
Oceanic Engineering International, Vol. 8, No. 2, 2004, pp. 91-103 

System Identification of a SDOF System under Random Morison 
Loading using Lower and Higlier Input R-MISO IViodels with Noise 

S.K. Bhattacharyya^'^'^ and R. Panneer Selvam^ 

' Department of Ocean Engineering, Indian Institute ofTeclmology Madras, India 

^ Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada 

^ Institute for Ocean Teciinology, National Research Council Canada, St. John's, NL, Canada 

A B S T R A C T 

Reverse Mul t ip le Input-Single Output (R-MISO) is a frequency domain system identification technique which can be utilized 

to identify the parameters of nonlinear equations o f motion o f a system f r o m the measured random excitation and response 

data in the time domain. In this work, parameter estimation of a 'single degree o f freedom' system wi th cubic nonlinear 

stiffness under random ocean wave excitation in the Morison regime, representing the dynamics o f a submerged, moored 

spherical buoy, is investigated employing the R-MISO method. The focus is to propose and study the performance o f higher 

input models for systems where their lower input counterparts are not sufficiently satisfactory in estimating some of the 

parameters and also to assess their relative performance in the presence o f noise. Hydrodynamic drag and inertia coefficients 

and other system parameters are sought by the R-MISO method in two combinations o f practical interest for which both lower 

and higher input models are feasible. Excitation and response data, including noise o f chosen intensities, have been simulated 

i n the numerical example and the R-MISO method applied to this data. Results indicate that the higher input models offer 

significant improvement in accuracy, though they may be somewhat less robust in the presence of noise. 

Keywords: Drag coefficient, inertia coefficient, Morison equation, noise, nonlinear, random waves, reverse M I S O , system 

identification, wave spectrum 

1. I N T R O D U C T I O N 

The response of a system to excitation depends on the 

parameters embedded in its equation of motion. Methods to 

estimate these parameters f o r m the major concern of system 

identification (SI). In this paper, a relatively new nonlinear SI 

method, specifically the 'Reverse Mult ip le Input-Single 

Output' (R-MISO) method, has been employed wi th a 

nonlinear single-degree-of-freedom (SDOF) system 

representing the dynamics o f a submerged, moored, spherical 

buoy under random wave loading in the Morison regime. The 

compliance o f the system requires the relative velocity model 

o f the Morison equation. The Pierson-Moskowitz (PM) 

spectrum is adopted i n the numerical work to characterize the 

random ocean waves. In the numerical examples, the excitation 

and the response data wi th various 'noise' levels, given by 

signal-to-noise ratios (SNR) assuming Gaussian white noise 

( O W N ) , have been simulated and the R-MISO method applied 

to these 'noisy' data. 

The R-MISO [Rice & Fitzpatrick 1991; Bendat & Piersol 

1992; 1993] is a frequency domain method in which the roles 

of the input and output are reversed to f o r m a M I S O model. 

Conditioned spectral density functions o f the input and output 

are used in its algorithm [Bendat 1976]. The advantages of 

this method are that i t is non-iterative, robust, and 

computationally light and requires no starting estimates. I t has 

found application in a variety of nonlinear systems, namely. 

D u f f i n g , van der Pol, Mathieu and dead-band systems [Bendat 

et al 1992]. Early effort of the application o f the R-MISO 

method in the ai'ea of offshore engineering is due to Y i m & 

Bartel [1994] and Spanos & L u [1995]. Recentiy, Narayanan 

et al [1998; 2000], Panneer Selvam et al [1999] and Panneer 

Selvam & Bhattacharyya [2001] made attempts to use the R-

M I S O method i n ocean engineering systems such as a moored 

buoy under random ocean waves. I n these works, the focus 

has been to determine the drag and inertia coefficients 

embedded in the Morison equation, in addition to the system 

parameters, including nonlinear mooring line stiffness using 

different R-MISO models. 
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I n this paper we propose higher input R-MISO models fo r 

SDOF systems where their lower input counterparts are not 

sufficiently accurate in estimating some of the parameters and 

we study the relative performance o f lower versus higher input 

models. A major concern o f SI is to assess the performance of 

algorithms in the presence of noise in both the input and 

output. The effect of noise has been studied in this paper wi th 

the aim to assess how the higher input models behave in the 

presence of noise in comparison to their lower input 

counterparts. 

A, {(ü)X, (CO) + A,,, (cojZ^i , (CO) + A „ „ (co)X„, , (co) = F(co) (4) 

where 

(5) =k + iox:-a>'^m' 

A^,,=0.5C^pA 

(6) 

(7) 

2. S Y S T E M M O D E L m=m + C^pV (8) 

W e consider the problem of SI associated wi th a nonlinear 

SDOF system under random wave excitation whose equation 

of motion is given by 

mx + cx + kx+Kx = f i t ) (1) 

where m., c, k and K represent the mass, linear damping (dash-

pot) constant, linear stiffness (spring) constant, and cubic 

nonlinear stiffness (spring) constant, respectively. The wave 

excitation, f{t), is given by the wel l -known relative velocity 

model of the Morison equation [Chaki-abarti 1987] 

f { t ) = pVü + C„pViü-x) + 0.5Cop A\u-x\{u-x) (2) 

where V i s the volume, A is the projected cross-sectional area 

normal to the direction of f l o w , Ca is the added mass 

coefficient ( = CM - 1), CM is the inertia coefficient, Cp is the 

drag coefficient, p is the density of water and u and ü are the 

water particle velocity and acceleration, respectively. The 

system considered is shown in f igure 1. The R-MISO method 

can be used to estimate the linear system parameters, namely 

m, c and k, the nonlinear stiffness parameter K as wel l as the 

hydrodynamic coefficients Co and CM under spectral wave 

loading by formulating different 'Mul t ip le Input-Single 

Output' models. The algorithm of the R-MISO method is 

presented in the Appendix. 

3. F O R M U L A T I O N OF SI 

I n formulating the SI fo r the system given by equations (1) 

and (2), we consider two different cases as given below. 

(a) Case 1 

I n this case one needs to know the inertia coefficient ( C j ^ ^ ) 

of the system apriori. We rean-ange equation (1), noting 

equation (2), as 

(m + C^pV)x + cx + kx + Kx^ - 0.5C^pA\u - x\iu - x) 

= C,,pVÜ ^3) 

and take the Fourier Transform (FT) of this equation as 

and X ^ , X ^ i , , X „ ^ 2 a n d f are FTs o f the inputs 

X, x^,-\u ~xVu ~x) and ƒ respectively and m ' i s the virtual 

mass o f the system. Equation (4) is a "Three Input-Single 

Output" model (see f igure 1(a)) w i th one linear and two 

nonlinear inputs. In equation (5), Ai is the linear transfer 

funct ion (or frequency response function) as i t is associated 

wi th linear input {x). Similarly, Af,u and AML2 are the transfer 

functions associated wi th nonlinear inputs x^ and 

- u-x{u-x), respectively. I n the above, the subscript ' L ' 

stands fo r a quantity pertaining to a 'Linear' input and the 

subscript 'NU stands for a quantity pertaining to a 'Nonlinear' 

input. 

The linear parameters (i.e. k, c and m') can be obtained 

f r o m equation (5) as 

k = A,{Q) 

^ ^ I m { A , ( Q ; ) } 

CO 

, / c - R e { A , ( f f l ) } 
m = 

CO 

(9) 

(10) 

(11) 

Alternatively, f r o m the plot of versus 6J, one can 

obtain the parameters as 

y fc=A, (0 ) (12) 

A M , ) 

CO., 

CO., 

(13) 

(14) 

Since the peak (minima) o f the A^ curve con-esponds to 

0) = co„ (natural frequency) fo r small damping ratios, one can 

easily obtain the virtual mass m'. From the plots of A^LI and 

ANL2, which are constants for all co, the parameters K and Cd 

can be readily obtained f r o m equations (6) and (7). 
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X, = X 
A^=k + i m - co^ (m + C^pV) 

(= 3000(N/m) + 150(N.s/m)öJj - 3000(kg)ö;' 

(=200000 N/m) 

N • 
(=200000 N/m) 

(=2000 kg/m) (=2000 kg/m) (=2000 kg/m) 

Figure 1(a). Three input-single output model: Case 1(a). 

^L2 ~ ^ 

1\ 
A,,=m + C^pV 

(=3000 kg) 
• 

A,,=m + C^pV 
(=3000 kg) 

• 

(=150 N.s/m) • (=150 N.s/m) 

J 

• 

(=3000 N/m) 
J 

(=3000 N/m) 

(=200000 N/m^) (=200000 N/m^) 

•| • 
(=2000 kg.m) (=2000 kg.m) 

Figure 1(b). Five input-single output model: Case 1(b). 

= -

' X f j j y X 

A^, = + icoc 

{ = 3000(N/m) -f 1 5 0 ( N . s / m ) « « ) 

(=2145 kg) I 
4 - K 

NLl 

(=200000 N/m^) 

(=2000 kg.m) 
• 

(=2000 kg.m) 

- • ƒ = mx — p\ 

Figure 2(a). Four input-single output model: Case 2(a). 
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^NL2 - { U - X ) U -

(=3000 N) 

^L2 = ^ 

(=150 N.s/m) 

^L2 = ^ 

(=150 N.s/m) 

\ , = CaPV 
(= 2145 Kg) 

\ , = CaPV 
(= 2145 Kg) 

(=200000 N/m^) 
w 

(=200000 N/m^) 

^ V2=0-5Co/?^ V2=0-5Co/?^ 

ƒ = mx-pVw 

Figure 2(b). Five input-single output model: Case 2(b). 

Figure 3. A compliant SDOF system subjected to wave excitation. 

One can take the F T of equation (3) in an altemative way as 

fol lows. 

where 

A ^ , ( ö ; ) X ^ , ( f ö ) - f A ^ 2 ( ö J ) ^ z . 2 ( ^ » ) 

+ ( t y ) X ^ 3 {(O) - I - A ^ u {(o)X^^, {(o) 

^ L l = 

(15) 

(16) 

(17) 

^L3 

A,,,=0.5C^pA 

(18) 

(19) 

(20) 

and Z , X ^2. ^ L3. ^ W l i . ^ A'L2 and F are FTs of the inputs 

X, X, X, x^,- \u - x\{u - x) and ƒ , respectively. Equation 

(15) is a F ive input - Single Output' model (see figure 1(b)) 

wi th three linear and two nonlinear inputs. F rom the Au, Au, 

AL3, ANU and Aj^/u plots, which are constants for all CO, the 

parameters m', c, k, K and Co can readily be obtained f r o m 

equations (16) through (20). 
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(b) Case 2 

I n this case one needs to know the mass (m) o f the system 

apriori. We rearrange equation (1), noting equation (2), as 

-(cx + lcc) + C^pV{ü-x) 

- Kx^ + 0.5C^pA\u - x\(u - x) 

= mx — pVu 

- f i t ) 

and take the Fourier Transform (FT) o f this equation as 

A^,(ca)X^,((u) + A,^ia)X,^ico) 

+ A „ „ ico)X^^, (ü)) + A„,2 io))X^,^ {0}) 

= F{co) 

(21) 

(22) 

: 0 .5C ,pA (32) 

andZ^ , , X ^ 2 ' ^ u ' ^ w L P ^NLI 
and F are FTs of the inputs 

i - ) a n d / respectively. Equation - x , - x , i t - x , - x ' ' , u-x{u 

(27) is a 'Five Input - Single Output' model (see f igure 2(b)) 

wi th three linear and two nonlinear inputs. From the plots o f 

A L I , AZ,2, A ^ , A^LI and AiVL2, which are constants for all CO , the 

parameters A:, c. CM, K and Co can readily be obtained f r o m 

equations (28) through (32). 

The R-MISO algorithm of the Appendix can be used to 

compute the transfer functions AL and A^L i n equations (4), 

(15), (22) and (27) for the Cases 1(a), 1(b), 2(a) and 2(b), 

respectively. 

4. N U M E R I C A L E X A M P L E 

where 

A^^^=k + iOX: 

CaPV 

A,,,^Q.5C,pA 

(23) 

(24) 

(25) 

(26) 

We consider an example problem of a submerged spherical 

buoy of 2 m diameter (see figure 3) wi th the fo l lowing 

assumed parameters: m = 855 kg, c = 150 N.s/m, Ic = 3000 

N/m, K = 2x10 ' N / m ^ C„ = 0.5, Cp = 1.2434, A = n m ^ 

V= 4.1888 m^ and p = 1025 k g / m l The buoy is located 5 m 

below the water surface at a depth of 50 m. The narrow band 

P M spectrum S,,^ o f wave elevation (?/) characterizes the 

random wave surface and is given by 

,XL2,X^LUXNL2 and7^are and Xii,. 

- X, Ü - X, - x^, \u - x\(u - x) and ƒ respectively. Equation 

(22) is a 'Four Input - Single Output' model (see figure 2(a)) 

wi th two linear and two nonUnear inputs. From equation (23), 

i t is seen that the real part of An is a constant and equals k 

while its imaginary part is a linear function of CO w i th 

proportionality constant as c. Hence k and c can easily be 

obtained f r o m A ^ . From the plots o f An, ANLI, and ANL2, 

which are constants for all CO , the parameters C^ (= 1 + C„), K 

and CD can readily be obtained f r o m equations (24) through 

(26). 

One can take the F T of equation (21) in an altemative way 

as 

FTs o f the inputs S„Jco) = 5a^CD-'o}oexp[-1.25{co/0)o)^], o = H J A (33) 

where 

A^, (ö) )X^, (ö j ) + A^2(f f l )Z^2(f f l ) 

+ A „ ( 6 > ) X „ ( 6 ; ) + A „ ^ , ( 6 ; ) Z „ ^ , ( t y ) 

+ A^i2(dy)X„,2(<y) 

= F{co) 

An=k 

AL2=C 

(27) 

A,n=K 

(28) 

(29) 

(30) 

(31) 

where a significant wave height {H,) o f 5 m and peak 

frequency {(Oo) of 0.4 rad/s are adopted i n the calculations. 

Time domain simulation o f rj f r o m the spectrum has been 

carried out by a spectrally deterministic random phase method 

[Chakrabarti 1987]. The time series o f u fo r this problem have 

been simulated f r o m S,,,^ i n conjunction wi th the linear wave 

theory. The time step {At = 0.1s) has been chosen in order to 

obtain reasonably good resolution o f the response {x) so that x 

and X could be computed accurately by successive 

differentiation using a f ini te difference formula. Similarly 

Ü has been found by differentiating the time series o f u. AU 

auto- and cross-spectra (see Appendix) were calculated based 

on 8 records o f 512 samples (i.e. 4096 data points), wi th a 

sampling rate o f lOHz (Ar=0 .1s ) . A total of 10, 15 and 25 

spectra are needed i n the R-MISO algorithm fo r three (Case 

1(a)), four (Cases 1(b) and 2(a)) and f i v e (Case 2(b)) input 

models respectively. 

The 'real' data, which are obtained f r o m physical 

experiments, invariably contain noise. The effect o f noise on 

the prediction o f parameters is of interest i n the practical 

application o f any SI method. The effect o f 'noise' i n the time 

series o f the inputs as we l l as the output on the proposed SI 

models needs to be examined. Noise usually is assumed to be 

uncorrelated to both the inputs and output. I t is introduced 

during measurement, simulation, or during data or signal 

processing. I n this study, noise is introduced in each of the 

inputs as wel l as in the output and SI is performed on the 
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'noisy' data. A Gaussian white noise is added to a particular 

signal such that the signal to noise ratio (SNR) of a specific 

decibel (dB) is achieved. SNR in dB is given by 

5iW? = 101og,o-^ (34) 

where öi and are the root mean square (equals standard 

deviation fo r a zero mean process) values of the signal and 

noise, respectively. Three different SNR values (30 dB, 20 dB 

and 10 dB) are chosen fo r numerical study. The data without 

noise corresponds to SNR = °°. These values of SNR are 

consistent wi th the range o f values considered by Spanos & L u 

[1995] and Hac & Spanos [1990] in the context of SI w i th 

noise. 

Typically, i n an experiment, either one measures x and 

calculates i a n d x by successive differentiation of the time 

series of x, or one measures xand calculates xand x by 

successive integration of the time series o f x. The same holds 

fo r u and ü . I n practice, the quantity that w i l l be measured 

depends upon the convenience and the availability of the 

instrumentation. However, since noise is generaUy present in 

an experiment, one has to be aware that differentiation o f a 

signal amplifies high frequency noise components whereas 

integration of a signal removes them. The data fi l tering w i l l 

therefore have a significant role depending upon the choice o f 

the measured quantity. 

5. RESULTS A N D DISCUSSION 

The spectra o f 77 and u are shown in figure 4. The spectrum 

of X is shown in figure 5. The time series o f the excitation ( f i n 

equation 2) and response (x) of the system have been simulated 

for _ K ' = 2 x l 0 ' N / m ^ and K = 0 and are shown in f igure 6, 

which clearly bring out the strong effect o f the cubic nonlinear 

spring stiffness (FC) on the system response (x). For more 

details o f this problem, Panneer Selvam & Bhattacharyya 

[2001] may be consulted. The time series and spectra o f 

velocity and acceleration responses for 7 r = 2 x l O ' N / m ^ are 

shown in figure 7. 

The SI results without noise for lower as wel l as higher 

input models are sunmiarized in table 1 for both Case 1 and 

Case 2. The coherence functions in Cases 1(a) (3-input) and 

1(b) (5-input) w i th noise are shown in figure 8 which show that 

in the frequency range of interest, the cumulative values are 

almost unity, showing that all parameters of significance are 

accounted for in the SI model. For transfer functions that are 

independent of frequency, all SI results reflect a mean of all 

values in the frequency range of 0.2 to 1.4 rad/s, which 

satisfactorily covers the effective range of the spectra of i] and 

u in f igure 4. These results bring out several conclusions and 

features o f the problem. Firstiy, the lower input models (Cases 

1(a) and 2(a)) poorly estimate the linear damping constant, c, 

but its estimate dramatically improves once the velocity 

response ( x ) is treated as one of the additional inputs in the 

corresponding higher input models (Cases 1(b) and 2(b), 

respectively). The errors in damping are 4.53% and under 1% 

for the higher input models as compared to 55% and 98% in 

the corresponding lower input models, respectively. Clearly, 

this is a significant advantage of the higher input models over 

their lower input counterparts. Secondly, the lower input 

model of Case 1 underestimates the virtual mass by 22% and 

this error also dramatically decreases to less than 1 % using the 

corresponding higher input model. This again is because the 

acceleration response ( X ) is treated as one o f the independent 

inputs in the higher input models. Thirdly, the higher input 

model of Case 1 marginally improves the estimates of both 

linear and nonlinear stiffness constants as compared to the 

corresponding lower input model. For Case 2, these stiffness 

constants are aheady quite accurate (under 1% error) for the 

lower input model and no benefit accrues by using the higher 

input model. Fourthly, the drag coefficient is uniformly 

estimated very accurately in both cases by both the lower and 

higher input models. Thus, in general, i t can be stated that the 

higher input R-MISO models can significantly improve the 

overall performance o f parameter estimation. 

The SI results wi th noise for lower as wel l as higher input 

models are summarized in table 2 for both Case 1 and Case 2. 

I n presenting these results, the percentage en-or of mean over 

the appropriate frequency range wi th respect to the reference 

value is indicated for a particular parameter. However, error of 

mean is not sufficientiy representative of the accuracy and fo r 

a particular choice of spectral analysis parameters i t can be 

fortuitously but misleadingly 'accurate'. Therefore a 'coefficient 

of variation' or 'cov', defined as '% cov' = 100 x (standard 

deviation/mean), is also given in table 2 in addition to the en-or 

of mean. 

The resuhs in table 2 bring out several conclusions and 

features of the problem. Fhstiy, SNR = 30 dB affects the SI 

estimates only marginally in aU cases. I t is therefore a l ow 

noise level. Secondly, SNR = 20 dB affects the SI estimates of 

lower input models (Cases 1(a) and 2(a)) 'somewhat'. The 

worst deterioration of estimate is fo r linear stiffness constant 

(k) i n Case 2(a) which has mean en-or o f 5.8% and cov o f 

10.23% compared to corresponding values o f under 1% for 

both at SNR = 30 dB. Clearly, the estimates o f lower input 

models at SNR = 20 dB are still accurate enough fo r practical 

applications. Thirdly, SNR = 20 dB affects the SI estimates o f 

higher input models (Cases 1(b) and 2(b)) 'significantiy'. The 

linear stiffness constant (k) in Case 1(b) has mean enor of 

30.8% (as against 6.9% fo r Case 1(a)) and in Case 2(b) i t has 

mean enor of 13.7% (as against 5.8% fo r Case 2(a)). The 

nonlinear linear stiffness constant (K) i n Case 2(b) has a mean 

en-or o f 32.07% (as opposed to 4.38% for Case 2(a)). The drag 

coefficient (Co) i n Case 2(b) has mean error of 32.7% (as 

compared to 4.82% for Case 2(a)). Clearly, the estimates o f 

higher input models at SNR = 20 dB are unacceptably 

en-oneous for practical applications. The resuhs for 

SNR = 10 dB reinforce the same conclusions. 

Thus, in general, i t can be stated that the higher input R-

M I S O models, while being significantiy superior to the lower 

input models w i th low to moderate noise levels, are less robust 

than the lower input models in the presence of high noise 

levels. 
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Figure 5. Spectrum of the response (^.^ in m^s) o f the spherical buoy. 
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Estimated values Estimated values 

Reference 
(% Enor) 

Reference 
(% EiTor) 

Values 
Case la Case l b 

Values 
Case 2a Case 2b 

(3-input) (5-input) (4-input) (5-input) 

m 2344 2999 CM 1.4955 1.4974 

(3000 kg) (-21.87%) (<1%) (1.5) (<1%) (<1%) 

c 66.64 143 c 2.7 143 
(150 N.s/m) (-55.6%) (-4.53%) (150 N.s/m) (-98%) (<1%) 

k 2836 2993 k 2991 3004 

(3000 N/m) - (-5.47%) (<1%) (3000 N/m) (<1%) (<1%) 

K 194900 199957 
K 

(200000 
N/m') 

199444 199609 
(200000 N/m') (-2.55%) (<1%) 

K 
(200000 
N/m') 

(<1%) (<1%) 

CD 1.2254 1.2430 CD 1.2398 1.241 

(1.2434) (-1.44%) (<1%) (1.2434) (<1%) (<1%) 

Table 1. SI results: lower vs. higher input models without noise. 

% Error of mean w.r.t. reference values 
{% cov) 

Parameter Case SNR: 
OO 

30 dB 20 dB 10 dB 

1(a) -5.47 -5.63 -6.9 -13 
(3 input) (-) (-) (-) (-) 

Kb) <1 5.05 30.8 3.23 

k 
(5 input) (1.1) (11.06) (21.2) (41) 

k 
2(a) <1 <1 -5.8 -77 

(4 input) (<1) (<1) (10.23) (97) 

2(b) <1 7.9 13.7 -51.2 

(5 input) (4) (12.23) (32.44) (>100) 

1(a) 
-2.55 -2.54 -2.5 -6.36 

1(a) 
(4.15) (4.17) (4.37) (7.57) 

Kb) 
<1 <1 <1 -5.1 

K 

Kb) 
(<1) (<1) (<1) (8.8) 

K 

2(a) 
<1 <1 -4.38 -41.5 

2(a) 
(<1) (<1) (9.25) (17.21) 

2(b) 
<1 -4.74 -32.07 -43.4 

2(b) 
(<1) (5.89) (22) (23.31) 

1(a) 
-1.44 -1.39 <1 <1 

1(a) 
(7.51) (7.52) (7.65) (10.1) 

Kb) 
<1 <1 <1 <1 

CD 

Kb) 
(<1) (<1) (1.1) (11.04) 

CD 

2(a) 
<1 <1 -4.82 43 

2(a) 
(<1) (<1) (9.14) (20.7) 

2(b) 
<1 -4:81 -32.7 -47.24 

2(b) 
(<1) (5.86) (22) (20.47) 

Table 2. SI results: lower vs. higher input models wi th noise levels. 
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Figure 7(b). Spectra. 

Figure 7. Time series and spectra o f velocity and acceleration o f the spherical buoy. 
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Figure 8(a). Case 1(a). 
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Figure 8(b). Case 1(b). 

Figure 8. Coherence plots fo r Case 1 wi th SNR = 30 dB. 

6. C O N C L U S I O N 

The performance o f the R-MISO method has been 

investigated fo r parameter identification o f a nonlinear, SDOF 

ocean engineering system in random ocean waves using lower 

and higher order models w i th 'noisy' input and output time 

series. The relative velocity model o f the Morison equation 

gives the hydrodynamic loading on the system and the random 

waves are represented by wave spectra. The focus has been on 

the identification of all the unknown parameters embedded in 

the equation of motion o f the system. Two problems have been 

formulated and the two SI models, one 'lower input' and the 

other 'higher input', have been proposed for each of the 

problems leading to Three, Four and Five Input - Single Output 

models. Limi ted numerical study undertaken suggests that 

while the higher input R-MISO models are significantly 

superior to the lower input models wi th low to moderate noise 

levels, they are less robust than the lower input models i n the 

presence of high noise levels. 
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APPENDIX: 

S Y S T E M 

R-MISO M E T H O D FOR N O N L I N E A R SDOF 

Let the Fourier transform (FT) o f the nonlinear equation o f 

motion be 

N 

Y,M(0)Xi{0)) = F{(O) ( A l ) 

i=\ 

where Z,(Ö;) is the FT of the input A-,(0, F{a) is the F T of the 

output 7(0 and A,(cü) is the frequency response funct ion o f the 

input Xi{t). This equation serves as a model fo r equations (4), 

(15), (22) and (27) fo r the various cases considered i n this 

paper. Equation ( A l ) indicates that A'̂  inputs pass through N 

linear systems to produce a single output in a Mul t ip le Input-

Single Output (MISO) system. The adjective 'reversed' is due 

to the fact that in the actual physical problem, the excitation 

(input) causing response (output) is interpreted in the reverse 

way in equationn ( A l ) . Thus, the nonhnear system model wi th 

a single input in the time domain is transformed into a linear 

model in frequency domain wi th multiple inputs. A n 

equivalent f o r m of equation ( A l ) can be obtained using 

spectral density functions. One can construct the spectral 

densities of the inputs and output viz. , Sij{iJ = I to N), 

Sij(i = 1 to AO, and 5^ where subscript ƒ stands for the 'output' 

/ ( t ) and indices / and j stand fo r the 'inputs' x,(0 and Xj{t) 

respectively which are related (as shown by Bendat & Piersol 

[1993]) 

Sif=1S,Aj, i=l,2,. .N. (A2) 

7=1 

where the Af x matrix is 'Hermitian' (i.e. 5 . = 5'*., where a 

'*' denotes complex conjugate). The total number o f distinct 

spectral densities is {N^ -N)I1 + 2N + \- Equation (A2) 

represents a system of linear equations in unknowns 

A^.(; = l t o Af) which can be solved to obtain A^., yielding the 

system parameters. 

In general, most o f the inputs and output are partially 

coiTelated. I n order to obtain physically more meaningful 

results a 'conditioning' process has been recommended in 

solving MISO problems. This process results i n mutually 

uncon-elated inputs and output. A 'coherence' plot may be 

constructed f r o m the 'conditioned' data wherein the 

contributions of the uncoiTelated inputs to the spectral output 

are quantified as a function of frequency. This serves as a 

measure o f the goodness of f i t o f the overall model and 

provides a quantitative assessment o f the participation of each 

input i n the system model at various frequencies to the output 

(Bendat & Piersol [1993]; Rice and Fitzpatrick [1991]). 

Therefore, the task now is to compute the 'conditioned' 

spectral densities {S-j&MS-f) which remove the coiTelation 

effects between the signals corresponding to index ƒ (output) 

and indices i a n d ; (inputs). This is accomplished [Bendat & 

Piersol 1993] by 

^ ^ = % ( M ) ! = l t o A ^ ) 

J (A3) 

where 

^ij.r\ - ^ij.{r-l)\-

^if.rl - Sif.{,-1)\-

'^rj.{,-\y. 

^rr.O-iy. 
'ir.(r-\y. ( r < I) 

(A4) 

Si ,>.(;-!)! (;• < 0 

I n the above, ij.rl and if.r\ mean that the spectral density 

between the signals w i th the respective indices have been 

'conditioned' wi th respect to the signals w i t h indices f r o m 1 to 

r. In other words, the coiTelation effects o f the signals wi th 
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indices 1 to /• iiave been removed f r o m Sjj and 5,y • I t should (since = S^i ) 

be noted that i f r = 0, then S - j = Sjj and S-^ = • 

Now, A- (transfer functions based upon 'conditioned' 

spectral densities) can be calculated as 

A' SI 

Finally, A,- are related to A f as 

•̂ 23 - ^^23.1! ~ '̂ 23 ^ 21 

(?: = 1 t o A^) (A5) 

c 
nc r. _ c 23.1 
"^33 ^ 'J33.2! ~ "^33.1! „ 

'^22.1 

^32.1! — 

= ^ 3 3 -

1 |2 

r 13 

1 1^ 

K"' r 

= ^ 3 3 -

sj^ 
st 

(A12) 

22 ( A 13) 

^-1 J cc 
(A6) 

and 

ST./ - S2f.v. - S2f ~-z^S2\ (A14) 

The coherence functions aî e calculated f r o m 

|2 

rl 
S 

and i f there is no 'noise' present i n the system, then 

N 

/=i 

(A7) 

(A8) 

In practical application o f the technique, where the output is 

experimentally measured, noise w i l l always be present in the 

measured output signal. Denoting this noise by n{t), and the 

noise spectrum by S,,,,, the coherence funct ion relation equation 

(A8) stands modif ied as [Bendat & Piersol 1993]. 

N 

i=i ^ff 

(A9) 

The noise does not con'elate w i th any o f the inputs or the 

output, Sj„ = S„f= 0. In other words, when noise is present, the 

deviation f r o m equation (A8) w i l l indicate the noise level (S„„) 

by virtue o f equation (A9) . I t is to be noted that, i n 

formulating the inputs and output of a system, none of the 

inputs should be ' f u l l y correlated' to the other inputs and 

output fo r the R-MISO model to be wel l defined. 

As an illustration, fo r a 'Three Input-Single Output' model 

(A''= 3), equations (A3) and (A4) yie ld 

•^u - ' ^ i i ; ' ^ i 2 - Si2'<S\i -Si'};Sif -Sif 

S22 - ^22.V. - S22 ~~S2i - S22 
' 1 2 

(AIO) 

( A l l ) 

Ssf - S-if,2\ - S-if,i\ 
>2/.l! 

'22.1! 

>32.1! 
(A15) 

The 'conditioned' transfer functions fo l l ow f r o m equation 

(A5) as 

AlJ-^;AlJ-^;AlJ-^ (A16) 

S[x S22 S 33 

and f ina l ly , f r o m equation (A6) we get 

A 3 = A | ; A , = A | - A 3 " f ; A i = A f - A 2 ^ - A 3 f ^ (A17) 

S22 i l l 

The coherence functions fo l l ow f r o m equation (A7) as 

r?/ 

rh 

Sii-Sff 

' 2 / 

Sh-Sff 

^ 3 / 

(A18) 

(A19) 

(A20) 

Sh-Sff 

and these obey equation (A8) 

Y ' / + Y 2 / + y 3 / = 1 (A21) 
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