
‘new’ types of threats. Where the existing anti-abuse pipelines
intervened, they did so faster than the CTC could detect the
domain and include it on its blocklist. For example, 96% of
the client-side interventions through Google Safe Browsing
occurred before the domains were featured on the CTC list
(subsection 5.2). Another way to read these findings is that
due to its loss of focus on COVID-19-related domains, the
CTC was forced to ‘compete’ with general-purpose abuse
sharing mechanisms, a battle it was unlikely to win.

8 LIMITATIONS

The fast-paced evolution of the CTC and its operational pro-
cesses introduces inherent limitations for our study. Changes
to the CTC vetting process and our own data collection, as
well as blocklist hosting issues, caused temporal gaps in our
data. Moreover, where we do not have access to historical
data, in particular for VirusTotal detections and active DNS
records, we only collect data starting from the moment when
a domain was first included on the blocklist. Finally, certain
improvements to the vetting process, such as the Slackbot or
the preferential treatment of curated third-party sources, were
only introduced by the time community participation had
dwindled. Given the low number of contributions, we could
therefore not investigate if these would have had a significant
impact on the blocklist.

As VirusTotal is the main driver of the CTC vetting pro-
cess, our analyses are inherently biased by its classifications.
Figures 6-10 provide some insight into how these classifica-
tions are distributed for our data. However, researchers have
questioned the reliability of VirusTotal [15, 60] and other
(phishing) blocklists [61]. These shortcomings may be exac-
erbated by the novelty of COVID-19-related abuse, as well as
the semantic discussion on whether tactics such as scams or
price gouging constitute ‘maliciousness’ at all. Nonetheless,
VirusTotal provides us with objective and independent detec-
tion metrics across a large set of domain scanning engines,
serving as a strong signal for maliciousness, meaning that
domain-level and client-side interventions can be expected.
We attribute these interventions based on indicators that carry
a level of uncertainty, as also observed in previous work [38].
In particular, the availability of sufficiently detailed WHOIS
data is skewed towards gTLDs [39], and we assume correct
parsing of its non-standard format by VirusTotal. Our re-
sults in section 5 therefore serve as a lower bound to actual
interventions. Similarly, the count of COVID-19-specific abu-

sive domains is a lower bound, as we assume the presence
of pandemic-related keywords. However, other domains in
section 4 may have only carried COVID-19-related content
on their web page, or have been propagated within a COVID-
19-related context (e.g., a spam email). Where we quantify
potential false negatives, we equally did not contend to do so
exhaustively.

Our research focused on the CTC blocklist. We evaluated
it through its fit for purpose to inform real-time enforcement
actions, in line with the CTC’s mission, but the list of COVID-
19 related abuse material could conceivably also be used in
retrospect to evaluate security controls or even as training data
for machine learning purposes. Finally, although the blocklist
was an important and visible outcome of the community’s
efforts, it was not the only one. The CTC produced threat
advisories and community meetings, and facilitated commu-
nication between members of the security community. We
refrain from analyzing the posts in the CTC Slack workspace
due to our adherence to the CTC code of conduct [57]. These
conversations likely continued in private messages between
members, where we would not have visibility on their out-
comes, such as takedowns or law enforcement intervention.
Indeed, an important added value of the CTC may be not in
the data that they output, but in the network of peers that they
managed to bring together at short notice, and as a showcase
for what open source threat sharing might look like.

9 RELATED WORK

The performance of blocklists as sources of threat intelligence
has been the topic of previous studies, which raised questions
about the coverage of relevant threats by open sources [1,
2, 62, 63] as well as closed, commercial threat intelligence
sources [4]. Peng et al. [15] found that even the best engines
on VirusTotal missed 30% of submitted phishing sites and
Oest et al. [64] managed to evade being blocklisted for 55% of
phishing domains using simple cloaking techniques. Metcalf
and Spring [3] hypothesized such problematic coverage to be
an artefact of the collection method of abuse infrastructures,
with each using disparate methods to detect threats from their
specific vantage points. Notably in the blocklist literature,
Li et al. [1] proposed metrics by which to understand threat
intelligence and calculated those metrics for a set of open
source blocklists. We draw on its coverage and timeliness
metrics and our study also describes a blocklist, that of the
CTC, but we go beyond descriptive metrics and measure the
blocklist’s ability to inform countermeasures. More generally,
where Li et al. and other studies take blocklists as-is for their
analysis, we conduct measurements on the CTC blocklist to
shed light on the open source threat sharing process by which
it was produced.

The open source threat sharing model is not entirely new:
security information has always propagated through “informal
networks of trusted security professionals that exist across
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[organizations]” [65] and earlier research has described initia-
tives that share the CTC’s objective to pool threat information,
but do not match it in terms of access and scale. Thomas et
al. described aggregating data from within Google services,
in a lab environment and with access restricted to the authors
[14]. Another aggregator, Facebook ThreatExchange, was
included in the set of feeds analyzed by Li et al. [1], who
described it as a “closed-community platform” of “hundreds
of companies and organizations”. Here, access is based on
being involved in software development for the Facebook
platform. Outside of academic research, we see the Cyber
Threat Alliance, an industry partnership of 33 firms that share
reports and indicators with each other ahead of publication
on the basis of quid pro quo, and therefore not available to
the public [6]. VirusTotal combines scan engine logic to clas-
sify files and URLSs [60], and ingests external data feeds as
inputs [15]. Despite the fact that users can also contribute
binaries and URLs as inputs on a limited free plan, VirusTo-
tal is not a community but a commercial service. Probably
most approximate to the CTC, PhishTank is an aggregator
of domains and URLs suspected of phishing that provides a
practical, real-world example of the promise of collaboration
to identify threats. It has a crowdsourcing capability to let
users validate maliciousness and like the CTC blocklist, its
feed is shared free of charge. It is an older initiative, with
the last study of it from 2008, which did not evaluate the
ability to inform countermeasures [5]. New user registration
on PhishTank has been closed since 2020. Three properties
set the experiment of the CTC in threat information sharing
apart from these initiatives. First, the low barriers to entry.
Formalizing a threat information sharing community has not
been attempted before at the scale of thousands of volunteers
[23]. Second, the community’s efforts were documented in
open sources such as webinars and interviews [10, 16, 17, 21,
58, 59]. And third, it produced information goods that were
made freely available — potentially magnifying the impact of
the threat information [18]. Because of these properties, the
CTC approached what Benkler [66] called peer production:
open creation and sharing performed an online groups. In this
case, peer production of security information. We conclude
that the scale at which threat information sharing occurred
in the CTC in response to the pandemic offered a unique
opportunity to investigate the collaborative model.

More generally, authors have recently described internet
abuse related to COVID-19, which the CTC also tracked.
They have pointed to signs of coordinated campaigns [67,
68] and drew attention to the risk of overzealous filtering of
COVID-19-related material [34, 69]. Bitaab et al. investigated
examples of phishing related to COVID-19 and concluded
that the existing anti-phishing ecosystem fell short, based on
the sheer volume of COVID-19 related fraud reported on by
the FTC [70]. Our measurements support their finding that
for the niche of COVID-19 related material, an organization
like the CTC could play a valuable supplementary role.

10 CONCLUSIONS

The Cyber Threat Coalition had the aim to “break down
traditional barriers to intelligence sharing [and] produce a
professional-quality threat feed that the broad IT security pub-
lic [could] rely upon” [8]. We found that by pooling data
from its community, the CTC managed to improve coverage
of threats related specifically to COVID-19 over that of ex-
isting defenses, and we found evidence that the CTC was
faster than other defenses to list such domains. Therefore
the community improved the ability of network defenders to
take action by publishing its threat data in a freely available
blocklist. Over time the CTC lost focus, until it aggregated
mostly generic abuse information. We described how this
can be traced back to choices that the community made in
scaling up its quality assurance processes using VirusTotal.
This prevented the CTC from delivering some of its value,
as it relied on a threshold number of scanners to recognize
a domain as malicious, dropping valuable new indicators in
the process and causing it to lag behind established defense
mechanisms.

Looking back on his experiences, founder Joshua Saxe
said: “We had a lot of [volunteering] energy, but we didn’t
have the right organizational machinery to funnel that en-
ergy.” [19]. Given that no open source threat sharing com-
munity of this kind previously existed, it is unsurprising that
the Cyber Threat Coalition went through growing pains. Al-
though we have examined its impact critically, it is only as a
result of the hard work of the members of this community that
we have been able to investigate the principles of open source
threat information sharing at all — and such a community may
have impact in subtle ways that are not easily observed or
quantified, such as building trust and facilitating contact. We
dedicate this paper to the volunteers of the CTC and hope that
the lessons discussed in this work may contribute to future
threat information sharing.
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A COVID-19 KEYWORD LIST

We selected COVID-19-related keywords starting from a set
of English keywords, which we then translated into 14 ma-
jor languages: Arabic, Bengali, Mandarin Chinese, Dutch,
French, German, Hindi, Italian, Japanese, Malay, Portuguese,
Russian, Spanish and Turkish. Finally, we generated lookalike
terms using techniques from typosquatting [71] and homo-

glyphs [72].

self-isolation
corona
pandemic
mask

ncov
vaccine
virus

eovid
co-vid
fovid
eovib
vovid
pademic
covix

hydroxychloroquine  landemic

quinacrine
chloroquine
remdesivir
plaquenil
azithromycin
metformin
favipiravir
interferon
lopinavir
ritonavir
arbitol
stimulus
infection
n95
respirator
testkit
distance
quarantine
lockdown
covis
covic

cvid

coved
covir
dovid
cevid
covib
cavid
covd
coviel
cobid
civid
covici
cvoid
accine
vacine
andemic
covod
pandemi
ffp2

covoid
ocvid
pandmic
xovid
stimulis
cuvid
stimulas
stimuls
covdi
stemulus
stimulu
clovid
cov-id
stimulos
coivd
cpvid
covicl
cOvid
baccine
vaccirc
clvid
ciovid
covvid
vaccime
covkid
coviid
coovid
chloroquin
pandemoc
mandemic
covud
covi-d
stimulux
vacccine
pandemix
covilb
stimuluz
pamdemic
vaccie
ffp3

covicl
covld
pandemid
timulus
pondemic
pandemec
cov8d
vceine
covld
tsimulus
stimlus
vaccione
covjd
copvid
vaccien
vaccne
cpovid
covbid
pandimic
vacclne
pundemic
stimul-us
c-ovid
pandeic
pandemif
vaecinc
vaccone
chloroquini
caccine
stimulous
cloroquine
stimilus
pansemic
vaxcine
colvid
panemic
pandernie
stimulys
stikulus
covibl
pandemc
cogvid
pandepic
stimuus
voccine
stipulus
pandomic
cl9

cocvid
stlmulus
pandernic
pandemiic
pawndemic
panndemic
pandemmic
panderic
vacvine
chloraquine
cokvid
eovicl
coviud
vadcine
pandemci
pandemlc
stiumulus
stimullus
stimul8s
stumulus
covidl
cov9d
covuid
covjid
cov8id
cobvid
cov9id
cofvid
coivid
eovld
cOvld
covcid
pandermic
covlb
covid
sars-cov
sarscov
ivomec
ivermectin
mectizan
iver-dt
ivexterm
scabo-6
sklice
stromectol
soolantra
mk-933

Table 4: List of English keywords and homoglyphs

USENIX Association

31st USENIX Security Symposium 1165



	Introduction
	The CTC Community
	Information products
	Community structure

	Production of the blocklist
	User contributions on AlienVault OTX
	Quality assurance

	Evaluation of the blocklist
	Manual classification of domains
	Composition of the blocklist
	Effect of VirusTotal scanners on vetting
	Coverage of COVID-19 related malicious domains

	Impact of the CTC blocklist
	Domain-level interventions
	Client-side interventions

	Ethics
	Discussion
	Limitations
	Related work
	Conclusions
	COVID-19 keyword list



