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Abstract—Wildlife conservation efforts are constrained by a
limited amount of resources available for surveillance activities.
UAVs are used increasingly to assist rangers in patrol tasks.
Effectively patrolling wildlife parks requires detailed knowledge
of the environment and its threats, which is not always available.
Previous work in Green Security Games (GSGs) that aims
to develop defensive strategies to deter adversaries relies on
historical poaching data to train machine learning models.
Recent advancements in the field have led to the development of
an online learning framework that does not require prior data.
However, the defensive strategies resulting from this approach
are focused on foot patrols by rangers, which do not have the
same mobility as UAVs, or do not take into account spatio-
temporal constraints associated with patrolling in a real-world
situation at all. To address the desire of using UAVs for wildlife
surveillance, this paper proposes MEOMAPP, a model that
extends on the online learning approach by incorporating a
patrol planning algorithm more suitable for aerial patrol. It also
includes an evaluative algorithm that considers a human expert
next to the online learning expert and balances the application
of their strategies based on the observed performance of each
expert. By simulating MEOMAPP in a realistic environment, the
research demonstrates that the model is suitable to determine
aerial surveillance strategies for wildlife conservation.

Index Terms—Green Security Games; Game Theory; Online
Learning; Adversarial Bandits; Agent-Based Modelling; Aerial
Surveillance; Wildlife Conservation

I. INTRODUCTION

Poaching is still a major problem in large parts of the world.
It threatens efforts in wildlife conservation, which negatively
impacts biodiversity and possibly results in damaged ecosys-
tems [1]. There is also a large economic cost in the form of
reduced income from wildlife tourism and trophy hunters. Cur-
rently, the cost of measures to keep animals protected and safe
from poachers is not economically viable [2]. Simultaneously,
protecting wildlife is not always without risks either. In Africa
alone, 349 rangers have died on duty since 2012, although it
is thought these figures are substantially higher due to lack of
reporting [3].

These high costs are a driver for cost-effective and innov-
ative measures in the wildlife protection domain. Notably,
the use of artificial intelligence (AI) has shown potential
for detecting animals and poachers with object and image
recognition [4, 5], and it can also assist in determining optimal
patrol routes based on historical poaching data. Moreover,

the deployment of drones is increasingly popular for the
conservation of protected areas in general. Their capability to
perform surveillance in a relatively low-cost risk-free manner
on a high spatio-temporal resolution with a diverse range of
sensors makes them a desirable addition to the tools already in
place [6, 7]. In the future, it will be possible to develop truly
autonomous surveillance systems by coupling current autopilot
capabilities of UAVs with AI-driven image recognition tools
and surveillance strategies.

A frequently used framework that focuses on developing
solutions for the surveillance planning problem is the for-
mulation of a Green Security Game (GSG) [8], a type of
Stackelberg Security Game (SSG). In this format, the inter-
actions between patrollers (defenders) and poachers (attack-
ers)are modelled as a repeated single-shot game. The attacker
carries out one or multiple attacks, while simultaneously the
defender defends according to a specific strategy. The payoff
for the defender depends on where the attacker attacked at that
round. Multiple repetitions of this single-shot game, which
we consider a single round in an infinite game, allow the
defender and the attacker to learn and subsequently adapt their
strategies. The resulting defender strategy can be used to define
where surveillance should take place on the terrain.

A key characteristic of most AI methods is their dependence
on large amounts of data to train their internal models.
Next to common problems associated with data sets, like
imperfections, incompleteness, and data bias [9, 10], an often
overlooked fact is that data is not always available in the first
place. Especially when developing models to predict optimal
patrol routes for wildlife surveillance, there is no guarantee
that specific information is available or will be available in
the future. This information is about where which animals are
at a certain time, where and how many poachers are active on
the terrain, and how many attacks have taken place historically.
The absence of this knowledge makes it difficult to determine
patrol routes for computers and humans alike.

The majority of previously proposed models require historic
attack data and/or a complete attacker model with various
defining features, such as a specific behaviour model and
full knowledge of the attacker’s payoff structure [11–18].
However, it is even recognised that usually the attacker’s
payoffs are unknown to the defender [19, 20]. Moreover, the
defender might not even know its own payoffs due to too much

1



Figure 1. Patrol planning with a time-unrolled graph as by the MINION
model [23].

uncertainty in nature. For example, if the payoffs are based on
the amount and type of animals at a certain location, they can
be random and/or variable, making it difficult to estimate the
value of the payoffs.

Recent research by Xu et al. [21] tries to tackle the problems
posed by uncertainty by proposing an online learning al-
gorithm to develop a surveillance strategy without prior know-
ledge. The model, called the Follow the Perturbed Leader with
Uniform Exploration (FPL-UE), is an adaptation of the method
proposed by Neu and Bartók [22]. It makes no assumptions
about adversary behaviour nor defender payoffs while still
guaranteeing an efficient theoretical performance. Specifically,
it assumes an arbitrary attacker and puts no assumptions on
their behaviour or payoff structure. It then chooses between
exploring (learning which strategy works best) and exploiting
(maximising utility with gathered knowledge).

the FPL-UE algorithm was further developed by Gholami
et al. [23] to take into account spatio-temporal planning
constraints proper to patrol rangers, like limited walking time
or distance and limited selection of accessible targets. This
made the algorithm more applicable for surveillance by foot
patrol in the real world. It calculated a feasible patrol route by
selecting a starting point at a patrol post and solving an equally
distributed time-unrolled graph of adjoining accessible targets
on a grid constraint by a specific time horizon (see Figure 1).
However, this method is not practical for determining a surveil-
lance flight performed by a drone, since a drone is not bound
by flying between adjoining targets. Additionally, Gholami
et al. [23] introduces an expert-selection method to evaluate the
online learning expert (based on FPL-UE) and a decision tree-
based machine learning expert during the game and selecting
the best performing expert. However, this approach has its
limitations. First of all, since no data is available to train the
machine learning expert, a static probability map substitutes as
a simulation of the decision tree algorithm’s results. Secondly,
the expert-selection method proposed by Gholami et al. [23]
already starts evaluating both experts at the start of the game.
This means that the online learning expert is evaluated before
it had the chance to learn.

We propose a novel approach to the patrol planning problem
where we take advantage of patrolling with a drone. Continu-
ing on the work by Xu et al. [21], we adopt the same com-
binatorial adversarial online learning problem formulation to

determine a preliminary set of targets for a defender strategy.
We formulate the flight path planning as an Orienteering
Problem (OP) constrained by the practical limitations of the
drone. The solution to the OP results in the final strategy.
Inspired by Gholami et al. [23], the model, aptly named
the Multi-Expert Online Model for Aerial Patrol Planning
(MEOMAPP), also incorporates an expert-selection algorithm
that allows evaluating its performance with a second expert.
Contrary to Gholami et al. [23], the experts are not evaluated
right away, but only after the online expert has had a chance
to learn.

In this paper, we present an agent-based model developed
for evaluating MEOMAPP’s performance. The model repres-
ents a simplified wildlife surveillance system, composed of
a domain to be surveilled (the environment), the drone that
performs the surveillance flights (the defender agent), and
one or multiple poachers (the attacker agents). The defender
behaves according to the strategies determined by MEOMAPP.
We selected two common attacker models to take it up against
MEOMAPP: (i) a simple stochastic model with predefined
attack probabilities per cell, and (ii) a Quantal Response model
[13], which is a state of the art adaptive attacker model
with bounded rationality. For a second expert, we assumed a
realistic practical scenario where a person familiar with the
domain to be surveilled gives every target an attackability
score that is used for a probability-based mixed defender
strategy.

The question we want to address with this research is
whether an FPL-UE algorithm in a multi-expert learning
model with a planning method suitable for drones is a viable
application for determining wildlife surveillance strategies. To
answer this question, we test MEOMAPP using an agent-based
model on a real-life wildlife surveillance case. For this case,
we develop defender strategies for the Aloegrove Safari Park in
Namibia against simulated attackers and with a human expert
as a competing strategy method. The test results are inspected
for convergence of performance over time and performance
variations of MEOMAPP following changes of operational
and environmental parameters of the model. The suitability
of the model is valid if the convergence behaviour is similar
to previous research.

The paper is organised as follows: section II covers addi-
tional related work, section III provides a detailed account of
the problem formulation, section IV lays out the agent-based
model including the specifications of MEOMAPP, section V
describes the numerical evaluation by means of the real-
world case study. The results are discussed in section VI
and we draw a conclusion in section VII. Finally, we present
recommendations for future research in section VIII.

II. RELATED WORK

In this section, we address further how our research com-
pares to prior literature regarding GSGs and online learning
methods for wildlife surveillance, matheuristics for path plan-
ning, and the agent-based modelling and simulation paradigm.
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A. Adversary Modelling in Green Security Games
It is understood that assuming a perfectly rational, value-

maximising adversary is not ideal for addressing human ad-
versaries [24]. Subsequently, two competing approaches have
emerged to address human bounded rationality in SSGs and
subsequently GSGs. One approach departed from the idea that
attackers behave according to specific parametric models of
human decision-making of which the parameters could be
learned by fitting them to historical data, and subsequently
deriving a defender strategy based on the probability where
an attacker would attack next. These models include the
BRQR algorithm [11] and MATCH [12], based on a Quantal
Response (QR) model for adversary behaviour [13]. Based on
a new attacker model with an added Subjective Utility function
to the QR model (SUQR) [14], algorithms SU-BRQR [14],
PAWS [15, 16] and SHARP [17] were developed, followed
up by CAPTURE [18]. These models use parameter estim-
ation methods like Maximum Likelihood Estimation (MLE)
or Estimation Maximisation (EM) to determine the adversary
model’s parameters. The underlying data for the estimations
comes from real-world experiments or simulations with actual
human players.

The other approach is to intentionally avoid adversary mod-
elling and instead focusing directly on reward maximised route
optimization based on the individual targets. These methods
usually make use of data-driven machine learning techniques.
Models like INTERCEPT [25] and others by Gurumurthy
et al. [26] and Gholami et al. [27, 28] are based on decision
trees that use the target’s environmental characteristics and
historical attack data to predict the attackability of individual
targets. APE, the algorithm by Park et al. [29] uses a variety
of classification algorithms in combination with live GPS
data of animals and patrol rangers alike to determine real-
time dynamic patrol strategies. A black box optimization with
neural networks has also been presented by Gurumurthy et al.
[26]. These methods all require extensive (historic) data sets,
preliminary data manipulation, and extensive knowledge of the
terrain.

The recent models proposed by Xu et al. [21] and Gholami
et al. [23] also avoid adversary modelling. However, instead of
looking at target characteristics for attackability determination,
they define a game-theoretic behaviour model for the defender
that does not require prior data. The defender does learn an
optimal defensive strategy during the game though, regardless
of the behaviour the attacker exhibits. This research continues
on this specific online approach while avoiding adversary
modelling.

B. Matheuristic Path Planning
When the question is asked "what is the optimal route for

a vehicle given a specific set of constraints?" the resulting
problem is always a variant of the Vehicle Routing Problem
(VRP) [30]. The case of a single vehicle maximising its reward
over a closed route (i.e. returning to the starting point) is
known as the Orienteering Problem (OP). The OP, which
is NP-hard, is a well-studied problem, and many exact and

(meta)heuristic methods have been proposed to solve it [31].
The problem is formulated as an integral problem where a path
has to be found on a graph of nodes connected by arcs. All
nodes have a certain reward that is collected when the node
is visited, and the arcs induce a certain cost when they are
part of the route. In the aerial surveillance case, the graph is
considered complete, meaning all nodes are interconnected.

Even though the aerial wildlife surveillance problem is
presented as a GSG, the planning aspect is considered an OP
that has to be solved repeatedly on a graph with rewards that
change every round. However, since GSGs assume a defender
with limited resources (i.e., it cannot defend all targets in a
single round), the possible solution space for the OP is limited.
This makes the combination of the defender strategy algorithm
and the path planning algorithm in MEOMAPP a method con-
sidered a matheuristic for solving routing problems [32]. More
specifically, it can be classified as a two-phase decomposition
approach [33], where the first phase is considered selecting
a subset of the nodes in the graph and the second phase is
solving the OP on the reduced graph.

This research does not focus on improving solution methods
for an OP but it was considered noteworthy that this work is
on the intersection between GSGs and operations research.

C. Agent-Based Modelling and Simulation
In the majority of referenced literature in this paper, the

wildlife surveillance problem is represented as a Multi-Agent
System (MAS), wherein GSGs provide a framework to model
the agent’s interactions. The presence of autonomous actors
in the system that interact with each other makes Agent-
Based Modelling and Simulation (ABMS) the most appropri-
ate technique to implement and study this model. The ABMS
technique enables us to model a natural representation of
a system, provide flexibility to modify the system model,
and examine emergent outcomes resulting from interactions
between autonomous, individual entities with dynamic, adapt-
ive behaviours and heterogeneous characteristics [34]. This
is a suitable modelling framework for wildlife conservation
in general since models can be specified realistically and
dynamically, including changes in environmental conditions
and animal movements [35]. This enables them to study
externalities related to natural resource management [36].

III. PROBLEM FORMULATION

In this section, we describe the conceptual formulation
of the practical problem of aerial wildlife surveillance. The
formulation is similar to the problem formulation by Xu et al.
[21] and Gholami et al. [23], as this research aims to extend
their proposed solution model.

A. Game Setup
The components of the gamified system are the wildlife area

that is to be surveilled (the "targets"), the drone that performs
the surveillance flights (the "defender"), and the poachers the
drone aims to observe (the "attackers"). The entire area is
discretized by square grid cells, resulting in set [N ] consisting

3



of N targets. The diagonal of the grid cells is assumed to be
the width of the drone camera’s Field of View (FoV) in order
to always entirely cover a target when choosing it for the
route. We assume the drone’s height to be constant, ensuring
a constant FoV.

The surveillance planning problem is regarded as an in-
finitely repeated security game between an attacker and a
defender. Each round t, m attackers each choose a target to
attack. Simultaneously, the defender chooses a surveillance
flight to cover k targets specified according to a strategy
vt ∈ {0, 1}N . Vector vt is a binary vector denoting waypoints
of the surveillance path by entry i = 1 if target i is selected
as a waypoint for the flight path. The targets that are observed
resulting from this strategy are indicated by binary vector ct
with |ct| ≥ k. Targets that are only partially observed due to
the nature of the flight path have a chance of being included in
ct equal to the ratio of grid cell area covered by the defender.
Similarly to vt, the attacker strategy is denoted as at, where
entry i = 1 if target i is attacked by the attacker. The path the
attacker takes is not taken into account. Also, it is assumed that
the attacker remains at the same location for the entire duration
of the round. Given that target i is attacked, the defender gets
utility U ci if target i is covered by the defender, and Uui if i
is not covered by the defender. It is assumed that covering a
target is better than not covering it, which we formalise by
stating U ci > Uui .

B. Information Access and Player Behaviour

In wildlife surveillance, it is usually unknown to the de-
fender and the attacker what the specific value of a target
is as it depends on unknown and/or variable environmental
factors and actor-specific preferences. Also, the other players’
behaviour is difficult to predict completely, as players can
have different knowledge or behave irrationally. Given this
information gap, the approach taken for this and previous
models is to assume that the defender is unaware of prior
information regarding payoffs and attacker behaviour. It can
only observe utilities of targets when they are observed. Also,
there is no behaviour model of the attacker required for the
defender to learn a strategy, since it will adapt to any kind of
attacker behaviour. Furthermore, it is required for the attacker
that he can only observe the defender when being observed by
the defender himself in the current round. That way he is not
able to evade the defender during the same round. Finally, we
assume a perfect observation from the defender, meaning once
the defender covers 100% of an attacked target, the attacker
is observed.

C. Utility and Game Objective

Given the attacker strategy at and the defender observations
ct in round t, the defender’s utility at round t is defined as

u (ct, at) =
∑
i∈N

ct,iat,iU
c
i +

∑
i∈N

(1− ct,i) at,iUui (1)

where the first term denotes the utility of the covered targets
and the second term the utility of the uncovered targets. Both
terms are dependent on at. The equation can be rewritten as

u (ct, at) = ctrt (at) + C (at) (2)

with rt,i = at,i [U
c
i − Uui ] and C (at) =

∑
i∈[n] at,iU

u
i .

This notation helps understanding that the defender’s utility
at round t is dependent on the attacker’s moves during that
round. The objective of the security game is to minimise the
overall total regret RT of the defender, defined by

RT = max
c∈C

T∑
t=1

u (c, at)− E

[
T∑
t=1

u (ct, at)

]

= max
c∈C

T∑
t=1

rtc− E

[
T∑
t=1

rt · ct

] (3)

The first term is the utility of the optimal strategy for round t
in hindsight, with C being the set of all possible observation
vectors c. The second term is the expected value of the
defender’s utility. This notation is consistent with previous
online learning theory literature. As noted in Xu et al. [21],
the underlying notion of this regret formulation is that it is
typically impossible to learn the optimal (adaptive) defender
strategy vt. The reason for this is that the attacker can choose
at independent from previous actions or even adversarially to
the defender. Therefore, the optimal strategy at round t can
be independent from history. Without complete knowledge of
the attacker behaviour or the environment, there is no way
to predict the optimal strategy vt and it is thus impossible to
learn the optimal adaptive strategy.

However, with access to previous observations, it is possible
to learn the best strategy in hindsight. The idea behind this
problem formulation is that after more and more rounds,
the performance of the best strategy in the next round will
be affected less and less by at, no matter how adversarial
(i.e. only caring about minimising the defender’s utility) the
attacker plays.

IV. AGENT-BASED MODEL

The agent-based model forms the framework for the dif-
ferent methods used to solve the formulated problem. These
methods and their parameters are represented by the character-
istics of the environment and the agents’ inputs, internal states,
and cognitive models. The representations of the models in
Xu et al. [21] and Gholami et al. [23] serve as the baseline of
the model formulation. A diagram providing an overview of
the agent-based model is given in Figure 2. The following
subsections present the properties of the environment and
all agents in the model as well as the agents’ interactions.
Verification of the model is discussed in the last subsection.

A. Environment Specification
The environment is defined by a space and time wherein

the agents are situated. In this model, one time step equals
one round of the GSG, where the attacker attacks one target
and the defender performs one surveillance flight.
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Environment

Defender

Human Expert

Stategy	according	to
static	HE	coverage
probability,	disturbed
by	error	factor	ε

Path Planning

Using	linear	integer	programming,	calculates	solution	to
Orienteering	Problem	resulting	from	targets	selected	by	experts

Expert selection

Selects	Online	Learner	or	Human	Expert	based	on	past	performance

Observation Model

Geometrically	determines	which	targets	are	covered	by	the	defender
and	where	an	attacker	was	observed

Grid	consisting	of	possible	targets.	Stores	information	about:							

Utility	U	
Estimated	reward	r̂t
Ground	truth	of	attack	probability	pGT
Human	Expert	coverage	probability	phe	

Holds	static	attack
probability	qi	based	on	pGT

Calculates	dynamic
attack	probability	qi	
based	on	pGT	and
rationality	factor	λ

Attacker
attacks	target

-	Covers	selected	targets
-	GR	updates	r̂t	

If	QR,	attacker	knows
it	is	observed

Defender	observes	
attacker	in	environment

-	OL	observes	U	and	r̂t
-	HE	observes	phe	

Attacker
observes	pGT

Attacker

Online Learner

Chooses	explorative	or	exploitative
strategy	according	to	FPL-UE
If	attacker	is	observed,	GR	algorithm
updates	estimated	rewards	regardless
of	expert

QR Attacker                 OR                 STC Attacker

Figure 2. Diagram of the components of the Agent-Based Model and their interactions that occur during one round.

As stated in the previous section, the environment space
is discretized by a rectangular grid. The grid cells that
result from this representation are all potential targets for an
attacker to attack and the defender to defend. The targets i are
modelled as patches in the ABM, meaning they are stationary
agents. We define [N ] to be the set of all targets i. One target
is assigned to be the base, which means it is the location
where the defender will start and end its patrol strategy.
When the model is initialised, every target is assigned four
numerical characteristics:

1) Utility: Every cell is assigned a utility U ci for when
it is covered and a utility Uui for when it is uncovered. We
assume that the utilities are unknown for the defender and
that U ci > Uui . For normalisation, we define the values of
U ci and Uui to be within [−0.5, 0.5]. This way the maximum
regret of the defender per round of the game is at most 1 for
each attacker.

2) Estimated reward: The estimated reward r̂t,i for cell i
at round t is initialised as r̂1,i = 0 and indicates the estimated
reward of covering that cell in the following step of the
game. As explained further down, the estimated reward of a
target is incrementally updated by the drone’s Online Learner
algorithm at every step (see Figure 2), and thus the order of
magnitude of the estimations increases gradually throughout
the game. It is therefore only compared to the estimated
reward of other targets during that same round.

3) Attackability score: The downside of an online learning
algorithm without historical data is that it takes time for
a model to learn and perform as desired. However, more
information about the area to be surveilled is sometimes
available in the form of human expertise based on knowledge

of the area and the people that live there [26]. We make use
of this information in the form of an attackability score. The
attackability score is an integer between 0 and 3 assigned to
each cell by an expert who is familiar with the environment.
It is a positive ratio scale determined with the expert that
indicates the likelihood of attacker presence on a specific cell.
We convert this score to an attack probability by modifying
the standard normalised exponential function (left in Equa-
tion 4) to a version that takes into account the variation of
discretization (right).

σ(z)i =
eβzi∑K
j=1 e

βzj
=⇒ p(a)GT,i =

√
N
ai∑

j∈[N ]

√
N
aj (4)

R. D. Luce [37] first used the normalised exponential
function in decision theory for relative preferences in his
Choice Axiom. It has seen multiple applications in psychology
[38] and game theory [39, 40] relating to human choices
and utility representation [41]. The general idea behind it is
that humans have an initial intuition to map numbers onto
space logarithmically. We propose setting β = log

(√
N
)

,
which is equivalent to using N (total number of targets) as
base of the exponentiation instead of e. This concentrates
the probability distribution more around the positions of the
largest input values. Taking a base that varies according to
the number of cells also prohibits the higher probabilities to
dilute when the grid is discretized further. We chose to select√
N instead of N since humans’ tendency to logarithmically

project numerals is based on a linear distribution. Therefore
we linearize the increase of N , which exhibits quadratic
growth when we linearly increase the dimensions of the grid.
The resulting probability distribution pGT is the ground truth
for the behaviour models for attackers, further explained in
Section IV-C, and for the defence strategies of the Human
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Expert (HE), explained hereafter.

4) Human Expert Coverage Probability: The MEOMAPP
algorithm incorporates a self-evaluation procedure for the
defender where it compares the performance of an online
learning expert with the performance of a human expert
(HE). To simulate the performance of a human expert defence
strategy, we propose the following. The human expert strategy
consists of a set St of n targets selected based on the
probability distribution phe. This distribution is used in the
defender’s path planning algorithm to calculate a patrol route.
To represent the different levels of inaccuracy of the human
expert, we approximate a probability distribution phe with a
certain mean absolute error (MAE) as follows:

phe,i(ε) = pGT,i ± ε , ε ∼ N (ε, ε/4) (5)

with a resulting MAE of the probability distribution approx-
imately equal to ε. Error factor ε is drawn from a normal
distribution N (ε, ε/4) with mean ε and variance ε/4. The +
or − is as such that phe,i ∈ [0, 1], with a random choice if
both options are viable.

B. Defender Specification

The defender is a reactive although complex agent. It is
characterised by the range R or the total distance it can
travel in a single round. The defender always departs and
returns to the base target, Furthermore, it incorporates four
cognitive models: 1) an online learning game-theoretic expert
(OL) that calculates the reaction to the attacker’s moves, 2)
a mathematical integer linear program to calculate a spatially
optimised patrol route within its planning constraints, 3) an
observation model, and 4) an expert selection algorithm that
chooses between a human expert and the OL expert as the
preferred choice for next round’s strategy.
A theoretical argument for the defender’s parameter values is
presented at the end of this subsection.

1) Online Learner: The online learning algorithm presen-
ted in Algorithm 1 is capable of generating a defender strategy
without any prior knowledge. It is based on the FPL-UE
algorithm proposed by Xu et al. [21], wherein a "Follow the
Perturbed Leader" and a "Uniform Exploration" element can
be distinguished.
The FPL element evaluates the perturbed estimated reward
r̃t,i for each target i at round t. Let r̂t be the vector of the
pure estimate rewards at round t, and let zt = (zt,1, . . . , zt,n)
be a random noise vector such that each zt,i ∼ exp(η) is
independently drawn from the exponential distribution exp(η).
At each round, the algorithm then chooses n targets, from
all targets [N ], with the highest perturbed estimated reward
r̃t,i = r̂t,i + zt,i, as formulated by Equation 6. This set is
called St.

St = argmax
S⊂[N ]

{∑
i∈S

r̃t,i

∣∣∣∣ |S| = n

}
(6)

In this case, the noise vector zt,i represents the uncertainty of
the reward estimation and thereof dependent target selection.
It also results in unique estimated reward values for every
target, which prohibit that the MILP solver selects identical
sequences of targets (especially in the first rounds when most
targets have r̂t,i = 0). The FPL element is the exploitative
element of the defender strategy.

The UE element, which is the explorative element of the
defender strategy, also selects n targets to form St but does
it randomly and uniformly. For the randomly selected targets
in St, a noise vector zt is drawn independently from exp(η)
as well for the same reasons as for the exploitative strategy.
Since these targets were selected regardless of the value of
their estimated reward, the perturbed estimated reward is
set to equal the noise factor: r̃t,i = zt,i. In every round,
taking a random explorative step happens with probability γ,
resulting in a complementary probability (1− γ) to pursue an
exploitative strategy. The goal of the exploitative element is
to maximise the total utility over time, whereas the goal of
the explorative element is to learn which strategy is the best
against a particular attacker.

Up to now, the online learner follows the FPL-UE algorithm
to determine a set of nodes St at every round by either
following an exploitative or an explorative strategy. The set
St is used by the MILP to calculate the flight path strategy
vt (as described in section IV-B2), where the targets in St
are potential waypoints for the flight path. Once flight path
strategy vt is determined and applied at round t, we define set
Ot as the targets where the defender observed an attack when
executing the strategy during round t.

Knowing this, we can now update the estimated reward
values for the next round r̂t+1,i as follows:

r̂t+1,i = r̂t,i +
rt,i
pt,i

I(t, i) ∀i ∈ Ot (7)

where pt,i is the probability that target i was observed by the
defender within round t and I(t, i) is an indicator function
indicating if a target was observed by the defender, with
I(t, i) = 1 if target i was observed and I(t, i) = 0 oth-
erwise. In online literature, the term rt,i

pt,i
I(t, i) is preferred

over directly using rt,iI(t, i), since it is an unbiased estimator
of rt,i: E

[
rt,i
pt,i

I(t, i)
]
= rt,i. Note that this corresponds to

updating the estimated reward for targets that were attacked
and defended, and keeping the estimated reward for the other
targets the same in the next round.

To efficiently estimate pt,i, which is unknown and hard
compute exactly, Neu and Bartók [22] proposed a method to
calculate the value of 1/pt,i called Geometric Re-sampling
(GR), presented in Algorithm 2. The method works by
simulating defender strategies until the targets that were
attacked and defended in round t are defended again by the
simulated round. The number of simulations required until
target i is defended for the first time follows a geometric
distribution with mean 1/pt,i. The probability of observation
pt,i is thus estimated by the number of simulations it requires
to defend target i. However, theoretically, the number of
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simulations can be infinitely large, so the GR algorithm
truncates the number of simulations with a finite quantity M .

Algorithm 1 Online Learner

Parameters: γ ∈ [0, 1], n ∈ N, η ∈ R+,M ∈ Z+

1: for t = 1, . . . , T do
2: Sample α ∈ 0, 1 such that α = 0 with prob. γ
3: if α = 0 then
4: Let St ⊂ [N ] be a set of n randomly selected targets
5: Draw r̃t,i ∼ exp(η) independently for all i ∈ St
6: else
7: Draw zt,i ∼ exp(η) independently for all i ∈ [N ]
8: Set r̃t,i ← r̂t,i + zt,i
9: Let St ⊂ [N ] be the set of n targets with max(r̃t,i)

10: end if
11: Let vt be P(St)
12: Adversary picks rt ∈ [0, 1]n and defender plays vt
13: Defender observes Ot
14: Run GR(η,M, r̂, t): estimate 1

pt,i
as K(t, i)

15: Update r̂i ← r̂i +K(t, i)rt,i;
16: end for

Algorithm 2 Geometric Resampling

Input: η ∈ R+,M ∈ Z+, r̂ ∈ Rn, t ∈ N
Output: K(t) := {K(t, 1), . . . ,K(t, n)} ∈ Zn

1: Initialize ∀i ∈ [N ] : K(t, i) = 0; k = 1
2: for s = 1, 2, . . . ,M do
3: Repeat lines 2 - 13 in alg. 1 once to produce Õ as a

simulation of Ot with at.
4: for all i ∈ Ot do
5: if s < M and i ∈ Õ and K(t, i) = 0 then
6: Set K(t, i) = s;
7: else if s =M and K(t, i) = 0 then
8: Set K(t, i) =M ;
9: end if

10: end for
11: if K(t, i) > 0 for all i ∈ Ot then break
12: end for

2) Path Planning: The patrolling strategy vt is calculated
as a solution to a symmetric Orienteering Problem, formulated
by the mathematical program P(S) in Equation 8. It is an
integer linear programming problem applied to targets i in St,
which represent the nodes of a network where the perturbed
estimated rewards r̃t,i represent the profits collected if a node
is visited. The network’s edges are defined as the arcs ai,j
between targets i and j, with a length of di,j . Equation 8.a
limits the total distance travelled by the defender to its range
R. To every target the defender goes, it also has to leave
from, which is constrained by Equation 8.b. A target can
only be visited once, meaning only two arcs can connect to
it. This is constrained by Equation 8.c. Constraint 8.d ensures
that no subtours (i.e., tours that are not part of the tour that

includes the base) are included in the solution. If an arc ai,j is
selected, the difference between ui and uj is exactly -1 if arc
ai,j is selected in the strategy, where ui and uj are the orders
at which the targets are visited. Subscript base indicates
the target where the defender starts and ends its round. that
target’s inclusion in the path is ensured by constraints 8.e
and 8.f. These are not strictly speaking necessary when
Equation 8.d is applied (where the base is the only target left
that can "close" the loop), but they increase the computational
performance.

vt = argmax
v∈V

∑
i,j∈St

ai,j r̃i (8)

subject to∑
i,j∈St ai,jdi,j ≤ R i 6= j (a)∑
i∈St ai,j = aj,i ∀j ∈ St; i 6= j (b)

ai,j + aj,i ≤ 1 ∀i, j ∈ St; i 6= j (c)

ui − uj ≤ |St| (1− ai,j)− 1 ∀i, j ∈ St; i 6= j 6= base (d)∑
i∈St ai,base = 1 i 6= base (e)∑
i∈St abase,i = 1 i 6= base (f)

0 1 2 3 4 5 6

0

1

2

3

Figure 3. Coverage between target (1, 1) and (5, 2).

3) Observation Model: After vt has been calculated by
the path planning algorithm, it is necessary to determine
which targets are covered and whether an attacker has been
observed. Based on the assumption that the defender’s view
is as wide as the diagonal of a cell, we draw a rectangle of
width w =

√
2l2, where l is the width of a target, and length

di,j + w, where dij is the distance between targets i and j,
so that arc ai,j coincides with the longest centerline of the
rectangle. Afterwards, for every target that has an overlap
with this rectangle, the fraction fraci of the observed area
of the target over the total area of the target is calculated.
The exemptions to this are the starting point i and the
targets right next to i and j that are not in the line of the
path, in order to prevent them to be counted twice. As an
example, a schematic of coverage between target (1, 1) and
(5, 2) is shown in Figure 3, where fraci > 0 for targets
(2, 0), (2, 1), (2, 2), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3) and (5, 2).
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This is done for all arcs ai,j that are part of the solution
calculated by the path planning algorithm in Equation 8,
resulting in a set Ct consisting of targets i that have been
(partially) covered by the defender at round t.
The probability that an attacker is observed by the defender
on target i, if an attacker was on that target, is equal to
the fraction of the area observed. In other words, target i is
considered to be in set Ot (targets where an attack has been
observed at round t) following the next equation:

P (i ∈ Ot|i ∈ Ct ∩At) = fraci (9)

where At is the set of targets i that are attacked.

4) Expert Selection: The following expert selection
algorithm is proposed to enable MEOMAPP to select the
best performing expert to decide on a strategy. Formulation
wise, it is wrapped around the core algorithms 1 and 2 as
presented in algorithm 3. First, a constant θ is defined which
is compared to the value of variable γ. Only after the value
of γ drops below threshold θ (line 4) we consider the online
learning algorithm to have learned enough to compare it
to the HE. We chose γ as a threshold measure because it
depends on k and m as well, which allows us to maintain the
same value for θ throughout different game settings.
To compare both the experts’ performance, cumulative reward
values rol and Rhe are initialised as 0 and updated after every
round t. The performance is then evaluated by comparing the
average reward over the number of rounds where that expert
has been selected, nol and nhe. If the human expert is chosen
to be the best expert, St is determined by phe as presented
in Section IV-A3. If the online learning expert is selected,
St is determined by Algorithm 1. The patrol strategy vt is
then determined by P(St) resulting in observed attacked
targets Ot and the collected rewards are updated accordingly
for each expert. Note that until γ reaches the threshold θ
the performance of the human expert, which has not been
evaluated by then, is synchronised with the performance of
the online learning expert (lines 20 - 22).
The idea behind this expert selection algorithm is that given
the online learner expert has learned sufficiently, the algorithm
will be able to decide whether it is more successful to follow
the human expert or the online expert. In this case, it will
differentiate between the human expert, whose performance
results from the potentially imperfect interpretation of the
environment and/or historical data, and the online learner
without any prior knowledge.

Defender’s parameter values: From the theoretical proper-
ties of the FPL-UE algorithm stated by Xu et al. [21], we
know that the total regret RT (i.e., the difference between the
performance of FPL-UE and that of the best fixed patrol path
in hindsight) is proven to be upper bounded as:

RT ≤ γmT +2Tke−M
γ

[N] +
k(logN + 1)

η
+ηmT min(m, k)

(10)

Algorithm 3 The MEOMAPP Algorithm

Parameters: γ ∈ [0, 1], n ∈ N, η ∈ R+,M ∈ Z+, θ ∈ R+

1: Initialise r̂ = 0, rol = 0, rhe = 0, nol = 0, nhe = 0
2: Pick a value θ as a threshold for γ for which the Online

Learner is considered good enough;
3: for t = 1, . . . , T do
4: if γ ≥ θ or rol

nol
> rhe

nhe
then

5: Let St be computed by lines 2 - 10 in alg. 1;
6: nol ← nol + 1
7: f = 0
8: else
9: Let St be determined by the HE where r̃t,i = phe,i;

10: nhe ← nhe + 1
11: f = 1
12: end if
13: Let vt be P(St);
14: Adversary picks rt ∈ [0, 1]n and defender plays vt;
15: Defender observes attackers at Ot;
16: for i ∈ Ot do
17: rhe ← rhe + fri
18: rol ← rol + (1− f)ri
19: end for
20: if γ ≥ θ then
21: nhe ← nhe + 1
22: rhe ← rol
23: end if
24: Run GR(η,M, r̂, t): estimate 1

pt,i
as K(t, i);

25: Update r̂i ← r̂i +K(t, i)rt,i;
26: end for

where upper bound O(
√
kmT min{m, k} logN) can be ob-

tained by taking η =
√

k(logN+1)
mT min{m,k} , γ =

√
k√
mT

and

M = N
√

mT
k log(Tk). This means that the values of η, γ and

M depend on the total number of targets (N ), the number of
attackers (m), the number of intentionally protected targets (k),
and the number of rounds T that have passed, the contribution
of the latter resulting in a gradual decline of the values of η and
γ over time. This can be interpreted as a decline in uncertainty
because of the decline in noise zt and the lower probability
of engaging in an explorative strategy respectively.
The number of intentionally protected targets k is the number
of targets that are selected as waypoints in the flight path |vt|.
This value is not known beforehand, but since the first round is
explorative regardless, any number larger than 0 can be chosen
as an initial value. After the first round, k is calculated as the
average value of |vt| over time.
In theory, the value of M , the maximum number of simulations
in the GR algorithm, is very high relative to T and can result
in extremely long running times. For example, for a 500-
step simulation with N = 100,m = 5 and k = 15, the
GR algorithm runs up to M = 11, 519 times in the worst-
case scenario. However, as Neu and Bartók [22] theorise
a lower expected number of samples in practice, we limit
the maximum amount of GR simulations to 100. During the
experiments, this number of samples was never reached.
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C. Attacker Specification
To simulate attacker behaviour we chose two commonly

seen behaviour models: Stochastic behaviour (STC) and Quan-
tal Response behaviour (QR) [14].
The STC attacker model chooses to attack target i based on
a stationary attack probability qi per target i. We assume this
probability to be equal to the ground truth attack probability
pGT,i of target i presented as the basis for the human expert
in Section IV-A3, as this is the best information available.

qi = pGT,i (11)

The QR attacker model simulates non-stationary attacker be-
haviour by observing and responding to the defender strategy.
The probability that an attacker will attack target i at round t
is given by:

qi =
eλU

a
i∑

j∈[N ] e
λUaj

=
eλ(xiP

a
i +(1−xi)Rai )∑

j∈[N ] e
λ(xjPaj +(1−xj)Raj )

(12)

Parameter λ ∈ [0,∞] represents the rationality level of the
attacker. A lower value for λ indicates lower rationality (result-
ing in a more uniform qi) and a higher value indicates higher
rationality (resulting in a reward maximising qi). Parameter
Uai = xiP

a
i +(1− xi)Rai is the attacker’s expected utility for

target i. It depends on the likelihood the target is defended
xi, and on the reward Rai and penalty P ai for the attacker
associated with the target. Rai is obtained by normalising the
GT probability pGT to a value between [0, 10] in accordance
with QR experiment settings in previous literature [11]. We
assume penalty P ai = −10 for all targets since getting caught
by the defender is the worst that can happen on any target.

The likelihood xi that target is defended is not the same as
probability pi estimated by the GR algorithm, but a likelihood
calculated by the attacker based on how often it is caught
on target i. Previous literature does not explain how xi is
calculated. We propose to initialise xi = 0 and to recalculate
it at every round t as:

xi =

∑T
t=1 at,iI(t, i)

T
∀i ∈ [N ] (13)

where we note that this only holds because we make the
additional assumptions: (i) The attacker is not initially aware
of the fact that the area is under surveillance. (ii) The attacker
does not know where or when the defender has been if the
attacker was not observed by the defender. (iii) If an attacker
was observed in any previous round, all attackers know about
this in the next round.
For both models, after the probability qi of the attacker
choosing a target i in round t is determined, one target is
picked per attacker based on that likelihood. Furthermore, it
is important to note that the attacker is modelled to visit only
one target in a single round, meaning no route to and from
the target are simulated.
The fact that pGT is used as a foundation to calculate qi for
both attacker models as well as the coverage preference phe
of the HE means that the accuracy ε of the HE relates to how
good the human expert is in assessing the attacker behaviour.

D. Validation and Verification
As for agent-based models in general, the bottom-up nature

of the building process of MEOMAPP led to validation being
applied during the model construction itself [42]. To assure the
validity of the model as a whole, every model component was
validated individually, including its output of information to
other components. The goal of this research is to evaluate the
application of an online learning defender strategy for GSG
in a simulated environment to estimate its performance in a
realistic scenario. The representation of the environment, the
attackers, and the defender in the agent-based model has been
performed with the support of wildlife surveillance experts
whose contribution ensured further validity of the model. It is
important to note that a higher validity could be obtained for
more specific cases depending on the information available.
The ultimate test to validate the model would be to perform
experiments in the real environment.

Verification of the model was performed at different levels.
At the code level, compiler errors were resolved within Spyder,
the integrated development environment (IDE) chosen for this
research. At the unit level, error-oriented testing [43] has been
performed by plausibility tests [44] on parameter values and
on results of intermediate computation mechanisms. Attention
has also been paid to avoid issues arising from floating-
point arithmetic within the computations. At the system level,
conceptual verification was performed by observing whether
the results matched expectations regarding convergence.

V. NUMERICAL EVALUATION

This section describes how we implemented the proposed
model, the real-world case we simulated, the simulation setup,
the derivation of the model’s parameter values for this specific
case, and the results from the simulations.

A. Algorithm Implementation
The simulation model was written in Python using Mesa,

a Python-specific agent-based modelling framework [45]. The
code is written on compliance with the PEP 8 style guide
for Python code [46]. It is available in the Delft University
of Technology Gitlab repository. For the ILP component, the
open-source module PuLP [47] was used to generate the
problem file. To solve the ILP problem, the Gurobi™[48]
solver was called using an academic licence. It is however
interchangeable with open-source solvers readily available in
the PuLP toolkit. All simulations that are discussed later have
been run using a machine with a 1.2 GHz Intel® Core™
i7-3610QM CPU with 7 available cores and 12GB RAM.
The runtime for the presented experiments can be found in
Table III.

B. Case Study
To examine the performance of MEOMAPP, we selected

a case together with industry experts to simulate wildlife
surveillance in a real-world setting. The domain to surveil is
the Aloegrove Safari Park in Namibia and is approximately
10 by 10 km in size (see Figure 4). The attackability values
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Figure 4. Schematic of Aloegrove Safari Park and its implementation into MEOMAPP (image from Google Earth - CNES/Airbus Maxar Technologies).

have been assigned by an expert familiar with the domain. The
expert based the attackability values on his interpretation of
the accessibility of the terrain, location of fences or barrier,
and the location of animal enclosures or water holes. The
colour scheme on the map is purely for illustrative purposes.
Contrary to simulations in previous research where the values
for utilities U ci and Uui are randomly selected, we chose to
define U ci = 0.5 and Uui = −0.5. The reasoning behind this is
that we consider the utility to be a result primarily of whether
a poacher has been observed or not. This is regardless of the
damage the poacher has or could have done. Also, defining the
utility values specifically eliminates a random factor from the
regret equation, which makes the results less prone to random
variations.

The drone range is 25 km and we chose to have the
algorithm select 20 possible waypoints for a surveillance flight
path at every round (n = 20). It is not important to determine
when or how long a surveillance flight takes place, as long
as we assume that the attacker(s) remain(s) at the attacked
location(s) for the duration of the surveillance flight. For a grid
discretization of 10 by 10 cells we assume a field of view of the
drone of approximately 1.4 km wide. For a grid discretization
of 20 by 20 cells, the field of view is considered 0.7 km wide,
which in practice means that the drone flies lower with a lower
resolution camera and therefore has a reduced field of view.

C. Key Performance Indicators

To evaluate MEOMAPP’s performance, we look at the
following three indicators. These are the average regret over
time, the average distribution of employed strategies, and the
average distribution of observed attacks.
As in previous research, the overall performance is measured
by the average regret over time RT /T . Since we chose to
limit the values of U ci and Uui to 0.5 and −0.5 respectively,
the regret value directly relates to the number of targets
attacked. Since every attacker attacks one target every round,
the regret can be at most m. and at least 0. Experiment results
expressed as regret from previous research [21, 23] cannot be
used to directly compare MEOMAPP’s regret values for two
reasons. First of all, information about their specific payoff
structure and attacker behaviour is incomplete. Without that
information, it is not possible to reproduce their experiments.
Secondly, we chose a specific utility structure with extreme
values, which will produce relatively higher regret values for
any experiment setup. Additionally, the grid discretization used
by Gholami et al. [23] was only 5x5 cells, which we deem
insufficient for real-world approximations.

Furthermore, we look at the distribution of employed
strategies: explorative, exploitative, or defined by the human
expert. This indicates which expert is superior in which
situation, and gives an insight into whether the expert selection
algorithm works.
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Finally, in order to evaluate the accuracy of MEOMAPP we
look at the distribution of observed attacks that took place on
intentionally visited targets (the waypoints of routes selected
by the HE and the exploitative OL) and on coincidentally
visited targets (explorative routes and the targets between
waypoints).

D. Simulation Setup
The parameter space can be varied in seven dimensions:
1) Grid size/discretization
2) ε of the HE
3) Attacker type (STC or QR with different λ)
4) Number of attackers m
5) Number of possible waypoints n
6) Expert selection parameter θ
7) Drone range R

Since it is impractical to evaluate all possible combinations, we
select a base setting with parameters that remain constant and
manipulate the remaining parameters to deduce their impact
on MEOMAPP’s performance.

The parameters that remain constant throughout all ex-
periments are n and θ. The number of possible waypoints
n = 20 is an arbitrary choice. The logic behind it is that it
should not be too large for 1) computational reasons and 2) a
twisty trajectory which is impractical for the drone. It should
also not be too small in order to evaluate enough points of
interest for the surveillance strategy. After some iterations,
we chose n = 20 as it satisfied both accounts. Variations
in n and the planning algorithm in general, are included as
recommendations for future research.

For the baseline model we propose the following: The
attacker types are an input that would not be required in a
real-world setting. Therefore we decide to test the performance
with an STC attacker as an example of stationary behaviour,
and with one QR attacker with a specific λ as an example of
adaptive non-stationary behaviour. To choose a value for λ,
ten games with one QR attacker’s λ value ranging from 0.1 to
1.0 with 0.1 increments were simulated without the HE. The
0.1 to 1.0 range was chosen to include λ values found and
used in previous research by Nguyen et al. [14] and Gholami
et al. [23]. Additionally, one game with an STC attacker was
simulated as well. Each simulation lasted 500 steps and the
results are presented in Table I. It can be observed that the
final average regret is inversely related to the value of λ. This
means that the performance of MEOMAPP is better the more
rational the attacker is.

Table I
AVERAGE RT FOR SIMULATIONS WITH N = 100, m = 1, T = 500 FOR

VARYING λ OF QR ADVERSARY AGAINST OL EXPERT.

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 STC

RT 0.70 0.66 0.60 0.52 0.48 0.43 0.39 0.35 0.35 0.30 0.50

Also, the OL’s performance against the QR attacker with
λ = 0.4 is similar to the performance against the STC attacker.

To confirm this similarity, four additional simulations were
performed for both attacker types. The results of the additional
simulations, shown in Table II, indicate that the performance
is comparable. We therefore decided to use a QR attacker
with λ = 0.4 as the basis for the remaining experiments for
to reasons. If any changes in the total average regret occur
for those experiments, the difference in attacker type has less
influence on the result. Furthermore, the resulting average
regret value of 0.52 allows observing changes in the average
regret value in both directions when the other parameters of
the model are evaluated.

Table II
AVERAGE RT FOR SIMULATIONS WITH N = 100, m = 1, T = 500 FOR
QR ATTACKER WITH λ = 0.4 AND STC ATTACKER AGAINST OL EXPERT.

Attacker 1 2 3 4 5 Average RT

QR, λ = 0.4 0,52 0,51 0,54 0,50 0,54 0,52

STC 0,50 0,54 0,53 0,51 0,50 0,52

The expert selection threshold θ is determined by inspecting
preliminary results from testing the OL model alone against
QR modelled attackers. In a simulation setup with m = 1
and n = 20, the number of waypoints for a flight path is
on average 16, meaning γ = 0.4 at t = 100. The 100 step
mark was chosen because the value to which the average regret
converges was reached at step 100 already.

We want to examine the effect of changing the remaining
five parameters through five experiments. Experiment 1 es-
tablishes the results for the baseline settings that serve as a
reference for the remaining experiments. The differences in
resulting defender behaviour against the two different attacker
types are of interest as well, so the baseline is established for
the QR and the STC attacker. Experiment 2 evaluates the
effect of range variations by setting R = 15 and R = 35. The
range is an important feature when choosing a suitable drone in
a real-world situation. Experiment 3 evaluates the difference
in performance of having a perfect HE (i.e. with ε = 0).
It aims to uncover the performance of the OL against an
expert with more precise knowledge of the attacker behaviour.
Experiment 4 evaluates the impact of having more attackers
on the domain by simulating the game with 3 and 5 attackers.
Experiment 5 evaluates the effect of discretizing the terrain
with a grid that is twice as fine, i.e. 20x20 cells versus 10x10
cells. Given the relationship between the defender’s FoV and
the grid size, it is important to analyse the effect of a different
grid discretization.
Based on the preliminary experiments that have been per-
formed for establishing the base model, we can visually
determine that a simulation duration of 500 steps is sufficient
for the average regret value to stabilise.

E. Results

In this subsection, the results for every simulation setup
discussed above are presented. All simulation settings and the
resulting values of the KPI’s at T = 500 are summarised in
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Figure 5. Simulation results from the baseline model with QR adversary (top) and STC adversary (bottom).

Table III
SUMMARY OF THE SIMULATION RESULTS WITH T = 500.

Att.
type

R ε m N Final
av. RT

Final av.
RT /m

Final
accuracy

Final
strategy

Runtime
(min.)

QR

25 0,3 1 100 0,52 0,52 0,65 OL 189

15 0,3 1 100 0,63 0,63 0,75 OL 67

35 0,3 1 100 0,44 0,44 0,48 OL 110

25 0 1 100 0,46 0,46 0,71 HE 148

25 0,3 3 100 1,77 0,59 0,58 OL 192

25 0,3 5 100 3,17 0,63 0,54 OL 193

25 0,3 1 400 0,76 0,76 0,52 OL 561

STC

25 0,3 1 100 0,55 0,55 0,65 OL 120

15 0,3 1 100 0,72 0,72 0,74 OL 79

35 0,3 1 100 0,43 0,43 0,63 OL 95

25 0 1 100 0,54 0,54 0,69 OL 193

25 0,3 3 100 1,58 0,53 0,71 OL 187

25 0,3 5 100 2,63 0,53 0,69 OL 247

25 0,3 1 400 0,80 0,80 0,23 HE 544

Table III. For every experiment, the values that are discussed
are also highlighted in a figure. All other plots can be found
in the report accompanying this paper [49].
We emphasise that, even though all these figures are the
convergence plots for one randomly generated game instance,
the general convergence trends of the KPI’s is almost the
same across the simulated instances for every setup. However,
the initial rounds in the figures may vary among different
instances.

Experiment 1 - baseline establishment: The baseline model
shows a similar trend in observation accuracy after t = 200
for the QR and STC attacker in Figure 5. Before t = 200
however, the observation accuracy against the STC attacker
was significantly worse. This also translates to a higher

average regret in the first stage of the game. As a result, the
convergence of the average regret is slower against the STC
attacker. For this particular simulation, it can be observed
that the HE was briefly superior in the average distribution of
defender strategies, but after 59 steps (i.e. 59 steps after step
100) the OL expert was trained enough to outperform it.

Experiment 2 - range variation: Comparing the results in
Figure 6 with the results for the QR attacker in Figure 5, we
can deduce the following. When the drone range is reduced
from 25 to 15 km, we observe a slower convergence of the
regret value. Furthermore, from Table III it is clear that the
final regret value is higher when the defender has a lower
range, meaning decreasing the range results in a decrease in
performance. However, we can also observe that the accuracy
of the attack observations increases, and from the average
coverage per target in Figure 7, we can deduce that the primary
reason behind this is the fact that the defender primarily
surveilled the three hot spots. The proportion of coincidentally
observed attacks is therefore also less, as most of the attacks
take place at the hot spots. Secondly, the increase in accuracy
could also result from the faster decrease of the value of γ.
With lower γ values, the defender performs less explorative
strategies in total.
Note that with a range of 15 km, the drone could not reach
all cells starting from the base at cell (4, 6), and could barely
cover the hot spots. If the hot spots would have been out of
its reach, the results could have been worse.

Not surprisingly, when the drone range is increased from
25 to 35 km, we observe a better performance. The average
final regret decreases from 0.52 to 0.44. Interestingly, similar
to the decrease in range, we can observe an inverse effect
on the observation accuracy. Increasing the range results
in a decrease in observation accuracy. The reasoning for
this behaviour is similar. With a larger range, the drone
now covers proportionally more cells, which results in more
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Figure 6. Comparison of the observation accuracy, the employed strategies and the regret for a defender with range R = 15 (top) and R = 35 (bottom)
against a QR adversary.
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Figure 7. Comparison of the average coverage per cell for a defender with a range of 15, 35, and 25 km LTR.

coincidentally observed attacks. Of course, the value of
gamma that is affected by the higher value of k results in
more explorative routes, further increasing the coincidentally
observed attacks.

Experiment 3 - Human Expert ε variation: Looking at the
average employed strategies in this experiment we distinguish
the following. As shown in Figure 8, the expert selection
algorithm chose the perfect HE with ε = 0 against the QR
attacker. This resulted in a lower final average regret than
for the baseline model where the HE’s error margin is higher
(Rt = 0.46 versus Rt = 0.52 respectfully).

Unexpectedly, the expert selection algorithm chose the OL
over the HE when facing an STC attacker. One would think
that because of the similar probability distributions qi and phe
of the STC attacker and the HE respectively, the HE would
be better suited against the STC attacker. By chance, the HE
might have performed poorly in the rounds after the expert
selection algorithm was activated and never got a chance
to redeem itself, or it is possible that the OL performed
exceptionally well. The overall performance is comparable
to the base model situation, which makes the latter situation
less probable. This indicates that either the proposed expert
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Figure 8. Simulation results from the base model with the HE’s ε = 0 against
a QR attacker (top) and an STC attacker (bottom).

selection might not function as good as intended, or that the
perfect HE’s performance against the STC attacker is not as
good as expected.
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Experiment 4 - Multiple attackers: The results from sim-
ulating the game with m = 3 and m = 5 in Figure 9 yield
the following. When adding more attackers to the model, the
γ variable reaches the threshold value θ = 0.4 faster than
the case with only a single attacker. Therefore we can see
that the expert selection algorithm is activated earlier as well.
We can also observe that the HE’s estimations are better in
the early stages of the game. The same holds for the strategy
selection against the STC attacker (not represented in a figure),
but in that case, the OL takes over earlier than against the QR
attacker.

Even though the proportion of explorative strategies is also
reduced due to the increased presence of attackers, the overall
increase in attacks and observations results nonetheless in a
fast learning process for the OL. This manifests itself in the
definitive switch from HE to OL, and the drop in average
regret that can be observed after that switch.

Note that the average regret is higher due to the higher
number of attackers, but normalised by the number of
attackers m we can observe that the performance compared
with the base models is worse in the case of QR attackers,
and better in the case of STC attackers. The reason for this
might be that the QR attackers are adaptive and are modelled
in as such that the individual attacker has the knowledge
of the collective of attackers. This means that, just as the
defender, the attackers in this model learn quicker when there
are more attackers. This could also explain the difference in
observation accuracy between the simulations against the QR
attackers and the STC attackers.
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Figure 9. Comparison of the employed strategies and regret for simulations
with 3 QR attackers (top) and 5 QR attackers (bottom).

Experiment 5 - Finer grid discretization: The finer dis-
cretization of the surveillance area results in the following.
First of all, as can be observed in Figure 10, the spatial
distribution of the attacks on a 20x20 grid is similar to the
spatial distribution on a 10x10 grid. This reveals that the
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Figure 10. Comparison of attack distribution of a QR attacker with λ = 0.4
on a 10x10 grid (left) and a 20x20 grid (right).

model’s calculation of qi based on ground truth pGT is not
affected by a finer discretization on the same area. In turn,
this means that the normalisation of the attackability score
a to pGT is scalable. Secondly, the overall performance of
MEOMAPP is worse, with Rt = 0.76 and Rt = 0.80
against the QR and STC attacker respectively. This is not
unexpected as the overall area that is covered by the defender
every round is smaller due to the halving of the drone’s FoV.
Furthermore, comparing the two simulations on a 20x20 grid
with each other in Figure 11, it is important to note that
the initial performance of both simulations is very different
and can be a reason for the difference in performance during
the rest of the game. Playing against the STC adversary,
MEOMAPP did not find the attacker until round 37. This
significantly delayed the start of the learning process and
possibly results in the choice to use the HE strategy for the
rest of the game. Against the STC attacker, the observation
accuracy is relatively low and the average coverage per target
is more evenly distributed compared with the other coverage
distributions obtained so far. Against the QR attacker, the
coverage distribution of the defender is visually traceable to
the distribution of estimated rewards per cell. That distribution
is not directly relatable to the distribution of attacks per
cell, which is more straightforward for the simulation results
against the STC attacker. The observation accuracy playing
against the QR attacker is significantly higher compared to
the STC attacker. The increase in observation accuracy as of
step 327 seems to result from the switch to the OL strategies.

VI. DISCUSSION

In this section, we discuss the main findings of this research
and the implications of assumptions on its results.

A. Reflection on overall performance

In general, the findings resulting from this study show that
MEOMAPP exhibits adaptive behaviour when faced with dif-
ferent attacker types and different game settings. Performance-
wise, MEOMAPP’s regret converges within 500 steps for
all presented game settings. Also, when presented with two
experts, each proposing different defender strategies, MEO-
MAPP can choose the expert that performs best on average
at any given time. This is consistent with the work from
Xu et al. [21] and Gholami et al. [23], even though we
chose to use a different but more realistic and reproducible
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Figure 11. Simulation results from the baseline model on a 20x20 cell grid against a QR attacker (top) and an STC attacker (bottom).

experimental setup. Unfortunately, because of the different
setup, it is not possible to directly compare the results, and thus
we cannot state with certainty whether MEOMAPP performs
better or worse than the stand-alone FPL-UE model [21] or the
MINION model [23]. However, the similar trends compared
with previous results show that the FPL-UE algorithm can be
combined with a route planning algorithm more suitable for
UAVs. Therefore, it is expected that MEOMAPP is a more
comprehensive solution for aerial surveillance. Additionally,
the simulation setup and results from this research can be used
as a benchmark for future studies.

B. Reflection on limitations

It is important to put the findings in the perspective of
specific limitations resulting from assumptions made for the
model and from the specific simulations settings. Even though
MEOMAPP is designed for and evaluated by a real-world
situation, the simulated attacker behaviour and human expert
defender strategies only approximate what a realistic setting
would be. For a definitive verdict on MEOMAPP’s per-
formance and applicability in real-world wildlife surveillance
settings, a field test validating the agent-based model and its
simulations is highly recommended. It is important to keep in
mind that for a real-world test, the notion of regret cannot be
used to evaluate the model. The reason for this is that the regret
is calculated using complete information of defender utility,
which is not always available. For example: if no attacks are
observed by the drones, it is not always possible to know if
there was an attack and the drone missed it, or if there was
no attack at all.

In this subsection, we elaborate on some important assump-
tions made for this agent-based model simulation and the
limitations they represent.

The definition of the exploration/exploitation variable γ in
FPL-UE assumes any adversary behaviour, but only as long
as it is constant. The effect of changing adversary behaviour,

or the introduction of more or new attackers, in a later stage
of the game has not been investigated. In reality, however, this
is not an unimaginable scenario.

The model assumes that attackers remain stationary at the
attacked target for the whole duration of the defender’s surveil-
lance flight, or at least until they are observed. This assumed
temporal relation between attacker and defender might heavily
influence the real-world performance of MEOMAPP. Also,
realistically attackers are present at other locations in the
environment before and after attacking a certain target. This
is also not reflected in the model. Furthermore, attackers
are modelled as independent agents, meaning that attacker
cooperation for an attack is not taken into account. Note
that QR-based attackers are modelled as having collective
knowledge after they were observed, but not as cooperative
attackers before an attack.

The observational capabilities of the defender are assumed
to be perfect within its modelled observational range. This
means that the practical consequences of observing while
flying are not taken into account, like bank angles when
turning, speed variations, altitude variations, and influences
from the weather.

The area that is surveilled is modelled as a two-dimensional,
static environment. Changes to the environment and therefore
possible variations in attacker and defender payoffs are not
taken into account in this model.

It is important to note that even though MEOMAPP was
evaluated using a specific real-world scenario, the online
learner model does not make any specific assumptions about
the park wherein it was simulated. MEOMAPP can be used
in any wildlife park whatsoever.

VII. CONCLUSION

This research investigated if it is possible to apply an
FPL-UE algorithm in a multi-expert learning model with a
planning method suitable for drones to determine wildlife
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surveillance strategies. We proposed MEOMAPP, a Multi-
Expert Online Model for Aerial Patrol Planning that compares
the performances of a defender strategy by the online learner
FPL-UE and a defender strategy by a human expert, and uses
the defender strategy to plan a flight path for a surveillance
drone. We evaluated MEOMAPP using the agent-based mod-
elling and simulation paradigm, using the real-world case of
Aloegrove Safari Park in Namibia as an experimental setup
for simulations. We demonstrated that MEOMAPP achieves
convergence against two typical attacker models in a variety of
simulation settings concerning the environment, the attackers,
and the defender. The main contributions of this paper are:

1) The integration of a path planning algorithm for aer-
ial vehicles and a game-theoretic defender strategy al-
gorithm

2) An updated expert selection algorithm that allows the
OL to mature before being evaluated

3) The evaluation of the ensemble of algorithms in a
reproducible realistic simulation

Despite the agent-based model being a simplification of a
real system, MEOMAPP is deemed a suitable algorithm for
determining aerial surveillance strategies for wildlife surveil-
lance.

VIII. RECOMMENDATIONS FOR FUTURE RESEARCH

The proposed model and its simulation setup can serve
as a foundation for future research in the field of Green
Security Games and path planning for wildlife surveillance.
The initial assumptions about the wildlife surveillance system
made constrained components of the model resulting from
this research. These components can be investigated in future
research:

A. Attacker model

The following characteristics of the attacker are interesting
for future research.
Even though a group of QR attackers could benefit from the
collective knowledge, further research into attacker coordin-
ation could be done.
During the round, attackers are considered stationary. Includ-
ing attacker routes would be a more realistic representation
of the system.
If attacker data would be available, it is possible to evaluate
MEOMAPP to a more realistic attacker. This data can
be used to include a more realistic game-theoretic model
of attacker behaviour, like SUQR [14], CAPTURE [18] or
SHARP [17].
This does not mean that MEOMAPP will require prior know-
ledge, only that it could be evaluated against realistic players
that are modelled using real attacker data.
More information about attackers can also be used for a
different temporal model than the defender.

B. Defender model

Currently, the defender is a single drone. However, in
reality, wildlife surveillance is not done by a drone alone.

Coordination with rangers and other defensive agents is an
interesting research field to elaborate on in the future.

C. Path planning

The path planning algorithm now takes into account the
most simple drone model for its constraints. Including con-
straints related to flight dynamics can give insights in the
actual flight path.
Even though the online learner’s GR algorithm can learn from
the coincidental observations, a path planning algorithm that
includes estimated rewards of the arcs, as well as rewards of
the nodes, could produce more optimised flight paths.
If more defenders enter the game, Multi-Agent Path Finding
algorithms could be studied in the context of GSGs.

REFERENCES

[1] D. Mouillot, D. R. Bellwood, C. Baraloto, J. Chave,
R. Galzin, M. Harmelin-Vivien, M. Kulbicki,
S. Lavergne, S. Lavorel, N. Mouquet, C. E. T.
Paine, J. Renaud, and W. Thuiller, “Rare species support
vulnerable functions in high-diversity ecosystems,”
PLOS Biology, vol. 11, no. 5, pp. 1–11, May 2013.

[2] L. O. Smith and C. Gerstetter, “The Costs of Illegal
Wildlife Trade: Elephant and Rhino. A study in the
framework of the EFFACE research project,” Ecologic
Institute, Berlin, Tech. Rep. 1, 2015. [Online]. Available:
www.efface.eu

[3] Unknown. (2020, July) Recognizing and supporting
rangers working against all odds. UNESCO. [Online].
Available: https://whc.unesco.org/en/news/2139

[4] E. Bondi, A. Kapoor, D. Dey, J. Piavis, S. Shah, R. Han-
naford, A. Iyer, L. Joppa, and M. Tambe, “Near real-
time detection of poachers from drones in airsim,” in
Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI-18. In-
ternational Joint Conferences on Artificial Intelligence
Organization, July 2018, pp. 5814–5816.

[5] M. S. Norouzzadeh, A. Nguyen, M. Kosmala, A. Swan-
son, M. S. Palmer, C. Packer, and J. Clune, “Automat-
ically identifying, counting, and describing wild animals
in camera-trap images with deep learning,” Proceedings
of the National Academy of Sciences, vol. 115, no. 25,
pp. E5716–E5725, 2018.

[6] J. Jiménez López and M. Mulero-Pázmány, “Drones
for conservation in protected areas: Present and future,”
Drones, vol. 3, no. 1, 2019.

[7] B. Ivoševi, Y.-g. Han, Y. Cho, and O. Kwon, “The use
of conservation drones in ecology and wildlife research,”
Journal of Ecology and Environment, no. February, 2015.

[8] F. Fang, P. Stone, and M. Tambe, “When security games
go green: Designing defender strategies to prevent poach-
ing and illegal fishing,” in IJCAI International Joint
Conference on Artificial Intelligence, vol. January, 2015,
pp. 2589–2595.

[9] R. Longadge and S. Dongre, “Class imbalance problem
in data mining review,” CoRR, vol. abs/1305.1707, 2013.

16

www.efface.eu
https://whc.unesco.org/en/news/2139


[10] T. D. Pigott, “A review of methods for missing data,”
Educational Research and Evaluation, vol. 7, no. 4, pp.
353–383, 2001.

[11] R. Yang, C. Kiekintveld, F. Ordonez, M. Tambe, and
R. John, “Improving resource allocation strategy against
human adversaries in security games,” in Proceedings of
the Twenty-Second International Joint Conference on Ar-
tificial Intelligence - Volume Volume One, ser. IJCAI’11.
AAAI Press, 2011, p. 458–464.

[12] J. Pita, R. John, R. Maheswaran, M. Tambe, R. Yang,
and S. Kraus, “A robust approach to addressing human
adversaries in security games,” vol. 242, June 2012, pp.
1297–1298.

[13] M. R. D. and T. Palfrey, “Quantal response equilibria for
normal form games,” Games and Economic Behavior,
vol. 10, no. 1, pp. 6–38, 1995.

[14] T. H. Nguyen, R. Yang, A. Azaria, S. Kraus, and
M. Tambe, “Analyzing the effectiveness of adversary
modeling in security games,” in Proceedings of the
Twenty-Seventh AAAI Conference on Artificial Intelli-
gence, ser. AAAI’13. AAAI Press, 2013, p. 718–724.

[15] R. Yang, B. Ford, M. Tambe, and A. Lemieux, “Adaptive
resource allocation for wildlife protection against illegal
poachers,” in Proceedings of the 13th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS), 2014, pp. 453–460.

[16] F. Fang, T. H. Nguyen, R. Pickles, W. Y. Lam, G. R.
Clements, B. An, A. Singh, B. C. Schwedock, M. Tambe,
and A. Lemieux, “Paws — a deployed game-theoretic
application to combat poaching,” AI Magazine, 2017.

[17] D. Kar, F. Fang, F. M. D. Fave, N. Sintov, and M. Tambe,
“A Game of Thrones: When Human Behavior Models
Compete in Repeated Stackelberg Security Games,” in
Proceedings of the 14th International Conference on
Autonomous Agents and Multiagent Systems, 2015, pp.
1381–1390.

[18] T. H. Nguyen, A. Sinha, S. Gholami, A. J. Plump-
tre, L. N. Joppa, M. Tambe, M. Driciru, F. Wanyama,
A. Rwetsiba, R. Critchlow, and C. M. Beale, “CAP-
TURE: A New Predictive Anti-Poaching Tool for Wild-
life Protection,” Proceedings of the 15th International
Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS), pp. 767–775, 2016.

[19] C. Kiekintveld, J. Marecki, and M. Tambe, “Approxim-
ation methods for infinite bayesian stackelberg games:
Modeling distributional payoff uncertainty,” in Proc. of
10th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS), Tumer, Yolum, Sonenberg, and Stone,
Eds., Taipei, 2011, pp. 2–6.

[20] A. Blum, N. Haghtalab, and A. D. Procaccia, “Learning
optimal commitment to overcome insecurity,” in Ad-
vances in Neural Information Processing Systems 27,
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,
and K. Q. Weinberger, Eds. Curran Associates, Inc.,
2014, pp. 1826–1834.

[21] H. Xu, L. Tran-Thanh, and N. R. Jennings, “Proceedings

of the 15th international conference on au- tonomous
agents and multiagent systems,” 2016.

[22] G. Neu and G. Bartók, “An efficient algorithm
for learning with semi-bandit feedback,” CoRR, vol.
abs/1305.2732, 2013.

[23] S. Gholami, A. Yadav, L. Tran-Thanh, B. Dilkina, and
M. Tambe, “Don’t Put All Your Strategies in One Basket:
Playing Green Security Games with Imperfect Prior
Knowledge,” in Proc. of the 18th International Con-
ference on Autonomous Agents and Multiagent Systems,
vol. 9, 2019.

[24] C. Camerer and R. S. Foundation, Behavioral Game
Theory: Experiments in Strategic Interaction, ser. The
Roundtable Series in Behavioral Economics. Princeton
University Press, 2003.

[25] D. Kar, B. Ford, S. Gholami, F. Fang, A. Plump-
tre, M. Tambe, M. Driciru, F. Wanyama, A. Rwetsiba,
S. California, and L. Angeles, “Cloudy with a chance of
poaching : Adversary behavior modeling and forecasting
with real-world poaching data,” in Proceedings of the
16th Conference on Autonomous Agents and MultiAgent
Systems, no. May, 2017, pp. 159–167.

[26] S. Gurumurthy, L. Yu, C. Zhang, Y. Jin, W. Li, H. Zhang,
and F. Fang, “Exploiting Data and Human Knowledge
for Predicting Wildlife Poaching,” in ACM SIGCAS Con-
ference on Computing and Sustainable Societies 2018,
2018.

[27] S. Gholami, B. Ford, F. Fang, A. Plumptre, M. Tambe,
M. Driciru, F. Wanyama, A. Rwetsiba, M. Nsubaga,
and J. Mabonga, “Taking It for a Test Drive: A Hybrid
Spatio-Temporal Model for Wildlife Poaching Prediction
Evaluated Through a Controlled Field Test,” in Lecture
Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 10536 LNAI, 2017, pp. 292–304.

[28] S. Gholami, S. Mc Carthy, B. Dilkina, A. Plumptre,
M. Tambe, M. Driciru, F. Wanyama, A. Rwetsiba,
M. Nsubaga, J. Mabonga, T. Okello, and E. Enyel,
“Adversary models account for imperfect crime data:
Forecasting and planning against real-world poachers,”
2018, pp. 823–831.

[29] N. Park, E. Serra, T. Snitch, and V. S. Subrahmanian,
“APE: A Data-Driven, Behavioral Model-Based Anti-
Poaching Engine,” IEEE Transactions on Computational
Social Systems, vol. 2, no. 2, pp. 15–37, 2015.

[30] P. Toth and D. Vigo, The vehicle routing problem.
SIAM, 2002.

[31] A. Gunawan, H. C. Lau, and P. Vansteenwegen, “Ori-
enteering problem: A survey of recent variants, solution
approaches and applications,” European Journal of Op-
erational Research, vol. 255, no. 2, pp. 315 – 332, 2016.

[32] R. Martí, P. M. Pardalos, and M. G. C. Resende, Eds.,
Handbook of Heuristics. Springer, 2018.

[33] M. Speranza and C. Archetti, “A survey on matheuristics
for routing problems,” EURO Journal on Computational
Optimization, vol. 2, November 2014.

17



[34] A. Bazghandi, “Techniques, advantages and problems of
agent based modeling for traffic simulation,” 2012.

[35] A. McLane, C. Semeniuk, G. Mcdermid, and D. Mar-
ceau, “The role of agent-based models in wildlife ecology
and management,” Ecological Modelling, vol. 222, pp.
1544–1556, April 2011.

[36] F. Bousquet, R. Lifran, M. Tidball, S. Thoyer, and
M. Antona, “Agent-based modelling, game theory and
natural resource management issues,” The Journal of
Artificial Societies and Social Simulation, vol. 4, March
2001.

[37] R. Luce, Individual choice behavior: a theoretical ana-
lysis. Wiley, 1959.

[38] S. Anderson, J. Goeree, and C. Holt, “The logit equilib-
rium: A perspective on intuitive behavioral anomalies,”
Southern Economic Journal, vol. 69, pp. 21–47, July
2002.

[39] D. O. Stahl and P. W. Wilson, “Experimental evidence on
players’ models of other players,” Journal of Economic
Behavior & Organization, vol. 25, no. 3, pp. 309 – 327,
1994.

[40] B. Gao and L. Pavel, “On the properties of the softmax
function with application in game theory and reinforce-
ment learning,” 2017.

[41] D. McFadden, “Conditional logit analysis of qualitative
choice behaviour,” in Frontiers in Econometrics, P. Za-
rembka, Ed. New York, NY, USA: Academic Press New
York, 1973, pp. 105–142.

[42] F. Klügl and A. L. C. Bazzan, “Agent-based modeling
and simulation,” AI Magazine, vol. 33, no. 3, p. 29,
September 2012. [Online]. Available: https://www.aaai.
org/ojs/index.php/aimagazine/article/view/2425

[43] L. Morell, “Unit testing and analysis,” April 1989.
[44] D. Helbing and S. Balietti, “How to do agent-based sim-

ulations in the future: From modeling social mechanisms
to emergent phenomena and interactive systems design,”
Technical Report 11-06-024, July 2015.

[45] D. Masad and J. Kazil, “Mesa: An agent-based modeling
framework,” January 2015, pp. 51–58.

[46] G. van Rossum, B. Warsaw, and N. Coghlan, “Style
guide for Python code,” PEP 8, 2001. [Online].
Available: https://www.python.org/dev/peps/pep-0008/

[47] S. Mitchell, S. M. Consulting, and I. Dunning, “Pulp: A
linear programming toolkit for python,” 2011.

[48] L. Gurobi Optimization, “Gurobi optimizer reference
manual,” 2020. [Online]. Available: http://www.gurobi.
com

[49] K. Dhoore, “Online agent-based aerial patrol planning for
wildlife surveillance,” Master’s thesis, Delft University of
Technology, Delft, October 2020.

18

https://www.aaai.org/ojs/index.php/aimagazine/article/view/2425
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2425
https://www.python.org/dev/peps/pep-0008/
http://www.gurobi.com
http://www.gurobi.com

	Introduction
	Related Work
	Adversary Modelling in Green Security Games
	Matheuristic Path Planning
	Agent-Based Modelling and Simulation

	Problem Formulation
	Game Setup
	Information Access and Player Behaviour
	Utility and Game Objective

	Agent-Based Model
	Environment Specification
	Utility
	Estimated reward
	Attackability score
	Human Expert Coverage Probability

	Defender Specification
	Online Learner
	Path Planning
	Observation Model
	Expert Selection

	Attacker Specification
	Validation and Verification

	Numerical Evaluation
	Algorithm Implementation
	Case Study
	Key Performance Indicators
	Simulation Setup
	Results

	Discussion
	Reflection on overall performance
	Reflection on limitations

	Conclusion
	Recommendations for Future Research
	Attacker model
	Defender model
	Path planning


