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ABSTRACT

Reverse Multiple Input-Single Output (R-MISO) is a frequency domain system identification technique which can be utilized
to identify the parameters of nonlinear equations of motion of a system from the measured random excitation and response
data in the time domain. In this work, parameter estimation of a ’single degree of freedom’ system with cubic nonlinear
stiffness under random ocean wave excitation in the Morison regime, representing the dynamics of a submerged, moored
spherical buoy, is investigated employing the R-MISO method. The focus is to propose and study the performance of higher
input models for systems where their lower input counterparts are not sufficiently satisfactory in estimating some of the
parameters and also to assess their relative performance in the presence of noise. Hydrodynamic drag and inertia coefficients
and other system parameters are sought by the R-MISO method in two combinations of practical interest for which both lower
and higher input models are feasible. Excitation and response data, including noise of chosen intensities, have been simulated
in the numerical example and the R-MISO method applied to this data. Results indicate that the higher input models offer
significant improvement in accuracy, though they may be somewhat less robust in the presence of noise.

Keywords: Drag coefficient, inertia coefficient, Morison equation, noise, nonlinear, random waves, reverse MISO, system
identification, wave spectrum

The R-MISO [Rice & Fitzpatrick 1991; Bendat & Piersol
1992; 1993] is a frequency domain method in which the roles
of the input and output are reversed to form a MISO model.
Conditioned spectral density functions of the input and output
parameters embedded in its equation of motion. Methods to  are used in its algorithm [Bendat 1976]. The advantages of
estimate these parameters form the major concern of system  this method are that it is non-iterative, robust, and
identification (SI). In this paper, a relatively new nonlinear SI ~ computationally light and requires no starting estimates. It has

1. INTRODUCTION

The response of a system to excitation depends on the

method, specifically the ‘Reverse Multiple Input-Single
Output’ (R-MISO) method, has been employed with a
nonlinear  single-degree-of-freedom (SDOF) system
representing the dynamics of a submerged, moored, spherical
buoy under random wave loading in the Morison regime. The
compliance of the system requires the relative velocity model
of the Morison equation. The Pierson-Moskowitz (PM)
spectrum is adopted in the numerical work to characterize the
random ocean waves. In the numerical examples, the excitation
and the response data with various ‘noise’ levels, given by
signal-to-noise ratios (SNR) assuming Gaussian white noise
(GWN), have been simulated and the R-MISO method applied
to these ‘noisy’ data.

found application in a variety of nonlinear systems, namely,
Duffing, van der Pol, Mathieu and dead-band systems [Bendat
et al 1992]. Early effort of the application of the R-MISO
method in the area of offshore engineering is due to Yim &
Bartel [1994] and Spanos & Lu [1995]. Recently, Narayanan
et al [1998; 2000], Panneer Selvam ef al [1999] and Panneer
Selvam & Bhattacharyya [2001] made attempts to use the R-
MISO method in ocean engineering systems such as a moored
buoy under random ocean waves. In these works, the focus
has been to determine the drag and inertia coefficients
embedded in the Morison equation, in addition to the system
parameters, including nonlinear mooring line stiffness using
different R-MISO models.
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In this paper we propose higher input R-MISO models for
SDOF systems where their lower input counterparts are not
sufficiently accurate in estimating some of the parameters and
we study the relative perférmance of lower versus higher input
models. A major concern of SI is to assess the performance of
algorithms in the presence of noise in both the input and
output. The effect of noise has been studied in this paper with
. the aim to assess how the higher input models behave in the
presence of noise in comparison to their lower input
counterparts.

2. SYSTEM MODEL

We consider the problem of SI associated with a nonlinear
SDOF system under random wave excitation whose equation
of motion is given by

mi+ck+ke+ Kx’ = f(t) (D

where m, c, k and K represent the mass, linear damping (dash-
pot) constant, linear stiffness (spring) constant, and cubic
nonlinear stiffness (spring) constant, respectively. The wave
excitation, f(r), is given by the well-known relative velocity
model of the Morison equation [Chakrabarti 1987]

F()= pVii+C,pV (- +0.5C,p Alu—i|u-3) @

where V is the volume, A is the projected cross-sectional area
normal to the direction of flow, C, is the added mass
coefficient (= Cy; — 1), Cy is the inertia coefficient, Cp is the
drag coefficient, p is the density of water and u and# are the
water particle velocity and acceleration, respectively. The
system considered is shown in figure 1. The R-MISO method
can be used to estimate the linear system parameters, namely
m, ¢ and k, the nonlinear stiffness parameter K as well as the
hydrodynamic coefficients Cp and C, under spectral wave
loading by formulating different ‘Multiple Input-Single
Output’ models. The algorithm of the R-MISO method is
presented in the Appendix.

3. FORMULATION OF SI

In formulating the SI for the system given by equations (1)
and (2), we consider two different cases as given below.

(a) Casel

In this case one needs to know the inertia coefficient (C; )
of the system apriori.
equation (2), as

We rearrange equation (1), noting

(m+C,pV)i+ci+kx+ Kx’ —0.5C, p Aju — %|(u — %)
=C, pVu 3)
=f®

and take the Fourier Transform (FT) of this equation as
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A, (@)X, () + Ay (©) Xy (0) + Ay, (0)X 4, (0) = F (@) (4)

where
A, =k+ioc—o’m )
A =K (6)
A, =0.5C, pA )
m' =m+C,pV ®)

and X,,X,,,Xu,andF are FTs of the inputs

x, X, —|u = i'|(u — %) and f respectively and s’ is the virtual

mass of the system. Equation (4) is a “Three Input-Single
Output” model (see figure 1(a)) with one linear and two
nonlinear inputs. In equation (5), A, is the linear transfer
function (or frequency response function) as it is associated
with linear input (x). Similarly, Ayz; and Ay, are the transfer
functions associated with nonlinear inputs x’ and
—lu_— )'c|(u— %), respectively. In the above, the subscript ‘L’

stands for a quantity pertaining to a ‘Linear’ input and the
subscript ‘NL’ stands for a quantity pertaining to a ‘Nonlinear’
input.

The linear parameters (i.e. k, ¢ and m’) can be obtained
from equation (5) as

k=4,0) ©
_infs,0) o
a
L A an
a

Alternatively, from the plot of |AL| versus @, one can

obtain the parameters as

k=|A,(0)| (12)

e |AL(a)n} (13)
a)n

o, = k/nt (14)

Since the peak (minima) of the |AL| curve corresponds to

@ = w, (natural frequency) for small damping ratios, one can
easily obtain the virtual mass m’. From the plots of Ay; and

Apza, which are constants for all @, the parameters K and Cp
can be readily obtained from equations (6) and (7).
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o=y —> A, =k+iwc —@*(m+C,pV)
(=3000(N/m) +150(N.s/m)wi —3000(kg)e’ ‘

Ay =K
(=200000 N/m)

=—(u-%)|u—i—W

Xnra

Ay, =0.5C, pA
(=2000 kg/m)

f=C,pVu

Figure 1(a). Three input-single output model: Case 1(a).
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(3000 kg)
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Figure 1(b). Five input-single output model: Case 1(b).

A, =k+ioc
X =— —M - ;
(=3000(N/m) +150(N.s/m)iw)
X, =i— ———» A, =CpV
=2145k % -
( g) F = a—ph
gy = B W Ay, =K

(=200000 N/m®)

Xypp = W —X)|ju- ——»

Ay, =05C,pA
(=2000 kg.m)

Figure 2(a). Four input-single output model: Case 2(a).

=
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ALl =k
Xy=— ————» (=3000 N)
Xpp=— ————» Ay =2
(=150 N.s/m)
Xy =s— ——» A =GPV — P f=mi-pVi
(= 2145 Kg)
Xy =732 ————M™ Ay, =K
(=200000 N/m?)

Xy =@—R)u- —————» Ay, =0.5C,p.

Figure 2(b). Five input-single output model: Case 2(b).

\V » 7
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NANAN o m x(t)» 50m

Figure 3. A compliant SDOF system subjected to wave excitation.

One can take the FT of equation (3) in an alternative way as

follows.
Ay (@)X (@) + Ay (@)X 1, (@)
+ A (@)X (@) + Ay (@)X, (@)
+ Ay (@)X 1, (@)
=F ()
where
A, =m
A=t
94

A, =k (18)
A=K (19)
(15) ANL2 = O.SCDIDA (20)

andX,;,X;,,X 3, X yrs» X w1 and F are FTs of the inputs
Eiwx, —|u —jf’(u —%) and f, respectively. Equation

(15) is a Five input - Single Output’ model (see figure 1(b))

with three linear and two nonlinear inputs. From the Ay, A,
(16) Ars, Ayry and Anpp plots, which are constants for all @, the

parameters m’, ¢, k, K and Cp can readily be obtained from
17 equations (16) through (20).
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(b) Case 2

In this case one needs to know the mass (m) of the system
apriori. We rearrange equation (1), noting equation (2), as

—(cx+kx)+C,pV(ui—X)
—Kx® +0.5C,, p Aju — x|(u— %) @1
=mx— pVu
=f@®
and take the Fourier Transform (FT) of this equation as

A (@)X (@) + AL (@)X, (@)

+ Ay (@)X 3 (@) + Ay, (@)X, (@) (22)
=F(w)
where
A, =k+iac : 23)
A,=C,pV 24)
Ay, =K (25)
Ao =05C, ol (26)

and X, X5, Xy» Xy and Fare FTs of the inputs

—x, =% —x°, [u—H(u—-) and f respectively. Equation

(22) is a ‘Four Input - Single Output’ model (see figure 2(a))
with two linear and two nonlinear inputs. From equation (23),
it is seen that the real part of Ay, is a constant and equals k
while its imaginary part is a linear function of @ with
proportionality constant as c. Hence k and ¢ can easily be
obtained from A;;. From the plots of Az, Anzi, and Anga,
which are constants for all @ , the parameters Cyr (=1 + Cp), K
and Cp can readily be obtained from equations (24) through
(26).

One can take the FT of equation (21) in an alternative way
as

AL (@)X (@) +A, (@)X, ()

+ AL (@)X 5 (0)+ Ay (@) Xy, (@) @7

+ ANL2 ((l)) XNL2 ((l))

= F(w)
where

A, =k (28)
Hyq =€ (29)
A,=C,pV (30)
Ay =K (€2))

Ay, =0.5C, pA (32)

and X, , X XL3,XNL1,XNL2 and F are FTs of the inputs

L1? L2”
—X, =X, U —
(27) is a ‘Five Input - Single Output’ model (see figure 2(b))
with three linear and two nonlinear inputs. From the plots of
Aypy, Ara, Ars, Ayt and Ay, which are constants for all @, the
parameters k, ¢, Cy, K and Cp can readily be obtained from
equations (28) through (32).

The R-MISO algorithm of the Appendix can be used to
compute the transfer functions A, and Ay in equations (4),
(15), (22) and (27) for the Cases 1(a), 1(b), 2(a) and 2(b),
respectively.

-x°, |u—x\(u— x)and f respectively. Equation

4. NUMERICAL EXAMPLE

We consider an example problem of a submerged spherical
buoy of 2 m diameter (see figure 3) with the following
assumed parameters: m = 855 kg, ¢ = 150 N.s/m, k = 3000
N/m, K = 2><105 N/m?, C, = 0.5, Cp = 1.2434, A = & m’,
V=4.1888 m’ and p = 1025 kg/m’. The buoy is located 5 m
below the water surface at a depth of 50 m. The narrow band
PM spectrum S,, of wave elevation (77) characterizes the
random wave surface and is given by

S, (@) = 50”0 exp[-1.25(@/ @,)*], o=H,/4 (33)
where a significant wave height (H;) of 5 m and peak
frequency (ay) of 0.4 rad/s are adopted in the calculations.
Time domain simulation of 7 from the spectrum has been
carried out by a spectrally deterministic random phase method
[Chakrabarti 1987]. The time series of u for this problem have
been simulated from S, in conjunction with the linear wave
theory. The time step (4f = 0.1s) has been chosen in order to
obtain reasonably good resolution of the response (x) so that x
and % could be computed accurately by successive
differentiation using a finite difference formula. Similarly

1 has been found by differentiating the time series of u. All
auto- and cross-spectra (see Appendix) were calculated based
on 8 records of 512 samples (i.e. 4096 data points), with a
sampling rate of 10Hz (4r=0.1s). A total of 10, 15 and 25
spectra are needed in the R-MISO algorithm for three (Case
1(a)), four (Cases 1(b) and 2(a)) and five (Case 2(b)) input
models respectively.

The ‘real’ data, which are obtained from physical
experiments, invariably contain noise. The effect of noise on
the prediction of parameters is of interest in the practical
application of any SI method. The effect of ‘noise’ in the time
series of the inputs as well as the output on the proposed SI
models needs to be examined. Noise usually is assumed to be
uncorrelated to both the inputs and output. It is introduced
during measurement, simulation, or during data or signal
processing. In this study, noise is introduced in each of the
inputs as well as in the output and SI is performed on the
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'noisy' data. A Gaussian white noise is added to a particular
signal such that the signal to noise ratio (SNR) of a specific
decibel (dB) is achieved. SNR in dB is given by

SNR =101og,, g— (34)

n

where 0, and ¢, are the root mean square (equals standard
deviation for a zero mean process) values of the signal and
noise, respectively. Three different SNR values (30 dB, 20 dB
and 10 dB) are chosen for numerical study. The data without
noise corresponds to SNR =co, These values of SNR are
consistent with the range of values considered by Spanos & Lu
[1995] and Hac & Spanos [1990] in the context of SI with
noise.

Typically, in an experiment, either one measures x and
calculates xand % by successive differentiation of the time
series of x, or one measures Xand calculates xand x by
successive integration of the time series of ¥. The same holds
for u and 1. In practice, the quantity that will be measured
depends upon the convenience and the availability of the
instrumentation. However, since noise is generally present in
an experiment, one has to be aware that differentiation of a
signal amplifies high frequency noise components whereas
integration of a signal removes them. The data filtering will
therefore have a significant role depending upon the choice of
the measured quantity.

5. RESULTS AND DISCUSSION

The spectra of 77 and u are shown in figure 4. The spectrum
of x is shown in figure 5. The time series of the excitation (fin
equation 2) and response (x) of the system have been simulated
for K=2x10° N/m® and K=0 and are shown in figure 6,
which clearly bring out the strong effect of the cubic nonlinear
spring stiffness (K) on the system response (x). For more
details of this problem, Panneer Selvam & Bhattacharyya
[2001] may be consulted. The time series and spectra of
velocity and acceleration responses for K =2x10° N/m® are
shown in figure 7.

The SI results without noise for lower as well as higher
input models are summarized in table 1 for both Case 1 and
Case 2. The coherence functions in Cases 1(a) (3-input) and
1(b) (5-input) with noise are shown in figure 8 which show that
in the frequency range of interest, the cumulative values are
almost unity, showing that all parameters of significance are
accounted for in the SI model. For transfer functions that are
independent of frequency, all SI results reflect a mean of all
values in the frequency range of 0.2 to 1.4 rad/s, which
satisfactorily covers the effective range of the spectra of 77 and
u in figure 4. These results bring out several conclusions and
features of the problem. Firstly, the lower input models (Cases
1(a) and 2(a)) poorly estimate the linear damping constant, c,
but its estimate dramatically improves once the velocity
response (x) is treated as one of the additional inputs in the
corresponding higher input models (Cases 1(b) and 2(b),
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respectively). The errors in damping are 4.53% and under 1%
for the higher input models as compared to 55% and 98% in
the corresponding lower input models, respectively. Clearly,
this is a significant advantage of the higher input models over

their lower input counterparts. Secondly, the lower input
model of Case 1 underestimates the virtual mass by 22% and
this error also dramatically decreases to less than 1% using the
corresponding higher input model. This again is because the
acceleration response (X ) is treated as one of the independent
inputs in the higher input models. Thirdly, the higher input
model of Case 1 marginally improves the estimates of both
linear and nonlinear stiffness constants as compared to the
corresponding lower input model. For Case 2, these stiffness
constants are already quite accurate (under 1% error) for the
lower input model and no benefit accrues by using the higher
input model. Fourthly, the drag coefficient is uniformly
estimated very accurately in both cases by both the lower and
higher input models. Thus, in general, it can be stated that the
higher input R-MISO models can significantly improve the
overall performance of parameter estimation.

The SI results with noise for lower as well as higher input
models are summarized in table 2 for both Case 1 and Case 2.
In presenting these results, the percentage error of mean over
the appropriate frequency range with respect to the reference
value is indicated for a particular parameter. However, error of
mean is not sufficiently representative of the accuracy and for
a particular choice of spectral analysis parameters it can be
fortuitously but misleadingly 'accurate'. Therefore a 'coefficient
of variation' or 'cov', defined as '% cov' = 100 X (standard
deviation/mean), is also given in table 2 in addition to the error
of mean.

The results in table 2 bring out several conclusions and
features of the problem. Firstly, SNR = 30 dB affects the SI
estimates only marginally in all cases. It is therefore a low
noise level. Secondly, SNR = 20 dB affects the SI estimates of
lower input models (Cases 1(a) and 2(a)) 'somewhat'. The
worst deterioration of estimate is for linear stiffness constant
(k) in Case 2(a) which has mean error of 5.8% and cov of
10.23% compared to corresponding values of under 1% for
both at SNR = 30 dB. Clearly, the estimates of lower input
models at SNR =20 dB are still accurate enough for practical
applications. Thirdly, SNR = 20 dB affects the SI estimates of
higher input models (Cases 1(b) and 2(b)) 'significantly'. The
linear stiffness constant (k) in Case 1(b) has mean error of
30.8% (as against 6.9% for Case 1(a)) and in Case 2(b) it has
mean error of 13.7% (as against 5.8% for Case 2(a)). The
nonlinear linear stiffness constant (K) in Case 2(b) has a mean
error of 32.07% (as opposed to 4.38% for Case 2(a)). The drag
coefficient (Cp) in Case 2(b) has mean error of 32.7% (as
compared to 4.82% for Case 2(a)). Clearly, the estimates of
higher input models at SNR = 20 dB are unacceptably
erroneous for practical applications. The results for
SNR = 10 dB reinforce the same conclusions.

Thus, in general, it can be stated that the higher input R-
MISO models, while being significantly superior to the lower
input models with low to moderate noise levels, are less robust
than the lower input models in the presence of high noise
levels.
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Figure 5. Spectrum of the response (Sy. in m?s) of the spherical buoy. .
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Estimated values Estimated values
(% Error) (% Error)
Reference Reference
Vilues Values
Case la Case 1b Case 2a Case 2b
(3-input) (5-input) (4-input) (5-input)
m’ 2344 2999 Cu 1.4955 1.4974
(3000 kg) (-21.87%) (<1%) (1.5) (<1%) (<1%)
c 66.64 143 c 2.7 143
(150 N.s/m) (-55.6%) (-4.53%) (150 N.s/m) (—98%) (<1%)
k 2836 2993 k 2991 3004
(3000 N/m) (-5.47%) (<1%) (3000 N/m) (<1%) (<1%)
K 194900 199957 (20(1)%00 199444 199609
(200000 N/m®) (—2.55%) (<1%) N/m?) (<1%) (<1%)
Cp 1.2254 1.2430 Cp 1.2398 1.241
(1.2434) (-1.44%) (<1%) (1.2434) (<1%) (<1%)

Table 1. SIresults: lower vs. higher input models without noise.

% Error of mean w.r.t. reference values
(% cov)
P o SllR: 30dB | 20dB 10 dB
1(a) -547 | -5.63 —-6.9 -13
(3 input) O] ) Q) “)
1(b) <1 5.05 30.8 3.23
(Ginput)y | (1.1) | (11.06) | (21.2) (41)
2(a) <1 <1 -5.8 77
(4 input) (<1) (<1) (10.23) 97
2(b) <1 7.9 13.7 -51.2
(5 input) @ (12.23) | (3244) | (>100)
1) -255 | —2.54 95 -6.36
4.15) | @17 | @37 (7.57)
<1 <1 <1 -5.1
1) (<1) (<1) (<1) (8.8)
2 <1 <1 -4.38 -41.5
@ <) | <) | 925 | @721
<1 474 | =32.07 434
28 <) | 589 | @2 | 331
1) —144 | -1.39 <1 <1
. (7.51) | (752) | (7.65) (10.1)
<1 <1 <1 <1
. 1) «D | « | @an | o4
b - <1 <l —4.82 43
i (C3Y)] <) | 9.19 (20.7)
<1 481 -32.7 —47.24
20 (<1) (5.86) (22) (20.47)

Table 2. SIresults: lower vs. higher input models with noise levels.
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Figure 7. Time series and spectra of velocity and acceleration of the spherical buoy.
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Figure 8(a). Case 1(a).
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Figure 8. Coherence plots for Case 1 with SNR =30 dB.

6. CONCLUSION

The pérformance of the R-MISO method has been
investigated for parameter identification of a nonlinear, SDOF
ocean engineering system in random ocean waves using lower
and higher order models with ‘noisy’ input and output time
series. The relative velocity model of the Morison equation
gives the hydrodynamic loading on the system and the random
waves are represented by wave spectra. The focus has been on
the identification of all the unknown parameters embedded in
the equation of motion of the system. Two problems have been
formulated and the two SI models, one 'lower input' and the
other 'higher input, have been proposed for each of the
problems leading to Three, Four and Five Input - Single Output
models. Limited numerical study undertaken suggests that

while the higher input R-MISO models are significantly
superior to the lower input models with low to moderate noise

levels, they are less robust than the lower input models in the
presence of high noise levels.
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APPENDIX: R-MISO METHOD FOR NONLINEAR SDOF
SYSTEM

Let the Fourier transform (FT) of the nonlinear equation of
motion be '
N
D A (@)X;(w) = F (o) (A1)

i=l1

where Xi(w) is the FT of the input x;(f), F(w) is the FT of the
output f{r) and A(w) is the frequency response function of the
input x;(f). This equation serves as a model for equations (4),
(15), (22) and (27) for the various cases considered in this
paper. Equation (Al) indicates that N inputs pass through N
linear systems to produce a single output in a Multiple Input-
Single Output (MISO) system. The adjective ‘reversed’ is due
to the fact that in the actual physical problem, the excitation
(input) causing response (output) is interpreted in the reverse
way in equationn (A1). Thus, the nonlinear system model with
a single input in the time domain is transformed into a linear
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model in frequency domain with multiple inputs. An
equivalent form of equation (Al) can be obtained using
spectral density functions. One can construct the spectral
densities of the inputs and output viz., S(ij=1toN),
Si(i =1to N), and Sy where subscript f stands for the ‘output’
f(t) and indices i and j stand for the ‘inputs’ x;(f) and x;(7)
respectively which are related (as shown by Bendat & Piersol
[1993])

N
S =3 Sy, 1B (A2)
=1

where the N X N matrix is ‘Hermitian’ (i.e. By = Sj',-’ where a

‘.’ denotes complex conjugate). The total number of distinct
spectral densities is (N?—-N)/2+2N+1. Equation (A2)
represents a system of linear equatiohs in unknowns
A;(j=1to N) which can be solved to obtain A yielding the

system parameters.

In general, most of the inputs and output are partially
correlated. In order to obtain physically more meaningful
results a ‘conditioning’” process has been recommended in
solving MISO problems. This process results in mutually
uncorrelated inputs and output. A ‘coherence’ plot may be
constructed from the ‘conditioned' data wherein the
contributions of the uncorrelated inputs to the spectral output
are quantified as a function of frequency. This serves as a
measure of the goodness of fit of the overall model and
provides a quantitative assessment of the participation of each
input in the system model at various frequencies to the output
(Bendat & Piersol [1993]; Rice and Fitzpatrick [1991]).

Therefore, the task now is to compute the 'conditioned'
spectral densities (S;} and Si}) which remove the correlation

effects between the signals corresponding to index f (output)
and indices i and j (inputs). This is accomplished [Bendat &
Piersol 1993] by

Si=Sjuy (j=1tN)
" (A3)
Sig =Sy gy (E=1toN) :
where
P82
(r=1)! _
S"J'-"! = Sij.(r—l)!— _h}sir.(r—l)x (r<i)
(Ad)
Sitr1 = S; Syet | (r<i)
if ! = Rif.(r-1- I S;-r,(,-_l)! ir.(r—1)!

In the above, jjr! and if.r! mean that the spectral density

between the signals with the respective indices have been
'conditioned' with respect to the signals with indices from 1 to
r. In other words, the correlation effects of the signals with
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indices 1 to r have been removed from S; and Sy - It should

be noted that if » = 0, then § Sij and Sif 0= Sif .

it =
Now, Af (transfer functions based upon ‘conditioned’

spectral densities) can be calculated as

; o (i=1toN) (A5)
it
Finally, A; arerelated to Af as
Az 2455 ¢ v Si? = (i A6
Jj=itl i
The coherence functions are calculated from
S5 .
y2 = r (A7)
558 ¥
and if there is no ‘noise’ present in the system, then
(AB)

L 2
27 =1
-

In practical application of the technique, where the output is
experimentally measured, noise will always be present in the
measured output signal. Denoting this noise by n(7), and the
noise spectrum by S,,,, the coherence function relation equation
(A8) stands modified as [Bendat & Piersol 1993].

e S
Z ;,ij% Lom _q (A9)
i=1 Sﬁ

The noise does not correlate with any of the inputs or the
output, S;, = S,y = 0. In other words, when noise is present, the
deviation from equation (A8) will indicate the noise level (S,,)
by virtue of equation (A9). It is to be noted that, in
formulating the inputs and output of a system, none of the
inputs should be ‘fully correlated’ to the other inputs and
output for the R-MISO model to be well defined.

As an illustration, for a ‘Three Input-Single Output’ model
(N = 3), equations (A3) and (A4) yield

S{1 = 8115502 = 812:813 = S13:81 =81 (A10)
2
5 Si2
BB = By = By~ e =g _l | (A1D)
S11 Si1

(since 5, = S;I )

S
833 =893 =523 —gﬁSu (Al2)
11
& 2
¢ Soa S 2
S33 =832 =531 _ASH.I! =S5 "—13531 e
2.1 Sy Sy (A13)
2 @ 2
ISl _1a]
=8, -
’ Sy Sx
B = Bppq= By —— 28 (A14)
Sof =Sap1=S2f L
11
and
c _ _ S2f.1! (A15)
S3p =83,2 =837~ 32.11
22.1!

The ‘conditioned’ transfer functions follow from equation
(AS) as

St S5 S5
Af =—Liag =20 a5 =

= (A16)
St S5 S33

and finally, from equation (A6) we get

5% S
Ay=A§i Ay = A5 ~Ag "B = Af _ 4,514 56 (ALT)
S» Su S1

The coherence functions follow from equation (A7) as

2
St
2
R e (A18)
Si1S g
S :
p =12, (A19)
2f a
S22 fr
S5 g
3 3f
y3 =2 (A20)
S33.5
and these obey equation (A8)
Vir +¥ar T Y3y =1 (A21)
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