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The cover illustration: the control room of the modern Trailing Suction Hopper Dredger with
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Chapter 1

Introduction

1.1 Motivation

The main task of a Trailing Suction Hopper Dredger (TSHD) is to excavate sediments from the
sea bottom while sailing and to transport them to a designated area. Its mobility and efficiency
makes the TSHD an indispensable machine for large-scale land reclamation projects. That is
why TSHDs are met all over the world, and were used during projects such as Chek Lap Kok
airport in Hong Kong, Maasvlakte in Rotterdam port, Singapore port, the Palm Islands and
The World Islands in Dubai, to name a few.

The dredging cycle of the TSHD starts when the ship sails off to the designated area.
After the destination is reached, suitable in situ material is excavated from the bottom with
a tool called the drag-head and it is automatically transported through a pipe to a cargo-
hold where it is temporarily stored. In the hopper, the sediment settles at the bottom of the
tank while the excess water is discharged overboard. After the hopper is full, the dredging is
completed. The TSHD sails to the specified location where the collected material is discharged.
The unloading is done either by opening the bottom doors of the ship, by rainbowing, or by
pumping the material out of the hopper by the dredge pumps.

Currently TSHD operations are controlled by one or more operators. Consequently, the
performance and efficiency of the entire process heavily depend on the insight and experience
of the operators. For further improvement in efficiency the automation of the TSHD and the
optimization of its performance is of crucial importance for dredging companies. Such tasks call
for an integral approach that takes into account the overall dredging cycle, as well as the separate
processes such as the excavation process, the sedimentation process, the pipeline transportation
process, the discharge process, etc. As the automation of the operating system of the TSHD
has been a subject of intensive studies, over the last decades, a rich literature dealing with
the TSHD-related processes has accumulated [Braaksma et al., 2007a,b,c; Hahlbrock and Freese,
1998; Ikeda et al., 1995; Kurita et al., 1992; Matoušek, 2002; Miedema, 1984; Morita et al., 2002;
Ooijens, 1999; van Rhee, 2002a,b]. The call for an automated controller of the TSHD has been
answered in [Braaksma, 2008] where a Model Predictive Controller (MPC) for the TSHD has
been developed.

The dynamics of the processes that occur onboard the TSHD, e.g., the excavation process
or the sedimentation process, heavily depend on the properties of the in situ soil. Consequently,
the performance of a controller that uses the models of these processes is strongly dependent
on the detailed knowledge of the in situ soil. As the soil conditions vary continuously through-
out the dredging cycle, it is, in general, impossible to obtain such a knowledge beforehand.

1



1. INTRODUCTION

Therefore, the properties of the soil have to be determined online, during the dredging, from
the measurements available onboard. Although modern dredgers are equipped with advanced
sensors measuring various variables needed by the controller, no direct measurements of the soil-
dependent parameters can be obtained. Therefore, the soil properties have to be determined
from the indirect observations of the states of the system.

The time-varying nature of the soil-dependent parameters combined with the model uncer-
tainty and inaccuracy in the measurements make the estimation a challenging problem which
is the main motivation behind the research presented in this thesis.

1.2 Research Goals

The main objective of the research discussed in this thesis is to recover certain properties of the
in situ soil from the measurements available on board the TSHD. Namely, we are interested in
estimating soil-dependent parameters and states of the most crucial processes controlled by the
aforementioned MPC. Due to the time-varying, highly uncertain and complex nature of these
processes we are interested in the estimators that are adaptable to changing conditions and can
deal with the stochasticity of the signals. Moreover, the estimators have to be computationally
efficient as the estimates need to be fed online to the automatic controller of the TSHD.

The soil-dependent parameters that are the most important for the controller of the TSHD
are the horizontal cutting force coefficient kch, the ratio kvh between the horizontal and ver-
tical cutting forces, the in situ permeability ksi, and the average grain diameter dm. These
parameters are essential for the control of the drag-head excavation process and the hopper
sedimentation process.

The drag-head is a part of the excavation system of the TSHD. It breaks the coherence of the
in situ soil, which is next sucked up by the dredge pump and transported through the pipeline
into the hopper. To accurately control the drag-head three soil-dependent parameters need to
be estimated: the ratio kvh between cutting forces, the horizontal cutting force coefficient kch,
and the in situ permeability ksi.

The hopper sedimentation process describes the settling of the material transported through
the pipeline into the tank. The settling rate of the material strongly depends on the type of soil
that was pumped into the hopper. More precisely, the sedimentation depends on the average
grain diameter dm of the excavated soil. The accurate knowledge of dm is necessary to control
the sedimentation process in an optimal way, i.e., to maximize the production of the TSHD,
given the hard constrains such as the maximum volume of the hopper or the maximum weight
of the TSHD.

The main objective of this research is to find solutions to the estimation problems associated
with two aforementioned processes. Namely, we want to:

1. Solve the Drag-Head Estimation Problem
design an estimator for:

• the ratio kvh between cutting forces,

• the horizontal cutting force coefficient kch,

• the in situ permeability ksi.

2. Solve the Hopper Estimation Problem

• design an estimator for the average grain diameter dm of the excavated soil.

The estimators that solve the above estimation problems have to be:

2
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1. Accurate and precise: to maximize the performance of the controller that uses the esti-
mates,

2. Numerically efficient : to be feasible for online applications,

3. Adaptive: to adapt to continuously changing environment during the dredging operations,

4. Robust : to handle strong uncertainties in the models,

5. Nonlinear : to handle severe nonlinearities in the models.

Thus, we focus our investigations on the Nonlinear Bayesian Filters, which have all these prop-
erties.

First, we review established filtering algorithms satisfying the aforementioned properties in
search for a method that provides the best solution to the drag-head and Hopper Estimation
Problems. To evaluate their performance, we perform multiple numerical simulations of the
dredging operations. When standard methods do not produce satisfactory results, we develop
novel filtering algorithms that take advantage of the specific structures of the excavation model
and of the sedimentation model.

1.3 Outline of the Thesis

The thesis is composed of two parts, a theoretical part and an application part. The application
part spans over Chapters 2, 4, and 7. The theoretical part is composed of Chapters 3, 5, and 6.
The diagram showing the relations between the two parts as well as between the individual
chapters is presented in Figure 1.1. In order to understand Chapter 4 one should first read
Chapters 2 and 3. Before reading Chapter 7 it is recommended to read Chapters 2, 3 and 6. To
follow the theoretical developments presented in the thesis it is recommended to read Section 3.4,
Chapter 5 and Chapter 6 in this order.

Chapter 2 serves as an introduction to dynamical modeling of the TSHD. Therein we present
the dynamical models of the drag-head excavation process and the hopper sedimentation process
and we formulate the corresponding estimation problems that are solved in further chapters.

Chapter 3 reviews Bayesian filters. We distinguish two types of methods: parametric meth-
ods and nonparametric methods. Among the parametric methods we consider three types of
filters: filters based on analytical approximations (Extended Kalman Filter, Iterated Extended
Kalman Filter), filters based on statistical approximations (Unscented Kalman Filter, Central
Difference Filter, Gauss-Hermite Filter), and filters based on the Gaussian Sum Approximation
(Gaussian Sum Filter). Among the nonparametric methods we review the Monte Carlo algo-
rithms based on the importance sampling approach (Bootstrap Particle Filter) and based on
the mean-field control-oriented approach (Feedback Particle Filter).

In Chapter 4 we use several of the methods reviewed in Chapter 3 to solve the Drag-Head
Estimation Problems introduced in Chapter 2. We discuss the solutions to two estimation
problems associated with the excavation process: the Cutting Estimation Problem that comes
from considering the cutting-only production mode, and the Cutting and Jetting Estimation
Problem that originates from the complete cutting and jetting production mode. Beside the
estimation problems we develop a method of handling the time-varying delay in measurements
used by the drag-head excavation model.

In Chapter 5, a novel filtering method is derived for stochastic dynamical systems with
some state variables being constrained or saturated. We show how the estimates obtained by
the existing methods can be improved by incorporating the measurements into the filtering step

3
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Chapter 1:
Introduction

Chapter 2:
Modeling and

Estimation Problems
in the Hopper Dredger

Chapter 3:
Nonlinear Bayesian

Filtering

Chapter 4:
Solutions to the

Drag-Head Estimation
Problems

Chapter 5:
Saturated Particle

Filter

Chapter 6:
Asymptotic Properties

of the Saturated
Particle Filter

Chapter 7:
Solution to the Hopper
Estimation Problem

Chapter 8:
Conclusions

TSHD APPLICATIONS NONLINEAR FILTERING

Figure 1.1: Structure of the thesis. The arrows indicate the dependencies between the different
chapters.

of the algorithm through a user-specified detection function, which aims to detect the saturation
as it occurs. We derive the Saturated Particle Filter (SPF) for a class of systems with one-
dimensional constraints and we further extend our approach to multidimensional systems with
convex constraints, deriving the Convex Saturated Particle Filter (CSPF). The effectiveness of
the proposed methods is illustrated on examples which show that both the SPF and the CSPF
achieve high accuracy using relatively few particles, thus preserving the low computational
complexity of the algorithm.

In Chapter 6 we investigate the asymptotic properties of the filter developed in Chapter 5, in
particular its almost sure convergence to the true posterior PDF. Furthermore, an improved SPF

4
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is developed that uses a novel resampling procedure to overcome the practical shortcomings
of the original SPF. We prove that this new filter also converges almost surely to the true
posterior PDF.

In Chapter 7 we use several of the nonparametric methods reviewed in Chapter 3 as well as
the methods developed in Chapters 5 and 6 to solve the Hopper Estimation Problem introduced
in Chapter 2. The final solution to the Hopper Estimation Problem is obtained by integrat-
ing the filters designed for the separate modes, which appear naturally during the dredging
operations, into a global estimator.

Chapter 8 concludes the thesis.
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Chapter 2

Modeling and Estimation

Problems in the Hopper Dredger

Abstract

A Trailing Suction Hopper Dredger (TSHD) is a ship used in various excavation projects. Its
main task is to collect soil from a dredging zone and transport it to a designated area. Due to
enormous scale of modern dredging operations the optimization of the whole dredging process is
of crucial importance for dredging industry. One of the main problem that is faced by operators
of TSHDs is that the implementation of efficient dredging strategies depends on the detailed
knowledge of the in situ soil. Unfortunately, in general, such knowledge is difficult to obtain.
In fact, soil-dependent parameters which are crucial to control the most important components
of the dredging cycle cannot be directly measured onboard modern TSHDs and need to be
estimated instead.

In this chapter we present dynamical models of the drag-head excavation process and the
hopper sedimentation process. Each of these models contains soil-dependent parameters that
need to be estimated for control purposes. These are: the horizontal cutting force coefficient kch,
the ratio kvh between the horizontal and vertical cutting forces, the in situ permeability ksi
(drag-head model), and the average grain diameter dm (hopper model). For each of these models
we formulate the corresponding estimation problems that will be solved in further chapters.

2.1 Modeling of the Hopper Dredger

The main purpose of a Trailing Suction Hopper Dredger (TSHD) is to excavate sediments from
the sea or river bottom while sailing. First, the in situ material is excavated with a tool called
the drag-head, then it is hydraulically transported through a pipe to a cargo-hold (the hopper)
where it is temporarily stored. After the operation is terminated, the ship sails to the designated
site where the collected material is discharged.

The optimization of dredging operations is of vital importance for future reduction of costs
in terms of time, labor, and resources. While modern hopper dredgers are equipped with ad-
vanced dynamic positioning and tracking systems, no on-board decision-support systems are yet
available to optimize the dredging performance under given operating conditions (type of soil,
dredging depth, water current, etc.). The manipulated variables must constantly be adjusted
by one or two operators: the ship navigator and the dredge process operator. Consequently, the
performance and efficiency of the entire process heavily depend on their insight and experience.
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Figure 2.1: TSHD Marieke during dredging operations in the North Sea (courtesy of Jelmer
Braaksma).

In recent years the automation of the operation system of TSHD has been an intensively
studied subject in the dredging community. In the literature, models of the isolated components
of the total system were developed [Braaksma et al., 2007b; Ikeda et al., 1995; Matoušek, 2002;
Miedema, 1984; Ooijens, 1999; van Rhee, 2002a,b], together with the overall model taking into
account the interactions between separate subsystems [Braaksma et al., 2007a,b,c].

In this chapter we describe two of the most important parts of the TSHD model:

1. the drag-head model which describes the excavation process of the material which is
further transported to the hopper,

2. the hopper model which, among others, describes the sedimentation of the material ex-
cavated from the bottom.

We present dynamical state space models for both aforementioned processes. Furthermore,
we formulate estimation problems that result from a number of uncertain parameters which are
used in the modeling process.

Finally, we have to mention that the overall dynamical model of the TSHD consists of more
submodels, one of which also contains soil-dependent parameters. This is the Pump-Pipeline
model [Braaksma, 2008] and the parameters are: the transport factor Skt and the Stepanoff
correlation γ. Sensors currently available onboard are not sufficient to obtain estimates of these
parameters by considering the Pump-Pipeline system as a standalone block. However, it is
possible to describe the soil-dependent parameters Skt and γ as functions of the average grain
diameter dm [Braaksma, 2008] which appears in the Hopper Sedimentation Model. This means
that accurate estimates of dm can be further used by the Pump-Pipeline model. This concept
has not been tested in practice and we leave it as a topic for future research.

2.2 Drag-Head Excavation Model

The drag-head is the most important component of the excavation system in a hopper dredger.
Its task is to break the coherence of the bottom soil which allows the loosened material to be
sucked in by the dredge pump and be transported to the storage tank (hopper). The overall
production comes from three factors: production by erosion, production by the water jets and
production by cutting. Among these three, the first component, i.e., the production by erosion
is considered as a factor of a negligible influence and is not considered in the model. Recently
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it has been argued that although the erosion factor is in general of the lowest importance, in
some cases the production obtained by erosion is a significant part of the overall production.
Nevertheless, at this moment we have no model for this process, hence we assume that the
overall production comes only from cutting and jetting.

The water jets are placed in the heel of the drag-head (see Figure 2.3). They are powered
by an onboard jet pump which supplies the energy to jet the water under high pressure into
the bottom. This loosens the material and allows it to be sucked by the dredge pump into the
transport pipe. It has been claimed that the water jets are the most effective when dredging
compacted fine sand.

The cutting device is placed on the other side of the drag-head (see Figure 2.3). It consists
of a blade or several teeth which cut through the soil making it possible to be transported
to the hopper. The necessary energy is supplied by the propulsion of the ship. The cutting
production is the most effective when the soil is hard packed sand.

Figure 2.2: A drag-head (courtesy of IHC Systems).

There are three distinct operating modes that describe the excavation process. They are
characterized by the relation between the excavation depth hex and the visor depth hv. The
drag-head is most effective when the excavation depth hex is equal to the visor depth hv

(hex = hv). When this is the case there are no gaps between the bottom and the heel (hex > hv)
nor between the bottom and the teeth (hex < hv). As a result, a high jetting production rate
is combined with a high cutting production rate. This regime is schematically presented in
Figure 2.3.

The other two excavation regimes refer to situations when there is a gap between the teeth
and the bottom, i.e., hex > hv or between the heel and the bottom, i.e., hex < hv. In the first
case no cutting takes place which means that the entire production is obtained solely through
jetting. In the second case the highest possible cutting production is achieved, but the jetting
production is reduced due to a low pressure drop over the drag-head. Throughout this thesis we
shall not consider these two regimes but we restrict our analysis only to the no-gap excavation
regime.

The volume balance of the drag-head excavation process is given by

Qm = Qs,j + Qs,c + Qw,j + Qw,t + Qw,v, (2.1)

where on the left hand side we have the production mixture flow Qm and on the right hand
side we can distinguish two types of flows:

1. flow of the material (sand) loosened by the teeth Qs,c and by the jets Qs,j ,

9
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Figure 2.3: Schematic view of the drag-head with the important flows during the no-gap exca-
vation regime (courtesy of Peter van den Bergh).

2. the flow of water produced by jets Qw,j , flow of water from surroundings Qw,t, flow of
water through the valve Qw,v.

The production comes only from the flows Qs,c and Qs,j which are the main concern of
the remainder of the section. The sand flows can be described in terms of jetting depth hj ,
cutting depth hc, the speed of the ship vsh and the width of the drag-head Wd by the following
formulas:

Qs,c = hcvshWd, (2.2a)

Qs,j = hjvshWd. (2.2b)

In the above formulation Wd is a known parameter and vsh is measured on board of the ship.
The models for the jetting and the cutting depths are discussed in detail in what follows.

Cutting Model

The cutting depth hc is calculated from the equilibrium of moments around the visor joint J.
The schematic picture of a cutting tool (see Figure 2.4) with the corresponding geometrical
scheme (see Figure 2.5) yields the following relation between the visor force Fvc, the horizontal
cutting force Fch and the vertical cutting force Fcv:

Fvc =
x2

rvc
(Fch sin (αlt + αv) + (Fcv cos (αlt + αv)) , (2.3)

where the visor length x2 is a known parameter depending on the geometry of the drag-head.
The moment arm rvc, the visor angle αv and the angle of the lower suction pipe αlt are measured
variables.

We neglect the friction force component because it is much smaller than the cutting force.
Then, the motion of the cutting tool is described by the following differential equation:

v̇sh =
1

mt
(Fth − Fch) (2.4)

where mt is the total mass of the ship, Fth is the thrust force of the propeller blades and Fch

denotes the horizontal cutting force.
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Figure 2.4: Schematic representation of a cutting tool (courtesy of Jelmer Braaksma).

J

B

A

visor

Fvc

Fch Fcv

αv

αv+αlt

αlt

rvc

Fth
x2

Figure 2.5: Geometry of the cutting tool. Thick arrows indicate the acting forces (courtesy of
Peter van den Bergh).

From Miedema cutting theory [Braaksma, 2008; Miedema, 1987, 1996], assuming cavitating
cutting, the cutting force Fvc is decomposed into a horizontal part Fch and a vertical part Fcv

from which we get the following relations between the cutting depth and the cutting forces:

Fch = kchhc (hz + 10) , (2.5a)

Fcv = kcvhc (hz + 10) , (2.5b)

where the dredging depth hz is a measured variable and the cutting force coefficients kch and kcv
are unknown parameters that depend on the in situ soil. Because the parameters kch and kcv
are determined by the type of soil that is excavated, the values of these variables change when
the drag-head encounters different soil. Therefore, these parameters are dynamic.

We assume that for each soil type the relation between the horizontal and vertical cutting
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force is fixed, i.e.,:

Fcv = kvhFch, (2.6)

where kvh is the ratio between horizontal cutting force coefficient kch and vertical cutting force
coefficient kcv:

kvh =
kcv
kch

. (2.7)

Then we can write

Fcv = kvhFch = kvhkchhc (hz + 10) . (2.8)

Combining (2.8) with (2.5a) and (2.3) yields

Fvc =
x2

rvc
hckch (sin (αlt + αv) + kvh cos (αlt + αv)) (hz + 10) , (2.9)

from which we obtain the formula for the cutting depth

hc =
rvc
xv

Fvck
−1
ch (sin (αlt + αv) + kvh cos (αlt + αv))

−1
(hz + 10)

−1
. (2.10)

With regard to the ratio kvh we consider two possibilities:

1. the ratio kvh is a constant parameter for a given soil type and varies between different
soils,

2. the ratio kvh is constant, regardless of the soil type.

In the first case kvh becomes a dynamic parameter that changes as the excavated soil changes,
whereas in the second case the kvh is a static parameter that can be calibrated offline.

Jetting Model

Based on empirical studies and from [Vlasblom, 2003] the model of jetting depth hj is:

hj := Cdhp
0.5
j Qw,jv

−1
sh kpsi, (2.11)

where the constant Cdh is a known parameter dependent on the type of the drag-head used, p
is a known fractional power determined from the experimental data, the jet nozzle pressure pj ,
the jet water flow Qw,j and the speed of the ship vsh can be calculated from measurements.
The only unknown in (2.11) is the in situ permeability ksi that depends on the type of the
excavated material.

2.3 Drag-Head Estimation Problems

In this section we introduce a mathematical description of estimation problems related to the
drag-head model. These problems arise due to the presence of uncertain soil dependent param-
eters such as the ratio between cutting forces kvh, the horizontal cutting force coefficient kch
and in situ permeability ksi.

We start by listing the drag-head related measurements available on board TSHD.
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Table 2.1: Precisions of the available measurements

Symbol Physical meaning Precision Unit
pj jet nozzle pressure ±7500 [Pa]

Qw,j the jet water flow ±0.012 [m3/s]
vsh speed of the ship ±0.2 [m/s]
rvc the moment arm ±0.003 [m]
Fvc visor cylinder force ±13000 [N]
αlt angle of the lower suction pipe ±0.004 [rad]
αv visor angle ±0.005 [rad]
hz dredging depth ±0.17 [m]

Onboard Sensors and Measurements

On board of the TSHD there are several sensors capable of taking online estimates that can be
used in the drag-head model. The measured variables with benchmark precisions are reported
in Table 2.1.

We assume that the values in the third column of Table 2.1 define a ball around the true value
of the signal that contains 98 percent of the observations. Due to lack of further knowledge on
the precision of the measurements or the biases involved we assume that the precision variable
reported in Table 2.1 corresponds to 3σ of the Gaussian distribution centered around the true
value of the measurements (i.e., we assume that the measurements are unbiased).

Delay in the Measurements of hex

The production mixture flow Qm together with the mixture density ρdhm are measured by the
sensors located after the dredge pump. This means that the flow sensor and the density sensor
are located far from the drag-head, in some cases up to 60 meters away. Thus, these crucial
measurements that are used in mass-volume balance equations are delayed. Such a transport
delay is dynamic and depends on the average flow rate and the length of the pipeline. The
presence of the delay poses extra challenge in both control and estimation.

In the dynamical system that models the excavation process, the measurement of the exca-
vation depth hex is assumed to be available. However, hex is calculated from the values of the
incoming flow rate Qi, incoming density (at the drag-head inlet) ρdhi , the in situ sand density ρs,
the ship’s speed vsh, the fixed values of water density ρw and the width of the drag-head Wd

by the formula:

hex(t) =
Qi(t)

(

ρdhi (t) − ρw
)

(ρsi(t) − ρw)Wdvsh(t)
. (2.12)

The signals Qi(t), ρsi(t) and vsh(t) are assumed to be known at time t without errors (thus,
we treat them as deterministic inputs). The value of the incoming density at the drag-head
inlet ρdhi is measured with the transport delay τt at the pump ρmi . Hence, we have the relation:

ρmi (t) = ρdhi (t− τt). (2.13)

It should be noted that the delay τ cannot be calculated forward in time but only backward.

2.3.1 Cutting Estimation Problem

First we formulate an estimation problem for the drag-head not employing jets during the
production process. In such a case the total production comes only from the cutting tool
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schematically depicted in Figure 2.4 which means that the excavation depth hex is equal to the
cutting depth hc (hj = 0).

The inputs to the system are defined in what follows.

Input Signals

The thrust force Fth can be calculated from the propellers’ shaft speeds and the pitches of the
propellers which are controllable variables. Thus, we can also assume that the thrust force Fth

is a known input to the system. Recall that in the absence of jetting production hex = hc which
means that in the cutting-only regime the cutting depth hc is measured.

For the Cutting Estimation Problem we assume that the uncertainties in the measurements
of the excavation depth hex, the visor angle αv, the angle of the lower suction pipe αlt, the
moment arm rvc and the total mass mt are negligible. This means that we treat all these
variables as known inputs to the system.

The Estimation Objective

The cutting model described in the previous section contains two uncertain parameters which
depend on the in situ soil. During the dredging operation while the ship sails the value of kch
changes. Furthermore, we assume that the ratio kvh also varies as the type of the excavated
soil changes. Therefore, to model the dynamical nature of these soil-dependent parameters, kch
and kvh are modeled as time-varying parameters.

Due to the lack of a mathematical model that would describe the evolution of kch or kvh
we use the random walk approach to describe the evolution of (unmodeled) uncertain parame-
ters [Ionides et al., 2006; Kitagawa, 1998]. Thus, we have modeled the dynamics of kvh and kch
with the zero-drift stochastic differential equations:

dkvh(t) = 0dt + devh(t), (2.14a)

dkch(t) = 0dt + dech(t), (2.14b)

where evh and ech are Wiener processes with constant standard deviations σvh and σch, respec-
tively.

Then, the cutting-only model is given by the stochastic differential equations:

dvsh(t) =
1

mt(t)
(Fth(t) − Fch(t)) dt + devsh, (2.15a)

dkvh(t) = 0dt + devh(t), (2.15b)

dkch(t) = 0dt + dech(t), (2.15c)

Fvc =
x2

rvc
kchhc (sin (αlt + αv) + kvh cos (αlt + αv)) . (2.15d)

where to the deterministic parts developed in previous section we added the stochastic compo-
nents devsh, devh, dech to model the uncertainty in variables vsh, kvh and kch.

We assume that two variables are measured: the speed of the ship vsh and the visor cylin-
der force Fvc. The measurements are assumed to be corrupted by zero-mean, time-invariant
Gaussian noises evsht and eFvc

s , respectively.
Given the system (2.15) with the known inputs and uncertain observations we formulate the

estimation problem as obtaining online estimates of the uncertain soil-dependent parameters:

1. the ratio kvh between the cutting forces,
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2. the horizontal cutting force coefficient kch,

from the available measurements.

2.3.2 Cutting and Jetting Estimation Problem

Let us now formulate the estimation problem for the drag-head that combines the cutting
production and the jetting production. We start by defining the input signals.

Input Signals

Assuming that the measurements listed in Table 2.1 are available, we define the following two
signals:

uc :=
rvc
x2

Fvc (sin (αlt + αv) + kvh cos (αlt + αv))
−1

(hz + 10)
−1

, (2.16a)

uj := Cdhp
0.5
j Qw,jv

−1
sh , (2.16b)

where x2 and Cdh are parameters known from the specifications of the drag-head and kvh
defined in (2.7) is assumed to be known.

Let us discuss a setting, where both uc and uj are corrupted by noises that come from
other measured variables (pj , Qw,j , vsh, rvc, Fvc, αlt, αv, hz) such that each of them carries an
uncertainty in it. The precisions of these variables are given in Table 2.1.

For the proper and complete analysis of the uncertainty in the signals uj and uc, which
are derived from the signals in the table by (2.16a)–(2.16b), the distribution of uj and uc as
functions of Gaussians should be derived. However, since these functions are severely nonlin-
ear, such a theoretical analysis leads to complex distributions that are unfeasible for practical
implementations. Thus, we rely on approximations. Namely, we decided to analyze these
distributions by Monte Carlo experiments discussed in detail in Appendix A.

The simulations suggest that the noise associated with uc is distributed normally with zero-
mean, with the standard deviations being roughly the same for all the values of the variable uc

and equal to σuc
= 120.3 (see Appendix A). The noise associated with uj is slightly skewed to

the right, which suggests the presence of a bias in the signal. Therefore, in this case a Gaussian
approximation is less accurate. Furthermore, the standard deviation of such an approximation
depends on the value of uj and can be approximated by the following function1:

σuj
= 0.04874 + 0.04857u2.693

j . (2.17)

The Estimation Objective

With the use of (4.27) we rewrite (2.10)–(2.11) as:

hc = uck
−1
ch , (2.18a)

hj = ujk
p
si. (2.18b)

Given that in the no-gap regime (see Figure 2.3) we have

hex = hc + hj , (2.19)

1The approximation was obtained by using the MATLAB function fit.m.
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and the fact that the excavation depth hex is assumed to be measured (with a delay) the
objective is to estimate the unknown soil-dependent parameters kch and ksi from the available
signals uc, uj , hex and from the formula:

hex = uck
−1
ch + ujk

p
si. (2.20)

Apart from soil-dependent parameters: the cutting force coefficient kch and in situ perme-
ability ksi, all the variables used in (2.20) are known or measured. The parameters kch and ksi
are unknown to the operator and they change dynamically during the dredging operation when
the type of the excavated material changes. Table 4.3 reports experimentally obtained values of
both parameters for eight most common soil types. As the parameters kch and ksi depend on
the type of soil excavated by the drag-head, they are correlated. However, unlike the Hopper
Sedimentation model, there is no known way of establishing accurate relations between those
parameters and a single soil-dependent parameter.

Table 2.2: The cutting force coefficient kch and the in situ permeability ksi for different soil
types.

Soil type Soil type A (Fine) Soil type B (Medium) Soil type C (Medium) Soil type D (Coarse)
Packing Medium Dense Medium Dense Medium Dense Medium Dense
dm[mm] 0.10 0.10 0.24 0.24 0.45 0.45 1.30 1.30
kch 9.87 · 104 1.16 · 105 9.56 · 104 1.12 · 105 9.53 · 104 1.11 · 105 8.89 · 104 1.03 · 105

ksi[m/s] 3.59 · 10−5 1.6 · 10−5 2.75 · 10−4 1.3 · 10−4 4.06 · 10−4 1.81 · 10−4 2.86 · 10−3 1.23 · 10−3

Note that if all the signals in (2.20) are stochastic and evolve independently of each other
with the same frequency, the model is underdetermined and cannot be solved with respect
to kch and ksi. Therefore, the main objective is to obtain online estimates of the uncertain
soil-dependent parameters:

1. the cutting force coefficient kch,

2. the in situ permeability ksi,

from the collected measurements of pj , Qw,j , vsh, rvc, Fvc, αlt, αv, hz, and hex.

2.4 Hopper Sedimentation Model

The sedimentation process has been extensively studied in the civil engineering literature [Camp,
1946; Felice, 1999; Mirza and Richardson, 1979; Ooijens et al., 2001; Richardson and Zaki, 1954;
van Rhee, 2002a].

Existing dynamical models derived from the Navier-Stokes equations [van Rhee, 2002a,b] are
very detailed descriptions of the physical phenomenon in terms of 1-D, or 2-D, spatial Partial
Differential Equations (PDE). Furthermore, such models contain a large number of uncertain
parameters corresponding to the environmental properties of the excavated material. Thus, the
overall complexity of such models makes them unfeasible for onboard online controllers.

A simplified 1-D sedimentation model was proposed in [Braaksma et al., 2007b] as a basis
of the onboard controller of the dredging process. This model has been integrated with other
models into a global Model Predictive Controller (MPC) of the TSHD [Braaksma, 2008]. Thus,
in what follows we analyze the properties of the aforementioned 1-D sedimentation model. In
particular, we formulate the estimation problems that need to be solved before the control can
be applied.
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The sand is the most common soil type excavated during the dredging operations, other soil
types less frequently met during dredging being clay, silt or gravel. Therefore, in what follows
we shall consider only the case when the in situ soil is known to be sand. We show how, under
such an assumption, it is possible to reduce all the uncertain soil-related parameters to one
parameter: the average grain diameter dm.

Figure 2.6: Example of a hopper.

Before we give the equations that define the dynamical system describing the sedimentation
process we shall briefly discuss the production cycle in a TSHD.

The Production Process

The production process in a TSHD with retractable overflow system is naturally divided into
three separate phases:

1. The no-overflow phase.

2. The constant-volume phase.

3. The constant-tonnage phase.

When the ship arrives at the dredging area, the loading begins. At first (no-overflow phase)
all the excavated material is stored in the hopper. When the mixture level reaches a certain
height, the second phase begins (constant-volume phase). During this stage the excess water
(or a low density mixture) is being discharged overboard to keep the volume Vt of the stored
material constant. As a result the density of the remaining mixture increases and therefore the
total mass mt of the material in the hopper also increases. The last loading phase begins after
the maximum allowed mass in the hopper (determined by the maximum draught of the ship)
has been reached. In order to prevent the ship from sinking a constant-tonnage controller is
used. When necessary, the controller lowers the overflow height hence more mixture is disposed
through the overflow pipe.

During this third phase the overflow losses increase up to the point when it is no longer
economically efficient to continue dredging, at which point the loading stops.
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Sedimentation during each of the loading phases is characterized by different dynamics. As
the process progresses from lower to higher loading phases the dynamics of the sedimentation
models become increasingly complex [Braaksma et al., 2007b]. However, from the qualitative
point of view we distinguish only two modes:

1. no-overflow mode,

2. the overflow mode.

The former is characterized by low erosion effect on the sedimentation, thus, as we shall see,
simpler dynamics. The more challenging dynamics of the second mode are compensated by the
higher number of observed outputs.

Conservation Laws

The dynamics of the sedimentation process in the hopper during the no-overflow phase are
derived from the conservation laws (mass balance, volume balance):

ṁs = Qs (dm,mt, hs, ht, Qo) ρs (dm) , (2.21a)

V̇t = Qi −Qo, (2.21b)

ṁt = Qiρi −Qoρo, (2.21c)

where ms denotes the mass of the sand bed and the total volume and total mass of the mixture
in the hopper are denoted by Vt and mt, respectively. The incoming flow rate is given by Qi,
and the density of the incoming mixture is denoted by ρi. The total height and the sand bed
height are denoted by ht and hs, respectively. The settling sand flow rate Qs and the density
of the settled sand ρs are modeled as functions dependent on the average grain diameter dm.

The overflow rate Qo and the overflow density ρo are output variables which cannot be
directly measured due to the lack of appropriate sensors in the overflow system. In the lit-
erature, a number of models of the overflow rate Qo and the overflow density ρo have been
proposed [Braaksma et al., 2007b]. Unfortunately, those models contain too many uncertain
parameters which lead to rather inaccurate approximations of the desired signals, when com-
pared with the measured data. Therefore, a cascaded observer of the overflow rate Qo and the
overflow density ρo has been developed in [Lendek et al., 2008] in order to obtain accurate online
estimates of both signals. Thus, in this paper, the two aforementioned variables are regarded
as measured outputs of the system.

The cross section of the hopper is visualized in Figure 2.7.
The settling sand flow rate Qs, which appears in (2.21a), is modeled as a function of five

parameters: the average grain diameter dm, sand bed mass ms, the total height of the mix-
ture in the hopper ht, sand bed height hs, the overflow rate Qo, and the total mass in the
hopper mt [Braaksma et al., 2007b].

The nonlinear function Qs is factorized into two components

Qs (dm,mt, hs, ht, Qo) = fe(dm, ht, hs, Qo)fs(dm,mt, hs, ht), (2.22)

where each term describes a different physical phenomenon. The scouring function fe models
the settling efficiency influenced by the erosion, which depends on the local mixture flow above
the settled material [van Rhee, 2002b]:

fe(dm, ht, hs, Qo) = max

(

1 − Q2
o

(ke(dm)(ht − hs))
2 , 0

)

, (2.23)
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Figure 2.7: Cross section of the hopper showing the variables that are used to describe the
sedimentation process.

where the erosion pickup flux coefficient ke is a soil dependent parameter expressed as a function
of the mean grain diameter dm of the in situ material. The right-hand side of (2.23) takes values
between 0 and 1 hence, by (2.22), the settling rate Qs can only be decreased by the scouring
function fe. This corresponds to the negative effect of erosion on the sedimentation process.

The settling function fs describes the process of settling of the sand particles suspended in
the mixture above the sand bed. For a hopper of a rectangular parallelepiped shape with a
base area A

[

m2
]

fs is given by:

fs (dm,mt, hs, ht) = Avs0(dm)
ρm (mt, hs, dm, ht) − ρw

ρs(dm) − ρm (mt, hs, dm, ht)

(

ρq − ρm (mt, hs, dm, ht)

ρq − ρw

)β(dm)

,

(2.24)
where ρw is the density of water (1024 [kg/m3]) and ρq is the density of quartz (approximately
2650 [kg/m3]). In (2.23) and (2.24) there are three soil dependent parameters described as
functions of the average grain diameter dm. These are: the sand bed density in the hop-
per ρs, the undisturbed settling velocity of a single particle vs0, and the Richardson-Zaki expo-
nent β [Richardson and Zaki, 1954].

Finally, the settling sand flow rate Qs also depends on the density of the mixture in the
hopper. It has been experimentally shown [Ooijens, 1999; van Rhee, 2002b] that above the sand
bed, the mixture of water and sand that is being discharged into the hopper form a uniformly
dense soup with a thin layer of water on the top. Thus, the density of the mixture can be
approximated by the average density of the mixture ρm, given by [Braaksma et al., 2007b]:

ρm (mt, hs, dm, ht) =
mt −Ahsρs (dm)

Aht −Ahs
. (2.25)

To derive the dynamic model for the sand bed height hs let us note that the increments of
the sand bed mass ms can be written in terms of the increments of the sand bed height hs and
the average of the sand bed density ρs:

ms ((k + 1)Ts) −ms (kTs) = A (hs ((k + 1)Ts) − hs (kTs))
1

Ts

∫ (k+1)Ts

kTs

ρs (dm) dt. (2.26)

Thus, taking the limit Ts → 0, we obtain the continuous-time ODE description of ms:

ṁs = Aḣsρs (dm) , (2.27)
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from which it is straightforward to obtain the formula for the sand bed height hs growth rate:

ḣs =
Qs(dm,ms, ht, hs, Qo,mt)

Aρs(dm)
. (2.28)

The dynamics of the total height of the mixture ht are derived from the difference between
the incoming flow Qi and the outgoing flow Qo divided by the hopper area A:

ḣt =
Qi −Qo

A
. (2.29)

Soil-Dependent Parameters as Functions of dm

The simplified 1-D sedimentation model contains four uncertain parameters: the undisturbed
settling velocity vs0, the sand bed density ρs, the Richardson-Zaki exponent β, and the erosion
coefficient ke. These depend only on the properties of the excavated soil. The successful im-
plementation of the MPC controller requires these parameters to be specified. To complete the
derivation of the sedimentation dynamics we need to specify the aforementioned soil-dependent
parameters as functions of the average grain diameter dm. Some of these functions are given
explicitly in the literature, others have been estimated by least squares fit to the experimental
data.

The relations between the sand bed density in the hopper ρs and dm are established using
the experimental results reported in [Braaksma, 2008]. These are given in Table 2.3.

Table 2.3: Empirical relations between ρs and dm

dm[mm] 0.09 0.12 0.19 0.30 0.86
ρs[kg/m3]) 1934 1938 1942 1947 1957

The data reported in Table 2.3 gives only a rough approximation of the true functional
relation between dm and ρs. However, due to lack of other measurements they need to suffice.
The curve fitting results in the following formula for ρs:

ρs (dm) = 1926 + 34.81
√

dm. (2.30)

By [Matoušek, 1997] the undisturbed settling velocity vs0 is derived, for three distinctive
regimes, from Stokes, Budryck or Rittinger equations:

vs0 (dm) =



































424
ρq − ρw

ρw
d
2
m dm < 0.1 [mm] (Stokes) (2.31a)

8.925

dm

(√

1 + 95
ρq − ρw

ρw
d3m − 1

)

0.1 < dm < 1 [mm] (Budryck) (2.31b)

87

√

ρq − ρw

ρw
dm dm > 1 [mm] (Rittinger) (2.31c)

Throughout this thesis we consider the average grain diameter dm to take values in the
interval [0.1, 1][mm], thus only the Budryck equation is of interest. The relation between dm
and vs0 is illustrated in Figure 2.9b.

According to [Camp, 1946; Vlasblom and Miedema, 1995] the erosion coefficient ke as a
function of dm is derived from:

ke (dm) = Wsh

√

8(1 − n)µg

f

ρq − ρw
ρw

dm, (2.32)
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where Wsh is the hopper width, f is the friction force coefficient, µ is a coefficient dependent
on the internal friction of the sediment, n is the porosity of the sand bed and g stands for the
gravitational acceleration. Unfortunately, it is not easy to evaluate the parameters of (2.32) for
the whole spectrum of values of dm. Therefore, we use the empirical data reported in [Braaksma,
2008] and presented in Table 2.4 to establish the formula for the erosion coefficient ke:

ke (dm) = 28.06
√

dm − 6.35. (2.33)

Table 2.4: Empirical relations between ke and dm

dm[mm] 0.09 0.12 0.19 0.30 0.86
ke 2 4 6 8 20

The Richardson-Zaki exponent β can be represented as a function of the Reynolds num-
ber Rep [Richardson and Zaki, 1954; Rowe, 1987; van Rhee, 2002b]:

β (Rep) =
4.7 + 0.41Re0.75p

1 + 0.175Re0.75p

. (2.34)

In order to describe β as function of the average grain diameter dm it is sufficient to ap-
proximate Rep as a function of dm. This is done in what follows. From [Matoušek, 2001] we
know that:

Rep =
vts
vf

dm, (2.35)

where vts is the terminal settling velocity of a solid particle and vf stands for the kinematic
viscosity of the fluid. The latter can be expressed as:

vf =
40

20 + T

[

mm2

s

]

, (2.36)

where T is the temperature of fluid in degrees Celsius [van Rhee, 2002b]. It is inconvenient to
have vf as a function of T due to high variation of this signal. Instead we take the average
of vf for temperatures in range [0, 26] to obtain the approximation vf = 1.11.

The terminal settling velocity is given by [Matoušek, 2001]:

vts =

√

4

3

ρq − ρw
ρw

g

CD
dm, (2.37)

where CD is the drag coefficient of flow round settling particle. The drag coefficient CD is a
function of Rep:

CD =























24

Rep
dm < 0.05[mm], (2.38a)

24

Rep

(

1 + 0.173Re
0.657
p

)

+
0.413

1 + 1.63 · 104Re−1.09
p

0.05[mm] < dm < 2[mm], (2.38b)

0.445 dm > 2[mm]. (2.38c)

Since we are interested only in dm that takes values in the interval [0.1, 1][mm] we ana-
lyze (2.38b). Combining (2.35)–(2.37) we find the relation between Rep and dm:

Rep

√

24

Rep

(

1 + 0.173Re0.657p

)

+
0.413

1 + 1.63 · 104Re−1.09
p

=

√

√

√

√

4
3
ρq−ρw

ρw
g

v2f
d

3
2
m. (2.39)
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Unfortunately, from (2.39) it is impossible to obtain a closed analytical formula for the
Reynolds number as a function of dm. Therefore, we derive an approximation based on the
empirical data from [Matoušek, 2001] and reported in Table 2.5:

Rep(dm) = −2.289 + 41.53dm + 118.6d2m. (2.40)

This is illustrated in Figure 2.8.
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Figure 2.8: Approximation of the Reynolds number Rep as a function of the average grain
diameter dm.

Table 2.5: Empirical relations between Rep and dm

dm[mm] 0.074 0.149 0.297 0.595 1 2
Rep 0.35 2.32 12.1 57.4 160 551

Combining (2.34)–(2.40) we get the formula for the Richardson-Zaki exponent for the aver-
age grain diameter 0.1[mm] ≤ dm ≤ 1[mm]:

β (dm) =
4.7 + 0.41 ·

(

−2.289 + 41.53dm + 118.6d2m
)0.75

1 + 0.175 · (−2.289 + 41.53dm + 118.6d2m)
0.75 . (2.41)

To summarize, for a given hopper area A, the four soil dependent parameters ρs, vs0, β
and ke can be approximated by the following functions of dm [Braaksma et al., 2007b; Rowe,
1987; Vlasblom and Miedema, 1995]:

ρs(dm) = 34.81
√

dm + 1926 (2.42a)

vs0(dm) =
8.925

dm

(√

1 + 95
ρq − ρw

ρw
(dm)

3 − 1

)

(2.42b)

β(dm) =
4.7 + 0.41

(

−2.289 + 41.53dm + 118.6 (dm)
2
)0.75

1 + 0.175
(

−2.289 + 41.53dm + 118.6 (dm)
2
)0.75 (2.42c)

ke (dm) = 28.06
√

dm − 6.35. (2.42d)

These functions are visualized in Figure 2.9.
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Figure 2.9: Approximation of the sand bed density in the hopper ρs, the undisturbed settling
velocity vs0 (Budryck regime), the erosion coefficient ke and the Richardson-Zaki exponent β
as functions of the average grain diameter dm.

Dynamical model for the average grain diameter dm

In the previous section we have shown that the dynamics of the 1-D sedimentation process
can be derived from the conservation laws (2.21). The resulting dynamical system contains a
number of parameters, which depend on the in situ soil. We have shown that these parameters
can be approximated as functions of a single soil-dependent parameter: the average grain
diameter dm. During the dredging operation the ship is constantly sailing, and hence the value
of dm is subjected to changes as the type of the excavated soil changes. Therefore, to account
for the temporal changes in the environment, dm is modeled as a time-varying parameter. No
mathematical model exists that would describe the evolution of the average grain diameter dm.
This poses problems for classical dynamical filters, which require a model for each estimated
state. It has been argued [Ionides et al., 2006; Kitagawa, 1998] that for estimation purposes
the evolution of (unmodeled) uncertain parameters can be described by a random walk. Thus,
we have modeled the dynamics of the dm with the zero-drift stochastic differential equation:

ddm(t) = 0dt + ded(t), (2.43)

where ed is a Wiener process with a constant standard deviation σd.

2.5 Hopper Estimation Problems

As was previously mentioned when the excavated soil is known to be sand the number of uncer-
tain parameters can be reduced from four to one. This is possible because the aforementioned
sedimentation parameters can be approximated [Braaksma et al., 2007b; Richardson and Zaki,
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1954; Rowe, 1987; Vlasblom and Miedema, 1995] by explicit functions of the average grain
diameter of the excavated soil dm. Thus, from the estimate of the dm, it is possible to retrace
the desired parameters of the simplified sedimentation model. Furthermore, the knowledge of
the dm can be used to estimate the uncertain soil-dependent parameters in other subsystems
of the automated TSHD. For all the above reasons, development of an accurate estimator of
the average grain diameter dm is a crucial step towards the fully automated control system of
the TSHD.

Onboard Sensors and Measurements

On board of the TSHD there are several sensors capable of taking online measurements, which
are further used in the Hopper Sedimentation model. Among them we distinguish five types:

1. Overflow height sensors,

2. Hopper mixture level sensors,

3. Pressure sensors in the bottom of the hull,

4. Radioactive density sensor placed in the discharged pipe,

5. Electromagnetic Flow meters.

(a) Overflow height sensor. (b) Hopper mixture level sensor.

Figure 2.10: Sensors of the overflow height (left) and the mixture level (right).

The sampling time is different for each sensor and for each ship and varies from 20[Hz]
to 0.2[Hz].

The first sensor measures the height of the overflow weir ho (Figure 2.10a) that is used by
the constant-tonnage controller. The hopper mixture level sensors (Figure 2.10b) are used to
measure the total height of the mixture in the hopper ht (thus also the total volume Vt). The
pressure sensors in the bottom of the hull are used to calculate the draught of the ship. From the
draught it is possible to calculate the mass of the ship. Thus the total mass of the mixture mt

is computed by subtracting the mass of an empty ship from the current mass of the TSHD.
The radioactive source (Figure 2.11b) is used to measure the density of the incoming flow ρi.
It is placed in the discharge pipe, directly above the pump. Finally, the Electromagnetic Flow
meters are used to measure the velocity of the incoming mixture. Knowing the velocity and
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the diameter of the transport pipe we can calculate the flow of the incoming mixture Qi. For
detailed descriptions of the sensors onboard the TSHD the reader is referred to [Braaksma,
2008].

Currently the TSHDs are not equipped with sensors that measure the sand bed height hs.
However, designing of such a sensor is in the advanced stage of development and it is believed
that on future generations of ships it will be possible to measure hs. That is why throughout
this thesis we assume that the sand bed height hs is measured.

(a) Overflow weir inside the hopper. (b) Radioactive source.

Figure 2.11: Overflow weir (left) and the radioactive source in the discharged pipe (right).

Estimated Signals

According to (2.21) the evolution of both the total mass mt and the total volume Vt is deter-
mined by the incoming flow rate Qi, and the density of the incoming mixture ρi (the no-overflow
period) together with the outgoing flow rate Qo, and the overflow density ρo (the constant-
volume phase and the constant-tonnage phase). The first two signals Qi, and ρi are measured
in the discharge pipe (see Section 2.4.4 of [Braaksma, 2008]). The last two Qo, and ρo are
estimated online by an external cascaded estimator [Lendek et al., 2008] with the accuracy and
precision given in Table 2.6

Table 2.6: Statistics of the residuals ρ̃o and Q̃o

residual mean standard deviation unit
ρ̃o 10.679 21.54 [kg/m3]

Q̃o 0 0.6 [m3/s]

As it can be seen in Table 2.6 the estimates of the overflow density ρ̂o and the outgoing
flow rate Q̂o closely match the true values of the signals ρo and Qo

1. Thus, for the purposes
of online estimations, we can treat the signals ρ̂o and Q̂o as inputs to the model (2.21) used to
estimate the average grain diameter dm. This can be done in two possible ways:

• the estimates ρ̂o and Q̂o are considered to be deterministic inputs to the system,

1The typical values of the overflow density ρo vary from 1000 to 1500 [kg/m3], and the typical values of the
outgoing flow Qo vary from 7.5 to 11 [m3/s]
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• the estimates ρ̂o and Q̂o are considered to be stochastic inputs to the system, i.e., both
signals are assumed to be corrupted by the Gaussian noises with means and standard
deviations given in Table 2.6.

The former approach leads to a deterministic dynamical model for the mt and Vt whereas the
latter results in stochastic dynamical model for the aforementioned variables. Throughout this
thesis we assume the former approach.

Estimation Objective

In the previous section the 1-D dynamical sedimentation model has been derived. The model is
based on the conservation laws augmented with the models for the soil-dependent parameters.
The complete model is given by the stochastic differential equations:

dmt(t) = (Qi(t)ρi(t) −Qo(t)ρo(t)) dt, (2.44a)

dms(t) = Qs(dm(t),ms(t), ht(t), hs(t), Qo(t),mt(t))dt + dems(t), (2.44b)

dhs(t) =
Qs(dm(t),ms(t), ht(t), hs(t), Qo(t),mt(t))

Aρs(dm(t))
dt + des(t), (2.44c)

dht(t) =
Qi(t) −Qo(t)

A
dt, (2.44d)

ddm(t) = 0dt + ded(t), (2.44e)

where to the deterministic parts developed in previous section we added the stochastic compo-
nents dems, des, ded to model the uncertainty in variables ms, hs and dm.

We assume that five variables are measured during the loading process: the height of the
sand bed hs, the total height of the mixture in the hopper ht, the total mass of the mixture
in the hopper mt, the incoming flow rate Qi, and the incoming flow ρi. The measurements are
assumed to be corrupted by zero-mean, time-invariant Gaussian noises eot , eos, eomt, e

o
q, and eoi ,

respectively. Furthermore, two variables are assumed to be known exactly, i.e., without an
error: the outgoing density ρo and the flow of the outgoing mixture Qo.

Given the system (2.44) with the assumed measurements we formulate the primary estima-
tion problem as obtaining online estimates of the uncertain soil-dependent parameter:

1. the average grain diameter dm,

from the available measurements. This is motivated by the fact that mt and ht can be ac-
curately estimated directly from the available measurements of Qi, ρi, Qo, and ρo. Per contra
the remaining variables, i.e., ms, and hs cannot be accurately estimated without the accurate
estimates of the dm. Furthermore, the knowledge of the average grain diameter dm gives a deep
insight into the characteristics of the excavated soil which can be used to optimize the dredging
operation.

The secondary objectives are the online estimation of the following variables:

2. the mass of the sand bed ms,

3. the sand bed height hs,

4. the density of the mixture ρm.

The variables ms, and hs, as it was noted above, can be accurately estimated given the ac-
curate estimates of the dm. The density of the mixture ρm is a function (2.25) of the state
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variables mt, hs, dm, and ht. Therefore, given accurate estimates of the aforementioned vari-
ables we obtain accurate estimates of the ρm. Nevertheless, it is important to investigate the
quality of the estimates of the variables ms, hs, and ρm when accurate estimates of dm are not
available (due to e.g., a transient stage, or biased estimates).

2.6 Concluding Remarks

In this chapter we gave a general introduction to the operations of Hopper Dredgers. Further-
more, we have presented models of two main systems taken from the overall model of the TSHD.
These are the drag-head Model and the Hopper Sedimentation Model for which we have for-
mulated the estimation problems. In both systems the objective of the estimation is to retrieve
the knowledge of the in-situ soil properties online from indirect measurements.

The uncertain and dynamical nature of the parameters of interest and the nonlinear dynam-
ics of the considered systems in each case make estimation a challenging task. The algorithms
that are suitable for these types of problems are reviewed in Chapter 3 and novel methods,
tailored for specific types of systems, are developed in Chapter 5 and Chapter 6. Solutions to
the estimation problems formulated in this chapter are provided in Chapter 4 (for the drag-head
model) and in Chapter 7 (for the Hopper Sedimentation model).
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Chapter 3

Nonlinear Bayesian Filtering

Parts of this chapter were published in:

• “Parametric Bayesian Filters for Nonlinear Stochastic Dynamical Systems: A Survey”,
Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews,
Pawe l Stano, Zsófia Lendek, Robert Babuška, Jelmer Braaksma, Cees de Keizer and
Arnold J. den Dekker, in press.

Abstract

Nonlinear stochastic dynamical systems are commonly used to model physical processes. For
linear and Gaussian systems, the Kalman Filter is optimal in the minimum mean squared error
sense. However, for nonlinear or non-Gaussian systems the estimation of states or parameters is
a challenging problem. Furthermore, it is often required to process data online. Therefore, apart
from being accurate, a feasible estimation algorithm also needs to be fast. In this chapter we
review Bayesian filters which possess the aforementioned properties. Each filter is presented in
an easy to implement algorithmic form. We focus on two types of filters: parametric methods
and nonparametric methods. Among the parametric methods we distinguish three types of
filters: filters based on analytical approximations (Extended Kalman Filter, Iterated Extended
Kalman Filter), filters based on statistical approximations (Unscented Kalman Filter, Central
Difference Filter, Gauss-Hermite Filter), and filters based on the Gaussian Sum Approximation
(Gaussian Sum Filter). When discussing nonparametric methods we focus on Monte Carlo
algorithms based on the importance sampling approach (Bootstrap Particle Filter) and based
on the mean-field control-oriented approach (Feedback Particle Filter).

3.1 Introduction

The concept of filtering has been studied for decades in various engineering problems that
require extracting information of interest from an uncertain or changing environment. A filter
is a recursive algorithm designed for a case when the complete knowledge of the relevant signal
characteristics is not available [Haykin, 1991]. The main purpose of a filter is to utilize the
available information about the process of interest in order to obtain an estimate of certain
variables that cannot be measured directly or precisely.

In this chapter we analyze filters designed for nonlinear discrete-time continuous-state dy-
namical systems. These are used to model, among others, physical [Weare, 2009], chemi-
cal [Murshed et al., 2010], biological [Barbieri et al., 2004], or economic [Danielsson, 1994]
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processes. Usually, one is interested in the continuous-time phenomena, often governed by
(partial) differential equations. However, due to the complexity of these models and the lim-
ited computational power available, simplifications are required in order to obtain an efficient
solution. Discrete-time systems provide such a simplification since in this framework time is
represented by the monotonic set of discrete time steps that allows the recursive filtering of the
process of interest. Since the discretized system is only an approximation of the original one,
there is always a certain degree of uncertainty incorporated into the model, which depends on
the discretization technique that was applied [Rodŕıguez-Millán and González, 2005]. An other
possible approximation is to replace the detailed deterministic (dynamical) relations with prob-
abilistic approximations which, if appropriately chosen, further simplify the system. However,
this comes with the price of increased uncertainty of the model (see [Talay, 1995] and references
therein).

The main objective of this chapter is to review and discuss the filtering methods that are
commonly applied to nonlinear stochastic dynamical systems. Among many techniques dealing
with this subject we can distinguish: grid-based methods [Arulampalam et al., 2002; Bewley
and Sharma, 2012; Ristic et al., 2004a] designed for dynamical systems defined on a finite state
space, point-mass methods [Kramer and Sorenson, 1988; Šimandl et al., 2002, 2006] that are
based on grid approximation of the continuous state space, Beneš-Daum filters [Beneš, 1981;
Daum, 1986, 2005] derived for a specific class of nonlinear systems with linear observations,
parametric methods [Ito and Xiong, 2000; Julier and Uhlmann, 2004a,b; Nørgaard et al., 2000],
i.e., methods for which the estimation problem has a solution in a finite dimensional parameter
space, nonparametric methods based on numerical integrations via Monte Carlo approach such
as Particle Filters [Arulampalam et al., 2002; Blom and Bloem, 2011b; Cristian and Doucet,
2002; Doucet et al., 2000] or Ensemble Particle Filters [Burgers et al., 1998; Evensen, 2003, 2006;
Gland et al., 2011] popular in data assimilation problems, and more [Arasaratnam and Haykin,
2009; Särkkä, 2012; Yang et al., 2011a]. Throughout the years, each of these approaches lead
to the development of a multitude of algorithms. Detailed analysis of such a vast number of
estimation techniques is a monumental task. Therefore, we focus our attention on parametric
and nonparametric filters. We present filtering algorithms and investigate their properties and
their feasibility for online applications.

3.2 Bayesian Dynamic Filtering

In this section we formulate the generic Bayesian Filter (BF) framework for nonlinear and non-
Gaussian dynamical systems. First, let us define the probabilistic state-space system, which
serves as a framework for the BF problem.

3.2.1 Bayesian Filter

General Framework

The probabilistic state-space framework relates the process model describing the evolution of
the states in time, the observation model relating the noisy measurements of the system to
the actual state, and the initial state of the system. In discrete-time, at each time instant
k = 1, 2, ..., the probabilistic state-space description is given by

the state model

xk+1 = fk(xk,vk), (3.1)
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the observation model

yk = hk(xk,wk), (3.2)

and the initial condition

x0 ∼ p0, (3.3)

where xk ∈ Rn and yk ∈ Rp are random variables corresponding to the state model and
the measurement model at time step k, respectively. Note that vk ∈ Rd and wk ∈ Rl are
uncorrelated random variables, which represent the system noise and the measurement noise
at time step k, and are independent of the distribution of the initial state p0. Throughout
the thesis we assume that fk : Rn × Rd → Rn is a known nonlinear function that models the
evolution of the state xk affected by the random variable vk, and that hk : Rn × Rl → Rp

is known nonlinear function that relates the observed variable yk to the state variable xk at
time step k under the disturbances caused by the noise wk. Furthermore, we assume that the
distributions of state and observation noise vk and wk are known for all k ≥ 1.

Note that in some applications the functions fk or hk might depend on uncertain param-
eters [Roweis and Ghahramani, 2001]. In such cases it is possible to learn the dynamics of
the system online with the Expectation-Maximization algorithm [Cappé and Moulines, 2009;
Cappé et al., 2009; Roweis and Ghahramani, 2001].

Given the sequence of measurements up to time step k, i.e., Yk = {yi, i = 1, ..., k}, and
the initial knowledge of the state distribution p0, the objective of the estimation is to find a
probability density function (PDF) of the state of the system. The PDF contains full information
of the state variable from which it is possible to derive statistical properties of the state,
such as mean, variance, etc. For dynamical systems we distinguish three classical estimation
problems [Bar-Shalom et al., 2001; Kitagawa, 1987; Simon, 2006; Šimandl and Duńık, 2009]:

1. m-step smoothing : estimation of p(xk−m|Yk),

2. m-step prediction: estimation of p(xk+m|Yk),

3. filtering : estimation of p(xk|Yk).

One can distinguish three types of smoothing algorithms: fixed-point smoothers, which
estimate a state at a fixed point of time using a growing number of measurements, fixed-interval
smoothers, which estimate states within a fixed time interval using all the measurements from
the same time interval, and fixed-lag smoothers, which estimate states with a fixed time delay.
The overview of these methods is out of scope of this paper, instead readers interested in
smoothing methods are referred to [Godsill et al., 2004; Kitagawa, 1987; Rauch et al., 1965;
Särkkä, 2012; Särkkä and Hartikainen, 2010; Šimandl and Duńık, 2009; Šimandl et al., 2001].

The prediction problem is closely related to the filtering problem. In fact, finding the m-
step predictor can always be done by iterating the prediction step of a given filter. Thus, no
specialized algorithms are needed for this.

In this paper we restrict our analysis to BFs, which recursively solve the filtering problem
for the system (3.1)–(3.3) in two steps. First, during the prediction step, the state model (3.1)
and the density p(xk−1|Yk−1) are used to derive the predicted state density via the Chapman-
Kolmogorov equation:

p(xk|Yk−1) =

∫

p(xk|xk−1,Yk−1)p(xk−1|Yk−1)dxk−1 (3.4a)

=

∫

p(xk|xk−1)p(xk−1|Yk−1)dxk−1. (3.4b)
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where the transition density p(xk|xk−1) is determined by the known statistics of vk−1 and the
transformation fk−1. Note that (3.4b) follows by (3.1) which states that the state variable xk

is conditionally independent of past measurements Yk−1.
The prediction step is followed by the update step where the most recent measurement yk is

combined with the predicted state density p(xk|Yk−1) using the observation model (3.2). The
desired posterior PDF p(xk|Yk) is computed via Bayes’ rule:

p(xk|Yk) =
p(yk|xk,Yk−1)p(xk|Yk−1)

p(yk|Yk−1)
(3.5a)

=
p(yk|xk)p(xk|Yk−1)

∫

p(yk|xk)p(xk|Yk−1)dxk
. (3.5b)

Equation (3.5b) is allowed because the observation model (3.2) assumes that the observation
variable yk is conditionally independent of the past observations Yk−1 given the state vari-
able xk.

Outputs of the Estimator

Note that most real-life applications do not require a PDF but rather a concrete point estimate
of a state. The posterior PDF contains all the information required for computing an optimal
point estimate x̂k of the state with respect to a predefined criterion. In general, the choice of the
criterion is an important (and non trivial) problem. An incorrectly chosen x̂k might lead to a
significant decrease in the filter’s performance as, e.g., in multi-target tracking applications [Aoki
et al., 2011; Blom and Bloem, 2011a]. Two of the most popular estimators [Gauvain and Lee,
1994; Rangan et al., 2009; Ristic et al., 2004a] are the minimum mean-square error (MMSE)
estimator and the maximum a posteriori (MAP) estimator. The MMSE estimate is computed
as the conditional mean of xk given Yk

x̂
MMSE
k = E(xk|Yk) =

∫

xkp(xk|Yk)dxk.

The MAP estimate is given by the vector that maximizes the posterior density, i.e., it is a
solution of the optimization problem

x̂
MAP
k = arg max

xk

p(xk|Yk).

Note that the MAP estimate is not unique if the posterior PDF achieves the maximal value in
multiple points (e.g., the PDF of the uniform distribution).

Suboptimality of Nonlinear Filters

For systems with linear dynamics and additive Gaussian noises [Ljung and Gunnarsson, 1990;
Matthies et al., 1989; Øksendal, 2003b; Welch and Bishop, 1995] the posterior PDF is also
Gaussian [Ho and Lee, 1964] and can be computed in a closed form by the Kalman Filter
(KF) [Kalman, 1960]. The KF is an unbiased estimator [Anderson and Moore, 1979] that is
optimal in the MMSE and in the MAP sense (for the KF the MMSE estimate and the MAP
estimate are identical).

In case of nonlinear systems the optimal solutions to the filtering problem for dynamical
systems defined on a finite state space are given by grid-based methods [Arulampalam et al.,
2002; Bewley and Sharma, 2012; Ristic et al., 2004a]. Optimal Beneš-Daum filters [Beneš, 1981;
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Daum, 1986, 2005] have been derived for a specific class of nonlinear systems with linear ob-
servations. Unfortunately, for general nonlinear systems no closed form solution to the filtering
problem exists. This is because the computation of the posterior densities (3.5) requires numer-
ical integration of complicated, often high-dimensional, functions. Furthermore, for Bayesian
filters the suboptimal performance can also be the result of imperfect knowledge of the initial
distribution p0 [Kleptsyna and Veretennikov, 2011]. Thus, in most cases we need to rely on
approximations of the true posterior PDF which lead to suboptimal solutions [Kushner and
Dupuis, 2001; Pugachev and Sinitsyn, 2001].

In what follows we discuss several suboptimal filtering algorithms that employ different
deterministic and probabilistic numerical methods used to approximate the integrals in (3.5b)–
(3.4b). They differ by their computational complexity, and numerical accuracy. The decision
regarding the “optimal” choice of the suboptimal algorithm is never straightforward and is
influenced by factors such as: the dynamics of the system, the computational power available,
observability of the model, uncertainty in parameters, etc.

3.2.2 Performance Evaluation

As was indicated in the previous section, for the general nonlinear filtering problem there
are many suboptimal methods to choose from. In this section we show how to measure the
performance of different filters.

Posterior Cramér Rao Bound

It is possible to assess the achievable performance of a given nonlinear filter by computing the
(sampled) variance of the estimator and comparing it with the Posterior Cramér-Rao Bound
(PCRB). The PCRB gives a lower bound on the mean squared error (MSE) for any estimator
(see Chapter 2.4 of [van Trees, 1968]). Thus, it is a generalization of the classical Cramér-Rao
Bound (CRB), see Chapter 32 of [Cramer, 1946] or [Rao, 1945], which bounds the MSE of
estimators of deterministic variables. The PCRB is derived for the system (3.1)–(3.3) and it
is independent of the filter applied to the system. Thus, the PCRB serves as a benchmark
for comparing the performance of nonlinear filters [Farina et al., 2002]. Applications of CRB
to continuous-time nonlinear filtering are discussed in [Kerr, 1989] whereas [Tichavsky et al.,
1998] focuses on discrete-time nonlinear filtering.

In what follows x1:k and y1:k denote the random variables (x1, ...,xk) and (y1, ...,yk), re-
spectively.

The performance of a given estimator x̂ 1:k is measured using the mean squared estimation
error defined by

Ey1:k,x1:k

(

(x̂ 1:k − x1:k) (x̂ 1:k − x1:k)
T
)

, (3.6)

where Ey1:k,x1:k
denotes the expectation taken with respect to the random variables y1:k and x1:k,

and x̂ 1:k is an estimator of x1:k which depends on the observation y1:k.
The PCRB provides a lower bound on (3.9) which is given by the inverse of the information

matrix (J1:k)
−1

, i.e.,

Ey1:k,x1:k

(

(x̂ 1:k − x1:k) (x̂ 1:k − x1:k)
T
)

≥ (J1:k)
−1

. (3.7)

The nk × nk information matrix J1:k is defined by [Tichavsky et al., 1998]

J1:k := Ey1:k,x1:k

(

−∆x1:k
x1:k

log p (x1:k,y1:k)
)

, (3.8)
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where ∆y
x = ∇x (∇y)

T
is the second-order derivative and p (x1:k,y1:k) is a joint density of the

random variable (x1:k,y1:k).
Equations (3.7)–(3.8) give the lowest bound on the MSE of an estimator of the whole

trajectory x̂ 1:k. However, by (3.8), computation of the right-hand side of (3.7) requires inverting
the large nk×nk matrix J1:k, which is undesirable from the numerical perspective. Fortunately,
it has been shown [Tichavsky et al., 1998] that it is possible to compute the PCRB recursively
for each single-step estimator x̂k as:

Ey1:k,x1:k

(

(x̂k − xk) (x̂k − xk)
T
)

≥ (Jk)
−1

. (3.9)

In (3.9), Jk is a n×n matrix that can be computed recursively by solving Riccati-like equations:

Jk+1 = D22
k −

(

D12
k

)T (
Jk + D11

k

)−1
D12

k , (3.10)

where

D11
k := Ex1:k

(

−∆xk
xk

log p (xk+1|xk)
)

(3.11a)

D12
k := Ex1:k

(

−∆
xk+1
xk

log p (xk+1|xk)
)

(3.11b)

D22
k := Ex1:k

(

−∆
xk+1
xk+1 log p (xk+1|xk)

)

+ Ey1:k,x1:k

(

−∆
xk+1
xk+1 log p (yk+1|xk+1)

)

. (3.11c)

The iteration (3.10) is initialized with matrix J0, which is calculated from the initial condi-
tion (3.3)

J0 := Ex0

(

−∆x0
x0

log p0 (x0)
)

. (3.12)

Thus, dealing with large matrices is avoided.
Note that the PCRB implementation requires the derivatives in (3.11) to be evaluated in the

true states xk and xk+1 [Farina et al., 2002; Lei et al., 2011]. Alternatively, the PCRB can be
approximated by evaluating D11

k ,D12
k and D22

k in the estimate of the state [Lei et al., 2011]. It
has been argued that such an approximated PCRB can also be used as a performance measure of
nonlinear filters [Lei et al., 2011]. In some online applications the use of the Conditional PCRB,
which depends on the actual realization Yk of the random variable y1:k, is preferable over the
standard PCRB [Zuo et al., 2011]. Another interesting class of PCRBs used in target tracking
applications and designed for systems with uncertainty about measurements origin has been
studied in [Hernandez et al., 2004; Niu et al., 2001; Zhang et al., 2005]. Recursive algorithms for
computing the PCRB for prediction, filtering and smoothing estimation problems are discussed
in [Šimandl et al., 2001].

Stability of the Bayesian Filter

The PCRB is a very useful performance measure as it gives the precision of the optimal non-
linear filter and thus it also provides a limit on the performance achievable by any suboptimal
method. Regarding the stability of the Bayesian filter we consider the following question:
Let πk = p(xk|Yk) and π̃k = p(xk|Yk) be Bayesian filters defined by (3.4)–(3.5) starting from
the initial distributions p0 and p̃0, respectively. What is the difference between πk and π̃k as
time progresses? Formally speaking we are interested in analyzing the limit:

lim
k→+∞

E ‖πk − π̃k‖TV , (3.13)

where ‖ · ‖TV denotes the total variation norm. For given probabilistic measures µ, and ν the
total variation norm ‖µ− ν‖TV is defined by:

‖µ− ν‖TV := sup
A

(µ− ν) (A) + sup
A

(ν − µ) (A), (3.14)
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where the supremum is taken over all the sets A in the σ-field on which the probabilistic
measures µ, ν are defined.

In case of nonlinear filtering the stability analysis requires an advanced measure theoretic
approach that is out of scope of this chapter. A comprehensive overview of the stability prop-
erties and asymptotic analysis of nonlinear filtering methods is given in [Atar, 2011; Budhiraja,
2011; Chigansky et al., 2011; Crisan and Rozovskii, 2011; Gland et al., 2011; Kleptsyna and
Veretennikov, 2011; van Handel, 2010].

3.2.3 Optimal Filter for Linear Systems

A classical approach to the linear filtering problem was formulated in the innovative paper of
Kalman [Kalman, 1960]. In recognition of that work, the algorithm presented therein has been
called the Kalman Filter (KF) ever since.

Kalman Filter

The KF has been designed for systems with linear dynamics and additive zero-mean Gaussian
noises. That is, the system equations (3.1)-(3.2) take the form

xk+1 = Fkxk + vk, (3.15a)

yk = Hkxk + wk, (3.15b)

where Fk and Hk are matrices of appropriate dimensions, and vk and wk are uncorrelated zero-
mean Gaussian variables with covariance matrices Qk and Rk, respectively. This is the modern
framework of the KF [Haykin, 1991; Ristic et al., 2004a], although it should be mentioned
that the original formulation of Kalman [Kalman, 1960] was slightly different, in particular the
measurement noise wk was not included. From a mathematical perspective the aforementioned
assumptions lead to a restricted class of systems. However, such systems, used as approxima-
tions, are commonly found in engineering applications which makes the KF a very popular tool
among practitioners ([Ljung and Gunnarsson, 1990; Matthies et al., 1989; Mehra, 1970; Welch
and Bishop, 1995] and Chapter 18 of [Mendel, 1995a]).

For the stochastic process defined by (3.15), under the assumption that the initial density p0
is also Gaussian and uncorrelated with variables vk and wk [Ho and Lee, 1964], at each time
step k the posterior density p(xk|Yk) is Gaussian. The KF recursively derives the predicted
state density p(xk|Yk−1) and the posterior density p(xk|Yk) as

p(xk|Yk−1) = N(xk; x̂ k|k−1,Pk|k−1), (3.16a)

p(xk|Yk) = N(xk; x̂ k|k,Pk|k), (3.16b)

where N(x;µ,Σ) is the density of a normally distributed random vector, with the mean µ and
the covariance matrix Σ, evaluated at x. The estimated means and covariances in (3.16) follow
the recursive relationship:

x̂k|k−1 = Fk−1x̂k−1|k−1, (3.17)

Pk|k−1 = Qk−1 + Fk−1Pk−1|k−1F
T
k−1, (3.18)

x̂k|k = x̂k|k−1 + Kk

(

yk −Hkx̂k|k−1

)

, (3.19)

Pk|k = (I−KkHk)Pk|k−1, (3.20)

where x̂k−1|k−1 and Pk−1|k−1 are the mean and the covariance, respectively, of the Gaussian
posterior p(xk−1|Yk−1), I denotes the identity matrix, and Kk is a matrix given by:

Kk = Pk|k−1H
T
k

(

HkPk|k−1H
T
k + Rk

)−1
. (3.21)
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In order to implement the KF one needs to specify the covariances Qk and Rk. Often, these
are unknown and have to be determined from data or by using prior knowledge. In [Mehra,
1970] methods for obtaining unbiased, consistent and asymptotically normal estimates of Qk

and Rk have been developed. These algorithms have been further improved in [Akesson et al.,
2008; Alspach, 1972; Rajamani and Rawlings, 2009; Sangsuk-Iam and Bullock, 1990]. The effect
of prefiltering upon the estimates of covariances has been studied in [Reynolds, 1990]. It has
been noted that the precise knowledge of Qk is more critical than knowledge of Rk, which
often can be derived from sensor specifications. This is because incorrect values of the system
noise covariance Qk can cause the filter to diverge [Sangsuk-Iam and Bullock, 1990; Welch and
Bishop, 1995] and Chapter 18 of [Mendel, 1995a].

The KF is an unbiased estimator [Anderson and Moore, 1979]. Moreover, for the system
defined by (3.15) the KF is an optimal filter, i.e., no algorithm can outperform (in the MMSE
sense) the KF in this setting [Anderson and Moore, 1979]. Indeed, it can be shown [Anderson
and Moore, 1979; Tichavsky et al., 1998] that the covariance matrix Pk|k defined by (3.20) is
equal to the inverse of the information matrix Jk computed by (3.10), i.e.,

Ey1:k,x1:k

(

(

x̂k|k − xk

) (

x̂k|k − xk

)T
)

= Pk|k = (Jk)
−1

, (3.22)

hence, by (3.9), the estimate obtained by (3.19) provides the minimal estimation error. Al-
ternatively, we can say that the KF provides the minimal variance estimator over all unbiased
estimators designed for the system (3.15). However, the optimality of the KF only holds for
linear systems with additive Gaussian noises whereas in many engineering applications, one
has to work with nonlinear dynamics and possibly non-Gaussian noises. In such cases the KF
becomes a suboptimal method that is outperformed by more advanced algorithms. It is also
possible to derive the KF for systems under less restrictive conditions than those presented in
this section, e.g., for systems influenced by nonzero mean variables vk and wk, or systems with
correlated system and measurement noises. These are discussed in, e.g., Chapter 22 of [Mendel,
1995a].

Example: Random Walk Model

To illustrate the capabilities of the KF we apply it to a simple, yet useful ([Mulquiney et al.,
1995; Sargan and Bhargava, 1983; Welch and Bishop, 1995], Chapter 3 of [Anderson and Moore,
1979], Chapter 4 of [Kushner and Dupuis, 2001]), zero-drift one-dimensional Gaussian random
walk model with noisy measurements (a continuous-time analogue of this process is discussed
in Chapter 6 of [Øksendal, 2003a]). The system equations are given by

xk+1 = xk + vk, (3.23a)

yk = xk + wk, (3.23b)

with vk and wk being mutually independent zero-mean Gaussian variables with standard de-
viations

√
Qk = 0.01 and

√
Rk = 0.05, respectively. We start the simulations at the initial

state x0 = 0.26, which was randomly chosen from the interval [−1, 1], from which point the
process evolves according to (3.23a) for 30 time steps. For each xk the corresponding measure-
ment yk is generated according to (3.23b).

Clearly, the system (3.23) is linear, hence the KF, produces the optimal estimate x̂k|k. To
better illustrate the tracking abilities of the KF the filter is initialized at x̂0 = 0, i.e., in the
center of the interval [−1, 1] where the true state x0 is expected to be, with the initial standard
deviation

√
P0 = 1. The results of the simulation are presented in Figure 3.1a.
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Figure 3.1: Kalman Filter applied to a random walk model. On the left: estimates (dashed
line) of the true state (thick solid line) given the noisy measurements (+). The shaded area
constitutes the one-sigma uncertainty interval

[

x̂k|k −
√

Pk|k, x̂k|k +
√

Pk|k
]

. On the right:
standard deviation of the estimator obtained with the recursion (3.10) (solid line with square
marks) and with the KF recursion (3.17)–(3.21) (dashed thick line).

We see that even though the filter starts from the initial position x̂0 = 0 different from the
true initial state x0 = 0.26 it quickly tracks the signal and, despite noisy measurements, closely
follows it for the remainder of the simulation. Also, the uncertainty of the estimate quickly
decreases from the initial value

√
P0 = 1 to the final

√

P30|30 = 0.0213.

Now, we would like to confirm experimentally that the KF is indeed an optimal filter in
a linear setting. If that is really the case, in light of (3.22), the variance Pk|k computed

from (3.17)–(3.21) should be approximately equal to the inverted information matrix (Jk)
−1

obtained by the recursion (3.10). For a linear system with additive noises the matrices defined
in (3.11) take the form [Tichavsky et al., 1998]:

D11
k = FT

k (Qk)
−1

Fk, (3.24a)

D12
k = FT

k (Qk)
−1

, (3.24b)

D22
k = (Qk)

−1
+ HT

k+1 (Rk+1)
−1

Hk+1, (3.24c)

with the initial condition given by

J0 = (P0)
−1

. (3.25)

In our example these matrices are reduced to scalar values

D11
k = 104, (3.26a)

D12
k = 104, (3.26b)

D22
k = 104 + 4 · 102, (3.26c)

with

J0 ≈ 1. (3.27)

Running the recursion (3.10) using the values (3.26) it is easy to check that for the random

walk model the inverted information matrices (Jk)
−1

closely match the variance Pk|k (see also
Figure 3.1b).
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3.3 Parametric Nonlinear Bayesian Filtering

In this section we review a number of approximation methods that belong to the class of
Parametric Nonlinear Filters, i.e., methods for which the estimation problem has a solution in
a finite dimensional parameter space. Within this class we distinguish three types of algorithms:
Analytical Approximations, Statistical Approximations and Gaussian Sum Approximations.

To help the reader better understand the properties of the filters discussed we analyze their
performance in several numerical experiments. For these experiments we use popular systems
that have been extensively studied in the literature.

3.3.1 Analytical Approximations

Within the framework of Section 3.2.3 (linear dynamics, additive Gaussian noises), the KF is
the optimal filter. Unfortunately, when nonlinear or non-Gaussian problems are considered,
no optimal solution (in the MMSE sense) exists, i.e., can be computed in closed analytical
form (see [Ristic et al., 2004a] and references therein). However, throughout the years many
suboptimal techniques [Kushner and Dupuis, 2001; Pugachev and Sinitsyn, 2001] have been
developed for various classes of nonlinear stochastic dynamical systems. From this section
onwards we focus on such estimation methods.

In this section we describe the historically firstly proposed Extended Kalman Filter (EKF)
and its modification, the Iterated Extended Kalman Filter (IEKF). Both filters are analytical
methods because the approximations of (3.4)–(3.5) are derived using the Taylor series expan-
sion, a method that exploits the analytical structure of the functions fk and hk.

Extended Kalman Filter

The EKF [Mendel, 1995b; Ristic et al., 2004b; Welch and Bishop, 1995] is one of the most
popular modifications of the KF and is designed to estimate the states of a nonlinear system.
The main idea of the EKF algorithm is that at each time step the nonlinear state (3.1) and
observation (3.2) models can be analytically approximated in order to obtain a linear system.

For sufficiently smooth functions fk and hk given the previous state estimate x̂k−1|k−1

and covariance Pk−1|k−1 the EKF approximates the right-hand side of (3.1)–(3.2) with the
first-order Taylor series expansion around the points (x̂k−1|k−1,0) and (fk−1(x̂k−1|k−1,0),0),
respectively [Ristic et al., 2004b; Welch and Bishop, 1995]:

xk ≈ fk−1(x̂ k−1|k−1,0) + Fk−1 · (∆xk−1 − x̂k−1|k−1) + Vk−1 (∆vk−1) (3.28a)

yk ≈ hk(fk−1(x̂k−1|k−1,0),0) + Hk · (∆xk − fk−1(x̂k−1|k−1,0)) + Wk (∆wk) (3.28b)

for every ∆xk−1,∆xk,∆vk−1,∆wk, where

1. Fk−1 is the Jacobian matrix of the partial derivatives of fk−1 with respect to the state
variable x, evaluated in (x̂k−1|k−1,0):

Fk−1 =
∂fk−1

∂x
(x̂k−1|k−1,0), (3.29)

2. Vk−1 is the Jacobian matrix of the partial derivatives of fk−1 with respect to the noise
variable v, evaluated in (x̂k−1|k−1,0):

Vk−1 =
∂fk−1

∂v
(x̂k−1|k−1,0), (3.30)
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3. Hk is the Jacobian matrix of the partial derivatives of hk with respect to the state
variable x, evaluated in (fk−1(x̂k−1|k−1,0),0):

Hk =
∂hk

∂x
(fk−1(x̂k−1|k−1,0),0), (3.31)

4. Wk is the Jacobian matrix of the partial derivatives of hk with respect to the noise
variable w, evaluated in (fk−1(x̂k−1|k−1,0),0):

Wk =
∂hk

∂w
(fk−1(x̂k−1|k−1,0),0). (3.32)

It can be easily seen that the right-hand side of both (3.28a) and (3.28b) are Gaussian
random variables. Therefore, similarly to the KF, the predicted state and the posterior state
densities take the form (3.16a) and (3.16b), respectively, with the means and the covariances
as given in Algorithm 3.1.

Algorithm 3.1 Extended Kalman Filter

Input: Pk−1|k−1, x̂k−1|k−1, Qk−1, and Rk

Prediction step:
Compute matrices Fk−1, and Vk−1 according to (3.29)–(3.30)
Compute the predicted mean x̂k|k−1:
x̂k|k−1 = fk−1(x̂k−1|k−1,0)
Compute the predicted covariance Pk|k−1:
Pk|k−1 = Fk−1Pk−1|k−1F

T
k−1 + Vk−1Qk−1V

T
k−1

Update step:
Compute matrices Hk and Wk according to (3.31)–(3.32)
Compute the Kalman gain Kk:

Kk = Pk|k−1H
T
k

(

HkPk|k−1H
T
k + WkRkW

T
k

)−1

Compute the estimated mean x̂k|k:

x̂k|k = x̂k|k−1 + Kk

(

yk − hk(x̂ k|k−1,0)
)

Compute the estimated covariance Pk|k:
Pk|k = (I−KkHk)Pk|k−1

The approximation (3.28) is accurate only if the following three assumptions hold:

I. the noises vk and wk are lightly tailed, i.e., the norms of the covariance matrices Vk and
Wk are small,

II. the estimate x̂k−1|k−1 is approximately equal to the actual state of the system at time
step k − 1,

III. the functions fk and hk do not exhibit severe nonlinear behavior.

The first two postulates, together with the fact that E [vk] = 0 and E [wk] = 0 justify
the Taylor expansions around the aforementioned points, whereas the third one allows one to
truncate the infinite series after the first derivative term.

Note that as far as real systems are concerned Postulate I seems reasonable. Indeed, in most
applications the process and the measurement noises are bounded within narrow intervals (see
Part II of [Ristic et al., 2004a], or Chapter 6 of [Tanizaki, 1996]). Postulate II simply states
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that the estimator is accurate, meaning unbiased, and precise, meaning with small covariance
matrix.

Postulate III is more critical. To understand why, recall that the approximation (3.28a)
models the predicted state as a Gaussian random variable, whereas in reality a variable after
the nonlinear transformation fk is no longer normally distributed. In case of mild nonlinearities
(different measures of nonlinearity are reported in [Verlaan and Heemink, 2001] and [Ali-Löytty,
2008a]), the transformed variable can be accurately approximated by a Gaussian distribution.
However, for a system that exhibits a strong nonlinear behavior the approximation is no longer
feasible and might result in an inconsistent estimator. The influence of the linearization errors
on the final EKF performance has been extensively studied in the literature [Ristic et al.,
2004a; Tanizaki and Mariano, 1996; Xiong et al., 2008]. An informative case study is presented
in Chapter 2 of [Ristic et al., 2004a], where the discussed nonlinear function is a transformation
that converts a Gaussian random variable from polar to Cartesian coordinates. A similar
example can be found in [Julier and Uhlmann, 1996], where the model of a vehicle moving
along a circular arc is investigated. Also in this case the application of EKF leads to significant
estimation errors.

Finally, similarly to the KF case, the EKF requires the covariance matrices Qk and Rk.
They can be derived from stochastic properties of the noises vk and wk or, if these are unknown,
tuned from data [Bolognani et al., 2003; Chang and Tabaczynski, 1984].

Iterated Extended Kalman Filter

In order to improve the EKF the Iterated Extended Kalman Filter (IEKF) has been devel-
oped [Jazwinski, 1970; Tanizaki, 1996]. This algorithm has a strong resemblance to the conven-
tional EKF. In fact, for both filters the linearization of the prediction function Fk is derived in
the same manner, and they differ only in the way in which the updated estimate is computed.
The IEKF assumes that the measurement model is such that for every time step k the noise
variable wk can be explicitly expressed as a function of yk and xk, i.e., for each k there exists
a function gk such that:

wk = gk(yk,xk). (3.33)

If the observation model has additive linear noises, i.e.,

hk(xk,wk) = hk(xk) + Hkwk, (3.34)

with an invertible matrix Hk, then

gk(yk,xk) = (Hk)
−1

(yk − hk(xk)) , (3.35)

which is the scaled difference between the measured and the predicted variables. The IEKF
linearizes gk around the updated state estimate x̂k|k rather than around the predicted state
estimate x̂k|k−1 as the EKF does. This is achieved by the following iteration (hence the name):
the algorithm starts with a linearized model around the predicted estimate x̂k|k−1, and uses it to

compute the updated state estimate x̂
1
k|k. Then, the function gk is linearized around this newly

obtained vector, and the new updated state estimate x̂
2
k|k is derived. This procedure is repeated

until the iteration step i0 is reached such that ‖x̂ i0
k|k − x̂

i0−1
k|k ‖ < ǫ, where ǫ is a predefined small

number. This iteration, which is equivalent to the Gauss-Newton method [Bell and Cathey,
1993], is presented in Algorithm 3.2. The update algorithm has been derived, e.g., in Section
3.4 of [Tanizaki, 1996].
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Algorithm 3.2 IEKF: Update Iteration

Input: ǫ, Pk|k−1, x̂k|k−1, Rk, yk

Set the initial estimate: x̂
0
k|k = x̂k|k−1

Set the initial counter: i = 0
repeat

Augment the counter: i = i + 1

Linearize the error model : Hi
k = ∂gk

∂x

(

yk, x̂
i−1
k|k

)

Compute the Kalman gain:

Ki
k = Pk|k−1

(

Hi
k

)T
(

Hi
kPk|k−1

(

Hi
k

)T
+ Rk

)−1

Update the estimate:

x̂ i
k|k = x̂k|k−1 −Ki

k

(

gk

(

yk, x̂
i−1

k|k

)

+Hi
k

(

x̂k|k−1 − x̂ i−1

k|k

))

until ‖x̂ i
k|k − x̂

i−1
k|k ‖ < ǫ

Set: i0 = i
Set the updated estimate: x̂k|k = x i0

k|k
Set the covariance of the updated estimate:
Pk|k =

(

I−Ki0
k Hi0

k

)

Pk|k−1

Note that in the case of a linear observation model with additive noises the IEKF is reduced
to the standard EKF. The disadvantage of IEKF is that, due to the internal loop, it is numeri-
cally more involved than the EKF. Also, it has been argued that both IEKF and EKF perform
similarly if the state is only partially observable [Lefebvre et al., 2004]. Informative examples
of applications and comparison of the performance of the two filters are discussed in [Spingarn,
1987] and [Lefebvre et al., 2004].

Other EKF-like Algorithms

The accuracy of the EKF can be further improved by the addition of higher-order terms in
the approximation (3.28). Better accuracy comes with the price of increased computational
burden. Furthermore, although higher-order filters reduce the bias of the estimators [Wishner
et al., 1969], in general, they cannot produce unbiased estimates [Tanizaki and Mariano, 1996].

Other variations of EKF that avoid gradient computations have been developed recently [Gosh
et al., 2007; Saha and Roy, 2009]. Regarding these filters, two approaches can be distinguished:
implicit methods, and explicit methods. In the implicit approach the problem of calculating a
Jacobian is replaced by the one of finding a solution of an analytical equation (see [Gosh et al.,
2007] and the references therein). In the explicit approach the nonlinear operator is linearized
by means of Euler or Newmark expansion [Saha and Roy, 2009]. As presented in [Gosh et al.,
2007] and [Saha and Roy, 2009], in certain situations, e.g., in case of jumps in parameter values,
these filters achieve better performance than the conventional EKF.

Example

To illustrate the difference in the performance between EKF and IEKF, let us investigate a
simple two-dimensional nonlinear system defined by

xk+1(1) = 0.1 (xk(1))
2 − 2xk(1) + 20 + vk(1), (3.36a)

xk+1(2) = xk(1) + 0.3xk(2) − 3 + vk(2), (3.36b)
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and

yk(1) = (xk(1))
2

+ (xk(2))
2

+ wk(1), (3.37a)

yk(2) = 3 (xk(2))
2
/xk(1) + wk(2) (3.37b)

Equations (3.36)–(3.37) constitute a system that is a modification of the case studied
in [Lefebvre et al., 2004]. The system is nonlinear in both the state model (the second order
term in (3.36a)) and the observation model. Furthermore, both the state and the observa-
tion models are influenced by mutually independent additive Gaussian noises vk and wk with

covariance matrices Q =

[

2 0
0 2

]

and R =

[

1 0
0 10

]

, respectively.

For the purpose of comparison, starting from the initial state x0 = [10 10]T , we have gen-
erated the trajectory x1:20 = (x1, ...,x20) with the corresponding observations Y20, according
to (3.36) and (3.37) respectively. Figure 3.2 compares the estimates obtained by EKF and IEKF
aiming to reproduce the trajectory x1:20 from the generated measurements Y20. Both filters are
initialized from the actual state of the system, i.e., from x0 = [10 10]

T
, each having the same

initial uncertainty about the true state P0 =

[

1 0
0 1

]

. Furthermore, the parameter ǫ, which

is used in Algorithm 3.2, is set to ǫ = 0.0001.
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Figure 3.2: The EKF estimate (thin solid line) and the IEKF estimate (dashed line) vs the
sample trajectory x0:20 generated from the system (3.36)–(3.37) (thick solid line).

From Figure 3.2 it can be observed that most of the time the two nonlinear filters behave
similarly. However, in some cases the IEKF tracks the actual state of the system more closely
than the EKF does.

Let us now compute the PCRB for the system (3.36)–(3.37). It can be shown [Song et al.,
2011; Tichavsky et al., 1998] that in case of additive Gaussian noises the matrices (3.11) are
given by:

D11
k = Ex1:k

(

(

∇xk
fTk (xk)

)

(Qk)
−1 (∇xk

fTk (xk)
)T
)

, (3.38a)

D12
k = −Ex1:k

((

∇xk
fTk (xk)

))

(Qk)
−1

, (3.38b)

D22
k = (Qk)

−1
+ Ex1:k+1

(

(

∇xk+1
hT
k+1 (xk+1)

)

(Rk+1)
−1 (∇xk+1

hT
k+1 (xk+1)

)T
)

. (3.38c)

The derivatives in (3.38) are evaluated in the true states of the system and the expectations
are obtained by Monte Carlo simulation [Ripley, 1987] averaged over 10000 realizations of the
independent trajectories of the system, with the initial distribution p0 = N (x0,P0). The initial
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information matrix is given by

J0 = (P0)
−1

=

[

1 0
0 1

]

. (3.39)

Figure 3.3 shows the square roots of the theoretical PCRB for states x1 and x2. Further-
more, the theoretical lower bounds are compared with the Root Mean Squared Errors (RMSE)
obtained from 10000 Monte Carlo runs of the system (3.36)–(3.37) with the same initial dis-
tribution and the same noise levels. From Figure 3.3 it can be observed that the IEKF has a
lower RMSE than the EKF.
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Figure 3.3: RMSE of the estimators given by EKF (dashed line) and IEKF (thin solid line)
compared with the squared roots of the theoretical PCRB (thick solid line) for the states x1

(left) and x2 (right).

3.3.2 Statistical Approximations

In this section we discuss an alternative approach to the nonlinear approximation problem,
namely the statistical approach. Contrary to the methods presented in Section 3.3.1, the
filters described in the current section do not use the Taylor series expansion. Instead, we are
interested in statistical information that can be extracted from the system (3.1)–(3.3) and used
afterward to estimate (3.4)–(3.5). All the filters discussed within this section can be considered
as part of the general class of linear regression Kalman Filters (LRKFs).

The LRKF have been proposed by several authors [Ito and Xiong, 2000; Julier and Uhlmann,
1996; Julier et al., 2000; Lefebvre et al., 2004] and [Wan and van der Merwe, 2000]. Similarly
to the EKF, these filters approximate the prediction and the posterior density as Gaussian
densities, hence the formulas (3.16a) and (3.16b) still hold. However, the approximations
of p(xk|Yk−1) and p(xk|Yk) are obtained by means of statistical regression rather than through
analytical approximations of the nonlinear functions fk and hk as in the EKF setting. The
motivation for this approach can be intuitively expressed as follows: With a fixed number
of parameters it is easier to approximate a Gaussian distribution than it is to approximate
an arbitrary nonlinear function [Julier et al., 2000]. The general idea is to represent the a
priori distributions by a set of deterministically chosen representative points and weights that
completely capture the mean and the covariance of the Gaussian distribution and then use those
points in the prediction and the update steps of the filter. This resembles the Monte Carlo
approach. However, unlike Monte Carlo methods, the LRKFs are, in general, numerically less
expensive since the samples are not drawn at random and the number of the required points
is relatively small when compared to the number of samples that are generated by Monte
Carlo algorithms. LRKFs achieve better accuracy than the EKF since the representative points
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propagated through the nonlinear transformation capture the mean and covariance of the actual
distribution up to the second order of nonlinearity [Julier et al., 2000].

There are many methods for the choice of the representative points and their weights, and
the three most popular ones are discussed in this section. However, for the moment, let us
not be concerned with any particular method of obtaining the representative points, but rather
focus on the general framework of the LRKF.

The estimation proceeds as follows. At time step k−1 the approximation of the posterior dis-
tribution is given by a Gaussian variable N(x̂k−1|k−1,Pk−1|k−1) and the noise vk−1 is assumed
to be distributed according to N (0,Qk−1). Both xk−1 and vk are assumed to be uncorrelated

and Gaussian. Therefore, the augmented state variable [xk−1 vk−1]
T

is also Gaussian with the
mean µa

k−1 and the covariance Pa
k−1 given by:

µa
k−1 =

[

x̂k−1|k−1

0

]

, Pa
k−1 =

[

Pk−1|k−1 0
0 Qk−1

]

.

The probability distribution N
(

µa
k−1,P

a
k−1

)

is encoded in the sequence
{(

xik−1, ω
i
k−1

)}N

i=1

that pairs each representative point xik−1 with its weight ωi
k−1. The predicted state density

p (xk|Yk−1) is approximated by N
(

xk; x̂k|k−1,Pk|k−1

)

, where the mean and covariance are
computed as follows:

x̂k|k−1 =

N
∑

i=1

ωi
k−1fk−1(xik−1,0), (3.40)

Pk|k−1 =

N
∑

i=1

ωi
k−1

(

fk−1(xik−1,0) − x̂k|k−1

) (

fk−1(xik−1,0) − x̂k|k−1

)T
(3.41)

The distribution of the predicted measurement is obtained in a similar manner as the distri-
bution of the predicted state. Namely, the noise wk is assumed to be zero-mean Gaussian with
the covariance matrix Rk, and independent of the state xk. Therefore, the variable [xk wk]

T

is also Gaussian with the mean µa
k and the covariance Pa

k given by:

µa
k =

[

x̂k|k−1

0

]

, Pa
k =

[

Pk|k−1 0
0 Rk

]

.

Next, the set of representative points and weights
{(

xik|k−1, ω
i
k|k−1

)}N

i=1
that approximate the

distribution N (µa
k,P

a
k) is derived. The estimate of the measurement is then given by:

ŷk|k−1 =

N
∑

i=1

ωi
k|k−1hk(xik|k−1,0). (3.42)

Finally the mean and covariance of the normal density that approximates the posterior p (xk|Yk)
are computed as follows:

x̂k|k = x̂k|k−1 + Kk

(

yk − ŷk|k−1

)

, (3.43)

Pk|k = Pk|k−1 −PxyK
T
k , (3.44)

where the Kalman gain Kk and the covariances Pxy and Pyy are computed as:
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Pxy =

N
∑

i=1

ωi
k|k−1

(

xik|k−1 − x̂k|k−1

)(

hk(xik|k−1) − ŷk|k−1

)T

, (3.45)

Pyy =

N
∑

i=1

ωi
k|k−1

(

hk(xik|k−1) − ŷk|k−1

)(

hk(xik|k−1) − ŷk|k−1

)T

, (3.46)

Kk = Pxy (Pyy)
−1

. (3.47)

The LRKF algorithm can be simplified for systems with additive noises, i.e., for systems
where the functions fk and hk have the form:

fk(xk,vk) = fk(xk) + Fkvk, (3.48a)

hk(xk,wk) = hk(xk) + Hkwk, (3.48b)

where both Fk and Hk are linear matrices. For such system one starts from computing the
representative points and weights that approximate the distribution N

(

x̂k−1|k−1,Pk−1|k−1

)

.
Next, the predicted state x̂k|k−1 is computed according to (3.40). In order to compute the
covariance of the predicted state Pk|k−1 the right-hand side of (3.41) is modified by adding the
term Fk−1Qk−1F

T
k−1 which corresponds to the influence of the noise vk−1 [Ristic et al., 2004a]:

Pk|k−1 =

N
∑

i=1

ωi
k−1

(

fk−1(xik−1) − x̂k|k−1

) (

fk−1(xik−1) − x̂k|k−1

)T
+ Fk−1Qk−1F

T
k−1. (3.49)

The next step is to approximate the distribution N
(

x̂k|k−1,Pk|k−1

)

by the set of represen-
tative points and weights. The procedure of obtaining the final estimates of x̂k|k and Pk|k is
similar to the one described by equations (3.42)–(3.46). The only difference is that the trans-
formed covariance of the observation noise wk, i.e., HkRkH

T
k has to be added to the right-hand

side of (3.46). Therefore, Pyy is given by [Ristic et al., 2004a]:

Pyy =

N
∑

i=1

ωi
k−1

(

hk(xik|k−1) − ŷk|k−1

)(

hk(xik|k−1) − ŷk|k−1

)T

+ HkRkH
T
k (3.50)

Note that the dimensions of the Gaussian variables N
(

x̂k−1|k−1,Pk−1|k−1

)

and

N
(

x̂k|k−1,Pk|k−1

)

are lower than the dimensions of the variables N
(

µa
k−1,P

a
k−1

)

and N (µa
k,P

a
k)

approximated using the general algorithm. Therefore, a smaller number of representative points
is required, and consequently fewer nonlinear transformations have to be performed. Instead,
they are replaced by linear operations: Fk−1Qk−1F

T
k−1 and HkRkH

T
k .

It has been observed [Ito and Xiong, 2000] that the performance of the filter given by (3.40)–
(3.46) strongly depends on the choice of the representative points. In the following we review the
methods that have been proposed in the recent years. In order to keep the algorithms simple,
we focus on filters designed for dynamical systems with additive noises. We motivate this
choice by the fact that LRKF equations for systems with non-additive noises are conceptually
identical. We start by describing the most popular LRKF, i.e., the Unscented Kalman Filter
(UKF) and its variations. Next, other types of LRKF are discussed, namely the Gauss-Hermite
Filter (GHF), and the Central Difference Filter (CDF). Finally, all the aforementioned filters
are illustrated on an example.
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Unscented Kalman Filter

Before we proceed to the detailed description of the UKF framework, we start with explaining
the Unscented Transformation (UT) [Julier and Uhlmann, 1996]. This is a method of select-
ing representative points and weights that approximate a variable that undergoes a nonlinear
transformation. The UKF uses the UT in a dynamic framework to obtain the approximations
of the predicted state density and the predicted update density.

The UT is a general method for approximating the distribution of a Gaussian random
variable that undergoes a nonlinear transformation. Let x be such a variable, with mean x̄ and
covariance Px, and let g : Rn → Rp be an arbitrary nonlinear function. The objective is to
compute the statistics of the random variable y defined as:

y = g(x). (3.51)

In order to do that, first one has to generate a set Σ = {σi} of sigma points, i.e., a set
that is of zero sample mean and the points of this set have sample covariance equal to Px.
For the n-dimensional variable x, 2n sigma points are computed as rows (or columns) of the
matrix ±

√

(n + λ)Px, where λ = α2 (n + κ) − n with a spread parameter α and a scaling
factor κ. The common choice for the spread parameter is α = 1 [Wan and Merwe, 2001] in
which case λ = κ [Julier and Uhlmann, 1996; Julier et al., 2000].

The set Σ has the same mean and covariance as a zero mean Gaussian variable with a
covariance matrix Px. Furthermore, since it is symmetric, all the odd central moments are
equal to zero as is the case with every zero mean Gaussian distribution. Therefore, the first
three sample moments of Σ are equal to the theoretical moments of the variable x. Hence, the
approximation errors can occur only in the fourth and higher moments. The representative
points of the distribution of the variable x are generated by a translation of each sigma point
by x̄ and an assignment of appropriate weights [Julier and Uhlmann, 1996; Wan and Merwe,
2001]:

x 0 = x̄ ω0 =
λ

n + λ
,

x i = x̄ + σi ωi =
1 − ω0

2n
.

The distribution of the transformed random variable y = g(x) is then represented by the

set {(g(x i), ωi)}2ni=0.
The errors in the calculation of the mean and covariance of y are of fourth order in case

of Gaussian inputs [Julier and Uhlmann, 1996] and of third order in case of non-Gaussian
inputs [Wan and Merwe, 2001]. The approximation accuracy can be further improved by
an appropriate choice of a scaling factor κ [Julier and Uhlmann, 1996]. The popular choice
is κ = 3 − n [Julier et al., 2000; Wan and Merwe, 2001]. Setting κ = 0 leads to the Cubature
Kalman Filter introduced in [Arasaratnam and Haykin, 2009; Arasaratnam et al., 2010]. Further
improvements in the quality of estimation can be achieved with the adaptive selection of κ which
is done by the Adaptive UKF [Duńık et al., 2010]. If available, the information on the higher
order moments of the estimated variable can be used to modify the weight ω0, which reduces
the higher-order errors of the UT [Julier and Uhlmann, 2004a,b; Wan and Merwe, 2001]. It is
also possible to capture higher moments of the true distribution by augmenting the number of
sigma points used in the approximation [Julier, 2002; Julier and Uhlmann, 2004a,b; Tenne and
Singh, 2003]. For instance, 2n2 + 1 sigma points are required to match the first four moments
of a Gaussian distribution [Julier and Uhlmann, 2004a,b]. The accuracy of the approximation
might further increase if the sigma points are scaled, so that all the sigma points lay in an
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appropriate ellipsoid centered at the mean [Julier, 2002; Julier and Uhlmann, 2004a,b], or on
the 1σ, 2σ and 3σ contours [Wu et al., 2004]. The kσ contour is the boundary of the ellipsoid
defined by k

√
Px. The latter method requires 6n + 1 sigma points. The purpose of the scaling

is to concentrate all the sigma points in the area of the highest probability.

Note that there are infinitely many square roots of the matrix
√
Px that can be chosen

to compute the kσ contour [Julier and Uhlmann, 1996]. Therefore, the improvement of the
computational properties of the UT is possible by the choice of an efficient numerical method for
matrix square root computation. The most popular algorithm is the Cholesky decomposition,
but other techniques, such as the more robust, but also more computationally involved, singular
value decomposition can be used [Arasaratnam et al., 2007]. The computational efficiency
of the UT can be further increased by reducing the number of sigma points that need to
be generated in order to capture the desired properties of a distribution of the investigated
random variable [Julier and Uhlmann, 2002, 2004a,b]. The minimal number of sigma points
that is required to capture the mean and covariance is n+ 1. The computational complexity of
the UT grows linearly with the number of dimensions. However, with increasing dimensions of
the state the accuracy of the UT approximation decreases [Honkela, 2004].

The UKF employs the UT at each filtering step following the procedure described in Algo-
rithm 3.3.

Algorithm 3.3 Unscented Kalman Filter

Input: κ, Pk−1|k−1, x̂k−1|k−1

Compute the sigma points σi as the columns of the matrix:
√

(n + κ)Pk−1|k−1

Prediction step:
Set the central point: x 0

k−1 = x̂k−1|k−1

Set the central weight: ω0
k−1 = κ

n+κ
for i = 1, . . . , 2n do

Compute the representative points:
xik−1 = x̂k−1|k−1 ± σi

Assign weights: ωi
k−1 = 1

2(n+κ)

end for
Compute the predicted mean x̂k|k−1 using (3.40)
Compute the predicted covariance Pk|k−1 using (3.49)
Update step:
for i = 0, . . . , 2n do

Compute the representative points:
xik|k−1 = fk(xik−1)

Assign weights: ωi
k|k−1 = ωi

k−1

end for
Compute the estimated measurement ŷk|k−1 using (3.42)
Compute the covariance of the predicted observation Pyy using (3.50)
Compute the cross-covariance of the predicted observation and the predicted state Pxy us-
ing (3.45)
Compute the Kalman gain Kk using (3.47)
Compute the estimated mean x̂k|k using (3.43)
Compute the estimated covariance Pk|k using (3.44)
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Gauss-Hermite Filter

An alternative method for determining the representative points with their weights is employed
in the Gauss-Hermite Filter (GHF). The GHF is a Gaussian filter that utilizes the Gaussian-
Hermite quadrature rule. This is an approximation technique used for evaluating an integral I
of the form:

I =

∫

Rn

f(x )
1

(2π)
n/2

exp

(

−‖x‖2
2

)

dx , (3.52)

where f is a given nonlinear function. In other words, I is the expectation of a standard normal
variable propagated through the nonlinear function f . The integral above is approximated by
the m-th order quadrature rule Im:

Im =

m
∑

i1=1

. . .

m
∑

in=1

ωi1 . . . ωinf(xi1 , . . . , xin)

=

mn

∑

i=1

ωif(x i), (3.53)

where for each 1 ≤ i ≤ mn the following holds: x i = (xi1 , . . . , xin)
T

and ωi =
∏n

j=1 ωij .
Suppose that J is a symmetric tridiagonal matrix with zeros on the diagonal and the other

entries defined by:

Ji,j =

{ √

i/2, j = i + 1
0, otherwise

For each 1 ≤ j ≤ n the one dimensional m-th order quadrature rule {(xl, ωl)}ml=1 is computed
in two steps [Golub and Welsch, 1969]. First, the quadrature point xl is defined as the l-th
eigenvalue ǫl of the matrix J, multiplied by

√
2. Next, the corresponding weight ωl is set to be

equal to the square of the first element of the normalized l-th eigenvector v l of J. To summarize:

xl =
√

2ǫl, (3.54)

ωl = ((v l)1)
2

(3.55)

It is well known that the precision of the estimate increases with the order of the quadra-
ture [Pomorski, 2006]. However, at the same time the computational burden grows with the
rate mn. Indeed, by (3.53), the computation of Im requires mn function evaluations, i.e., mn

representative points need to be computed. Therefore, even for moderate state dimensions n, a
higher-order GHF (m > 5) means a significant computational load, which makes it impractical
for online applications. Furthermore, for m > 1 and large n the Gauss-Hermite quadrature
rule is numerically more involved than the UT. In the special case of κ = 2 and n = 1 the UT
matches I3.

Note that this algorithm can easily be generalized for Gaussian variables with arbitrary

mean µ and covariance Σ, simply by replacing f with f̃ (x ) = f
(√

Σ
T
x + µ

)

.

The GHF utilizing the m-th order quadrature rule is presented in Algorithm 3.4.

Central Difference Filter

To choose the representative points the Central Difference Filter (CDF) or Divided Difference
Filter [Lefebvre et al., 2004; Nørgaard et al., 2000] uses a different method than the previously
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Algorithm 3.4 Gauss-Hermite Filter

Input: Pk−1|k−1, x̂k−1|k−1

Compute the one dimensional quadrature rule {(xi, ωi)}mi=1 using (3.54)–(3.55).
for 1 ≤ i1, ..., in ≤ m do

Compute the representative points x i = (xi1 , . . . , xin)
T

,
Compute the corresponding weights ωi =

∏n
j=1 ωij

end for
Prediction step:
Factorize the posterior covariance: Pk−1|k−1 = STS
for i = 1, . . . ,m do

Compute the representative points:
xik−1 = STx i + x̂k−1|k−1

Assign weights: ωi
k−1 = ωi

end for
Compute the predicted mean x̂k|k−1 according to (3.40)
Compute the predicted covariance Pk|k−1 according to (3.41)
Update step:
Factorize the predicted covariance: Pk|k−1 = S̃T S̃
for i = 1, . . . ,m do

Compute the representative points:
xik|k−1 = S̃Tx i + x̂k|k−1

Assign weights: ωi
k|k−1 = ωi

end for
Compute the estimated measurement ŷk|k−1 using (3.42)
Compute the covariance of the predicted observation Pyy using (3.50)
Compute the cross-covariance of the predicted observation and the predicted state Pxy us-
ing (3.45)
Compute the Kalman gain Kk using (3.47)
Compute the estimated mean x̂k|k using (3.43)
Compute the estimated covariance Pk|k using (3.44)

discussed UKF and GHF. The CDF algorithm is based on the central difference approxima-
tion of the integral (3.52). The basic feature of this method is to approximate the nonlinear
function f with a quadratic function P2 defined by:

P2(x ) = f(0) + ax +
1

2
xTHx , (3.56)

where the vector a = (ai) and the symmetric matrix H = (Hi,j) are given by [Ito and Xiong,
2000]:

ai = f(hei)−f(−hei)
2h , 1 ≤ i ≤ n (3.57a)

Hi,i = f(hei)−2f(0)+f(−hei)
h2 , 1 ≤ i ≤ n (3.57b)

Hi,j =
f(hei+hej)−f(−hei)−f(−hej)+f(0)

h2 , 1 ≤ i < j ≤ n (3.57c)

Here h > 0 is a chosen step size and (ei)
n
i=1 is a canonical basis for Rn. Note that the exact

value of h is not specified a priori, hence an additional degree of freedom is added to the filter.
More details concerning the filtering applications of central difference approximations can be
found in [Ito and Xiong, 2000; Nørgaard et al., 2000; Schei, 1997].

49



3. NONLINEAR BAYESIAN FILTERING

The central difference approximation of a Gaussian variable with mean x̄ and covariance P =
STS is given by 2n + 1 representative points with the corresponding weights:

x 0 = x̄ ω0 =
h2 − n

h2
,

x i = x̄ ± SThei ωi =
1

2h2
.

By such a definition the weight of the central point ω0
k−1 can be negative.

The CDF employs the central difference approximation in both the prediction and the
update steps of the filtering algorithm. The complete CDF is presented in Algorithm 3.5.

Algorithm 3.5 Central Difference Filter

Input: h, Pk−1|k−1, x̂k−1|k−1

Prediction step:
Factorize the posterior covariance: Pk−1|k−1 = STS
Set the central point: x 0

k−1 = x̂k−1|k−1

Set the central weight: ω0
k−1 = h2−n

h2

for i = 1, . . . , 2n do
Compute the representative points:
xik−1 = x̂k−1|k−1 ± SThei
Assign weights: ωi

k−1 = 1
2h2

end for
Compute the predicted mean x̂k|k−1 according to (3.40)
Compute the predicted covariance Pk|k−1 according to (3.41)
Update step:
Factorize the predicted covariance: Pk|k−1 = S̃T S̃
Set the central point: x 0

k|k−1 = x̂k|k−1

Set the central weight: ω0
k|k−1 = h2−n

h2

for i = 1, . . . , 2n do
Compute the representative points:
xik|k−1 = x̂k|k−1 ± S̃Thei

Assign weights: ωi
k|k−1 = 1

2h2

end for
Compute the estimated measurement ŷk|k−1 using (3.42)
Compute the covariance of the predicted observation Pyy using (3.50)
Compute the cross-covariance of the predicted observation and the predicted state Pxy us-
ing (3.45)
Compute the Kalman gain Kk using (3.47)
Compute the estimated mean x̂k|k using (3.43)
Compute the estimated covariance Pk|k using (3.44)

When the parameter h is chosen to be small the central-difference approximation is based
on points that are close to the center (mean). When h is large the approximation accounts for
the points located at the tails of the Gaussian distribution.
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Example: Prediction Step

To illustrate the advantages that the LRKF filters have over the EKF we will use an example
of the nonlinear noise-free process given by [Lefebvre et al., 2004]:

xk+1(1) = (xk(1))
2
, (3.58a)

xk+1(2) = xk(1) + 3xk(2). (3.58b)

To better see the differences between the EKF, the UKF, the CDF and the GHF we focus
only on a one step ahead prediction problem. The analysis of the update step follows the same
steps [Lefebvre et al., 2004].

Assume that at time step k the state xk is normally distributed with mean xk|k = [10 15]
T

and covariance Pk|k =

[

36 0
0 3600

]

. We want to predict the distribution of the state xk+1|k.

The linearization method that is employed by the EKF yields:

x̂EKF
k+1|k =

[

100
55

]

,PEKF
k+1|k =

[

14400 720
720 32436

]

.

The UKF with parameter λ = 1 approximates the distribution of xk+1|k with five points:

[

100
55

]

,

[

416
65

]

,

[

0
45

]

,

[

100
367

]

,

[

100
−257

]

weighted 1/3, 1/6, 1/6, 1/6, and 1/6, respectively. Thus, the mean and covariance of the UKF
estimate of the state xk+1|k are given by

x̂UKF
k+1|k =

[

136
55

]

,PUKF
k+1|k =

[

16992 720
720 32436

]

.

For the CDF there are also five representative points, e.g., for h = 2 we have

[

100
55

]

,

[

484
67

]

,

[

4
43

]

,

[

100
415

]

,

[

100
−305

]

weighted 1/2, 1/4, 1/4, 1/4, and 1/4, respectively. From these the mean and variance are com-
puted

x̂CDF
k+1|k =

[

136
55

]

,PCDF
k+1|k =

[

18288 720
720 32436

]

.

The number of representative points utilized by the GHF depends on the quadrature or-
der m. The smallest feasible order is m = 2 which yields the quadrature rule {(xl, ωl)} =
{(1, 1/2), (−1, 1/2)} from which the representative points are computed:

[

16
−131

]

,

[

16
229

]

,

[

256
−119

]

,

[

256
241

]

weighted 1/4, 1/4, 1/4, and 1/4, respectively.

x̂GHF
k+1|k =

[

136
55

]

,PGHF
k+1|k =

[

14400 720
720 32436

]

.
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Instead of analyzing algebraic properties of all the covariance matrices Pk+1|k obtained by
each filter it is convenient to look at the error ellipses that they yield:

(

x− x̂k+1|k
)T (

Pk+1|k
)−1 (

x− x̂k+1|k
)

= 1. (3.59)

The estimated means and error ellipses obtained by the EKF, the UKF with λ = 1, the
CDF with h = 1/2 and the GHF with m = 2 are all compared in Figure 3.4. As a reference,
which is labelled as “true” error set, we use the error ellipse defined by the sample mean and
sample covariance obtained from 106 Monte Carlo experiments. These are given by

x̂MC
k+1|k =

[

136
55

]

,PMC
k+1|k =

[

17039 757
757 32436

]

.

Figure 3.4: Error ellipses
of the EKF (dot-dashed
line), the UKF (solid line),
the CDF (crosses) and the
GHF (dashed line) com-
pared with the “true” error
ellipse (filled circles) ob-
tained by 106 Monte Carlo
experiments. The shaded
area denotes the initial co-
variance. The means of the
UKF (asterisk), the CDF
(cross) and the GHF (cir-
cle) coincide with the true
mean (large x).
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As can be observed, only the EKF yields an estimated mean that does not coincide with
the “true mean”. The UKF, the CDF and the GHF all provide accurate estimates of the
“true” mean but the error ellipses that they produce are different. With such a choice of the
parameters (λ = 1 for the UKF, h = 1/2 for the CDF, m = 2 for the GHF) the error ellipse
obtained by the UKF is the closest to the true one. However, with different parameter setting
we can tune the error ellipses to more desirable shapes. In general, by decreasing the value of
the parameter h we will shrink the ellipses PCDF

k+1|k, and by increasing the quadrature order m

we are able to expand the error ellipses PGHF
k+1|k. Representative points produced by the UKF,

the CDF and the GHF together with the corresponding error ellipses for two parameter settings
are presented in Figure 3.5.

3.3.3 Gaussian Sum Filter

So far the discussion has been restricted to systems with Gaussian process and measurement
noises. Although this type of stochasticity is most commonly used in modeling real-life pro-
cesses, in a number of situations one has to deal with non-Gaussian random variables that influ-
ence the process or the measurement model [Bilik and Tabrikian, 2006]. The filters discussed in
Sections 3.2.3, 3.3.1, and 3.3.2 assume Gaussian noises, hence, when this assumption is violated
they no longer perform as expected. Furthermore, even if the noises are Gaussian, the nonlin-
earities of the state model fk and the observation model hk might produce densities p(xk|Yk−1)
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Figure 3.5: Representative
points of the UKF (x),
the CDF (crosses) and the
GHF (circles) and the er-
ror ellipses that correspond
to covariance matrices ob-
tained by the UKF (solid
line), the CDF (dashed-
dotted line) and the GHF
(dashed line) for λ = 1, h =
2,m = 2 (above) and λ =
1, h = 1/2,m = 3 (be-
low). Regardless of the pa-
rameters’ setting all filters
yield the same mean (pen-
tagram).

or p(xk|Yk) that cannot be accurately approximated by a single normal variable. A possible
solution to these problems is the Gaussian Sum Filter (GSF) that is described in this section.

GSF Algorithm

The GSF is based on the theoretical result that an arbitrary probability distribution p(x ) can
be approximated by a density pNA (x ) of a form:

pNA (x ) =

N
∑

i=1

aiN(x ;µi,Σi), (3.60)

where for each 1 ≤ i ≤ N , N(x ;µi,Σi) is a probability density of a normal distribution, with
the mean µi and the covariance Σi, evaluated at x , and ai are nonnegative weights that sum up
to one. The density pNA (x ) uniformly converges to the original density p(x ) as the number of
terms N increases and each covariance matrix Σi approaches the zero matrix (see [Alspach and
Sorenson, 1972; Arasaratnam et al., 2007], and the references therein). Before the Gaussian Sum
(GS) approximation can be used, one has to specify the parameters ai, µi,Σi. These are usually
given as solutions of a certain optimization algorithm. The choice of the optimization method
is not trivial, and in general depends on the particular estimation problem. Different methods
for parameter selection are discussed in [Alspach and Sorenson, 1971]. Another approach to the
problem, which is based on expectation-maximization algorithms is derived in [Verbeek et al.,
2006].

As always, there is a tradeoff between computational complexity and the accuracy of the
approximation. If one uses too many terms in the summations, the computational time will
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increase and the filter will no longer be feasible for online applications. On the other hand, if
there are too few terms in the GS, the algorithm will produce a poor approximation of the true
densities.

The main feature of the GSF is the use of the GS approximation of both the predicted state
density p(xk|Yk−1) and the posterior density p(xk|Yk). At each time step k the aforementioned
densities are assumed to be given by:

p(xk|Yk−1) =

N1
∑

i=1

aik|k−1N

(

xk;µi
k|k−1,Σ

i
k|k−1

)

, (3.61)

p(xk|Yk) =

N2
∑

i=1

aik|kN
(

xk;µi
k|k,Σ

i
k|k

)

. (3.62)

As it was stated before, there is much flexibility in choosing the weights ai and the Gaussian
parameters µi and Σi. Note that in general the number of terms N1 in (3.61) does not have to
be equal to the number of terms N2 in (3.62).

One might consider the GSF as a collection of nonlinear Kalman Filters, such as the ones
described in the previous sections, working in parallel. Indeed, in the original formulation of
Alspach and Sorensen [Alspach and Sorenson, 1971], the GSF that they derived is composed
of parallel EKFs. A GSF that exploits UKFs is presented in [Vermaak et al., 2005], whereas a
GHF-based GSF can be found in [Arasaratnam et al., 2007].

The filtering proceeds as follows. Let us assume that at time step k − 1 the posterior
density p(xk−1|Yk−1) is represented as a sum of Gaussian densities, i.e.,

p(xk−1|Yk−1) =
K
∑

i=1

αi
k−1|k−1N

(

xk−1; x̂ i
k−1|k−1,P

i
k−1|k−1

)

, (3.63)

where αi
k−1|k−1 are non-negative weights that sum up to one, and x̂

i
k−1|k−1 and Pi

k−1|k−1

are the i -th estimate of the mean and the covariance, respectively. Furthermore, let us also
approximate the state noise vk by a GS:

p(vk) =

L
∑

j=1

αj
v,kN

(

vk; v̂j
k,P

j
v,k

)

, (3.64)

with weights αj
v,k, means v̂j

k, and covariances Pj
v,k chosen to match the non-Gaussian random

variable vk. Then for each pair (i, j), i = 1, ...,K, j = 1, ..., L the (i, j)-th component of the
predicted state density is computed by the nonlinear KF of one’s choice. The predicted state
density is thus given by:

p (xk|Yk−1) =
K
∑

i=1

L
∑

j=1

αi,j
k|k−1N

(

xk; x̂ i,j
k|k−1,P

i,j
k|k−1

)

, (3.65)

where the weights αi,j
k|k−1 are computed as:

αi,j
k|k−1 = αi

k−1|k−1α
j
v,k, (3.66)

and x̂
i,j
k|k−1 and Pi,j

k|k−1 are estimates of the mean and the covariance, respectively, that are

obtained by the application of one of the filters described in Sections 3.3.1 and 3.3.2 to the
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model with index (i, j). To perform the update step, we again use the GS to approximate the
observation noise wk:

p(wk) =
M
∑

l=1

αl
w,kN

(

wk; ŵl
k,P

l
w,k

)

. (3.67)

Next, for each tuple (i, j, l), i = 1, ...,K, j = 1, ..., L, l = 1, ...,M the update step is performed
by a nonlinear KF of one’s choice (EKF, UKF, GHF, etc.). Finally, the separate steps are
combined, resulting in the posterior density:

p (xk|Yk) =

K
∑

i=1

L
∑

j=1

M
∑

l=1

αi,j,l
k|k N

(

xk; x̂ i,j,l
k|k ,Pi,j,l

k|k

)

, (3.68)

where the weights αi,j,l
k|k are given by:

αi,j,l
k|k =

αi,j
k|k−1α

l
w,kpi,j,l (yk|Yk−1)

∑K
i=1

∑L
j=1

∑M
l=1 α

i,j
k|k−1 · αl

w,kpi,j,l (yk|Yk−1)
, (3.69)

and the mean x̂
i,j,l
k|k and the covariance Pi,j,l

k|k are obtained from the chosen nonlinear KF applied

separately to each tuple (i, j, l). In the above formula the term pi,j,l (yk|Yk−1) denotes the
(i, j, l)-th component of a PDF of observing yk at step k given the past observations Yk−1,
which can be approximated by the Gaussian:

pi,j,l (yk|Yk−1) = N

(

yk; ŷ i,j,l
k|k−1,P

i,j,l
yy

)

. (3.70)

Algorithm 3.6 summarizes the GSF that applies the UKF (the sigma points xσ and ωσ are
computed according to Algorithm 3.3) to each component of the GS approximation in both
the prediction and in the update stage. Note that if one replaces the UKF with an other
nonlinear filter, e.g., the EKF, the general structure of Algorithm 3.6 remains intact. Indeed,
the two algorithms are different only in the formulas for the means: x̂k|k−1, x̂ k|k, ŷk|k−1 and
the covariances: Pk|k−1,Pk|k,Pyy.

Reduction Methods

In the general framework presented in Section 3.3.3, at the beginning of the algorithm there are
K components in the summation, whereas the final number of terms to sum up is KLM . At
the next filtering step the algorithm starts with KLM initial expressions, and hence it finishes
with KL2M2. After k steps there are KLkMk terms to sum up. This means that as the filtering
proceeds, the number of the expressions in the summation grows exponentially. Therefore, in
its basic form, the GSF has a very limited practical use.

To overcome this potential drawback of the GSF, several techniques have been developed to
reduce the number of terms in the GS approximations [Ali-Löytty, 2008b; Arasaratnam et al.,
2007; Horwood and Poore, 2011; Ito and Xiong, 2000; Tam et al., 1999; Terejanu et al., 2008].
Among the popular methods are:

1. Pruning: In this approach the mixture components with negligible weights are discarded
from the GS, whereas the remaining terms have the weights uniformly rescaled so that the GS
forms a probability density function. Depending on the problem, one might discard every com-
ponent which has the weight smaller than a fixed threshold ǫ or terms that have the cumulative
weight smaller than ǫ [Arasaratnam et al., 2007].
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Algorithm 3.6 Gaussian Sum Filter as a collection of UKFs

Input:
{(

αi
k−1|k−1, x̂

i
k−1|k−1,P

i
k−1|k−1

)}K

i=1
,
{(

αj
v,k, v̂

j
k,P

j
v,k

)}L

j=1
,
{(

αl
w,k, ŵ

l
k,P

l
w,k

)}M

l=1

Prediction step:
for i = 1, . . . ,K, j = 1, . . . , L do

Compute the predicted mean:

x̂
i,j
k|k−1 =

∑

σ ω
i,j
σ fk

(

x i,j
σ

)

Compute the predicted covariance:

Pi,j
k|k−1 =

∑

σ

ωi,j
σ

(

fk
(

x i,j
σ

)

− x̂
i,j
k|k−1

)(

fk
(

x i,j
σ

)

− x̂
i,j
k|k−1

)T

Compute the associated weight:
αi,j
k|k−1 = αi

k−1|k−1α
j
v,k

end for
Approximate the predicted state density with the Gaussian Sum:

p (xk|Yk−1) =
K
∑

i=1

L
∑

j=1

αi,j
k|k−1N

(

xk; x̂ i,j
k|k−1,P

i,j
k|k−1

)

Update state:
for i = 1, . . . ,K, j = 1, . . . , L, l = 1, . . . ,M do

Compute the mean of the predicted observation:

ŷ
i,j,l
k|k−1 =

∑

σ ω
i,j,l
σ hk

(

x i,j,l
σ

)

Compute the covariance of the predicted observation:

Pi,j,l
yy =

∑

σ

ωi,j,l
σ

(

hk

(

x i,j,l
σ

)

− ŷ
i,j
k|k−1

)(

hk

(

x i,j,l
σ

)

− ŷ
i,j,l
k|k−1

)T

Compute the cross-covariance of the predicted observation and the predicted state:

Pi,j,l
xy =

∑

σ

ωi,j,l
σ

(

x i,j,l
σ − x̂

i,j
k|k−1

)(

hk(x i,j,l
σ ) − ŷ

i,j,l
k|k−1

)T

Use (3.43)-(3.47) to compute the updated mean:

x̂
i,j,l
k|k = x̂

i,j
k|k−1 + Ki,j,l

k (yk − ŷ
i,j,l
k|k−1)

Use (3.44)-(3.47) to compute the updated covariance:

Pi,j,l
k|k = Pi,j

k|k−1 −Pi,j,l
xy

(

Ki,j,l
k

)T

Compute the associated weight:

αi,j,l
k|k =

αi,j

k|k−1
αl

w,kN

(

yk;ŷ
i,j,l

k|k−1
,Pi,j,l

yy

)

∑

K
i=1

∑

L
j=1

∑

M
l=1 αi,j

k|k−1
·αl

w,k
N

(

yk;ŷ
i,j,l

k|k−1
,Pi,j,l

yy

)

end for
Approximate the posterior density with the Gaussian Sum:

p (xk|Yk) =

K
∑

i=1

L
∑

j=1

M
∑

l=1

αi,j,l
k|k N

(

xk; x̂ i,j,l
k|k ,Pi,j,l

k|k

)
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2. Merging: When using this method one joins the Gaussian densities that are close to each
other with respect to a certain distance, namely the Mahalonobis distance [Arasaratnam et al.,
2007; Horwood and Poore, 2011; Tam et al., 1999; Williams, 2003]:

d2ij =
αiαj

αi + αj

(

x̂
i − x̂

j
)T
(

Pi + Pj
)−1

(

x̂
i − x̂

j
)

. (3.71)

This algorithm in general merges mixture terms that have lower weights rather than those that
are associated to higher weights [Arasaratnam et al., 2007].

The GS approximations obtained by pruning or merging procedure converge weakly to the
exact posterior distribution [Ali-Löytty, 2008b].

3. Integral Squared Error-Based Gaussian Mixture Reduction: In this method one
obtains the reduced Gaussian mixture expressions by minimizing the L2 distance between the
original and the reduced densities [Arasaratnam et al., 2007; Ito and Xiong, 2000]:

argmin
α,µ,Σ,N

∫

(

p (xk|Yk) −
N
∑

i=1

αiN
(

xk;µi,Σi
)

)2

dxk (3.72)

where p (xk|Yk) is the original Gaussian Sum approximation defined by (3.68), N is the desired
number of components in the Gaussian mixture that is usually much smaller than the number of
terms in original GS, and α,µ,Σ are the parameters with respect to which the optimization is
performed. In some cases instead of the L2 distance other metrics are used as the optimization
criterion, e.g., see [Williams, 2003].

Using one of the aforementioned techniques one has control over the number of terms in
the GS, and hence the growing memory requirement ceases to be a problem. However, the
reduction procedure, which can be computationally very expensive, has to be preformed at each
filtering step. Therefore, depending on the problem, an appropriate choice of the reduction
method is crucial to make the GSF an effective online filter. Note that if both the process
and the observation noises can be accurately approximated by single Gaussians, no reduction
method is necessary because the number of expressions in the GS is constant over the time.

Example: Kinematic Model

Let us consider a second order kinematic model in two-dimensional space [Farina et al., 2002;
Li and Jilkov, 2003; Zarchan, 2002]. The model is described by four states:

xk =









px(k)
ṗx(k)
py(k)
ṗy(k)









, (3.73)

where (px(k), py(k)) is the position of an object at time k in the XY plane and ṗx(k) and ṗy(k)
denote the velocity of the object at time k in the X-direction and the Y -direction, respectively.
The evolution of the object in discrete-time is modeled by:

xk+1 =









1 Ts 0 0
0 1 0 0
0 0 1 Ts

0 0 0 1









xk +











T 2
s

2 0
Ts 0

0
T 2
s

2
0 Ts











(

f (xk) −
[

0
g

])

+ vk. (3.74)
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The function f (xk) is given by

f (xk) = −0.5
g

β
ρ (xk(3))

√

(xk(2))
2

+ (xk(4))
2

[

xk(2)
xk(4)

]

, (3.75)

with parameters Ts = 1[s] the sampling time, g = 9.81[m/s2] the gravitational acceleration,
β = 100[kg/m2] the ballistic coefficient, ρ (xk(3)) = 1.754 · exp(−1.491 · xk(3)) the air density
(typically modeled as an exponentially decaying function of height [Farina et al., 2002]). Fur-
thermore, the variable vk models the process noise, which is a zero-mean Gaussian with the
covariance matrix Qk equal to

Qk =









33 1
3 50 0 0

50 100 0 0
0 0 33 1

3 50
0 0 50 100









. (3.76)

Figure 3.6: Contour of the
initial PDF of the GSF
(above) vs contour of the
initial PDF of the UKF
(below) both in the XY po-
sition plane. The penta-
gram denotes the true ini-
tial state of the system.
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For the observation model we assume that at each time step k the range yk(1) and bear-
ing yk(2) measurements are available [Farina et al., 2002; Li and Jilkov, 2003]. Thus, in the
cartesian coordinates the measurement model is given by:

yk(1) =

√

(xk(1))
2

+ (xk(3))
2

+ wk(1), (3.77a)

yk(2) = arctan

(

xk(3)

xk(1)

)

+ wk(2), (3.77b)

where the zero-mean Gaussian variable wk models the random measurement noise with co-

variance matrix Rk =

[

104 0
0 0.01

]

. With such a choice of Rk the standard deviation of

the range errors is equal to σr = 100[m] and the standard deviation in bearing errors is given
by σθ = 0.1[rad].

We have simulated a trajectory of the ballistic object for T = 90 time steps, which cor-
responds to 90s, starting from the initial state x0 = [243.5km, 1000m/s, 87.9km, 0m/s]

T
. The

simulation was repeated 1000 times.
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We use the Monte Carlo experiment described above to compare the performance of a five-
term GSF with a UKF. The initial condition xUKF

0 and initial covariance PUKF
0 for the UKF

are given by:

xUKF
0 =









243 · 103

1000
88 · 103

0









, PUKF
0 =









106 0 0 0
0 100 0 0
0 0 25 · 104 0
0 0 0 100









.

The initial condition for the GSF is given by five equally weighted Gaussians with means µi, i =
1, ..., 5:









242250
1000
87750

0









,









242750
1000
88250

0









,









243250
1000
88250

0









,









243750
1000
87750

0









,









243000
1000
88000

0









,

respectively, and the covariances

Σ1 = Σ2 =









3·2502
4 0 2502

4 0
0 100 0 0

2502

4 0 3·2502
4 0

0 0 0 100









,Σ3 = Σ4 =









3·2502
4 0 − 2502

4 0
0 100 0 0

− 2502

4 0 3·2502
4 0

0 0 0 100









,

Σ5 =









2502 0 0 0
0 100 0 0
0 0 5002 0
0 0 0 100









.

The contour of the initial distribution of the GSF is visualized in Figure 3.6. The initial PDF
has been chosen to resemble the parabolic shape of the trajectory of the ballistic object. Such
a shape cannot be achieved by a single Gaussian distribution.
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Figure 3.7: Tracking of the X-position (left) and Y-position (right) of the ballistic object (thick
solid line) by the GSF (dashed line) and the UKF (thin solid line).

Figure 3.7 presents the simulated XY-trajectory of the ballistic object together with the es-
timates obtained by the GSF and the UKF. It can be easily observed that the GSF outperforms
a single UKF. This is confirmed by the analysis of the RMSE of each filter obtained from 1000
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Monte Carlo runs of the system (3.74)–(3.77) with the same initial condition and the same
noise levels. In Figure 3.7 the RMSE of the GSF and the UKF are compared with the squared
root of the theoretical PCRB that is computed using (3.38).
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Figure 3.8: RMSE of the GSF (dashed line) and the UKF (dashed-dotted line) compared with
the square root of the theoretical PCRB (solid line) for X-position (left) and Y-position (right).

3.4 Nonparametric Nonlinear Bayesian Filtering

In this section we discuss another type of nonlinear filters: Nonparametric Bayesian Filters.
Within this framework we no longer assume that the PDF (3.5), which is a solution to the esti-
mation problem, belongs to any particular class of distributions (Gaussian, Sum of Gaussians,
etc.). The need for such an approach arose from the fact that in many applications, especially
when dealing with highly nonlinear dynamics, the methods described in Section 3.3 fail to give
accurate approximations of the true PDF, which can be of arbitrary shape. The nonparametric
methods described in what follows are, in general, capable of matching any type of probability
distribution. On the down side, in most cases, they are numerically more involved than the
parametric methods as the estimation problem becomes infinite dimensional.

In what follows we discuss the Particle Filter (PF) that is a nonparametric method based on
the Monte Carlo approach. We focus on two approaches, one originating from the importance
sampling method and an other derived from mean-field control approach.

3.4.1 Generic Particle Filter

We start by explaining how the general PF works. In order to match the standard notions that
appear in the PF literature sometimes we use a slightly different notation than the one used in
Section 3.3.

Notation

From the model (3.1)–(3.2) we derive the transition probability kernel Kk−1(xk|xk−1) defined
by

Kk−1(xk|xk−1) := Pw (fk−1 (xk−1,wk−1) = xk) , (3.78)
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i.e., the conditional PDF of the variable xk given the previous state xk−1, and the likelihood
function gk(yk|xk) defined by

gk(yk|xk) := Pv (hk (xk,vk) = yk) , (3.79)

i.e., the conditional PDF of the variable yk given the current state xk.
The true posterior PDF of the state xk given the observations Yk is denoted by πk|k, i.e.,

πk|k := p (xk|Yk) . (3.80)

Nonparametric Approximation

The PF represents the posterior PDF πk|k of the state xk by N random samples (parti-

cles)
{

xi
k

}N

i=1
with their associated weights

{

ωi
k

}N

i=1
, normalized so that

∑N
i=1 ω

i = 1. At

time instant k, the previous posterior PDF πk−1|k−1 is represented by N samples
{

xi
k−1

}N

i=1

and the corresponding weights
{

ωi
k−1

}N

i=1
. The posterior PDF πk|k is represented by the set of

weighted samples, conventionally denoted by:

πk|k ≈ πN
k|k :=

N
∑

i=1

ωi
kδ(xk − xi

k), (3.81)

where δ denotes the Dirac delta function.
The tuple

{(

xi
k, ω

i
k

)}N

i=1
is further used to approximate functionals of form:

Eπk|k = (f (xk))

∫

f (xk)πk|k (xk|Yk) dxk, (3.82)

by

IMC (f) =
N
∑

i=1

ωi
kf
(

xi
k

)

δ(xk − xi
k), (3.83)

where f is a sufficiently regular function of the state xk.

3.4.2 Sequential Importance Sampling

To approximate the true posterior πk|k, new samples
{

xi
k

}N

i=1
and weights

{

ωi
k

}N

i=1
are gener-

ated using the Sequential Importance Sampling (SIS) method [Arulampalam et al., 2002; Doucet
et al., 2000]. The SIS method is a recursive algorithm that uses the most recent observation yk

to compute
{(

xi
k, ω

i
k

)}N

i=1
in two steps. First, for every i = 1, ..., N , the sample xi

k is drawn from

a (chosen) importance kernel K̃k−1(xi
k|xi

k−1, yk). Next, using the most recent observation yk,
the weights ωi

k are updated according to the Bayes rule

ω̃i
k = ωi

k−1

gk(yk|xi
k)Kk−1(xi

k|xi
k−1)

K̃k−1(xi
k|xi

k−1,yk)
(3.84)

and normalized

ωi
k =

ω̃i
k

∑N
j=1 ω̃

j
k

. (3.85)
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Importance Sampling

In theory, the best possible importance density is the posterior PDF πk|k itself. In such a
case the estimator of the integral (3.82) is unbiased and the variance of the approximation
error is of order O (1/N) [Kleptsyna and Veretennikov, 2011]. For every other choice of the

importance density the variance of the weights
{

ωi
k

}N

i=1
is greater. With a “proper” choice

of the importance density it is possible to achieve asymptotically unbiased estimators of the
integral (3.82) with the convergence rate of the variance of the approximation error being
again equal to O (1/N) [Kleptsyna and Veretennikov, 2011]. Nevertheless, the variance of

weights
{

ωi
k

}N

i=1
increases over time [Doucet et al., 2000]. Since it is generally impossible

to sample from the posterior PDF πk|k one needs to rely on suboptimal importance densi-
ties in practice. It has been shown (see [Doucet et al., 2000] and the references therein) that

the importance density that minimizes the variance of the weights
{

ωi
k

}N

i=1
conditional upon

simulated trajectories
{

xi
j

}k−1

j=1
and the observations {yj}kj=1 is equal to P

(

xk|xi
k−1,yk

)

, i.e.,

the PDF of the state xk conditioned upon the immediately preceding realization xi
k−1 of the

simulated trajectory and the most current observation yk. P
(

xk|xi
k−1,yk

)

is an optimal im-
portance density in the aforementioned sense. Unfortunately, apart from a restricted class of
systems [Doucet et al., 2000; Kotecha and Djurić, 2003a,b], sampling from P

(

xk|xi
k−1,yk

)

is
practically impossible. Therefore, various suboptimal importance densities have been proposed
during the recent years. The simplest choice is to use an importance density that is fixed over the
time [Tanizaki and Mariano, 1994]. A more popular approach is utilized in the bootstrap particle

filter (BPF) [Gordon et al., 1993; Kitagawa, 1996]. The BPF samples points
{

wi
k−1

}N

i=1
from

the noise distribution of wk−1, then propagates them together with the particles
{

xi
k−1

}N

i=1
,

which approximate the previous posterior PDF πk−1|k−1, through the prediction model (5.1a)

to obtain the particles xi
k := fk−1

(

xi
k−1,w

i
k−1

)

that approximate the predicted PDF πk|k−1.

A slightly different formulation of the BPF, with particles
{

xi
k−1

}N

i=1
sampled directly from

the transition probability P
(

xk|xi
k−1

)

, is presented in [Tanizaki and Mariano, 1998]. Another

variation of the BPF [Cristian and Doucet, 2002] allows sampling particles
{

xi
k−1

}N

i=1
from the

weighted transition probability 1
N

∑N
j=1 P

(

xk|xj
k−1

)

.

Resampling

A common problem of PF is the particle degeneracy: after several iterations, all but few
particles will have negligible weights. This does not come as a surprise since the variance of

the weights
{

ωi
k

}N

i=1
can only increase over time. When that occurs most of the computational

power is wasted on updating negligible weights and the accuracy of the algorithm strongly
deteriorates since the posterior PDF πk|k is approximated only by a small set of significant
particles. The degeneracy phenomenon can be circumvented by monitoring the weights and
resampling the particles, e.g., with Algorithm 3.7, after the degeneracy is detected [Fu and Jia,
2010; Kong et al., 1994; Lee and Chia, 2002; Ristic et al., 2004a]. A common measure of the
degeneracy is the effective sample size Neff, computed by [Liu and Chen, 1998; Ristic et al.,
2004a]:

Neff =
1

N
∑

i=1

(ωi
k)2

. (3.86)
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Alternatively one can test a Kullback-Leibler distance between the sets of weights obtained in
the consecutive iterations [Lee and Chia, 2002], or simply measure how much mass is concen-
trated on the particle with the maximum weight at each iteration before resampling [Fu and
Jia, 2010; Lee and Chia, 2002].

Algorithm 3.7 Resampling

Output: {(xi
new, ω

i
new)}Ni=1

for i = 1, 2, . . . , N do
Compute cumulative sum of weights: ωi

c =
∑i

j=1 ω
j
k

end for
Draw u1 from U(0, 1

N )
for i = 1, 2, . . . , N do

Find x+i, the first sample such that ωi
c ≥ ui.

Replace particle i: xi
new = x+i, ωi

new = 1
N

ui+1 = ui + 1
N

end for

The PF that monitors the degeneracy using Neff is summarized in Algorithm 3.8. More
information on importance sampling resampling algorithms can be found in [Carpenter et al.,
1999; Hurzeler and Kunsch, 1998; Künsch, 2005; Pitt and Shephard, 1999].

Algorithm 3.8 Particle filter

Input: Kk−1(xk|xk−1), K̃k−1(xk|xk−1,yk), gk(yk|xk), p0(x0), N , NT

Initialize:
for i = 1, 2, . . . , N do

Draw a new particle: xi
0 ∼ p(x0)

Assign weight: ωi
0 = 1

N
end for
At every time step k = 1, 2, 3, . . .
for i = 1, 2, . . . , N do

Draw particle from importance distribution:
xi
k ∼ K̃k−1(xi

k|xi
k−1,yk)

Use measured yk to update the weight:

ω̃i
k = ωi

k−1

gk(yk|xi
k)Kk−1(x

i
k|xi

k−1)

K̃k−1(xi
k
|xi

k−1,yk)

end for
Normalize weights: ωi

k =
ω̃i

k
∑

N
j=1 ω̃j

k

if 1
∑

N
i=1(ω

i
k
)2

< NT then

Resample using Algorithm 3.7.
end if

Asymptotic Convergence of the Generic Particle Filter

The analysis of the convergence of the PF-approximation πN
k|k to the true posterior PDF πk|k

requires the use of advanced concepts from the measure theory. This means that the PF
presented in previous sections needs to be redefined into somewhat more abstract form. The
discussion regarding the asymptotic properties of the PF requires much attention and is carried
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out separately in Chapter 6. Here we only mention that it is possible to prove that under
certain conditions the empirical distribution πN

k|k converges almost surely to the true posterior

PDF πk|k. A comprehensive overview of the convergence properties can be found in [Cristian
and Doucet, 2002; Doucet et al., 2001].

3.4.3 Mean-Field Control-Oriented Approach

In previous section we have discussed how the PF, which is derived from the importance sam-
pling principle, works. In this section we present an alternative approach to nonlinear filter-
ing which originates from the mean-field optimal control techniques [Huang et al., 2007; Yin
et al., 2010]. Recently, based on this principle the Feedback Particle Filter (FPF) has been
derived [Yang et al., 2011a,b]. The FPF has been developed for the continuous-time stochastic
dynamical systems, thus, before we proceed to the description of the FPF algorithm we give
the continuous-time formulation of the system.

Continuous-Time Dynamical Systems

The continuous-time analog of the discrete-time dynamical system (3.1)–(3.2) is given by [Bud-
hiraja et al., 2007; Øksendal, 2003b; Yang et al., 2011a,b]

dxt = f (xt) dt + dvt, (3.87a)

dyt = h (xt) dt + dwt, (3.87b)

where xt ∈ Rn and yt ∈ Rp denote the state and the observation processes and vt,wt are mutu-
ally independent standard Wiener processes with stochastic volatilities σv and σw, respectively.

Note that in real-life problems the measurements are in general collected at discrete-time
intervals. Thus the continuous-time observation model should be considered as the limit case
of the discrete-time observation model. Such a formulation is convenient in deriving the FPF.

Feedback Particle Filter

The evolution of the conditional probability density π (x, t) = P (xt|Yt) is described by the
Kushner-Stratonovich equation [Yang et al., 2011b, 2012]:

dπ =

(

−∇ (πf) +
1

2
∆π

)

dt +
(

h− ĥ
)(

dyt − ĥdt
)

π, (3.88)

where ∇ is gradient operator, ∆ is the Laplacian operator, and ĥ denotes the expectation of
the observation model:

ĥ :=

∫

h (x)π (x, t) dx. (3.89)

The aim of the FPF is to force particles xi
t to mimic the evolution of the true state in the

probabilistic sense. In other words the objective of the FPF is to match the true PDF π (x, t)
evolving according to (3.88) by the PDFs of the particles xi

t. This is achieved by designing an
appropriate control law such that for the particles xi

t with the initial distribution p (x, 0) equal
to the initial state of the system π (x, 0) the distributions remain equivalent for all times t, i.e.,
p (x, t) = π (x, t) for all t ≥ 0.

The dynamics of each particle is described by the following Stochastic Differential Equation
(SDE) [Yang et al., 2011b, 2012]:

dxi
t =

(

f
(

xi
t

)

+ u
(

xi
t, t
))

dt + K
(

xi
t, t
)

dyt + dvi
t, (3.90)
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where {u,K} are control actions that need to determined by the filter. Furthermore, we assume

that
{

xi
0

}N

i=1
- the initial distributions of the particles are i.i.d., with the distribution equal

to π (x, 0) and mutually independent of the process noises
{

vi
t

}N

i=1
.

It has been proven in [Yang et al., 2011b, 2012] that, under certain regularity conditions,
the control actions {u,K} that force the particles to follow, in probabilistic sense, the desired
true state distribution π can be obtained in two steps:

I. First, to obtain the gain function K we need to solve the multidimensional Euler-Lagrange
boundary value problem given by:

∇ (p (x, t)∇φ (x, t)) = −
(

h (x) − ĥ
)

p (x, t) , (3.91a)
∫

φ (x, t) p (x, t) dx = 0, (3.91b)

where p (x, t) is the conditional distribution of xi
t given Yt. Given φ (x, t) - the solution

of (3.91), the gain function K is computed as:

[K]ls (x, t) :=
∂φs

∂xl
(x, t) . (3.92)

II. Secondly, the control action u is given by the following formula:

u (x, t) = −1

2
K (x, t)

(

h (x) − ĥN
)

+ Ω (x, t) , (3.93)

where ĥN is a sample mean that approximates the expectation of the observation model (3.89):

ĥN :=
1

N

N
∑

i=1

h
(

xi
t

)

, (3.94)

and Ω = (Ω1, ...,Ωn) is the Wong-Zakai correction term:

Ωl (x, t) =
1

2

n
∑

k=1

p
∑

s=1

Kks (x, t)
∂Kls

∂x
(x, t) . (3.95)

In [Yang et al., 2011b, 2012] it has been proven that the control actions {u,K} defined above
are the unique ones that achieve the formulated objective.

The particles xi
t are coupled through the term ĥN which combines information provided by

all the particles. It has been argued that using this amount of global information is sufficient
to improve the performance of PFs [Yang et al., 2011a]. The important feature of the FPF
is that it avoids resampling and weighs all the particles equally. It has been observed that
the FPF-estimates are of lower variance than the estimates obtained by the BPF [Yang et al.,
2011b]. Furthermore, the control-oriented approach provides a self-correcting feedback loop
that has stabilizing effect on the particles xi

k.
From the numerical perspective the biggest drawback of the FPF is the need to solve the

Euler-Lagrange boundary value problem at every time step. This is further complicated by the
fact that the solution of the partial differential equation given by (3.91a) requires the knowledge
of the distribution p (x, t). This, however is rarely the case in nonlinear problems, which leaves
one to rely on approximations, e.g., Gaussian Sum approximation [Yang et al., 2011b, 2012].
In general terms, the problem of computing the gain function K (x, t) as a solution to (3.91) is
related to the problem of finding the solution to the Hamilton-Jacobi-Bellman equations. Thus
one can draw from a rich literature dealing with the subject of stochastic control [Øksendal,
2003a].
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3.5 Conclusions and Discussion

The main objective of this section is to analyze the properties of nonlinear filters presented
in the previous sections. For general nonlinear non-Gaussian systems, there exists no optimal
solution to the filtering problem (in the MMSE sense). This means that there are no results
stating that a particular filter has the lowest possible MMSE error [Ristic et al., 2004a].

We have presented five types of nonlinear filtering methods:

I. Parametric Filters based on analytical approximations: EKF, IEKF.

II. Parametric Filters based on statistical approximations: UKF, GHF, CDF.

III. Parametric Filters based on Gaussian Sum approximations: GSF.

IV. Nonparametric Filters based on the importance sampling approach: BPF.

V. Nonparametric Filters based on the mean-field control-oriented approach: FPF.

The EKF, the IEKF, the UKF, the GHF, and the CDF approximate the predicted (3.4) and
the posterior (3.5) densities as Gaussians. The EKF and the IEKF utilize the Taylor series
expansion to exploit the analytical structure of nonlinear functions fk and hk. The UKF,
the GHF and the CDF exploit statistical properties of Gaussian variables that undergo non-
linear transformations. In contrast to the aforementioned methods the GSF approximates the
densities (3.4) and (3.5) with the sum of Gaussian densities, which are no longer Gaussian. The
biggest advantage of nonparametric filters is that they do not assume any particular shape of
the predicted and the posterior distributions and thus are capable of approximating PDFs of
arbitrary shapes.

The Taylor approximation, which is the basic principle of the EKF and the IEKF, requires
the functions fk and hk to be differentiable. The UKF, the GHF, and the CDF are derivative-
free filters, i.e., they can be applied to systems with non-differentiable dynamics. The same
applies to the BPF, the FPF, and the GSF if it uses one of the derivative-free methods.

The numerical complexity of the UKF and the CDF grows linearly with the dimension of
the state n, the numerical complexity of the EKF and the IEKF grows quadratically with n,
and the complexity of the GHF grows exponentially with n. In the case of the GSF there is
no straightforward relation between the dimension of the state space n and the computational
complexity of the filter. The latter depends on the number of terms K in the GS that are
required for an accurate approximation of the densities (3.4) and (3.5). In general, a larger K
is necessary for higher dimensions [Julier and Uhlmann, 1996], but the exact relation always
depends on the particular structure of the approximated densities. For the nonparametric BPF
and FPF there is also no straightforward relation between the dimension of the state space and
the computational time required by the method. It is generally accepted that the higher the
dimension of the state space the more particles are needed to obtain a good approximation of the
true posterior PDF. Nevertheless, in recent years there have been many successful applications
of the Ensemble Particle Filters, which are PFs using relatively small number of samples, to
high dimensional estimation problems [Evensen, 2003, 2006; Kim et al., 2003].

The Taylor series approximation truncates the higher moments of nonlinear function. There-
fore, filters derived from this principle, such as the EKF, are better suited for systems where
the functions fk and hk are mildly nonlinear. From this perspective the advantage of the UKF,
the GHF and the CDF over the EKF is that these filters match higher-order moments and
thus, can handle stronger nonlinearities in the system equations. Among these three filters
the UKF has the simplest form and while being more accurate than the EKF, it retains its
low computational complexity. The CDF, though similar to the UKF, is able to estimate the
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state covariance more precisely. This, however, comes with the price of increased computational
complexity. The GHF, when using a sufficiently large quadrature rule, is able to accurately ap-
proximate heavy tailed distributions. The disadvantage of the GHF over the EKF, the CDF and
the UKF is its numerical complexity which often yields the GHF impractical for high-frequency
online applications.

The performance of the EKF can be improved by using the measurement to minimize
linearization errors. This is achieved by the IEKF, the trade-off being the increase of the
numerical complexity.

The performance of the EKF, the IEKF, the UKF, the GHF or the CDF can deteriorate
if the predicted and the posterior densities cannot be accurately approximated by a single
Gaussian. If the system exhibits severely non-Gaussian characteristics, the GSF offers a neat
alternative to the aforementioned filters.

The GHF, and to a lesser degree the EKF and the IEKF, suffers from the curse of dimen-
sionality. Therefore, from the computational perspective, the GHF, the EKF, and the IEKF
are better suited for small-scale systems, whereas the UKFs and the CDFs are more suitable for
large-scale applications. Whenever the nonlinear functions fk or hk have complicated analyti-
cal structures, which make it difficult to compute the Jacobians ∂fk or ∂hk, the derivative-free
filters (UKF, CDF, GHF) are numerically preferable over the EKF.

The BPF is based on the Monte Carlo importance sampling approach which means that at
each filtering step multiple samples need to be obtained from the importance distribution. This
might be computationally expensive if the importance distribution is not well chosen. Another
computational burden comes from the resampling step of the filter, which is necessary to avoid
sample degeneracy. Nevertheless, despite these problems the BPF is an extremely popular
filtering tool with many new modifications being developed every year, usually tackling one of
the aforementioned problems.

The FPF avoids the resampling step that is embedded into the SIS PF as all the particles
are equally weighted ωi

k = 1
N . Furthermore, the control-oriented formulation provides a self-

correcting feedback loop that stabilizes the particles xi
k around the common posterior π (x, t).

On the down side, to implement the FPF one needs to solve a certain Euler-Lagrange boundary
value problem at each time-step. Feasible methods for overcoming this obstacle are still under
development [Yang et al., 2011b] as this problem is still a matter of outgoing research.

We would like to conclude the chapter with a brief overview of freely available implemen-
tations of the algorithms discussed throughout the chapter. Mathworks provides the MatLab
codes for the EKF [Mat, a], the UKF [Mat, b] and the PF [mat]. A very useful overview of
open source MatLab and C++ toolboxes used for nonlinear filtering, including KF, EKF,UKF
and PF, is provided by Greg Welch and Gary Bishop [Welch and Bishop]. A comprehensive col-
lection of MatLab toolboxes suited for nonlinear filtering, among others EKF, UKF, CDF, GSF,
PF is provided by the Identification and Decision Making Research Group at the University of
West Bohemia [Ide].
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Chapter 4

Solutions to the Drag-Head

Estimation Problems

Abstract

The Drag-Head is the most important component of the excavation system in a Trailing Suction
Hopper Dredger (TSHD). Its task is to break the coherence of the bottom soil which allows
the loosened material to be sucked in by the dredge pump and be transported to the hopper.
The production comes mostly from cutting and jetting, the processes that are traditionally
controlled by the operator. To automate the control of the two processes several soil-dependent
parameters need to be estimated from the available measurements. These parameters are: the
ratio kvh between cutting forces, the horizontal cutting force coefficient kch, and the in situ
permeability ksi. The parameters need to be estimated online due to the time-varying nature
of the excavation process. Some of the measurements used by the estimation algorithms are
available with a time-varying delay. The method of handling the delay is discussed firstly,
independently of the estimation methods. Next, we discuss the solutions to two estimation
problems associated with the excavation process: the Cutting Estimation Problem that comes
from considering the cutting-only production mode, and the Cutting and Jetting Estimation
Problem that originate from complete cutting with the jetting production mode.

4.1 Introduction

The Drag-Head is a mechanical tool used by TSHDs to excavate the soil from the bottom of
the sea. In Chapter 2 the dynamical excavation models were presented that contain a number
of uncertain soil-dependent parameters. Furthermore, the corresponding estimation problems
were formulated.

To recapitulate, the objective is to obtain online estimates of the following time varying
parameters: the ratio kvh between the cutting forces, the horizontal cutting force coefficient kch
and the in situ permeability ksi from the available measurements. These parameters are needed
for the automatic controller of the TSHD.

This chapter proposes solutions to these problems. First, we show how to handle the time-
varying delay in the measurement of the incoming density ρi, which is equal to the time required
by the mixture entering the Drag-Head to reach the sensor located in the transport pipe. Next,
in Section 4.3 we provide a solution to the Cutting Estimation Problem. Section 4.4 is devoted
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to finding a solution to the Cutting and Jetting Estimation Problem. The chapter is concluded
with recommendations and directions of further research.

4.2 Handling the Time-Varying Measurement Delay

In this section we derive an algorithm that solves the problem of time-varying delay in the
measurements of the incoming density ρi that was introduced in Chapter 2. For the sake of
completeness of the section we start by recalling the measurement delay problem.

4.2.1 Measurement Delay in the Drag-Head System

Recall that in the dynamical systems for which the Drag-Head estimation problem is formulated,
the measurement of the excavation depth hex is assumed to be available. However, this value
is calculated from the values of the incoming flow rate Qi, incoming density (at the drag-head
inlet) ρdhi , the in situ sand density ρs, the ship speed’s vsh, and the fixed values of water
density ρw and the width of the Drag-Head Wd by the formula:

hex(t) =
Qi(t)

(

ρdhi (t) − ρw
)

(ρs(t) − ρw)Wdvsh(t)
. (4.1)

The signals Qi(t), vsh(t), and ρs(t) are assumed to be known at time t without errors. This
is justified by the fact that the variables Qi and vsh are measured onboard the ship whereas the
variable ρs depends on the average grain diameter dm, the parameter that is obtained by solving
the Hopper Estimation Problem which will be discussed in Chapter 7. Thus, we treat them as
known inputs. The value of the incoming density at the Drag-Head inlet ρdhi is measured with
the transport delay τt at the pump ρmi .

At time t, the measurement of the incoming mixture density ρmi (t) is obtained at the pump,
which is the delayed incoming density at the Drag-Head inlet ρdhi (t− τt). Hence, we have the
relation:

ρmi (t) = ρdhi (t− τt). (4.2)

This transport delay τt in the measurement of ρdhi equals the time needed by the mixture
entering the Drag-Head to reach the sensor located in the pipeline. The delay is time-varying
as it depends on the incoming flow rate Qi, which is a time-varying variable.

Delayed Estimate

The dynamics of the Drag-Head with delayed measurements discussed above are described by
a continuous-time dynamical system of type:

ẋt = ft (xt,wt,ut) (4.3)

yt−τt = ht−τt (xt−τt ,vt−τt ,ut) , (4.4)

where one of the input variables, say u1
t is known after a delay τt. This delay can be calculated

from the remaining input signals u2:n
t−τt:t recorded during the interval [t− τt, t]. In the case

of the Drag-Head model the incoming density at the Drag-Head inlet ρdhi is such a delayed
variable.

Then, at time t the τt-delayed MMSE estimate of the state xt−τt is obtained by a standard
Bayesian dynamic filter, which uses information up to time t:

x̂t−τt = E (xt−τt |y0:t−τt ,u0:t) . (4.5)
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Calculation of the Delay τt

In the continuous time model, in principle, at all time t it is possible to calculate the exact
value of the transport delay τt by solving, in τt, the volume balance equation

∫ t

t−τt

Qi(s)ds = π

(

d

2

)2

l, (4.6)

where d and l denote the diameter of the pipe (assuming constant pipe diameter) and the length
of the pipe, respectively.

In a discrete-time model, in general, obtaining the exact value of τt is no longer pos-
sible. This is because the samples of the incoming flow Qi are available in discrete mo-
ments 0, ts, 2ts, ..., kts, ... for a given sampling time ts. Then, the discrete-time analogue of (4.6)
for t = nts is given by

∑

k:kts∈[t−τt,t]

tsQi (kts) = π

(

d

2

)2

l. (4.7)

Discrete-Time Solution

Unfortunately, except for some special cases, (4.7) has no solution, which means that the delay τt
is not a multiple of the sampling time ts. However, we can always approximate τt by τ̂t with
ts-accuracy i.e., the delay approximation error is bounded by sampling time:

|τ̂t − τt| ≤ ts. (4.8)

Such an approximation is described in Algorithm 4.1.

Algorithm 4.1 Estimate of the delay

Input: t = mts, {Qi(0), ..., Qi(t)}
Compute k0 such that the following conditions are satisfied:

t
∑

tk=t−k0ts

tsQi (tk) ≥ π

(

d

2

)2

l, (4.9a)

t
∑

tk=t−(k0−1)ts

tsQi (tk) < π

(

d

2

)2

l. (4.9b)

Compute the approximated delay τt ∈ ((k0 − 1) ts, ts] by

τ̂t := k0ts, (4.10)

4.2.2 Measurement Synchronization

Before the procedure described in previous section can be successfully implemented two practical
problems need to be tackled:

I. Non uniqueness of ρdhi ,
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II. Missing measurements of ρdhi .

Both of these problems arise as a consequence of the discrete nature of the considered
signals. To explain these phenomena let us consider the following. Assume that for times tm−1 =
(m−1)ts and tm = mts we have computed the corresponding delays τ̂tm−1

and τ̂tm respectively.
These delays can be correlated in three possible ways that will be discussed in this section.

Perfect Synchronization: τ̂tm = τ̂tm−1

If τ̂tm = τ̂tm−1
holds, the algorithm is perfectly synchronized. Indeed, first, the value ρdhi (tm−1−

τ̂tm−1
) is used to compute the estimate x̂(tm−1− τ̂tm−1

). To obtain the state estimate at the con-
secutive time step tm−1− τ̂tm−1

+ts we need the value of ρdhi (tm−1− τ̂tm−1
+ts). But, since τ̂tm =

τ̂tm−1
and tm = tm−1 + ts, we see that ρdhi (tm−1− τ̂tm−1

+ ts) equals to ρdhi (tm− τ̂tm), which, by
definition, is equal to the consecutive measurement ρmi (tm−1 + ts). Thus, for the consecutive
times tm−1, tm−1+ts we obtain consecutive state estimates x̂(tm−1−τ̂tm−1

), x̂(tm−1−τ̂tm−1
+ts).

The situation is a bit more complicated if τ̂tm 6= τ̂tm−1
. We discuss this case in the following

sections starting from the case of τ̂tm > τ̂tm−1
.

Non Unique Measurement: τ̂tm > τ̂tm−1

Consider the case of τ̂tm > τ̂tm−1
. This is likely to occur when the incoming flow rate Qi

decreased between the sampling times tm−1 and tm. Note that by the definition of τ̂t we have

τ̂t+ts ≤ τ̂t + ts. (4.11)

This combined with τ̂tm > τ̂tm−1
yields: τ̂tm = τ̂tm−1

+ ts. Hence, we have:

ρdhi (tm − τ̂tm) = ρdhi (tm−1 + ts − τ̂tm−1
− ts)

= ρdhi (tm−1 − τ̂tm−1
)

= ρmi (tm−1)

But, by the definition of ρdhi (t− τ̂t), we also get

ρdhi (tm − τ̂tm) := ρmi (tm).

Consequently, we have

ρdhi (tm−1 − τ̂tm−1
) = ρmi (tm−1),

ρdhi (tm−1 − τ̂tm−1
) = ρmi (tm),

thus, at time tm−1 − τ̂tm−1
the value of ρdhi is not uniquely defined.

This somewhat surprising outcome is the result of discretization. The “true” continuous-
time delays τtm−1

, τtm are such that

tm−1 − τ̂tm−1
≤ tm−1 − τtm−1

< tm − τtm < tm−1 − τ̂tm−1
+ ts,

which means that both tm−1 − τtm−1
and tm − τtm lay in the same interval and thus the

discretization cannot distinguish tm−1 − τ̂tm−1
from tm − τ̂tm . The simplest way to handle

the resulting ambiguity in ρdhi (tm−1 − τ̂tm−1
) is to choose one value of, e.g., the first that was

obtained for a given time tm−1 − τ̂tm−1
. Then

ρdhi (tm−1 − τ̂tm−1
) := ρmi (min {tm−1, tm}). (4.12)

72



4.2. Handling the Time-Varying Measurement Delay
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Figure 4.1: Non unique value of ρdhi caused by time discretization.

An other possible solution is to take the mean of the values ρmi (tm−1) and ρmi (tm). The
outcomes of these approaches will not differ much if the dynamics of the incoming density ρmi is
slowly varying with respect to the sampling time ts. The situation of non unique measurements
is depicted in Figure 4.1

Missing Measurements: τ̂tm < τ̂tm−1

Finally let us consider the situation of missing measurements. This is likely to occur when the
incoming flow rate Qi increased between the sampling times tm−1 and tm. From τ̂tm < τ̂tm−1

we get
tm − τ̂tm ≥ tm−1 − τ̂tm−1

+ 2ts. (4.13)

Without loss of generality we may assume equality in (4.13). Computing the values of ρdhi we
obtain

ρdhi (tm−1 − τ̂tm−1
) = ρmi (tm−1) (4.14)

ρdhi (tm−1 − τ̂tm−1
+ 2ts) = ρdhi (tm − τ̂tm) (4.15)

= ρmi (tm) (4.16)

As we can see the value of ρdhi at time tm−1 − τ̂tm−1
+ ts is not defined. This is again due to

discretization and corresponds to the continuous-time situation where during the time ts the
value of τt decreased more than 2ts, i.e., τtdt|t0+ts

t0 < −2. This is visualized in Figure 4.2.
The missing measurements are problematic for a filter that uses single-step dynamical model

of the generic form:

xtk+ts = f (xtk ,wtk ,utk) (4.17)

ytk−τk = h (xtk−τk ,vtk−τk ,utk) . (4.18)

This is because without the observation ρdhi (tm−11− τ̂tm−1
+ ts) the state estimate x̂tk−τ̂m−1+ts

cannot be computed by the filter and, due to the iterative character of the Bayesian dynamic
filter, none of the following estimates can be obtained. Fortunately, the missing observa-
tion ρdhi (tm−1− τ̂tm−1

+ts) can be easily produced by interpolating between the closest available
observations, which in this case are ρdhi (tm−1 − τ̂tm−1

) and ρdhi (tm−1 − τ̂tm−1
+ 2ts). Then

ρdhi (tm−1 − τ̂tm−1
+ ts) :=

1

2
ρdhi (tm−1 − τ̂tm−1

) +
1

2
ρdhi (tm−1 − τ̂tm−1

+ 2ts) (4.19)
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Figure 4.2: Missing measurements between ρdhi
(

tm−1 − τ̂tm−1

)

and ρdhi (tm − τ̂tm) caused by
time discretization.

Such an approach is easily generalized to cases where |tm − τ̂tm − (tm−1 − τ̂tm−1
)| > 2ts.

4.2.3 Implementation of the Drag-Head Estimation

In this section we show how to relate the discrete-time algorithm handling the measurement
delays with the Drag-Head Estimation Problems. The filtering starts at time t0, when the first
measurement ρmi (t0) is collected, with initial delay τ̂t0 .

Given the state estimate at time t0 − τ̂t0 we want to compute all the consecutive esti-
mates x̂ (t0 − τ̂0 + kts) for all k > 1. The iterative method of computing the delayed estimates
is derived in Algorithm 4.1.

The method of calculating the delay described in Algorithm 4.1 is independent of the dy-
namical filter one wants to use to solve the estimation problems. Therefore, in Algorithm 4.2
we do not specify which filter is used to obtain estimates of the states. The choice of the filter
depends on the estimation problem under consideration. The block structure of the algorithm
is presented in Figure 4.3.

Due to the dynamic nature of the delay, the number of estimates computed at each sample
can be 0 (Non unique measurements), 1 (Perfect synchronization) or more (Missing measure-
ments). Due to the latter case, one needs to secure enough computational power to be able to
compute several estimates during a single time step.

4.3 Solutions to the Cutting Estimation Problem

In this section we derive a discrete-time stochastic dynamical model of the cutting process
discussed in Section 2.2. Such a model serves as a basis for the dynamical filters that are
used to estimate the ratio kvh between the cutting forces and the horizontal cutting force
coefficient kch.

Throughout this section we make the following assumptions:

I. We assume that the ratio kvh is a constant parameter for a given soil type but it varies
between different soils.
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Algorithm 4.2 Delayed estimates

Input: t0, ts, {ρmi (t0 + mts)}m≥0

Initialization:
Compute the estimate of the transport delay τ̂t0 using Algorithm 4.1
Compute ρdhi (t0 − τ̂t0) using (4.2):

ρdhi (t0 − τ̂t0) = ρmi (t0)

Compute hex (t0) using (4.1)
Combine x̂ (0) with a nonlinear filter to compute the first delayed estimate x̂ (t0 − τ̂t0) = x̂ (ts)

Iteration (m− 1) → m:
for tm = t0 + mts,m ≥ 1 do

Compute the estimate of the transport delay τ̂tm using Algorithm 4.1
if τ̂tm > τ̂tm−1

(non unique measurements) then
By (4.12) there is no new input ρdhi , hence no new state estimate is produced

else if τ̂tm = τ̂tm−1
(perfect synchronization) then

Compute ρdhi
(

tm−1 − τ̂tm−1
+ ts

)

using (4.2):

ρdhi
(

tm−1 − τ̂tm−1
+ ts

)

= ρmi (tm)

Compute hex

(

tm−1 − τ̂tm−1
+ ts

)

using (4.1)

Combine x̂
(

tm−1 − τ̂tm−1

)

with a nonlinear filter to compute the delayed esti-

mate x̂
(

tm−1 − τ̂tm−1
+ ts

)

else if τ̂tm < τ̂tm−1
(missing measurements) then

Compute ρdhi (tm − τ̂tm) using (4.2):

ρdhi (tm − τ̂tm) = ρmi (tm)

Compute hex (tm − τ̂tm) using (4.1)
Compute n0 such that

tm − τ̂tm = tm−1 − τ̂tm−1
+ n0ts

for i = 1, ..., n0 − 1 do
Compute ρdhi

(

tm−1 − τ̂tm−1
+ its

)

(4.19):

ρdhi
(

tm−1 − τ̂tm−1
+ its

)

=
n0 − i

n0
ρdhi

(

tm−1 − τ̂tm−1

)

+
i

n0
ρdhi (tm − τ̂tm) (4.20)

Compute hex

(

tm−1 − τ̂tm−1
+ its

)

using (4.1)

Combine x̂
(

tm−1 − τ̂tm−1
+ (i− 1)ts

)

with a nonlinear filter to compute the delayed

estimate x̂
(

tm−1 − τ̂tm−1
+ its

)

end for
Combine x̂

(

tm−1 − τ̂tm−1
+ (n0 − 1)ts

)

with a nonlinear filter to compute the delayed
estimate x̂ (tm − τ̂tm)

end if
end for
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Figure 4.3: Iterative (delayed) state estimate. The algorithm starts with the esti-
mate x̂

(

tm−1 − τ̂tm−1

)

and computes the estimate x̂ (tm − τ̂tm) and, if necessary, all the es-
timates in between.

II. We consider the total mass mt to be a known input to the filter rather than the state of
the system.

The first assumption corresponds to kvh being a dynamic uncertain parameter, the situation
which has been discussed in Section 2.2. The second assumption is justified by the fact that the
total mass of the ship mt is measured on board of the ship with high accuracy and precision.

We show how this information is used by several nonlinear parametric filters discussed in
Chapter 3. In particular we simulated the cutting process and to the generated data we applied
EKF, UKF, CDF, and GSF. We compare the performance of these filters to determine which
method is preferable as a solution to the Cutting Estimation Problem.

4.3.1 Derivation of the Discrete-Time Stochastic System

As was mentioned above, the objective of the discrete-time stochastic model of the cutting tool is
to estimate the ratio kvh between cutting forces and the horizontal cutting force coefficient kch.
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Recall that by (2.15) the cutting process in continuous-time is defined by:

dvsh(t) =
1

mt(t)
(Fth(t) − Fch(t)) dt + devsh, (4.21a)

dkch(t) = 0dt + dech(t), (4.21b)

dkvh(t) = 0dt + devh(t), (4.21c)

Fvc =
x2

rvc
kchhc (sin (αlt + αv) + kvh cos (αlt + αv)) . (4.21d)

In (4.21) the following variables are considered to be deterministic inputs to the system:
the total mass mt, the thrust force Fth, the cutting depth hc, the dredging depth hz, the visor
angle αv, the angle of the lower suction pipe αlt, and the moment arm rvc.

Note that in the Cutting Estimation Problem the measurements of hc = hex are delayed.
However, as was postulated in Section 4.2, we can consider the filtering problem independently
of the delay problem. Thus, throughout this section we assume that the cutting depth hc is
known without delay. The final state estimate (with delayed measurements) is obtained by
Algorithm 4.2.

Two variables are measured with uncertainty: the speed of the ship vsh and the visor cylinder
force Fvc, both assumed to be corrupted by the zero-mean, time-invariant Gaussian noises eovsh
and eoFvc with standard deviations σo

vsh and σo
Fvc, respectively.

The discrete-time approximation of the velocity vsh is obtained by the Euler discretization
of (4.21a):

vsh,k − vsh,k−1

Ts
=

1

mt,k−1
(Fth,k−1 − kch,k−1hc,k−1(hz,k−1 + 10)) + evsh. (4.22)

where k denotes the sampling step and evsh is a zero-mean Gaussian random variable with
standard deviation σvsh.

The evolutions of the soil-dependent parameters kvh,k and kch are described by discrete-time
random-walk models:

kch,k+1 = kch,k + Tsech, (4.23a)

kvh,k+1 = kvh,k + Tsevh, (4.23b)

where evh and ech are zero-mean Gaussian random variables with standard deviations σvh

and σch, respectively. These are approximations of the continuous-time models (4.21c)–(4.21b).

The dynamic model for the visor cylinder force Fvc is derived from (4.21d) in the following
way. First, we note that the signal Fvc(t) is slowly varying with regard to the chosen sampling
time Ts. In other words, we assume that with almost 100% probability the difference |Fvc,k −
Fvc,k−1| is smaller than 3σvc for all k. This means that the evolution of Fvc can be approximated
by the following random walk:

Fvc,k+1 = Fvc,k + Tsevc, (4.24)

where evc is a zero-mean Gaussian random variable with standard deviation σvc. From (4.21d)
and (4.24) we derive the final form of the discrete-time dynamical model for Fvc:

Fvc,k+1 =
x2

rvc,k
kch,khc,k (hz,k + 10) (sin (αlt,k + αv,k) + cos (αlt,k + αv,k) kvh,k)+Tsevc. (4.25)
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The state, input, and output vectors of the system are defined by:

u =













Fth

hc(hz + 10)
αlt + αv

x2

rvc

mt













, x =









vsh
kch
kvh
Fvc









, y =

(

vsh
Fvc

)

.

Then, the final form of the state-space model is expressed as:

x1,k+1 = x1,k +
Ts

u5,k
(u1,k − x2,ku2,k) + evsh (4.26a)

x2,k+1 = x2,k + ech, (4.26b)

x3,k+1 = x3,k + evh, (4.26c)

x4,k+1 = u4,ku2,kx2,k (sin (u3,k) + cos (u3,k)x3,k) + evc, (4.26d)

y1,k = x1,k + eovsh, (4.26e)

y2,k = x4,k + eoFvc, (4.26f)

4.3.2 Numerical Simulations

Setting

We simulated the cutting process during which the soil-dependent parameters are changing.
In the real process this corresponds to sailing through a dredging area with different types of
in situ material. At first, the soil-dependent parameters are approximately equal to kch = 8,
and kvh = 0.15. After 13 seconds the cutting tool encounters a different type of soil, which is
characterized by parameters values close to kch = 12.5, and kvh = 0.18. Finally, after 26 seconds
the soil characteristics change to approximately kch = 11, and kvh = 0.16. The sampling time
is set to Ts = 0.05[s]. To better illustrate the tracking properties of the filtering algorithms
employed, each change in kch and kvh is set to be step-like, which models dramatic changes in
the soil-type of the dredged material.

We start the simulation from the initial state

x0 =
(

1 8 0.15 7.2 · 104
)T

The process and observation noises are assumed to be zero-mean Gaussian variables with the
parameters reported in Table 4.1.

Table 4.1: Characteristics of the noises used in the simulation

Variable σvsh σch σvh σvc σo
vsh σo

Fvc

Value 0.001 10 10 100 0.1 104

Unit [m/s] [kg/s2] N.A. [N] [m/s] [N]

The EKF, UKF, CDF, and GSF described in Chapter 3 are applied to the simulated data,
obtained with the discrete-time cutting model described in Section 4.3.1. First, each filter
application is discussed separately as each of them has different parameters to be tuned. Then
the results obtained by all filters are compared to determine which method provides the best
solution to the Cutting Estimation Problem. To allow for a fair comparison, all the filters under
investigation are tuned with the same process and measurements noises. Namely, the filters’
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noises are equal to the “true” (simulated) noises reported in Table 4.1, except for the noises
of kch and kvh. For the tested filters, the standard deviations of the variables ech and evh are
set to 20σch and 20σvh, respectively. The use of higher variances in filters design resembles the
situation where there is a high model uncertainty.

As we are interested in the estimation of the soil-dependent parameters kch and kvh, in what
follows we show only the outcomes of the estimation of the states x2,k and x3,k. The initial
offset of the EKF, the UKF, and the CDF has been set to 130% of the true initial state of the
process, i.e., the initial state for the filters is given by:

x0 =
(

1.3 10.4 0.195 9.36 · 104
)T

,

and the initial covariance of the system is given by:

P0 =









10−4 0 0 0
0 100 0 0
0 0 2 0
0 0 0 100









.

The initial offset of the GSF is discussed separately. This is because the initial state of
the GSF is computed as an average of initial states of GS-terms used by the filter, each having
different offset.

Results Obtained by the Extended Kalman Filter

Let us now apply the EKF to the system (4.26) described in the previous section. The estimates
obtained by the EKF are presented in Figure 4.4. We can see that the estimates are very
accurate in tracking the true states of the system. In the case of kch there is no overshoot,
whereas when estimating the state kvh the overshoot does not exceed 32% of the nominal value.
The settling times are comparable for both signals and are in the range of 2− 3 seconds. These
results suggest that the EKF gives a satisfactory solution to the Cutting Estimation Problem.
Further analysis of this example is carried out in Section 4.3.3.
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Figure 4.4: The EKF applied to the system (4.26). The thick solid line represents the true
state of the system, the dashed thin line denotes the estimates of kch (left) and kvh (right).
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Results Obtained by the Unscented Kalman Filter

Figure 4.5 shows the estimates of the horizontal cutting coefficient kch and the ratio kvh between
the cutting forces obtained by the UKF applied to the system (4.26). It can be seen that the
performance of the UKF is comparable to the performance of the EKF. Namely, there is no
overshoot when tracking the variable kch and there is less than 32% overshoot when tracking
the variable kvh. Similarly, the settling times are between 2 and 3 seconds. The detailed
comparison carried out in Section 4.3.3 reveals that for system defined by (4.26) the UKF-
produced estimates are slightly more accurate than the estimates produced by the EKF.
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Figure 4.5: The UKF applied to the system (4.26). The thick solid line represents the true
state of the system, the dashed thin line denotes the estimates of kch (left) and kvh (right).

Results Obtained by the Central Difference Filter

We applied the CDF to the simulated data for three different settings of the filter’s parameter h:
h = 0.001, h = 1, h = 104. As can be seen from Figure 4.6 there is no significant difference
between the estimates of the state kch. However, the choice of the step size h influences the
filter’s performance when estimating the state kvh. The CDF with h = 1 has faster response
time to the changes in the simulated kvh than the remaining filters. Furthermore, in steady
state, the CDF-produced estimates of kvh are more accurate for h = 1 than for other values
of h. On the other hand, after the system is excited by a rapid change in kvh, a faster response
of the CDF with h = 1 results in a larger overshoot (31.8%) when compared with the two
other CDFs (29.9% for h = 0.001, and 24% for h = 104).

Results Obtained by the Gaussian Sum Filter

We applied the GSF as a collection of parallel UKFs to the system defined by (4.26) in three
different settings. The filters differ by the number of terms in the GS that approximates
the posterior distribution (K ∈ {2, 3, 4}). Both the process and the observation noises are
additive and Gaussian, thus each of them is represented by a single Gaussian. Therefore, as
was mentioned in Section 3.3.3, the number of terms in the GS is fixed, and there is no need
for employing the reduction techniques described in Section 3.3.3.

As it was explained in Section 3.3.3 with a larger number of GS-terms it is easier to model
the non-Gaussian uncertainty in the state. This also applies when it comes to handling the

80



4.3. Solutions to the Cutting Estimation Problem

0 10 20 30 40

8

9

10

11

12

Time [s]

k
c
h

(a) Estimation of kch

0 10 20 30 40

0.1

0.13

0.16

0.19

0.22

Time [s]

k
v
h

(b) Estimation of kvh

Figure 4.6: The CDF applied to the system (4.26). The thick solid line represents the true
state of the system, the thin lines denote the estimates. The thin solid line represents the CDF
with h = 0.001, the thin dashed line represents the CDF with h = 1, and the thin dotted-dashed
line represents the CDF with h = 104.

uncertainty in the initial state. Namely, with the GSF we have the ability to select several
independent, equally weighted, GS terms with equal covariances to represent the uncertainty
in the initial state of the system. In this way we can cover the uncertainty region with higher
precision (see Figure 3.6). Because of that a faster convergence to the true state of the system
can be achieved.

This is confirmed by the results obtained for the system (4.26) with the use of the GSFs
starting from:

I. the two-term GSF:

µ1 =









1.3
10.4
0.195

9.36 · 104









µ2 =









1.3
5.6

0.105
9.36 · 104









II. the three-term GSF:

µ1 =









1.3
10.4
0.195

9.36 · 104









µ2 =









1.3
5.6

0.105
9.36 · 104









µ3 =









1.3
10.4
0.105

9.36 · 104









III. the four-term GSF:

µ1 =









1.3
10.4
0.195

9.36 · 104









µ2 =









1.3
5.6

0.105
9.36 · 104









µ3 =









1.3
10.4
0.105

9.36 · 104









µ4 =









1.3
5.6

0.195
9.36 · 104








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In all three cases the initial covariance for each GS-term is equal and is given by:

P0 =









10−4 0 0 0
0 100 0 0
0 0 2 0
0 0 0 100









.
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Figure 4.7: The GSF applied to the system (4.26). The thick solid line represents the true state
of the system, the thin lines denote the estimates. The thin solid line represents the GSF with
four GS terms, the thin dotted-dashed line represents the GSF with three GS terms, and the
thin dashed line represents the GSF with two GS terms. The initial conditions for the filters
are computed as the averages of two, three, or four GS-terms.

As can be observed in Figure 4.7, at the beginning of the estimation the four-term GSF
converges faster to the true state of the process than the remaining GSFs. After a short time
the weights associated with the GS terms degenerate, which means that the equilibrium state
is reached: most of the mass is focused on few terms and the remaining terms have negligible
weight [Kotecha and Djurić, 2003b]. In our example the number of significant terms is: 1
for the two-term GSF, 1 for the three-term GSF, and 2 for the four-term GSF. That means
that after they reach a steady state, the two-term GSF and the three-term GSF act just as
a UKF. The four-term GSF in its steady state acts as the convex combination of two UKFs.
The degeneration phenomenon is advantageous from the computational perspective because it
allows to disregard the terms with insignificant weights, and hence to propagate only a reduced
number of GS terms. On the other hand, the diversity that boosted the convergence at the
beginning of the estimation is lost. To avoid the degeneration phenomenon one can employ a
resampling procedure [Kotecha and Djurić, 2003b].

4.3.3 Discussion

Let us now compare the results obtained by the filters presented in previous sections.

Performance Comparison

We define the convergence time as the minimal time tc, such that for times t > tc the estimate
stays within the 1%-neighborhood of the true state of the signal. The overshoot is defined as
the maximum difference between the filtered and the true signal.
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Due to the rapid changes in the true signal it might happen that the estimate diverges from
the true value of the signal. In such a situation it is reasonable to recompute the convergence
time and the overshoot. In our simulations we repeat these computations three times: at the
beginning of the estimation, at the growth at 13-th second, and the decrease at 26-th second.

Table 4.2: Characteristics of the EKF, the CDF, the UKF, and the GSF used to estimate kvh.
The convergence times and the overshoots are computed at three times: at the beginning of
the simulation, at 13-th second of the simulation, and at 26-th second of the simulation.

Filter Convergence time Overshoot MSE
(seconds) (%)

EKF 2.19 3.25 2.75 31.9 22.9 11.7 8.5
UKF 2.1 3.26 2.66 31.8 23.2 11.5 8.54
CDF 2.7 3.26 1.48 30 6 3.7 5.2
h = 10−3

CDF 2.1 3.26 2.66 31.8 23.2 11.5 8.56
h = 1
CDF 3.53 1.84 5.16 24.7 10.1 10.1 5.42
h = 104

GSF 2.87 3.26 2.66 42.4 23.2 11.5 10.95
GS = 2
GSF 2.14 3.26 2.66 34 23.2 11.5 9.35
GS = 3
GSF 1.36 3.26 2.66 34 23.2 11.5 8.67
GS = 4

In Table 4.2 the EKF, UKF, CDFs, and GSFs are compared by means of three quantitative
measures: the convergence time, the overshoot, and the Mean Square Error (MSE). Table 4.2
presents only the results of the estimation of kvh. The analysis of the estimation results of kch
are omitted because in that case all of the discussed filters achieve similar performance. Indeed,
all the estimated signals look the same, except for the four-terms GSF which converges faster
to the true kch in the beginning.

Recommendations

The simulation results suggest that each of the discussed nonlinear filters gives an adequate
solution to the Cutting Estimation Problem. The detailed analysis of the quantitative measures
presented in Table 4.2 suggests that the EKF, the UKF, the CDF with parameter h = 1, and
the two and three-term GSFs are virtually indistinguishable performance-wise.

The CDF with parameters h = 10−1, and h = 104 have the smallest MSE errors, and
the smallest overshoots. The four-term GSF has the fastest convergence time during the first
filtering phase (similarly to the case of filtering the state ksi). In the second and third phase
the shortest settling times have been achieved by the CDF with h = 104 and the CDF with h =
10−3, respectively.

To conclude, when the uncertainty in the initial states of the system is large the four-term
GSF converges the fastest to the true value of the signal. If the uncertainty in the initial states
is small, e.g., we know the exact position of the system, to minimize the errors and to preserve
fast convergence times it is recommended to use one of the variations of the CDF (with h = 10−3

or h = 104).
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4.4 Solutions to the Cutting and Jetting Estimation Prob-

lem

In this section we give solutions to the Cutting and Jetting Estimation Problem defined in
Chapter 2. We start by briefly recalling the system under the consideration.

System Specifications

The main objective of the Cutting and Jetting Estimation is to estimate two soil-dependent
parameters: the cutting force coefficient kch and in situ permeability ksi. These parameters
are unknown and can change dynamically during the dredging operation when the type of the
excavated material changes.

Throughout this section we make the following assumptions:

I. The ratio kvh is a known constant parameter, equal for all the soil types.

II. The following variables are known without a measurement error: the geometrical param-
eters of the Drag-Head Cdh, x2; the jet nozzle pressure pj , the jet water flow Qw,j , the
speed of the ship vsh, the moment arm rvc, the visor cylinder force Fvc, the angle of the
lower suction pipe αlt, the visor angle αv, and the dredging depth hz.

III. The excavation depth hex is measured with an error.

Then, the cutting input uc and the jetting input uj are defined by:

uc :=
rvc
x2

Fvc (sin (αlt + αv) + kvh cos (αlt + αv))
−1

(hz + 10)
−1

, (4.27a)

uj := Cdhp
0.5
j Qw,jv

−1
sh , (4.27b)

By (2.10) and (2.11) and the fact that hex = hj + hc (see (2.19)) we get:

hex = uck
−1
ch + ujk

p
si, (4.28)

Note that apart from soil-dependent parameters kch and ksi all the variables used in the
models for uc and uj are assumed to be known. Furthermore, we also assume that the excavation
depth hex, which is equal to the visor depth hv, is measured. To summarize, (4.28) describes
a dynamic model with two known input variables, one measured variable, and two dynamic
parameters that need to be estimated online.

Correlation Between Soil-Dependent Parameters

Because both the horizontal cutting force coefficient kch and the in situ permeability ksi depend
on the type of soil that is excavated by the Drag-Head, the parameters are correlated. It is
difficult to establish accurate relations between these parameters and the in situ soil. Never-
theless, empirical studies suggest the following approximate values for the two parameters for
eight common types of soil:

4.4.1 Formulation of the Discrete-Time Stochastic System

First, let us assume that the measured variable hex is corrupted by a zero-mean Gaussian
noise eohex with a constant standard deviation σo

hex. Then, for every sampling step k, (4.28) is
given by:

hex,k = uc,kk
−1
ch,k + uj,kk

p
si,k + eohex. (4.29)
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Table 4.3: Values of kch and ksi depending on the soil type.

Soil type Soil type A (Fine) Soil type B (Medium) Soil type C (Medium) Soil type D (Coarse)
Packing Medium Dense Medium Dense Medium Dense Medium Dense
SPT 20 40 20 40 20 40 20 40
dm[mm] 0.10 0.10 0.24 0.24 0.45 0.45 1.30 1.30
ρs[kg/m

3] 2030 2140 2010 2120 2030 2140 2040 2150
kch 9.87 · 104 1.16 · 105 9.56 · 104 1.12 · 105 9.53 · 104 1.11 · 105 8.89 · 104 1.03 · 105

ksi[m/s] 3.59 · 10−5 1.6 · 10−5 2.75 · 10−4 1.3 · 10−4 4.06 · 10−4 1.81 · 10−4 2.86 · 10−3 1.23 · 10−3

Note that the changes in the in situ soil are slow relative to the sampling speed of the
measured variables. Therefore, we can assume that the time-varying parameters kch and ksi
are piecewise constant over a given time interval. To be precise we assume that the soil-
dependent parameters kch and ksi can change their value every 1[s], during which we collect N
measurements of the variables hex, uc, and uj . In other words, if k is a time index such that
the parameters kch and ksi are constant over the interval [k, k + 1) [s] the measurements are
collected at time instances (k + l/N)[s] for l = 0, ..., N − 1. Then, the system equations are
written as:

hex,k+l/N = uc,k+l/Nk−1
ch,k + uj,k+l/Nkpsi,k + eohex. (4.30)

Note that the minimal number of measurements per time step that makes the system solvable
is N = 2. Thus, a dynamic filter based on model (4.30) at each time step k = 1, 2, ... processes
the N × 3-measurement matrix







uc,k uj,k hex,k

...
...

...
uc,k+N−1

N
uj,k+N−1

N
hex,k+N−1

N






.

Next, let us specify the discrete-time model for the parameters kch and ksi. We investigate
two approaches, each leading to a different dynamical system:

I. The parameters kch and ksi are uncorrelated,

II. The parameters kch and ksi are correlated.

We discuss the two cases separately.

Particle Filter for Uncorrelated kch and ksi

Let us now discuss the first approach. The filter has two one-dimensional states that correspond
to the parameters kch and ksi, two N -dimensional known inputs that correspond to the values
of the cutting input uc and the jetting input uj recorded during the interval [kTs, (k + 1)Ts),
and one N -dimensional observation vector that corresponds to the measurements of excavation
depth hex, defined in (4.30), taken during the interval [kTs, (k + 1)Ts).

The state, input and output vectors of the system are defined by:

u =

(

uc

uj

)

, x =

(

kch
ksi

)

, y = hex.

Assuming that kch and ksi are uncorrelated states of the system we model the two parameters
as uncorrelated random walks with noises ekch, eksi with standard deviations σkch and σksi,
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respectively. Thus, the dynamical model of the filter is given by:

x1,k+1 = x1,k + ekch, (4.31a)

x2,k+1 = x2,k + eksi, (4.31b)

yk = [u1,k u2,k]
[

x−1
1,k xp

2,k

]T

+ Eo
hex, (4.31c)

where, for i = 1, 2

ui,k =
[

ui,k, ui,k+1/N , ..., ui,k+(N−1)/N

]T
, (4.32)

and Eo
hex is a zero-mean N -dimensional Gaussian with standard deviation Σo

hex defined by

Σo
hex =







σo
hex 0

. . .

0 σo
hex






. (4.33)

Particle Filter for Correlated kch and ksi

Now, let us investigate the second approach. Since both parameters kch and ksi describe the
physical properties of the in situ soil, intuitively, they should be correlated. To determine this
correlation we will utilize the information from Table 4.3. Namely, we describe the parame-
ter kch as a function of the parameter ksi using the values specified in Table 4.3. The numbers
reported in the aforementioned table clearly suggest that the relation between ksi and kch is not
linear. Therefore, we decided to fit a polynomial to the 8 points given in Table 4.3. Figure 4.8
shows two approximations with polynomials of second and third order.
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Figure 4.8: Function fits to the 8 data points (circles) given in Table 4.3. The solid line
represents the 2nd order polynomial fit, the dotted line represents the 3rd order polynomial fit
and the dashed line corresponds to the piecewise linear fit.

Since the 2nd order polynomial does not resemble the relation between data we will use only
the 3rd order polynomial, which matches the data much better for ksi < 0.0015, which is the
most common situation during the actual dredging. This polynomial is given by:

fp(x) = 11.23 · 104 −
(

5803 · 104
)

x +
(

584 · 108
)

x2 +
(

1433 · 1010
)

x3. (4.34)
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Alternatively, one could also use a simple linear interpolation between the data points as an
approximate functional relation between ksi and kch. This can also be seen in Figure 4.8.

fa(x) =







































−
(

8693 · 105
)

· x + 129910 for 0 < x < 3.59 · 10−5
(

1413 · 105
)

· x + 93626 for 3.59 · 10−5 ≤ x < 13 · 10−5

−
(

196 · 105
)

· x + 114549 for 13 · 10−5 ≤ x < 18.1 · 10−5

−
(

1638 · 105
)

· x + 140653 for 18.1 · 10−5 ≤ x < 27.5 · 10−5

−
(

23 · 105
)

· x + 96230 for 27.5 · 10−5 ≤ x < 40.6 · 10−5
(

93 · 105
)

· x + 91506 for 40.6 · 10−5 ≤ x < 123 · 10−5

−
(

87 · 105
)

· x + 113640 for 123 · 10−5 ≤ x

(4.35)

Then, using the same notation as in (4.31), the dynamical system for the correlated kch
and ksi is given by:

x1,k+1 = fp,a (x2,k+1) + ekch, (4.36a)

x2,k+1 = x2,k + eksi, (4.36b)

yk = [u1,k u2,k]
[

x−1
1,k xp

2,k

]T

+ Eo
hex (4.36c)

where fp,a is either the polynomial fp defined in (4.34) or the piecewise linear function fa
defined by (4.35).

Cascaded Filter for Correlated kch and ksi

An alternative method of using the knowledge regarding the correlations between the parame-
ters kch and ksi given in Table 4.3 is to use a cascaded filter.

We have developed such a cascaded filter and it acts in the following manner:

I. First, the PF based on the system (4.31) produces the estimates k̂si.

II. Next, the estimate k̂si is fed to the Steady State Identification (SSI) filter [Bhat and Saraf,
2004].

III. After the steady state has been detected by the SSI filter, the value of k̂ssi is fed to the
Bayesian Filter (BF) as a prior information.

IV. Finally, the BF produces the estimate k̂ch of the parameter kch.

The schematic view of this algorithm is presented in Figure 4.9.
The BF from step IV acts in three steps:

I. First, the estimate k̂ssi of the parameter ksi and the knowledge of the relation between ksi
and kch are used to determine a probable value of kch. This value cannot be determined
with a complete certainty due to the uncertain character of the estimate k̂ssi and the
approximate knowledge of the relations between ksi and kch. Therefore, the probable
value of kch is a random variable and the corresponding probability distribution π0 is
called the prior distribution.

II. In the second step, the prior π0 from the previous step is combined with the inputs and
the measurements denoted by U and Y to obtain the posterior distribution π1 of the
parameter in question kch. The posterior π1 is derived from Bayes theorem:

π1 (kch) =
P (Y |kch, U)π0 (kch)

∫

P (Y |kch, U)π0 (kch) dkch
, (4.37)
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x0, U, Y

U, Y

PF

SSI
k̂ssi

BF

k̂si

k̂c

Figure 4.9: Block diagram of the cascaded filter.

where P (Y |kch, U) is a PDF of the observation (likelihood), derived from (4.31c) under

the assumption that ksi = k̂ssi.

III. Finally, the Bayes estimate k̂c is computed as the expectation of the variable kch with
respect to measure π1

k̂c =

∫

kchπ1 (kch) dkch, (4.38)

which is the optimal estimate in the Mean Squared Error (MSE) sense [Ross, 2009].

Note that the integral (4.38) cannot be solved analytically. Thus, to obtain the estimate
we used Monte Carlo approximation of the expected value (4.38). This should not be confused
with the way in which the PF produces the estimate of ksi. In the PF, at the end of each
filtering step the full approximation of the posterior distribution is saved and transmitted to
the next step as a new prior. In the BF that we have described above there is no memory in
the system. Indeed, the prior is fully determined by k̂ssi, which comes as an input to the BF
block of the cascaded filter.

The use of the SSI filter in step II allows the use of the BF in the consecutive step without
the necessity of an extensive tuning procedure. Without the SSI, the BF is sensitive to the
choice of the prior distribution π0. As has been observed in numerical simulations, an incorrect
choice of the prior results in large oscillations of the estimates of the kch. Application of a fast
and simple SSI allows to circumvent this undesirable behavior. On the downside, as we freeze
the estimates of the kch during the transient phase, we cannot rely on the estimates of the kch
before the steady state is reached.

4.4.2 Numerical Simulations

Let us see how the methods presented in the previous section work when applied to data
obtained from numerical simulations of the excavation process.

Setting

We have simulated the excavation process during which the in situ soil changes dynamically.
The simulation is divided into five equal time intervals, each characterized by a different in situ
soil type according to Table 4.3. We simulate the excavation process (4.27)–(4.28) over 160 time
steps, where each time step corresponds to 1 [s]. Furthermore, we assume that the measurements
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are taken with a frequency of 10 [Hz]. At the beginning of the process the excavated soil is
coarse (Soil type D with medium packing). Then, after 32 [s] the Drag-Head encounters densely
packed fine soil (Soil type A with dense packing). After another 32 [s] the excavated soil becomes
finer (Soil type C with medium packing) and then, again after 32 [s], the soil becomes fine (Soil
type A with medium packing). Finally, for the last 32 [s] of the simulation the Drag-Head slides
over densely packed medium soil (Soil type B with dense packing). For each of these soil types
the corresponding parameters kch and ksi have been defined according to the Table 4.3.

The input variables uc and uj are set to 16 operating points that are repeated periodically
over the whole simulation horizon independently of changes in soil types. The operating points
have been chosen to resemble the states of the Drag-Head system that are commonly met during
dredging operations (see Tables A.1 and A.2). Because the time scope of the simulation is 160[s]
and we assume 10 measurements are collected per second, the cutting input uc and the jetting
input uj are periodic signals (with the period equal to 1.6[s]). Hence the periods of uc and
uj do not coincide with the update step of the parameters. This results in a quasi-periodic
character of the simulated signals. The standard deviation of the measurement noise eohex is set
to σo

hex = 0.03.
We have simulated two excavation scenarios:

A The regime where the jetting depth hj dominates the cutting depth hc, which contributes
very weakly to the total excavation depth hex. The simulation results of this scenario are
presented in Figure 4.10a.

B The regime where the jetting depth hj and the cutting depth hc contribute comparably
to the total excavation depth hex. The simulation results of this scenario are presented in
Figure 4.10b.
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(b) Simulation Scenario B

Figure 4.10: Simulation of the excavation process for dynamically changing parameters. The
excavation depth hex is a sum of the cutting depth hc and the jetting depth hj , Scenario A
(left) and Scenario B(right).

Results Obtained by the Particle Filter for Uncorrelated kch and ksi

We have applied the PF based on system (4.31) to the simulated signals presented in Fig-
ure 4.10a. To make the method feasible for online application with the sampling time equal
to 1[s] we use the PF with 1000 particles. The resampling threshold is set to NT = 1000, which
means that the resampling occurs each iteration. The estimates obtained by the PF can be
seen in Figure 4.11.
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(b) Estimation of ksi

Figure 4.11: Estimation results obtained by the PF using 1000 particles with resampling (re-
sampling threshold NT = 1000) applied to the data presented in Figure 4.10a. The thick line
shows the average of ten independent runs of the PF.

From Figure 4.11 it can be observed that the algorithm is able to detect the moments when
the excavated soil changes and it can quite accurately estimate the value of ksi. However, the
estimation of kch is very inaccurate which makes the filter useless from the practical point of
view.

One could argue that poor estimate of kch is due to the fact that the cutting height hc very
weakly contributes to the total excavation depth hex as can be observed in Figure 4.10a. To
investigate this possibility we have applied the same PF that we used in the previous simulation
(based on system (4.31), using 1000 particles and with the resampling threshold NT = 1000) to
the data reported in Figure 4.10b, where the variables hc and hj are comparable components
of the total excavation depth hex.

The resulting estimates can be observed in Figure 4.12.
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(b) Estimation of ksi

Figure 4.12: Estimation results obtained by PF with use of 1000 particles with resampling
(resampling threshold NT = 1000) applied to the data presented in Figure 4.10b. The thick
line shows the average of ten independent runs of PF.

We can see that in this case the estimate of kch is somewhat better when compared to the
estimate given in Figure 4.11 but still unsatisfactory. This slight improvement in the estimation
of kch comes with the price of less accurate estimate of ksi.
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Results Obtained by the Particle Filter for Correlated kch and ksi

We have applied two PFs, each based on the model (4.36) with different function fp,a to the
simulated data presented in Figure 4.10a. The PFs are using 1000 particles which are resampled
at every time step (the resampling threshold NT = 1000).

The estimates obtained by the PF based on the model (4.36) using function fp (4.34) are
presented in Figure 4.13. The results obtained by the PF based on the model (4.36) using
function fa (4.35) are presented in Figure 4.14.
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Figure 4.13: Estimation results obtained by PF with use of 1000 particles with resampling
(resampling threshold NT = 1000) applied to the data presented in Figure 4.10a. The thick
line shows the average of ten independent runs of PF.
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Figure 4.14: Estimation results obtained by PF with use of 1000 particles with resampling
(resampling threshold NT = 1000) applied to the data presented in Figure 4.10a. The thick
line shows the average of ten independent runs of PF.

We see from Figure 4.13 and Figure 4.14 that the PF that incorporates the knowledge of
correlation between the parameters ksi and kch through the polynomial function fp (4.34) or
through the piecewise linear function fa (4.35) perform better than the PF that treat these two
variables as uncorrelated random walks. Nevertheless, the estimates of the horizontal cutting
force coefficient kch is still unsatisfactory.

Results Obtained by the Cascaded Filter for Correlated kch and ksi

We have applied the cascaded filter (Figure 4.9) to the simulated data presented in Figure 4.10a.
The PF embedded in the cascaded filter is using 1000 particles, which are resampled at every
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time step (the resampling threshold NT = 1000). The BF embedded in the cascaded filter uses

the Gaussian prior π0 with mean given by fa

(

k̂ssi

)

and standard deviation σ0 = 104. The like-

lihood P (Y |kch, U) is also Gaussian with mean uck
−1
ch +uj

(

k̂ssi

)p

and standard deviation Σo
hex

defined in (4.33).
The estimates obtained by the cascaded filter are presented in Figure 4.15.
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Figure 4.15: Estimation results obtained by the cascaded filter composed of the PF that
uses 1000 particles with resampling (resampling threshold NT = 1000), the SSI filter and
the BF applied to the data presented in Figure 4.10a. During the transient time we freeze the
estimate of kch until a new steady state is reached. The thick line shows the average of ten
independent filtering runs.

The results presented in Figure 4.15 suggest that the cascaded filter provides estimates that
are more accurate than the estimates obtained by the PFs presented in previous sections. On
the other hand, due to the SSI filter embedded into the cascaded filter the estimates of kch can
be produced only after a steady state is reached (by the estimate k̂si).

4.4.3 Discussion

In this section we have provided a solution to the Cutting and Jetting Estimation Problem for-
mulated in Chapter 2. Due to the highly nonlinear character of the system under consideration,
to solve the estimation problem we have employed PF. We have investigated two methods that
differ in the way the correlation between the parameters kch and ksi is handled.

In the first, the simplest approach, the filter uses model (4.31) where the horizontal cutting
force coefficient kch and the in situ permeability ksi evolve as independent random walks. The
estimates obtained by such a filter are presented in Figure 4.11 and Figure 4.12. The algorithm
detects precisely the moments the excavated soil changes and accurately estimates the true state
of the parameter ksi. Unfortunately the estimates of the parameter kch are very inaccurate,
which makes the real life applicability of this filter questionable.

In the second method, the filter uses the more complicated model (4.36). This PF takes ad-
vantage of the knowledge of correlation between the parameters ksi and kch, which are modeled
either by the polynomial function fp (4.34) or by the piecewise linear function fa (4.35). The
results of the simulations suggest that both methods outperforms the PF described by (4.31)
that treat these two variables as uncorrelated random walks. The PF using the piecewise linear
fit fa (4.35) produces more accurate estimates (see Figure 4.14) than the PF using the polyno-
mial fit fp (4.34) (see Figure 4.13). Nevertheless, the estimates of the horizontal cutting force
coefficient kch are still not accurate enough.
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The accuracy of the estimates of kch can be improved by applying the cascaded filter depicted
in Figure 4.9. The results for this case are presented in Figure 4.15 from which we see that the
cascaded filter outperforms the remaining methods in terms of accuracy of the estimates. On
the downside, due to the SSI filter embedded into the cascaded filter, the estimate of kch can
be obtained only after the estimate k̂si reaches steady state. This, however, is not a serious
obstacle of the discussed method because the PF embedded into the cascaded filter gives an
estimate k̂si that very quickly settles closely to the true state of ksi, allowing the BF to obtain
an accurate estimate of kch.

As a final remark note that we assumed that within every time step we are able to collect N
measurements of uc, uj , hex. The accuracy of the estimation increases with N . If N is assumed
to be large enough at each window it is possible to obtain a solution to (4.30) by standard least
squares or total least squares methods [Huffel and Vandewalle, 1991]. Then, there is no need
to employ a dynamic filter of the kind described in this section. However, for N = 10, as in
the case study discussed above, the number of measurements is not sufficient enough to obtain
reliable estimates by either of these methods.

4.5 Conclusions

In this chapter we have discussed the solutions to the Drag-Head estimation problems that
were formulated in Chapter 2. These are the Cutting Estimation Problem and the Cutting and
Jetting Estimation Problem. Each of these problems is discussed separately and for each of
them we have tested several distinct filtering methods in order to select the most suitable one.
Both estimation problems share a common feature of time-varying delay in the measurement of
the incoming density ρi. The problem of handling such a delay is independent of the filtering
problem and is discussed separately. The block algorithm connecting the delay problem with
the filtering problem is presented in Figure 4.3.

The algorithms presented in this chapter aim to estimate soil-dependent parameters such as
the ratio kvh between cutting forces (Cutting Estimation Problem), the horizontal cutting force
coefficient kch (Cutting Estimation Problem, Cutting and Jetting Estimation Problem) and the
in situ permeability ksi (Cutting and Jetting Estimation Problem). The Cutting Estimation
Problem is defined for any cutting tool whereas the Cutting and Jetting Estimation Problem is
applicable only for tools equipped with cutting and jetting components such as the Drag-Head.
In case of the Drag-Head one can switch from one estimation problem to an other simply by
turning on/off the jets. Because of that it is possible to commence the excavation process using
only cutting. Then, we can quickly obtain an accurate estimate of the kvh by solving the Cutting
Estimation Problem with any of the parametric filters discussed presented in Section 4.3. Then
we can turn on the jets to boost the production and solve the Cutting and Jetting Estimation
Problem using the previously obtained estimate of kvh as an input to the system.

To find a solution to the Cutting Estimation Problem we have investigated several nonlin-
ear parametric filters. These are: EKF, UKF, CDF, GSF. The simulation results presented
in Figures 4.4, 4.5, 4.6, and 4.7 suggest that each of the discussed nonlinear filters gives an
adequate solution to the Cutting Estimation Problem. This is confirmed by Table 4.2 which
compares the convergence time, the overshoot, and the MSE of the estimates of kvh obtained
by the aforementioned filters applied to the simulated data. The EKF, the UKF, the CDF
with parameter h = 1, and the two and three-term GSFs produce estimates that are almost
indistinguishable among each other.

The estimates with the lowest MSE are produced by the CDF with parameters h = 10−1,
and h = 104. Furthermore, an appropriately tuned CDF is the fastest to reach a steady state
when the excavated soil type changes. The four-term GSF has the fastest convergence time
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in the first phase of the estimation where the filters have to counteract the uncertainty in the
initial state of the system, which results in a large offset. This is possible because the structure
of the GS approximation of the state uncertainty allows the GSF to cover the uncertainty region
with higher precision than single Gaussian approximations (EKF, UKF, CDF). This, however,
comes with the price of higher computational complexity when compared to the very simple
and fast CDF. Thus, when the uncertainty in the initial states is small, e.g., we know the exact
position of the system, the CDF is recommended over the GSF (and the remaining EKF and
UKF). Note that in general such small uncertainty cannot be guaranteed.

We have tested several nonlinear nonparametric filters to determine the best solution to the
Cutting and Jetting Estimation Problem. Numerical simulations showed that exploiting the
correlation between the soil-dependent parameters: the horizontal cutting force coefficient kch
and the in situ permeability ksi, is of vital importance in design of accurate estimator. The
simulations suggest that the best results are obtained by the cascaded filter which first employs
the PF to obtain an estimate of ksi which is further filtered by the SSI filter, and finally by
the BF which produces an estimate of kch.

Further Research

This chapter provides a comprehensive analysis of the Drag-Head estimation problems and the
corresponding solutions. Nevertheless, there are several points that have not been discussed in
details in this chapter. These are listed below.

I. Combining the Cutting Estimation Problem with the Cutting and Jetting Estimation Prob-
lem. Separately, under the corresponding assumptions, each problem has been solved. By
combining solutions of both problems into a single algorithm we could potentially relax
some of the assumptions imposed on the filters discussed in this chapter. This could be
achieved e.g., by designing a control strategy switching between the Cutting mode and
the Cutting and Jetting mode discussed in the first part of this section.

II. Uncertainty in input variables. In our investigations several times we have assumed that
the uncertainty in certain input variables is negligible. This, however does not always
need to be an accurate model of reality. Thus, further investigation of this subject can
be of great value for practitioners.

III. Optimal prior for the BF. In the implementation of the cascaded filter for the Cutting and
Jetting Estimation Problem we have experimentally tuned the prior of the embedded BF

to be a Gaussian with mean fa

(

k̂ssi

)

and standard deviation σ0 = 104. Further research

on the optimal choice of the prior distribution might improve the overall performance of
the filter.

IV. Correlation between the parameters kch and ksi. In Section 4.4 we have discussed three
types of functional relations between the horizontal cutting force coefficient kch and the
in situ permeability ksi. These were derived to match the empirical data reported in
Table 4.3. However, as these are only empirical approximations describing a complex
relation between soil-dependent parameters, the robustness of the cascaded filter with
respect to the functions fp,a should be further investigated. Complete robustness study
would answer the question whether an accurate estimate of kch can be obtained without
more prior knowledge on the correlations between different soil-dependent parameters.

Deeper investigation of the topics listed above can potentially lead to further improvements
of the estimation methods discussed in this chapter. It will also boost the understanding of the
Drag-Head excavation process.

94



Chapter 5

Saturated Particle Filter

Parts of this chapter were published in:

• “Saturated Particle Filter”, Proceedings of the American Control Conference, San Fran-
cisco 2011, pp. 1819-1824, Pawe l Stano, Zsófia Lendek and Robert Babuška.

• “Convex Saturated Particle Filter”, Pawe l Stano, Zsófia Lendek, Robert Babuška and
Arnold J. den Dekker, in press.

Abstract

In many stochastic dynamical systems the state variables are constrained or saturated which
often makes them difficult to estimate by standard filtering methods. To estimate the states of
such systems, constrained particle filters have been used with some success. In this chapter we
show how the performance of the standard particle filters can be improved if the measurement
information is used during the importance sampling of the filtering phase. First, in Section 5.1
the general estimation problem for the SSDS is formally introduced. Next, we show how the
estimates can be improved by incorporating the measurements into the filtering algorithm
through a user-specified detection function, which aims to detect the saturation as it occurs.
The algorithm derived from the aforementioned principle is called the Saturated Particle Filter
(SPF). Section 5.2 derives a complete SPF framework for a class of systems with one-dimensional
constraints. Next, in Section 5.3 the Convex Saturated Particle Filter (CSPF), which extends
the SPF method to multidimensional systems with convex constraints, is derived.

The effectiveness of the proposed method is demonstrated using two illustrative examples.
First, in Section 5.2.3 the SPF, is applied to a one-dimensional Lindley-type stochastic process
that depends on an exogenous parameter. Next, in Section 5.3.3, the CSPF is tested on a
two-dimensional system that models the motion of an object under random, bounded distur-
bances. In both cases the simulations show that the proposed filters achieve better performance
than the standard Constrained Bootstrap Particle Filter (CBPF). Furthermore, the SPF and
the CSPF achieve high accuracy using relatively few particles, thus preserving low computa-
tional complexity.

5.1 Introduction

We start this chapter by explaining the importance of constrained and saturated dynamical
systems in the context of dynamic nonparametric filtering. Although in recent years these types
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of systems have received growing attention in the scientific community, still, for a researcher, the
field seems largely unexplored. Intrigued by this, we set ourselves the objective of investigating
the structural properties of such systems and how they can be used. We discovered that the
specific form of saturated systems can be exploited in a way that yields an effective filtering
method. This new algorithm, which we called the Saturated Particle Filter (SPF), is derived
in the current chapter.

5.1.1 Motivation

Recall from Chapter 3.4 that the Particle Filter (PF) is a non-parametric method for solving
a general filtering problem for a Stochastic Dynamical System (SDS). This is achieved by es-
timating a probability density function (PDF) of the state rather than a point statistic of the
state. Namely, the PF approximates a PDF of the state by a set of points which are obtained
by utilizing the Importance Sampling method [Arulampalam et al., 2002; Ristic et al., 2004a],
and then weighed according to Bayes’ rule. The PF is based on Monte Carlo approximation
and it has been proven [Cristian and Doucet, 2002] that, under mild technical assumptions, the
estimated PDF converges to the true posterior PDF as the number of samples grows. How-
ever, for highly nonlinear and non-Gaussian systems, the PF might require a large number of
samples to achieve an accurate estimate. This makes the algorithm computationally expensive,
especially in high-dimensional systems, and as a consequence, it limits its on-line applicability.
It has been noted [Arulampalam et al., 2002; Carlin et al., 1992; Gilks and Berzuini, 2001;
Ristic et al., 2004a] that the choice of the importance sampling density is a crucial step towards
reducing the computational costs of the PF, and therefore making the method more feasible
for on-line applications.

The properties of the PF have been extensively studied in recent years [Arulampalam et al.,
2002; Cristian and Doucet, 2002; Ristic et al., 2004a], and many versions of the PF have been
developed for specific types of problems [Arulampalam et al., 2002; Lang et al., 2007; Prakash
et al., 2010; Shao et al., 2010]. In particular, state estimation of a Constrained Stochastic
Dynamical System (CSDS) attracted much attention [Kyriakides et al., 2005; Lang et al., 2007;
Prakash et al., 2010; Shao et al., 2010; Stano et al., 2011; Straka et al., 2011]. The CSDS is
a system for which, at each time step k, at least one of the state variables is restricted to a
compact set. These systems are frequently met both in industrial applications [Stano et al.,
2010; Vachhani et al., 2006], and in theoretical research [Shao et al., 2010; Stadje, 1997; Straka
et al., 2011]. To estimate the states of a CSDS one can use the constrained PF [Kyriakides
et al., 2005; Lang et al., 2007; Prakash et al., 2010; Shao et al., 2010]. This method produces
a state estimate that does not violate the physical constraints of the system. This is achieved
either by discarding unsuitable particles [Kyriakides et al., 2005; Lang et al., 2007], or by
projecting them on the boundary of the constraint region [Prakash et al., 2010; Shao et al.,
2010]. The latter approach is especially suitable for systems characterized by PDFs that are
singular (discontinuous) at the boundary of the constraint region. The boundary of such a set is
called the saturation region and the particles located at this boundary are called the saturated
particles. A system defined by this type of PDF is called a Saturated Stochastic Dynamical
System (SSDS), which is a special class of the CSDS.

5.1.2 Generic Saturated Stochastic Dynamical System

The goal of this section is to present the generic mathematical framework that is used to model
a saturated dynamical system. First, let us recall that the systems under consideration are
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defined by

xk+1 = fk (xk,uk,wk) , (5.1a)

yk = hk (xk,vk) , (5.1b)

x0 ∼ p0 (·) . (5.1c)

where wk and vk are mutually independent random variables that take values in the state
space X and the observation space Y respectively, fk : X×U×X → X is a (possibly nonlinear)
function that describes the state evolution, hk : X × Y → Y is a (possibly nonlinear) function
that establishes the observation model, uk denotes the deterministic input at time step k, and
p0 is a PDF of the initial state x0. Then, the Stochastic Dynamical System (SDS) is defined
as the sequence of pairs {(xk,yk)}+∞

k=0 composed of discrete-time stochastic processes {xk}+∞
k=0,

and {yk}+∞
k=0.

A saturated system is obtained by imposing extra conditions on the system defined by (5.1).
Namely, we consider systems that satisfy the following definition:

Definition 5.1 (Saturated Stochastic Dynamical System). Let {(xk,yk)}+∞
k=0 be a SDS de-

fined by (5.1). The sequence of tuples {(xk,yk)}+∞
k=0 is called a Saturated Stochastic Dynamical

System (SSDS) if for each k ≥ 1 there exists a compact set A ∈ X such that:

I. the support of the conditional distribution of the state xk+1 given xk, uk, and yk+1 is
contained within A, i.e.,

P (xk+1 ∈ A|xk,uk,yk+1) = 1, (5.2)

II. the transition probability of the state xk+1 belonging to ∂A, given xk and uk, is positive,
i.e.,

P (xk+1 ∈ ∂A|xk,uk) > 0, (5.3)

where ∂A denotes the boundary of the set A.

In what follows, we restrict our considerations to SSDSs with measurements corrupted with
additive zero-mean noise. From the engineering point of view this assumption is not very
restrictive as such systems are commonly met in practical applications. The observation model
of such a SSDS is given by

yk = hk (xk) + vk, (5.4)

where Evk = 0.

5.2 One-Dimensional Saturated Particle Filter

This section begins with a formal definition of the class of systems that are analyzed, i.e., the one
dimensional SDS. For such one-dimensional SDSs the new PF is derived. The multidimensional
extension of the new algorithm is discussed in Section 5.3.

5.2.1 One-Dimensional Saturated Stochastic Dynamical System

For this section we assume that {xk}+∞
k=0 and {yk}+∞

k=0 are one-dimensional real-valued processes.
Furthermore, we consider only one-dimensional deterministic inputs uk ∈ R. Finally, it is
assumed that the process {xk}+∞

k=0 is non-negative, i.e., xk ≥ 0 for every k ≥ 0. By considering
only systems bounded on the positive real line R+ we greatly simplify the calculations that
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5. SATURATED PARTICLE FILTER

follow. However, it has to be noted that such a condition is of purely technical nature. Indeed,
it holds true that any variable bounded in R, by an affine change of variables, can be transformed
into a variable constrained in R+.

In case of one-dimensional systems it is convenient to consider dynamical systems charac-
terized by the minimum function as it is described in Definition 5.2.

Definition 5.2 (One-Dimensional Saturated Stochastic Dynamical System). Let us consider
a real-valued SDS for which (5.4) is satisfied. Furthermore, let us assume that there exist a
function C : R+ ×R → R+ and a function f̃k : R+ ×R×R → R+ such that for each k ≥ 1, the
evolution of the states follows:

xk+1 = min
(

f̃k (xk, uk, wk) , C (xk, uk)
)

, (5.5)

and

P (xk+1 = C (xk, uk)) > 0. (5.6)

The function f̃k from Definition 5.2 corresponds to the transition function of the “unsat-
urated” system, i.e., the system with the state that is not bounded by the function C. Note
that by Definition 5.1 the bounds {C (xk, uk)}+∞

k=0 associated with such a SSDS form a (pos-

sibly unbounded) stochastic process. Possible realizations of the stochastic processes {xk}+∞
k=0

and {C (xk, uk)}+∞
k=0 are illustrated in Figure 5.1.

state

k

Figure 5.1: Trajectories of the saturated system {xk}+∞
k=0 (small filled circles) and their

bounds {C (xk, uk)}+∞
k=0 (large empty circles). When the unsaturated variable f̃k (xk, uk, wk)

(empty squares) exceeds the saturation bound C (xk, uk) (horizontal dotted lines) it is pro-
jected onto the appropriate bound (vertical dotted lines). In such cases the realizations of the
processes {xk}+∞

k=0 and {C (xk, uk)}+∞
k=0 are overlapping (small circles within large circles).

For systems with a continuous state space it is reasonable to assume that for every time
step k the random variable f̃k (xk, uk, wk) has a continuous PDF. This, however, does not
hold for xk+1. Indeed, from (5.6) it follows that each variable xk+1 has a singularity at the
point C (xk, uk). This means that the PDF of xk+1 is continuous up to the point C (xk, uk)
in which a positive probability mass is focused. Therefore, the conditional density of the
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5.2. One-Dimensional Saturated Particle Filter

variable xk+1, given the previous state xk and the deterministic input uk, is given by:

P (xk+1 = x|xk, uk) = P

(

f̃k (xk, uk, wk) = x|xk, uk

)

1[0,C(xk,uk)) (x) (5.7a)

+

∫ +∞

C(xk,uk)

P

(

f̃k (xk, uk, wk) = z|xk, uk

)

dzδC(xk,uk) (x) , (5.7b)

where 1[0,C(xk,uk)) is an indicator function on the interval [0, C (xk, uk)), and δC(xk,uk) is the
Dirac delta function centered at the point C (xk, uk). The PDF of such a variable is illustrated
in Figure 5.2.

state

P
(5.7a)

C (xk, uk)

(5.7b)

Figure 5.2: The PDF of the saturated variable xk+1 given the past state xk. The PDF is
composed of a continuous part (5.7a) and a singular mass (5.7b) concentrated at the saturation
point C (xk, uk).

An illustrative example of SSDS will also be discussed in detail in Section 5.2.3. To keep the
calculation that follow simple, in Definition 5.1 we chose the state variables xk+1 to be bounded
by the interval [0, C(xk, uk)] that lays on the positive real line R+.

Having the SSDS defined in such a way, we are interested in estimating the true state xk of
the system from the available measurements yk.

5.2.2 One-Dimensional Saturated Particle Filter

In this section we introduce the Saturated Particle Filter (SPF), the estimation algorithm that
is designed specifically for the class of one-dimensional SSDS discussed in Section 5.2.1. The
general idea behind the SPF presented in current section can be further extrapolated to higher
dimensional systems, provided certain technical conditions hold. Such a multidimensional ex-
tension of the SPF algorithm is discussed in detail in Section 5.3.

We begin with describing the general idea of the proposed method. The SPF is a Sequential

Importance Sampling (SIS) type algorithm that samples particles
{

xi
k+1

}N

i=1
from a special

importance kernel K̃
(

·|xi
k, uk, yk+1

)

that is chosen in such a way that the distribution of these
particles is “closer” to the true posterior PDF πk+1|k+1 than the distribution of the particles
obtained by the Bootstrap Particle Filter (BPF), i.e., by sampling from the transition probabil-
ity kernel K

(

·|xi
k, uk

)

. The SPF’s improved estimation performance comes from the use of the
detection function whose purpose is to quickly detect whether saturation occurred by compar-
ing the measurements with the state constraints. Namely, the detection function is intended as

99



5. SATURATED PARTICLE FILTER

a “pseudometric” between yk+1 and hk+1

(

C
(

xi
k, uk

))

. This extra information is used to force
the particles to move to the “appropriate” region already in the sampling step of the algorithm.

For the class of systems presented in Definition 5.2 let us introduce:

Definition 5.3 (One-dimensional detection function). Let α : R → R be a function for which
the following conditions are satisfied:

I. α is non-decreasing,

II. there exists y0 ∈ R such that α(y0) = 0.

Then, the mapping
(

yk+1, x
i
k

)

7→ α
(

yk+1 − hk+1

(

C
(

xi
k, uk

)))

(5.8)

is called a detection function.

In general, the choice of detection function depends on the dynamics of the system under
consideration. For the clarity of the argument, throughout this section we assume that the
detection function α is specified by the user.

The detection function, as it is shown in what follows, by comparing the measurements with
the state constraints updates the probability of saturation. This information is used to force
the particles to move to the appropriate region. Definition 5.3 is not the only possible way of
defining detection functions. Nevertheless, for the moment we use this definition because for
the one-dimensional SSDS it illustrates well the idea behind the SPF. Since there is a one to
one relation between the detection function defined by (5.8) and α, in what follows, we do not
make a distinction between these two objects.

Let us consider the SSDS defined by (5.5)–(5.6). Furthermore, let
{(

xi
k, ω

i
k

)}N

i=1
be the ap-

proximation of the updated density of the process at time step k. We say that the particle xi
k+1

is saturated if xi
k+1 is projected onto C

(

xi
k

)

, which is equivalent to the projection method de-
scribed in [Shao et al., 2010]. Indeed, it makes no difference whether the ‘bad’ particles drawn
from an unconstrained continuous distribution are projected on the saturation point, or each
particle is set to the saturation point with the probability of saturation. The resulting sets of
particles are indistinguishable in a statistical sense. Then, for each i ∈ {1, ..., N}, given the
previous particle xi

k, the probability that the particle xi
k+1 will saturate follows by (5.7b):

P
(

xi
k+1 = C

(

xi
k, uk

))

=

∫ +∞

C(xi
k
,uk)

P

(

f̃k (xk, uk, wk) = z|xi
k, uk

)

dz. (5.9)

For the convenience of the derivations that follow we define the probabilities of saturation:

Definition 5.4 (Probabilities of saturation). For every i = 1, ..., N the predicted probability of
saturation qi is given by

qi =

∫ +∞

C(xi
k
,uk)

P

(

f̃k (xk, uk, wk) = z|xi
k, uk

)

dz, (5.10)

and the updated probability of saturation qαi is given by

qαi :=







1 if qi + α
(

yk+1 − hk+1

(

C
(

xi
k

)))

> 1,
0 if qi + α

(

yk+1 − hk+1

(

C
(

xi
k

)))

< 0,
qi + α

(

yk+1 − hk+1

(

C
(

xi
k

)))

otherwise.
(5.11)
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Note that the probability qαi can be defined in an alternative, more concise fashion:

qαi := max
(

min
(

qi + α
(

yk+1 − hk+1

(

C
(

xi
k, uk

)))

, 1
)

, 0
)

(5.12)

With the updated probability of saturation qαi defined by (5.11), and the detection func-
tion α, we are ready to define the importance density K̃k of the SPF by:

K̃k

(

x|xi
k, yk+1, uk

)

:= qαi δ
(

C
(

xi
k, uk

)

− x
)

(5.13a)

+
1 − qαi
1 − qi

P

(

f̃k (xk, uk, wk) = x|xi
k, uk

)

1[0,C(xi
k
,uk)) (x) , (5.13b)

where δ denotes the Dirac delta function, and 1[0,C(xi
k
,uk)) is an indicator function on the

interval
[

0, C
(

xi
k, uk

))

. It can be easily seen that K̃k defines a probability kernel. Indeed, the

operator K̃k is nonnegative and it integrates to one. Note that α ≡ 0 yields qαi = qi hence the
importance density of the BPF is a special case of K̃k with α ≡ 0.

Given the particle xi
k, a new particle xi

k+1 is drawn from the importance density K̃k

(

·|xi
k, uk, yk+1

)

.

By (5.13b) the particle xi
k+1 saturates, i.e., xi

k+1 = C
(

xi
k, uk

)

, with the probability qαi , and
with probability 1 − qαi it is drawn from

1

1 − qi
P

(

f̃k (xk, uk, wk) = x|xi
k, uk

)

1[0,C(xi
k
,uk)) (x) (5.14)

The associated weights ωi
k+1 are computed using (3.84). Namely, if xi

k+1 saturates, i.e., xi
k+1 =

C
(

xi
k, uk

)

, then, by the definitions of qi and qαi , the weight ωi
k+1 follows the formula:

ωi
k+1 ∝ ωi

k

qi
qαi

gk+1

(

yk+1|xi
k+1, uk

)

. (5.15)

If xi
k+1 does not saturate, the weight ωi

k+1 is updated by:

ωi
k+1 ∝ ωi

k

1 − qi
1 − qαi

gk+1

(

yk+1|xi
k+1, uk

)

. (5.16)

Note that by (5.4) the likelihood function gk+1 defined by (3.79) takes the form:

gk+1

(

yk+1|xi
k+1, uk

)

= P
(

vk+1 = yk+1 − hk+1

(

xi
k+1, uk

))

. (5.17)

The SPF is summarized in Algorithm 5.1. Note that the updated probability of saturation
depends on the choice of the detection function α. Therefore, through qαi , the SPF also depends
on α.

The proposed SPF combines the prior state particle xi
k with the most recent measure-

ment yk+1 to compute the updated probability of saturation qαi . For large values of qαi the
algorithm forces the particles to be close to the saturation region, by which we understand
the set

{

C
(

xi, uk

)}

, whereas for small values of qαi the particles are set further from the
saturation region. Figure 5.3 schematically presents the difference between the SPF and the
benchmark methods: the Unconstrained Bootstrap Particle Filter (UBPF), the Constrained
Bootstrap Particle Filter (CBPF), i.e., the BPF [Arulampalam et al., 2002] modified by the
projection approach of [Shao et al., 2010].

The accuracy of the estimation depends on the detection function, which must be chosen
according to the SSDS under consideration.
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Algorithm 5.1 Saturated Particle Filter for a given α

Input:
{(

xi
k, ω

i
k

)}N

i=1
, yk+1, uk

Output:
{(

xi
k+1, ω

i
k+1

)}N

i=1
for i = 1, 2, . . . , N do

Compute the probability qi according to (5.10)
Compute the probability qαi according to (5.11)
Draw from the standard uniform distribution u ∼ U (0, 1)
if u ≤ qαi then

Particle xi
k+1 saturates:

xi
k+1 := C

(

xi
k, uk

)

ωi
k+1 ∝ ωi

k

qi
qαi

gk+1

(

yk+1|xi
k+1, uk

)

else
Particle xi

k+1 does not saturate:

xi
k+1 ∼ 1

1 − qi
P

(

f̃k (xk, uk, wk) = •|xi
k, uk

)

1[0,C(xi
k
,uk)) (•)

ωi
k+1 ∝ ωi

k

1 − qi
1 − qαi

gk+1

(

yk+1|xi
k+1, uk

)

end if
end for

5.2.3 Numerical Simulations

In this section we apply the SPF to a system that depends on an external parameter θ and
allows relatively large measurement noises. We show that with the proper choice of the detection
function α, the SPF outperforms the CBPF filter in tracking rapid changes in the dynamics of
the system.

The system used to compare the SPF and the CBPF to the SSDS is given by:

xk+1 = min (xk + wk, C (xk)) , (5.18a)

yk = xk + vk, (5.18b)

where wk is an exponential random variable with parameter θ · C (xk), i.e., with the expected

value Ewk = (θ · C (xk))
−1

. The variable vk is a zero-mean Gaussian variable with standard
deviation σv. The system under consideration has no deterministic inputs, hence, throughout
this subsection we skip the symbol uk from the notation.

The state model (5.18a) is nonlinear and non-Gaussian, whereas the observation model (5.18b)
is both linear, and conditionally Gaussian. The stochastic process (5.18a) is a Lindley-type pro-
cess, i.e., it is a modification of the celebrated Lindley’s recursion [Lindley, 1952; Stadje, 1997;
Vlasiou et al., 2004]. These types of processes are extensively used in queueing theory [Simonot,
1997; Vlasiou et al., 2004]. The possible interpretation of (5.18a) is that xk is the total opera-
tion time of a server after the k-th customer has been served, the random variable wk models
the service waiting time (hence, it is exponentially distributed), and the bound C (xk) gives
the maximal time of service after which the server proceeds to the next customer. By choosing
this type of systems for our experiments we are able to illustrate the main properties of our
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Figure 5.3: Visualization of the distribution of the particles with corresponding weights ω
obtained by the UBPF (top), the CBPF (middle) and the SPF (bottom). Some of the par-
ticles obtained by the UBPF violate the physical constraints on the system (saturation re-
gion

⋃

i C
(

xi
k, uk

)

), others are located far from the actual observation h−1
k+1 (yk+1). The CBPF

projects the “unphysical” particles onto the saturation region
⋃

i C
(

xi
k, uk

)

, but does not
move the remaining particles. The SPF projects the bad particles onto the saturation re-
gion

⋃

i C
(

xi
k, uk

)

and forces the remaining particles to concentrate close to the saturation

region
⋃

i C
(

xi
k, uk

)

.

algorithm at the same time avoiding expensive numerical computations of the integral (5.29).
This is possible because the variable wk is exponentially distributed, hence the integral (5.29)
can be computed explicitly as:

qik = exp
(

−θC
(

xi
k

) (

C
(

xi
k

)

− xi
k

))

. (5.19)

The boundary function C(·) is defined by:

C (x) :=

{

x + 4 if x < 15,
0.7x + 8.5 otherwise.

(5.20)

To illustrate the capabilities of the proposed filter, starting from the initial state of the
system x0 = 7, we simulated the evolution of the system (5.18)–(5.20) for 100 time steps.
During the first 50 steps, the parameter θ is set to 1, during the second 50 steps it is set
to 1

30 . This models a rapid change in conditions external to the system. In our single-server
queue analogy this corresponds to the situation when from a certain time onwards due to e.g.,
malfunction, the processing speed of a server is significantly (30-fold) reduced.

To simulate a noisy-measurement environment (5.18b), the standard deviation σv of the
variable vk is set to σv = 3.
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Figure 5.5 presents two independent simulation runs of the system (5.18)–(5.20) and two
filtered signals obtained by the average of ten independent runs of both, the CBPF and the SPF.
Both the CBPF and the SPF use the state model (5.18a) with the parameter θ = 1 for the
whole time of the simulation. The initial state p0 for both filters is equal to p0(·) = N (·; 7, 1)
(the PDF of the Gaussian variable with the mean and the standard deviation equal to 7 and 1,
respectively). The number of the particles is set to N = 100, and the resampling threshold is
set to NT = 50.

In the simulations we tested the SPF with two different detection functions, depicted in
Figure 5.4, that are defined by:

I. For the first SPF the detection function α1 is defined by:

α1 (x) :=

{

log (x + 1) if x > 0,
− log (−x + 1) otherwise.

(5.21)

The function α1 is antisymmetric in zero, which means that the probability of satura-
tion qαi is increased or decreased proportionally to the distance between the measure-
ment yk+1 and the saturation bound C

(

xi
k

)

. If the distance |yk+1 − C
(

xi
k

)

| is greater
than (≈) 1.7 then, depending on the sign of the difference, the probability of saturation qαi
is equal to zero or to one.

II. For the second SPF the detection function α2 is defined as:

α2 (x) :=







log (x + 1) if x > 0,
− log (−x + 1) if x > − 1

2 ,
−3 log (−x + 1) + 2 log

(

3
2

)

otherwise.
(5.22)

The function α2 is not antisymmetric as was α1. In this case, when the measurement yk+1

is smaller than C
(

xi
k

)

− 1
2 , the probability of saturation qαi decreases much faster with

the distance |yk+1 − C
(

xi
k

)

| and reaches zero when yk+1 < C
(

xi
k

)

− 0.83. When the

measurement yk+1 is greater than C
(

xi
k

)

− 1
2 the probability of saturation qαi is adjusted

identically as it was for the function α1.
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Figure 5.4: The antisymmetric detection function α1 (left) and the asymmetric detection func-
tion α2 (right).

Figure 5.5 presents the state estimated by the SPF with the antisymmetric detection func-
tion α1 (left) and by the SPF that uses the asymmetric detection function α2 (right). The
estimated signals in Figure 5.5 are computed as the average of ten independent filter runs each
applied to the same measurement signal. In each of the parallel runs, for both the CBPF and
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the SPF, the estimated value of the state is computed by taking the weighted mean of the par-
ticles, i.e., x̂k =

∑N
i=1 ω

i
kx

i
k. This corresponds to the Minimum Mean Square Error (MMSE)

estimator [Ristic et al., 2004a].
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Figure 5.5: The CBPF and the SPF applied to the system (5.18)–(5.20). The thick solid line is
the true value of the state, the circles denote the measurements of the system, the thin dashed
line denotes the MMSE estimate obtained by the CBPF filter. The thin solid line represents
the MMSE estimate of the state obtained by the SPF with the detection function α1 (left)
and α2 (right) respectively.

The results presented in Figure 5.5 show that both the SPF and the CBPF filter perform
similarly during the phase when their state model correspond to the true state process (θ = 1).
When the external parameter changes (θ = 1

30 ) the SPF is able to track the true state, whereas
the CBPF filter fails to do so. This happens because, as the measurements get further away
from what the SPF consider to be the saturation bound for the state, the algorithm puts more
“trust” into the observations rather than into the embedded model, which indeed does not
match the true model any longer.

The difference in the detection functions α1 and α2 does not result in a qualitative change
of filtered signal. Thus, the results suggest that the SPF applied to the system (5.18)–(5.20) is
robust with respect to the choice of the detection function α.

5.3 Convex Saturated Particle Filter

The SPF proposed in Section 5.2.2 has been derived for a special class of SSDSs, namely for
systems that allow only one-dimensional saturation, i.e., if xk = [xk(1), · · · , xk(n)]

T
is an n-

dimensional state variable then only one of the variables xk(1), · · · , xk(n) can be saturated.
Such algorithm can be easily extended to systems with multidimensional saturations provided
that the saturated variables are independent. However, the extension for general multidimen-
sional SSDSs is not that straightforward. In this chapter we aim to fill this gap in the SPF
framework by deriving the Convex Saturated Particle Filter (CSPF), which is applicable to
multidimensional systems with convex constraints imposed on the states. The assumption of
the convexity of the constraints, from the practical perspective, is not very restrictive. In fact
a stronger condition of linear constraints is commonly met in the literature [Dantzig, 1998;
Prakash et al., 2010; Straka et al., 2011; Vachhani et al., 2006].
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In Section 5.3.1 the mathematical framework of the Convex Saturated Stochastic Dynam-
ical System is defined and the estimation problem is stated. The novel CSPF is derived in
Section 5.3.2. In Section 5.3.3 the new filter is compared with the benchmark CBPF.

5.3.1 Convex Saturated Stochastic Dynamical System

For the n-dimensional state space X, the m-dimensional input space U, and the p-dimensional
observation space Y, we consider the stochastic dynamical systems characterized by:

xk+1 = fk (xk,uk,wk) , (5.23a)

yk = hk (xk) + vk, (5.23b)

where, for every k ≥ 1, wk ∈ X and vk ∈ Y are mutually independent random vectors (possibly
non-Gaussian), fk : X × U × X → X is a (possibly nonlinear) function that describes the state
evolution, hk : X → Y is a (possibly nonlinear) function that establishes the observation model,
and uk denotes the deterministic input at time step k.

The stochastic process defined by (5.23) is Markovian, which allows for the recursive esti-
mation of the state of the system. In what follows we consider SSDSs such that for each k ≥ 1
the constraint region of the variable xk+1, dependent on the previous state xk and the previous
input uk, is a convex set. The precise conditions that such systems need to satisfy are listed in
Definition 5.5.

Definition 5.5 (Convex Saturated Stochastic Dynamical System). Let ΣX be the collection
of measurable subsets of X. The SSDS {(xk,yk)}+∞

k=0 is called a Convex Saturated Stochas-
tic Dynamical System (CSSDS) if there exist a function C : X × U → ΣX and measurable
functions f̃k : X× U× X → X such that for each k ≥ 1 the following hold:

I. for every convex A ∈ ΣX the set hk (A) is convex,

II. for every x ∈ X and every u ∈ U the set C(x,u) is precompact [Lee, 2010], open and
convex such that x ∈ C (x,u)

III. for every x ∈ X and every u ∈ U the set f̃ (x,u,X) is convex,

IV. the state evolution (5.23a) is described by:

if f̃k (xk,uk,wk) ∈ C (xk,uk)

xk+1 = f̃k (xk,uk,wk) (5.24a)

otherwise

xk+1 = ∂C (xk,uk) ∩ R0
(

xk, f̃k (xk,uk,wk)
)

, (5.24b)

where ∂C (x,u) denotes the boundary of the set C(x,u) and R0 is defined by

R
0 (xk,x) := {xk + t (x− xk) : t ≥ 0} . (5.25)

Note that from the properties of convex sets, the intersection in (5.24b) contains exactly
one element. Thus, xk+1 is uniquely defined. The bounds {C (xk,uk)}+∞

k=0 of a CSSDS form a
(possibly unbounded) stochastic process taking values in ΣX. To help understand the meaning
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Figure 5.6: Evolution of a two dimensional CSSDS {xk}+∞
k=0, from xk1

(star) to xk1+4 (dots)

and its constraint regions {C (xk,uk)}+∞
k=0 (shaded ellipses). When the unsaturated vari-

able f̃k (xk,uk,wk) (empty squares) exceeds the saturation boundary ∂C (xk,uk) it is projected
on the appropriate point (dots) at the saturation boundary.

of (5.24)–(5.25) we have illustrated a possible trajectory of the stochastic processes {xk}+∞
k=0

and {C (xk,uk)}+∞
k=0 in Figure 5.6.

We are interested in continuous state space, therefore it is reasonable to assume that for
every time step k the random variable f̃k (xk,uk,wk) has a continuous PDF. This, however,
does not hold for the xk. Indeed, from (5.24) it follows that each variable xk+1 has singularities
at the boundary of C (xk,uk). This means that the PDF of xk+1 is continuous in the interior
of the set C (xk,uk) and has discontinuities at the boundary ∂C (xk,uk). This is schematically
depicted in Figure 5.8. Nevertheless, the random variable xk+1 restricted to ∂C (xk,uk) has an
absolutely continuous distribution with respect to the appropriate Hausdorff measure [Folland,
1984]. To see this, let us first notice that by (5.24)–(5.25) the conditional density of the
variable xk+1 given the previous state xk and input uk is given by:

P (xk+1 = x|xk,uk) = P

(

f̃k (xk,uk,wk) = x|xk,uk

)

1C(xk,uk) (x) (5.26a)

+

[

∫

R1(xk,x)

P

(

f̃k (xk,uk,wk) = z|xk,uk

)

dH1 (z)

]

1∂C(xk,uk) (x) ,

(5.26b)

where 1A (·) denotes the indicator function of the set A, Hn denotes the n-dimensional Hausdorff
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measure, and R1 is a set defined by

R1 (xk,x) := {xk + t (x− xk) : t ≥ 1} . (5.27)

The PDF of xk+1 restricted to ∂C (xk,uk) is given by (5.26b) which is a continuous function
for x ∈ ∂C (xk,uk).

To illustrate the relations between the sets R0 and R1, Figure 5.7 depicts R0
(

xk, f̃ (xk,uk,wk)
)

and R1 (xk,x) for a given convex set C (xk,uk).

C (xk,uk)

xk xk+1
f̃ (xk,uk,wk)

∂C (xk,uk)

R1 (xk,xk+1)

R0
(

xk, f̃ (xk,uk,wk)
)

Figure 5.7: The relation between R1 (xk,xk+1) and R0
(

xk, f̃ (xk,uk,wk)
)

when the saturated

state of the system xk+1 ∈ ∂C (xk,uk) is obtained by projecting the unsaturated state of the
system f̃ (xk,uk,wk) onto the saturation boundary ∂C (xk,uk).

A comparison of the PDF of an unsaturated variable f̃ (xk,uk,wk) with the PDF of a
saturated variable xk+1 is presented in Figure 5.8.

Having the CSSDS defined in such a way, we are interested in estimating the actual state xk

of the system from the available measurements yk. The Markovian character of the CSSDS
makes it possible, for estimation purposes, to employ recursive algorithms utilizing Bayes’
theorem, e.g., the PF.

There are many variations of PFs [Arulampalam et al., 2002], which employ various im-
portance densities and resampling algorithms. For the sake of comparison, as a benchmark
solution to the estimation problem suitable to saturated systems we chose the CBPF, i.e.,
the BPF [Arulampalam et al., 2002] modified by the projection approach of [Shao et al., 2010].

5.3.2 Convex Saturated Particle Filter

In this section we propose a new SPF that is designed for CSSDSs. The CSPF is capable of
quickly detecting whether or not saturation occurred by comparing the measurements with the
state constraints. This information is used to forcibly move the particles to the region of higher
probability, which leads to improved accuracy of the estimate. This procedure renders possible
the reduction of the number of particles used by PF, thus reducing the computational load of
the algorithm. The detection of the saturation is achieved by a detection function introduced
in Definition 5.6.

Definition 5.6 (Detection function). A function α : Y × X × ΣX → R is called a detection
function for a CSSDS if for every time step k, every precompact open convex set A ∈ ΣX,
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Figure 5.8: The PDF of the unsaturated variable f̃ (xk,uk,wk) (left) and the PDF of the
saturated variable xk+1 (right) given the previous state xk and input uk. The PDF of the
unsaturated variable is continuous (left) whereas the PDF of the saturated variable (right)
has a continuous part (5.26a) and a singular mass (5.26b) concentrated on the saturation
region ∂C (xk,uk) = ∂ ([−2, 1.5] × [−1.5, 2]).

every y ∈ Y and x1,x2 ∈ ∂A the implication holds:

[‖y − hk (x1)‖ ≥ ‖y − hk (x2)‖] =⇒ [α (y,x1,hk (A)) ≤ α (y,x2,hk (A))] . (5.28)

Intuitively, a function for which the condition (5.28) holds serves as a ‘pseudo’-metric be-
tween the points at the boundary ∂A of the convex set A and, through the observation model hk,
the measurement y ∈ Y. The properties of the detection functions are further explained while
discussing the numerical example in Section 5.3.3.

Let us now consider the SSDS defined by (5.23). Furthermore, let
{(

xi
k, ω

i
k

)}N

i=1
be the

approximation of the true PDF of the state at time step k. For each i ∈ {1, ..., N}, given the
previous particle xi

k, the probability that the particle xi
k+1 will saturate, i.e., xi

k+1 ∈ ∂C
(

xi
k,uk

)

follows from (5.26b):

P

(

x
i
k+1 ∈ ∂C

(

x
i
k,uk

))

=

∫

∂C(xi
k
,uk)

[

∫

R1(xi
k
,x)

P

(

f̃k

(

x
i
k,uk,wk

)

= z|xi
k,uk

)

dH1(z)

]

dHn−1(dx),

(5.29)

where R1 is defined by (5.27).
For the ease of notation the right-hand side of (5.29) is called the predicted probability of

saturation and denoted as qi, i.e.,

qi :=

∫

∂C(xi
k
,uk)

qi(x)dHn−1(x), (5.30a)
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where

qi(x) :=

∫

R1(xi
k
,x)

P

(

f̃k
(

xi
k,uk,wk

)

= z|xi
k,uk

)

dH1(z). (5.30b)

The saturation of a particle xi
k+1 can be seen as projecting xi

k+1 onto ∂C
(

xi
k,uk

)

which
is equivalent to the generic projection approach of [Shao et al., 2010]. Indeed, it makes no
difference whether the ‘bad’ particles drawn from an unconstrained continuous distribution
are projected on the saturation region, or each particle is set to the saturation region with
the predicted probability of saturation. The resulting sets of particles are equivalent in the
statistical sense.

Let α be a given detection function satisfying Definition 5.6. Furthermore, assume that the
measurement yk+1 becomes available. Then, for each i ∈ {1, ..., N} and each x ∈ ∂C

(

xi
k,uk

)

we define the updated probability of saturation qαi :

qαi :=

∫

∂C(xi
k
,uk)

qαi (x)dHn−1(x), (5.31a)

where
qαi (x) ∝ qi(x) + α

(

yk+1,x, C
(

xi
k,uk

))

. (5.31b)

Using (5.30)–(5.31), and the detection function α, we define the importance density Qα of
the new CSPF by:

Qα
(

x|xi
k,uk,yk+1

)

:= qαi (x)1∂C(xi
k
,uk) (x) (5.32a)

+
1 − qαi
1 − qi

P

(

f̃k (xk,uk,wk) = x|xi
k,uk

)

1C(xi
k
,uk) (x) . (5.32b)

It can be easily seen that Qα defines a probability measure, i.e., Qα is positive, and it
integrates to one. The importance density of the CBPF filter is a special case of Qα with
α ≡ 0.

Given the particle xi
k and the input uk, a new particle xi

k+1 is drawn from the importance
density Qα. The random sample from Qα is obtained in two steps. First, the algorithm deter-
mines whether the particle xi

k+1 saturates, i.e., xi
k+1 ∈ ∂C

(

xi
k,uk

)

(with the probability qαi )
or not (with probability 1 − qαi ). Next, if saturation was detected, the particle xi

k+1 is drawn
from:

xi
k+1 ∼ qαi (·)

qαi
1∂C(xi

k
,uk) (·) . (5.33)

In case the saturation was not detected the particle xi
k+1 is drawn from:

x
i
k+1 ∼

1

1− qi
P

(

f̃k (xk,wk) = •|xi
k

)

1
C(xi

k
,uk) (·) . (5.34)

The associated weights ωi
k+1 are derived from the general principle (3.84) applied to the

importance density (5.32). If xi
k+1 saturates, then, by (5.30) and (5.31), the weight ωi

k+1 is
given by:

ωi
k+1 ∝ ωi

k

qi
(

xi
k+1

)

qαi
(

xi
k+1

)P
(

hk+1 (xk+1,vk) = yk+1|xi
k+1

)

, (5.35)

if xi
k+1 does not saturate, the weight ωi

k+1 is updated by:

ωi
k+1 ∝ ωi

k

1 − qi
1 − qαi

P
(

hk+1 (xk+1,vk) = yk+1|xi
k+1

)

. (5.36)
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Algorithm 5.2 Convex Saturated Particle Filter

Input:
{(

xi
k, ω

i
k

)}N

i=1
,yk+1

Output:
{(

xi
k+1, ω

i
k+1

)}N

i=1
for i = 1, 2, . . . , N do

Compute the probability qi according to (5.30a)
Compute the probability qαi according to (5.31a)
Draw from the standard uniform distribution u ∼ U (0, 1)
if u ≤ qαi then

Particle xi
k+1 saturates:

xi
k+1 ∼ qαi (·)

qαi
1∂C(xi

k
,uk) (·)

ωi
k+1 ∝ ωi

k

qi
(

xi
k+1

)

qαi
(

xi
k+1

)P
(

hk+1 (xk+1,vk) = yk+1|xi
k+1

)

else
Particle xi

k+1 does not saturate:

xi
k+1 ∼ 1

1 − qi
P

(

f̃k (xk,wk) = •|xi
k

)

1C(xi
k
,uk)\∂C(xi

k
,uk) (·)

ωi
k+1 ∝ ωi

k

1 − qi
1 − qαi

P
(

hk+1 (xk+1,vk) = yk+1|xi
k+1

)

end if
end for

The new CSPF is summarized in Algorithm 5.2.
The proposed CSPF combines the previous state xi

k with the most recent measurement
yk+1 to compute the updated probabilities of saturation qαi (x) and the updated probability of
saturation qαi . The function

∂C
(

xi
k,uk

)

∋ x 7→ qαi (x)

qαi
, (5.37)

is a continuous PDF on ∂C
(

xi
k,uk

)

.
Note that since each particle xi

k has dynamics of its own, for i 6= j the constraint re-

gions C
(

xi
k,uk

)

and C
(

xj
k,uk

)

do not need to overlap. As a consequence it is possible that

the i-th saturation region ∂C
(

xi
k,uk

)

nontrivially intersects with the admissible (unsaturated)

part of the j-th constraint region C
(

xj
k,uk

)

. Thus, a region of the state space that is admissible

to all the particles
{

xi
k

}

i
is given by

⋂

i C
(

xi
k,uk

)

, and is also convex.
For large values of qαi the algorithm forces the particles to be close to the saturation re-

gion ∂C
(

xi
k,uk

)

associated to the i-th particle, whereas for small values of qαi the particles
are set farther from the saturation region. Moreover, the particles that hit the boundary of
the constraint region, thanks to (5.37), are forcibly moved to that part of the saturation region
that has the highest probability. Figure 5.9 schematically describes the differences between the
UBPF, the CBPF, and the CSPF for a large value of qαi .

Finally, we have to mention that the accuracy of the CSPF estimate depends on the user-
specified detection function, which must be chosen appropriately to the CSSDS under consid-
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eration.

h−1
k+1 (yk+1)

I: UBPF

h−1
k+1 (yk+1)

II: CBPF

h−1
k+1 (yk+1)

III: CSPF

Figure 5.9: Visualization of the distribution of the particles obtained by the UBPF (top), the
CBPF (middle) and the CSPF (bottom). Some of the particles obtained by the UBPF violate
the physical constraints

⋃

i C
(

xi
k,uk

)

of the system (shaded area and the region
⋂

C
(

xi
k,uk

)

bounded by it), others are located far from the actual measurement (star). The larger the
size of a particle the higher its weight. The CBPF projects the unphysical particles onto the
relevant saturation regions (inside the shaded area), but does not move the remaining particles.
The CSPF projects the ‘bad’ particles onto the saturation region and forces the remaining
particles to concentrate closer to the saturation region. Moreover, weights of the repositioned
particles are appropriately rescaled.

5.3.3 Numerical Simulations

To illustrate the estimation abilities of the newly proposed CSPF we compare it with the CBPF
applied to a simple CSSDS that models the motion of a two-dimensional object under random
disturbance. We assume a static sensor placed at the origin that measures the distance and the
bearing of the moving object. This model is a version of a classical nonlinear tracking problem
discussed, e.g., in [Arulampalam et al., 2004; Gilks and Berzuini, 2001; Gordon et al., 1993].
In this motivating example we discuss in detail how to overcome the difficulties of practical
implementations of the CSPF that arise from the extra integrations steps (5.30)–(5.31).
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We consider the unconstrained system defined by:
[

x(1)
x(2)

]

k+1

=

[

x(1)
x(2)

]

k

+ Ts

[

u(1)
u(2)

]

k

+ wk, (5.38a)

[

y(1)
y(2)

]

k+1

=





√

(x(1))
2

+ (x(2))
2

arctan x(2)
x(1)





k

+ vk (5.38b)

where wk and vk are two-dimensional zero-mean Gaussian variables with the covariance ma-

trices Σx =

[

5 0
0 5

]

and Σy =

[

0.1 0
0 0.0012

]

, respectively. The controlled deterministic

input u corresponds to the velocity of the object and Ts = 1 is the sampling period. The
constraint imposed on such a system is defined by

C (xk,uk) =
{

x : (xk + uk − x)
T

(xk + uk − x) ≤ r2‖uk‖2
}

, (5.39)

where r is the user-specified parameter that, in our simulation, is set to r = 2. Thus, the
constraint region C (xk,uk) is a ball centered in xk + uk with radius r‖uk‖.

The detection function α for the CSPF measures the difference between the distances be-
tween the inverse measurement h−1

k+1 (yk+1) (where hk denotes the standard polar transforma-

tion) and the particle xi
k+uk and the vector at the boundary of the constraint region C

(

xi
k,uk

)

:

α
(

h−1
k+1 (yk+1) ,x, C

(

xi
k,uk

))

= θ
∥

∥h−1
k+1 (yk+1) − xi

k − uk

∥

∥

(∥

∥h−1
k+1 (yk+1) − xi

k − uk

∥

∥−
∥

∥h−1
k+1 (yk+1) − x

∥

∥

)

, (5.40)

for x ∈ ∂C
(

xi
k,uk

)

, and user-specified parameter θ. The strength of the influence of the
detection function (5.40) depends on the value of the parameter θ. We can see that the function
defined by (5.40) satisfies the condition (5.28). In an extreme situation, when θ = 0, the
function α has zero influence on the algorithm and the CSPF degenerates into the CBPF.

With the help of the function defined by (5.40) it is now possible to update the probability
of saturation of all the particles xi

k+1 by comparing the distances between the inverse measure-

ment h−1
k+1 (yk+1) (note that by (5.38b) the measurement space Y and the state space X are

identical) and the points at the boundary of the constraint region C
(

xi
k,uk

)

.
To show how such an update can be achieved we need to consider two situations

I. If the inverse observation h−1
k+1 (yk+1) belongs to C

(

xi
k,uk

)

, then for all the points at the

boundary x ∈ ∂C
(

xi
k,uk

)

the updated probability of saturation qαi

• increases, if
∥

∥x− h−1
k+1 (yk+1)

∥

∥ ≤
∥

∥h−1
k+1

(

h−1
k+1 (yk+1)

)

− xi
k − uk

∥

∥,

• decreases, if
∥

∥x− h−1
k+1

(

h−1
k+1 (yk+1)

)∥

∥ >
∥

∥h−1
k+1 (yk+1) − xi

k − uk

∥

∥.

II. For the inverse observation h−1
k+1 (yk+1) that belongs to X\C

(

xi
k,uk

)

the updated prob-
ability of saturation qαi

• increases, if
∥

∥x− h−1
k+1 (yk+1)

∥

∥ ≤ r‖uk‖ + dist
(

h−1
k+1 (yk+1) , C

(

xi
k,uk

))

,

• decreases, if
∥

∥x− h−1
k+1 (yk+1)

∥

∥ > r‖uk‖ + dist
(

h−1
k+1 (yk+1) , C

(

xi
k,uk

))

.

To help understand the properties of the probabilities of saturation, the second of the discussed
cases is illustrated in Figure 5.10.

In order to successfully implement the CSPF for the model (5.38a)–(5.39) we need to tackle
the following technical problems:
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r ‖uk‖ xk + uk

∂C (xk,uk)

r ‖uk‖

r
‖u

k
‖
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d
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t

(

h
−
1

k
+
1

(

y
k
+
1

)

,
C

(

x
i k
,
u
k

)

)

dist
(

h
−1
k+1

(

yk+1

)

, C
(

xi
k
,uk

))

xk + uk

h−1
k+1 (yk+1)

∂C (xk,uk)

Figure 5.10: Visualization of the updated probability of saturation obtained with the use of the
detection function (5.40). Before the measurement yk+1 is collected (left) the probability of
saturation is uniformly distributed on the boundary ∂C (xk,uk). After the measurement yk+1

becomes available (right) the probability of saturation is rescaled to account for the newest
information.

I. numerically evaluate the integrals (5.30),

II. numerically evaluate the integral (5.31),

III. draw random samples from the distribution
qαi (·)
qαi

.

The first problem is solved in Proposition 5.1. The points 2 and 3 are closely connected
hence are dealt with together.

Proposition 5.1. The predicted probability of saturation qi(·) for the system defined by (5.38a)–
(5.39) is uniformly distributed on the circle ∂C

(

xi
k,uk

)

and it integrates to

qi = 1 − 1

Σ11

∫ r‖uk‖

0

exp

(

− z2

2Σ11

)

dz, (5.41)

where Σ11 denotes the first diagonal entry of the matrix Σx.

Proof. The uniform distribution of qi(·) follows directly from the fact that ∂C
(

xi
k,uk

)

coincides
with the σ-contours of the Gaussian variable wk.

Formula (5.41) can be easily obtained by the polar parametrization of the plane R2 and by
observing that

P (xk+1 ∈ ∂C (xk,uk)) = 1 − P (xk+1 ∈ C (xk,uk)) . (5.42)

The probability in (5.42) is easily computed by:

P (xk+1 ∈ C (xk,uk))

=
1

2π|Σx|1/2
∫

C(xk,uk)

exp

(

−1

2
xT Σ−1

x x

)

dx (5.43a)

=
1

2πΣ11

∫ 2π

0

∫ r‖uk‖

0

exp

(

− z2

2Σ11

)

dzsφ (5.43b)

=
1

Σ11

∫ r‖uk‖

0

exp

(

− z2

2Σ11

)

dz. (5.43c)
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Combining (5.42) with (5.43c) gives the desired (5.41).

To compute (5.30) it is convenient to introduce the following parametrization of the bound-
ary of the constraint region:

∂C (xk,uk) = {xk + uk + r‖uk‖ (cos(φ), sin(φ)) : φ ∈ [0, 2π)} . (5.44)

Then the updated probability of saturation (5.31b) can be seen as a function defined on the
interval [0, 2π):

[0, 2π) ∋ φ 7→ qαi (x (ϕ)) , (5.45)

hence the integral (5.30) can be efficiently evaluated, e.g., with the MATLAB function quad.m.

The parametrization (5.44) is also useful for sampling from
qαi (·)
qαi

using the inverse of a Cu-

mulative Density Function (CDF). The procedure of obtaining such a ‘pseudo’-random sample
is described in Algorithm 5.3.

Algorithm 5.3 Drawing from
qαi (·)
qαi

Using (5.44) parametrize the boundary

∂C (xk,uk) = {x (φ) : φ ∈ [0, 2π)}

Compute the 1-dimensional Jacobian [Krantz and Parks, 2008]:

J (Dϕx) =
√

det (DϕxTDϕx) = rTs‖uk‖

Compute the updated probability of saturation:

qαi =

∫ 2π

0

J (Dϕx) qαi (x (ϕ)) dH1 (ϕ)

Define the CDF(φ):

[0, 2π) ∋ φ 7→
∫ φ

0

J (Dϕx)
qαi (x (ϕ))

qαi
dϕ

Draw from the standard uniform distribution u ∼ U (0, 1)
Find φ0 such that CDF(φ0) = u

Use φ0 to obtain x (φ0) - a random sample from
qαi (·)
qαi

Note that CDF(φ) is a continuous and monotone function that can be easily evaluated for
any given φ. Thus, a solution to CDF(φ0) = u can be obtained by applying any of the standard
root-finding algorithms [Press et al., 2003].

Using the aforementioned numerical techniques, we have simulated the system (5.38) with
the constraint (5.39) for T = 20 time steps. In the simulations discussed in the reminder of the
section the parameter in the detection function is set to θ = 0.005

r‖uk‖ for appropriate scaling. The

simulation started from the initial condition x0 = [10 10]T and the input signal uk = [3 3]T

is constant over the whole simulation.

115



5. SATURATED PARTICLE FILTER

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

k

x
(1

)

 

 

true state

CBPF

CSPF

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

k

x
(1

)

 

 

true state

CBPF

CSPF

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

k

x
(1

)

 

 

true state

CBPF

CSPF

Figure 5.11: Tracking of the true state x1 (thick solid line) achieved by the CBPF (thin solid
line with pluses) and by the CSPF (thin solid-dotted line). The estimates are obtained as the
average of ten independent filters each utilizing 1000 particles. The estimates were obtained by
the CBPF and the CSPF starting from initial positions: [5 15]T (left), [10 10]T (middle),
and [15 5]T (right).

We tested the CBPF and the CSPF in three settings with different initial conditions.
Namely, we simulated the case with no initial offset xfilters

0 = [10 10]T , and two scenarios

with initial offsets: xfilters
0 = [5 15]T and xfilters

0 = [15 5]T . In each of the aforementioned

settings the CBPF and the CSPF use the initial covariance P0 =

[

1 0
0 1

]

. Furthermore, for

each scenario we test the CBPF and the CSPF with 10, 100, and 1000 particles.

To account for the probabilistic nature of the compared methods in every simulation setting
we run the CBPF and the CSPF ten times, each utilizing the same observation sequence. The
average mean square error (AMSE) of both filters obtained for all nine simulation scenarios
are reported in Table 5.1. Table 5.2 reports the average times1 required for the CBPF and
the CSPF to produce a single-step estimate of the state.

Figures 5.11–5.13 report the averages of ten independent runs of the CBPF and the CSPF
each using 1000 particles. The estimates were obtained by the CBPF and the CSPF starting
from initial positions: [5 15]T , [10 10]T , and [15 5]T . The outcomes of the estimation of
the state variables x(1) and x(2) are presented in Figure 5.11 and Figure 5.12, respectively.
The trajectory tracking is presented in Figure 5.13.

5.4 Conclusions and Discussion

Saturated Stochastic Dynamical Systems (SSDS) are severely nonlinear models that are often
met in real life problems. Due to their complicated dynamical structure the states or the
parameters of the SSDS can be accurately estimated only by non-parametric filters such as
Particle Filters (PF).

In this chapter, a novel nonparametric filtering method has been derived. This method
is designed specifically for SSDSs, i.e., stochastic systems with dynamics characterized by a
constrained probability distribution exhibiting singularity on the boundary of the constraint
region. The method hereby introduced exploits the specific structure of the SSDS in order
to design an importance distribution that accounts for the most recent measurements in the

1The algorithm was executed in Matlab 7.9 on a Mac OS X with an Intel Core 2 Duo 2.66 GHz CPU with
4 GB RAM
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Figure 5.12: Tracking of the true state x2 (thick solid line) achieved by the CBPF (thin solid
line with pluses) and by the CSPF (thin solid-dotted line). The estimates are obtained as the
average of ten independent filters each utilizing 1000 particles. The estimates were obtained by
the CBPF and the CSPF starting from initial positions: [5 15]T (left), [10 10]T (middle),
and [15 5]T (right).
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Figure 5.13: Trajectory of the true target (filled squares) and the estimates computed by
the CBPF (solid line with pluses) and by the CSPF (solid-dotted line) in two dimensional
plane. The estimates are obtained as the average of ten independent filters each utilizing 1000
particles. The estimates were obtained by the CBPF and the CSPF starting from initial posi-
tions: [5 15]T (left), [10 10]T (middle), and [15 5]T (right).
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Table 5.1: AMSE of the CBPF and the CSPF

Number of particles
x(0) = [15 5]T N = 101 N = 102 N = 103

CBPF 52.62 28.99 22.33
CSPF 9.03 6.69 5.91

Number of particles
x(0) = [10 10]T N = 101 N = 102 N = 103

CBPF 53.78 23.61 20.05
CSPF 8.27 4.82 3.71

Number of particles
x(0) = [5 15]T N = 101 N = 102 N = 103

CBPF 150.32 30.07 22.06
CSPF 12.41 6.72 5.88

Table 5.2: Average computational times (in seconds) of the CBPF and the CSPF

Number of particles
N = 101 N = 102 N = 103

CBPF 0.0128 0.0365 0.2318
CSPF 0.1729 1.2692 12.7369

prediction step of the filtering algorithm. To achieve this we define a method of detecting the
saturation of the particles from the collected measurements.

In Section 5.2 an efficient method for estimating the states of one-dimensional SSDSs, the
Saturated Particle Filter (SPF), has been derived. The SPF combines the projection approach
of [Shao et al., 2010] with a novel sampling method that effectively detects the saturation
moment and forces the particles to rapidly jump to that part of the state space which is close
to the saturation region. Such sampling is obtained by designing an importance density function
that makes use of both the measurement and the knowledge of the system constraints.

The results of Section 5.3 extend the SPF introduced in Section 5.2.2, which makes an effec-
tive use of the measurements during the importance sampling, to the case of multidimensional
SSDSs. Such extension requires an extra condition to be imposed on the system, namely the
constraints of the system need to be convex sets in Rn. With the convexity assumption sat-
isfied, the multidimensional detection function can be properly defined. This function is then
used to derive the multidimensional Convex Saturated Particle Filter (CSPF) that utilizes the
measurements to detect the saturation of the system while sampling new particles.

The algorithms derived in Section 5.2 and in Section 5.3 focus on improving the importance
sampling step of the PF methodology. Further improvements are possible by investigating the
resampling procedure within the PF framework. This topic is out of the scope of this chapter
and is instead discussed in details in Chapter 6.

The method has been tested in two case studies:

I. The SPF has been applied to a one-dimensional SSDS whose dynamics depends on an
unmodeled parameter that varies throughout the simulation. This models a shock change
in the conditions external to the system and causes mismatch between the dynamics of
the filter and the true dynamics of the system.

II. The CSPF has been applied to a two-dimensional SSDS whose dynamics are influenced
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by deterministic inputs.

In both simulation scenarios the performance of the proposed method has been compared
to the Constrained Bootstrap Particle Filter (CBPF).

For the first case study the simulations of the noisy-measurement system demonstrated that
the SPF outperforms the CBPF in terms of accuracy of tracking the signal that exhibit rapid
changes in the dynamics. Furthermore, the results of the simulations suggest that the SPF
is robust with respect to the choice of the detection function. While better performance is
achieved, the computational complexity of the new filter is comparable to the complexity of
the CBPF.

For the second case study the simulations showed that the CSPF outperforms the bench-
mark CBPF in terms of convergence speed as well as the accuracy of tracking the signal with
saturated dynamics. The computational time required by the new filter is approximately 6.5
times larger than the computational time of the CBPF. However, to achieve good performance
the CBPF requires many particles (more than 1000), whereas the CSPF is very accurate even
when using few particles (10 particles). Thus, given that the computational complexity of the
Particle Filter grows linearly with the number of particles used, the CSPF outperforms the
benchmark CBPF in both accuracy and computational time.

Thus the results of both considered case studies showed that in each case our method
outperforms the benchmark filter in terms of accuracy, speed of convergence, and numerical
efficiency. The positive outcomes of the simulations call for the theory to back the results of
the experimental studies. This call is answered in Chapter 6 where the asymptotic properties
of the SPF are formally established.

Finally, we need to mention that, in general, the accuracy of the estimation depends on
the appropriate choice of the detection function. The optimal construction of the detection
function is still a matter of ongoing research.
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Chapter 6

Asymptotic Properties of the

Saturated Particle Filter

Parts of this chapter were published in:

• “Saturated Particle Filter: Almost Sure Convergence and Improved Resampling”, Auto-
matica, 49 (1):1477-159, 2013, Pawe l Miros law Stano, Zsófia Lendek, and Robert Babuška.

Abstract

Nonlinear stochastic dynamical systems are widely used to model physical processes. In many
practical applications, the state variables are defined on a compact set of the state space, i.e.,
they are bounded or saturated. To estimate the states of systems with saturated variables,
the Saturated Particle Filter (SPF) has been developed. This filter exploits the structure of
the saturated system using a specific importance sampling distribution. In this chapter we
investigate the asymptotic properties of the filter, in particular its almost sure convergence
to the true posterior PDF. Furthermore, an improved SPF is developed that uses a novel
resampling procedure to overcome the practical shortcomings of the original SPF. We prove
that this new filter also converges almost surely to the true posterior PDF. Both versions of
the SPF are presented in easy to implement algorithmic forms.

6.1 Introduction

As was indicated in Chapter 3, the Particle Filter (PF) approximates the true posterior PDF
of the state of the dynamical system by a set of N discrete samples. Thus, the question
that naturally arises is whether the approximation converges to the true posterior PDF as
N → ∞, and if yes in what sense? Extensive studies on the convergence properties of the
PF have been conducted in [Cristian and Doucet, 2002; Doucet et al., 2001; Künsch, 2005].
In [Cristian and Doucet, 2002; Doucet et al., 2001] two types of convergence have been discussed,
1) almost sure convergence and 2) convergence in the mean square error sense, and conditions
that guarantee either type of convergence have been derived. The focus of [Künsch, 2005] is more
on investigating relations between the sample size N and the time step k. Moreover, [Künsch,
2005] presents a number of interesting results regarding asymptotic behavior of the variance of
the estimator.
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In this chapter we consider the almost sure convergence of the Saturated Particle Filter
(SPF) to the true posterior PDF. First, we derive sufficient conditions for the almost sure
convergence of the SPF from Section 5.2.2. Next, we propose an improved version of the SPF
with a novel resampling procedure and we prove that it also converges almost surely to the
true posterior PDF. In both cases we discuss the practical meaning of the constraints that
ensure the filter’s convergence properties. Furthermore, both algorithms are presented in an
easy-to-implement algorithmic form.

The chapter is structured as follows. In Section 6.2 we present background information
regarding stochastic systems theory. In Section 6.3 we discuss asymptotic properties of the SPF
described in Section 5.2.2 and originally proposed in [Stano et al., 2011]. The improved version
of the SPF is derived in Section 6.4, where we also prove the almost sure convergence of the
new improved Saturated Particle Filter (iSPF) to the true posterior PDF. Section 6.5 concerns
practical considerations regarding the implementation of the iSPF and we discuss the practical
properties of the detection function. Furthermore, we compare the iSPF and the SPF with the
benchmark BPF in numerical simulations. Section 6.6 concludes the chapter.

6.2 Preliminaries

We start this section with giving the basic definitions that are further used to establish the
asymptotic properties of the SPF. Then, we recall the theorems dealing with the convergence
properties of the PFs. A comprehensive overview of the presented topics can be found in [Cris-
tian and Doucet, 2002; Doucet et al., 2001; Meyn and Tweedie, 1993].

Definition 6.1 (Feller kernel). The transition probability kernel K(−|·) on (X,ΣX,P) has the
Feller property1 if, for every continuous and bounded function ϕ, the function

z →
∫

X

ϕ(x)K(dx|z) (6.1)

is continuous and bounded [Doucet et al., 2001].

In the following, we show that the PF can be defined as an operator on the space of proba-
bilistic measures P (X), where X is a given vector space. The construction of such an abstract
operator requires some extra effort, but it allows us to derive simple conditions that guarantee
good asymptotic behavior of a generic PF.

We start by introducing the operators [Cristian and Doucet, 2002] that will be used in the
proof of convergence.

Let Kk be a transition probability kernel on the probability space (X,ΣX,P) defined by (3.78)
and let K̃k be an arbitrary probability kernel that is absolutely continuous with respect to Kk.
Furthermore, let gk be a likelihood function defined by (3.79) and let ωk be a weighted likelihood
function defined by:

ωk (y, x|xk) :=
gk+1 (y|x)Kk (x|xk)

K̃k (x|xk, y)
. (6.2)

Definition 6.2 (Prediction operator). The prediction operator bk maps the probabilistic mea-
sure ν ∈ P (X) into the probabilistic measure bk (ν) ∈ P (X), defined by

[bk (ν)] (A) :=

∫

X

K̃k (A|xk, yk+1) ν (dxk) , (6.3)

1Weak Feller property by the definition of [Meyn and Tweedie, 1993].
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for every A ∈ ΣX.

Definition 6.3 (Update operator). For given yk+1 and xk, the update operator ak maps the
probabilistic measure ν ∈ P (X) into the probabilistic measure ak (ν) ∈ P (X), defined by

∫

X

ϕ (x) [ak (ν)] (dx) :=

[∫

X

ϕ (x)ωk (yk+1, x|xk) ν (dx)

] [∫

X

ωk (yk+1, x|xk) ν (dx)

]−1

(6.4)

for every continuous and bounded function ϕ.

Definition 6.4 (Multinomial sampling operator). The multinomial sampling operator cN as-
signs to the probabilistic measure ν ∈ P (X) its random discrete approximation cN,x (ν) according
to:

cN,x (ν) :=
1

N

N
∑

j=1

δ{Vj(x)}, (6.5)

where N > 0, x ∈ X, Vj, j = 1, ..., N are i.i.d. random variables on X with the common
distribution ν.

Equation (6.5) formally defines the empirical approximation of an arbitrary distribution ν
by means of Monte Carlo sampling.

A special case of importance sampling, which is employed in the BPF, is when it is desirable
to directly draw samples from the transition kernel Kk (−|·). In such a case K̃k (−|·) := Kk (−|·),
and ωk reduces to gk.

Definition 6.5 (Particle Filter). Let c̄N be the resampling operator on P (X) that maps the
measure ν into a random measure c̄N,· ∈ P (X) composed of N discrete random measures. The
Particle Filter is an operator kNk that transforms the empirical measure πN

k|k, which approximates

the state of the system at time k, into the empirical measure πN
k+1|k+1 at time k + 1:

πN
k+1|k+1 = kNk

(

πN
k|k

)

:=
[

c̄N ◦ ak ◦ cN ◦ bk
]

(

πN
k|k

)

. (6.6)

The relation between this abstract definition and the standard formulation of the PF is the
following:

I. Prediction stage: First, the predicted state density is computed by applying the operator
bk, defined in Definition 6.2, to the empirical measure πN

k|k. Then the predicted state
density is approximated by N random samples obtained by applying the sampling operator

cN (Definition 6.4) to bk

(

πN
k|k

)

.

II. Update stage: After the prediction stage, the updated state density is computed as the

output of the update operator ak (Definition 6.3) applied to cN ◦ bk

(

πN
k|k

)

. Finally,

applying the operator c̄N to the updated state density corresponds to the resampling step
of the PF.

The asymptotic properties of the PF can be established as the following theorem:
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Theorem 6.1 (Convergence of the generic PF [Cristian and Doucet, 2002]). Let us assume
that for each k the importance kernel K̃k is Feller, and the likelihood function ωk is bounded,
continuous, and strictly positive. Furthermore, let c̄N be a resampling operator such that for
every bounded function ϕ, there exists a constant L such that:

E

[

(∫

X

ϕ(x)
[

c̄N,· (ν)
]

(dx) −
∫

X

ϕ(x)ν(dx)

)4
]

≤ L

N2
. (6.7)

Then, as N → ∞, the empirical measure πN
k+1|k+1 defined by (6.6) converges almost surely

towards the true posterior PDF πk+1|k+1.

6.3 Asymptotic Properties of the SPF Under Standard

Resampling

In this section we investigate asymptotic properties of the SPF with respect to Theorem 6.1.
First, we prove the theoretical convergence of the SPF. Second, we discuss the practical conse-
quences of the convergence conditions.

6.3.1 Theoretical Results

We start with formulating the SPF algorithm in terms of the operator notation introduced in
Section 6.2.

Definition 6.6 (Saturated Particle Filter). Consider the SSDS defined by (5.1a)-(5.1c) and
(5.24), and let α be an arbitrary detection function satisfying Definition 5.6. Furthermore, let
Kk be the transition probability kernel and gk be the likelihood function corresponding to the
state model (5.1a) and the observation model (5.1b) respectively. The Saturated Particle Filter
(SPF) is a PF with the transition probability kernel K̃k defined by:

K̃k (x|xk, yk+1) := qαk+1 (xk, yk+1) δ{C(xk)} (x)

+
1 − qαk+1 (xk, yk+1)

1 − qk+1 (xk)
Kk (x|xk)1[0,C(xk))(x), (6.8)

and with the weighted likelihood function defined by

ω̃k (y, x|xk−1) := gk (y|x)

(

1 − qk (xk−1)

1 − qαk (xk−1, y)
1[0,C(xk−1))(x) +

qk (xk−1)

qαk (xk−1, y)
δC(xk−1)(x)

)

, (6.9)

where the predicted probability of saturation qk and the updated probability of saturation qαk are
defined as:

qk (x) :=

∫ +∞

C(x)

Kk (dz|x) , (6.10)

qαk (x, y) :=







1 if qk (x) + α (y − hk+1 (C (x))) > 1,
0 if qk (x) + α (y − hk+1 (C (x))) < 0,
qk (x) + α (y − hk+1 (C (x))) otherwise.

(6.11)
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It is easy to see that Definition 6.6 is an abstraction of Algorithm 5.2.
In what follows we derive sufficient conditions that, if satisfied, ensure the almost sure

convergence of the SPF to the true posterior PDF πk+1|k+1. We start with two technical
lemmas:

Lemma 6.1. Let Kk be a bounded Feller kernel and let C : R+ → R+ be a continuous
function. Then, for every bounded and continuous function ϕ, the function

z →
∫ C(z)

0

ϕ(x)Kk(dx|z) (6.12)

is continuous.

Proof. Let {zn} be a sequence in R+ such that zn → z0 as n → +∞. We have:

∣

∣

∣

∣

∣

∫ C(zn)

0

ϕ(x)Kk(dx|zn) −
∫ C(z0)

0

ϕ(x)Kk(dx|z0)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫ C(zn)

0

ϕ(x)Kk(dx|zn) −
∫ C(z0)

0

ϕ(x)Kk(dx|zn)

∣

∣

∣

∣

∣

(6.13a)

+

∣

∣

∣

∣

∣

∫ C(z0)

0

ϕ(x)Kk(dx|zn) −
∫ C(z0)

0

ϕ(x)Kk(dx|z0)

∣

∣

∣

∣

∣

. (6.13b)

The term (6.13b) converges to zero by the Feller property of Kk. Thus, let us focus on (6.13a).
We have:
∣

∣

∣

∣

∣

∫ C(zn)

0

ϕ(x)Kk(dx|zn) −
∫ C(z0)

0

ϕ(x)Kk(dx|zn)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ C(zn)

C(z0)

ϕ(x)Kk(dx|zn)

∣

∣

∣

∣

∣

(6.14a)

≤ ‖ϕ‖∞ ‖Kk(·|zn)‖∞

∣

∣

∣

∣

∣

∫ C(zn)

C(z0)

dx

∣

∣

∣

∣

∣

(6.14b)

= ‖ϕ‖∞ ‖Kk(·|zn)‖∞ |C (zn) − C (z0)| .
(6.14c)

The term (6.14c) converges to zero by the continuity of C.

Lemma 6.2. Assume that Kk is a bounded Feller kernel. Furthermore, let α, C, z → Kk (z|·)
and hk+1 be continuous functions. Then, the kernel K̃k defined by (6.8) has the Feller property.

Proof. First, let us observe that by Lemma 6.1 the function qk is continuous. Consequently,
the function qαk is continuous by the continuity of qk, α, C and hk+1 (·, 0).

Let ϕ be a bounded continuous function on R. Then the following holds:

∫

R

ϕ(x)K̃k (dx|z, y) = qαk+1 (z, y)ϕ (C (z)) (6.15a)

+
1 − qαk+1(z, y)

1 − qk+1(z)

∫ C(z)

0

ϕ(x)Kk (dx|z) . (6.15b)

The continuity of the functions in (6.15b) follows by the continuity of qk, qαk , α, C and by
Lemma 6.1.
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Lemma 6.3. Assume that the likelihood function gk is bounded, continuous and strictly positive.
Also, let α, C, z → Kk (z|·) and hk+1 be continuous functions. Furthermore, let us assume that
there exist positive constants M1 and M2 such that for every x ∈ R it holds:

0 < M1 ≤ qk(x) ≤ M2 < 1. (6.16)

Then, if the detection function α is chosen so that it satisfies the condition:

∀x ∈ R : −M1 < α(x) < 1 −M2, (6.17)

the weighted likelihood function ωk defined by (6.9) is continuous, bounded and strictly positive.

Proof. Continuity of ωk follows from the continuity of gk, qk, qαk , and C.
By (6.17) there exists ǫ > 0 such that:

−M1 + ǫ ≤ α(x) ≤ 1 −M2 − ǫ (6.18)

holds for every x ∈ R. Hence, for every x, y ∈ R we have

qαk (x, y) = qk(x) + α (y − hk+1 (C (x))) (6.19a)

≤ M2 + 1 −M2 − ǫ (6.19b)

≤ 1 − ǫ. (6.19c)

Similarly, we deduce that for every x, y ∈ R it holds:

qαk (x, y) ≥ ǫ. (6.20)

Therefore, by (6.9), we have

‖ωk‖∞ ≤ ‖gk‖∞
1

ǫ
, (6.21)

hence, ωk is bounded.
Finally, strict positivity of ωk follows by the strict positivity of gk and by (6.16).

The asymptotic properties of the SPF are described by the next theorem:

Theorem 6.2 (Convergence of the SPF: cN–resampling). Let us consider a SPF kNk with the
resampling operator cN defined by Definition 6.4. If

I. Kk is a bounded Feller kernel,

II. gk is bounded, continuous and strictly positive,

III. α, C, z → Kk (z|·) and hk+1 are continuous functions,

IV. conditions (6.16) and (6.17) are satisfied,

then kNk

(

πN
k|k

)

converges almost surely towards the true posterior PDF πk+1|k+1.

Proof. It has been proven by [Cristian and Doucet, 2002] that the multinomial sampling op-
erator cN satisfies (6.7). Furthermore, by Lemmas 6.1–6.3, the kernel K̃k is Feller, and the
weighted likelihood function ωk is bounded, continuous and strictly positive. Therefore, by

Theorem 6.1, kNk

(

πN
k|k

)

converges almost surely towards the true posterior PDF πk+1|k+1.
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6.3.2 Practical Considerations

Let us now discuss the meaning of conditions I)–IV) of Theorem 6.2 from the practical per-
spective.

Assumptions I)–III) of Theorem 6.2 ensure that the model is “appropriately regular”, which
is the case in most real life applications. Therefore, we can safely conclude that conditions
I)–III) are not very restrictive from the practical point of view.

Assumption IV) of Theorem 6.2 is more problematic. In particular, ensuring that (6.16) is
satisfied is not trivial, because often the function qk cannot be evaluated analytically [Stano
et al., 2010]. Fortunately, in practice, we do not need to compute the values qk (x) for every x ∈
R. It is sufficient to check whether (6.16) holds for every particle xi

k−1, i.e., we need to check
whether there exist positive constants M1 and M2 such that for every i = 1, ..., N

0 < M1 ≤ qik ≤ M2 < 1 (6.22)

holds.
Obviously, (6.22) is satisfied if and only if

min
i

{

qik
}

> 0, (6.23a)

max
i

{

qik
}

< 1. (6.23b)

Hence, for each particle the saturation event is possible, but not certain.

If the conditions in (6.23) are satisfied, we can choose α such that

−min
i
{qik} (1 − ǫ) ≤ α ≤

(

1 − max
i

{qik}
)

(1 − ǫ) , (6.24)

where ǫ > 0 is small enough so that α is nontrivial.
The advantage of choosing M1, M2 and α so that (6.22) and (6.24) hold, is the low compu-

tational complexity of determining M1, M2, and α that satisfy condition IV) of Theorem 6.2.
However, this approach has two shortcomings that need to be tackled.

I. α becomes recursive. By (6.24) we see that the conditions that α needs to satisfy depend
on the values of qi at time step k. Thus, α is not any more defined for all time steps k,
but it becomes a recursive function αk that needs to be updated at each iteration of the
algorithm.

II. α becomes negligible. Since both min and max are monotonic functions, with the increasing
number of particles the image of αk becomes narrower. This means that the influence
of αk becomes negligible, hence the SPF becomes undistinguishable from the BPF.

Both issues are addressed in the next section.

6.4 Asymptotic Behavior of the SPF Under Improved Re-

sampling

In this section we derive an improved SPF algorithm that allows for a recursive computation of
the detection function αk. Furthermore, by introducing a new resampling procedure, we make
sure that at each time step k the influence of αk is not trivial.
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6.4.1 Motivation

As it was indicated in Section 6.3, if there exists a particle xi such that qi ≈ 0 or qi ≈ 1, then α
becomes approximately zero, and therefore its influence becomes negligible. If the weight ωi

of such a particle xi is close to 1 it means that the uncertainty associated with the estimate
is very small. Therefore, in the next filtering step, it is reasonable to “trust” the model and
limit the influence of the noisy measurement on the subsequent estimate. In general, the same
reasoning holds if there exists a small ǫ such that in one of the intervals [0, ǫ] or [1 − ǫ, 1] there
are enough qis so that the weights of the associated particles almost sum up to 1.

The situation is fundamentally different when we encounter a low weighted particle xi such
that either qi ≈ 0 or qi ≈ 1. The probability of such an event is very high, especially when we
use a large set of particles, yet such a particle does not give us any important information about
the system. Nevertheless, by (6.24), the existence of such a particle significantly decreases the
influence of α. To avoid this undesirable situation we need to discard the low weighted particles
such that the corresponding qis lay in either of the intervals [0, ǫ] or [1 − ǫ, 1], and in their
place resample an equal number of particles in the “high probability” regions. Such resampling
only slightly influences the posterior PDF πN

k|k that approximates the true posterior PDF πk|k.
This is because the discussed resampling procedure cuts only the “light” tails, i.e., tails with
negligible probability mass, thus also the resampled particles add insignificant weights to the
approximation πN

k|k. Nevertheless, by applying such resampling algorithm we are sure that α is

not trivial, and that the interval [−ǫ, ǫ] is in the image of α, i.e., [−ǫ, ǫ] ⊂ α(R). Furthermore,
the number of particles remains constant throughout the filtering.

6.4.2 New Resampling

Let us now formalize the heuristic approach described in Section 6.4.1. Following the convention
described in Section 5.2.2 we introduce a new resampling procedure by defining an operator c̄N

acting on the space of probability measures on
(

R+,ΣR+

)

. To define such an operator we first
need to introduce the concept of the ǫ–set:

Definition 6.7 (ǫ–set). Consider the SPF setting according to Definition 6.6, and let qk be a
function defined by (6.10). For a given ǫ > 0 we define the ǫ–set Ωǫ by:

Ωǫ := {x ∈ R+ : 1 − ǫ > qk(x) > ǫ} . (6.25)

Let us now consider an arbitrary probability measure ν on
(

R+,ΣR+

)

. For a given ǫ we
define a new probabilistic measure νǫ as a measure ν conditioned on Ωǫ, i.e., for every A ∈ ΣR+

it holds:
νǫ (A) := ν (A|Ωǫ) . (6.26)

Definition 6.8 (Resampling operator for the SPF). Let ν be a probabilistic measure on
(

R+,ΣR+

)

,
and let ǫ̃ > 0 be a given constant. Let ǫ0 > 0 be the maximal positive constant such that the
ν-measure on Ωǫ0 is greater or equal to 1 − ǫ̃, i.e., ǫ0 is given by:

ǫ0 := max {ǫ : ν (Ωǫ) ≥ 1 − ǫ̃} . (6.27)

The new resampling operator c̄N assigns to every probabilistic measure ν ∈ P
(

R+,ΣR+

)

its
random approximation c̄N,x (ν) given by

c̄N,x (ν) :=
1

N

N
∑

j=1

δṼj(x)
, (6.28)
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6.4. Asymptotic Behavior of the SPF Under Improved Resampling

where {Ṽj}Nj=1 is a set of N i.i.d. random variables distributed according to νǫ0 .

Thus, the newly defined resampling operator c̄N , when applied to a measure ν, returns a
probabilistic measure concentrated on the set that has a ν-measure close to 1 − ǫ̃. When used
in the recursive framework of the SPF, the operator c̄N guarantees that the interval [−ǫ0, ǫ0] is
in the image of the detection function α, i.e., [−ǫ0, ǫ0] ⊂ α(R).

Note that the operator c̄N depends on both the sample size N and on the constant ǫ̃ > 0.
In what follows we show that the choice of ǫ̃ is not arbitrary but it is strictly determined by
the sample size N . This is why in Definition 6.8 we did not use any symbol indicating the
dependency of c̄N on ǫ̃.

6.4.3 Almost Sure Convergence

In this section we prove that as the number of samples N increases, the SPF with the resampling
operator c̄N from Definition 6.8 converges almost surely to the true posterior PDF πk+1|k+1.

First, we prove the following two lemmas.

Lemma 6.4. Let ν be an arbitrary probabilistic measure on
(

R+,ΣR+

)

and let ǫ̃ > 0 be a

given positive constant. Furthermore, let
{

Ṽj

}N

j=1
be a set of i.i.d. variables with a common

distribution νǫ0 , with ǫ0 defined in (6.27). Finally, let ϕ be a continuous and bounded function
on R+. Then, for every 1 ≤ j ≤ N the following holds:

Eν

(

ϕ
(

Ṽj

)

−
∫

R+

ϕ(x)dν(x)

)

≤ 2‖ϕ‖∞ǫ̃ (6.29)

where ‖ · ‖∞ is the supremum norm on R+.

Proof. By (6.26) the distribution νǫ0 of the variables Ṽj is a measure ν conditioned on the
set Ωǫ0 . Therefore, we have:

∣

∣

∣

∣

∣

Eν

(

ϕ
(

Ṽj

)

−
∫

R+

ϕ(x)dν(x)

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Eν

(

ϕ
(

Ṽj

))

−
∫

R+

ϕ(x)dν(x)

∣

∣

∣

∣

∣

(6.30a)

=

∣

∣

∣

∣

∣

∫

R+

ϕ(x)dνǫ0(x) −
∫

R+

ϕ(x)dν(x)

∣

∣

∣

∣

∣

. (6.30b)

By the definition of νǫ0 we can write the first integral in (6.30b) as

∫

R+

ϕ(x)dνǫ0(x) =

∫

R+∩Ωǫ0

ϕ(x)ν(Ωǫ0)−1dν(x). (6.31)

Let us split the second integral in (6.30b) into two integrals over R+ ∩ Ωǫ0 and R+ ∩ Ωc
ǫ0

respectively, i.e.,

∫

R+

ϕ(x)dν(x) =

∫

R+∩Ωǫ0

ϕ(x)dν(x) +

∫

R+∩Ωc
ǫ0

ϕ(x)dν(x). (6.32)
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Then, by (6.31)–(6.32), (6.30b) is bounded from above by:

∣

∣

∣

∣

∣

∫

R+∩Ωǫ0

ϕ(x)ν(Ωǫ0)−1dν(x) −
∫

R+∩Ωǫ0

ϕ(x)dν(x)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

R+∩Ωc
ǫ0

ϕ(x)dν(x)

∣

∣

∣

∣

∣

≤ ‖ϕ‖∞
(

|1 − ν (Ωǫ0)| + ν
(

Ωc
ǫ0

))

(6.33a)

≤ ‖ϕ‖∞ (ǫ̃ + ǫ̃) (6.33b)

= 2ǫ̃‖ϕ‖∞ (6.33c)

Lemma 6.5. Let ν be an arbitrary probabilistic measure on
(

R+,ΣR+

)

and let ǫ̃ > 0 be a

given positive constant. Furthermore, let
{

Ṽj

}N

j=1
be a set of i.i.d. variables with a common

distribution νǫ0 , with ǫ0 defined in (6.27). Finally, let ϕ be a continuous and bounded function
on R+. Then, the following holds:

Eν











1

N

N
∑

j=1

ϕ
(

Ṽj

)

−
∫

R+

ϕ(x)dν(x)





4





≤ 16

N2
‖ϕ‖4∞

(

3 + 4ǫ̃ + 6Nǫ̃2 + N2ǫ̃4
)

, (6.34)

where ‖ · ‖∞ is a supremum norm on R+.

Proof.

Eν











1

N

N
∑

j=1

ϕ
(

Ṽj

)

−
∫

R+

ϕ(x)dν(x)





4





(6.35a)

=
1

N4
Eν











N
∑

j=1

(

ϕ
(

Ṽj

)

−
∫

R+

ϕ(x)dν(x)

)





4





(6.35b)

=
1

N4

N
∑

j1,...,j4=1

Eν

(

4
∏

k=1

(

ϕ
(

Ṽjk

)

−
∫

R+

ϕ(x)dν(x)

))

(6.35c)

Because the variables are mutually independent, the sum in (6.35c) can be decomposed into
the summation of the even terms:

N
∑

j=1

Eν

(

ϕ
(

Ṽj

)

−
∫

R+

ϕ(x)dν(x)

)4

(6.36a)

+ 6 ×
N
∑

j1>j2=1

Eν

(

ϕ
(

Ṽj1

)

−
∫

R+

ϕ(x)dν(x)

)2

× Eν

(

ϕ
(

Ṽj2

)

−
∫

X

ϕ(x)dν(x)

)2

, (6.36b)
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and the odd terms:

4 ×
N
∑

j1 6=j2=1

Eν

(

ϕ
(

Ṽj1

)

−
∫

R+

ϕ(x)dν(x)

)

× Eν

(

ϕ
(

Ṽj2

)

−
∫

R+

ϕ(x)dν(x)

)3

(6.37a)

+ 12 ×
∑

j1 > j2 ≥ 1
j1, j2 6= j3 ≥ 1

2
∏

k=1

Eν

(

ϕ
(

Ṽjk

)

−
∫

R+

ϕ(x)dν(x)

)

× Eν

(

ϕ
(

Ṽj3

)

−
∫

R+

ϕ(x)dν(x)

)2

(6.37b)

+ 24 ×
N
∑

j1>...>j4=1

4
∏

k=1

(

Eν

(

ϕ
(

Ṽjk

)

−
∫

R+

ϕ(x)dν(x)

))

(6.37c)

Since ν is a probabilistic measure, the integral
∣

∣

∣

∫

R+
ϕ(x)dν(x)

∣

∣

∣ is bounded from above by ‖ϕ‖∞.

Thus, for every j ∈ {1, ..., N} and every k ∈ N we have:

Eν

(

ϕ
(

Ṽj

)

−
∫

R+

ϕ(x)dν(x)

)k

≤ 2k‖ϕ‖k∞. (6.38)

Furthermore, given Lemma 6.4, the first-order terms are bounded by 2‖ϕ‖∞ǫ̃. Therefore,
by (6.36a)–(6.37c) and (6.38), the expression (6.35a) is bounded from above by:

24

N4
‖ϕ‖4∞ ×

(

N + 6

(

N
2

)

+ 4N(N − 1)ǫ̃ + 12N

(

N − 1
2

)

ǫ̃2 + 24

(

N
4

)

ǫ̃4
)

≤ 24

N2
‖ϕ‖4∞

(

3 + 4ǫ̃ + 6Nǫ̃2 + N2ǫ̃4
)

(6.39)

Theorem 6.3 (Convergence of the SPF: c̄N–resampling). Let us set ǫ̃ = 1√
N

and let c̄N be

the resampling operator introduced in Definition 6.8. Furthermore, let kNk be the SPF, with the
resampling operator c̄N such that the following hold:

I. Kk is a bounded Feller kernel,

II. gk is bounded, continuous and strictly positive,

III. α, C, z → Kk (z|·) and hk+1 are continuous functions.

Then kNk

(

πN
k|k

)

converges almost surely towards the true posterior PDF πk+1|k+1.

Proof. For a given ν ∈ P
(

R+,ΣR+

)

, by the definition of c̄N we have

Eν

((

∫

R+

ϕ(x)
[

c̄
N,· (ν)

]

(dx)−

∫

R+

ϕ(x)ν(dx)

)4)

= Eν





(

1

N

N
∑

j=1

ϕ
(

Ṽj

)

−

∫

R+

ϕ(x)dν(x)

)4


 ,

(6.40)

where
{

Ṽj

}N

j=1
is a set of i.i.d. random variables distributed according to νǫ0 . Since ǫ̃ = 1√

N

then, by Lemma 6.5, we have:

Eν











1

N

N
∑

j=1

ϕ
(

Ṽj

)

−
∫

R+

ϕ(x)dν(x)





4





≤ 176

N2
‖ϕ‖4∞, (6.41)
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thus the resampling operator c̄N satisfies (6.7). Furthermore, by Lemmas 6.1–6.2, the kernel
K̃k is Feller. Moreover, by the definition of the operator c̄N , (6.16)–(6.17) are satisfied (with
M1 = ǫ0 and M2 = 1−ǫ0) hence, by Lemma 6.3, the weighted likelihood function ωk is bounded,

continuous and strictly positive. Therefore, by Theorem 6.1, kNk

(

πN
k|k

)

converges almost surely

towards the true posterior PDF πk+1|k+1.

6.5 Properties of the Improved Saturated Particle Filter

Let us now discuss the practical properties of the improved Saturated Particle Filter (iSPF),
i.e., the SPF with the resampling operator c̄N , in view of Theorem 6.3.

6.5.1 Implementation

The conditions I)–III) of Theorem 6.3 are consistent with the conditions I)–III) of Theorem 6.2
and play exactly the same role, i.e., they ensure an “appropriate smoothness” of the model.
Thanks to the construction of the operator c̄N , Condition IV) of Theorem 6.2 is not necessary
anymore in Theorem 6.3. Indeed, Conditions (6.16)–(6.17) are always satisfied with M1 = ǫ0
and M2 = 1 − ǫ0.

In practical applications at each filtering iteration we need to compute ǫ0 according to
(6.27). Since the real SPF algorithm approximates the true PDF by the set of N samples
{(

xi, ωi, qi
)}N

i=1
, given ǫ̃, we compute ǫ0 by:

ǫ0 := max







ǫ :
∑

i:1−ǫ≥qi≥ǫ

ωi ≥ 1 − ǫ̃







. (6.42)

A possible solution to the optimization problem (6.42) is presented in Algorithm 6.1.

Algorithm 6.1 Computation of ǫ0

Input:
{(

ωi, qi
)}N

i=1
, ǫ̃

Initialize ǫ = 0
repeat
ǫ = ǫ + 1

N
until

∑

i:1−ǫ>qi>ǫ ω
i ≤ 1 − ǫ̃

ǫ0 = ǫ− 1
N

With ǫ0 chosen, the resampling procedure, represented abstractly by the operator c̄N , pro-
ceeds as follows. First, the algorithm discards the particles

(

xi, ωi, qi
)

such that either 1−ǫ0 < qi

or qi < ǫ0. Next, the scaled degeneracy measure N ′
eff is computed by

N ′
eff :=

1
N ′
∑

i=1

(ωi
k)2

, (6.43)

where N ′ is a number of particles remaining after the discarding step. If N ′
eff drops below a

specified threshold
N ′

T := NT ·N ′/N, (6.44)
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which means that the particles that were not discarded degenerate, all the particles are resam-
pled according to Algorithm 3.7.

If the degeneracy does not occur the algorithm resamples N −N ′ particles from the condi-
tional distribution νǫ0 , which is approximated by the empirical PDF

{(

xi,
ωi

∑N ′

j=1 ω
j

)}N ′

i=1

. (6.45)

Note that this resampling method has all the properties desired from the resampling al-
gorithm discussed in Section 6.4.1. The overall resampling procedure is summarized in Algo-
rithm 6.2.

Algorithm 6.2 Saturated Particle Filter: improved resampling

Input:
{(

xi, ωi, qi
)}N

i=1
, ǫ0, NT

Discarding step:
Discard the particles such that one of the following holds:

1 − ǫ0 < qi or qi < ǫ0

Compute the degeneracy measure for the remaining N ′ particles:

N ′
eff :=

1
∑N ′

i=1 (ωi)
2

Resampling step:
if N ′

eff < N ′
T then

resample
{(

xi, ωi
)}N

i=1
according to Algorithm 3.7

else
for i = 1 to N −N ′ do

draw xi from

xi ∼
{(

xi,
ωi

∑N ′

i=1 ω
i

)}N ′

i=1

ωi = 1
N−N ′

(

1 −∑N ′

i=1 ω
i
)

end for
end if

As indicated in Section 6.3.2, for the proper definition of the SPF the detection function α
needs to be defined recursively. Indeed, from (6.24) we can see that α depends on the set of

probabilities of saturation
{

qik
}N

i=1
. Therefore, for the recursive selection of the appropriate

detection function α we proceed as follows: first, we choose an arbitrary detection function α0,
and a constant ǫ > 0; then at each filtering step k = 1, 2, ... we compute the minimum and

maximum of the set
{

qik
}N

i=1
and set αk to be equal to

αk(z) := α0(z) ×
{

mini

{

qik
}

(1 − ǫ) for z < α−1
k−1(0)

(

1 − maxi

{

qik
})

(1 − ǫ) otherwise
(6.46)
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Algorithm 6.3 Update of the detection function αk

Input:
{

qik
}N

i=1
, α0, ǫ

Compute minimum and maximum:

MIN := min
i=1,...,N

{

qik
}

MAX := max
i=1,...,N

{

qik
}

if z < α−1
0 (0) then

αk(z) := α0(z)MIN (1 − ǫ)
else
αk(z) := α0(z) (1 − MAX) (1 − ǫ)

end if

This is summarized in Algorithm 6.3.

Note that the constant ǫ used in Algorithm 6.3 can be chosen arbitrarily from the inter-
val (0, 1). This gives us a degree of freedom in choosing between the stronger influence of α
(for small values of ǫ) and a stricter upper bound for the weighted likelihood function ωk (for
bigger values of ǫ).

The overall iSPF is summarized in Algorithm 6.4.

Algorithm 6.4 improved Saturated Particle Filter

Input:
{(

xi
k, ω

i
k, q

i
k

)}N

i=1
, αk, yk+1, ǫ,NT

Output:
{(

xi
k+1, ω

i
k+1, q

i
k+1

)}N

i=1
, αk+1

Prediction:
for i = 1 to N do

Compute qαi := qik + αk

(

yk+1 − hk+1

(

C
(

xi
k

)))

Compute xi
k+1 according to Algorithm 5.2

Compute ωi
k+1 according to Algorithm 5.2

Compute qik+1 :=
∫ +∞
C(xi

k+1)
P
(

F (xk, wk) = z|xi
k+1

)

dz

end for
Resampling:
Compute ǫ0 according to Algorithm 6.1
Resample particles according to Algorithm 6.2
for i = 1 to N do

Compute qik+1 :=
∫ +∞
C(xi

k+1)
P
(

F (xk, wk) = z|xi
k+1

)

dz

end for{C}ompute the predicted probabilities of saturation for the resampled particles
Update of the detection function:
Compute αk+1 according to Algorithm 6.3

6.5.2 Detection Function

Let us analyze the problem of α becoming negligible, mentioned in Section 6.3.2. By the
definition of the resampling operator c̄N and by (6.46), for each time step k = 1, 2, ... the
image of αk contains the interval [−ǫ0 (1 − ǫ) , ǫ0 (1 − ǫ)], i.e., [−ǫ0 (1 − ǫ) , ǫ0 (1 − ǫ)] ⊂ αk(R).
Therefore, αk is never trivial. However, the value of ǫ0 depends on the value of ǫ̃ (see (6.27)),
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which in view of Theorem 6.3, decreases with the rate 1√
N

when N → ∞. This means that

the measure νǫ0 of the set Ωǫ0 increases, hence by (6.25)–(6.27) ǫ0 decreases, and therefore the
image of αk becomes narrower.

The rate of decrease of ǫ0 depends on the particular shapes of both the distribution of the

probabilities of saturation
{

qik
}N

i=1
and of the distribution of weights

{

ωi
k

}N

i=1
. The following

example illustrates this dependency. First, let us assume that both sets
{

qik
}N

i=1
and

{

ωi
k

}N

i=1
are uniformly distributed on the interval [0, 1]. Then, for a given number of particles N , we
expect (in the statistical sense) to discard

√
N particles and the expected value of ǫ0 is equal

to 1
2
√
N

. Second, let us assume that the weights
{

ωi
k

}N

i=1
are again distributed uniformly on the

interval [0, 1], but the set
{

qik
}N

i=1
is approximated by the Gaussian distribution1 with mean 1

2

and the standard deviation 1
10 . In such a case, we still expect to discard

√
N particles at each

step, but this time the value of ǫ0 is given by 1
2 +

√
2

10 erf−1
(

2√
N

− 1
)

, where erf is the error

function defined by:

erf (z) :=
2√
π

∫ z

0

e−t2dt.

Table 6.1 compares the two cases for three different values of N .

Table 6.1: Results obtained by the SPF for different distributions of probabilities of satura-

tion
{

qik
}N

i=1
and weights

{

ωi
k

}N

i=1

{

qik
}N

i=1
,
{

ωi
k

}N

i=1
≈ U (0, 1)

N = 102 N = 104 N = 106

expected number of 10 100 1000
discarded particles
expected value of ǫ0 0.05 0.005 0.0005

{

qik
}N

i=1
≈ N

(

1
2 ,

1
10

)

,
{

ωi
k

}N

i=1
≈ U (0, 1)

N = 102 N = 104 N = 106

expected number of 10 100 1000
discarded particles
expected value of ǫ0 0.372 0.267 0.191

As we can see the expected value of ǫ0 is strongly dependent on the distribution of
{

qik
}N

i=1
.

Therefore, the influence of αk, which is determined by the value of ǫ0, also depends on the

shape of
{

qik
}N

i=1
. Let us explain the nature of this dependency by analyzing the results from

Table 6.1.
In the first case, where

{

qik
}N

i=1
≈ U (0, 1) (where ≈ denotes being distributed according

to a given distribution), the model assigns the same probability to all the possible values of
the probabilities of saturation qik. In such situations the standard Bayesian update procedure
should be more than sufficient in obtaining an accurate estimate. Thus, the small values of ǫ0,
and therefore the low influence of αk is acceptable.

In the second case, where
{

qik
}N

i=1
≈ N

(

1
2 ,

1
10

)

, most of qik are close to 1
2 . This means

that the model is very uncertain in predicting whether the saturation will occur or not. In
such cases the standard Bayesian approach is slow in detecting extreme changes of the system

1The set
{

qi
k

}N

i=1
is bounded, therefore by saying that it is approximated by Gaussian distribution we mean

a Gaussian with truncated tails and appropriately rescaled.
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(e.g., saturation). Thus, for this example, it is strongly recommended to enforce the update
procedure. For that we require a strong influence of αk, hence relatively large values of ǫ0.

Note that in both cases the expected number of discarded particles is small compared to
the total number of particles. Therefore, the problem of losing diversity of the samples [Aru-
lampalam et al., 2002] is avoided.

6.5.3 Numerical Example

We finish this section with a comparison of the SPF developed in Chapter 5, the iSPF derived
in this chapter, and the BPF discussed in Chapter 3. To illustrate the abilities of all three
methods we use the SSDS similar to the one discussed in Section 5.3.3, given by

xk+1 = min (xk + wk, C (xk)) , (6.47a)

yk = xk + vk, (6.47b)

where wk is a random variable distributed according to the exponential distribution, with
parameter θ, i.e., with the expected value Ewk = θ−1. The variable vk is a zero-mean Gaussian
variable with standard deviation σv. The boundary function C(·) is defined by:

C (x) := x + log(2)/θ. (6.48)

The state model (6.47a) is nonlinear and non-Gaussian, whereas the observation model (6.47b)
is both linear and conditionally Gaussian.

To simulate the process from the initial state x0 = 1, we used θ = 1, σv = 1. The length of
the simulation is 20 time steps. Note that because the variable wk is exponentially distributed,
the cumulative density function of the random variable xk+1 is known. Thus, the integral
in (6.10) can be computed analytically:

qik = exp
(

−θ
(

C
(

xi
k

)

− xi
k

))

. (6.49)

Figure 6.1 compares the results obtained by applying the BPF, the iSPF, and the SPF with
10 and 1000 particles respectively. All three filters use the model (6.47a)–(6.47b) with true
parameters. The offset of 0.5 is introduced by setting the initial state p0 for all three filters
to p0(·) = N (·; 0.5, 0.1). The resampling threshold NT is set to 30% of the number of particles.
Both the iSPF and the SPF are using the same detection function α0 given by:

α (z) =







1 if z > 2,
−1 if z < 0,

z − 1 otherwise,
(6.50)

where z = yk+1 − hk+1

(

C
(

xi
k

))

is evaluated at each time step.
Figure 6.1 presents the average of ten independent filters of each type applied to the simu-

lated signal. From both figures we can conclude that the new resampling procedure improves
the performance of the SPF introduced in Chapter 5. However, with the growing number of
samples the difference between the SPF and the iSPF becomes smaller. This is not surprising
since in the view of Theorems 6.2 and 6.3 both filters converge to the same distribution as the
number of samples increase.

Both simulations present results for a relatively small number of particles. This is because,
as it was previously explained the influence of the detection function is the most visible when
there are few particles. In this example we can observe that both the iSPF and the SPF
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Figure 6.1: The BPF, the iSPF and the SPF with 10 particles (left) and 1000 particles (right)
applied to the system (6.47a)–(6.47b). The thick solid line is the true value of the state, the
circles denote the measurements, the thin dashed line denotes the MMSE estimate obtained by
the BPF, the thin solid line represents the MMSE estimate of the state obtained by the iSPF
and the thin solid dotted line represents the MMSE estimate of the state obtained by the SPF.

outperform the BPF. This is confirmed by comparing the mean square errors1 (MSE) of the
three methods. Table 6.2 reports values of such errors for 10, 100, and 1000 particles.

Table 6.2: The MSE of three filters: the BPF, the SPF and the iSPF obtained for different
numbers of particles N = 10, 100, 1000.

N = 10 N = 100 N = 1000
BPF 0.3726 0.1808 0.1848
SPF 0.1516 0.0990 0.0946
iSPF 0.0693 0.0933 0.0880

Finally, Figure 6.2 shows the standard deviations of the MMSE estimates of three discussed
filters. It might be noticed that the spread of the MMSE estimates of filters using 10 particles
is much higher than the spread of the MMSE estimates of filters using 1000 particles. In the
latter case the spread is negligible, and in the former case it is considerable only for the BPF
during the first few steps of the simulation. Thus, the result of the simulation suggests that
the BPF, the SPF and the iSPF applied to the system (6.47) achieve similar performance in
terms of precision of the estimates.

6.6 Conclusions

In this chapter we have derived the improved Saturated Particle Filter (iSPF) which, similarly
to the Saturated Particle Filter (SPF), exploits a specific structure of the Saturated Stochastic
Dynamical Systems (SSDS) to improve the accuracy of the estimates. We have discussed

1By the MSE we understand the average squared deviation of the estimate from the true value of the state,
i.e.,

∑20
k=1 (x̂(k)− x(k))2 /20.
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Figure 6.2: The standard deviations of 10 MMSE estimates obtained by: the BPF (dashed
line), the iSPF (solid line) and the SPF (solid-dotted line) with 10 particles (left) and 1000
particles (right) applied to the system (6.47a)–(6.47b). Note that the standard deviations of
the filter employing 1000 particles is one order of magnitude lower than the standard deviations
of filters using 10 particles.

asymptotic properties of the SPF and the iSPF separately and we have given the conditions
under which each method converges to the optimal filter.

Summary

A characteristic feature of both filters is the incorporation of the measurement in the prediction
step of the Bayesian filtering. This is done through the use of the detection function α. The
advantage of the iSPF over the SPF comes from the novel resampling algorithm that makes
the former method more accurate and computationally more efficient. Furthermore, the intro-
duction of the aforementioned resampling makes the iSPF applicable for essentially any type of
one-dimensional SSDS, whereas the applicability of the SPF is limited to the class of systems
satisfying conditions of Theorem 6.2.

In Section 6.3 we have formulated the SPF as an operator acting on the spaces of probability
measures P (R+). Such an abstraction enables the proof of the almost sure convergence of the
posterior PDF given by the standard SPF to the true posterior PDF. We have also discussed
the practical advantages and shortcomings of the standard SPF.

In Section 6.4 we have derived the iSPF. This new algorithm is different from the stan-
dard SPF in two aspects:

I. A novel resampling procedure c̄N is used to discard the particles with low weights such
that the corresponding probability of saturation qi achieves extreme values (qi ≈ 0 or
qi ≈ 1),

II. The detection function αk is updated recursively at each time step k.

The resampling method c̄N helps reducing the computational load of the filter by preventing
expensive numerical operations on the particles with negligible weights. The dynamic nature of
the detection function increases the flexibility of the filter making it applicable to a wider class
of dynamical systems. We have shown in Theorem 6.3 that the iSPF also converges almost
surely to the true posterior PDF.
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Discussion

From Theorem 6.3 we have concluded that as the number of samples N grows the influence
of the detection function αk declines. This is not a surprise since the BPF can be considered
to be a SPF with a detection function αBPF = 0. Furthermore, both the iSPF and the BPF
converge almost surely to the same distribution. Thus, with the growing number of samples
the difference between these two estimators becomes smaller, hence the distance between αk

and αBPF also converges to zero.
The influence of the detection function αk is most noticeable when the number of samples N

is relatively small. The strength of the influence always depends on the distribution of the

weights
{

ωi
k

}N

i=1
and the distribution of the probabilities of saturation

{

qik
}N

i=1
. An analysis of

this dependency has been illustrated on an example described in Table 6.1. We have concluded

that the influence of αk is much stronger in the case when the set
{

qik
}N

i=1
is concentrated

around 1
2 , i.e.,

{

qik
}N

i=1
≈ N

(

1
2 ,

1
10

)

, than in the case when the distribution of the probabilities

of saturation
{

qik
}N

i=1
is heavy tailed, i.e.,

{

qik
}N

i=1
≈ U (0, 1). Furthermore, in Section 7.3.2

the illustrative example of SSDS is used to compare the performance of the iSPF, the SPF and
the BPF.

Further Research

In general, the influence of the detection function αk can be further modified by an appropriate
choice of the constant ǫ > 0 in Algorithm 6.3. This must be done carefully because, by (6.21),
the value of ǫ determines the upper bound for the weighted likelihood function ωk, hence also

the variance of the weights
{

ωi
k

}N

i=1
. The exact nature of these relations is a matter of the

ongoing research.

139



6. ASYMPTOTIC PROPERTIES OF THE SATURATED PARTICLE FILTER

140



Chapter 7

Solution to the Hopper

Estimation Problem

Parts of this chapter were published in:

• “Particle Filters for the Estimation of the Average Grain Diameter of the Material Ex-
cavated by a Hopper Dredger”, Proceedings of the IEEE Conference on Control Applica-
tions, Yokohama 2010, pp. 292-297, Pawe l Stano, Zsófia Lendek, Robert Babuška, Jelmer
Braaksma, and Cees de Keizer.

• “Estimation of the Soil-Dependent Time-Varying Parameters of the Hopper Sedimentation
Model: the FPF versus the BPF”, in press, Pawe l Miros law Stano, Adam K. Tilton, and
Robert Babuška.

Abstract

The Hopper sedimentation process describes the settling of the material excavated by the Drag-
Head and transported through the pipeline into the hopper. The settling rate of the material
strongly depends on the type of soil that was pumped into the hopper. The most important
soil-dependent parameter of the sedimentation process is the average grain diameter dm of
the excavated soil. The accurate knowledge of dm and the codependent variables such as the
sand bed height hs, sand bed mass ms, and the mixture density ρm is necessary to control
the sedimentation process in an optimal way. These variables need to be estimated online to
be integrated into the automated controller. In this chapter we discuss the algorithms that
compute the estimates of the aforementioned variables. To find an optimal solution we split
the estimation problem into several separate scenarios. We analyze them independently and
for each we recommend filtering algorithm.

7.1 Introduction

In Chapter 2 the dynamical sedimentation model was presented and the estimation problem
was formulated. To summarize, the continuous-time dynamical system that models the sedi-
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mentation process is given by

ṁs = fe (dm, ht, hs, Qo) fs (dm,mt, hs, ht) ρs (dm) , (7.1a)

ḣs =
fe (dm, ht, hs, Qo) fs (dm,mt, hs, ht)

A
, (7.1b)

ḣt =
Qi −Qo

A
, (7.1c)

ṁt = Qiρi −Qoρo, (7.1d)

and the estimation objective is to obtain online estimates of the sand bed height hs, sand
bed mass ms, average grain diameter dm, and the mixture density ρm from the available
measurements.

In this chapter we show how these problems can be solved. To find an optimal solution we
split the problem stated above into several distinct scenarios and analyze them independently.
Namely, we divide the sedimentation process into three operational modes, which arise naturally
during the dredging. These are:

I. Mode 1: The No-Overflow loading phase,

II. Mode 2: The Overflow loading phases with weak erosion influence,

III. Mode 3: The Overflow loading phases with strong erosion influence.

By considering each of the above modes separately we are able to analyze several estimation
techniques which, properly assigned to a suitable scenario, increase the efficiency of the estima-
tion in terms of accuracy and speed. Namely, we design four estimators:

I. Reduced-Order Particle Filter (ROPF),

II. Bootstrap Particle Filter (BPF),

III. Feedback Particle Filter (FPF),

IV. improved Saturated Particle Filter (iSPF).

Each of the aforementioned methods is characterized by different stochastic and numerical
properties. In Section 7.2 we derive the ROPF which proves to be an accurate solution of the
Hopper Estimation Problem for Mode 2. The ROPF is later used as a benchmark method in
Section 7.4 where the iSPF is applied to the Hopper Estimation Problem for Mode 3. Section 7.3
presents the applications of the FPF to the Hopper Estimation Problem for Mode 1. The
performance of the FPF is compared to the performance of the benchmark solutions provided
by the BPF. Section 7.5 concludes the chapter by providing the recommended solution to the
Hopper Estimation Problem for all the operational modes and the suggested directions for the
future research.

7.2 Overflow Loading Phases with Weak Erosion: the

Reduced-Order Particle Filter

In this section we derive a discrete-time simplified stochastic dynamical model of the sedimen-
tation process. Such a reduced-order system serves as a basis for the ROPF, which is a very fast
algorithm used to estimate the sand bed height hs, the sand bed mass ms and the average grain
diameter dm. In order to reduce the complexity of the complete sedimentation model (7.1),
which is discussed in detail in Chapter 2, we make the following assumptions:
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I. We consider the total hopper mass mt to be a known input to the system rather than a
state of the system.

II. In the dynamical model of the sand bed mass ms we approximate the nonlinear func-
tion Qs by a linear function of the sand bed height hs.

III. We consider the total height ht to be a stochastic input to the system with the associated
uncertainty included into the state equations.

The first assumption is justified by the fact that the total hopper mass mt is derived from
the draught of the ship, which is a function of the ship mass [Braaksma, 2008]. The draught is
calculated from the pressure sensors located in the bottom of the hull, which are very accurate.
The mass of the hopper is computed by subtracting the mass of an empty ship from the mass
of a full ship. The second assumption is justified by the dynamical relation between the ms

and hs (2.27) and the slowly varying dynamics of the sand bed height hs. The third assumption
is justified by the fact that the total height ht is measured on board of the ship.

Two variables are measured with uncertainty: the total height of the mixture in the hop-
per ht and the height of the sand bed hs. Both are assumed to be corrupted by zero-mean,
time-invariant Gaussian noises eot and eos with standard deviations σo

t and σo
s respectively. Two

more variables are assumed to be known inputs to the system: the outgoing flow rate Qo and
the total mass mt, which are assumed to be measured with negligible noises [Braaksma, 2008;
Lendek et al., 2008]. The measurements are taken with a sampling period Ts.

We show that to solve the Hopper Estimation Problem, the ROPF requires measurements
of the mixture density ρm. This is possible only during the overflow loading phases. Indeed,
experimental data suggest [Braaksma, 2008] that the mixture density ρm is equal to the overflow
density ρo. We show how this extra information is used by the ROPF. Furthermore, we show
that the ROPF that does not have access to the measurements of ρm fails to produce accurate
estimates. This means that the ROPF cannot be used during the No-Overflow loading phase
since the measurements of the mixture density ρm cannot be obtained.

7.2.1 Derivation of the Discrete-Time Stochastic System

In this section we derive the reduced-order discrete-time model that is used by the ROPF to
estimate the sand bed height hs, the sand bed mass ms, and the average grain diameter dm.

The derivative of hs at time step k is approximated by applying the first order Euler dis-
cretization:

d

dt
hs,k ≈ hs,k − hs,k−1

Ts
+ es, (7.2)

where the last term is an approximation error (time invariant, zero-mean Gaussian with stan-
dard deviation σs) and Ts is the sampling period. Combining (7.1b) with (7.2) yields the
dynamics of the sand bed height hs:

hs,k+1 = hs,k + Tses +
Ts

A
fe (dm,k, ht,k, hs,k, Qo,k) fs (dm,k, ρm,k) , (7.3)

where fe and fs are functions describing the erosion and the settling processes respectively.
The erosion factor fe, introduced in (2.23), in discrete-time variables is given by:

fe (dm,k, ht,k, hs,k, Qo,k) = max

(

1 −
Q2

o,k

(ke (dm,k) (ht,k − hs,k))
2 , 0

)

. (7.4)
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The settling function fs, derived from (2.24) by considering the mixture density ρm as a separate
variable, takes a simplified form:

fs (dm,k, ρm,k) = Avs0 (dm,k)
ρm,k − ρw

ρs (dm,k) − ρm,k

(

ρq − ρm,k

ρq − ρw

)β(dm,k)

, (7.5)

where the functions ke, ρs, vs0 and β model the soil dependent parameters as functions of the
average grain diameter dm as described in Section 2.4.

The variable ρm,k is in fact a function of the variables mt,k,ms,k, hs,k, and ht,k:

ρm,k (mt,k, hs,k, ht,k, dm,k) =
mt,k −Ahs,kρs (dm,k)

Aht,k −Ahs,k
. (7.6)

It is possible to further reduce the nonlinearity of the ROPF, e.g., by proper preprocess-
ing of the mixture density ρm,k before each filtering step. The relation between the mixture
density ρm,k and the performance of the filtering algorithm has been a subject of extensive
studies. The optimal strategy of how to handle ρm,k depends on multiple factors such as the
excavated soil type, the loading phase or the types of sensors available on board, to name a
few. In Section 7.2.2 we investigate two scenarios:

I. Scenario A: the mixture density ρm is known,

II. Scenario B: the mixture density ρm is unknown.

The dynamics of ms are obtained by noticing that by (7.1a)–(7.1b) we have:

ṁs = Aρs(dm)ḣs. (7.7)

Euler discretization of (7.7) combined with (7.2) leads to:

ms,k+1 = ms,k + Aρs(dm,k) (hs,k − hs,k−1) + TsAρs(dm,k)es + em, (7.8)

where em is a zero mean Gaussian noise with standard deviation σm.
Note, that in (7.8) the derivative of the discretized sand bed height d

dths,k is shifted one
time step backwards. This approach is justified by the slowly varying nature of the signal hs.

The evolution of the average grain diameter dm,k is described by a discrete-time random-
walk model:

dm,k+1 = dm,k + ed, (7.9)

where ed is a zero-mean Gaussian random variable with standard deviation σd. This is an
approximation of the continuous-time model presented in Section 2.5.

The variable ht is measured with the measurement error eot . Because we are not concerned
with the estimation of ht and we aim to reduce the order of the system we consider ht as an
input variable and include the associated uncertainty eot into the state equation (7.3) as a noise.
Then the state, input, and output vectors of the system are given by:

x =





ms

hs

dm



 , u =





mt

Qo

ht



 , y = hs.

The final form of the state-space model in these variables is expressed as:

x1,k+1 = x1,k + Aρs(x3,k) (x2,k − x2,k−1) + TsAρs(x3,k)es + em, (7.10a)

x2,k+1 = x2,k + Tses + TsG(xk,uk, e
o
t ), (7.10b)

x3,k+1 = x3,k + ed, (7.10c)

yk = x2,k + eos, (7.10d)
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where the function G is given by:

G (xk,uk, e
o
t ) =

fe (x3,k, u3,k + eot , x2,k, u2,k) fs (x3,k, ρm,k (xk,uk))

A
, (7.11)

and the variable ρm,k is given by:

ρm,k (xk,uk) =
u1,k −Ax2,kρs (x3,k)

Au3,k −Ax2,k
. (7.12)

Stochastic Properties of the System

It is assumed that errors es and em are independent and zero-mean Gaussians with variances σ2
s

and σ2
m respectively. Consequently, the random variable TsAρs(x3,k)es +em is also a zero-mean

Gaussian with the variance σ2
x1

given by

σ2
x1

= (TsAρs(x3,k)σs)
2

+ σ2
m. (7.13)

The random variable eot influences only the erosion part fe of the variable G. Therefore, since
during the first phase fe is constant, G(xk,uk) in (7.10b) becomes a deterministic function
of state and observation. Thus, by (7.5), as long as there is no overflow (Qo = 0), the vari-
able Tses + TsG(xk,uk) is normally distributed with mean µx2

and standard deviation σx2

given by:

µx2
= Tsvs0(x3,k)

ρm,k − ρw
ρs(x3,k) − ρm,k

(

ρq − ρm,k

ρq − ρw

)β(x3,k)

, (7.14a)

σx2
= Tsσs. (7.14b)

The probabilistic model (7.10b) for the constant-volume phase is more involved. The er-
ror Tses and the random variable TsG(xk,uk, e

o
t ) are independent, but the latter is not Gaus-

sian. Thus, the probability density function (PDF) px2
of the sum of these variables is a

convolution of their PDFs (px2,e and px2,G respectively):

px2
(y) =

∫

px2,e(y − z)px2,G(z)dz. (7.15)

The PDF of the normally distributed variable Tses is known. In order to derive the PDF
of TsG(xk,uk, e

o
t ) we use the following proposition:

Proposition 7.1. If X is a normally distributed random variable with mean µ and variance σ2

and C1, C2 are certain positive constants then the probability density function of the variable

C1 max

(

0, 1 − C2

X2

)

(7.16)

is given by

p
C1 max(0,1− C2

X2 )(x) =

√

C1C2

2πσ2(C1 − x)3
e−

C1C2
C1−x

+µ2

2σ2 cosh

(

µ
√
C1C2

σ2
√
C1 − x

)

1(0,C1](x) (7.17a)

+

(

1 −
∫ 1

0

√

C2

2πσ2y3
e−

C2
y

+µ2

2σ2 cosh

(

µ
√
C2

σ2√y

)

dy

)

δ0(x), (7.17b)

where 1(0,C1] is an indicator function and δ0 is the Dirac delta.
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The proof of Proposition 7.1 can be found in Appendix B. From Proposition 7.1 we can
define the PDF of the stochastic model (7.10b). At each time step k we define

Xk = ke(dm,k) (eot + ht,k − hs,k) , (7.18a)

C1,k = Tsvs0(dm,k)
ρ̂o,k − ρw

ρs(dm,k) − ρ̂o,k

(

ρq − ρ̂o,k
ρq − ρw

)β(dm,k)

, (7.18b)

C2,k = Q2
o,k. (7.18c)

Such an Xk is a normally distributed random variable with mean µk and variance σ2
k given by:

µk = ke(dm,k) (ht,k − hs,k) , (7.19a)

σ2
k = ke(dm,k)2σ2

t , (7.19b)

where σ2
t is the variance of the observation noise eot . Furthermore, both C1,k and C2,k defined

above are positive, and, therefore, the PDF of TsG(xk,uk, e
o
t ) follows by applying Proposi-

tion 7.1.
From the presented description it can be seen that the system (7.10) exhibits severe non-

linearities (7.3)–(7.6) together with non-Gaussian probabilistic behavior (7.17). Due to this,
the parametric filters, such as those described in Chapter 3.3, are not suitable for this system.
Therefore, to estimate the desired average grain diameter dm we use nonparametric methods.
The results of applying the PF are discussed in Section 7.2.2.

7.2.2 Numerical Simulations

Setting

The bootstrap PF described in Chapter 3 using the reduced-order model (7.10) is applied to
simulated data, generated using the probabilistic sedimentation model (7.1). The sampling
time Ts is set to 1[s]. We simulated each of the loading phases independently. In each case, the
value of the average grain diameter dm is changed twice during the phase. In the real process,
this corresponds to approaching a dredging area with a different type of in situ material. To
analyze the tracking properties of the filter, each change in dm is set to be step-like, which
models dramatic changes in the soil-type of the dredged material (during the real dredging
operation these transitions are generally smoother). The loading of the hopper is illustrated in
Figure 7.1a (No-Overflow and Constant Volume phases) where also the time evolution of the
total height of the mixture ht and the sand bed height hs are presented.

The hopper used for the simulations is of a rectangular parallelepiped form with the base
area A = 600[m2]. Furthermore, it is assumed that the excavated soil is sand with the mean
grain diameter dm varying between 0.35[mm] and 0.7[mm]. We use the ROPF with N = 1000
particles and the resampling threshold NT that was experimentally set to 500 (i.e., 50% of the
number of particles N). These, and the standard deviations of the noises used by model (7.10)
are summarized in Table 7.1

Table 7.1: Parameters of the ROPF

Number of Resampling Initial offset Standard deviations Standard deviations

particles threshold in d̂m[mm] in process noises in observation noises
σm[tons] σd[mm] σs[m] σo

t [m] σo
s [m]

1000 500 +0.3 1 0.1 0.001 0.1 0.05
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In the prediction step of the PF designed for the constant-volume phase, it is required, among
others, to sample from the random variable defined in (7.10b). However, drawing from the PDF
given by Proposition 7.1 is in general not straightforward. Therefore, for each particle xi

2,k−1

an approximation of the true random sample is generated by Algorithm 7.1.

Algorithm 7.1 Approximate sampling

Input: x2,k−1, µk−1, σk−1, C1,k−1, C2,k−1, Ts, σs

for i = 1, 2, . . . , N do
Draw two independent samples:

xi
1 ∼ N

(

xi
2,k−1, Tsσs

)

xi
2 ∼ N

(

µi
k−1, σ

i
k−1

)

Perform nonlinear transformation:
x̃i
2 = TsC

i
1,k−1 max

(

0, 1 − Ci
2,k−1/x

i
2

)

Assign approximated sample:
xi
2,k = xi

1 + x̃i
2

end for

Results for Scenario A (ρm is known)

We start by investigating the situation where the mixture density ρm is a known input to
the system. We simulate the sedimentation process for two loading phases: the No-Overflow
phase and the Constant-Volume phase. We do not investigate the filters performance during
the Constant-Tonnage loading phase because during that phase the dynamical and stochastic
properties of the system (7.10) are qualitatively the same as for the Constant-Volume phase.

We present the results obtained by the average of ten filters running in parallel. A compari-
son of the estimated and simulated signals of the average grain diameter dm for the No-Overflow
phase and Constant-Volume phase is presented in Figure 7.1b.

From Figure 7.1b it can be observed that the ROPF works very well and that its performance
in the two loading phases is comparable. In each case, the convergence times are approximately
40[s], 20[s], and 20[s], respectively, which is acceptable for the TSHD’s controller developed
in [Braaksma, 2008]. Moreover, as has been stated before, in real dredging operations the
changes in the average grain diameter are smoother, thus the convergence of the filter is expected
to be further improved.

For both phases the estimate is slightly biased. However, the absolute estimation errors
are smaller than the standard deviation σd of the noise that corrupts the estimated state dm.
This makes the errors acceptable. In fact for higher values of dm the bias is negligible. This
is confirmed by analyzing the residuals, i.e., the difference between the estimate and the true
state, of the estimate d̂m in steady state:

Res
(

d̂m

)

:=
(

d̂m − dm

)

. (7.20)

Because the simulated dm is piecewise constant with three distinct values corresponding to

different soil type, it is reasonable to compare the residuals Res
(

d̂m

)

separately for each dm =

0.35, 0.7, 0.45[mm]. To have a fair comparison we disregard the estimates obtained during the
transient phase because they depend on the magnitude of the corresponding jump.

When the true dm equals to 0.35[mm] for each loading phase the average bias of the estimate
accounts for 14% of the true value, which is tolerable during the actual dredging. When the
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Figure 7.1: Above: simulated total height ht (solid line) and sand bed height hs (dashed line)
during the No-Overflow phase (left) and during the constant-volume phase (right). Below: sim-
ulated average grain diameter dm (thin solid line) and the estimated average grain diameter dm
(thick solid line) during the No-Overflow phase (left) and during the Constant-Volume phase
(right).

Table 7.2: Residuals obtained by the ROPF

true dm Res
(

d̂m

)

for the No-Overflow Res
(

d̂m

)

for the Constant-Volume

mean [mm] std [mm] mean [mm] std [mm]
0.35 -0.049 0.0095 -0.047 0.0077
0.7 0.01 0.0064 0.009 0.0066
0.45 0.014 0.0057 0.009 0.009

true signal is set to 0.7[mm] and 0.45[mm] for both loading phases, the average bias of the
estimate is smaller than 3% of the true value, which is an excellent result from a practical point
of view.

The results hereby presented were obtained by a filter that assumes the complete knowledge
of the mixture density ρm. This assumption is valid for the Constant-Volume and Constant-
Tonnage loading phases when the outgoing density ρo can be estimated [Lendek et al., 2008]
and substituted for ρm [Braaksma, 2008] i.e.,

ρm,k (xk,uk) = ρo. (7.21)

When the sand bed height hs approaches the total height of the mixture ht, the performance of
the filter decreases, which can be observed in Figure 7.1b (last minutes of the Constant-Volume
phase). This is due to the growing influence of the erosion factor fe (7.4), which results in
highly nonlinear behavior of the system that is intractable for the ROPF. The same applies for
the whole Constant-Tonnage loading phase which is characterized by high erosion.

In current state-of-the-art dredgers, during the No-Overflow loading phase there is no ac-
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Filter

curate measurements of the mixture density ρm. Therefore, in the next section we investigate
the performance of the ROPF for which the ρm is unknown and has to be estimated online.

Results for Scenario B (ρm is not known)

Now we investigate the situation when the mixture density ρm is unknown. This is the case
during the No-Overflow loading phase when we cannot substitute the outgoing density ρo for
the ρm.

Therefore, instead of one global and correct input ρm,k, each particle xi
k has to use a local

approximation of the mixture density ρim,k. By (7.12) such a local approximation is given by:

ρim,k

(

xi
k,uk

)

=
u1,k −Axi

2,kρs

(

xi
3,k

)

Au3,k −Axi
2,k

. (7.22)

We have applied the ROPF to the simulations obtained from the model (7.1) of the sedimen-
tation process during the No-Overflow loading phase. The filter is tuned with the parameters
given in Table 7.1 the only difference being that we test two distinct values of the standard
deviation σd = 0.1 [mm] and σd = 0.05 [mm] of the process noise ed. This is to determine
how sensitive the filter is with respect to this parameter. The results of the simulations are
presented in Figure 7.2 where the estimates of the average grain diameter dm and the mixture
density ρm for the two choices of the parameter σd are presented.
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Figure 7.2: Left: simulated (thin solid line) and estimated (thick solid line) average grain diam-
eter dm (left) and mixture density ρm (right) for σd = 0.1 [mm]. Right: simulated (thin solid
line) and estimated (thick solid line) average grain diameter dm (left) and mixture density ρm
(right) for σd = 0.05 [mm]
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7. SOLUTION TO THE HOPPER ESTIMATION PROBLEM

The results of the simulations suggest that if the mixture density ρm is unknown the ROPF
fails to estimate the average grain diameter dm. Furthermore, it produces very poor estimates
of the mixture density ρm which are very sensitive to the standard deviation σd of the process
noise ed. The high inaccuracy of the estimates that can be observed in Figure 7.2 makes it

pointless to compute the residuals of the estimates Res
(

d̂m

)

or Res (ρ̂m). Thus, the analysis

of the residuals is not performed in this section.

7.2.3 Discussion

On board of the real TSHD, the measurements are taken with high frequency. However, the
MPC designed for the TSHD [Braaksma, 2008] computes the optimal action in approximately
60 [s]. The proposed ROPF computes a single-step estimate in less than 0.25 [s] when executed
in Matlab 7 on a PC with an Intel Core 2 Duo E6550 2.33 GHz CPU with 3 GB RAM. Thus,
from the computational perspective, the filter can be integrated into the controller.

The simulation results suggest that the ROPF, using ρo for ρm, provides an accurate estimate
of the average grain diameter dm during the Constant-Volume phase as long as the erosion
factor fe is of small influence.

During the No-Overflow phase the ROPF produces an accurate estimate of dm under the
(hypothetical) assumption that the mixture density ρm is a known input to the system. In
real dredging this assumption is not valid, thus the variable ρm needs to be estimated online.
A properly tuned ROPF accurately estimates ρm, however, it fails to properly estimate the
average grain diameter dm. Moreover, it is very sensitive to the tuning of σd, which, if chosen
incorrectly, causes the estimates of ρm to diverge.

To conclude, the ROPF is the recommended estimator of the the average grain diameter dm
after the overflow starts (Constant-Volume and Constant Tonnage loading phases) but before
the erosion phenomenon dominates the dynamics of the process. Before the overflow commences
(No-Overflow loading phase) the ROPF produces poor estimates of dm.

7.3 No-Overflow Loading Phase: the Feedback Particle

Filter

As we concluded in Section 7.2 the ROPF delivers satisfactory estimates only if specific condi-
tions are satisfied. Namely:

I. if the mixture density ρm is known, which is the case during the overflow mode, and

II. if the influence of erosion is negligible (the first phase of the overflow mode).

In this section we provide solutions to the estimation problem for the No-Overflow loading
phase during which the mixture density ρm is unknown and needs to be estimated. Furthermore,
we consider a continuous-time filtering problem rather than the discrete-time problem discussed
in Section 7.2. The objective is to estimate online the following states of the system:

I. the average grain diameter dm,

II. the mass of the sand bed ms,

III. the density of the mixture ρm,

IV. the sand bed height hs.
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7.3. No-Overflow Loading Phase: the Feedback Particle Filter

Note that, from the controller’s perspective, having accurate estimates of the average grain
diameter dm and the mass of the sand bed ms is more important than having estimates of the
remaining states.

We investigate two different algorithms that aim to achieve these goals. The first one is
based on the classical Bootstrap Particle Filter (BPF) approach discussed in Chapter 3, the
second is based on the recently developed Feedback Particle Filter (FPF) method, which has
also been discussed in Chapter 3. For the continuous-time problem with the aforementioned
objectives the reduced-order model (7.10) is insufficient. Instead, these two algorithms need to
be based on the complete sedimentation model described in Chapter 3.

7.3.1 Derivation of the Stochastic System

In this section we formulate the continuous-time estimation problem based on the complete
sedimentation model (7.1). The continuous-time formulation has two purposes: it allows dis-
cussing the estimation problem abstracting from the discretization errors, and it makes the
formulation of the problem consistent with the formulation of the FPF of Chapter 3.

We assume that during the loading process four variables are observed with noises. These
are: the height of the sand bed hs, the total height of the mixture in the hopper ht, the total
mass of the mixture in the hopper mt, and the incoming flow rate Qi. Note that in general, the
incoming flow Qi can be considered as a known stochastic input variable, i.e., a known variable
corrupted by noise. Therefore, in this section we consider Qi as a measured state variable. The
measurements are assumed to be corrupted by zero-mean, time-invariant Gaussian noises eot ,
eos, eomt and eoq with standard deviations σo

t , σo
s , σo

mt, and σo
q , respectively. Also, we assume

that the density of the incoming flow ρi is a known input signal.
From the conservation laws (7.1) we derive the stochastic dynamical system with six state

variables: the sand bed mass ms, the sand bed height hs, the average grain diameter of the
excavated soil dm, the total height ht, the total mass mt, the incoming flow rate Qi. Three
state variables, ht,mt, and Qi have purely deterministic dynamics. Three remaining variables,
ms, hs, and dm have the deterministic dynamics corrupted with stochastic zero-mean Gaussian
noises ems, es, and ed with standard deviations σms, σs, and σd, respectively. The dynamics of
the variables ms, hs, ht,mt are derived directly from (7.1). For the purpose of simulations we
assume the incoming flow Qi to be constant, hence in our model

dQi(t) = 0dt. (7.23)

Since we are interested only in the No-Overflow phase, the erosion does not influence the
settling rate Qs which then is modeled only as a function of four parameters: the average grain
diameter dm, the total mass in the hopper mt, the sand bed height hs and the total height of
the mixture in the hopper ht [Braaksma et al., 2007b]:

Qs (dm,mt, hs, ht) = fs (dm,mt, hs, ht) , (7.24)

where fs is defined by (2.24).
The state, input and output vectors of the system are given by:

x =

















ms

hs

dm
ht

mt

Qi

















, u = ρi, y =









hs

ht

mt

Qi









.
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7. SOLUTION TO THE HOPPER ESTIMATION PROBLEM

Then, the sedimentation dynamics are given by the stochastic dynamical system:

dx1(t) = Qs (x2:5(t)) ρs (x3(t)) dt + dems(t), (7.25a)

dx2(t) =
Qs (x2:5(t))

A
dt + des(t), (7.25b)

dx3(t) = 0dt + ded(t), (7.25c)

dx4(t) = x6(t)dt, (7.25d)

dx5(t) = u1(t)x6(t)dt, (7.25e)

dx6(t) = 0dt, (7.25f)

dy1(t) = x2(t)dt + deos(t), (7.26a)

dy2(t) = x4(t)dt + deot (t), (7.26b)

dy3(t) = x5(t)dt + deomt(t), (7.26c)

dy4(t) = x6(t)dt + deoq(t). (7.26d)

7.3.2 Numerical Simulations

To simulate the complete sedimentation process we discretize the continuous-time system (7.25)–
(7.26) using the Euler discretization method. The sampling time is set to Ts = 0.05[s].

Setting

We consider two distinct simulation scenarios:

I. Scenario 1: the average grain diameter dm changes continuously notation from 0.4[mm]
to 0.2[mm],

II. Scenario 2: the average grain diameter dm exhibits a step change in value from 0.4[mm]
to 0.2[mm].

Scenario 1 describes a situation where the in situ soil changes constantly, yet slowly, while
the dredging continues. Scenario 2 corresponds to a dredging operation where the ship sails
over two zones of notably different in situ soils. Both these situation frequently occur during
dredging operations.

It has been shown that the system (7.25) is very weakly sensitive to the soil-dependent
parameter β (dm) [Braaksma, 2008]. Therefore, for simplicity, for the average grain diameter
in range dm ∈ [0.20.4] we approximate β (dm) ≈ 3.

The hopper used for the simulations is of a rectangular parallelepiped form with the base
area A = 600[m2]. In both scenarios the values of the incoming flow Qi and the density of the
incoming mixture ρi are assumed to be constant through out the simulation and equal to 8[m3/s]
and 1600[kg/m3] respectively. The simulations start from the values given in Table 7.3.

Table 7.3: Initial state values

Variable ms [tons] hs [m] dm [mm] ht [m] mt [tons] Qi [m3/s]
Value 460 0.4 0.4 0.5 550 8
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7.3. No-Overflow Loading Phase: the Feedback Particle Filter

We have simulated the dredging Scenarios 1 and 2 and to the obtained data we applied
the BPF and the FPF. To investigate the robustness of both filters with respect to the initial
conditions we have introduced the initial offset of +0.05 in the uncertain soil-dependent pa-
rameter dm. The initial values of the remaining states are set to match the true values of the
states given in Table 7.3. The parameters of the BPF and the FPF are presented in Table 7.4
and 7.4, respectively.

Table 7.4: Parameters of the BPF

Number of Resampling Initial offset Standard deviations Standard deviations
particles threshold in dm[mm] in process noises in observation noises

σms[tons] σs[m] σd[mm] σo
t [m] σo

s [m] σo
mt[tons] σo

q [m3/s]

1000 500 +0.05 1 0.001 0.005 − 0.015 0.05 0.1 1 1

Table 7.5: Parameters of the FPF

Number of Resampling Initial offset Standard deviations Standard deviations
particles threshold in dm[mm] in process noises in observation noises

σms[tons] σs[m] σd[mm] σo
t [m] σo

s [m] σo
mt[tons] σo

q [m3/s]

50 None +0.05 1 0.001 0.005 − 0.015 0.05 0.1 1 1

Results

The results of the estimations obtained for Scenario 1 and for Scenario 2 are reported in Fig-
ures 7.3 and 7.5, and in Figures 7.7 and 7.9, respectively. Figure 7.3 and Figure 7.7 show
the results obtained by the BPF and the FPF with σd = 0.005[mm] whereas Figure 7.5 and
Figure 7.9 show the results obtained by the BPF and the FPF with σd = 0.015[mm].

Figures 7.4, 7.6, 7.8, and 7.10 present the corresponding Sample Standard Deviations (SSDs)
of the estimates x̂(t), which are defined by:

SSD (x̂(t)) :=

√

√

√

√

N
∑

n=1

(

ωn(t)x̂n(t) −
N
∑

k=1

ωk(t)x̂k(t)

)2

, (7.27)

where N is the number of particles x̂n(t) and corresponding weights ωn(t) at time t.

From Figures 7.4, 7.6, 7.8, and 7.10 one can observe that the SSDs obtained by the BPF
are larger than the SSDs obtained by the FPF. For a fixed parameter σd, the limiting SSDs of
the FPF are similar for Scenarios 1 and 2. The same holds for the SSDs of the BPF, except for
the SSD of the estimate m̂s that, for σd = 0.015, varies significantly between Scenario 1 and
Scenario 2.

We see that in both simulation scenarios the estimates of the sand bed height hs and the
mixture density ρm produced by the BPF and the FPF are very accurate. The estimates of the
average grain diameter dm and the sand bed mass ms obtained by the BPF are relatively noisy
and possibly divergent when the filter is inappropriately tuned (see Figures 7.5c–7.5d and 7.9c–
7.9d). On the other hand the simulation results suggest that the FPF is robust with respect
to the uncertain parameter of the random walk, i.e., regardless of σd the estimates eventually
converge to the same values. Nevertheless, the convergence rate of the filter can be improved by
appropriate tuning (compare Figures 7.3c–7.3d with Figures 7.5c–7.5d and Figures 7.7c–7.7d
with Figures 7.9c–7.9d).
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Figure 7.3: Comparison of the estimates produced by the PF (blue triangles) and the FPF
(green squares) with the true state of the system (thick grey) for Scenario 1. The state noise,
corresponding to the average grain diameter dm, is set to σd = 0.005[mm].
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Figure 7.4: Comparison of the sample standard deviations obtained by the PF (blue triangles)
and the FPF (green squares) for Scenario 1. The state noise, corresponding to the average
grain diameter dm, is set to σd = 0.005[mm].
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Figure 7.5: Comparison of the estimates produced by the PF (blue triangles) and the FPF
(green squares) with the true state of the system (thick grey) for Scenario 1. The state noise,
corresponding to the average grain diameter dm, is set to σd = 0.015[mm].
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Figure 7.6: Comparison of the sample standard deviations obtained by the PF (blue triangles)
and the FPF (green squares) for Scenario 1. The state noise, corresponding to the average
grain diameter dm, is set to σd = 0.015[mm] (for the PF).
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7. SOLUTION TO THE HOPPER ESTIMATION PROBLEM

The quantitative measure of the estimation accuracy is provided by the MSE of the esti-
mate x̂, which in the continuous-time problem is defined by:

MSE(x̂) :=
1

T

∫ T

0

(x̂(t) − x(t))
2
dt, (7.28)

where T is the total time of the simulation (in our case T = 600 [s]). In other words, the MSE
is the weighted L2 distance between the estimate x̂ and the true signal x. The MSEs of the
estimates obtained by the BPF and the FPF for the Scenario 1 and Scenario 2 are compared
in Table 7.6 and Table 7.7, respectively.

Table 7.6: Mean Squared Errors: Scenario 1

σd = 0.005 σd = 0.015
ms hs dm ρm ms hs dm ρm

PF 1.171 × 1011 4.835 × 10−6 0.0097 31.278 1.0585 × 1010 2.2911 × 10−6 0.0043 18.9846
FPF 3.973 × 108 3.708 × 10−4 0.0021 221.0911 1.8727 × 108 4.4930 × 10−5 0.0009 77.7335

Table 7.7: Mean Squared Errors: Scenario 2

σd = 0.005 σd = 0.015
ms hs dm ρm ms hs dm ρm

PF 5.031 × 1011 1.247 × 10−5 0.0153 45.875 3.3555 × 1011 7.5463 × 10−6 0.0113 34.3019
FPF 2.196 × 109 0.0015 0.0044 426.1623 2.4386 × 108 2.17 × 10−4 0.0022 120.95

It can be seen that the MSEs of the FPF-estimates of the sand bed mass ms and the av-
erage grain diameter dm are significantly smaller than the MSEs of the PF-estimates. On the
other hand, the MSEs of the FPF-estimates of the sand bed height hs and the density of the
mixture ρm are larger than the MSEs of the PF-estimates. Thus, the comparison of the filters
performance is inconclusive if they were judged solely by the resulting MSEs. It is only after
the investigation of Figures 7.3, 7.5, 7.7, and 7.9 when we realize the character of the errors. We
observe that large MSEs of the PF-estimates of the sand bed mass ms and the average grain
diameter dm come from the persistent mismatch between the PF-estimates and the true states
of the system, where the FPF-estimates are asymptotically unbiased. Per contra, large MSEs
of the FPF-estimates of the sand bed height hs and the density of the mixture ρm come from
the transient state of the filter caused either by the initial offset (Figures 7.3b,7.3d, 7.5b,7.5d,
7.7b,7.7d and 7.9b,7.9d) or by the step-change in the system (Figures 7.7b,7.7d and 7.9b,7.9d).
The steady-state errors of the FPF-estimates of the sand bed height hs and the density of the
mixture ρm converge to zero. Thus, judging by the simulation, we can safely conclude that
error-wise the FPF outperforms the BPF applied to the system (7.25)–(7.26).

7.3.3 Discussion

In this section we have investigated the feasibility of the BPF and the FPF to provide the
solution to the Hopper Estimation Problem for the No-Overflow loading phase without the
knowledge of the mixture density ρm. Given the outcomes of the simulations we conclude that
both filtering methods considered in this section are equal in producing asymptotically unbiased
estimates of the mixture density ρm and the sand bed height hs.

When it comes to the estimation of the average grain diameter dm and sand bed mass ms we
observe a significant difference in the performance achieved by the BPF and the FPF. The FPF
produces asymptotically unbiased estimates of dm and ms regardless of the choice of the tuning
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Figure 7.7: Comparison of the estimates produced by the PF (blue triangles) and the FPF
(green squares) with the true state of the system (thick grey) for Scenario 2. The state noise,
corresponding to the average grain diameter dm, is set to σd = 0.005[mm].

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

 

 
BPF
FPF

time[s]

S
D
(
m
s
)

(a)

0 100 200 300 400 500 600
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

 

 
BPF
FPF

time[s]

S
D
(
h
s
)

(b)

0 100 200 300 400 500 600
0

0.02

0.04

0.06

0.08

0.1

0.12

 

 
BPF
FPF

time[s]

S
D
(
d
m
)

(c)

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

90

100

 

 
BPF
FPF

time[s]

S
D
(
ρ
m
)

(d)

Figure 7.8: Comparison of the sample standard deviations obtained by the PF (blue triangles)
and the FPF (green squares) for Scenario 2. The state noise, corresponding to the average
grain diameter dm, is set to σd = 0.005[mm].
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Figure 7.9: Comparison of the estimates produced by the PF (blue triangles) and the FPF
(green squares) with the true state of the system (thick grey) for Scenario 2. The state noise,
corresponding to the average grain diameter dm, is set to σd = 0.015[mm].

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

 

 
BPF
FPF

time[s]

S
D
(
m
s
)

(a)

0 100 200 300 400 500 600
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

 

 
BPF
FPF

time[s]

S
D
(
h
s
)

(b)

0 100 200 300 400 500 600
0

0.02

0.04

0.06

0.08

0.1

0.12

 

 
BPF
FPF

time[s]

S
D
(
d
m
)

(c)

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

90

100

 

 
BPF
FPF

time[s]

S
D
(
ρ
m
)

(d)

Figure 7.10: Comparison of the sample standard deviations obtained by the PF (blue triangles)
and the FPF (green squares) for Scenario 2. The state noise, corresponding to the average
grain diameter dm, is set to σd = 0.015[mm].
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parameter σd. Per contra the PF requires very careful tuning in order to obtain asymptotically
unbiased estimates of dm and ms. In other words the simulations showed that the FPF is
robust and the BPF is highly sensitive with respect to the parameter σd.

The accuracy of the estimates produced by the BPF and the FPF is higher for higher values
of the parameter σd. Moreover, the speed of convergence (settling time) of the FPF estimates
of the average grain diameter dm and the mixture density ρm is faster for higher values of σd.

The simulations also showed that, in general, the estimates obtained by the BPF are more,
and in some cases significantly more, noisy than the estimates obtained by the FPF.

The simulations were performed in Python on a MAC OS X 10.6. with an Intel Core 2 Duo
2.66 GHz CPU with 4 GB RAM. Regarding the numerical properties of the compared filters it
is important to notice that the FPF outperforms the BPF in terms of accuracy and precision
while using 20 times less particle than the BPF does. This is a remarkable result as it suggests
that the use of the FPF leads to a dramatic reduction of the computational effort.

Combining all these facts we conclude that during the No-Overflow loading phase the FPF
provides an accurate solution to the Hopper Estimation Problem and it is recommended over
the benchmark BPF.

7.4 Overflow Loading Phases with Strong Erosion: the

Improved Saturated Particle Filter

In this section we analyze the second scenario in which the ROPF does not perform satisfactory,
i.e., the mode with high erosion influence. The erosion phenomenon occurs in the second half
of the Constant-Volume phase and throughout the Constant-Tonnage phase. In both these
phases the value of the mixture density ρm is close to the value of the density of the outgoing
mixture ρo which in turn can be accurately estimated from the available measurements [Lendek
et al., 2008]. Thus, before the erosion influence becomes significant the ROPF introduced in
Section 7.2 delivers accurate estimates of the average grain diameter dm.

At some point the erosion influence becomes significant and the performance of the ROPF
deteriorates. Since we do not know when exactly is the moment from which the erosion factor
dominates the sedimentation dynamics we seek a filtering algorithm that would automatically
switch from the ROPF to the estimator suited for the high erosion mode. Such an estimator is
provided by the iSPF introduced in Chapter 5, which has its inherent mechanism of detection
of changes in dynamics.

In what follows we show how to apply the iSPF, introduced in Chapter 6, to the sedimenta-
tion model. Furthermore, we analyze the feasibility of the iSPF to the Hopper Sedimentation
Problem by comparing the estimates it produces with the estimates obtained by the ROPF.

7.4.1 Derivation of the Stochastic Dynamical System

In this section we show how the discrete-time dynamical sedimentation model (7.10) can be al-
gebraically transformed into an equivalent form which is suitable for the application of the iSPF.
The variables used in what follows match the variables introduced in Section 7.2.
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We start by observing that the derivative ḣs can be rewritten as:

ḣs = max

(

1 − Q2
o

(ke (dm) (ht − hs))
2 , 0

)

fs (dm, ρm)

A
(7.29a)

= −min

(

Q2
o

(ke (dm) (ht − hs))
2 − 1, 0

)

fs (dm, ρm)

A
(7.29b)

= −min

(

Q2
ofs (dm, ρm)

(ke (dm) (ht − hs))
2 − fs (dm, ρm) , 0

)

1

A
. (7.29c)

Thus, the discrete-time model for the sand bed height hs is given by:

hs,k+1 = hs,k + Tses −
Ts

A
min

(

Q2
o,kfs (dm,k, ρm,k)

(ke (dm,k) (ht,k − hs,k))
2 − fs (dm,k, ρm,k) , 0

)

(7.30a)

= −min

(

Ts

A

(

Q2
o,kfs (dm,k, ρm,k)

(ke (dm,k) (ht,k − hs,k))
2 − fs (dm,k, ρm,k) −Aes

)

− hs,k,−hs,k − Tses

)

.

(7.30b)

Then the state, input and output vectors of the system are given by:

x =





ms

hs

dm



 , u =





mt

Qo

ht



 , y = hs.

and the final form of the state-space model is:

x1,k+1 = x1,k + Aρs(x3,k) (x2,k − x2,k−1) + TsAρs(x3,k)es + em, (7.31a)

x2,k+1 = min

(

Ts

A
(S (xk,uk, e

o
t ) − fs (x2,k, ρm,k (xk,uk)) −Aes) − x2,k,−x2,k − Tses

)

,

(7.31b)

x3,k+1 = x3,k + ed, (7.31c)

yk = x2,k + eos. (7.31d)

The function S is given by:

S (xk,uk, e
o
t ) =

u2
2,kfs (x3,k, ρm,k (xk,uk))

(ke(x3,k)(eot,k + u3,k − x2,k))2
, (7.32)

and the variable ρm,k is given by:

ρm,k (xk,uk) =
u1,k −Ax2,kρs (x3,k)

Au3,k −Ax2,k
. (7.33)

Note that the erosion influences the system (7.31) only through the variable x2. To obtain
the estimates of the average grain diameter dm that preserves good properties of the ROPF
during the weak erosion phase and achieves better performance during the strong erosion phase
we design a hybrid filter that applies the iSPF to the state x2 and the ROPF approach to the
states x1 and x3. Such a filter, called Hybrid Saturated Particle Filter (HSPF) is described in
Algorithm 7.2.
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Algorithm 7.2 Hybrid Saturated Particle Filter

Input:
{(

xi
k, ω

i
k

)}N

i=1
, yk+1,uk

Output:
{(

xi
k+1, ω

i
k+1

)}N

i=1
for i = 1, 2, . . . , N do

Prediction:
Compute the predicted particles xi

k+1|k:
if j = 1, 3 then

Draw the state particle xi
k+1|k,j from the transition probability kernel Kk(xk+1,j |xk,uk)

end if
if j = 2 then

Draw the state particle xi
k+1|k,j from the importance kernel K̃k(xk+1|xk,uk, yk) using

Algorithm 5.2.
end if
Update:
Use the likelihood gk

(

yk|xi
k

)

to update the weights of the particles with formula (3.84)
Resampling:
Resample the particles with Algorithm 6.2

end for

7.4.2 Algorithmic Properties

In order to successfully apply the iSPF to the sedimentation model first we need to tackle two
numerical problems. These are:

I. computing the saturation probability qik,

II. drawing random samples from the saturated importance kernel K̃k(xk+1|xk,uk, yk).

In what follows we show that both these problems can be solved analytically without re-
sorting to any approximations. This is possible by exploiting properties of the chi-square
distribution.

Let us start from the observation that by (7.30) the probability of saturation qik is defined
by:

qik = P







(

Qi
o,k

)2

(

ke

(

dim,k

)(

hi
t,k − hi

s,k + eot

))2 ≥ 1






. (7.34)

Note that (7.34) is the probability of the non-central inverse chi-square distribution 1
χ2

(

θi1,k, θ
i
2,k, σ

o
t

)

with parameters given by

θi1,k =
ke(d

i
m,k)

Qi
o,k

, (7.35a)

θi2,k = hi
t,k − hi

s,k. (7.35b)

Then, exploiting the relations between the inverse chi-square distribution and the chi-square
distribution, the probability of saturation qik is easily obtained by using the Cumulative Density
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Function (CDF) of the chi-square distribution. Namely:

qik = CDF
χ2

(

θi
2,k
σo
t

)







1
(

θi1,kσ
o
t

)2






, (7.36)

where χ2
(

θi
2,k

σo
t

)

denotes the chi-square distribution with mean θi2,k and standard deviation σo
t .

The random sample from the saturated importance kernel is obtained by using the in-

verse CDF of the non-central inverse chi-square distribution 1
χ2

(

θi1,k, θ
i
2,k, σ

o
t

)

. It can be easily

shown that for every u ∈ [0, 1]:

(

CDF 1
χ2 (θi

1,k,θ
i
2,k,σ

o
t )

)−1

(u) =
1

θi1,kσ
o
t



CDF
χ2

(

θi
2,k
σo
t

)





−1

(1 − u)

, (7.37)

where



CDF
χ2

(

θi
2,k
σo
t

)





−1

is the inverse CDF of the chi-square distribution with mean θi2,k and

standard deviation σo
t . The random sample from the saturated importance kernel is obtained

in two steps:

I. A sample u is drawn from the Uniform distribution U([0, 1]), i.e.,

u ∼ U([0, 1]), (7.38)

II. The final sample x is computed by

x =
1

θi1,kσ
o
t



CDF
χ2

(

θi
2,k
σo
t

)





−1

(1 − u)

. (7.39)

The CDF and the inverse CDF of the chi-square distribution are available in standard
numerical libraries, hence the probability of saturation qik can be easily computed.

7.4.3 Numerical Simulations

Setting

We have simulated the sedimentation process in the high erosion regime to investigate the
performance of the HSPF described in Algorithm 7.2. We compare the estimates obtained by
the hybrid filter with the estimates produced by the ROPF.

In the simulations the average grain diameter dm is constant throughout the loading process.
We consider two distinct simulation scenarios, each corresponding to a different soil type:

I. Scenario I: sedimentation of fine soil with dm = 0.3[mm],

II. Scenario II: sedimentation of coarse soil with dm = 0.8[mm].
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For simplicity, the sampling time Ts is set to one. Throughout the simulations the incoming
flow rate Qi and the outgoing mixture density ρi are constant and set to Qi = 4m3/s and ρi =
1400kg/m3. The overflow height ht,o is also constant and is set to ht,o = 7 [m], which means
the Constant-Volume loading phase.

The iSPF embedded into the HSPF uses the detection function α defined by:

α(x) =

{

min (1, log(50x + 1)) if x > 0
max (−1,− log(50x + 1)) otherwise

(7.40)

The remaining parameters are the same for the iSPF and the ROPF. These are given in Table 7.8
(Scenario I) and in Table 7.9 (Scenario II).

Table 7.8: Parameters of the filters for Scenario I

Number of Resampling Initial offset Standard deviations Standard deviations
particles threshold in dm[mm] in process noises in observation noises

σm[tons] σd[mm] σs[m] σo
t [m] σo

s [m]
1000 500 +0.3 1 0.1 10−10 0.1 0.025

Table 7.9: Parameters of the filters for Scenario II

Number of Resampling Initial offset Standard deviations Standard deviations
particles threshold in dm[mm] in process noises in observation noises

σm[tons] σd[mm] σs[m] σo
t [m] σo

s [m]
1000 500 +0.3 1 0.01 10−10 0.1 0.025

Results

The outcomes of the simulations are presented in Figure 7.11 and Figure 7.12. In Figure 7.11 we
compare the estimates of the average grain diameter dm produced by the ROPF and the HSPF.
Figure 7.12 gives the corresponding SSDs of both filters.
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Figure 7.11: The HSPF estimation results (thin solid line) and the estimates obtained by the
ROPF (dashed line) compared with the true value of dm (thick solid line). The outcomes for
Scenario I are presented on the left and those for Scenario II are presented on the right.

The results obtained for Scenario I suggest that if the excavated soil is fine then the accuracy
of the HSPF is similar to the accuracy of the ROPF. The latter filter slightly outperforms
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7. SOLUTION TO THE HOPPER ESTIMATION PROBLEM

the HSPF in terms of precision of the estimates. This can be observed in Figure 7.11a and
Figure 7.12a and is confirmed by the analysis of residuals that are summarized in Table 7.10.

Table 7.10: dm-residuals of the filters for Scenario I

Method MSE Standard deviation of residuals
HSPF 0.0083 0.0891
BPF 0.0021 0.0397

Table 7.11: dm-residuals of the filters for Scenario II

Method MSE Standard deviation of residuals
HSPF 0.0183 0.1057
BPF 0.0529 0.2129
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Figure 7.12: Standard deviations of the HSPF (thin solid line) and the ROPF (dashed line).
The outcomes for Scenario I are presented on the left and those for Scenario II are presented
on the right.

The results obtained for the coarse soil (Scenario II) suggest that for most of the phase
the HSPF outperforms the ROPF in terms of accuracy of the estimates. However, at the end
of the loading phase both filters become unstable which makes a fair comparison impossible.
This can be observed in Figure 7.11b. The standard deviations of both filters are presented in
Figure 7.12b and the residuals are given in Table 7.11.

The average time required by the HSPF to compute a single step estimate is 4.91 [s] whereas
the average time required by the ROPF is significantly shorter and is equal to 0.12 [s]. This
means that on average the HSPF is 41 times slower than the ROPF.

7.4.4 Discussion

In this section we have developed a novel algorithm, the HSPF, as an alternative to the ROPF
to estimate the average grain diameter dm during the loading phases that are heavily influenced
by erosion. This is motivated by the fact that the ROPF does not perform satisfactorily in
these final moments of the loading process.

The HSPF combines the iSPF approach introduced in Chapter 5 with the ROPF derived in
Section 7.2. The simulations showed that the HSPF and the ROPF achieve similar accuracy if

164



7.5. Conclusions

the excavated soil is fine. However, if the excavated soil is coarse the HSPF is more accurate
than the ROPF. Thus, in terms of accuracy of the estimates, the HSPF offers an improvement
over the ROPF. On the down side the HSPF estimates have higher standard deviations than the
estimates obtained by the ROPF. Thus, given both accuracy and precision, the recommended
filtering strategy would be to use the ROPF for estimation if the excavated soil is fine and
switch to the HSPF if the excavated soil is coarse. However, this strategy is feasible only when
it can be detected if the soil is fine or coarse.

The simulations presented in this section were performed in Matlab 9 on a MAC OS X
10.6. with an Intel Core 2 Duo 2.66 GHz CPU with 4 GB RAM. In terms of computational
load the HSPF is significantly more demanding than the ROPF. This is due to stochastic
properties of the algorithm described in Section 7.4.2. The numerical effort can be reduced by
use of approximate methods, e.g., approximate sampling described in Algorithm 7.1. However,
introducing such approximations might decrease the accuracy of the filter. Hence any such trial
needs to be carefully thought through.

7.5 Conclusions

In this chapter we have provided the solution to the Hopper Estimation Problem that was
formulated in Chapter 2. We have investigated several estimation algorithms in order to find
the best solution to each phase of the process. We have distinguished three such operational
modes that appear naturally during the dredging operations. These are:

I. Mode 1: No-Overflow loading phase,

II. Mode 2: Overflow loading phases (Constant-Volume and Constant-Tonnage) without
strong erosion influence,

III. Mode 3: Overflow loading phases (Constant-Volume and Constant-Tonnage) with strong
erosion influence.

For the estimator that solves the Hopper Estimation Problem for all three aforedescribed
modes we recommend a hybrid of three distinct filters:

I. For Mode 1, as we concluded in Section 7.3, the FPF is the recommended estimation
algorithm. The FPF provides very accurate estimates of the average grain diameter dm
as well as accurate estimates of the mixture density ρm. Furthermore, it comes with a
low computational price as the FPF uses a very small number of particles.

II. For Mode 2, as we concluded in Section 7.2, the ROPF, which assumes the knowledge
of ρm, provides accurate estimates of dm. This algorithm is also very fast thanks to
simplified state model that it employs.

III. For Mode 3, as we concluded in Section 7.4, the recommended solution to the estimation
problem consists of applying the ROPF for the fine excavated soil and the HSPF for the
coarse excavated soil. In this case the HSPF is numerically expensive which is a serious
drawback of the method. Both the HSPF and the ROPF fail to estimate the average
grain diameter dm during the last minutes of the loading process. However, this is of low
importance for the production process as this stage corresponds to the moment when the
erosion gets so high that the process is terminated as it is not economical to continue the
dredging operation.
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It is important to notice that the moment of switch between Mode 1 and Mode 2 is always
known as we can observe when the overflow starts. Per contra the switch between Mode 2 and
Mode 3 cannot be directly observed and has to be detected from data.

Further Research

For the further research on how to improve the filtering algorithm used in the Hopper Estimation
Problem we suggest to investigate the following two topics:

I. Application of the FPF to Mode 2 and Mode 3. The FPF is a very recently developed
algorithm whose full potential has yet to be determined. However, current results, both
theoretical and applied, are very promising and suggest that in future the FPF can be-
come a benchmark nonlinear filter. This is especially important for practitioners as the
switching strategy described above can be difficult to implement into onboard decision
system.

II. Appropriate tuning of the iSPF embedded in the HSPF can possibly improve the perfor-
mance of the HSPF. In particular in some cases the performance of the iSPF strongly
depends on the choice of the detection function. For the Hopper Estimation Problem the
detection function (7.40) was determined experimentally because the optimal choice of
detection function has not been tackled yet.
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Chapter 8

Conclusions

Research on a smart automatic controller of a Trailing Suction Hopper Dredger (TSHD) aims
to improve the cost-efficiency of dredging operations. Due to the increasing demand for TSHDs
in offshore projects, the automation methods have been extensively studied in the dredging
community in recent years. Despite significant developments in the field, a fully automated
efficient controller has yet to be constructed. One of the main obstacles is the identification
of a number of uncertain soil-dependent parameters. The difficulty of such a task comes from
several factors: from lack of sufficient sensors; from severely nonlinear models; from time-varying
nature of the parameters, to name a few. In the research described in this thesis we focused
on developing fast and efficient estimation methods for the most important soil-dependent
parameters.

8.1 Summary

The parameters we consider in this thesis are: the horizontal cutting force coefficient kch, the
ratio kvh between the horizontal and vertical cutting forces, the in situ permeability ksi and
the average grain diameter dm. The first three, i.e., kch, kvh, and ksi are associated with the
Drag-Head model and dm comes from the Hopper model. These two models describe two of the
most important processes during the dredging: the excavation process and the sedimentation
process. Both processes are discussed in detail in Chapter 2. Furthermore, in the same chapter,
the corresponding estimation problems are formulated. In both cases the estimation goal is to
retrieve the knowledge of the in-situ soil properties online from indirect measurements.

The highly uncertain and time-varying nature of the parameters of interest and nonlinear
dynamics of the considered systems in each case make estimation a challenging undertaking.
The nonlinear filtering methods that are suitable for these types of problems are reviewed in
Chapter 3. These are divided into five types:

I. Parametric Filters based on analytical approximations: Extended Kalman Filter (EKF),
Iterated Extended Kalman Filter (IEKF).

II. Parametric Filters based on statistical approximations: Unscented Extended Kalman
(UKF), Gauss-Hermite Filter (GHF), Central Difference Filter (CDF).

III. Parametric Filters based on Gaussian Sum approximations: Gaussian Sum Filter (GSF).
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IV. Nonparametric Filters based on the importance sampling approach: Bootstrap Particle
Filter (BPF).

V. Nonparametric Filters based on the mean-field control-oriented approach: Feedback Par-
ticle Filter (FPF).

The EKF and the IEKF are based on the Taylor series expansion of nonlinear functions which
define the dynamics of the system. The UKF, the GHF and the CDF are based on statistical
approximations of nonlinear transformations. The EKF, the IEKF, the UKF, the GHF, and
the CDF approximate the predicted and the posterior densities as Gaussians whereas the GSF
approximates them by Gaussian Sums, which are no longer Gaussian. Nonparametric filters
do not assume any particular shape of the predicted and the posterior densities and thus are
capable of approximating PDFs of any kind.

The filters discussed in Chapter 3 are used in Chapter 4 to solve the Drag-Head estimation
problems. We distinguish two such problems: the Cutting Estimation Problem and the Cutting
and Jetting Estimation Problem. The Cutting Estimation Problem is to estimate two soil-
dependent parameters: the ratio kvh between cutting forces and the horizontal cutting force
coefficient kch. The Cutting and Jetting Estimation Problem is to estimate the horizontal
cutting force coefficient kch and the in situ permeability ksi. The Cutting Estimation Problem
applies for any cutting excavation tool whereas the Cutting and Jetting Estimation Problem
is applicable only for tools equipped with cutting and jetting components. For each of the
estimation problems we have tested several filtering methods in order to find the best solution.

Both estimation problems share a common feature of time-varying delay in the measurement
of incoming density ρi. Handling such a delay is a problem independent of the estimation
method and is discussed separately.

To solve the Hopper Estimation Problem that was formulated in Chapter 2, in Chapter 5
we have developed a novel nonparametric filtering method, the Saturated Particle Filter (SPF),
that is tailored for this specific type of systems, namely, for Saturated Stochastic Dynamical
Systems (SSDS) that are severely nonlinear systems often met in real life problems. The SSDS
is a stochastic system with dynamics characterized by a constrained probability distribution
exhibiting singularity on the boundary of the constraint region. Due to their complicated dy-
namical structure it is difficult to estimate the states or the parameters of the SSDSs by standard
parametric methods. Our new method exploits the specific structure of the SSDS in order to
design an importance sampling distribution that accounts for the most recent measurements
in the prediction step of the filtering algorithm. This is possible through the use of a so-called
detection function.

The asymptotic properties of the SPF are established in Chapter 6. Namely, we have
given the conditions under which the SPF converges to the optimal theoretical filter. The
convergence of our method is closely related to the appropriate resampling scheme. This led
to the development of the improved Saturated Particle Filter (iSPF) by introducing a novel
resampling algorithm.

The iSPF together with other nonparametric methods described in Chapter 3 are used in
Chapter 7 to solve the Hopper Estimation Problem defined in Chapter 2. The objective of the
Hopper Estimation Problem is to design an online estimator for the average grain diameter dm.
The sedimentation process is divided into three regimes that appear naturally during dredging
operations. To find the most efficient filtering method we considered each of the modes sep-
arately. The final solution to the Hopper Estimation Problem is obtained by integrating the
filters designed for separate modes into a global estimator.
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8.2 Thesis Contributions

This thesis contributes to two fields: to the theory of nonlinear estimation methods and to the
application of control systems in the dredging industry.

8.2.1 Theoretical Contributions

The main theoretical contribution of this thesis is the development of novel efficient estimation
methods suitable for SSDSs. Chapters 5–6 are devoted to the description of these methods.

First, in Section 5.2 the nonparametric SPF is derived for one-dimensional SSDSs. The
main idea behind the SPF is to combine the existing projection approach with a novel sampling
method to detect the saturation moment as it occurs, and to force the particles to move towards
the part of the state space which is close to the saturation region. Such sampling is obtained
by means of a specially designed importance density function that makes use of both the
measurement and the knowledge of the system constraints.

The SPF is improved in Section 6.4 where the iSPF is derived. The new algorithm is different
from the standard SPF in two ways:

I. a novel resampling procedure is used to discard certain low weighted particles,

II. the detection function dynamically adapts to the states of the system.

The main advantage of the iSPF over the SPF comes from the resampling method that yields
the former filter more accurate and computationally more efficient. Namely, the resampling
reduces the computational load of the filter by preventing expensive numerical computations
on the particles with negligible weights.

The dynamic nature of the detection function increases the flexibility of the filter making
it applicable for essentially any type of one-dimensional SSDS. The influence of the detection
function is visible already for a small number of particles. Furthermore, the results of the
simulations suggest that the SPF is robust with respect to the choice of the detection function.

We have compared the performance of our method with the benchmark method, the Con-
strained Bootstrap Particle Filter (CBPF), in several simulation settings including such situa-
tions as model mismatch, large offset in the initial conditions, etc. The results of the simulation
studies demonstrated that in each case our method outperforms the benchmark filter in terms
of accuracy, speed of convergence and numerical efficiency. To achieve good performance,
the CBPF required many particles (more than 1000), whereas our method is very accurate
even when using few particles (10 particles).

The successful application of the SPF to simulated case studies encouraged us to extend the
one-dimensional SPF to multidimensional SSDSs. This is done in Section 5.3 where we showed
that such an extension requires an extra condition to be imposed, namely the constraints of
the considered system need to be convex. Such an assumption allows for a proper definition of
a multidimensional detection function, which is used to define a multidimensional analogue of
the SPF, the Convex Saturated Particle Filter (CSPF).

We have proven that, under certain conditions, the finite-point PDFs obtained by the newly
proposed method converge almost surely to the true posterior PDF. The sufficient conditions to
establish such a convergence for the SPF are provided in Theorem 6.2 whereas the almost sure
convergence of the iSPF is proven in Theorem 6.3. Thanks to the new resampling procedure
utilized by the iSPF the assumptions of Theorem 6.3 are less restrictive than the assumptions
of Theorem 6.2. In other words, the iSPF achieves a proper asymptotic behavior for a broader
class of systems than the SPF does.
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8.2.2 Practical Contributions

The main practical contributions of this thesis are:

I. solutions to the Drag-Head Estimation Problems,

II. solutions to the Hopper Estimation Problem.

The algorithms that we are proposing achieve high statistical performance while preserving
low computational complexity which makes them suitable for online applications.

Solutions to the Drag-Head Estimation Problems

The Drag-Head Estimation Problems are solved in Chapter 4. The problem of time-varying
delay in measurements and two estimation problems: the Cutting Estimation Problem and the
Cutting and Jetting Estimation Problem are tackled independently. The algorithm connecting
the delay problem with the estimation problem is described in Algorithm 4.2 and schematically
depicted in Figure 4.3.

In case of the Drag-Head one can switch from one estimation problem to the other simply
by turning on/off the jets. Because of that, it is possible to obtain the estimates of all three
soil-dependent parameters associated with the Drag-Head by the following procedure:

I. First, the excavation process is commenced with the jets turned off. In this mode it is
possible to obtain an accurate estimate of kvh by solving the Cutting Estimation Problem
with any of the parametric filters discussed in Section 4.3.

II. Next, the jets are turned on to increase the production rate. In this mode it is possible to
solve the Cutting and Jetting Estimation Problem using the previously obtained estimate
of kvh as an input to the system.

We have tested four algorithms, the EKF, the UKF, the CDF, and the GSF to find the
best solution to the Cutting Estimation Problem. The simulation results suggest that each of
the discussed nonlinear filters provide a good solution to the Cutting Estimation Problem. In
fact, all the filters produce estimates that are almost indistinguishable among each other in
terms of MSE, overshoot, or convergence times, the CDF slightly outperforming the remaining
methods. When the filters have to counteract a large uncertainty in the initial state of the
system, which results in a large offset, the multi-term GSF outperforms the remaining filters.
This is possible because the structure of the GS approximation of the state uncertainty allows
the GSF to cover the uncertainty region with higher precision. The price of this is the higher
computational complexity when compared to, e.g., a very simple and fast CDF. Thus, when
the uncertainty in the initial states is small, i.e., we know the exact position of the system,
the CDF is recommended over the GSF.

To determine the best solution to the Cutting and Jetting Estimation Problem we have inves-
tigated several approaches based on nonlinear nonparametric filtering methods. The numerical
simulations showed that exploiting the correlation between the soil-dependent parameters the
horizontal cutting force coefficient kch and the in situ permeability ksi, is of crucial importance
for the development of an accurate estimator. The simulations suggest that the best results are
obtained by the cascaded filter which first employs the PF to obtain an estimate of ksi, ksi is
further filtered by the SSI filter, and finally by the BF, which produces an estimate of kch.
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Solution to the Hopper Estimation Problem

The Hopper Estimation Problem is solved in Chapter 7. Several techniques are investigated in
order to find a solution most feasible to each of the dredging operational modes

I. Mode 1: No-Overflow loading phase,

II. Mode 2: Overflow loading phases with weak erosion influence,

III. Mode 3: Overflow loading phases with strong erosion influence.

The estimator that solves the Hopper Estimation Problem for all the above modes is a
hybrid of three distinctive filters:

I. For Mode 1, as has been shown in Section 7.3, the FPF outperforms the benchmark BPF.
The FPF provides very accurate estimates of the average grain diameter dm as well as
accurate estimates of the mixture density ρm. Furthermore, the FPF achieves this using
very few particles, which greatly reduces the numerical effort of the algorithm.

II. For Mode 2, as was concluded in Section 7.2, the Reduced-Order PF, which assumes the
knowledge of ρm, provides accurate estimates of dm. Thanks to the simplified state model
that the Reduced-Order PF uses, the computational cost of the algorithm is low.

III. For Mode 3, as has been shown in Section 7.4, the recommended solution to the Hopper
Estimation Problem is to apply the Reduced-Order PF when the excavated soil is fine
and the Hybrid Saturated Particle Filter (HSPF) when the excavated soil is coarse. The
improved performance of the HSPF comes with the price of higher numerical complexity
of the method.

The moment of switch between Mode 1 and Mode 2 is always known because we can observe
when the overflow starts. On the other hand the moment of switch between Mode 2 and Mode 3
cannot be directly observed and has to be detected from the available data.

8.3 Further research

There are several points that have not been discussed in details in this thesis. To further
improve the results of this thesis we suggest to investigate the following topics.

Research on the Saturated Particle Filter

• Construction of the optimal detection function. The influence of the detection function
depends on the appropriate choice of the constant ǫ > 0 in Algorithm 6.3. On the other
hand the choice of ǫ > 0 determines the bounds on the variance of the weights associated
with particles. The smaller ǫ, the stronger the influence of the detection function is, but,
at the same time, the bigger is the upper bound on weights. The exact nature of this
relation is a matter of the ongoing research.

• Asymptotic properties of the CSPF. The CSPF has been derived as the multidimensional
extension of the SPF. Thus, it is our belief that the algorithm can be further improved
by designing an appropriate resampling scheme that resembles the method developed for
the iSPF. Furthermore, the asymptotic behavior of the CSPF has yet to be investigated
e.g., by following the proofs of Theorem 6.2 and Theorem 6.3.

171



8. CONCLUSIONS

Research on the Drag-Head Estimation Problems

Deeper investigation of the topics listed below can potentially lead to further improvements of
the estimation methods discussed in this thesis:

• Combining the Cutting Estimation Problem with the Cutting and Jetting Estimation Prob-
lem. Separately, under the corresponding assumptions, each problem has been solved. We
believe that combining solutions to both problems into a single algorithm would lead to
the relaxation of the assumptions imposed on the filters. This could be achieved e.g., by
the previously discussed strategy of switching between the Cutting mode and the Cutting
and Jetting mode.

• Uncertainty in input variables. In our investigations we have assumed that the uncertainty
in certain input variables is negligible. Relaxation of this assumptions might reflect reality
better, leading to the development of algorithms that are of greater value for practitioners.

• Optimal prior for the BF. The overall performance of the cascaded filter used for the Cut-
ting and Jetting Estimation Problem could be further improved by designing an optimal
prior for the BF embedded into the cascaded filter.

• Robustness of the cascaded filter with respect to correlation between the parameters kch
and ksi. The performance of the cascaded filter depends on the functional relation between
the horizontal cutting force coefficient kch and the in situ permeability ksi. These are only
rough empirical approximations of complex relations between soil-dependent parameters.
Thus, to account for approximation errors, the cascaded filter should be robust with
respect to these approximations.

Research on the Hopper Estimation Problem

• Applying the FPF to all phases of the sedimentation process. The FPF is a very recently
developed algorithm whose full potential has yet to be determined. However, current
results, both theoretical and applied, are very promising and suggest that in the future
the FPF can become a benchmark nonlinear filter. Therefore, the performance of the FPF
should be tested on Mode 2 and Mode 3 of the sedimentation process.

• Tuning of the HSPF. Appropriate tuning of the iSPF embedded in the HSPF can possibly
improve the performance of the filter. In particular in some cases the performance of
the SPF strongly depends on the choice of the detection function. This is connected to
the more general problem of finding an optimal detection function for the SPF.
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Appendix A

Uncertainty Analysis via Monte

Carlo Simulations

The cutting input uc and the jetting input uj are defined by:

uc :=
rvc
x2

Fvc (sin (αlt + αv) + kvh cos (αlt + αv))
−1

(hz + 10)
−1

, (A.1a)

uj := Cdhp
0.5
j Qw,jv

−1
sh , (A.1b)

where x2 and Cdh are parameters known from the specifications of the Drag-Head and kvh
defined in (2.7) is assumed to be known. All the remaining variables are described in Table 2.1.

The variables uc and uj are stochastic as they are corrupted by noises that come from other
measured variables (pj , Qw,j , vsh, rvc, Fvc, αlt, αv, hz) with precisions given in Table 2.1. We an-
alyze the distributions of variables uc and uj by Monte Carlo experiment designed for the typical
values of the two variables taken from Tables A.1 and A.2. The values of uc and uj reported
in Tables A.1 and A.2 are computed from the typical values of pj , Qw,j , vsh, rvc, Fvc, αlt, αv, hz

using (A.1). For each of these components we generate random samples from a zero-mean
Gaussian with standard deviations derived from Table 2.1. Next, we propagate the variables,
corrupted by these noises, through (A.1) in order to compare them with the true values of uj

and uc (uncorrupted).

The simulations suggest that the noise associated with uc is distributed normally with zero-
mean, and that the noise associated with uj is slightly skewed to the right, which suggests the
presence of a bias in the signal. Several Monte Carlo experiments, each with 106 samples, are
reported in Tables A.1 and A.2. Furthermore, three representative simulations are reported in
Figures A.1–A.3.

As can be observed from Figures A.1a–A.3a the uncertainty in the cutting input uc is
very well approximated by a Gaussian with zero mean. This is confirmed by the Kolmogorov-
Smirnov test for goodness of fit [Feller, 1948; Massey, 1951] comparing the empirical samples
with a Gaussian with sample mean and sample variance. The significance level of the test is
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Table A.1: Results of Monte Carlo experiments for different values of the cutting input uc. P-
value refers to the Kolmogorov-Smirnov test for goodness of fit to a Gaussian with parameters
given by sampled mean and sampled std.

true value of uc sample mean sample std p value
4160.5 4160.5 119.6 0.974
5163 5163 120 0.924

5369.5 5369.5 119.9 0.754
5387.7 5387.7 119.7 0.946
5892.1 5892.3 120 0.975
7527.7 7527.7 120.4 0.581
7529.2 7529.3 120.8 0.954
7589.1 7589.3 120.3 0.909
7613.6 7613.6 120.4 0.858
7855.4 7855.3 120.4 0.593
8122.4 8122.5 120.1 0.634
8227 8227.1 120.8 0.968

8666.7 8666.8 120.7 0.943
8729.7 8729.8 120.4 0.941
9050.3 9050.2 120.9 0.972
9354.7 9354.6 121.1 0.937
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Figure A.1: Scenario A. Monte Carlo experiment showing the distribution of 106 random sam-
ples of uc corrupted with noise (left) and uc corrupted with noise (right). The red curve shows
the Gaussian fit to the sample, the green line indicates the true values of uc and uj , respectively.
The purple curve (right) shows the conservative Gaussian fit.

equal to α = 0.05. The results of the tests are reported in Table A.1. First of all, notice the
high p-values [Sellke et al., 2001] of the Kolmogorov-Smirnov tests. Indeed, in all of the cases
the p-values are much higher than the rejection threshold prej = 0.05. These, combined with
the large number of samples in the Monte Carlo experiment, indicate a good fit of the Gaussian
to the empirical distribution. Next, we see that the difference between the true value of cutting
input uc and the mean of Monte Carlo samples is below 0.01% of the nominal value of uc.
Thus, we can safely assume that the uncertainty in the cutting input uc is zero-mean. Finally,
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Table A.2: Results of Monte Carlo experiments for different values of the jetting input uj .

true value of uj sample mean sample std fitted std conservative std
1.2026 1.2111 0.1021 0.1021 0.1225
1.2454 1.2548 0.1097 0.1097 0.1317
1.4623 1.4776 0.1539 0.1539 0.1846
1.5191 1.5366 0.1672 0.1672 0.2006
1.8670 1.9008 0.2612 0.2612 0.3134
1.9603 1.9995 0.2917 0.2917 0.3501
1.9609 2.0007 0.2920 0.2920 0.3504
1.9706 2.0112 0.2952 0.2952 0.3542
2.0459 2.0916 0.3211 0.3211 0.3853
2.0949 2.1438 0.3384 0.3384 0.4061
2.1442 2.1973 0.3569 0.3569 0.4283
2.4305 2.5109 0.4805 0.4805 0.5766
2.8580 2.9975 0.7429 0.7178 0.8614
2.9245 3.0744 0.8413 0.7597 0.9116
3.0647 3.2424 1.3157 0.8588 1.0305
3.1665 3.3612 7.7742 0.9603 1.1524
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Figure A.2: Scenario B. Monte Carlo experiment showing the distribution of 106 random sam-
ples of uc corrupted with noise (left) and uc corrupted with noise (right). The red curve shows
the Gaussian fit to the sample, the green line indicates the true values of uc and uj , respectively.
The purple curve (right) shows the conservative Gaussian fit.

the standard deviations of the fitted Gaussian are almost indifferent (relative to the magnitude
of uc) to the true value of uc. Therefore, it is reasonable to approximate all the sampled std
reported in the Table A.1 by the average of the sampled std, i.e., by σ = 120.3.

To conclude, the results of the Monte Carlo experiment described above give a strong support
to the claim that the noise in the cutting input uc can be approximated by the zero-mean
Gaussian with the standard deviation given by σ = 120.3.

What can be further observed from Figures A.1b–A.3b is that the uncertainty in the jetting
input uj has non-Gaussian characteristics. This is further confirmed by Kolmogorov-Smirnov
test of normality that rejects the normality hypothesis with p-value always lower than 10−8.
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Figure A.3: Scenario C. Monte Carlo experiment showing the distribution of 106 random sam-
ples of uc corrupted with noise (left) and uc corrupted with noise (right). The red curve shows
the Gaussian fit to the sample, the green line indicates the true values of uc and uj , respectively.
The purple curve (right) shows the conservative Gaussian fit.

The samples obtained from the Monte Carlo experiment form a shape that resembles a Gamma
distribution, however the gamma fits are also rejected by the Kolmogorov-Smirnov test, al-
though with larger p-values than in the case of normality hypothesis. Therefore, we conclude
that an accurate parametric approximation of the noise in uj leads to a complicated statistical
problem that is beyond the scope of this thesis. Instead, we decided to model the noise in uj

by a zero-mean Gaussian with the standard deviation that is large enough to cover the “thick
tails” of the empirical distribution that can be seen in Figures A.1b–A.3b. Such an operation
results in a conservative estimate of the uncertainty in the jetting input uj since it increases
the std of the “true” noise. However, this rise in the std is not very significant as can be seen in
Figures A.1b–A.3b. Furthermore, the Gaussian approximation of the uncertainty distribution
of uj is very useful in the estimation algorithms. Table A.2 gives an overview of the uj-related
outcomes of the Monte Carlo experiment. It reports the true values of the jetting input uj

with sampled mean and sampled std, fitted std, which is obtained from the data with outliers
filtered out, and the conservative std, which is equal to 120% of the fitted std.

As can be observed in the case of jetting input uj the corresponding noise depends on the
true value of uj . This is different from the case of cutting input uc where we established that
the noise has constant variance. However, given the Table A.2, we can establish an empirical
relation between the values of the jetting input uj and the corresponding standard deviations.
To the empirical data we fitted a polynomial of type

y = a + b · xc, (A.2)

where a, b, and c are free parameters to be determined by the optimization algorithm. The choice
of such a structure of the fitted curve is motivated by the model of the jetting input uj (2.16b).
We can observe in Figure A.4 that such a polynomial, with appropriate parameters a, b, and c,
accurately fits the empirical data.
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Figure A.4: The relation between the true value of jetting input uj and the standard deviation
of the Gaussian fitted to data obtained from the Monte Carlo experiment. The green curve is
a polynomial (A.2) fitted to the empirical data. The parameters of the polynomial are: a =
0.04874, b = 0.04857, c = 2.693.
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Appendix B

Proof of Proposition 7.1

In this appendix we prove Proposition 7.1 that states the following:

Proposition B.1. If X is a normally distributed random variable with mean µ and variance σ2

and C1, C2 are certain positive constants then the probability density function of the variable

C1 max

(

0, 1 − C2

X2

)

(B.1)

is given by

p
C1 max(0,1− C2

X2 )(x) =

√

C1C2

2πσ2(C1 − x)3
e−

C1C2
C1−x

+µ2

2σ2 cosh

(

µ
√
C1C2

σ2
√
C1 − x

)

1(0,C1](x) (B.2a)

+

(

1 −
∫ 1

0

√

C2

2πσ2y3
e−

C2
y

+µ2

2σ2 cosh

(

µ
√
C2

σ2√y

)

dy

)

δ0(x), (B.2b)

where 1(0,C1] is an indicator function and δ0 is the Dirac delta.

In order to prove Proposition B.1 it is convenient to start with deriving the following two
technical lemmas:

Lemma B.1. If X is a normally distributed random variable with mean µ and variance σ2

then the probability density function of the variable X2 is given by

pX2(x) =
1√

2πσ2x
e−

x+µ2

2σ2 cosh

(

µ
√
x

σ2

)

. (B.3)
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Proof. Note that the cumulative distribution function of the variable X2 is given by

P
(

X2 ≤ x
)

= P
(

X ≤
√
x
)

− P
(

X ≤ −
√
x
)

(B.4a)

= Φ

(√
x− µ

σ

)

− Φ

(−√
x− µ

σ

)

, (B.4b)

where Φ is the cumulative distribution function of the standard normal variable. Since Φ is

smooth at every point the probability density function of X2 can be found by taking the first

derivative of the right hand side of the equation (B.4b)

pX2(x) =
d

dx

(

Φ

(√
x− µ

σ

)

− Φ

(−√
x− µ

σ

))

(B.5a)
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. (B.5d)

Lemma B.2. If X is a normally distributed random variable with mean µ and variance σ2

and C is a positive constant then the probability density function of the variable C
X2 is given by

p C

X2
(x) =

√

C

2πσ2x3
e−

C
x

+µ2

2σ2 cosh

(

µ
√
C

σ2
√
x

)

. (B.6)

Proof. The variable C
X2 takes only positive values, hence we can restrict the domain of the

probability density function to the interval (0,+∞). Let x > 0. Then

P

(

C

X2
≤ x

)

= 1 − P

(

X2 ≤ C

x

)

, (B.7)

and, since the cumulative distribution of X2 is smooth, we find the probability density function
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of the variable C
X2 by differentiating both sides of the equation (B.7):

p C

X2
(x) =

C

x2
pX2

(

C

x

)

. (B.8)

Finally, the formula (B.6) is obtained by applying Lemma B.1 to the last equation.

Proof of Proposition B.1. The variable C1 max
(

0, 1 − C2

X2

)

introduced in (B.1) takes values in

the interval [0, C1]. It is continuously distributed on the interval (0, C1] and has a singularity

at zero, where a positive probability mass is concentrated. Therefore, for x > 0 the proba-

bility density function of C1 max
(

0, 1 − C2

X2

)

is equal to the probability density function of a

variable C1 − C1C2

X2 and the probability mass at x = 0 is equal to P
(

1 − C2

X2 ≤ 0
)

. Let us now

consider x > 0. The variable C1 − C1C2

X2 is continuous, hence again its density can be derived

from the cumulative density function

p
C1 max(0,1− C2

X2 )(x) =
d

dx
P

(

C1 −
C1C2

X2
≤ x

)

(B.9a)

=
d

dx

(

1 − P

(

C1C2

X2
≤ C1 − x

))

(B.9b)

= pC1C2
X2

(C1 − x). (B.9c)

For x = 0 we have

P

(

1 − C2

X2
≤ 0

)

= 1 − P

(

C2

X2
≤ 1

)

(B.10a)

= 1 −
∫ 1

−∞
p C2

X2
(y)dy. (B.10b)

Note that the integral in (B.10b) is in fact the integral from zero to one, since C2

X2 is a positive

random variable. Therefore, the density of C1 max
(

0, 1 − C2

X2

)

is given by

p
C1 max(0,1− C2

X2 )(x) = pC1C2
X2

(C1 − x)1(0,C1](x) (B.11a)

+

(

1 −
∫ 1

0

p C2
X2

(y)dy

)

δ0(x). (B.11b)

Finally, applying Lemma B.2 to the last equation leads to the desired formula (B.2b).
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Nomenclature

Roman Symbols

ak Update operator at time step k

bk Prediction operator at time step k

c̄N Improved resampling operator

cN Multinomial sampling operator

hc Cutting depth

kch Cutting force coefficient (horizontal)

kcv Cutting force coefficient (vertical)

Fvc Visor cylinder force

Wd Width of the drag-head

hz Dredging depth

ech Process noise associated to the variable kch

ed Process noise associated to the variable dm

em Process noise associated to the variable ms

eoFvc Measurement noise of the variable Fvc

eos Measurement noise of the variable hs

eot Measurement noise of the variable ht

eovsh Measurement noise of the variable vsh

ke Erosion coefficient

es Process noise associated to the variable hs

evh Process noise associated to the variable kvk

evsh Process noise associated to the variable vsh
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evc Process noise associated to the variable Fvc

hex Total excavation depth

Fk Linear process model at time step k

fk Process model at time step k

Fk Unsaturated state model at time step k

Qs,c Sand flow loosened by the teeth

Qw,j Water flow produced by jets

Qs,j Sand flow loosened by the jets

Qm Production mixture flow

Qw,t Toe water flow from surroundings

Qw,v Water flow through the valve

kd Friction coefficient total drag force

dm Average grain diameter

Hk Linear observation model at time step k

hk Observation model at time step k

Fch Horizontal cutting force

I Identity matrix

H Matrix used in Central-Difference approximation

Im m-th order quadrature rule

Jk Information matrix at time step k

hj Jetting depth

Qw,j Jet water flow

Kk Kalman gain at time step k

K̃k Probability kernel used by the Saturated Particle Filter

gk Likelihood function at time step k

U Input space

X State space

Y Observation space

rvc Moment arm

pj Jet nozzle pressure
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Nj Number of jet nozzles

Qo Outgoing flow rate

Pk|k Covariance of the Gaussian posterior p(xk | Yk) at time step k

p0 Initial distribution

ksi In situ permeability

kNk Particle filter at time step k

Qk Covariance matrix of the state noise vk

qi Predicted probability of saturation of the i -th particle

qαi Updated probability of saturation of the i -th particle

Rk Covariance matrix of the observation noise wk

kvh Ratio between horizontal and vertical cutting force

kvh Ration between kch and kcv

xik Representative point

Rep Reynolds number

hs Sand bed height

ms Mass of the sand bed

fe Scouring function

fs Settling function

vsh Speed of the ship

Fth Thrust force of the propeller blades

Qi Incoming flow rate

mt Total mass of the mixture in the hopper

Vt Total volume of the mixture in the hopper

Ts Sampling time

uk Deterministic input at time step k

vk System noise at time step k

Fcv Vertical cutting force

vs0 Undisturbed settling velocity of a single particle

x2 Visor length

hv Visor depth
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wk Measurement noise at time step k

xk State variable at time step k

x̂k Estimate of the state at time step k

x0 Initial state of the system

yk Observation variable at time step k

Yk Measurements up to time step k

Greek Symbols

αi Weight of the i-th term in the Gaussian term

qαi Updated probability of saturation

αlt Angle of the lower suction pipe

∂A Boundary of the set A

β Richardson-Zakai exponent

qi Predicted probability of saturation

ρi Density of the incoming mixture

κ Parameter of the UKF

ρm Density of the mixture in the hopper

µi Mean of the i-th term in the Gaussian term

ωi
k Weight corresponding to the representative point xik

ωk(·) Likelihood function at time step k

ρo Density of the outgoing mixture

ρq Density of quartz

ρdhi Density of the mixture in the drag-head model

ρs Sand bed density in the hopper

Σi Covariance of the i-th term in the Gaussian term

σch Standard deviation of the variable ech

σd Standard deviation of the variable ed

σvc Standard deviation of the variable evc

σm Standard deviation of the variable em

σo
Fvc Standard deviation of the variable eoFvc

σo
s Standard deviation of the variable eos
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σo
t Standard deviation of the variable eot

σo
vsh Standard deviation of the variable eovsh

σs Standard deviation of the variable es

σvh Standard deviation of the variable evh

σvsh Standard deviation of the variable evsh

ΣX Collection of measurable subsets of the state space X

τt Transport delay in the mixture density ρdhi

αv Visor angle

ρw Density of water

Other Symbols

∇x First-order derivative operator with respective to the variable x

∆y
x Second-order derivative operator with respective to the variables x and y

D11
k Matrix used for computation of PCRB

D12
k Matrix used for computation of PCRB

D22
k Matrix used for computation of PCRB

Ex Expectation operator taken with respect to the variable x

E Expectation operator

N(x;µ,Σ) Probability density function of a Gaussian random variable with mean µ and co-
variance Σ evaluated at x

p (xk | Yk) Conditional probability density of the state xk given the measurements Yk

Acronyms

BF Bayesian Filter

BPF Bootstrap Particle Filter

CBPF Constrained Bootstrap Particle Filter

CDF Central Difference Filter

CRB Cramér-Rao Bound

CSPF Convex Saturated Particle Filter

CSSDS Convex Saturated Stochastic Dynamical System

EKF Extended Kalman Filter

FPF Feedback Particle Filter

GHF Gauss-Hermite Filter
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GSF Gaussian Sum Filter

IEKF Iterated Extended Kalman Filter

iSPF Improved Saturated Particle Filter

KF Kalman Filter

LRKF Linear Regression Kalman Filter

MAP Maximum A Posteriori estimator

MMSE Minimum Mean-Square Error estimator

MPC Model Predictive Controller

MSE Mean-Square Error estimator

PCRB Posterior Cramér-Rao Bound

PDF Probability Density Function

PF Particle Filter

RMSE Root Mean Squared Error

ROPF Reduced-Order Particle Filter

SDS Stochastic Dynamical System

SPF Saturated Particle Filter

SSDS Saturated Stochastic Dynamical System

TSHD Trailing Suction Hopper Dredger

UBPF Unconstrained Bootstrap Particle Filter

UKF Unscented Kalman Filter

UT Unscented Transformation
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Summary

A Trailing Suction Hopper Dredger (TSHD) is a ship that excavates sediments from
the sea bottom while sailing. In situ material is excavated with a special tool called
the Drag-Head, then it is hydraulically transported through a pipe to the hopper
where it is temporarily stored. After the dredging is completed the collected material
is transported and discharged at a specified location. The efficiency of this process
is highly dependent on the detailed knowledge of the excavated soil.

The optimization of dredging operations is of vital importance for future improve-
ment in efficiency, accuracy and from the viewpoint of labor saving. The automated
onboard systems that have been developed to optimize the dredging performance
require knowledge of several uncertain soil-dependent parameters. These cannot
be directly measured but have to be estimated online from the available measure-
ments. Such estimation is a challenging task due to lack of sufficient sensors, severe
nonlinearities in models, and time-varying nature of the parameters of interest.

In this thesis we focus on two of the most important TSHD-related models. These
are:

I. Drag-Head Model - describing the excavation process,

II. Hopper Model - describing the sedimentation process occurring inside the hop-
per.

They contain several uncertain soil-dependent parameters that need to be estimated.
These are:

I. horizontal cutting force coefficient kch (Drag-Head Model),

II. ratio kvh between the horizontal and vertical cutting forces (Drag-Head Model),

III. in situ permeability ksi (Drag-Head Model),

IV. average grain diameter dm (Hopper Model).

Both processes, together with the corresponding estimation problems, are discussed
in detail in Chapter 2.

The highly uncertain and time-varying nature of the soil-dependent parameters and
the nonlinear dynamics of the models used to describe dredging process make the
estimation a challenging task. The algorithms that are capable of tackling these
type of problems are Nonlinear Bayesian Filters (NBF). In Chapter 3 we review
several types of NBF, namely:

I. parametric filters based on the Taylor series expansion (EKF, IEKF),

II. parametric filters based on statistical approximations (UKF, GHF, CDF),

III. parametric filters based on Gaussian Sum approximations (GSF),

IV. nonparametric filters based on the importance sampling (BPF),
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V. nonparametric filters based on the mean-field control-oriented approach (FPF).

In Chapter 4 we investigate the applicability of these nonlinear filters to the es-
timation problems that originate from the Drag-Head Model. The problems are:
the Cutting Estimation Problem and the Cutting and Jetting Estimation Problem.
The Cutting Estimation Problem applies for any cutting excavation tool whereas the
Cutting and Jetting Estimation Problem is applicable only for tools equipped with
cutting and jetting components. The former problem considers estimation of the
ratio kvh between cutting forces and the horizontal cutting force coefficient kch,
the latter problem deals with the estimation of the horizontal cutting force coeffi-
cient kch and the in situ permeability ksi. To solve the aforementioned estimation
problems one needs to handle time-varying delay in the measurement of incoming
density ρi, which is discussed separately.

It is concluded that among the tested methods the best solution to the Cutting
Estimation Problem is provided by the CDF and, in case of large uncertainty in the
initial states, by the GSF. To solve the Cutting and Jetting Estimation Problem it is
crucial to exploit the correlation between the horizontal cutting force coefficient kch
and the in situ permeability ksi. This is done by a cascaded filter, which uses
the PF to obtain an estimate of ksi, which will be further filtered by a Steady State
Identification (SSI) filter, and finally by the BF to produce a final estimate of kch.

In Chapter 5 we develop a novel class of nonlinear particle filters: the Saturated
Particle Filter (SPF) that is used to solve the Hopper Estimation Problem. The SPF
is a general method designed for Saturated Stochastic Dynamical Systems (SSDS),
which are severely nonlinear systems often used in modeling real-life problems. They
are characterized by a constrained probability distribution exhibiting singularity on
the boundary of the saturation region. Such singularities make it difficult to estimate
the states or the parameters of SSDSs by standard nonlinear filters. Our new method
exploits the specific structure of the SSDS in order to design an importance sampling
distribution that accounts for the most recent measurements in the prediction step
of the filtering algorithm.

Chapter 6 deals with the asymptotic properties of the SPF. We establish the con-
ditions under which the SPF converges to the optimal theoretical filter. The con-
vergence of our method is closely related to the appropriate resampling scheme.
This led to the development of the improved Saturated Particle Filter (iSPF) which
combines the importance sampling of the SPF with a novel resampling algorithm.

In Chapter 7 the iSPF together with other nonparametric methods from Chap-
ter 3 are used to estimate the average grain diameter dm, which solves the Hopper
Estimation Problem. Because the sedimentation process is naturally divided into
three regimes, to find the most efficient filtering method we considered each mode
separately. We conclude that:

I. for the No-Overflow loading phase the best estimate of dm is obtained by
the FPF,

II. for the Overflow loading phases with weak erosion, the recommended filtering
method is the Reduced-Order PF,

III. for the Overflow loading phases with strong erosion, the best estimation per-
formance is achieved by the Reduced-Order PF when the excavated soil is fine
and the Hybrid SPF when the excavated soil is coarse.
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The final solution to the Hopper Estimation Problem is obtained by integrating the
filters designed for separate modes into a global estimator.

Chapter 8 concludes the thesis.
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Samenvatting

Een sleephopperzuiger is een schip dat sediment van de zeebodem opgraaft tijdens
het varen. Het sediment wordt opgegraven met behulp van een speciale Draghead
(sleepkop). Het opgegraven sediment wordt vervolgens met behulp van een hy-
draulische pomp door een buis naar de hopper (laadruim) getransporteerd waar het
tijdelijk wordt opgeslagen. Nadat het baggerproces klaar is, wordt het opgeslagen
sediment op een specifieke locatie gelost. De efficiëntie van dit baggerproces hangt
sterk af van de kennis van het opgegraven sediment. Het optimaliseren van de bag-
gerprocessen is van vitaal belang om in de toekomst de efficiëntie te verhogen, de
nauwkeurigheid te verbeteren en arbeid te besparen. Geautomatiseerde systemen
aan boord die speciaal zijn ontwikkeld om het baggeren te optimaliseren, vereisen
kennis van verschillende onzekere bodemafhankelijke parameters. De onzekere pa-
rameters kunnen niet rechtstreeks worden gemeten, maar moeten uit beschikbare
metingen worden geschat. Een uitdaging bij het schatten van deze parameters is een
gebrek aan voldoende sensoren, sterk niet-lineaire modellen en het tijdsafhankelijke
karakter van de parameters.

Dit proefschrift richt zich op twee van de belangrijkste sleephopperzuiger-gerelateerde
modellen, namelijk:

I. Draghead Model - beschrijft het opgravingsproces,

II. Hopper Model - beschrijft het sedimentatieproces in de hopper.

Deze modellen bevatten een aantal onzekere bodemafhankelijke parameters die moeten
worden geschat. Deze parameters zijn:

I. de horizontale snijkrachtcoefficiënt kch (Draghead Model),

II. de ratio kvh tussen de horizontale en verticale snijkrachten (Draghead Model),

III. de in situ permeabiliteit ksi (Draghead Model),

IV. de gemiddelde korreldiameter dm (Hopper Model).

Beide modellen, samen met de bijbehorende schattingsproblematiek, worden in de-
tail besproken in hoofdstuk 2.

Het zeer onzekere en tijdsafhankelijke karakter van de bodemafhankelijke parameters
en de niet-lineaire dynamica van de modellen die worden gebruikt om het baggerpro-
ces te beschrijven zorgen ervoor dat de schatting een zeer uitdagende opgave is. De
algoritmen die in staat zijn deze uitdagingen op te lossen zijn niet-lineaire Bayesi-
aanse filters (NBF). In hoofdstuk 3 worden een aantal NBF variaties beschreven,
namelijk:

I. parametrische filters op basis van de Taylor-serie expansie (EKF, IEKF),

II. parametrische filters op basis van statistische benaderingen (UKF, GHF, CDF),

192



III. parametrische filters op basis van Gauss Sum benaderingen (GSF),

IV. niet-parametrische filters op basis van importance sampling (BPF),

V. niet-parametrische filters op basis van de mean-field control-oriented approach
(FPF).

In hoofdstuk 4 wordt de toepasbaarheid van de niet-lineaire filters op de schat-
tingsproblemen die voortkomen uit het Draghead Model onderzocht. De prob-
lemen zijn het Cutting Estimation Problem en het Cutting and Jetting Estima-
tion Problem. Het Cutting Estimation Problem geldt voor elke snijknop, terwijl
het Cutting and Jetting Estimation Problem alleen van toepassing is op werk-
tuigen uitgerust met snij- en jetting componenten. Het eerstgenoemde probleem
beschouwt schattingen van de verhouding kvh tussen snijkrachten en de horizontale
snijkrachtcoëfficiënt kch, terwijl het tweede probleem de schattingen van de hor-
izontale snijkrachtcoëfficiënt kch en in situ permeabiliteit ksi beschouwt. Om de
hiervoor genoemde schattingsproblemen op te lossen moet men omgaan met een
tijdsvariërende vertraging bij de meting van de inkomende materiaaldichtheid ρi.
Dit laatste wordt afzonderlijk besproken.

Er wordt geconcludeerd dat onder de geteste methoden de beste oplossing voor het
Cutting Estimation Problem wordt verkregen door gebruik te maken van de CDF.
In het geval van grote onzekerheid in de begintoestand wordt het beste resultaat
verkregen door de GSF. Om het Cutting and Jetting Estimation Problem op te
lossen is het cruciaal om de correlatie tussen de horizontale snijkrachtcoëfficiënt kch
en de in situ permeabiliteit ksi te benutten. Dit wordt gedaan door een cascade
filter dat de PF gebruikt om een schatting te maken van ksi. Vervolgens wordt dit
resultaat met een Steady State Identification (SSI) filter verder gefilterd en tenslotte
kan door het gebruikmaken van de BF een uiteindelijke schatting van kch worden
verkregen.

In hoofdstuk 5 wordt een nieuwe categorie van niet-lineaire particle filters on-
twikkeld: de Saturated Particle Filter (SPF) dat wordt gebruikt om het Hopper
Estimation Problem op te lossen. De SPF is een algemene methode ontwikkeld
voor Saturated Stochastic Dynamical Systems (SSDS) dat vaak wordt toegepast
om sterk praktische en niet-lineaire systemen te modelleren. Ze worden gekenmerkt
door een beperkte kansverdeling die een singulariteit op de grens van het verzadig-
ingsbereik laten zien. Dergelijke singulariteiten maken het moeilijk om de status of
de parameters van SSDS te schatten met behulp van standaard niet-lineaire filters.
De nieuwe methode maakt gebruik van de specifieke structuur van de SSDS om
een importance sampling distribution te ontwerpen die in de predictiestap van het
filteralgoritme rekening houdt met de meest recente metingen.

Hoofdstuk 6 gaat over de asymptotische eigenschappen van de SPF. De voorwaar-
den waaronder de SPF convergeert naar een optimale theoretische filter worden
vastgesteld. De convergentie van deze methode is nauw verwant aan het juiste re-
sampling schema. Dit leidde tot de ontwikkeling van de improved Saturated Particle
Filter (iSPF) waarin importance sampling van de SPF met een nieuw resampling
algoritme wordt gecombineerd.

In hoofdstuk 7 worden iSPF samen met andere niet-parametrische methoden uit
hoofdstuk 3 gebruikt om de gemiddelde korreldiameter dm te schatten, zodat het
Hopper Estimation Problem wordt opgelost. Omdat het sedimentatieproces in het
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laadruim van nature verdeeld zijn in drie regimes, is om de meest efficiënte filter-
methode te vinden elke toestand afzonderlijk beschouwd. De volgende conclusies
zijn hieruit getrokken:

I. voor de laadfase zonder overvloeiverliezen wordt de beste schatting van dm
verkregen door de FPF,

II. voor de laadfase met overvloeiverliezen en zwakke erosie wordt de Reduced-
Order PF filtermethode aangeraden,

III. voor de laadfase met overvloeiverliezen, sterke erosie en fijn sediment wordt de
beste schatting gegeven door de Reduced-Order PF en voor grof sediment door
de Hybrid SPF.

De uiteindelijke oplossing voor het Hopper Estimation Problem wordt verkregen
door het integreren van de ontworpen filters voor de afzonderlijke regimes tot een
globaal schattingsalgoritme.

Hoofdstuk 8 sluit dit proefschrift af.
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S. Särkkä and J. Hartikainen. On Gaussian Optimal Smoothing of Non-Linear State Space
Models. IEEE Transaction on Automatic Control, 55(8):1938–1941, 2010. 31

T. S. Schei. A Finite-Difference Method for Linearization in Nonlinear Estimation Algorithms.
Automatica, 33:2053–2058, 1997. 49

T. Sellke, M. Bayarri, and J. Berger. Calibration of p-Values for Testing Precise Null Hypothe-
ses. The American Statistician, 55:62–71, 2001. 174

X. Shao, B. Huang, and J. M. Lee. Constrained Bayesian State Estimation - A Comparative
Study and a New Particle Filter Based Approach. Journal of Process and Control, 20:143–
157, 2010. 96, 100, 101, 108, 110, 118

D. Simon. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley-
Interscience, 2006. 31

F. Simonot. Convergence Rate for the Distributions of GI/M/1/n and M/GI/1/n as n Tends
to Infinity. Journal of Applied Probability, 34:1049–1060, 1997. 102

X. Song, P. Willett, and S. Zhou. Posterior Cramer-Rao Bounds for Doppler Biased Multistatic
Range-only Tracking. In Proceedings of the 14th International Conference on Information
Fusion (FUSION), pages 1–8, Chicago, Illinois, 2011. 42

K. Spingarn. Passive Position Location Estimation Using the Extended Kalman Filter. IEEE
Transactions on Aerospace and Electronic Systems, 23:558–567, 1987. 41

W. Stadje. A New Approach to the Lindley Recursion. Statistics and Probability Letters, 31:
169–175, 1997. 96, 102

P. Stano, Zs. Lendek, J. Braaksma, R. Babuška, and C. de Keizer. Particle Filters for Estimating
Average Grain Diameter of Material Excavated by Hopper Dredger. In Proceedings of IEEE
Conference on Control Applications, pages 292 – 297, Yokohama, Japan, 2010. 96, 127

206

http://www.lce.hut.fi/~ssarkka/course_k2011/pdf/course_booklet_2011.pdf
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