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ABSTRACT
Mobile base stations on board unmanned aerial vehicles (UAVs)
promise to deliver connectivity to those areas where the terrestrial
infrastructure is overloaded, damaged, or absent. A fundamental
problem in this context involves determining a minimal set of lo-
cations in 3D space where such aerial base stations (ABSs) must be
deployed to provide coverage to a set of users. While nearly all ex-
isting approaches rely on average characterizations of the propaga-
tion medium, this work develops a scheme where the actual channel
information is exploited by means of a radio tomographic map. A
convex optimization approach is presented to minimize the number
of required ABSs while ensuring that the UAVs do not enter no-
fly regions. A simulation study reveals that the proposed algorithm
markedly outperforms its competitors.

Index Terms— Aerial base stations, radio tomography, radio
maps, spectrum cartography, placement.

1. INTRODUCTION

The rapid evolution of unmanned aerial vehicles (UAVs) has spurred
extensive research to complement terrestrial communication infras-
tructure with base stations mounted on board them [1]. The main use
case of such aerial base stations (ABSs) is to provide connectivity
in areas where it is insufficient or not available, e.g. because they
are remote or because of a natural disaster. The research question
that arises is at which locations one or multiple ABSs need to be
deployed to provide coverage to the ground terminals (GTs).

This question has been extensively investigated for a single
ABS; see e.g. [2–5]. Other schemes have been proposed to set
the 2D position of multiple ABSs in a horizontal plane of a given
height; see e.g. [6]. In contrast, the focus here is on algorithms
capable of determining the 3D position of the ABSs. Existing works
in this context are classified next according to how they account
for the propagation channel between the ABSs and the GTs. First,
some schemes [7] do not model or learn the channel and, therefore,
the suitability of a location cannot be determined before an ABS
visits it, which drastically increases the time to find a suitable place-
ment. Besides approaches that assume free-space propagation [8],
a large number of works rely on the empirical model from [9];
see e.g. [10–14].The main limitation is that such models provide
shadowing values in average scenarios, e.g. in a generic urban
environment, but are likely to yield highly suboptimal placements
in a specific environment. This limitation is addressed in [15, 16]
by using 3D models of the deployment scenario. Unfortunately,
3D models are seldom available and, even when they are, their
resolution is insufficient for reasonably predicting the channel in
conventional bands or, for example, when a GT is inside a building.

This work was supported by the Research Council of Norway through
the IKTPLUSS Grant 311994.

Fig. 1: Example of ABS placement in an urban environment with the
developed simulator. GTs are represented by markers on the ground,
grid points by blue dots, and ABS positions by green circles.

In contrast, the present paper proposes a scheme where the air-
to-ground channel of the specific deployment scenario is learned by
relying on the notion of radio tomography [17,18]. A radio map that
provides the attenuation between arbitrary points of space is con-
structed based on measurements collected by the GTs and ABSs. To
accommodate the special requirements of air-to-ground radio maps,
the conventional approach to radio tomography, which has a cubic
complexity in the size of the grid, is here replaced with a linear com-
plexity algorithm. Using this radio map, a placement algorithm is
proposed to minimize the number of ABSs required to guarantee a
minimum rate for all GTs. Unlike most competing algorithms, it is
based on a convex program, it can accommodate no-fly zones, and
has low computational complexity. The third contribution is an open
source simulator1 that allows testing and developing algorithms for
ABS placement; see Fig. 1.

Paper structure. Sec. 2 and formulates the problem. The con-
struction and evaluation of radio maps is described in Sec. 3. An
algorithm for ABS placement using radio maps is then proposed in
Sec. 4. Performance evaluation is carried out in Sec. 5 by means of
the developed simulator. Finally, Secs. 6 and 7 respectively discuss
the related work and present the main conclusions. The supplemen-
tary material [19] contains an algorithm for approximating tomo-
graphic integrals and the derivation of the placement algorithm.

Notation. R+ is set of non-negative real numbers. Boldface up-
percase (lowercase) letters denote matrices (column vectors). a[i]
represents the i-th entry of vector a. Notation 0 (respectively 1)
refers to the matrix of the appropriate dimensions with all zeros
(ones). ‖A‖F denotes Frobenius norm of matrix A, whereas ‖a‖p
denotes the `p-norm of vector a. With no subscript, ‖a‖ stands for
the `2-norm. Inequalities between vectors or matrices must be un-
derstood entrywise.

1https://github.com/uiano/abs_placement_via_radio_maps
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2. MODEL AND PROBLEM FORMULATION

Consider M users or ground terminals (GTs) located at positions
{xGT

1 , . . . ,xGT
M } ⊂ X ⊂ R3, where region X will typically include

points on the ground and inside buildings. To provide connectivity
to the GTs, N ABSs are deployed at positions {xABS

1 , . . . ,xABS
N } ⊂

F ⊂ R3, where F comprises all locations where a UAV is allowed
to fly. This excludes no-fly zones, airspace occupied by buildings,
and altitudes out of legal limits. To simplify the exposition, the focus
will be on the downlink and it will be assumed that the channel is not
frequency dispersive. The rate of the communication link between
the m-th GT and an ABS at position xABS ∈ X is determined by the
channel gain and noise power. The former is given by

γm(xABS) = 20 log10

(
λ

4π‖xGT
m − xABS‖

)
− ξ(xGT

m ,x
ABS), (1)

where λ is the wavelength associated with the carrier frequency of
the transmission and function ξ denotes shadowing. Small-scale fad-
ing is ignored for simplicity, but the ensuing formulation can be
adapted to accommodate the associated uncertainty. The capacity is

Cm(xABS) = W log2

(
1 + PTX10γm(xABS)/10/σ2

)
, (2)

where W denotes bandwidth, PTX the transmit power, and σ2 the
noise power. Since the m-th GT may connect to one or multiple
ABSs, it may receive a rate up to

∑
n Cm(xABS

n ). As usual in the
literature, it is assumed that the backhaul connection of the ABSs
has sufficiently high capacity, yet the proposed scheme can be gen-
eralized to accommodate backhaul constraints.

The problem is to find a minimal set of ABS locations that guar-
antees a minimum rate for every user. This criterion arises naturally
in some of the main use cases of UAV-assisted networks such as
emergency response or disaster management. Formally, the problem
can be stated as follows:

minimize
N,{xABS

n }Nn=1

N (3a)

s.t.
∑
n Cm(xABS

n ) ≥ rmin, m = 1, . . . ,M, (3b)

xABS
n ∈ F , n = 1, . . . , N. (3c)

To simplify notation, the same rate rmin is assumed across GTs, but
different rates can be set up to straightforward modifications.

3. TOMOGRAPHIC RADIO MAPS

The first difficulty when solving (3) is that the functionCm(xABS) is
unknown since the shadowing term ξ(xGT

m ,x
ABS) in (1) is unknown.

The approach proposed here is to rely on a radio map that provides
ξ(xGT,xABS) for all xGT and xABS. Such a map can be constructed
by means of the so-called tomographic (or NeSh) model [17], as
considered in the literature of channel-gain cartography; see [20]
and references therein. However, the existing works in this context
focus on ground-to-ground channels. Constructing radio maps of air-
to-ground channels involves special challenges that render existing
approaches unsuitable, as discussed later.

The radio tomographic model [17] prescribes that

ξ(x1,x2) =
1

‖x1 − x2‖1/22

∫ x2

x1

l(x)dx, (4)

Weight-function 
approximations

Piecewise linear 
approximation

VoxelCentroid

Fig. 2: 2D illustration of the conventional weight-function approxi-
mation of the tomographic integral (4) (orange ellipses) and the ap-
proximation adopted here (colored line segment). Observe that the
upper ellipse contains no centroid and, therefore, the approximation
will yield zero attenuation regardless of the values of the SLF.

where the function l inside the line integral is termed spatial loss
field (SLF) and quantifies the local attenuation (absorption) that
a signal suffers at each position. The SLF can be estimated in a
first stage before solving (3) by collecting measurements of the
form (xABS,xGT, γm(xABS)) and applying standard estimation
techniques; see e.g. [20–22].

In practice, to estimate l and evaluate (4), function l needs to be
discretized by storing its values l(xX̄1 ), . . . , l(xX̄Q) on a 3D regular
grid of Q points X̄ := {xX̄1 , . . . ,xX̄Q}. The conventional approach
approximates (4) as a weighted sum [23] of the values l(xX̄q ) for
which the centroid xX̄q lies inside an ellipsoid with foci at x1 and
x2; see the ellipses in Fig. 2 for a depiction in 2D. Unfortunately,
it can be easily seen from Fig. 2 that the resulting approximation of
ξ(x1,x2) is a discontinuous function of x1 and x2. It may even
be 0 even when l(xX̄q ) 6= 0 ∀q. To minimize these effects, the grid
point spacing needs to be small relative to the length of the minor
axis, which is commonly set in the order of the wavelength. Thus,
for standard centimetric wavelengths and regionsX with sides in the
order of km and height in the order of 100 m, Q must be in the order
of 1014, which is prohibitively high. Finally, the complexity of such
an approximation is O(Q3

0) for a Q0 ×Q0 ×Q0 grid.
To remedy these issues, this paper advocates approximating the

integral in (4) as a line integral of a piecewise constant approxima-
tion of l, as already hinted in [22] for tomographic imaging. This in-
volves obtaining the intersections between the the voxel boundaries
and the line segment that connects the transmitter to the receiver
locations; see the colored segment in Fig. 2. A possible implemen-
tation along the lines of [24, Sec. I-B-1] is presented in the supple-
mentary material [19], but others are possible. The resulting approx-
imation is continuous, can be used with large grid point spacing, and
can be computed with complexity onlyO(Q0) for a Q0 ×Q0 ×Q0

grid.

4. PLACEMENT WITH MIN-RATE GUARANTEES

The approach in Sec. 3 makes it possible to find the shadowing be-
tween any two points and, therefore, the channel gain and capac-
ity; cf. (1) and (2). The constraint in (3b) can thus be evaluated.
Yet, solving (3) is challenging: even if N were known and one just
needed to find feasible {xABS

n }Nn=1, the problem would still be non-
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convex due to the constraints. To bypass this difficulty, the proposed
approach involves discretizing the flight region F into a flight grid
F̄ := {xF̄1 , . . . ,xF̄G} ⊂ F ⊂ R3; see Fig. 1.

Since F̄ contains only points where an ABS can be placed, solv-
ing (3) amounts to finding the smallest subset of N points of F̄ that
satisfies (3b). To see this, replace xABS

n ∈ F in (3c) with xABS
n ∈ F̄

and let αg be 1 if there is an ABE at xF̄g and 0 otherwise. The sum-
mation in (3b) can then be expressed as

∑
g αgCm(xF̄g ). Since the

number of ABSs can be written as
∑
g αg , the discretized version of

(3) becomes

minimize
α∈{0,1}G

∑
g αg (5a)

s.t.
∑
g αgcg ≥ rmin1, (5b)

where cg := [C1(xF̄g ), . . . , CM (xF̄g )]>. Problem (5) is of a combi-
natorial nature and can be solved for small G by exhaustive search.
However, the complexity of such a task is exponential and, therefore,
it is preferable to adopt an approximation that can be efficiently com-
puted. One possibility is to relax the constraint α ∈ {0, 1}G as well
as the objective and apply an interior-point solver. This approach is
described in the supplementary material [19] but not pursued here
due to the well-known poor scalability of this kind of methods with
the number of variables and constraints [25]. Indeed, in this appli-
cation, G can be in the order of millions, which would render the
cubic complexity of interior-point methods prohibitive. Instead, this
section presents a solver based on the alternating-direction method
of multipliers (ADMM) [26] whose complexity is linear in G.

Suppose that there exists no grid point such that cg = 0. Oth-
erwise, xF̄g can be disregarded without further implications. By ap-
plying the change of variables αgcg → rg , it is clear that Problem
(5) can be equivalently written as

minimize
R∈RM×G

∑G
g=1 I[rg 6= 0] (6a)

s.t.
∑G
g=1 rg ≥ rmin1 (6b)

rg ∈ {0, cg}, g = 1, . . . , G, (6c)

where R := [r1, . . . , rG] and I[·] is a function that returns 1 when
the condition in brackets holds and 0 otherwise. It will now be ar-
gued that relaxing the constraint rg ∈ {0, cg} as 0 ≤ rg ≤ cg
entails no loss of optimality. On the one hand, if {rg}g are feasible
for (6), then they are feasible for the relaxed problem and yield the
same objective value. On the other hand, if {rg}g are feasible for
the relaxed problem, setting those non-zero rg equal to cg yields a
feasible point for (6) that attains the same objective value.

The next step is to show that, after relaxing (6c), the inequality
in (6b) can be replaced with an equality without loss of optimality.
First, note that (6b) can be written as R1 ≥ rmin1. Upon letting
r̄m ∈ RG denote the m-th column of R>, constraint (6b) becomes
r̄>m1 ≥ rmin, m = 1, . . . ,M . Now consider a feasible R and
note that if r̄>m0

1 > rmin for some m0, then replacing r̄m0 with
r̄′m0

:= rminr̄m0/(1
>r̄m0) yields another feasible R′ that satisfies

(r̄′m0
)>1 = rmin and that attains the same objective value as R.

Applying this logic for all m yields a feasible matrix that satisfies
R1 = rmin1 without affecting the objective value.

The objective
∑G
g=1 I[rg 6= 0] can be equivalently expressed as∑G

g=1 I[‖rg‖∞ 6= 0], where the `∞-norm ‖v‖∞ equals the largest
absolute value of the entries of vector v. Clearly,

∑G
g=1 I[‖rg‖∞ 6=

0] = ‖[‖r1‖∞, . . . , ‖rG‖∞]>‖0, which suggests the relaxation

Algorithm 1: ABS Placement

Data: C ∈ RM×G+ , rmin ∈ R+, {wg}g ⊂ R+, ρ > 0

1 Initialize U1 ∈ RM×G+ and Z1 ∈ RM×G+

2 for k = 1, 2, . . . do
3 for g = 1, 2, . . . , G do
4 Bisection: find sk+1

g s.t.
1>max(zkg − ukg − sk+1

g 1,0) = wg/ρ

5 Set rk+1
g = min(zkg − ukg , sk+1

g 1)

6 for m = 1, 2, . . . ,M do
7 Bisection: find λ s.t.

1>max(0,min(c̄m, r̄
k+1
m + ūkm − λ1)) = rmin

8 Set z̄k+1
m = max(0,min(c̄m, r̄

k+1
m + ūkm − λ1))

9 Set Uk+1 = Uk +Rk+1 −Zk+1

10 If convergence( ) then returnRk+1

‖[‖r1‖∞, . . . , ‖rG‖∞]>‖1 =
∑
g ‖rg‖∞, or its reweighted ver-

sion
∑
g wg‖rg‖∞, where {wg}g are non-negative constants set as

in [27]. With these observations, the problem becomes

minimize
R∈RM×G

∑
g wg‖rg‖∞ (7a)

s.t. R1 = rmin1, 0 ≤ R ≤ C, (7b)

where the (m, g)-th entry of C ∈ RM×G+ is given by cm,g :=

Cm(xF̄g ), i.e., the capacity of the link between the m-th user and
the g-th grid point. The (m, g)-th entry of R therefore satisfies
0 ≤ rm,g ≤ cm,g , which means that it can be interpreted as the
rate at which a virtual ABS placed at grid point xF̄g communicates
with the m-th user. In case that rm,g = 0 for all m, then no actual
ABS needs to be deployed at xF̄g . In other words, the virtual ABS at
xF̄g corresponds to an actual ABS only if rm,g 6= 0 for some m.

Within the ADMM framework, Problem (7) can be decomposed
into one subproblem per row and column of R. Each problem in-
volves solving a bisection task of a 1D monotonically decreasing
function and therefore can be solved with O(1) evaluations. The to-
tal complexity is O(MG), much smaller than the O((G + 2M)3)
complexity per inner iteration of an interior-point method; cf. the
supplementary material [19]. The algorithm is shown as Algorithm 1
and is derived in the supplementary material. In the notation used
therein, ifA is a matrix, then am is itsm-th column and ā>n its n-th
row. Furthermore, superscripts indicate the iteration index, ρ > 0 is
the step size, and the min and max operators act entrywise.

5. NUMERICAL EXPERIMENTS

The area of interest is a rectangle of 500 × 400 m with 9 streets in
each direction delimited by 8 rows and columns of buildings of a
certain height h. The flight height is between 50 and 150 m. The
SLF is such that the absorption inside the buildings is 3 dB/m. The
carrier frequency is 2.4 GHz, the bandwidth W = 20 MHz, the
transmit power PTX = 0.1 Watt, and the noise power σ2 = −96
dBm. A total of M GTs are deployed on the street uniformly at
random. The proposed algorithm is compared with the algorithm by
Huang et al. [28], the K-means algorithm by Galkin et al. [29], the
spiral-based algorithm by Lyu et al. [30], and the iterative algorithm
by Hammouti et al. [11] for unlimited backhaul. The implementation
of the algorithm in [28] was provided by the authors, whereas the rest
were implemented by us. The algorithm in [28] is only used in one
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0 10 20 30 40
Height of the buildings

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
ea

n 
nu

m
be

r o
f A

BS
s

Galkin et al.
Lyu et al.
Hammouti et al.
Sparse Placer (proposed)

Fig. 4: Mean minimum number of ABSs required to provide a min-
imum rate of rmin = 20 Mb/s vs. h [m] (20 × 30 × 150 SLF grid,
9× 9× 5 fly grid).

experiment since its computational complexity of O(M6) makes it
only suitable for a relatively lowM . The positions returned by these
algorithms are projected onto the grid F̄ of allowed flying positions.

The adopted performance metric is the minimum number of
ABSs required to guarantee a rate rmin to all GTs. This metric is
averaged using Monte Carlo across realizations of the user loca-
tions. For the algorithms in [28] and [30], which are based on a
maximum radius, the latter is gradually decreased starting from its
value corresponding to free space propagation until all GTs receive
the minimum rate. For the algorithms in [11] and [29], the number
of centroids is gradually increased starting from 1 until the afore-
mentioned rate condition is met. See the repository (link on the first
page) for more details along with the code of all experiments.

Fig. 3 depicts the minimum number of ABSs required to guar-
antee a rate of rmin = 5 Mb/s for all GTs. The proposed algorithm is
seen to yield placements that require fewer ABSs than all competing
algorithms. This can be ascribed to the fact that it is aware of the
channel and of in which regions it is allowed to fly. To investigate
further the impact of the former effect, Fig. 4 studies the influence
of shadowing. For a building height h = 0, propagation occurs in
free space, which leads to all algorithms performing similarly. The
slightly worse performance of the algorithm by Lyu et al. is mainly
caused by the flight grid discretization. As h increases, the channel
gradually differs more and more from free-space propagation and
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Fig. 5: Mean minimum number of ABSs required to provide a min-
imum rate of rmin (h = 53 m, 48 × 40 × 5 SLF grid, 9 × 9 × 5 fly
grid).

the competing algorithms suffer a performance degradation.
Finally, Fig. 5 investigates the influence of rmin. It is seen that

the sensitivity of the proposed algorithm is much smaller than the
one of its competitors, for which the performance metric increases
considerably as rmin increases.

6. RELATED WORK

The most related works are [15, 28, 31]. In [15], a terrain map or 3D
model of the environment is used to predict the channel. Unfortu-
nately, such models are seldom available and, furthermore, their res-
olution is typically very low relative to typical wavelengths, which
indicates that the resulting accuracy may be insufficient for place-
ment purposes. Besides, a reinforcement learning approach is used
rather than a convex optimization approach as in the present paper.
The algorithm needs to be retrained in every new environment or if
the number of UAVs changes. Besides, this approach is not flexible
enough to accommodate additional constraints, for example that a
human user must take control of one of the UAVs.

The approach in [31] relies on average local descriptors of the
channel in terms of a map that provides the path loss exponent of
each region in the deployment scenario. However, it just applies for
N = M = 1.

Finally, [28] also adopts a convex optimization approach based
on promoting sparsity, but the formulation is entirely different as it
is not based on a discretization. Its complexity is O(M6), which
restricts its applicability to scenarios with a low number of GTs. Be-
sides, it cannot accommodate general flight constraints since con-
vexity would be lost in that case.

7. CONCLUSIONS

This paper proposes a new approach to ABS placement where, in-
stead of relying on average characterizations of the channel, a radio
map of the specific deployment scenario is constructed and used to
determine the set of optimal ABS locations in terms of a convex ob-
jective that approximately minimizes the number of ABSs to guar-
antee a minimum rate to all GTs. Unlike most approaches, the pro-
posed algorithm has a low complexity and can accommodate flight
constraints such as no-fly zones or airspace occupied by buildings.
The intuitive soundness of the scheme is empirically corroborated
using an open source simulator developed in this work.
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