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Abstract
In applied structural dynamics, input and state estimation techniques are used to identify unmeasurable
response quantities and unknown forces from limited sensor data. These estimators depend on mechanical
state-space models, which can be inaccurate due to uncertainties in the systems’ mass, damping, and stiffness
(or equivalently, the modal parameters of a linear system). This work examines the impact of such model
errors and their effects are characterized by a theoretical framework for error propagation to the estimated
quantities. The results are exemplified in a numerical example of a mass-spring system. The characterization
is a first step towards more focused attempts to develop algorithms in the realm of input and state estimation
that are able to deal more robustly with numerical models subject to uncertainty.

1 Introduction

In recent decades, technology improvements have allowed for the wide deployment of sensors for measuring
structural responses. However, not all response quantities are directly measurable in practical applications.
To address this, model-based state estimation techniques using limited response data have become widely
applied, where the most famous examples are the class of sequential Bayesian filters with a structure similar
to the Kalman filter [1]. Extensions to input estimation have also been developed for situations where the
forces exerted on the system are unknown [2, 3, 4, 5, 6, 7].

These input and state estimators rely on mechanical state-space models, which in structural dynamics are
often constructed from numerically calculated mode shapes, natural frequencies, and damping ratios. How-
ever, these numerical models inherently carry uncertainties due to simplifications (e.g., boundary conditions,
geometry, or joint stiffness), unknown material parameter values, complicated damping behaviour, etc. The
effect of model variability due to environmental influence has also been studied for Kalman filters [8].

Experience has shown that the input and state estimates can be sensitive to these model errors. The impact of
model errors on Kalman filter performance has been a topic of discussion since as early as 1966 [9]. Since
that time, discussions have continued strongly in the field of numerical weather prediction [10], where insuf-
ficient model resolution is an inherent error source. To tackle this problem, ensemble filters are commonly
used [11].

Parameter estimation methods can be applied to simultaneously correct for uncertain parameters. Examples
in structural dynamics can be found in [12, 13, 14]. However, this usually requires specific model compo-
nent(s) to be selected as targets for updating, which can leave other uncertainties unaddressed. Adaptive
covariance methods have also been proposed in many forms, where the earliest works addressing these ap-
proaches can be found in [15, 16]. Although most Bayesian filter techniques incorporate uncertainties in
the form of additive Gaussian white noise, these uncertainties fail to explicitly account for model errors
characterized by non-white residuals and strong noise correlations.



This contribution investigates the impact of such model errors on the results of common linear input and
state estimation filters. The effects are characterized from a theoretical standpoint, and the influence of
modal parameter errors is also discussed.

2 Theoretical perspective

2.1 Linear state-space models

For linear problems, sequential Bayesian filters typically utilize stochastic-deterministic system models. In
this regard, conventional state-space model representations are employed:

xk+1 = Axk +Bpk +wk (1)

yk = Gxk + Jpk + vk (2)

Here, the noise covariance matrices are defined as E[wkw
T
k ] = Q, E[vkv

T
k ] = R, and E[wkv

T
k ] = S. For an

elaboration of the symbols and notations in the construction of state-space models given below, we refer to
the many papers where this is explained [2, 3], and details are omitted here.

Eqs. (1) and (2), which is referred to as the true model, is assumed to be free of errors, thereby serving
as a benchmark reference for comparison with erroneous models later on. The model in Eqs. (1) and (2)
may be constructed in various ways, and the theoretical derivations provided in this contribution apply to a
general model (A,B,G,J), which may be generated using the finite element method or even through data-
driven identification. For simplicity, modal coordinates with proportional damping and real mode shapes
are hereafter used as an example. To this end, the system dynamics are described by an error-free modal
equation of motion:

z̈(t) + 2ΩΞż(t) +Ω2z(t) = ΦTSpp(t) (3)

Under the assumption of a zero-order hold on the input, the transformation to discrete state-space form is
given as:

A = exp
([

0 I
−Ω2 −2ΩΞ

]
∆t

)
, B =

(
A− I

) [−Ω2ΦTSp
0

]
(4)

For a linear output vector y(t) = SaΦz̈(t) + SvΦż(t) + SdΦz(t) that contains accelerations, velocities, or
displacements, respectively, the corresponding system matrices are given by:

G =
[
SdΦ− SaΦΩ2 SvΦ− SaΦ2ΩΞ

]
, J =

[
SaΦΦTSp

]
(5)

The model input-to-output transfer function of Eq. (1) and (2), which will be used later, is given as follows:

Hyp(ω) = G
(
exp(iω∆t)I−A

)−1
B+ J (6)

These transfer functions exhibit resonance at the natural frequencies of the modes, but also contain anti-
resonances. While natural frequencies are global properties (i.e., a universal characteristic of a mode), anti-
resonance frequencies in a transfer function are local features that depend on the specific input and output
locations. This dependency arises due to the local mode shape values. The transfer function between a single
displacement u and the force p can be expressed as [17]:

H(ω) =

N∑
m=1

A
(m)
ij

−ω2 + iω2ξmωm + ω2
m

(7)

Here, A(m)
ij = ϕimϕjm is the modal product of between the mode shape value in the degrees of freedom

(DOFs) i for the output and j for the input. Anti-resonances are characterized by minima in the transfer
function. However, not all minima qualify as anti-resonances; anti-resonances exhibit a sharp dip and not a
shallow depression. For further details, please refer to the figures in later examples (Section 3) and literature



on this subject [17, 18, 19]. If instead an acceleration output is considered, the transfer function will be
scaled by ω2, but the anti-resonance frequencies will not change. See [20] for a review of the change of
anti-resonances to structural modifications (which, in a broader context, also applies to numerical model
modifications).

2.2 Problem formulation for model errors

Now consider the inevitable situation where model errors are present. In general, the following convention
is adopted for an arbitrary quantity X:

X = Xe +∆X (8)

Here, X is the true value and the subscript (·)e (or superscript (·)e) denotes erroneous quantities. The delta
term is the error or perturbation. Now examine the case when a modal model is built using erroneous matrices
Ωe, Ξe, and Φe. Eq. (3) can be rewritten as follows:

z̈+ 2(Ωe +∆Ω)(Ξe +∆Ξ)ż+ (Ωe +∆Ω)2z = (Φe +∆Φ)TSpp (9)

After neglecting higher-order delta terms (e.g. ∆Ω∆Ξ) and rearranging, the governing equation can be
written as:

Modeled dynamics︷ ︸︸ ︷
z̈(t) + 2ΩeΞeż(t) +Ω2

ez(t) = ΦT
eSpp(t)

Unmodeled force residual︷ ︸︸ ︷
+∆ΦTSpp(t)− 2Ωe∆Ωz(t)− (2Ωe∆Ξ+ 2Ξe∆Ω)ż(t)

(10)
Here, the first part (called ”Modeled dynamics”) is what is perceived as the system equations if the presence
of model errors is naively discarded. As expected, there is also a force residual dependent on ∆Ω, ∆Ξ,
and ∆Φ. When the erroneous model is used in the Bayesian filters, a disparity emerges between model
predictions and actual measurements. Due to this imbalance, the erroneous model feels as if the unmodeled
force residual is an input applied to the system. Some methods propose to compensate for the model errors
by, for instance, inflating the noise covariance matrices Q, R, and S [21]. Even when erroneous models
are used in the present work, however, these covariance matrices are assigned their nominal values in order
to study the influence of system model errors in isolation. A study of mismatched noise covariances was
performed in [22].

2.3 Impact of model errors: state estimation

The case of pure state estimation using the linear Kalman filter is considered first. The deterministic input
force p(t) is assumed to be fully known (or simply zero). While this can be difficult in practice, this simpli-
fication is introduced to avoid additional error terms in the derivations. Still, it should be remarked that the
derivations in this section also apply to methods such as the augmented Kalman filter [3], where the unknown
force is augmented into the states and thus is treated as a state estimation problem.

The propagation of model errors to state estimates can be analysed by assuming that the Kalman filter oper-
ates in the steady state, which is often the case for practical structural dynamic problems. The Kalman filter
equations may be summarised as follows [23]:

Measurement update:

R̄ = GP(−)GT +R (11)

x̂k|k = x̂k|k−1 +M(yk −Gx̂k|k−1 − Jpk) (12)

M = P(−)GTR̄−1 (13)

P = P(−) −MGP(−) (14)



Time update:

x̂k+1|k = Ax̂k|k−1 +Bpk + L(yk −Gx̂k|k−1 − Jpk) (15)

L = (AP(−)GT + S)R̄−1 (16)

P(−) = AP(−)AT +Q− L(AP(−)GT + S)T (17)

Here, the matrices R̄, M, and L are written without time index k since they are stabilized in the steady state.
The error covariance matrices E[(xk−x̂k|k−1)(xk−x̂k|k−1)

T] = P(−), and E[(xk−x̂k|k)(xk−x̂k|k)
T] = P

are also constant.

Next, it is moved to the frequency-domain representation of the Kalman filter by applying the Fourier trans-
form to Eq. (12) and (15):

x̂(ω) = x̂(−)(ω) +M
(
y(ω)−Gx̂(−)(ω)− Jp(ω)

)
(18)

x̂(−)(ω) exp(iω∆t) = Ax̂(−)(ω) +Bp(ω) + L
(
y(ω)−Gx̂(−)(ω)− Jp(ω)

)
(19)

From this, the following frequency-domain relations for the state estimates can be formed:[
x̂(ω)

x̂(−)(ω)

]
=

[
I −I+MG
0 exp(iω∆t)I− (A− LG)

]−1([
M
L

]
y(ω) +

[
−MJ
B− LJ

]
p(ω)

)
(20)

Thus, for the filtered state estimate, the following relation applies:

x̂(ω) = Tx̂y(ω)y(ω) +Tx̂p(ω)p(ω) (21)

Here, Tx̂y(ω) and Tx̂p(ω) are the filter transfer functions. Next, the output is formulated in the frequency
domain:

y(ω) = Hyp(ω)p(ω) +Hyw(ω)w(ω) + v(ω) (22)

This may be inserted into Eq. (21):

x̂(ω) = Tx̂y(ω)
(
Hyp(ω)p(ω) +Hyw(ω)w(ω) + v(ω)

)
+Tx̂p(ω)p(ω)

=
(
Tx̂y(ω)Hyp(ω) +Tx̂p(ω)

)
p(ω) +Tx̂y(ω)Hyw(ω)w(ω) +Tx̂y(ω)v(ω)

(23)

When an erroneous model is employed instead of its true counterpart, the filter transfer functions are also
perturbed from their optimal values. For the erroneous case, the state estimate reads:

x̂e(ω) = Te
x̂y(ω)y(ω) +Te

x̂p(ω)p(ω) (24)

The vector ∆x̂ = x̂− x̂e quantifies the estimation delta:

∆x̂(ω) =
(
∆Tx̂y(ω)Hyp(ω) + ∆Tx̂p(ω)

)
p(ω) + ∆Tx̂y(ω)Hyw(ω)w(ω) + ∆Tx̂y(ω)v(ω) (25)

where ∆Tx̂y(ω) = Tx̂y(ω) − Te
x̂y(ω) and ∆Tx̂p(ω) = Tx̂p(ω) − Te

x̂p(ω). From Eq. (25), it is clear
that the state estimate difference is driven by a frequency-domain transformation of the input force. This
transformation may be described by the expression ∆Tx̂y(ω)Hyp(ω) + ∆Tx̂p(ω), which is illustrated in
later examples (Section 3). A similar transformation of the process noise w(ω) and output noise v(ω) occurs
in Eq. (25) as well.

Finally, it is worth noting that even when a true model is employed, the resulting estimate x̂ remains inher-
ently uncertain due to its Gaussian nature. This uncertainty is quantified by the error covariance matrix P
in Eq. (14). The metric ∆x̂ therefore quantifies the additional error stemming from the use of an erroneous
model.



2.4 Impact of model errors: input and state estimation

Next, the case of joint estimation of inputs and states is considered using the algorithm from [2]. Similar to
the Kalman filter, frequency-domain relations for the estimates can be formulated when the filter is run in
the steady state:

x̂(ω) = Tx̂y(ω)y(ω) (26)

p̂(ω) = Tp̂y(ω)y(ω) (27)

The expressions for Tx̂y(ω) and Tp̂y(ω) are given in [5], and omitted here for brevity. When an erroneous
model is used, these filter transfer functions take an erroneous form:

x̂e(ω) = Te
x̂y(ω)y(ω) (28)

p̂e(ω) = Te
p̂y(ω)y(ω) (29)

The deltas for the state and input estimates may be expressed as follows:

∆x̂(ω) = x̂(ω)− x̂e(ω) = ∆Tx̂y(ω)y(ω)

= ∆Tx̂y(ω)Hyp(ω)p(ω) + ∆Tx̂y(ω)Hyw(ω)w(ω) + ∆Tx̂y(ω)v(ω)
(30)

∆p̂(ω) = p̂(ω)− p̂e(ω) = ∆Tp̂y(ω)y(ω)

= ∆Tp̂y(ω)Hyp(ω)p(ω) + ∆Tp̂y(ω)Hyw(ω)w(ω) + ∆Tp̂y(ω)v(ω)
(31)

where ∆Tx̂y(ω) = Tx̂y(ω) − Te
x̂y(ω) and ∆Tp̂y(ω) = Tp̂y(ω) − Te

p̂y(ω). The result is similar to the
previous derivation in Section 2.3. Also here, a transformation of the input p(ω) drives the estimate deltas
(in addition to w and v). In Section 3, attention is devoted to the transfer functions ∆Tx̂y(ω)Hyp(ω) and
∆Tp̂y(ω)Hyp(ω) to study this transformation in the frequency domain.

2.5 Alternative expressions for model error propagation

Since the input estimation is unbiased, the filter transfer function Tp̂y(ω) neutralizes the system input-output
transfer function Hyp(ω):

Tp̂y(ω)Hyp(ω) = I (32)

The same principle is true for the erroneous system:

Te
p̂y(ω)H

e
yp(ω) = I (33)

Eq. (29) may be repeated as:

p̂e(ω) = Te
p̂y(ω)y(ω) = Te

p̂y(ω)
(
Hyp(ω)p(ω) +Hyw(ω)w(ω) + v(ω)

)
(34)

If the noise terms w and v are disregarded for simplicity, and the relation Te
p̂y = Tp̂y−∆Tp̂y is introduced,

the following expression comes out:

p̂e(ω) =
(
Tp̂y(ω)Hyp(ω)−∆Tp̂y(ω)Hyp(ω)

)
p(ω) =

(
I−∆Tp̂y(ω)Hyp(ω)

)
p(ω) (35)

If instead the relation Hyp = He
yp +∆Hyp is used, the following alternative is found:

p̂e(ω) =
(
Te

p̂y(ω)H
e
yp(ω) +Te

p̂y(ω)∆Hyp(ω)
)
p(ω) =

(
I+Te

p̂y(ω)∆Hyp(ω)
)
p(ω) (36)

This reformulation is particularly useful since it means the propagation of errors can be directly linked to the
perturbation ∆Hyp(ω) (which is quite easily expressed and understood) rather than ∆Tp̂y(ω) (which has a
rather cumbersome definition due to its inverse nature).



3 Numerical example

3.1 System with four degrees of freedom

The mass-spring system in Fig. 1 with 4 DOFs is used as a numerical example. Table 1 presents both the
true and erroneous values of the spring stiffnesses and masses, with slight errors introduced at the level of
2.5− 10%.

Modal properties are computed for both systems, as shown in Table 2. Errors in the natural frequencies are
around 2.2 − 4.5%, where the first three modes exhibit an undershoot while the last mode is overshot. The
mode shapes for both system models are shown in Fig. 2, where minor differences are visible. However,
their correspondence quantified by the modal assurance criterion (MAC) [24], remains consistently above
0.98 for all modes.

For simplicity, proportional damping C = αM + βK is used. The Rayleigh damping coefficients α and
β are listed in Table 1 for both models. As shown in Table 2, the true damping ratios fall within the range
of 0.65% to 1.05%, whereas the erroneous damping ratios are larger by a factor of 1.4 − 1.9 since both the
mass matrix, stiffness matrix, and the coefficients α and β are misspecified. This level of error is not unusual
given the inherent uncertainties in damping characteristics in many civil structures.

k1 k2 k3
m1 m2 m3

u1

k4
m4

u2 u3 u4

p

Figure 1: Linear system with four degrees of freedom.
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Figure 2: Mode shapes of the true and erroneous model.

Table 1: Mechanical properties: spring stiffnesses ki in N/m, lumped masses mi in kg, and Rayleigh damping
coefficients α and β.

k1 k2 k3 k4 m1 m2 m3 m4 α β

True 10.00 10.00 15.00 15.00 2.00 2.00 1.00 1.00 1.0 · 10−2 3.0 · 10−3

Erroneous 9.00 9.00 16.00 15.00 2.05 2.05 0.975 0.975 2.0 · 10−2 4.0 · 10−3

Difference [%] -10.00 -10.00 6.67 0.00 2.50 2.50 -2.50 -2.50 − −

The system is loaded in DOF 4, where a force history of 10 minutes is generated from the following one-sided



Table 2: Modal properties: undamped natural frequencies ωi in rad/s and damping ratios ξi in %.

ω1 ω2 ω3 ω4 ξ1 ξ2 ξ3 ξ4
True 1.00 2.87 4.01 6.49 0.65 0.60 0.73 1.05
Erroneous 0.96 2.81 3.90 6.64 1.23 0.92 1.04 1.48
Difference [%] -4.50 -2.18 -2.66 2.28 90.37 51.77 42.78 40.70

0 5 10
10-3

10-2

10-1

Figure 3: Spectral density of the input force.

spectral density function:

S(ω) =
100

ω5
· exp

(
−5

4

( ω

0.5 · 2π

)−4
)
+ 0.001 exp (−0.1ω) (37)

This spectral density is shown in Fig. 3, and is a Pierson-Moskowitz-type wave spectrum plus a small ex-
ponential term. The frequency content of the force is concentrated mainly in the range 2 − 8 rad/s, but
excites all the natural frequencies to various extents. A time step of ∆t = 0.02 s is used. The output vector
y = [ü4, u2]

T is considered, i.e. an acceleration collocated with the load in DOF 4, and a displacement in
DOF 2. The displacement output is required in order to stabilize the joint input and state estimation, which
cannot reach a steady state solely with acceleration outputs. Note that the output data is always generated
from the true model, whereas the estimation is performed using both the true and the erroneous models to
gauge the difference in their performances.

The transfer function Hyp(ω) from Eq. (6) is shown in Fig. 4 for both models. In this and subsequent
frequency-domain plots, vertical lines are indicated for the following important parameters:

– Blue dashed line: true natural frequency

– Red dashed line: erroneous natural frequency

– Blue dotted line: true anti-resonance frequency

– Red dotted line: erroneous anti-resonance frequency

It is evident that modeling errors cause perturbations in both the natural frequencies and the anti-resonance
frequencies. The implications of these perturbations are important and will be discussed later. Note that
the transfer function for the acceleration output in Fig. 4 has three anti-resonance frequencies, but for the
displacement there is only one. This is not a result of the output type, but the location: outputs collocated
with the input will have an anti-resonance frequency between each resonance frequency, but this is not always
the case for non-collocation [18].

Measurement white noise v is added to the simulation outputs, according to R = 10−3 · I. Thus, both the
acceleration and displacement output have the same noise statistics; the effect of heterogeneous covariance
is discussed later. For simplicity, the process noise w is not applied and therefore both Q and S are set to
zero.

3.2 State estimation

First, the problem of pure state estimation using the Kalman filter in Eq. (11)−(17) is considered. The
resulting estimates for the displacement states are shown in Fig. 5. The estimate from the true model yields
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Figure 4: Input-to-output transfer function of the true and erroneous model.
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Figure 5: Modal state estimates from the Kalman filter.

an almost perfect match to the reference. This is hardly surprising since the input force is fully known, and
there is no additional white noise excitation. On the other hand, the erroneous estimate contains, as expected,
obvious inaccuracies. The erroneous estimate peaks at incorrect frequencies.

Since the process noise covariance is Q = 0, there is no room for the Kalman filter to correct the dynamics
of the system, and it largely acts as a deterministic forward model where the input force is applied and the
response is propagated step-by-step in time. In this case, the information from the output bears no additional
information. Therefore, the term Tx̂y(ω) from Eq. (21) is approximately zero (as is Te

x̂y(ω)). Consequently,
the term ∆Tx̂y(ω)Hyp(ω)+∆Tx̂p from Eq. (25), which is shown in Fig. 6, largely reflects the delta in the
input-to-states transfer function Hxp(ω) between the true and erroneous model.

If Q > 0, a different scenario would play out wherein the process noise would (sub-optimally) compensate
for the model errors. In practical problems, using Q = 0 is rarely a good choice since there could always
be some stochastic background excitation or minor errors in the continuous-to-discrete transformation of the
state-space model, such that the state-equation Eq. (1) rarely is without noise (even if A and B are error-
free). The case of pure state estimation with Q = 0 is therefore here shown as an initial example and a
baseline for comparison with the case of joint input and state estimation.
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Figure 6: Transfer function of the force-to-state-estimate for the Kalman filter.

3.3 Input and state estimation

The next presented problem is the joint input and state estimation [2]. The analysis is the same as in Section
3.2, except that the force is treated as unknown. Note that the force location is assumed to be known (still in
DOF 4). The state estimates are shown in Fig. 7 for the time and frequency domain. Contrary to the Kalman
filter (Fig. 5), some of the modal states (e.g. mode 2 and 4) are estimated quite well even for the erroneous
model. This improvement in state estimation accuracy comes at the cost of the identified force, which will
have to compensate for the model errors. Still, for modes 1 and 3 in particular, the state estimates contain
significant frequency errors, meaning that the error compensation by the force is far from perfect.

The observed frequency errors in Fig. 7 can be explained by Figs. 8 and 9, which show the error propagation
in the frequency domain. Fig. 9 illustrates that errors arise not only at a mode’s own natural frequency but also
across the entire frequency range, particularly at resonance and anti-resonance frequencies. These results
point to the possible usefulness of these frequency-domain markers to detect model errors in a practical
situation. The observation of spurious peaks at the anti-resonance frequencies has already been discussed in
e.g. [25], where it was shown the importance of correctly representing these frequencies due to quasi-static
response behaviour when reduced-order modal models are employed. In the present example, no modal
truncation is used, and so no quasi-static correction is needed.

If modal loads were identified rather than concentrated forces, the state estimates would improve, but this
would also require additional acceleration outputs (equal to the number of modal loads). A similar situ-
ation was discussed in [26], where it was also studied the influence of misspecifying the position of the
force, which is also a form of model error where the allocation matrix Sp is wrong, and consequently error
compensations also take will place in the form of so-called equivalent forces.

Fig. 10 shows the input estimates. The estimate for the true model reconstructs the force quite well, but the
erroneous model estimate exhibits spurious peaks (and valleys) across the frequency axis. It is obvious that
these are related to the model errors and that the force compensates for what cannot be explained by the
erroneous model predictions when compared to the output data.

As explained in the following, the observed errors can be more closely linked to the resonance and anti-
resonance frequencies involved in the problem. Fig. 12 shows the absolute value of I −∆Tp̂y(ω)Hyp(ω)
from Eq. (35). Here, a value of 1 is optimal and indicates no distortion of the force due to model errors,
whereas a lower or higher value indicates deflation or inflation at a given frequency.
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Figure 7: Modal state estimates from the joint input and state estimation.
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Figure 8: Transfer function of the output-to-state-estimate for the joint input and state estimation.
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Figure 9: Transfer function of the input-to-state-estimate for the joint input and state estimation.
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Figure 10: Input estimate from the joint input and state estimation.
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Figure 12: Transfer function illustrating the distortion of the input estimate, where deviations from a value
of unity indicate a deflation or inflation of the force.



Several peaks and valleys are observed in Fig. 12: force inflations tend to occur at the resonance frequencies
of the true system and the anti-resonance frequencies of the erroneous system, while deflations are found at
resonance frequencies of the erroneous system and the anti-resonance frequencies of the true system. This
behaviour can be traced back to the curves of ∆Tp̂y(ω) in Fig. (11) and Hyp(ω) in Fig. (4) (or, alternatively,
to Te

p̂y(ω) and ∆Hyp(ω) since Eq. (36) was an equivalent formulation to Eq. (35)). These listed charac-
terizations of force inflation and deflations indicate general trends. The exact picture of the input estimate
frequency distortions will depend on the total influence of all modal parameter errors. Additionally, these
findings highlight an important limitation in error detection for practical applications: while it is possible to
compute the erroneous resonance and anti-resonance frequencies, the true values can be unknown or at least
uncertain.

Generally, it can be said that any form of model discrepancies (modal parameter errors, effects due to
reduced-order truncation, unmodelled dynamics, or other types of model-vs-reality mismatch) will lead to a
misrepresentation of the systems input-to-output transfer function, which inevitably propagates to the inver-
sion of the system. The extent to which any mismatch will significantly corrupt the results is case-specific,
however.

3.4 Sensitivity to noise covariance values

While the formulas derived in Sections 2.3 and 2.4 are general, the results presented in the numerical ex-
ample are specific to the given system, model errors, sensor locations, and the adopted noise covariance
matrices. It is here examined the influence of measurement noise statistics by considering two additional
cases: R = diag(10−6, 10−3) and R = diag(10−3, 10−6). These cases correspond to scenarios where either
the acceleration output ü4 or the displacement output u2 is assigned higher confidence (i.e., lower noise
variance by a factor of 103).

Fig. 13 shows the frequency-domain distortion of the input estimate (I − ∆Tp̂y(ω)Hyp(ω)) for the two
new cases compared to the original case where R = diag(10−3, 10−3). While the overall characteristics of
the curves remain similar for all three cases, the scaling of the peaks and valleys vary significantly. This
variation results from a combination of factors: i) the differing information carried by the two outputs (one
being a displacement and the other an acceleration) and ii) the mode shape error ∆Φ differing at the two
sensor locations, and the propagation of these errors depends on the relative weighting resulting from the
specified noise variances.

The results further raise the question of how sensor locations and sensor types can be robustly designed to
reduce the impact of model errors on joint input and state estimation. Addressing this issue is left for future
research.
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Figure 13: Transfer function showing the distortion of the input estimate for different levels of noise for the
two outputs.



4 Conclusions

This study has investigated the impact of model errors on input and state estimation within structural dynamic
systems. The considered model errors were perturbations in the modal parameters in the state-space models.
Through frequency-domain analysis of the transfer functions of the Bayesian filters (such as the Kalman
filter), it was shown that model errors lead to spurious frequency components in the estimates. The frequency
distribution of these estimate errors can be linked to the resonance and anti-resonance frequencies of both the
true model and the erroneous model. These analytical insights were validated through a numerical example.

The tools derived in this contribution can be used to characterize the impact and propagation of model errors
in a general theoretical framework, which may be useful in the further development of techniques to mitigate
the adverse effects of model errors, thereby enhancing the reliability of input and state estimation.
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