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Preface

During my first year of pursuing a master’s degree in Applied Mathematics, I enrolled in a course on Advanced
Modelling which proved to be an enlightening experience. One of the projects assigned to us focused on
Indoor Magnetic Navigation utilizing Magnetic Beacons, a subject that was not initially my top choice but
had captured the interest of the double-degree students in our group, combining Applied Mathematics and
Applied Physics. To my surprise, this project exposed me to a whole new realm of practical applications,
which I had not encountered during my bachelor’s and master’s programs. I reached out to the supervisor of
the project, Aad Vijn, to continue working on this topic as my thesis.

For the past nine months, I have delved into various subjects, including magnetism, navigation tech-
niques, Kalman filters, particle filters, and the practical aspects of working with magnetic data, such as mag-
netometers and compensation. Through this comprehensive study, I have come to appreciate the signifi-
cance of magnetic maps in achieving GNSS-independent navigation. The availability of accurate maps di-
rectly contributes to enhanced positioning accuracy.

Moreover, it is intriguing to observe that magnetic maps serve not only the purpose of precise position-
ing. It appeared to me that researchers are dedicating their efforts to exploring and solving captivating hide-
and-seek games: the search for hidden treasures, valuable minerals, or ferromagnetic objects. This further
highlights the multifaceted nature of magnetic mapping.

I would like to express my gratitude to Aad Vijn for his guidance and support throughout this project.
I am also thankful to my colleagues at TNO, Mia Jukic, Eugene Lepelaars, and Reinier Tan, for their brain-
storming sessions and feedback on my work and for providing me access to their measurement equipment.
I would also like to thank Martin Verlaan for his valuable feedback and suggestions. A special thanks to Arian
Joyandeh for our running sessions, which were a great source of motivation and in-depth discussion. Finally,
I would like to thank my friends and family for their support and encouragement.

J. de Jong
Delft, June 2023
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1
Introduction

1.1. Introduction and Motivation
Centuries ago, navigators used compasses to traverse the vast oceans, and even today, compasses remain
a vital component of modern navigation systems. Despite the widespread adoption of satellite technology
and GNSS, which has significantly reduced the direct use of compasses, they continue to exist as part of
an Inertial Navigation System (INS). However, as humans seek to reduce their reliance on GNSS and explore
alternative, GNSS-independent methods for achieving the same level of position accuracy, a resurgence of in-
terest in magnetic field-based navigation appears to be emerging. Accurate mapping of the Earth’s magnetic
field could pave the way for a revolutionary shift in navigation, where we combine the best of traditional sea
navigation and modern technologies to navigate the skies more effectively using aeromagnetic navigation.

The importance of GNSS-independent navigation is broader than one might think. Especially with the
rise of autonomous vehicles, like cars, robots and drones, it is important to have a backup navigation system.
Besides that, GNSS is not always available, for example underground, inside buildings, in a long tunnel or in
a conflict zone. The latter is a very important reason to have a backup navigation system [14]. In a conflict
zone, GNSS can be jammed or spoofed, and therefore it is not reliable.

In addition to aiming for GNSS-independent navigation, there are many other applications for magnetic
maps. Magnetic maps have been used for oil- and gas exploration [65], finding metals and minerals [44, 40],
for archeological reasons [21], in geophysical studies [44, 54] and for the detection of ferromagnetic objects
[63]. A better understanding of magnetic maps can significantly improve these applications.

The specific interest in magnetic maps arises from the fact that the Earth’s magnetic field has strong con-
tributions from the Earth’s core and crust. A major advantage over other maps, such as height maps and to-
pographic maps, is that the magnetic field is everywhere. It is almost not affected by weather conditions, and
human activity has little effect on the magnetic field on large scales since the intensity of a magnetic source is
inversely proportional to the cube of the distance from the source. Altogether, this makes the magnetic field
a very reliable field for navigation, exploration and other applications.

1.2. Background of Magnetic Map-Making
Mapping the magnetic field is not a new idea and has been extensively studied over the years. One of the
most commonly studied types of magnetic maps is the global magnetic map [34]. These maps are created
by measuring the magnetic field that originates from the Earth’s core and are widely available [18, 1]. To
represent these maps, spherical harmonics are commonly used (Chapter 6). The coefficients of the spherical
harmonic equations are often estimated by magnetic models that incorporate the changes in the magnetic
field over time.

On a regional, more localized, scale, we encounter limitations of the spherical harmonic equations. These
equations are designed to approximate the field as a multipole expansion stemming from the core. However,
the magnetic field at the surface does not solely stem from the core but has contributions from the crust and
near-surface objects as well. While, in theory, an infinite number of spherical harmonic terms is perfectly
capable of representing the magnetic field, this is not feasible in practice.

The common approach for accurately representing the magnetic field on a regional scale appears to be
through local extensions of global magnetic maps. The widely available magnetic models can be utilized to
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2 1. Introduction

find a mean value of the magnetic field in a specific region. This value can be used as a reference value for
the magnetic field. A local coordinate system can be defined around the region of interest and the magnetic
field can be measured in this coordinate system. The measured magnetic field can then be compared to
the reference value and the difference can be used to create a local magnetic anomaly map. This way, a
local enhancement of the magnetic field can be achieved, which allows for a more accurate, high-resolution,
representation of the magnetic field.

There are several ways to extend the magnetic field to a local scale. The methods range from taking mea-
surements and interpolating the magnetic field using splines, to more advanced techniques that incorporate
the physical properties of the magnetic field by making dipole approximations. One of these techniques is
Equivalent Layer. Equivalent Layer is a linear optimization problem that tries to find the best fit between
the measured magnetic field and a pre-defined layer of magnetic dipoles that are placed under the surface.
Equivalent Layer is proven to be an effective method for representing the magnetic field, but it is not with-
out its limitations. The main limitation is that Equivalent Layer requires a priori information about where to
place the dipoles.

Mapping techniques are mainly focused on making a two-dimensional map of the magnetic field. How-
ever, if one wants to navigate an aircraft, it is important to have information about the magnetic field in three
dimensions. A cornerstone of magnetic maps for aeromagnetic navigation is Upward Continuation. Upward
Continuation is a technique that uses the magnetic field at a certain height to estimate the magnetic field at a
higher altitude. It does so by leveraging the harmonicity properties of the magnetic field and applying Green’s
third identity. Therefore, under many circumstances, it is sufficient to measure and map the magnetic field
at a single height to be able to estimate the magnetic field at higher altitudes.

1.3. Contributions
This thesis aims to advance the knowledge of magnetic map-making. The main contributions of this thesis
are:

1. Providing an overview of the whole pipeline of magnetic map-making. This includes the theory of mag-
netism (Chapter 2), the physical properties of the magnetic field (Chapter 3), the different techniques
for mapping the magnetic field (Part II), and the applications of magnetic maps (Chapter 13). Literature
on magnetic map-making is often focused on a single aspect of the pipeline.

2. A review of the different magnetic models that are available and their quality (Chapter 6). This includes
understanding the differences between the models and their limitations, and how the spatial resolution
relates to the applicability of the models. Together with the overview of the whole pipeline, this provides
a better understanding of the applicability of the different magnetic models.

3. Filling in missing parts of the literature. In the description of the Equivalent Layer, the derivation of the
linear system is often missing (Section 8.1). This thesis provides a derivation of the Equivalent Layer
problem, starting from a single dipole with a single measurement. This derivation is then extended to
multiple dipoles and multiple measurements. In the literature, no detailed derivation of the Equivalent
Layer problem is found.

4. Presenting a new method for reconstructing a magnetic field from a set of measurements. This method
is based on the Anderson functions and does not require a priori information about the location of
the magnetic sources (Chapter 9). An extension of the Anderson functions to two dimensions is pre-
sented, which allows for the reconstruction of a magnetic field from a set of measurements in a plane.
These two-dimensional Anderson functions are used as a starting point for an orthonormalized wavelet
family that can be used to reconstruct a magnetic field from a set of measurements in a plane. It also
provides a way to detect and make position estimates of the magnetic sources based on a measurement
signal.

5. A benchmark of the different map-making techniques on simulated data (Chapter 11). A Python pack-
age MagMap is developed to facilitate this benchmarking and all other simulations in this thesis. The
benchmarking is done on a simulated magnetic field which is designed to mimic a regional magnetic
field. The benchmarking is done by comparing the reconstructed magnetic field to the original mag-
netic field after applying interpolation and extrapolation techniques. These types of comparisons are
lacking in the literature. The MagMap provides a way to compare different map-making techniques on
a simulated magnetic field and can easily be extended to include other map-making techniques.
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6. Validation of the map-making techniques on real-world data (Chapter 12). We share our experiences
with the application of map-making techniques on real-world data. We discuss the challenges we en-
countered and how we overcame them.

1.4. Research Questions and Objectives
This research is focused on exploring the techniques for magnetic map-making and how magnetic maps can
be applied. The general research question we try to answer is: What are the fundamental principles and
concepts underlying magnetic map-making? This question is divided into the following sub-questions:

1. What is the definition and purpose of a magnetic (anomaly) map?

2. What are the established methodologies and techniques utilized in the creation of magnetic maps?

3. How can the depth of dipole sources be accurately determined from the measured signal?

4. What is the empirical performance of current interpolation and extrapolation techniques for magnetic
maps?

5. What is the impact of environmental and platform noise on measurement data in the process of map-
making, and what strategies can be employed to minimize this influence?

6. In what ways can magnetic (anomaly) maps be utilized for navigation, localization, and exploration?

The first objective is to give a clear definition of a magnetic map. The second objective is to explore the
current techniques for making these magnetic maps. Magnetic maps have been made for a long time and are
based on measurements of the magnetic field. The construction of physically accurate maps is a challenging
task, especially when the measurements are sparse. Different techniques are used, depending on the size of
the mapped area. Enlisting the techniques summarizes a part of the literature study.

It followed from the literature review that many of the techniques use the same basic assumption. In the
context of magnetic maps, but also for the estimation of magnetic fields in general, the assumption is that
the magnetic field can be approximated by a sum of dipoles. The dipole sources are assumed to be located
below the surface of the Earth. The accuracy of the map-making techniques seems to depend heavily on how
the dipole sources are positioned. The third objective is to explore a method for determining the depth of the
dipole sources from a measured signal.

Another objective of this research is to compare map-making techniques. Before a comparison can be
made, assessment criteria must be established. The quality of a magnetic map is a complex issue. It is not
only a matter of how well the map represents the magnetic field but also to what extent the map can be
used for the intended purpose. A central question in this research is how to define measurable criteria for
the quality of a magnetic map. Once the criteria are set, map-making techniques can be compared. An
extensive comparison is made using numerical simulations to understand the performance and behavior of
each method.

This research not only focuses on the theoretical aspects of magnetic map-making but also on the practi-
cal aspects. The fifth objective is to investigate the impact of environmental and platform noise on the quality
of measurements. When attaching a magnetometer to a ferromagnetic platform, the magnetic field measured
by the magnetometer is distorted. Especially in the context of an aircraft, this is something that needs to be
compensated for.

Finally, the possible applications of magnetic maps are explored. Some experiments with navigation and
localization methods on simulated magnetic maps are conducted to demonstrate the possible use case. The
purpose of which is to convince the readers that magnetic maps are a good candidate to extend or replace the
current navigation and localization methods that are based on GNSS. As a final step, a method for finding an
optimal path in a magnetic map is developed.

1.5. Scope
Magnetic maps have a broad range of applications. They can be used for navigation, localization, detection
and exploration, under almost any conditions and on any scale. Highly accurate magnetic measurements
help trace the state of a molecule and can therefore be used for magnetic resonance imaging (MRI) [71],
while at the same time, large-scale magnetic maps can be used for studying other planets or exploring outer
space [45].
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Limiting ourselves to just the use of magnetic maps for human navigation on Earth seems too broad
an area even of research. For example, the differences between in-building navigation and aeromagnetic
navigation on continental scales are too large. However, it is worth noting that navigation on a continental
scale has been resolved using spherical harmonics.

In contrast, in-building navigation requires different techniques due to the type of sources involved. Es-
pecially the presence of human-made sources such as metal objects and electrical devices and human in-
teractions that might affect the position of the sources makes this type of navigation more challenging. This
area of research is also actively studied, with many techniques being developed to improve indoor navigation
[32], such as the use of beacons to overpower the effects of human-made sources (Section 14.4).

However, there is currently a gap in research when it comes to utilizing the magnetic field for regional-
scale outdoor navigation, such as aeromagnetic navigation on the scale of a city or a country. This gap exists
because the limits of spherical harmonics have been reached on that scale, while in-building techniques seem
less practical for outdoor use. Aeromagnetic navigation on a regional scale is an area that is explored in this
research, aiming to develop methods that can bridge the gap and provide reliable map-making techniques.

It is worth noting that the techniques and methods developed and evaluated in this research can also be
applied on smaller and larger scales. Therefore, while the scope of the research is focused on regional-scale
navigation, the findings may still be valuable and interesting for various purposes in different contexts.

1.6. Outline
In this research, we present a full overview of the whole pipeline of magnetic map-making. The research
starts with three introductory chapters. Chapter 2 provides an overview of the theory of magnetism and the
physical properties of the magnetic field, Chapter 3 describes the structure of the Earth and what types of
magnetic sources are present in the ground and Chapter 4 gives a brief introduction to magnetic sensing.
The rest of the report is divided into four parts.

Part II describes the different techniques for mapping the magnetic field. This part starts with the def-
inition of a magnetic map in Chapter 5. A clean signal is required to make a magnetic map from a set of
measurements. Chapter 6 describes the global magnetic models and how spherical harmonics can be used
for their representation. The process of Aeromagnetic Compensation, to clean up a signal from platform
noise in aeromagnetic surveys, is described in Chapter 7. After that, Equivalent Layer is studied in Chapter 8
as a local extension of the global magnetic models. Chapter 9 contains a description of the Anderson Func-
tions which are then used as a wavelet basis for the reconstruction of the magnetic field and dipole depth
estimation. Finally, Chapter 10 discusses under what circumstances the magnetic field at a certain height can
be used to estimate the magnetic field at a higher altitude.

Part III is dedicated to simulating and validating the different techniques for magnetic map-making that
are described in Part II. Chapter 11 describes the benchmarking of the different techniques on simulated
data. In Chapter 12, the techniques are validated on real-world data. Part IV contains several examples of
how magnetic maps can be applied. Finally, Part V concludes the research and gives recommendations for
future work.
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2
An introduction into Magnetic Fields

2.1. Maxwell Equations
The Maxwell Equations, named after James Clerk Maxwell, are a set of partial differential equations that de-
scribe how electric charges and currents create electric and magnetic fields, and how these fields interact with
each other. The four Maxwell equations [29, p. 16] are:

∇·E = ρ

ϵ0
(2.1)

∇·B = 0 (2.2)

∇×E =−∂B

∂t
(2.3)

∇×B =µ0J+µ0ϵ0
∂E

∂t
, (2.4)

where E [Vm−1] is the electric field, B [T] is the magnetic induction field, ρ [Cm−3] is the charge density, J
[Am−2] is the current density, ϵ0 [Fm−1] is the permittivity of free space, µ0 ≈ 1.2566× 10−6 [Hm−1] is the
magnetic permeability of free space, and t [s] is time. The four equations describe the following laws:

1. Gauss’s law for electricity: ∇·E = ρ
ϵ0

.
The first Maxwell Equation (2.1) is also known as Gauss’s law for electricity. It states that the divergence
of the electric field is equal to the charge density divided by the permittivity of free space. The left-hand
side of the equation is the divergence of the electric field, a positive quantity indicates that the electric
field is spreading out, while a negative quantity indicates convergence. The right-hand side describes
the density of charge at that point in space. The equation, therefore, relates the electric field to the
charge density of the system. A large positive charge results in a strong diverging electric field, while a
negative charge leads to convergence.

2. Gauss’s law for magnetism: ∇·B = 0.
The second Maxwell Equation (2.2) is also known as Gauss’s law for magnetism. It states that the di-
vergence of the magnetic field is zero, which means that there are no sources nor sinks in the magnetic
field. Instead, a divergence of zero explains why magnetic field lines are closed loops, as they cannot
diverge or converge. Besides that, it shows that the magnetic flux is conserved, which means that the
magnetic flux through a closed surface is constant. Furthermore, this equation refutes the existence of
magnetic monopoles, as fields are due solely to electric currents and that magnetic "charges" do not
exist. [38, p. 208]

3. Faraday’s law: ∇×E =− ∂B
∂t .

Faraday’s law, third Maxwell Equation (2.3), implies that a time-varying magnetic field induces an elec-
tric field. There are many practical applications of this law since electrical induction is the underlying
concept of generators, transformers and motors [29, p. 326].

7
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4. Ampère’s law: ∇×B =µ0J+µ0ϵ0
∂E
∂t .

The last Maxwell Equation (2.4), generally known as Ampère’s law, relates the curl of the magnetic field
to the currents and the rate of change in the electric field. The curl on the left-hand side of the equation
indicates the circulation of the magnetic field around a closed surface. The right-hand side has two
terms, the first term indicates the currents passing through the surface, while the second term describes
the rate of change of the electric field. The equation, therefore, shows that a current J passing through a
surface induces a magnetic induction field B and that a time-varying electric field E induces a magnetic
induction field B.

Gauss’s law for magnetism and Ampère’s law are the two most important equations when it comes to the
magnetic field. In the following sections, we discuss the field B in more detail.

2.1.1. Magnetic Induction Field B
The magnetic B-field is a vector field that measures the strength of the magnetic induction field at a particular
point in space, expressed in teslas (T). This field describes the forces acting on a moving charge, and it typi-
cally has two components: one arising from the magnetic field H, and another arising from the magnetization
field M [29, p. 40]. The relation between the field B and the fields H and M is given by:

B =µ0 (H+M) , (2.5)

where µ0 [Hm−1] is the permeability of free space. This expression is always true, regardless of the context,
and relates the vector fields B, H, and M to each other. This relationship is necessary for solving the Maxwell
equations, which are fundamental to the understanding of electromagnetism. The fields H and M are ex-
plained in the following sections.

2.1.2. Magnetic Field H
The magnetic H-field is a measure of magnetic field strength, and is measured in amperes per meter (Am−1).
The field can be interpreted as an intensity field that describes the magnetic flux density per unit area, i.e. the
density of magnetic field lines passing through a given area. This field is generated by the electrical currents
outside the material, either by a solenoid, an electromagnet, or from a permanent magnet.

2.1.3. Magnetization Field M
There exists a relationship between the properties of a material and the magnetic field it experiences. The
field M, the magnetization vector, expresses the magnetic moment per unit volume in amperes per meter
(Am−1) [38, p. 40]. This relationship is given by the following equation:

M = m

V
, (2.6)

where m is the magnetic moment and V is the volume of the material. It describes the contribution to the
induction from the magnetization of a material. The movement of electrons in a material can cause a mag-
netic moment. For example, a strongly magnetizable material, such as iron, becomes magnetized when it
is placed in a magnetic field and produces a magnetic field on its own. The direction and magnitude of the
magnetization vector are determined by the direction and magnitude of the applied magnetic field and the
structure of the material. The sum of all the magnetic moments is the magnetization of the material. When
a material is in a steady state, there are no free currents and the magnetization is zero. This is often the case
outside of a ferromagnetic material, e.g. in air, water or vacuum.

Magnetic Moment
The magnetic moment is the underlying quantity that describes how a material responds to a magnetic field.
The magnetic moment is expressed in amperes times meters squared (Am2). The general definition of the
magnetic moment is given by an integral of the magnetization M over the volumeΩ of the material:

m =
∫
Ω

MdV . (2.7)

In the case of a bar-magnet, the magnetic moment is given by:

m = pl , (2.8)

where p is the pole strength [Am] and l is the length of the magnet [m].
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2.1.4. The current density J
Another variable in the Maxwell equations is the current density J. The current density J is the density of the
current passing through a given area. This quantity consists of several contributions. The first contribution
is the current density J f due to the motion of free charges. Several examples [38, p. 454] of these types of
currents are conduction currents and electrolytic currents and motion of macroscopic charged bodides. The
second contribution, ∂D/∂t , is the current density due to displacements. This is a time-varying component
that depends on the polarization current density ∂P/∂t and the rate of change of the electric displacement
field ϵ0∂E/∂t . The third contribution ∇×M is the current density due to magnetization. The magnetization
current and the polarization current form together the bounded current density Jb =∇×M+∂P/∂t . The total
current is therefore given by:

Jt = J f +
∂P

∂t
+ϵ0

∂E

∂t
+∇×M , (2.9)

which is often separated into ϵ0∂E/∂t and J, where J consists of the free current density J f and the bounded
current density Jb :

J = J f +
∂P

∂t
+∇×M = J f + Jb . (2.10)

2.2. Magnetostatics
The Maxwell equations are a general description of the electromagnetic field. However, in many cases, the
Maxwell equations can be simplified. One such simplification is the magnetostatics approximation. It as-
sumes that there are no time dependencies in the magnetic field and that the electric charges are stationary
or moving very slowly. The magnetostatic model is a good approximation when the time-varying components
of the electromagnetic field are negligible when compared to the time-invariant components. The so-called
quasi-magnetostatics Maxwell Equations can be derived from the Maxwell Equations (2.1-2.4) by setting the
time derivatives to zero. This breaks the equations down into two sets of equations, two equations for the
electric field and two equations for the magnetic induction field. The magnetic induction field equations are
[38, p. 455]:

∇·B = 0 (2.11)

∇×B =µ0J =µ0(J f +∇×M) , (2.12)

where M is the magnetization of the material and the last equation holds since ∂P/∂t = 0 in magnetostatics.

2.2.1. Magnetic vector Potential A
The magnetostatic equations (2.11-2.12) allow the magnetic induction field to be expressed in terms of a
magnetic vector potential A [Tm] since every divergence-free vector field is the curl of some other vector
field:

∇·B =⇒ B =∇×A . (2.13)

Until now, A is only restricted to be a curl-free vector field. It is possible to impose additional constraints on A,
which lesad to a unique solution, this is called gauge fixing. A common gauge fixing condition is the Coulomb
gauge, which requires that A is solenoidal: ∇·A = 0. Under this assumption, the magnetic induction field can
be expressed as:

∇×B =∇× (∇×A) =∇(∇·A)−∇2A =−∇2A =µ0J . (2.14)

Therefore, in the absence of the magnetization term (M = 0), the magnetic vector potential can be defined by
the following Poisson equation:

∇2A =−µ0J . (2.15)
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The solution [28, p. 180] of this system is given by:

A(r) = µ0

4π

∫
Ω

J(r′)
|r− r′|d 3r′ , (2.16)

where r′ is a point in space where the current density source is located and r is the point at which the magnetic
vector potential is evaluated.

2.2.2. Magnetic Scalar Potential φ
For magnetostatic conditions, the magnetic field can be expressed in terms of a magnetic scalar potential φ
[A]. Combining Equation 2.5 and Equation 2.12 yields:

∇×H =∇×
(

1

µ0
B−M

)
= M+ J f −M = J f . (2.17)

In a current free region, J f = 0, so the curl of the magnetic field strength is zero:

∇×H = 0 . (2.18)

Therefore, the magnetic field strength can be expressed as the gradient of a scalar potential φ:

H =−∇φ . (2.19)

In the absence of magnetization (M = 0), this magnetic scalar potential satisfies the Laplace equation because
the magnetic field strength is divergence-free:

∇2φ=−∇·H = 0. (2.20)

Therefore, the following equation holds:

B =µ0H =µ0(−∇φ) . (2.21)

Note that the operator ∇ is the gradient operator, which is distributive under scalar multiplication. This
means that there also exists a potential U that already incorporates the permeability of the material. This
potential is given by:

B =µ0(−∇φ) =∇(−µφ) =−∇U , (2.22)

where the U =µφ represents the energy of the magnetic induction field B.

2.3. The relationship between φ and M
The magnetic scalar potential can thus be used to express the strength of a current-free magnetic field. Out-
side of a material, where no magnetization is present, there exists a direct relationship (Equation 2.22) be-
tween the magnetic field and the magnetic scalar potential. However, inside a material, the magnetization
term M is present, which complicates the relationship between the magnetic field and the magnetic scalar
potential. Combining the definition of the magnetic induction field B (Equation 2.5) and Gauss’s law of mag-
netism (Equation 2.2) gives the following relationship between the field H and M:

∇·H =−∇·M . (2.23)

A relationship between the magnetic scalar potential φ and the magnetization M can now be derived by
substituting Equation 2.19 into Equation 2.23:

∆φ=−∇·M . (2.24)

This is a special case of the Poisson equation:
∆φ= f , (2.25)

with the source term f =−∇·M. The solution of the 3D Poisson equation can be found using Green’s functions
[28, pp. 125–127]. The Green’s function for the three-dimensional Laplace operator is given by:

G(r,r′) = −1

4π|r− r′| . (2.26)
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Therefore, the solution of Equation 2.25 is given by:

φ(r) =
∫
Ω
−G(r,r′) f (r′)d 3r′ = 1

4π

∫
Ω

f (r′)
|r− r′|d 3r′ . (2.27)

Now, we consider the special case of the Poisson equation (Equation 2.24) with a source in the form of the di-
vergence of a vector field. According to Equation 2.27, the solution of this equation is given by the convolution
of the source term with the Green’s function:

φ(r) =
∫
Ω

G(r,r′)∇·M(r′)d 3r′ =−
∫
Ω

∇·M(r′)
4π|r− r′|d 3r′ . (2.28)

This shows that the magnetic scalar potential φ can be expressed as an integral of the magnetization M over
the volume of the material, scaled by the distance from the point of interest to the magnetization source.

2.4. Harmonicity
Harmonicity is a property of a field that describes the field’s regularity and smoothness. Harmonic vector
fields have no abrupt change in direction or magnitude over a given region. A harmonic field is also continu-
ous and does not have any singularities.

Definition 2.4.1 (Harmonic Vector Field) A vector field F is said to be harmonic if it satisfies the Laplace equa-
tion:

∇2F = 0. (2.29)

A magnetic field is harmonic at every point except at the poles of the magnet.

2.4.1. Green’s Third Identity
Special properties hold for harmonic functions when it comes to integration over a closed surface. Green’s
third identity defines a relationship between the boundary of a volume and the volume itself [30, p. 361]. It
follows from Green’s second identity:∫

U
(ψ∇2φ−φ∇2ψ)dV =

∮
∂U

(ψ∇φ−φ∇ψ) ·dS . (2.30)

The third identity can be derived by substituting φ=G , where G is the Green’s function for the Laplace oper-
ator (Equation 2.26). For any twice continuously differentiable function ψ on U it follows that:∫

U
[G(y,η)∆ψĆ(y)]dVy −ψ(η) =

∮
∂U

[
G(y,η)

∂ψ(y)

∂ny
−ψ(η)

∂G(y,η)

∂ny

]
dSy . (2.31)

Specifically for harmonic functions ψ it follows that:

ψ(η) =
∮
∂U

[
ψ(y)

∂G(y,η)

∂ny
−G(y,η)

∂ψ(y)

∂ny

]
dSy . (2.32)

A similar expression is obtained in [5, p. 314] to express the potential as a surface integral over the boundary of
the volume. Green’s third identity theorem has some important consequences. For example, if F is a harmonic
vector field, and F is known on the boundary of a closed surface, then F is also known inside the surface. For
the magnetic field, this means that if the magnetic field is known on the boundary of a closed surface, and
the surface does not contain any poles, then the magnetic field inside the surface is completely defined by
the boundary conditions. This property is the underlying principle of Upward Continuation (Chapter 10).
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2.4.2. Harmonicity of the vector Magnetic Induction Field B
A commonly used property of the potential U is that it is harmonic. This allows us to use for example Green’s
third identity, which is the underlying principle of Upward Continuation. If we can show that the magnetic
induction field B is also harmonic, then we can use the same principles to upward continue the magnetic
induction field.

The magnetic induction field is related to the gradient of the magnetic scalar potential φ (Equation 2.22).
If the magnetic scalar potential is harmonic, then its gradient is also harmonic. However, the magnetic in-
duction field is not just the gradient of the magnetic scalar potential; it also contains the magnetization field
M. The magnetic induction field B is harmonic if the following equation is true:

∇2B = 0, (2.33)

from Equation 2.5 it follows that
∇2B =µ0∇2H+µ0∇2M = 0. (2.34)

Here, ∇2H = 0 is always true, since the H-field is defined as the gradient of the (harmonic) magnetic scalar
potentialφ. If the magnetization field is not harmonic, then the magnetic field is not harmonic either. Luckily,
the magnetization field can be assumed to be harmonic in most cases. Especially when we are further away
from the source. This is because the magnetization field is caused by the magnetic moments of the atoms in
the material.

2.5. Multipole Expansion of the Magnetic Scalar Potential
A magnetic scalar potential can be expressed in terms of a multipole expansion [11]. Multipoles are a series
of terms that describe the magnetic field in terms of a monopole, a dipole, a quadrupole, and multipoles
of higher order. The expansion is a series expansion, which approximates the magnetic field better as more
terms are added to the series.

This expansion is a series expansion, similar to the Taylor series. The expansion thus starts with a monopole,
followed by a dipole, a quadrupole, and multipoles of higher order. Physically, there does not exist a magnetic
monopole, but theoretically, it is possible to express the magnetic field in terms of a monopole. The multipole
expansion of the magnetic scalar potential φ is given by:

φ(θ,φ′) =
∞∑

l=0

l∑
m=−l

C m
l Y m

l (θ,φ′) , (2.35)

where C m
l are the coefficients of the expansion and Y m

l are the spherical harmonics, discussed in Appendix
A. The potential energy of a magnetic pole decreases with the distance from the pole. Depending on the
order of the multipole, the potential energy of the pole decreases with a different power of the distance. The
potential energy of a monopole is inversely proportional to the distance (1/r ) and the potential energy of a
dipole is inversely proportional to the distance squared (1/r 2). The potential energy of a multipole of order l
is inversely proportional to the distance to the power of l .

The magnetic field strength can be derived from the magnetic scalar potential by taking the gradient of
the potential. The strength of a dipole is therefore proportional to (1/r 3), and for multipoles of order l it holds
that the field strength is proportional to (1/r l+1).

2.5.1. Dipole Approximation
The dipole approximation is a simplification of the multipole expansion. The energy of a multipole is propor-
tional to the distance and drops off faster for higher-order multipoles. If the distance to a magnetic source is
sufficiently large, then the energy is dominated by the (monopole and) dipole terms. The magnetic induction
field B of a dipole is given by

B(r) = µ0

4π

(
3(m · (r− r0))(r− r0)

|r− r0|5
− m

|r− r0|3
)

, (2.36)

where m is the dipole moment, r is the position vector and r0 is the position of the dipole. A dipole field can
also be written in terms of the magnetic scalar potential φ:

φ(r) = m · r

4π|r|3 , (2.37)

where B(r) =−µ0∇φ(r).



3
Structure of the Earth’s Magnetic Field

3.1. Geomagnetic Fields
Earth’s magnetic field is a complex system, and it is not possible to model it with a single field. The Earth mag-
netic field is the superposition of field contributions from internal and external sources. The internal sources
are the main (core), crustal (lithosphere) and induced (mantle) fields. The external sources are located in the
ionosphere and magnetosphere. The internal and external fields are superimposed onto each other, interact
by induction and form together the Earth’s magnetic field. The internal fields are the dominant contribution
to the total Earth’s magnetic field. A schematic of Earth’s structure is shown in Figure 3.1. This chapter dis-
cussses the internal and external fields in more detail: the source that causes the field is identified, depth
profiles are given and the fields are discussed in terms of their spatial and temporal variations.

Figure 3.1: Cutaway view of the Earth’s magnetic field. [19]

13
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3.2. Main Earth Field
The main field is that part of the geomagnetic field that is generated in the outer core. It is the dominant con-
tribution to the magnetic field at the surface and contributes approximately 95-99% to the Earth’s magnetic
field strength at the surface [26]. The main field is generated by the motion of electrically conducting fluids in
the outer core. It is, by approximation, a dipole field with the dipole axis pointing (almost) toward the Earth’s
rotational axis. The intensity of the field is in line with this orientation and varies at the surface of the Earth
from 30-40 µT at the equator to 60-70 µT at the poles. The field undergoes secular variation, which is the slow
change in time of the main magnetic field on a time scale of at least a year. The liquid outer core is positioned
between the solid inner core and the mantle, at a depth ranging from 2900 to 5100 km. This depth results in
large spatial wavelengths of the main field, which are on the order of 103-104 km.

3.3. Induced Field
The induced field is that part of the geomagnetic field that is generated in the mantle. The currents in the
conducting mantle are induced by external sources. Induced magnetization occurs when magnetic minerals
align themselves with the surrounding magnetic field. This alignment happens spontaneously and is propor-
tional to the strength of the ambient magnetic field, and it also varies across different locations [66]. These
fields are difficult to model since they are dependent on time-varying external sources.

3.4. Crustal Field
The crustal field is that part of the geomagnetic field that is generated in the crust and upper mantle (litho-
sphere). Around 1% up to 5% of the total Earth’s magnetic field strength at the surface is contributed by
the crustal field [35], which has at the surface a magnitude in the order of 102 nT. The field is caused by
the remanent magnetization of rocks. Remanent magnetization is the magnetic field that is left in a rock
after the external field that caused it has been removed. Some rocks in the lithosphere, such as magnetite,
are naturally ferromagnetic and may exhibit remanent magnetization. Other rocks exhibit thermoremanent
magnetization, which is the magnetization that is left in a rock after it has been heated. The depth of the
crustal field ranges from 0-100 km, resulting in wavelengths on the order of 102-103 km at Earth’s surface.
Variations are caused by changes in the lithosphere, such as the movement of tectonic plates. These changes
occur on geological time scales. This, in combination with the relatively short wavelengths, makes the crustal
field a good candidate for magnetic navigation.

3.4.1. Secular Variation by Plate Tectonics
The crustal field is also the field that is used by paleomagnetists to study the history of Earth’s magnetic field.
They use the field to determine the orientation of the Earth’s magnetic field at different times in the past.
A remanent magnetized rock records the orientation of the Earth’s magnetic field at the time when it was
formed, so measuring the orientation gives information about the magnetic field at that time. On short time
scales, the orientation of the Earth’s magnetic field does not change much.

On large time scales, continental drift and plate tectonics cause the crust to move. This movement causes
slight changes in the crustal field. On even larger time scales, reversals in the polarity of Earth’s magnetic
field occur. These reversals occur on the order of 106-107 years. The last reversal occurred 780-800 thousand
years ago. Reversals in polarity can be recorded using a magnetometer at places where plates are diverging.
Anomalies are observed when measuring in the direction the plates move in. In Figure 3.2 the total-field mag-
netic anomalies for some ridges in the southwest of Vancouver Island are shown. Clear stripes are observed,
which correspond with the moments at which the polarity of the Earth’s magnetic field reversed.

3.5. External Fields
The external fields are that part of the geomagnetic field that is generated in the ionosphere and magneto-
sphere. The ionosphere is the region of the Earth’s atmosphere that is ionized by solar radiation. The magne-
tosphere is the region of the Earth’s magnetic field that is generated by the solar wind. These anomalies have
a short duration ranging from several minutes to several days. Polar and equatorial regions are most affected
by these fields.
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Figure 3.2: Total-field magnetic anomalies in the southwest of Vancouver Island. The colored areas indicate positive anomalies. The
alternation between positive and negative anomalies corresponds with the reversal time scale.





4
Magnetic Sensing

The properties of magnetic fields are not always known to us, but what we can measure is the magnetic field
itself. Magnetometers are used for this purpose, and they come in two categories: total field sensors and vec-
tor magnetometers. Measuring the strength, direction, and inclination of the magnetic field are some of the
most crucial properties that can be determined. This chapter covers the various measurable characteristics
of magnetic fields and the different types of magnetometers. It is important to distinguish between two types
of magnetometers: total field sensors and vector magnetometers, as they measure different properties of the
magnetic field. Map-making techniques might differ depending on the type of measurements that are taken.

4.1. Reference Frames
The Earth is often seen as a sphere, but this is not the case. The Earth is an oblate spheroid, which means that
the Earth is flattened at the poles, this is caused by the rotation of the Earth. When working with magnetic
fields on Earth it is thus important to know which reference frame is used. A reference frame is a coordinate
system that is used to describe the position of an object. Two reference frames are used for magnetic fields
on Earth: the Geodetic reference frame and the Geocentric reference frame.

Figure 4.1: Geocentric and Geodetic reference frames in black and yellow respectively. This figure is taken from [62].

The Geocentric reference frame is a reference frame that is centered at the center of the Earth. The refer-
ence frame assumes that the Earth is a perfect sphere, the coordinate system is therefore identical to spherical
coordinates with axis aligned with the Earth’s axis. The Geodetic reference frame is a more accurate represen-
tation of the Earth. The Geodetic reference frame is therefore more commonly used in scientific research. A
commonly used Geodetic reference frame is the World Geodetic System 1984 (WGS84).

Models of magnetic fields on Earth (Chapter 6) are often described with functions defined in a spherical
coordinate system, e.g. Spherical Harmonics (Section 6.5). This requires a transformation from the Geocen-
tric reference frame to the Geodetic reference frame. Geodetic coordinates (λ, φ, h) can be transformed to
Geocentric coordinates (λ, φ′, r ) using the following equations [18]:
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p = (Rc +h)cosφ

z = (Rc (1−e2)+h)sinφ

r =
√

p2 + z2

φ′ = arctan
z

p

, (4.1)

where p =p
(x2 + y2), where x, y and z are the coordinates of a geocentric Cartesian coordinate system. The

coefficients Rc and e for the WGS84 reference frame are given by:

A = 6378137m

1

f
= 298.2572

e2 = 2 f − f 2

Rc = A√
1−e2 sin2φ

. (4.2)

While both reference frames serve their purpose, choosing the appropriate one for a given task is crucial.
The Geocentric reference frame, considering the Earth as a perfect sphere, is generally simpler to work with
and is often used in preliminary calculations or when precision is not the primary concern. However, for
more precise measurements and particularly when dealing with surface-based applications, the Geodetic
reference frame, which considers the Earth’s actual oblate spheroid shape, is preferred. This is particularly
true for GNSS systems, and surveying larger areas where the actual shape of the Earth is more relevant.

4.2. Measurable Components
4.2.1. Intensity
The intensity of a magnetic induction field B is defined as the magnitude of the magnetic field vector. This is
given by the following equation:

I = |B| =
√

B 2
x +B 2

y +B 2
z . (4.3)

4.2.2. Direction
The direction of a magnetic induction field B is given by the unit vector u, which points in the direction of the
magnetic field. This unit vector is given by the following equation:

u = B

|B| . (4.4)

The combination of the intensity and the direction defines the magnetic field vector B.

4.2.3. Declination
The declination of a magnetic induction field B is the angle on the horizontal plane between the magnetic
field vector B and the north direction [16]. On Earth, there is a slight difference between the magnetic north
and the true north. Especially around the poles, the difference between the two is significant, this can be
seen in figure 4.2. The declination is important for navigation because for example, a compass points to the
magnetic north and not to the true north. In a North-East-Down (NED) coordinate system, the declination is
the clockwise angle between the North direction Bx and the East direction By. This is given by the following
equation:

δ= arctan

(
By

Bx

)
. (4.5)
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Figure 4.2: Declination of a magnetic induction field B based on the World Magnetic Model (WMM) for the year 2015. This figure is taken
from [47].

4.2.4. Inclination
The inclination of a magnetic induction field B, also known as dip angle, is the angle which the magnetic field
lines have with the horizontal plane. On Earth, the inclination is the angle at which the field lines go into
the ground. In a North-East-Down (NED) coordinate system, the inclination is the angle between the vertical
direction Bz and the horizontal plane[16]. This is given by the following equation:

ι= arctan

 Bz√
B 2

x +B 2
y

 . (4.6)

4.3. Magnetometers
Magnetometers are sensors that measure the magnetic field. Magnetometers can be divided into two cate-
gories: scalar and vector magnetometers. Scalar magnetometers measure the intensity of the magnetic field,
while vector magnetometers measure the direction and the intensity of the magnetic field. With the devel-
opment of micro- and nanotechnology, magnetometers have become smaller and more accurate [43]. In this
section, we give some examples of scalar and vector magnetometers.

4.3.1. Scalar Magnetometers
A scalar magnetometer measures the intensity of the magnetic field in tesla (T). They are known to be very
accurate and reliable, but this comes at the cost of losing information about the direction of the magnetic
field. The current scalar magnetometers have come so far that their accuracy in some cases depends on
scientific constants. For example, Proton Magnetometers, which are based on the principle that protons in
a magnetic field absorb energy and emit radiation at a specific frequency[27], are so sensitive because their
precision is only based on scientific constants and the applied magnetic field [25]. Another popular and very
sensitive type of magnetometer is the one that is based on alkali vapor cells.
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Proton Magnetometers
A proton magnetometer employs the precession of atomic protons in a magnetic field to determine the field’s
strength (and orientation) [50]. When atoms are placed in a magnetic field, their protons start moving in a
circular motion around the field’s direction, which is called precession. The rate of this precession, so the
frequency of the circular motion, is proportional to the strength of the magnetic field. Therefore, measuring
the frequency at which the atoms move around gives a measurement of the magnetic field, this can be done
by using a RF-pulse.

Vapor Magnetometers
Vapor magnetometers, or optically pumped magnetometers, are a very sensitive type of magnetometer that
is based on the principle that alkali metals can exist in different levels of energy [7]. When a laser is shined
on the alkali metal, the energy of the laser is absorbed by the metal and the metal excites to a higher energy
level. The atoms in higher energy levels do not absorb the laser anymore, so the cell becomes transparent to
the laser when all atoms are in the higher energy level, now the cell is said to be optically pumped. Applying
a magnetic field to an optically pumped cell causes the atoms to move to a different energy level, which in
its turn causes the cell to become less opaque. The change in opacity can be measured with a photodetector.
The rate at which the cell becomes less opaque is proportional to the strength of the magnetic field, making
a vapor magnetometer a scalar magnetometer.

4.3.2. Vector Magnetometers
A vector magnetometer, or tri-axial magnetometer, measures the flux density value in a specific direction.
The intensity as well as the direction of the magnetic field are measured since the flux density is a vector. The
resulting measurement can be expressed in a vector (B = (Bx ,By ,Bz )) with three components of the magnetic
field. The accuracy of a vector magnetometer is generally lower than that of a scalar magnetometer. This
is because a vector magnetometer is more susceptible to errors, for example, perfect alignment of the axis
within the sensor and the orientation of the sensor to the magnetic field is required.

It is not difficult to show that there cannot exist a vector magnetometer that is more accurate than any
magnetometer that measures the total-field intensity. If such an instrument existed, it would also be able
to measure the intensity of the magnetic field with the same, or better, accuracy. This is because the total-
field intensity is the square root of the sum of the squares of the three components of the magnetic field
(Equation 4.7). Therefore, a good scalar magnetometer can also be used to measure the total-field intensity
by neglecting information about the direction of the magnetic field.

|B| =
√

B 2
x +B 2

y +B 2
z . (4.7)

Fluxgate Magnetometers
A fluxgate magnetometer is a commonly used type of vector magnetometer. It consists of two coils that are
wrapped around a small magnetic core [51]. It utilizes the principle that a magnetic field induces a voltage
in a coil. Faraday’s law (Equation 2.3), one of the Maxwell equations, states that the produced voltage is
proportional to the rate of change of the magnetic flux through the coil.

4.3.3. Sensitivity
The sensitivity of a magnetometer is the smallest change in the magnetic field that can be measured by the
magnetometer. A common measure of the sensitivity of a magnetometer can be derived from the Amplitude
Spectral Density (ASD) of the magnetometer. The ASD of a signal is the square root of the Power Spectral
Density (PSD) (Equation 4.9) and indicates the amplitude of the signal at a specific frequency.

Definition 4.3.1 (Power Spectral Density) Let x(t ) be a time-limited signal with Fourier transform X (ω;η,T ),
then the Power Spectral Density (PSD) [56] of the signal is defined as

PSD = Sxx (ω) = lim
T→∞

1

T
Sxx (ω;T ) (4.8)

which represents the power of the signal at a certain frequency ω.
The Amplitude Spectral Density (ASD) of a signal is the square root of the Power Spectral Density (PSD) of

the signal:
ASD =

p
PSD =

√
Sxx (ω) (4.9)
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which represents the amplitude of the signal at a certain frequency ω. The units of the ASD are the units of
the signal per square root Hertz, so for a magnetometer, the unit is T/

p
Hz.

We were unable to find literature about the procedure for determining the sensitivity of a signal, but pre-
sumably, it is done by measuring the ASD with multiple sensors of the same type at the same location:

1. Place two sensors of the same type next to each other, e.g. at a distance of 1 meter.

2. Measure the magnetic field for a long period at both sensors, e.g. 1 hour.

3. Calculate the ASDs of both signals x1(t ) and x2(t ) by transforming the signals to the frequency domain
and taking absolute values of the Fourier coefficients.

4. Subtract the ASDs of both signals from each other, this gives the error in the ASD for this type of sensor.

Figure 4.3: Two QTFMs separated by 1m: The subtracted signal gives the combined noise of both magnetometers plus any noise in the
field gradient. This figure is taken from [53].

The sensitivity is often expressed by a certain frequency band, for example, the maximum error in the ASD
for a frequency between 0.1 and 100 Hz. An example of an ASD for a QuSpin [53] Total-Field Magnetometer
(QTFM) is illustrated in figure 4.3. This sensor has a field sensitivity of < 1 pT/

p
Hz in the 0.1−100 Hz band.

There are some remarks to be made about this procedure. First, the sensors are not positioned in the
same place, and therefore the measurements are slightly off. It is difficult to say how this affects the ASD,
since the ASD is derived from two time signals and does not incorporate any spatial information. However,
when the distance between the sensors is significantly smaller than the distance to the magnetic source, then
the sensors are measuring approximately the same magnetic field. Furthermore, this procedure only uses
two sensors, which might not be enough to accurately determine the sensitivity. Adding more sensors to
the process allows us to calculate the mean and standard deviation of the sensitivity, which can give us a
better idea of the sensitivity of the sensor. Finally, since the sensors are stationary, it is not guaranteed that all
frequencies are present in the source signal, the ASD might be biased towards certain frequencies. Placing the
two sensors in a simulated environment, where the magnetic field can be controlled, can help to determine
the sensitivity of a specific frequency more accurately.





II
Magnetic Map-making Techniques
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5
Magnetic Maps

5.1. Magnetic Maps
The Magnetic Field is not constant on Earth, therefore, a map of the magnetic field can be of use in many
applications. The non-uniform distribution of magnetizable materials on Earth makes the values of the mag-
netic field location specific. Moreover, motions of the Earth’s core, crust and human activities can cause the
magnetic field to change over time. This makes the magnetic field time specific as well.

It has been stated in Chapter 3 that one of the main contributions to the magnetic field on Earth’s surface
comes from the outer core, but also magnetizable rocks in the crust or even magnetizable objects near the
surface can have a significant contribution to the magnetic field. A premise that is made in this section is
that sources at large distances contribute to low spatial frequencies, while sources closer to the surface are
responsible for high spatial frequencies. This substantiates the choice to model the magnetic field in steps,
starting with a model of the core field, then the crustal field, and then further local anomalies.

A map of the magnetic field exists in different variations. First, one can represent the magnetic field with
vectorial (directional) or scalar (total-field intensity) measurements, or by the underlying scalar potential
field. In addition, for some applications, the entire magnetic field is not required but it is sufficient to map
only the variation. This is where magnetic anomaly maps come in.

5.2. Vector-Field and Total-Field Maps
A distinction between Vector-Field and Total-Field maps must be made. A Vector-Field map is a map of the
direction and intensity of the magnetic field, it defines the three components of the magnetic field at each
point. Any value in a Vector-Field map can be represented by a five-dimensional vector, which consists of the
two position coordinates (x, y), the height (z) is fixed, and the three components of the magnetic field (Bx ,
By , Bz ). A Total-Field map is a map of the intensity of the magnetic field and is often obtained by a scalar
magnetometer (Chapter 4.3), but it can also be computed from a Vector-Field map by taking the L2-norm.
The values in a Total-Field map are three-dimensional vectors, two for the position and one for the intensity
of the magnetic field I = |B|.

5.3. Maps of the Scalar Potential
The magnetic field in a static state has a scalar potential field representation (Section 2.2.2). This allows
for a compact representation of the magnetic field using scalar potential field maps. The use of a scalar
potential field map is unfortunately somewhat less user-friendly, since the potential cannot be measured
directly. Therefore, a derivative often has to be calculated to compare a measurement with the map. The
scalar potential field representation can however have computational advantages [5, Chapter 4], especially
when large computations have to be performed separately on the three components of the magnetic field.
Transforming this vector field to a scalar potential and performing the computations directly on the potential
field can speed up the computations. This research does not focus on the scalar potential field representation,
but it is mentioned here for completeness.
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5.4. Magnetic Anomaly Maps
The large models that represent the Earth’s magnetic field on a global scale are sometimes not detailed
enough for local applications. The limitations of these models, often represented by Spherical Harmonics,
are discussed in Section 6.4. Magnetic anomaly maps however are a widely used solution for the represen-
tation of regional magnetic fields. The magnetic anomaly map indicates the deviation of the magnetic field
from a pre-defined reference field with a lower resolution. They are very suitable for locally enhancing the
magnetic field in a higher resolution when only a more global lower resolution model is available. Lower
resolution (reference) fields that are often used are the core field (Section 3.2) or the crustal field (Section
3.4) which are already well mapped by the IGRF (Section 6.1.2) or the Enhanced Magnetic Model, a higher
resolution model which is not discussed in this thesis.

The best that a low-resolution reference field can do for a higher-resolution representation is to provide
a value close to the average magnetic field in the region of interest. The anomaly map is a map on top of
this reference field, restricted by the domain of the reference field, but not restricted by its resolution. On the
contrary, anomaly maps are there to enhance the resolution of the reference field by indicating the deviation
from the mean value. This explains also why anomaly maps are often considered to be mean-zero.

The anomaly maps are also very useful for the visualization of the magnetic field. On Earth’s surface,
the magnetic field intensity is in the order of 30 to 70 µT (Section 3.2). This is quite large compared to the
spatial variations coming from the crustal field (Section 3.4). The variations that originate from the crust are
in the order of 10 to 100 nT, which is a factor of 103 smaller than the main field. These variations are often
not visible on a map of the total magnetic field intensity and are therefore better represented by a magnetic
anomaly map, which is a map of the deviation from the mean value.

5.4.1. Expression of the Magnetic Anomaly Field
There are multiple ways to express a magnetic anomaly field. We distinguish between two types of magnetic
anomaly maps, the vector deviation field and the total-field anomaly map. A vector deviation field Ba is
defined as the difference between the measured magnetic induction field B and the reference field Br :

Ba := B−Br . (5.1)

This representation is useful when the magnetic field is measured with a vector magnetometer (Chapter 4.3).
When the magnetic field is measured with a Total-Field magnetometer, the orientation of the vector B is
unknown. Therefore, the vector deviation field Ba (Equation 5.1) cannot be directly computed. We can only
say something about the differences in two Total-Field measurements of the magnetic field:

∆T := |B|− |Br | ̸= |Ba | , (5.2)

where |B| is the magnitude of the measured magnetic field and |Br | is the magnitude of the reference field. It is
important to notice that the magnetic anomaly ∆T (Equation 5.2) is not equal to the magnitude of Ba (Equa-
tion 5.1). It is only a first-order approximation of the magnitude of the vector deviation field |Ba | (Equation
5.1). Blakely [5, p. 179] derived the following approximation

∆T = |Br +Ba |− |Br | (5.3)

≈
√

Br ·Br +2(Br ·Ba)−|Br | (5.4)

≈
√

Br ·Br +
√

Br ·Br (Br ·Ba)−|Br | (5.5)

= Br ·Ba

|Br |
= B̂r ·Ba , (5.6)

where B̂r = Br
|Br | is the unit vector pointing in the direction of the reference field. It was remarked that this ap-

proximation is valid if the anomaly field Ba is small compared to the reference field Br so when |Ba |≪ |Br |, or
when Ba has the same orientation as Br . This assumption holds for most geophysical applications, where the
reference field is often induced by the core and in the orders of microtesla and the anomaly field, e.g. a field
originating from the crust, is in the orders of nanotesla. Rocks that are permanently magnetized retain their
magnetization even in the absence of an external field, or when the external field changes direction. These
rocks might be misaligned with the main field and can therefore cause an error in the approximation (Equa-
tion 5.3). The approximation is therefore also a good approximation when the magnitude of the permanently
magnetized rocks is a lot smaller than the induced fields and the main field.
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Figure 5.1: Vector representation of the Total-field anomaly (here ∆F). The length |T|− |F| is a good approximation of the projection of
the vector deviation field ∆F onto the direction of the reference field F̂ whenever |∆F|≪ |F|. This figure is taken from [5].

A good illustration of the approximation is given in Figure 5.1. From this figure, it is clear that the Total-
field anomaly ∆T is approximately equal to the projection of the vector deviation field Ba onto the direction
of the reference field Br .

5.5. Three-dimensional Maps
In the description of maps, we have until now only considered two-dimensional maps. This is sufficient
when one wants to navigate or find something on Earth’s surface. However, when one strives to use mag-
netic maps for aeromagnetic navigation, it is necessary to have information about the magnetic field in a
three-dimensional space, since aircrafts do not attain a constant altitude during their flight. This informa-
tion, however, can under certain circumstances be obtained from two-dimensional maps. Especially in the
context of Aeromagnetic Navigation, it is a good assumption that all the magnetic sources lie underneath
your aircraft. This allows the application of Green’s third identity (Section 2.4.1) to obtain any value of the
magnetic field above a plane at a certain altitude. This principle is called Upward Continuation which is
thoroughly described in Chapter 10.

5.6. Temporal Variations
The magnetic field on Earth is not constant over time, therefore, the validity of magnetic maps is limited
in time. Several factors can cause the magnetic field to change and these changes happen on different
timescales. We distinguish two types of temporal variations: short-term (or transient) variations and long-
term (or secular) variations. This section enlists the most important factors that cause temporal variations in
the magnetic field and provides some solutions to compensate for these variations.

5.6.1. Transient variations
The most transient (short-term) variations in the magnetic field are related to the weather. A geomagnetic
storm, caused by solar wind, can cause a short-term variation in the magnetic field. In quiet times, the con-
tribution of solar winds to the magnetic field at the equator ranges from −20 to 20 nT. When a geomagnetic
storm is present, deviations up to hundreds of nanoteslas can occur [17]. The storms can last for several days
and there are several ways to describe their intensity. Another short-term cause is lightning. When lightning
strikes, a brief burst of electromagnetic radiation is emitted, but this radiation decays very quickly and is
therefore not a problem when outliers are removed from the data. There exist many other short-term varia-
tions in the magnetic field, in general, all these variations are caused by external sources [64]. It is difficult to
predict these variations and therefore, it is not easy to compensate for them in a magnetic map.

5.6.2. Secular variations
Secular variations are the variations that occur on timescales of at least a year. These variations are mostly
caused by internal processes in the Earth. Most of these variations are caused by the Earth’s core. On geolog-
ical timescales, the movement of magnetized rocks by plate tectonics can also cause variations in the Earth’s
magnetic field (Section 3.4.1).
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5.6.3. Ground Stations for transient variations
To most effective way to compensate for transient variations is to use ground stations. Ground stations are
placed in regions where the magnetic field is relatively stable. They measure the magnetic field over a long
period and use this data to correct for temporal variations in the external fields. For example, when a mea-
surement campaign of several days is performed, the data from the ground station can be used to correct for
variations that occur on a minutely, hourly or daily scale. The deviations measured at the ground station can
be subtracted from the measurements of the mobile sensors.

5.6.4. Time-dependent differential equations for secular variations
Especially on a regional scale, the magnetic field is relatively stable and therefore, no variations occur on a
short-term scale. One might however be interested in a map of the magnetic field that is valid for a long time.
If one also demands that this map is nanotesla-accurate, then it is necessary to compensate for secular vari-
ations. The most common way to compensate for secular variations is to use a time-dependent differential
equation. Several studies have been conducted to find the best way to model the (outer) core of the Earth,
and the movement of Earth’s plates. One can predict how the magnetic field is affected by these processes
and use this information to keep the magnetic map up-to-date over time. We refer to these maps as magnetic
models. In Chapter 6, we discuss the most important magnetic models in more detail. These models are often
expressed by using a spherical harmonic expansion with time-dependent Gauss coefficients (Equation 6.1).

5.7. Examples of Magnetic Maps
A nice example of a magnetic anomaly map on a regional scale is a map of the Netherlands. The map was
created by TNO for the Dutch Ministry of economic affairs to see where gas fields are located. The map is
based on various Total-field measurements of the magnetic field in the Netherlands. The measurements on
land were done at a set of locations that were evenly distributed over the country. The measurements at sea
were taken by a ship that sailed up and down the coast and parts of the North. After the measurements were
taken, data selection and data weighting (Section 6.2.2 - 6.2.3) were performed to make the map as accurate
as possible. The resulting output, a map of the Total-field values of the Netherlands, was projected on a
reference field to create a magnetic anomaly map. This map is shown in Figure 5.2. The reference field that is
used for this map is DGRF85, a core-field model (Section 6.1) that is based on the IGRF model of 1985 (Section
6.1.2).

The map is not of a very high resolution, but it is detailed enough to notice some things: some large
deviations are visible around the islands of Texel and Vlieland in the northwest of the Netherlands. This
anomaly is caused by a dead volcano: the "Zuidwal volcano" has not been active for about 150 million years.
It is estimated that this volcano lies at a depth of 2 kilometers.
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Figure 5.2: Magnetic anomaly map of the Netherlands. The map is based on measurements of the magnetic field in the Netherlands.
The measurements were taken on land and at sea. The map is projected on a reference field to create a magnetic anomaly map. The
reference field that is used for this map is DGRF85, a core-field model (Section 6.1) that is based on the IGRF model of 1985 (Section
6.1.2). This figure is taken from [46].





6
Modelling the Geomagnetic Field

The magnetic anomaly maps that are introduced in Chapter 5 represent often a deviation from a reference
field. This reference field is usually a model of the Earth’s magnetic field. The geomagnetic field can be
represented in several ways. The choice of representation depends on the scale of the problem. On a large
scale, e.g. the Earth’s surface or continents, the curvature of the Earth can not be neglected. This gives rise to
representing the harmonic field as a sum of spherical harmonics. On smaller scales, e.g. in a region of a few
kilometers, the curvature of the Earth can be neglected. Here, plane waves in a cartesian coordinate system
are often used. This chapter presents the techniques used to represent large-scale fields, such as the Earth’s
core or crustal field. Local enhancements of the field using a cartesian coordinate system are discussed in
Chapter 8 and 9.

6.1. Core Field Models
The magnetic field originating from the Earth’s core is the dominant field on Earth. A good model of the core
field is therefore essential for applications such as geophysical exploration and navigation. Several models of
the core field exist, but the most commonly used are the International Geomagnetic Reference Field (IGRF)
and World Magnetic Model (WMM). This section gives a brief overview of these models and how they are
derived using spherical harmonic analysis.

It is important to note that core field models like WMM and IGRF13 only model the main field, generated
in the outer core. They do not model the geomagnetic fields that originate in the mantle, crust, ionosphere or
magnetosphere. This means that, when using these models as a reference field, anomalies might occur when
taking measurements with the magnetic sensor data from a compass or magnetometer [52]. Spatial anoma-
lies on land can have several causes, such as the presence of ferromagnetic minerals in the soil, geological
faults or human-made properties such as vehicles, power lines and railroad tracks. Anomalies in oceanic
areas have more often a geological cause: ocean ridges, seamounts and submarine volcanoes are the most
common causes.

6.1.1. World Magnetic Model (WMM)
The World Magnetic Model (WMM) is the model that is used by the U.S. Department of Defense, the U.K. Min-
istry of Defence, the North Atlantic Treaty Organization (NATO). The model is maintained by the United States
National Oceanic and Atmospheric Administration (NOAA) and the United Kingdom’s Defence Geographic
Centre (DPC). It is based on historical data and current observations and tries to predict the behaviour of the
field in the future. This results in a model that is accurate in the short term, but degrades with time. The
current model WMM2020 is valid until 31 December 2024, after that, the model is prone to have significant
errors. On its release date, the model is the most accurate and its accuracy degrades with time. Therefore,
every 5 years a new model is released. The WMM is constructed using Spherical Harmonics (Section 6.5,
Appendix A) of degree 12, spectral analysis of the main field shows that the degree of truncation is sufficient
to model the main field (Section 6.3). The primary geomagnetic data set is generated using data from three
Swarm satellites [18]. Figure 6.1 shows the Total-field intensity of the WMM2020 model.
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Figure 6.1: The World Magnetic Model (WMM) of 2020. The red contour lines indicate the Total-field intensity of Earth’s main field in
steps fo 1000 nT. The gray regions near the poles are blackout zones, where the model is less reliable. This figure is taken from [18].
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6.1.2. International Geomagnetic Reference Field (IGRF)
The International Geomagnetic Reference Field (IGRF) is modeled and developed by the International Associ-
ation of Geomagnetism and Aeronomy (IAGA). IAGA has a scientific community that contributes voluntarily
to the development of the model. This model is used by the European Space Agency (ESA) and the Euro-
pean Union (EU). The model is very similar to the WMM model, but it is not maintained by two government
agencies. The current model IGRF13 is valid until 2025 (Figure 6.2).

The IAGA keeps active track of the geomagnetic field. They compare the predicted IGRF model with cur-
rent observations. The estimated coefficients are then updated to reflect the current state of the field. This
leads to the Definitive Geomagnetic Reference Field (DGRF) model. The values of the DGRF model are more
accurate than the IGRF model, but the DGRF model can only be evaluated at historical moments in time.

Figure 6.2: The Total-field intensities given by IGRF-13. The 13th generation of the International Geomagnetic Reference Field (IGRF)
model is created in 2019 and is valid until 2025. This figure is taken from [1]

6.2. Selecting and Processing Data for Large-Scale Models
6.2.1. Data Sources
The data for most core field models is collected using satellites in combination with ground-based measure-
ments. The following satellites are often used for this purpose:

• CHAMP (CHAllenging Minisatellite Payload) is a satellite that was launched in 2000. It was designed
to study the Earth’s gravity field and the Earth’s magnetic field [55]. The mission was successful and
finished in 2010.

• Swarm is a European Space Agency (ESA) mission that was launched in 2013. It consists of three satel-
lites it is currently in a polar orbit and maintains an altitude of approximately 450 km. [49]

The advantage of using satellites is twofold. First, the satellites can be placed in an orbit, which allows them
to collect data from a large area of the Earth. Second, the altitude of the satellites has a large impact on the
accuracy of the measurements. A higher altitude results in a lower noise level, since noise is often of a higher
frequency and high frequencies are attenuated at higher altitudes. A sufficiently high altitude reduces the
power of sources located on the ground or in the crust. The technique of using altitude to reduce noise is
described in-depth in Section 7.2.1.

Besides satellites, ground stations are also used to collect data. Ground stations have a fixed position
on Earth’s surface and are therefore spatially not that interesting. However, their fixed position makes them
perfect for measuring the temporal variation of the geomagnetic field. Small variations that originate from
external sources, such as the solar wind and the ionosphere, can be measured with high accuracy. The data
from ground stations is therefore often used to correct the data from satellites.
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6.2.2. Data Selection
The measured data is not always suitable for use in a model. The data is often contaminated with noise, some
of the noise is significant and makes the data unusable. For this reason, data selection is an important step.
Several criteria can be used to select data. Two common criteria are the Kp index and the Rc index.

Kp index
The Kp index is a measure of the geomagnetic activity on Earth. The p stands for planetary since the index
is an average of local K indices on Earth. K indices are measured at ground stations. They range from 0 to 9.
A K index of 0 indicates that the magnetic environment is quiet, while a K index of 9 indicates a significant
magnetic storm (Section 5.6.1). A change in Kp index can have several causes, but the most common cause
is solar activity such as Solar flares and Coronal Mass Ejections (CME). For the data selection of the IGRF, the
Kp index was not allowed to exceed 2 [2].

Rc index
The Rc index describes the rate of change of the geomagnetic field. A ground station at a fixed position mea-
sures a near-constant geomagnetic field if noise is absent. The rate of change is therefore a good indication
of the presence of noise. Data that exceeded a threshold of 3 nTh−1 was discarded in the selection process of
the IGRF model [2].

6.2.3. Data Weighting
Data weighting is a technique that is used to correct for the bias in data that is retrieved from non-uniformly
distributed measurements. Satellites are often placed in a polar orbit, which means that they take more
measurements at the poles than at the equator. At the same time, ground stations are often placed on land,
which means that there are fewer measurements available at sea. Both of these factors result in a bias in the
data, if the data is not weighted properly.

Researchers of the IGRF model shared their data selection and weighting techniques in [2]. They used
three different weighting factors:

• A spatial weighting factor that is inversely proportional to the distance to the nearest measurement
point. This ensures uniformly distributed values over all latitudes and longitudes and ensures that
sparsely sampled regions are not underrepresented.

• A weighting factor that indicates the quality of a dataset. This is often related to the variance of the data,
but also to for example the noise levels based on Kp and Rc indices.

• A weighting factor that reduces the effect of outliers. This is done by using a robust estimator, such as
the median.

6.3. Geomagnetic Field Spectrum
The spectrum of the Geomagnetic Field was extensively studied by Langel [33]. He noted a so-called "knee"
in the spectrum of the geomagnetic field. After a degree of 15, corresponding to a wavelength of 2668km, the
spectrum of the geomagnetic field is almost flat (Figure 6.3). Up to a degree of 15, the spectrum is dominated
by the core field, while after a degree of 15, the spectrum is dominated by the crustal field. When plotting the
Gauss coefficients as a function of the degree of the spherical harmonics, a clear break in the density function
is observed between a degree of 12 and 15 [52]. This indicates that the to low-degree spherical harmonics
are sufficient to model the main field. Contributions to higher degree spherical harmonics are caused by the
crustal and induced fields.

6.4. Limitations of the Spherical Harmonics Model
The power spectrum of the geomagnetic field (Figure 6.3) gives good insights into the effectiveness of the
spherical harmonics model. At a certain point, the power spectrum attains on the logarithmic scale almost
a constant value of approximately 102 to 103 nT2. Beyond this degree, adding more spherical harmonics still
improves the model, but the improvement is small. At the same time, the computational and data require-
ments increase: the smaller the wavelength, the more measurement points are required to accurately model
the field. Retrieving coarse measurements on Earth can be difficult for oceanic regions or regions that are not
covered by an orbiting satellite and requires weighting techniques to correct for the bias in the data.



6.5. Representing the Geomagnetic Field 35

Figure 6.3: Power spectrum of the geomagnetic field at the Earth’s surface. The "knee" is located at a degree of 15. This figure is taken
from [42].

Higher resolution models using spherical harmonics with a degree up to 720 are available, but they require
more frequent updates of the coefficients as the degree increases since they model the magnetic field that
originates from smaller sources, closer to or at Earth’s surface which are more subject to changes. Therefore,
spherical harmonic models are not useful on regional scales with a resolution of for example 1km.

6.5. Representing the Geomagnetic Field
Spherical harmonics are an efficient way to approximate an arbitrary function on a sphere using harmonic
functions, similar to how Fourier series are used to approximate an arbitrary function on a line using sinu-
soidal functions. As the name suggests, the basis consists of harmonic functions, as they are the solution of
the Laplace equation on a sphere. This is useful to represent magnetic scalar potential, which is also har-
monic (Section 2.4). The potential U , in this context a function of the latitude θ, longitude φ, radius r in the
geocentric coordinate system and time t , can be represented as a sum of spherical harmonics:

U (r,θ,φ, t ) = a +
N∑

n=1

( a

r

)n+1 n∑
m=0

(
g̃ m

n (t )cos
(
mφ

)+ h̃m
n (t )sin

(
mφ

))
P̌ m

n (cosθ) , (6.1)

where the number N is the degree of truncation of the series. The coefficients g̃ m
n (t ) and h̃m

n (t ) are the time-
dependent coefficients of the spherical harmonic series, the maintainers of the model update these coef-
ficients to correct for secular variations in the field. These coefficients are called Gauss coefficients, named
after Carl Friedrich Gauss who used spherical harmonics to create the first model of the Earth’s magnetic field
to show that the main contribution to the field comes from sources below Earth’s surface [52].

The function P̌ m
n (x) is the Legendre polynomial with a Schmidt normalization. The Schmidt normaliza-

tion is the most common normalization used in magnetics and allows finding the most significant coefficients
in the series by inspection. It is defined by:

P̌ m
n (x) =

√
2

(n −m)!

(n +m)!
P m

n (x) , (6.2)

where P m
n (x) is the Legendre polynomial of degree n and order m defined by Equation A.16. A general spher-

ical harmonic basis is of the form:

Y m
l (λ,φ) = Ne i mφP m

l (cosλ) , (6.3)

where N is a normalization constant. In Equation A.9 it is shown that the general solution to the Laplace
equation on a sphere can be separated into radial parts with positive powers of r and radial parts with nega-
tive powers of r .
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The radial parts with positive powers Rm
l (r ) can be interpreted as the influence of sources that lie outside

the sphere and have no singularities inside the sphere. The negative powers I m
l (r ) are useful to describe

internal sources and have singularities at the origin. Depending on the application, either the positive or
negative powers can be used. For studies of the magnetic spheres on a small sphere with no internal sources,
only the positive powers are needed. Large-scale studies of for example the Earth’s magnetic field assume
often that all the sources lie below the surface (or inside the sphere). And thus for geomagnetic studies mainly
the negative powers are used [58]. The coefficients described in Equation 6.1 are, as desired, describing the
spherical harmonic expansion caused by internal sources.

Equation 6.1 can be derived from this general form by incorporating some physical properties of magnetic
fields: there do not exist magnetic monopoles, resulting in a = 0 and the coefficients for odd l are zero. The
potential of Earth’s dipole field can also be expressed using spherical harmonics by a first-order approxima-
tion with only the first two terms of the series (l = 0 and l = 1). This implies also that the potential degrades
with the square of the distance from the origin. Resulting in a r−3 term in the corresponding magnetic dipole
field.

6.5.1. Wavelengths of Truncated Spherical Harmonics
Equation 6.1 expresses the potential of the geomagnetic field in spherical harmonics. Models of Earth’s mag-
netic field are often truncated versions of this series. Truncation of the series reduces the computational
complexity of the model at the cost of resolution. As shown in Section 6.3, a truncated series of spherical
harmonics is a sufficient approximation. For a N degree truncated series of spherical harmonics describing
the geomagnetic field, the minimum wavelength of the field is given by:

λmin = 2πR

N
, (6.4)

where R = 6371km is the Earth’s radius. The minimum wavelengths for N = 12 and N = 13 are respectively
3336 km and 3079 km. A large wavelength corresponds to a low-resolution model. The WMM and IGRF13
models are thus low-resolution models.

6.5.2. Estimating Gauss Coefficients
Based on the scale of the problem, the number of measurements and the desired accuracy, it is difficult to
estimate the Gauss coefficients analytically. Most models of Earth’s magnetic field are based on a least squares
fit of the Gauss coefficients to a set of measurements. The maintainers of IGRF used a least squares fit with
a cost function that incorporates the weighting of the measurements and minimizes the difference between
the model and the measurements [2].

Secular variations of the core field are also captured by the Gauss coefficients. It is assumed that the
secular variations are slow and smooth. In most models, a linear approximation of the Gauss coefficients
over a period of 5 years is used [1]:

d g m
n (t )

d t
= g m

n (t +5 years)− g m
n (t )

5 years
, (6.5)

here g m
n (t ) are the Gauss coefficients written in a compact form (see Equation 6.7).

Secular accelerations are not included in this linear model. Cubic B-splines of order 6 between uniform

knots separated by half a year can be used to incorporate the secular accelerations d 2

d t 2 g m
n (t ), this is intro-

duced in [2]:
g m

n (t ) =∑
i

g m
n,i Ni ,k (t ) , (6.6)

where Ni ,k (t ) is the kth order B-spline with knot ti and g m
n,i are the coefficients of the B-spline.
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6.5.3. Compact Representation of the Potential
To simplify further calculations, the potential can be expressed in a compact form. This form is taken from
[2]. The Gauss coefficients g̃ m

n (t ) and h̃m
n (t ) are replaced by a single coefficient g̃ m

n (t ) and a new function
Sm

n (θ,φ) is introduced. We define

g m
n (t ) =

{
g̃ m

n (t ) if m ≥ 0

h̃m
n (t ) if m < 0,

(6.7)

Sm
n (θ,φ) =

{
cos

(
mφ

)
P̌ m

n (cosθ) if m ≥ 0

sin
(|m|φ)

P̌ |m|
n (cosθ) if m < 0,

(6.8)

U m
n (r,θ,φ) = a

( a

r

)n+1
Sm

n (θ,φ) , (6.9)

so that the potential can be expressed as

U (r,θ,φ, t ) =
N∑

n=1

n∑
m=−n

g m
n (t )U m

n (r,θ,φ) . (6.10)

6.5.4. Compact Representation of the Magnetic Field
The compact representation of the magnetic field follows from differentiating Equation 6.10 with respect r , θ
and φ: B =−∇U . The magnetic field is then given by

B(r,θ,φ, t ) =
N∑

n=1

n∑
m=−n

g m
n (t )Bm

n (r,θ,φ) , (6.11)

where Bm
n = −∇U m

n is the vector containing the partial derivatives of the potential. The individual compo-
nents can also be expressed in compact form:Bm

n,r
Bm

n,θ
Bm

n,φ

=
( a

r

)n+2

(n +1)Sm
n (θ,φ)

−∂θSm
n (θ,φ)

−∂φSm
n (θ,φ) ,

 (6.12)

where

∂φSm
n (θ,φ) =

{
−m sin

(
mφ

)
P̌ m

n (cosθ) if m ≥ 0

|m|cos
(
mφ

)
P̌ |m|

n (cosθ) if m < 0,
(6.13)

∂θSm
n (θ,φ) =

{
cos

(
mφ

)
∂θP̌ m

n (cosθ) if m ≥ 0

sin
(
mφ

)
∂θP̌ |m|

n (cosθ) if m < 0,
(6.14)

where ∂θP̌ m
n (cosθ) is the derivative of the Schmidt normalized associated Legendre polynomial with respect

to φ. The Schmidt-normalization is not dependent on φ and thus acts as a constant. Differentiating the
associated Legendre polynomial P̌ m

n (x) with respect to x and applying the chain rule gives

∂x P m
n (x) =∂x

[
(−1)m(1−x2)m/2 ∂m

∂xm Pn(x)

]
(6.15)

=(−1)m m

2
(−2x)(1−x2)m/2−1 ∂m

∂xm Pn(x) (6.16)

+ (−1)m(1−x2)m/2 ∂m+1

∂xm+1 Pn(x) (6.17)

=x2 −1

mx
P m

n (x)+ (−1)m(1−x2)−1/2P m+1
n (x) , (6.18)

and substituting x = cosθ gives

∂θP m
n (cosθ) =−

[
cos2θ−1

m cosθ
P m

n (cosθ)+ (−1)m(1−cos2θ)−1/2P m+1
n (cosθ)

]
sinθ (6.19)

= sin3θ

m cosθ
P m

n (cosθ)+ (−1)m+1 sin2θP m+1
n (cosθ) . (6.20)
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6.6. Example of Spherical Harmonics using Gaussian Process Regression
In this section, we show how spherical harmonics can be used to model a magnetic field. We use the Gaussian
Process Regression (GPR) model to fit a magnetic field model to a set of data points. Gaussian Process Re-
gression is discussed in more detail in Appendix B. The example in this section demonstrates how spherical
harmonics can represent a field on a sphere. The example is not meant to be a realistic model of the Earth’s
magnetic field.

Figure 6.4: Example of a magnetic field model using spherical harmonics. Measurements are taken at 128 randomly distributed points
on the sphere. The model is fitted to this data using Gaussian Process Regression. The regression model uses two bases: one with a
degree of l = 4 and one with a degree of l = 7. The reconstruction and error for both models are shown.

Figure 6.4 demonstrates the principles of spherical harmonics in combination with Gaussian Process Re-
gression. Measurements are taken at uniformly distributed points on the sphere. The results are visualized
for two different degrees of spherical harmonics. The first model uses a degree of l = 4 and can therefore only
represent the lower spatial frequencies on the sphere. The second reconstruction, using spherical harmonics
up to a degree of l = 7, results in a more detailed reconstruction.
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Aeromagnetic Compensation

The conventional method for surveying large areas of land or ocean involves the use of satellite measure-
ments [2]. The World Magnetic Model (Section 6.1.1) and IGRF (Section 6.1.2) of the previous chapter are
examples of models that are based on satellite measurements. Satellites offer, due to their stable platform, a
low-noise environment for measuring the magnetic field. However, the inevitable trade-off is the lower spa-
tial resolution of satellite-based measurements that comes from the large distance between the satellite and
the magnetic sources, potentially compromising the detailed examination of smaller regions of interest.

To enhance resolution, airborne measurements become a viable option. These are typically taken us-
ing drones, airplanes or even helicopters, which can get closer to the Earth’s surface, thus offering higher-
resolution measurements of the magnetic field. Despite the resolution improvement, the more dynamic, less
predictable environment these platforms operate in introduces more noise into the measurements. Vibra-
tions from the platform’s movement, interference from engines, and other electrical equipment contribute to
this noise, necessitating proper compensation techniques [3, 22]. This section describes how magnetic sen-
sor data can be compensated for the platform. We break down the magnetic field into several components
and describe how calibration flights and compensation algorithms can be used.

7.1. Aeromagnetic Surveying
Aeromagnetic surveying is the process of measuring the magnetic field from an aircraft. Often, multiple total-
field and vector magnetometers are placed on the surface of the aircraft. Depending on the aircraft type, the
sensors are placed on the wings, fuselage or tail. The positioning of the sensors is important, as the aircraft
itself induces a magnetic field, called the platform field. The wings and tail are the most common places for
the sensors, as they are extremities and therefore measure a smaller part of the platform field. Sometimes
sensors are even placed on a tail stinger or attached to a rope as a so-called ’bird’ installation (Figure 7.1),
to reduce the influence of the platform field [54]. However, this is not feasible at high speeds because of the
drag, and some aircraft types, like drones, do not allow for this kind of installation because of their limited
payload.

The first step in finding the anomaly field is to remove the platform field from the measured magnetic
field. A large portion of the platform field is induced by the Earth’s magnetic field. A model of the platform
field is therefore often based on the aircraft’s position, speed and heading. The position and heading are
usually given by a combination of a GPS receiver and an Inertial Measurement Unit (IMU). The IMU is used
to calculate the roll, pitch and yaw of the aircraft. Roll, pitch and yaw are the angles between the aircraft’s
body axes and the Earth’s axes. These values are often used to calculate the induced parts of the platform
field. The roll, pitch and yaw can be calculated in an arbitrary coordinate system. The coordinate system
commonly employed for calculating the roll, pitch, and yaw is often the aircraft’s body axes, although the
Earth’s axes can also be utilized.

The interference of the platform is, among other things, dependent on the position and orientation of the
aircraft in the Earth’s magnetic field. This underlies many aeromagnetic compensation methods.

39
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Figure 7.1: A bird installation on a helicopter. The magnetometer is attached to a rope, which is attached to the helicopter. The magne-
tometer is therefore less sensitive to the platform field of the helicopter. This figure is taken from [54].

7.1.1. Breakdown of the measured magnetic field
The field Bt that is measured by a sensor is a combination of the Earth’s magnetic field Be , the anomaly field
Ba , the platform field Bp and noise of the sensors Bn . When the fields are in the same coordinate system, the
measured field can be written as

Bt = Be +Ba +Bp +Bn . (7.1)

In case an aircraft is equipped with multiple sensors, one can also write the measured field for sensor i as

Bi
t = Be +Ba +Bi

p +Bi
n , (7.2)

with the assumption that sufficiently close sensors measure the same Earth and anomaly field.

7.2. Calibration and Compensation
7.2.1. Calibration flights
A calibration flight is (a part of) a flight that is used to calibrate the magnetometers so that the magnetic field
of the platform or aircraft is removed from the measurements. The platform field, Bp , is the field that is in-
duced by the movement of the aircraft and currents in the aircraft’s electrical system. The goal of a calibration
flight is to find coefficients for several (measured) features.

To calibrate a magnetometer for an aircraft, a noise-free environment is required. In the breakdown of
the magnetic field (Equation 7.1), it is seen that the measured magnetic field can be described as a sum of 4
fields: the field Be produced by the outer core of the Earth, the anomaly field Ba , the platform Bp and sensor
noise Bn . In general, the field Be is well-known on Earth. For this field, values can be taken from the World
Magnetic Model (Section 6.1.1) or IGRF (Section 6.1.2). Since the anomaly field, Ba , is our field of interest,
and therefore unknown, it is difficult to subtract these from measurements to isolate the platform field Bp .
In Section 2.5, however, it was observed that the strength of a magnetic dipole (or multipole), degrades with
a factor of r−3 (or faster), where r is the distance to the source. This gives rise to a simple trick that can
be used to suppress the anomaly field Ba in the measurements: increasing the distance to the sources, by
flying higher, reduces the contribution of the anomaly field Ba relatively more than the contribution of the
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main field Be . This means that at sufficiently high altitudes, the anomaly field Ba can be neglected, and the
platform field Bp can be isolated from the measurements when the noise is small enough:

Bh
t = Be +Bp +Bn , (7.3)

for sufficiently large distances to the sources of the anomaly field Ba . This distance depends on the spatial
frequencies of the anomaly field. In the literature, often a height h > 3000 m is used. A height of 3000 m
ensures that sources of at most a depth of 1000 m are dampened by a factor of at least 4−3 = 1

64 , which mainly
affects the anomaly field. Deeper sources are dampened less. This dampening effect is further discussed in
Chapter 10 and is illustrated in Figure 10.3.

For the calibration flight, the platform field Bp can now be separated from the measurements Bh
t . The goal

now is to find the coefficients for certain input variables, such that the platform field Bp can be approximated
by a (linear) combination of these input variables. Finding these coefficients is called calibration.

A common way to calibrate the magnetometers is by flying the aircraft in a certain pattern, while the
magnetometers record the magnetic field. This pattern is chosen such that it includes many maneuvers.
The clover pattern is popular since it allows measurement of the effects of maneuvers in different heading
directions [23][14]. On the straight sides of the clover pattern, the pilot performs a combination of roll and
pitch maneuvers, while the corners are used to measure the effects of yaw maneuvers.

An example of these "clover" patterns can be seen in Flight 1002 of the MIT Challenge (Section 7.4). Flight
1002 contains 2 calibration flights, both around 3000m in height. The flights are visualized in Figure 7.2.

Figure 7.2: Calibration flights of flight 1002. Flt1002a is the first calibration flight, Flt1002b is the second calibration flight.

The unknown platform magnetic field Bp can be estimated by performing a least squares fit on the data.
First, we need to define a model for the platform field Bp . A linear model is often used. The model can be of
the following form:

Bp = Ac , (7.4)

where A is a matrix containing the input variables or features of the model as rows and c is a vector contain-
ing the coefficients corresponding to the features. The features are often prescribed by the model that is used
for compensation. They can for example be dependent on the magnetic field strength, the maneuvers and
the heading of the platform, but also other data such as altitude or electrical currents can be used. Common
models are the Tolles-Lawson model (Section 7.2.2) and Leliak model (Section 7.2.3), but also more complex
models such as Neural Networks (Section 7.2.4) are used in literature. Once the model is defined, the coeffi-
cients c can be estimated by performing a least squares fit on the data. The coefficients can then be used to
compensate the measurements for the platform field Bp .
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7.2.2. Tolles-Lawson
Tolles and Lawson [67] developed a calibration method for the magnetic interference field of an aircraft. The
Tolles-Lawson method is a linear model and uses a vector magnetometer to compensate a total field sensor
for the platform field.

The vector magnetometer measures Bt (Equation 7.1) while a total-field sensor measures |Bt |. The signal
of interest is |Be +Ba |: the magnitude of the Earth’s magnetic field and the anomaly field. Restating 7.1 yields
the following equation:

|Be +Ba |2 = |Bt −Bp −Bn |2 = |Bt |2 −2Bt · (Bp +Bn)+|Bp +Bn |2 (7.5)

|Be +Ba | =
√

|Bt |2 −2Bt · (Bp +Bn)+|Bp +Bn |2 (7.6)

= |Bt |
√

1− 2Bt · (Bp +Bn)

|Bt |2 +|Bp +Bn |2
≈ |Bt |

√
1− 2Bt ·Bp

|Bt |2
(7.7)

= |Bt |−
Bt ·Bp

|Bt |
, (7.8)

where the first approximation is valid when the noise is neglected and |Bp +Bn | ≪ |Bt |. The Tolles-Lawson
method is therefore valid when the platform field is much smaller than the measured field. The second ap-
proximation follows from a first-order linearization of the square root function.

The above derivations are partly taken from Chapter 3 in [23]. Now it remains to find a good approxi-
mation for Bp . The Tolles-Lawson assumes that the interference field is a composition of three fields: the
permanent field Bperm, the induced field Bind and the eddy current field Beddy. The interference field is then
given by

Bp = Bperm +Bind +Beddy . (7.9)

The fields represent the magnetic interference of the aircraft with the Earth’s magnetic field. The permanent
field is the magnetization of the aircraft’s structure. Ferromagnetic parts in the aircraft magnetize when they
have been in contact with magnets. This field is constant for the aircraft’s body. A fixed magnetometer does
not measure any change when the aircraft turns. However, a turn changes the orientation of the aircraft to
the Earth’s magnetic field. The induced field is the field that is aligned with the Earth’s magnetic field and is
therefore dependent on the orientation of the aircraft. It does not turn with the aircraft. A fixed magnetometer
measures a change in the induced field when the aircraft turns. The eddy current field is the field that is
induced by the current that flows through the aircraft’s structure. This field is dependent on the orientation
of the aircraft, as well as the rate of change of the orientation.

Tolles-Lawson is a simple linear method for aeromagnetic compensation. It does not require any knowl-
edge about the roll, pitch and yaw of the aircraft, since these are computed in a relative coordinate system of
the vector magnetometer. Besides that, the Tolles-Lawson method is only used for the compensation of total
field sensors.

7.2.3. Leliak
The directional cosines used in the Tolles-Lawson method are not very intuitive. Paul Leliak [36] developed a
method that uses the movements of the aircraft relative to its body. The directional cosines in his method can
thus be replaced by a combination of the roll, pitch and yaw maneuvers of the aircraft. The three maneuvers
are visualized in Figure 7.3 and can be described as follows.

• Roll (ψ): the aircraft turns around the transverse / x-axis of the aircraft.

• Pitch (λ): the aircraft turns around the longitudinal / y-axis of the aircraft.

• Yaw (ω): the aircraft turns around the vertical / z-axis of the aircraft.

Besides the three maneuvers, Leliak’s method also considers the magnetic heading (θ) and the dip angle (φ).
The magnetic heading is the angle between the magnetic north and the longitudinal axis of the aircraft. The
dip angle is the angle between the magnetic field and the horizontal plane. The dip angle is also known as
the inclination angle. If the roll, pitch and yaw are equal to zero, then the directional cosines are completely
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Figure 7.3: The three maneuvers of the aircraft. This illustration is taken from [36].

determined by the magnetic heading and the dip angle:

cos X = cosφsinθ (7.10)

cosY = cosφcosθ (7.11)

cos Z = sinφ. (7.12)

If the aircraft is not in a level flight, then the directional cosines are also determined by the roll, pitch and
yaw. These maneuvers can be described separately for each axis. A roll maneuver around the x-axis gives the
following directional cosines:

cos X = cosφsinθcosψ+ sinφsinψ (7.13)

cosY = cosφcosθ (7.14)

cos Z = sinφcosψ−cosφsinθ sinψ. (7.15)

A pitch maneuver around the y-axis gives the following directional cosines:

cos X = cosφsinθ (7.16)

cosY = cosφcosθcosλ− sinφsinλ (7.17)

cos Z = sinφcosλ+cosφcosθ sinλ. (7.18)

A yaw maneuver around the z-axis gives the following directional cosines:

cos X = cosφsinθcosω− sinφsinω (7.19)

cosY = cosφcosθcosλ+ sinφsinλcosω (7.20)

cos Z = sinφcosλcosω−cosφcosθ sinλ. (7.21)

Leliak’s method finds similar coefficients as the Tolles-Lawson method. The permanent field is described
by 3 coefficients (T , L and V ). 5 linear independent coefficients are needed to describe the induced field
(T T −LL), (V V −LL), (T L+LT ), (T V +V T ), (LV +V L). The eddy current field is described by 8 independent
coefficients: (t t − l l ), (v v − l l ), l t , v t , t l , vl , t v and l v . Leliak suggests that the coefficients can be found by
performing sinusoidal maneuvers.
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7.2.4. Compensation using Neural Network
Aeromagnetic magnetic compensation using neural networks has been an active research topic since 1993
[69]. Using neural networks is a logical step in the development of aeromagnetic compensation methods.
Neural networks are a powerful tool for pattern recognition and classification. It allows us to model complex
relationships between the input and output variables. These relationships can be a lot more complex than
the linear relationships that are used in the classical Tolles-Lawson and Leliak methods. This comes at a
cost, however. Neural networks are computationally expensive and require a lot of data to train. But neural
networks also lose physical interpretability. The weights of the neural network are not directly related to the
physical properties of the Earth, the aircraft or magnetic fields. This makes it difficult to explain the results
of the neural network and extent the results to other situations, something that is important in the field of
aeromagnetic compensation.

Several attempts [69, 39, 24] have been done to use neural networks for aeromagnetic compensation.
Gnadt briefly reviews the results of these attempts in [23]. He also noticed that the feature space is very large,
resulting in slow training times and overfitting. As a solution, he performed a feature in combination with a
Principal Component Analysis (PCA) to reduce the feature space. The results of different neural network ar-
chitectures are compared for different training and validation sets. A model is found that outperforms Tolles-
Lawson and the PLSR-based method. Noteworthy is that the good performance of his method is mainly due
to a single sensor (M ag 5). However, sufficient accuracy is achieved for a combination of different sensors.
How the results of different sensors can be combined to improve the accuracy of aeromagnetic compensation
is an interesting topic to research. At the moment of writing, there is still an open challenge to improve the
accuracy of aeromagnetic compensation using neural networks [23] (Section 7.4).

7.3. Dealing with Multicollinearity
Multicollinearity is a problem in aeromagnetic compensation. The variables that are used to describe the
platform field are highly correlated. Both the Tolles-Lawson and Leliak methods already contain steps to
reduce the number of coefficients, such that most coefficients are linearly independent. This allowed us to
describe the permanent, induced and eddy currents fields in 3, 5 and 8 coefficients respectively, instead of
the 3, 9 and 9 coefficients that occur in the original formulas. However, the remaining 16 coefficients can still
be highly correlated. This section discusses some methods to deal with multicollinearity.

For all models that assume that the platform field can be approximated by a linear combination of plat-
form features, the compensation algorithm can be formulated as a matrix-vector product. For Tolles-Lawson
and Leliak, the features of the platform, in the form of directional cosines, are placed in a matrix A and the
coefficients C are placed in a vector. The reconstructed platform field is then given by the matrix-vector prod-
uct:

Bp = AC. (7.22)

A first approach to solve the problem is to invert the matrix A:

C = A−1Bp = (AT A)−1AT Bp . (7.23)

However, in a multicollinear situation, the matrix A is not invertible. A matrix is invertible if and only if it
has full rank. For a multicollinear problem, some variables are not linearly independent, resulting in a rank
smaller than the number of rows. Since this gives a non-unique solution, other methods are needed to solve
find the coefficients C.

7.3.1. Ridge Regression
Ridge regression, also known as Tikhonov regularization, regularizes the problem by adding a penalty term
to the solution. The penalty term is added to the solution to prevent the coefficients from becoming too large
and is a function of the coefficients C. The loss function is defined as the sum of the squared error and the
penalty term:

L = 1

N
∥Bp −AC∥2 +λ2∥C∥2 , (7.24)

where λ is the regularization parameter and N is the number of measurements. Increasing the regularization
parameter λ increases the penalty term, which results in a smaller solution C. The accuracy of the solution
is therefore dependent on the parameter λ. There are several methods to determine a good value for λ. The
analytical way to find the optimal value for λ is to take the derivative of the loss function with respect to the
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coefficients C and set this derivative equal to zero. Another more robust, method is to use cross-validation.
We do not go into detail about the methods to find the optimal value for λ here but refer to [70] for more
information.

If an optimal λ is available, a regularization term λ2I can be added to the matrix AT A, which acts as a
"smoothener". This results in a new matrix AT A+λ2I which is invertible. The solution for the coefficients C
after adding the regularization term is given by:

C = (AT A+λ2I)−1AT Bp . (7.25)

According to [70], the usage of ridge regression, as in Equation 7.25, results in a better solution than the
solution found by using the least squares method (Equation 7.23). However, determining the optimal value
for the regularization parameter λ is not trivial.

7.4. MIT Challenge
As part of a PhD thesis, [23] used neural networks to compensate for the magnetic field induced by the air-
craft. The goal of the work was to remove noise from the sensors and thereby obtain more accurate results
in magnetic navigation. The datasets that are used in his research, provided by the United States Air Force
pursuant to Cooperative Agreement Number FA8750-19-2-1000, are publicly available. The datasets are also
provided as part of an MIT Challenge [22].

Figure 7.4: Trajectories of different flights in the MIT dataset performed in the region of Ottawa.

The data is provided as a .h5 file. The available data consists of 6 different flights that have been performed
in the summer of 2020 in the region of Ottawa, Canada. The trajectories are visualized in Figure 7.4. The flight
data is claimed to be unique since it contains a nearly perfect signal from a scalar magnetometer on the tail
of a stinger, but also noisy signals from scalar magnetometers (Geometrics G-823A optically pumped, split-
beam cesium vapor magnetometers) and vector magnetometers (Bartington Mag-03 and Billingsley TFM100)
attached to and inside the aircraft. Figure 7.5 illustrates the position of the sensors on the aircraft.

Besides the measurements of the magnetometers (Figure 7.6), the dataset also contains information about
the aircraft’s position. The horizontal position is available in latitude and longitude, measured by a GPS re-
ceiver and by an INS. Several measurements for altitude are available, including barometric altitude, radar
altitude and a digital elevation model. The roll, pitch and yaw angles of the aircraft are computed from the
INS. Measurements of currents and voltages are also available.

The goal of the challenge [22] is to compensate the sensor data for the magnetic field that is induced by
the platform. To remove the platform’s magnetic field and yield a clean magnetic signal, one needs to identify
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Figure 7.5: The positioning of the magnetometers on the aircraft. ’mag’ refers to a Total-Field magnetometer, ’vec’ refers to a tri-axial
magnetometer.

Figure 7.6: Measurements of the 5 scalar magnetometers during flight 1004. Magnetometer 1 (blue) is the uncompensated signal of the
sensor on the tail stinger.
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the desired truth signal. Two options are presented for the truth signal: the tail stinger or a magnetic anomaly
map. The tail stinger has the advantage of being more accurate due to its location, but it is not available on
all aircraft. A magnetic anomaly map has the advantage of being the actual desired signal, but it is under-
sampled, it can be difficult to interpolate and it is not available in unexplored regions. For the challenge, the
sensor on the tail of the stinger is used as the true signal.

Compensation for the sensor data can be done with aeromagnetic compensation models. Most com-
pensation models assume that the noise in the sensor data is caused by the magnetization of the platform
(the aircraft). The models use measurements of different types of sensors to estimate the magnetic field that
is induced by the platform. An example of a compensation model is Tolles-Lawson [67], which uses mea-
surements of the aircraft’s position, roll, pitch and yaw angles, and the magnetic field measured by a vector
magnetometer. The model assumes that the platform’s magnetic field consists of permanent and induced
components. The Tolles-Lawson model is quite simple and is not able to compensate for the magnetic field
of the aircraft in a very accurate way. More advanced models are available, such as the one by [23] that uses
neural networks to compensate for the magnetic field. These models can for example find non-linear rela-
tionships between the current and voltage measurements and the magnetic field, which might be useful for
electromagnetic interference. Some of these models are discussed in Section 7.2.4.

7.4.1. Example of Tolles-Lawson Compensation
The Tolles-Lawson compensation algorithm can be demonstrated on the dataset provided for this challenge.
Flight 1002 in the dataset contains 2 calibration flights: one at the beginning of the survey and one at the end.
Both flights are illustrated in Figure 7.2. The corresponding Tolles-Lawson coefficients for these flights can
be estimated by performing a least-squares fit on the data obtained during the calibration flights:

c = argmin
c

n∑
i=1

((Bt −Be )−Ac)2 . (7.26)

The resulting coefficients for both calibration flights using data from sensor c are listed in the Tables 7.1 -
7.3. It is assumed that the coefficients of the Tolles-Lawson model are constant over the flight. This gives the
possibility to estimate the platform field Bp at different altitudes and positions. The measured field Bt can
then be corrected for the platform field Bp by subtracting the estimated platform field from the measured
field:

Bt = Be +Ba +Bp +Bn (7.27)

≈ Be +Ba +Ac , (7.28)

where Ba is the anomaly field and A are features depending on the measurements of a vector magnetome-
ter. The anomaly field Ba can now be estimated by moving all the known terms to the left side of Equation
7.27. The correction is performed on Mag 1, the sensor on the stinger, which is assumed to measure Bt . The
coefficients are computed for both calibration flights and for every sensor. The data of sensor A is corrupted
in Flt1002, so this sensor cannot be calibrated using Flt1002a and Flt1002b . The Tolles-Lawson residuals
((Bt −Be )−Ac) for different flights are plotted in Figure 7.7. These are the estimates of the anomaly field Ba .
Figure 7.7c indicates the compensated signal derived from the uncompensated signal of mag 1, illustrated in
Figure 7.6 in blue.

Table 7.1: Permanent Tolles-Lawson coefficients of flight 1002 for sensor c.

Flight Permanent
X Y Z

1002 a 940.04 223.59 -1800.33
1002 b 2970.32 54.433 -1312.020
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(a) Flt1002 (b) Flt1003

(c) Flt1004

Figure 7.7: Tolles-Lawson residuals for different flights which are obtained by subtracting the estimated platform field and the main field
from the measured field. The residuals are an estimate of the anomaly field Ba .

Table 7.2: Induced Tolles-Lawson coefficients of flight 1002 for sensor c.

Flight Induced
XX XY XZ YY YZ ZZ

1002 a 0.27076 0.17621 0.08189 0.28656 0.057066 0.34032
1002 b 0.19210 0.12166 0.05556 0.194579 0.038983 0.22416

Table 7.3: Eddy Tolles-Lawson coefficients of flight 1002 for sensor c.

Flight Eddies
XX’ XY’ XZ’ YX’ YY’ YZ’ ZX’ ZY’ ZZ’

1002 a 0.34032 -0.09455 -0.09443 0.0 0.11034 -0.05957 0.0 -0.024828 0.12921
1002 b 0.22416 -0.070434 -0.068271 0.0 0.072912 -0.041341 0.0 -0.016575 0.084303

Table 7.4: Error in Tolles-Lawson coefficients of flight 1002 for sensor c.

Flight Error
Bias Variance Total

1002 a 0.0 -0.02482 320.259
1002 b 0.0 -0.016575 592.865
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We have seen that the spherical harmonic model is a good model for representing Earth’s magnetic field on
large scales. On these scales, a core-field model or a simple crustal-field model is sufficient to represent the
magnetic field. However, it is difficult to use the spherical harmonic model to make higher-resolution rep-
resentations of the magnetic field in a certain area. This would require a very high degree of the spherical
harmonic model, and therefore a lot of data over the surface of the Earth. We noticed that a higher-resolution
model can not be made from satellite data alone. Aeromagnetic surveys play an important role in this, but
they are time-consuming and have some complications. In the previous chapter, we discussed how to com-
pensate the sensor data of a magnetometer for the platform of an aircraft. In this chapter, we assume that the
data has been compensated and we discuss a technique that can be used to locally enhance the resolution of
the magnetic field. This technique is called Equivalent Layer.

Equivalent Layer, or Equivalent Sources, is a technique that serves two purposes. It can be used as an in-
terpolator to evaluate the magnetic field at points where no measurements are available and it can be used to
extrapolate the measurements to find values of the magnetic field at higher altitudes. Equivalent Layer uses,
as many other methods do, the assumption that a magnetic field can be approximated by the one generated
by dipoles. In Section 2.5.1 it is discussed that this assumption is sufficient when the points of evaluation
are far away from the sources. Given this assumption, Equivalent Layer is quite intuitive: a layer containing
a large number of dipoles is placed in the ground below the measurements and the magnetic moments of
the dipoles are adjusted to fit the measurements. If the layer fits the measurements well, we can speak of an
Equivalent Layer.

Interpolating the magnetic field with Equivalent Layer can be done in three steps:

1. Measure the magnetic field at arbitrary positions in a plane.

2. Compute the magnetic moments of the dipoles in the layer that fit the measurements.

3. Evaluate the magnetic field at points where no measurements are available by computing the superpo-
sition of each dipole in the layer.

Using Equivalent Layer as an interpolator for magnetic fields has several advantages compared to using a
linear or cubic spline interpolator. The main advantage is that a field generated with Equivalent Layer auto-
matically satisfies the physical properties of a magnetic field since it is a superposition of magnetic dipoles.
Another big advantage is that Equivalent Layer imposes no restrictions on how measurement points must be
distributed. Quite the contrary, it is not necessary to take the measurements at the same height as the point
of interest. Moreover, this allows Equivalent Layer to be used as an extrapolator: measurements at a cer-
tain height can be used the estimate the magnetic field at a higher altitude, as long as there exist no sources
positioned above the points of measurement this is guaranteed by Green’s third identity.

This chapter starts with the derivation of the Equivalent Layer problem (Section 8.1), followed by a section
that describes how the problem can be solved when only Total-field measurements are available (Section 8.2).
Finally, several methods and tricks are presented that can be used to solve the problem (Section 8.3).

49
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8.1. Derivation of the Equivalent Layer problem
Finding an Equivalent Layer is a memory-intensive process. It often requires performing a minimization
problem over all the measurement points and the dipoles in the layer. The problem can be derived from the
equation of a dipole. In this section, we start with defining the problem for a single vectorial measurement
and a layer consisting of a single dipole and build towards the Equivalent Layer problem that consists of
multiple vectorial measurements of the magnetic field and has many dipoles in a layer.

8.1.1. One dipole and a single measurement
Let B be a magnetic field produced by a single dipole which is positioned at x0 and has a magnetic moment
m = [mx ,my ,mz ]T . In what follows, we show that the magnetic moment of an arbitrarily positioned dipole
can be tweaked to fit the magnetic field at the point of measurement.

y

x

z

r

Dipole

Measurement point

Figure 8.1: Illustration of a single dipole and a single measurement point. The dashed line shows the vector r that connects the dipole
and the measurement point.

For now, fix the position of the dipole to the origin and assume that the measurement is taken at r =
[x, y, z]T . The magnetic field at the point of measurement is given by the vector B(r) containing the magnetic
field components in the x, y and z directions:

Bx (r) = µ0

4π

(
3(mx x +my y +mz z)x

|r|5 − mx

|r|3
)

(8.1)

By (r) = µ0

4π

(
3(mx x +my y +mz z)y

|r|5 − my

|r|3
)

(8.2)

Bz (r) = µ0

4π

(
3(mx x +my y +mz z)z

|r|5 − mz

|r|3
)

. (8.3)

These equations are derived from Equation 2.36 by fixing the position of the dipole x0 = [0,0,0]T . This re-
duced the number of unknowns in the system from six (the dipole positions and their moments) to three (the
dipole moments). If the dipole is not positioned at the origin, one can translate the coordinate system so that
the dipole is positioned at the origin. This assumption does not affect the magnetic field at the point of mea-
surement, since that is only dependent on the relative position of the dipole and the point of measurement.
To simplify calculations, we further assume that a measurement is taken at r = [0,0, z0]T where z0 > 0. One
can justify this assumption by rotating the coordinate system so that the measurement is taken at the z-axis.
This assumption leads to the following relation between the magnetic moments and the magnetic field at the
point of measurement: 

Bx (r) = µ0
4π

(
− mx

|z0|3
)

By (r) = µ0
4π

(
− my

|z0|3
)

Bz (r) = µ0
4π

(
3(mz z2

0 )

|z0|5 − mz
|z0|3

)
,

(8.4)

which can be solved for the magnetic moment:
mx =− 4π

µ0
|z0|3Bx (r)

my =− 4π
µ0

|z0|3By (r)

mz = 1
2

4π
µ0

|z0|3Bz (r) .

(8.5)
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The magnetic moment can also be expressed as a matrix-vector product of the depth and the measurement
vector:

m = 4π

µ0
|z0|3

−1 0 0
0 −1 0
0 0 1

2

B(r) , (8.6)

for r = [0,0, z0]T . The magnetic moment m = (mx ,my ,mz ) that is found is proportional to the magnetic field
B(r) at the point of measurement and to the cube of the distance |z0| to the dipole. If a rotation was applied to
the coordinate system, then the magnetic moment needs to be rotated back to the original coordinate system.
This can be done by multiplying the magnetic moment with the inverse of the rotation matrix. Therefore, this
example shows that a single dipole can be used to estimate the magnetic field at a single point in space, even
if the relative position of the dipole and the point of measurement is fixed. If the relative position of the dipole
is fixed, then this estimate has a unique solution. On the other hand, if r is a free variable, then the system is
underdetermined and the solution is not unique.

8.1.2. One dipole and multiple measurements
Having more information about the problem we are solving can help us make the problem less underdeter-
mined. The system for a single dipole and a single measurement has six unknowns and three equations. An
additional measurement leads to a system of six equations (for the magnetic field) and nine unknowns: three
for the magnetic moments of the dipole (m = [mx ,my ,mz ]T ) and six for the relative position of the measure-
ment points to the dipole (r1 = [x1, y1, z1]T and r2 = [x2, y2, z2]T ):

Bx (r1) = µ0
4π

(
3(mx x1+my y1+mz z1)x1

|r1|5 − mx
|r1|3

)
By (r1) = µ0

4π

(
3(mx x1+my y1+mz z1)y1

|r1|5 − my

|r1|3
)

Bz (r1) = µ0
4π

(
3(mx x1+my y1+mz z1)z1

|r1|5 − mz
|r1|3

)
Bx (r2) = µ0

4π

(
3(mx x2+my y2+mz z2)x2

|r2|5 − mx
|r2|3

)
By (r2) = µ0

4π

(
3(mx x2+my y2+mz z2)y2

|r2|5 − my

|r2|3
)

Bz (r2) = µ0
4π

(
3(mx x2+my y2+mz z2)z2

|r2|5 − mz
|r2|3

)
.

(8.7)

Increasing the number of measurements leads to an overdetermined system. In general, overdetermined sys-
tems are not solvable. For example, if multiple measurements are taken of a magnetic field that is produced
by a single dipole, and the dipole position is not known, then the overdetermined system only has a solution
if the dipole that estimates the field is positioned exactly at the place where the dipole that generated the field
is located. If only a slight noise is present in the measurements, then the system does not have a solution.

The inversion of the magnetic field is therefore not possible if the dipole position is not known. What is
possible is minimizing the error between the measured magnetic field and the estimated magnetic field. This
can be done by for example minimizing the sum of the squared errors between the measured and estimated
magnetic field:

minimize
m∈R3

n∑
i=1

|B(ri )−Best(ri ,m)|2 , (8.8)

where n is the number of measurements, ri is the position of the i th measurement, B(ri ) is the measured
magnetic field at the i th measurement point and Best(ri ,m) is the estimated magnetic field at the i th mea-
surement point using a dipole at the origin with magnetic moment m.

8.1.3. Multiple dipoles and a single measurement
In the previous section, it was shown that an arbitrarily positioned dipole can be fitted to a single measure-
ment of the magnetic field. Adding more dipoles to the system makes the problem even more underdeter-
mined. If a single dipole can already fit a single measurement, then multiple dipoles can of course also fit a
single measurement. One can simply set the magnetic moments of the other dipoles to the zero vector.
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8.1.4. Multiple dipoles and multiple measurements
Using many measurements for a few dipoles leads to an overdetermined system while fitting multiple dipoles
to a single measurement leads to an underdetermined system. Therefore, a proper trade-off between the
number of measurements and the number of dipoles to estimate the field must be made. A layer of multiple
dipoles becomes interesting when many measurements are taken.
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Figure 8.2: Illustration of a layer of dipoles and the j -th measurement point. The dashed line shows the vector ri j that connects the j -th
dipole to measurement point i .

A layer of dipoles can be constructed by for example placing dipoles on a regular grid in the x y-plane at
a certain depth z, as illustrated in Figure 8.2. The estimated magnetic field at a measurement point ri is then
the superposition of the magnetic field of all dipoles in the layer:

Best(ri ) =
m∑

j=1
B j (ri j ,m j ) =

m∑
j=1

A(ri j )m j , (8.9)

where m is the number of dipoles in the layer, ri j = ri −x j is the distance vector from the i th dipole to the
measurement point ri and B j (ri j ,m j ) is the magnetic field produced by the j th dipole at the measurement
point ri , this quantity can also be represented as a matrix-vector product A(ri j )m j . We can write out the
expression for B j (ri j ,m j ) using Equation 2.36:

B j (ri j ,m j ) = µ0

4π

(3(m j · ri j )ri j −m j r2
i j )

|ri j |5
. (8.10)

We now introduce a 3×3 matrix A(ri j ) to represent the influence of a dipole grid on the magnetic field at a
measurement point at distance ri j :

A(ri j ) = µ0

4π

1

|ri j |3
[
R(ri j )− I3

]
(8.11)

R(ri j ) = 3
ri j rT

i j

|ri j |2
, (8.12)

which leads to the following linear form:

B j (ri j ,m j ) = A(ri j )m j . (8.13)

In many implementations of the Equivalent Layer algorithm, the positions of the dipoles are fixed. Therefore,
the matrix A(ri j ) can be precomputed. In general, for n measurement points and m dipoles, the estimated
field can be written as a matrix-vector product:

Best(ri ) = A(ri )m , (8.14)

where Best(ri ) is a vector containing the estimated magnetic field at point i , A(ri ) is a 3×3m matrix and m is
a vector of length 3m containing the magnetic moments of all dipoles in the layer. For a layer of dipoles with
fixed positions x j , the magnetic moments m j can be found using a least squares fit:

minimize
m∈R3×m

n∑
i=1

|B(ri )−A(ri )m|2 . (8.15)

Here, m = [m1,m2, . . . ,mm] is a matrix with the magnetic moments of all dipoles in the layer.
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8.2. The Equivalent Layer Problem for Total-Field Magnetic Anomalies
Before we discuss how the Equivalent Layer problem can be solved, we first need to discuss the type of mag-
netic field measurements that are used. The minimization problem, as defined in Equation 8.15, assumes
that we have access to vectorial measurements B(ri ) of the magnetic field. These are however not always
available. Often a Total-Field Sensor is used that measures the intensity of the magnetic field. It can also
be possible that a vectorial magnetometer is used, but that the measurements are too noisy or that the ori-
entation of the magnetometer is not known. Since Total-Field sensors were in general more accurate than
vectorial magnetometers, most of the work on Equivalent Layer has been done for Total-Field sensors. In this
section, the Equivalent Layer problem for Total-Field sensors is described.

The minimization problem in Equation 8.15 can be adapted to include Total-Field measurements. The
cost function in the minimization problem becomes the sum of the squared difference between the Total-
Field measurements and the Total-Field produced by the dipoles:

minimize
m∈R3×m

n∑
i=1

[
|B(ri )|− |

m∑
j=1

B j (ri −x j ,m j )|
]2

, (8.16)

where |B(ri )| is the Total-Field measurement at the i th measurement point ri and |∑m
j=1 B j (ri − x j ,m j )| is

the Total-Field produced by the dipoles at the i th measurement point ri . One might argue that if we are
only interested in the Total-Field produced by the dipoles, we do not need to know the orientation of the
moment m j . However, the orientation of the moment is still required to calculate the Total-Field produced
by the dipoles, knowing only the magnitude is not sufficient, since dipoles with for example opposite oriented
moments can cancel each other out on the Total-Field and the intensity of a single dipole is not constant on
the surface of a sphere, for example on the surface of the Earth, the total-field intensity at the poles is two to
three times larger than at the equator (Section 3.2).

The computation of the norm in the second term of Equation 8.16 is a non-linear operation. Therefore,
the minimization problem is non-linear and significantly more difficult to solve than the minimization prob-
lem in Equation 8.15. The problem can be reduced to a linear system by projecting the Total-Field measure-
ments onto a reference field, as described in Equation 5.3 in Section 5.4. We assume that we know a reference
field Bref(ri ), which satisfies the following conditions:

B = Bref +Banomaly (8.17)

|Bref| >> |Banomaly| . (8.18)

To reduce the number of unknowns, the Total-Field measurements are often projected onto a reference field,
as described in Section 5.4. The reference field can for example be chosen as the main field (Section 3.2) or
IGRF (Section 6.1.2). As long as the reference field is sufficiently larger than the anomaly field, the projection
is justified, and we can reduce the minimization problem to:

minimize
m∈R1×m

n∑
i=1

[
|B(ri )| · B̂ref(ri )−

m∑
j=1

B j (ri −x j ,m̂(ri )m j )

]2

, (8.19)

where B̂ref(ri ) is the unit vector of the reference field at the i th measurement point ri and m̂(ri ) is the unit vec-
tor of the magnetic moment that corresponds with B̂ref(ri ). The vector m ∈R1×m contains the magnitudes of
the magnetic moments of the dipoles. In many cases, the reference field is constant on the region of interest,
resulting in the following simplification:

minimize
m∈R1×m

n∑
i=1

[
|B(ri )| · B̂ref −

m∑
j=1

B j (ri −x j ,m̂m j )

]2

. (8.20)

This system is again linear but has a factor of three fewer unknowns than the system in Equation 8.15. The
method of solving the system is now similar to solving the system in Equation 8.15 without the need of finding
the magnetic moments.



54 8. Equivalent Layer

8.3. Methods and Tricks for Solving the Equivalent Layer Problem
We derived the Equivalent Layer problem (Section 8.1) and found that the Equivalent Layer problem for Total-
field measurements can also be reduced to a linear system (Equation 8.20). Now, we look at the formulated
minimization problem (Equation 8.15), which can be solved by a variety of methods. In many cases, a QR-
decomposition is sufficient to find a solution that minimizes the least squares error. The QR-decomposition
might fail, for example when the number of dipoles is larger than the number of measurement points, or
when the measurement points are not sufficiently distributed. In these cases, different methods and tricks
are required to solve the Equivalent Layer problem.

The Equivalent Layer problem, as described in Section 8.1 is a compute-intensive problem. The dimen-
sions of the matrix scale with the number of measurement points n and the number of dipoles m. Several
studies have been conducted to improve the performance of the Equivalent Layer algorithm[48][37]. In this
section, we summarize the most important suggestions and improvements for solving the Equivalent Layer
problem.

8.3.1. Best Approximation
We first look at the best approximation of the linear system. Note that the influence of a single dipole posi-
tioned at x0 on a point x = x0 + r can be written as:

B(r) = µ0

4π

3(r ·m)r−m|r|2
|r|5 . (8.21)

This can be written as the inproduct of a matrix A(r) that is independent of the moments m and the vector
containing the moments m:

B(r) = A(r)m , (8.22)

where A(r) is a 3x3 matrix that can be written as:

A(r) = µ0

4π

1

|r|3
(

3rrT

|r|2 − I3

)
, (8.23)

and m = [mx ,my ,mz ]T .
Now, the best approximation of a single measurement B(r) by a single dipole is given by the least squares

solution of the matrix-vector product. This can be written as:

m = (AT A)−1 AT B . (8.24)

This can be extended to a layer with multiple dipoles and multiple measurements. Consider a layer of m
dipoles with relative positions r1,k ,r2,k , . . . ,rm,k to measurement point k and magnetic moments m1,m2, . . . ,mm ,
as illustrated in Figure 8.2. The magnetic field at the k-th point is the superposition of the magnetic fields of
all the dipoles:

Bk =
m∑

i=1
A(ri ,k )mi . (8.25)

8.3.2. Preconditioning
It is also possible to solve the Equivalent Layer problem with an iterative method. For example, the Jacobi
or Gaus-Seidel method can be used to solve the system. We noticed that the convergence of these iterative
methods is very slow. The cause of this slow convergence seems to be the high condition number of the ma-
trix. The condition number of a matrix is a measure of the sensitivity of the solution of a system of linear
equations to perturbations in the matrix. Lower condition numbers result in faster convergence of the itera-
tive methods. Not only for iterative methods but also for direct methods, a lower condition number results in
a more stable solution.

A helpful trick to improve the convergence of the solution is to pre-condition the system. The magnetic
moments m that we are looking looking for can be very large numbers, especially when working with deeper
positioned dipoles in the Equivalent Layer. The reason for this is the decay of the magnetic field strength
that is proportional to 1/r 3, where r is the distance between the dipole and the measurement point: dipoles
positioned two times deeper have to be eight times stronger to have the same influence on the magnetic field
at the measurement point. As a result, we know that we are not looking for deep-positioned dipoles with
a small magnetic moment or shallow-positioned dipoles with a large magnetic moment. We can use this
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knowledge to pre-condition the system. A pre-conditioner transforms a system Ax = b into an equivalent
system that is easier to solve. The equivalent system

M−1 Ax = M−1b . (8.26)

Here, M is a pre-conditioner. The pre-conditioner M is chosen such that the condition number of M−1 A is
smaller than the condition number of A.

We can pre-condition the Equivalent Layer system by scaling the magnetic moments m with a factor d 3
i ,

where di is the depth of the i -th dipole. This way, the magnetic moments are scaled to the same order of
magnitude. Besides the depth-dependent scaling, we also scale the magnetic moments with a constant factor
c = 107/2 to reduce the magnitude of the solution vector x. This factor comes from theµ0/4π in Equation 8.23.
Therefore, the pre-conditioner M is a diagonal matrix with diagonal elements 1/(d 3c):

M =


1

d 3
1 c

. . .
1

d 3
n c

 . (8.27)

When measurements are taken at a constant altitude z0 above the surface, and the dipoles are positioned at
a constant depth zd below the surface, the pre-conditioner can be simplified to:

M = 2

(z0 + zd )3107 . (8.28)

8.3.3. Dense Equivalent Layer
To see why the Equivalent Layer method works, we go back to Green’s third identity, discussed in Section
2.4.1. It followed that the magnetic scalar potential at a point inside a closed surface can be calculated as an
integral of the magnetic scalar potential on the boundary of the surface. The assumption that all the sources
are located below a plane allowed us to represent the magnetic scalar potential above the plane as an integral
over the plane. Besides that, it was shown that a similar integral can be used to calculate the magnetic field
as well.

A continuous magnetic induction field B on a plane Ω can therefore be approximated by an infinite sum
of magnetic dipoles that are infinitesimally close to each other and placed directly under the plane. Let Ω=
[0,1]× [0,1] be a square plane positioned at depth z0, then for a given point (x, y, z0) ∈Ω, the magnetic field
can be approximated as follows:

B(x, y) = lim
n→∞

n∑
i , j=1

A([x −xi , y − y j , z0 + 1

n
])Mi , j , (8.29)

where xi = i
n and y j = j

n are the coordinates of the i -th and j -th dipole, respectively and Mi , j is the magnetic

moment of the dipole at position (xi , y j , z0 + 1
n ). The reason that the dipoles are not placed directly on the

plane is to avoid the singularity at the plane.
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Figure 8.3: Illustration of a dense layer of dipoles and a measurement plane. The plane is represented by a transparent rectangle.

In the limit, the Equivalent Layer problem can be considered as a continuous layer of point masses. Re-
laxing the assumption that the dipoles are infinitesimally close to each other, we can approximate the contin-
uous layer of point masses by a dense layer of dipoles. The magnetic field at a point (x, y, z0) above the plane
can then be approximated by the magnetic field of the dense layer of dipoles.
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8.3.4. Polynomial Equivalent Layer
In [48], Vanderlei C. Oliveira found that the Equivalent Layer algorithm can be improved by using a piecewise
polynomial layer instead of a layer consisting of dipoles, a so-called Polynomial Equivalent Layer (PEL). The
piecewise polynomial layer is constructed by dividing the layer into regular grid cells and approximating the
potential field in each cell with a bivariate polynomial (Figure 8.4). Here, the assumption is made that the
distribution of the potential field in the Equivalent Layer can be approximated by a piecewise-polynomial
function. The polynomial coefficients can be found by solving a linear regularized inversion problem for
each cell separately. After the coefficients have been found, a piecewise-polynomial Equivalent Layer can be
constructed by combining the polynomials of each cell. Finally, evaluation of the Total-Field at the point of
interest is done by integrating over the piecewise-polynomial layer using Green’s theorem (Section 2.4.1) and
Upward Continuation (Section 10.1).

Figure 8.4: Illustration of the Polynomial Equivalent Layer. Instead of estimating the moments of the dipoles (black dots), the Polynomial
Equivalent Layer fits a polynomial function to the magnetic potential in each cell (dashed rectangles). This figure is taken from [48]

A main benefit of the Polynomial Equivalent Layer is the minimum depth of the layer. Since a classical
Equivalent Layer consists of dipoles, which are point sources, the minimum depth of the layer is dependent
on the spatial resolution of the measurement data. In contrast, the Polynomial Equivalent Layer divides the
magnetic potential more evenly into the cells using a piece-wise polynomial function. The accuracy of PEL
remains dependent on the width of the cells and the degree of the polynomials that are used.

8.3.5. Dual Layer Equivalent Sources
Another significant improvement of the Equivalent Layer algorithm is the use of Dual-Layer Equivalent Sources
[37]. The Dual-Layer Equivalent Sources (DLES) approach uses two layers of dipole sources instead of one.
The spatial frequency that a layer of dipoles is able to reconstruct is dependent on the depth of the layer and
the distance between the dipoles. A low frequent magnetic field can therefore be reconstructed by a layer
close to the surface consisting of a large number of dipoles, or by a layer at a greater depth consisting of a
smaller number of dipoles. The DLES approach uses two layers of dipoles, one close to the surface and one
at a greater depth. The first layer is used to reconstruct the low-frequency components of the magnetic field
and the second layer is used to reconstruct the high-frequency components.

8.3.6. Multi-layer Method
In Section 8.3.3 we showed that a continuous magnetic field on a plane can be approximated by an infinite
sum of magnetic dipoles. In this section, we discretize the dense layer of dipoles into multiple layers. The
idea is quite similar to Fourier series, where a continuous function can be approximated by an infinite sum
of sinusoids. Now, the magnetic field on a plane can be approximated by a series of layers of dipoles.

This principle is visualized in Figure 8.5. The figure contains 3 layers. Deeper layers contain fewer dipoles,
as they represent lower spatial frequencies. When solving the inverse problem, the deepest layer is solved first.
The magnetic field of the deepest layer is then subtracted from the measured magnetic field. The next layer
is then solved using the residual magnetic field. This process is repeated until all layers have been solved
or until the residual magnetic field is sufficiently small. The advantage of this method is that the deepest
layer can be solved using a small number of dipoles, which reduces the computational cost, we refer to this
principle as layerwise solving.
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Figure 8.5: Illustration of a dense layer of dipoles and a measurement plane. The plane is represented by a transparent rectangle.

8.3.7. Regularized Equivalent Layer
In the above example about multi-layer methods, we only considered dipoles positioned in layers at fixed
depths. However, the dipoles can also be positioned at arbitrary depths. In this case, it is still suggested to
place more dipoles closer to the surface, as the spatial resolution of the magnetic field that has to be repre-
sented by these dipoles is higher. Placing dipoles at arbitrary depths has however a computational disadvan-
tage: we can no longer solve the problem layer-for-layer. Instead, we need to find a way to drive the solver
to a solution that prefers deeper dipoles over shallower dipoles. This can be done by adding a regularization
term to the objective function. Regularization is a technique that is used to prevent overfitting of the model.
In our case, overfitting means that we mainly use shallow dipoles that are close to the measurement plane to
represent the magnetic field. This is not desirable, as it requires often a larger number of dipoles to represent
the magnetic field, and it is also not physically correct.

Instead of solving the system Am = b, we solve the system (AT A+λ2I )m = AT b, where λ2 is a regulariza-
tion parameter. The regularization parameter λ2 can be tuned by minimizing the L-curve, or by using cross-
validation to find the optimal distribution of dipoles with minimal total magnetic moments. This works when
we are working with a preconditioned system, which already scales the magnetic moments of the dipoles with
their depth (Section 8.3.2) to give them the same order of magnitude.





9
A Wavelet Approach to Position Estimation

and Magnetic Field Reconstruction

In the previous chapter, we have seen that Equivalent Layer can be used for modelling, interpolating and
extrapolating magnetic fields. The accuracy of the methods depends on the number of sources in the lay-
ers and their positions. In this chapter, we try to use the measured signal to determine the positions of the
sources. We introduce the so-called Anderson functions, extend these functions to two dimensions and de-
rive a mother wavelet that can be used to construct a wavelet basis for the magnetic field. The goal is to find
the positions and magnetic moments of the sources without a priori knowledge of the number of sources and
their positions or depth.

In the coming sections, we first limit ourselves to signals that are one-dimensional in space. These signals
are obtained by moving a sensor with a constant velocity in a straight line. The magnetometer outputs values
as a function of time and the constant velocity gives the magnetic field as a function of position on the line.
These so-called spatial signals can be analyzed using Anderson functions to obtain the positions of underly-
ing magnetic sources. A wavelets family consisting of different shapes and shifts of the Anderson functions
can be used to look for these sources.

Later on, we extend the theory to two-dimensional signals. These signals represent the magnetic field as a
function of position in a plane. We derive the Anderson functions for this two-dimensional case and use them
to construct a wavelet basis. This wavelet family is used to reconstruct the signal on the two-dimensional
plane.

9.1. Wavelet Theory
One might be familiar with the concept of frequency in the context of time signals, for example, the frequency
of a sound wave. Low frequencies, sounding like deep bass, are associated with long wavelengths. High
frequencies, sounding like high-pitched whistles, are associated with short wavelengths. The same concept
can be applied to spatial signals. Instead of waves that propagate in time, we have waves that propagate in
space [8, pp. 4–6]. The spatial frequency indicates the number of waves that pass a certain point in space per
unit of time.

9.1.1. Fourier Transform
Since the one-dimensional spatial signals are just time signals divided by the velocity, we can make use of
the same signal processing techniques. A common technique is the Fourier transform, which decomposes a
signal into a sum of sinusoids with different frequencies. The resulting sinusoids called the Fourier compo-
nents, are the coefficients for periodic functions with different periods frequencies. In continuous time, the
transformation into Fourier components gives all information about the frequency of the signal, at the cost
of losing information about the time.

The Fourier Transform is not so useful for our purpose, because it is a global transformation that gives no
information about the local properties of the signal. For example, if we are analyzing the signal of a single
dipole source, the Fourier transform gives us the frequency of the signal, which can be related to the depth of
the source. However, it does not provide any information about the spatial position of the source, or in terms
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of time signals, the time at which the source is located. A short-time Fourier transform (STFT) can be used to
obtain some local information, but this requires a fixed window size, which is not always desirable. The STFT
is also primarily suited for analyzing stationary signals with a fixed frequency content. It does not inherently
provide a multiscale analysis of the signal, which is helpful in the analysis of magnetic fields with sources at
unknown depths.

9.1.2. Wavelet Transform
In contrast to the Fourier transforms the wavelet transform is a more local transformation. It uses functions
with compact support instead of periodic functions to analyze the signal. These functions are often derived
from a single function, called the mother wavelet. The mother wavelet is scaled and shifted to obtain a basis
which we refer to as the daughter wavelet functions. To ensure that the daughter wavelet functions form an
orthogonal basis, the mother wavelet must satisfy some requirements to be a valid wavelet. The requirements
for a mother wavelet [6, p. 61] are the following:

• The wavelet must be absolutely integrable∫ ∞

−∞
|ψ(x)|d x <∞ . (9.1)

• The wavelet must be square integrable ∫ ∞

−∞
ψ(x)2d x <∞ . (9.2)

• The wavelet must be mean-zero (Admissibility)∫ ∞

−∞
ψ(x)d x = 0. (9.3)

It is preferred that the mother wavelet is continuously differentiable and that the wavelet is compactly sup-
ported.

The compact support makes it easier to orthogonalize the wavelet upon shifting: if we compare a wavelet
with the same wavelet shifted by its support, then the integral is zero because the wavelet is zero outside of its
support. The support is dependent on the scale of the wavelet. A wavelet that represents a deeper source has
larger support than a wavelet that represents a shallower source. In a signal, one can fit more wavelets with
small support than with large support, therefore, wavelets with smaller support can give more information
about the local properties of the signal.

9.1.3. Orthogonality of Wavelets
Let ψ(x) be a mother wavelet with compact support [−s, s] and let ψa,b(x) represent the child wavelet with
scaling parameter a ∈R+ and shift parameter b ∈R. Then the wavelet transform of a function f (x) is defined
as

W f (a,b) = 〈 f ,ψa,b〉 =
∫ ∞

−∞
f (x)ψa,b(x)d x . (9.4)

If the wavelets ψa,b form an orthonormal basis for the space where f is defined, then the wavelet trans-
form gives a unique representation of f in terms of the wavelet coefficients W f (a,b). This is highly favorable
for computations and reconstructions. When wavelets are derived from a mother wavelet, there is no guaran-
tee that the wavelets are orthonormal. Some restrictions on the shift and scaling parameters of the wavelets
are necessary to ensure that the wavelets are orthonormal.

We obviously have that a shifted wavelet ψ(x −2s) is orthonormal to the mother wavelet ψ(x), because
the shifted wavelet has compact support at [s,3s] and therefore∫ ∞

−∞
ψ(x −2s)ψ(x)d x =

∫ s

−s
ψ(x −2s)ψ(x)d x +

∫ 3s

s
ψ(x −2s)ψ(x)d x = 0. (9.5)

With the scaling operator, it is less intuitive to generate orthonormal functions. For the Haar wavelet function

ψ(x) =


1 if 0 ≤ x < 1

2

−1 if 1
2 ≤ x < 1

0 otherwise,

(9.6)
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one can show that the scaling operator is orthogonal if we scale a with at least a factor of 2. This is because
of the shape of the Haar wavelet, which is a piecewise constant function. In contrast, the Anderson wavelets
we try to construct do not have this property. Therefore, Anderson wavelets require orthogonalization of the
wavelets for each scaling parameter a. This is done by using the Gram-Schmidt process, which is discussed
in Section 9.3.1.

When moving from continuous signals to discrete signals, the parameters a and b are replaced by integers
a ∈Z+ and b ∈Z. A general way to construct discrete wavelets from a mother wavelet is to use the affine group
for the shift parameter and the scaling parameter. The resulting bases are:

ψa,b(x) = 1p
2a
ψ

(
x −2sb

2a

)
. (9.7)

9.2. Anderson Functions
Anderson functions are a set of basis functions that can be used to model a one-dimensional signal that is
obtained by moving in a straight line near a dipole source. The shape of the function is determined by the
velocity between the source and the sensor, the closest distance between the source and the sensor (CPA) and
the direction of projection.

9.2.1. Derivation of the 1D Anderson Functions
The Anderson functions can be derived directly from the magnetic dipole equation by evaluating them on a
line.

B(r) = µ0

4π

(
3(m · r)r

|r|5 − m

|r|3
)

, (9.8)

where m is the dipole moment and r is the distance vector between the dipole and the sensor.
Introduce the trajectory of the sensor as

r(t ) = r0 +vt , (9.9)

where r0 is the position of the sensor at time t = 0 and v is the velocity of the sensor. To simplify the derivation,
we assume that r0 is the closest point of approach (CPA) between the sensor and the dipole so that the sensor
is closest to the dipole at time t = 0. In this example, it is also assumed that the sensor is moving and the
dipole is fixed, but this is analogous to the case where the sensor is fixed and the dipole is moving.

If we substitute this into the magnetic dipole equation, we get

B(t ) = µ0

4π

(
3(m · (r0 +vt ))(r0 +vt )

|r0 +vt |5 − m

|r0 +vt |3
)

(9.10)

= µ0

4π

(
3(m · r0 +m ·vt )(r0 +vt )

|r0 +vt |5 − m

|r0 +vt |3
)

, (9.11)

which can be simplified using a dimensionless quantity θ = |v|t
r0

and other substitutions. We define r0 = |r0|,
r̂0 = r0

r0
, v̂ = v

|v| and m̂ = m
|m| to get

B(t ) = µ0

4πr 3
0

(
3(m · (r̂0 + vt

r0
))(r̂0 + vt

r0
)

|r̂0 + vt
r0
|5 − m

|r̂0 + vt
r0
|3

)
(9.12)

B(θ) = µ0

4πr 3
0

(
3(m · (r̂0 + v̂θ))(r̂0 + v̂θ)

|r̂0 + v̂θ|5 − m

|r̂0 + v̂θ|3
)

(9.13)

B(θ) = µ0|m|
4πr 3

0

(
3(m̂ · (r̂0 + v̂θ))(r̂0 + v̂θ)

(1+θ2)5/2
− m̂

(1+θ2)3/2

)
. (9.14)

Expanding the terms (m̂ · (r̂0 + v̂θ))(r̂0 + v̂θ) and combining terms with the same exponent in theta gives
the representation of the magnetic field of a dipole on a line in terms of three Anderson functions

B(θ) = µ0|m|
4πr 3

0

[
f0C0 + f1C1 + f2C2

]
, (9.15)
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Figure 9.1: The three Anderson functions fi (θ) = θi

(1+θ2)5/2 for i = 0,1,2 as a function of θ in the range [−10,10].

where

fi (θ) = θi

(1+θ2)5/2
i = 0,1,2 , (9.16)

are illustrated in Figure 9.1 and Cn are the coefficients of the Anderson functions

C0 = 3(m̂ · r̂0)r̂0 −m̂ (9.17)

C1 = 3(m̂ · r̂0)v̂+3(m̂ · v̂)r̂0 (9.18)

C2 = 3(m̂ · v̂)v̂−m̂ . (9.19)

Here, the vector Ci represents the contributions of the i -th Anderson function to the magnetic field vector

B, up to a scaling factor of µ0|m|
4πr 3

0
. The k-th components of the vectors Ci for i = 0,1,2 describe the k-th

component of the magnetic field vector B.

9.3. Construction of 1D Anderson Wavelets
The Anderson functions, as described in Equation 9.16, form a basis for the magnetic field of a single dipole
measured on an arbitrary line in R3. In this section, we validate the properties of a Mother Wavelet for a
Wavelet Family and see if we can use the Anderson functions as a Mother Wavelet. We also discuss what
conditions are not met and how we resolve these issues.

9.3.1. Orthonormalized Anderson Functions
We want to use the Anderson functions as a Mother Wavelet, to construct a Wavelet Family that spans the
whole range of magnetic fields created by dipoles on a line. The Anderson functions in Figure 9.1 are, how-
ever, three functions that are not orthonormal. If we want to use the Anderson functions as a Mother Wavelet,
we need to orthonormalize the Anderson functions so that they all represent a different subspace. Otherwise,
we would have an overlap between the Anderson Functions in parts of the space, which would result in a re-
dundant representation of the magnetic field. Note that this step is different from the orthogonality property
of the wavelets with their own shifted and scaled versions, which is a property of the wavelet family (Sec-
tion 9.1.3). This step is necessary because we are working with Wavelets on a vector field, and we, therefore,
have a Mother Wavelet that consists of three functions. The functions can be made orthonormal by using the
Gram-Schmidt process. Equation 9.20 shows the orthonormalized Anderson functions.
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f̂0(θ) = f2(θ)

√
128

3π

f̂1(θ) = f1(θ)

√
128

5π

f̂2(θ) =
(

f0(θ)− 5

3
f2(θ)

)
.

(9.20)

It must be noted that by orthonormalizing the Anderson functions, we lose the interpretation of the coeffi-
cients. The coefficients of the orthonormalized Anderson functions are not the same as the coefficients of the
original Anderson functions. It is therefore important to keep track of the coefficients that are used during
the orthonormalization process. A QR-decomposition of the matrix of the original Anderson functions can
be used to represent the orthonormalized Anderson functions in terms of the original Anderson functions.
Let A = [ f0, f1, f2] be the matrix of the original Anderson functions, Q = [ f̂0, f̂1, f̂2] the matrix of the orthonor-
malized Anderson functions and R the QR-decomposition of A. Then R−1 for Equation 9.20 is given by

R−1 =


0 0

√
128
3π

0
√

128
5π 0√

24
5π 0 −

√
24
5π

 . (9.21)

9.3.2. Support of Anderson Wavelets
The Anderson functions, as defined in Equation 9.16 do not have compact support. This is an issue because
the wavelet transform only works well on functions with compact support. The Anderson functions, however,
converge to zero for large θ values, because the denominator increases faster than the numerator. Therefore,
the support of the wavelets can be made compact by truncating the support of the Anderson functions. We
tried different truncation lengths, [−4,4] and [−2,2]. The support levels are shown in Figure 9.2. The length of
the support is important for the shift transformation of the mother wavelet. When truncating the support, we
have to make sure that the functions are orthogonal to their shifted version. Further analysis of the support

Figure 9.2: The Anderson functions for a source at 1 m depth. θ describes the position on the line where the magnetic field is measured.
The support of the wavelets is not compact, but two truncated support lengths are indicated by the dashed lines.

of the wavelets showed indeed that a larger support results in more orthogonal functions after the shift trans-
formation. Figure 9.3 shows the Anderson functions with different support lengths and their shifted version.
The condition matrices, which contain the inner products of the functions, can be used to determine how
orthogonal the basis functions are. It seems that the support of [−4,4] is a reasonable choice for the support
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of the wavelets. Depending on the application, a window of [−2,2] might be sufficient. Larger support lengths
result in more orthogonal functions after shifting, but that comes at the cost of resolution in the representa-
tion of the magnetic field. Therefore, we use a support of [−4,4] for the wavelets in this thesis, if not stated
otherwise. The support length we found seems to be in line with what the literature suggests. [54, pp. 4–3]
states that a source at 1000 m depths shows most of its interesting features within a window of only 4000 m
in width.

Besides restricting the support, we also tried adding a window function to the Anderson function, to make
the support compact. The window functions did improve the orthogonality of the functions, but it resulted
in wiggles in the reconstruction of the magnetic field, which is not desirable. Therefore, we decided to use the
truncated support of the Anderson functions, instead of a window function.

9.3.3. Mean-zero Anderson Functions
Besides the support of the wavelets, other requirements have to be met by the mother wavelet. To see if we
can use the three Anderson functions defined in Equation 9.16 as a mother wavelet, we need to check if they
satisfy all the requirements. The Anderson functions have approximately compact support, because the de-
nominator increases faster than the numerator. The first two requirements are trivially satisfied because the
Anderson functions are absolutely integrable and square-integrable. The third requirement is not satisfied,
because not all the Anderson functions are mean-zero. Only the second Anderson, which is an odd function
of θ, is mean-zero. The first and third Anderson functions are both even functions (1 and θ2 respectively) and
therefore not mean-zero.

This means that we have to make some concessions to find mean-zero mother wavelets. There are several
ways to do this:

• Use only the second Anderson function as a mother wavelet. This simplifies the construction of the
wavelet family, at the cost of reducing the span of the wavelet family. Using only the second Anderson
function makes it impossible to reconstruct all the magnetic fields of a dipole on a line.

• Sacrifice the mean-zero property of the mother wavelet.

• Extending the basis of the wavelet family with other functions that are mean-zero. This increases the
span of the wavelet family.

We have decided to sacrifice the mean-zero property of the mother wavelet. This admissibility condition en-
sures that the wavelet transform is invertible. Relaxing this condition has as a consequence that the wavelet
family is not orthonormal for shape transformations. The wavelet transform could start to mix different fre-
quencies, resulting in aliasing. Therefore, the truncation length of the support (Figure 9.3) becomes an im-
portant parameter for wavelet families that are not mean-zero: larger support ensures that the wavelet family
is more orthogonal. It is also possible to bring back the orthogonality of the wavelet family, by orthonormal-
izing the wavelet family. In Section 9.4.2 we discuss how orthonormalization can be done as a pre-processing
step. Therefore, sacrificing the mean-zero property of the mother wavelet is not a problem.

9.4. Reconstucting signals using Anderson wavelets
9.4.1. Signal-based Search-Space
Minimum and Maximum Depth
Given a signal that is measured over a line of length L, In sampling theory, it is often not possible to recon-
struct the original signal from measurements. This is not only caused by noise but also by the fact that the
signal is sampled at a discrete set of points. The rate at which the signal is sampled (how far the samples lie
apart) determines the maximum frequency that can be reconstructed. The minimum frequency that can be
captured is determined by the length of the signal. The longer the signal, the lower the minimum frequency
that can be captured.

Similar reasoning can be applied to the Anderson Wavelets, which can help us effectively define our
search-space. In Section 9.3.2, we have seen that the Anderson Wavelets do not have compact support, but
that their support is small enough outside the domain of [−2,2]. This sets a lower bound on the depth of
the sources that can be reconstructed. For example, if we have samples that are d x = 32 m apart, it is very
difficult to distinguish between a source at 1 m and a source at 2 m or to determine the exact position of a
source at 1 m depth. We therefore limit our search-space to a source that is at least 2m0 = d x/s meters deep,
where s is the total length of the support of the wavelet. This means that we only reconstruct sources that
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(a) The Anderson functions with a support of [−2,2] and a 4 m shifted ver-
sion.

(b) The ’condition matrix’ of the 6 Anderson functions illustrated in Figure
9.3a.

(c) The Anderson functions with a support of [−3,3] and a 6 m shifted ver-
sion.

(d) The ’condition matrix’ of the 6 Anderson functions illustrated in Figure
9.3c.

(e) The Anderson functions with a support of [−4,4] and a 8 m shifted ver-
sion.

(f) The ’condition matrix’ of the 6 Anderson functions illustrated in Figure
9.3e.

Figure 9.3: The Anderson functions with different support lengths and their shifted versions. n is the number of shifts that are made,
m = 0 indicates that the signal originates from a source at depth 20 = 1 m and i indicates the number of the anderson function. The
’condition matrix’ is a matrix of the inner products of all the functions. The functions are orthogonal if the condition matrix is diagonal.
Increasing the support length leads to less overlap between the functions when shifting with the same amount, and therefore a more
orthogonal set of functions.
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are at least m0 = 32/4 = 8 m deep. Preferably, we would look for deeper sources, because they impact the
signal on a larger part of the line and are therefore easier to be detected. A higher sampling rate would also
help: if we take 2m0 = 8d x/s, we know for sure that we have 8 samples in the support of the wavelets we look
for. In practice, for one-dimensional signals in space, the sampling rate is not a limiting factor, because the
sensors have a high enough sample rate. In the two-dimensional case, the sampling rate is a more limiting
factor, because there the spacing between the measurements is not only determined by the flight speed and
the sampling rate but also by the distance between the survey lines.

The maximum depth we look for is also dependent on the support. We prefer that (almost) the full support
is contained in the measured signal because this makes it easier to orthogonalize the wavelets and reconstruct
the original signal. We use the following formula to determine the maximum depth:

mmax =
⌈

loga

(
L

s

)⌉
, (9.22)

where L is the length of the line, s is the total length of the support of the wavelet and a = 2 is the scaling
parameter and ⌈x⌉ is the ceiling function, which rounds x up to the nearest integer. This means that for the

reconstruction of our 256 m long line, we look for sources that are at most ammax = 2
⌈

log2

( 256
4

)⌉
= 26 = 64 m

deep. This way, we are sure that the support of the wavelets is contained in the signal.

Depth-dependent shifts
Now that the minimum and maximum depths are known, we can determine the shifting factors of the wavelets.
For this, we again make use of the support of the wavelets. In Section 9.1.3 it is shown that shifting a wavelet
by its support ensures that a wavelet is orthogonal to its shifted version. We therefore also shift the wavelets
with at least their support. For a depth of 2m , the support is 4 ·2m , resulting in half the number of shifts over
the length of the signal when the depth is doubled. This distribution of the shifts is used in Figure 9.5 to
visualize the spectrum.

9.4.2. Pre-computing the Wavelet Family
We have seen that the search-space for the depth of the sources is dependent on the length of the signal and
the support of the wavelets. Now that we know the depth (shape) and the shifts (position) of the wavelets,
we can now use the mother wavelets to construct the wavelet family. The bases can be found by applying
Equation 9.7 to the three Anderson functions. The total number of wavelets in a family is dependent on the
number of shifts and the number of depths. The number of wavelets is given by:

N =
mmax∑

m=m0

am−m0 ·n0 , (9.23)

where mmax and m0 are the maximum and minimum depth factor and n0 is the number of wavelets at the
maximum depth. For a depth factor a = 2 and n0 = 1 dipole in the deepest layer, a signal length of L = 256 m,
a support of s = 4 m, and a total of 2048 samples, we get N = 127 shapes in the Wavelet Family for each of the
3 basis functions. This means that the total number of wavelets is Ntotal = 3 ·127 = 381.

Since the Anderson functions are not mean-zero and do not have compact support, this wavelet family is
not orthogonal. We orthogonalize the wavelet family by storing all the wavelets in a matrix A which has the
wavelet functions as columns:

A = [
ψmmax,0 ψmmax−1,0 ψmmax−1,1 · · · ψm0,am−m0−1 ψm0,am−m0

]
. (9.24)

The order of the wavelets in the matrix is important because we want to orthogonalize the wavelets in the
order of the depth. We start with the wavelets that cause the lowest spatial frequencies and work our way
up to the highest spatial frequencies. For each depth, we sort the wavelets by their shifts. As our domain
is limited to positive shifts, we only need to sort the wavelets by their shifts. Therefore, the first wavelet is
the deepest wavelet, the next two wavelets are for the second deepest depth, ordered from left-to-right by
their shifts. This ordering can be found by iterating over the cells in the spectrum (Figure 9.5) from bottom
to top and from left to right. The wavelets are then orthogonalized by applying the Gram-Schmidt process
to the columns of the matrix A. The result is a matrix Q with orthogonal columns and a matrix R with the
coefficients of the orthogonalization.

A =QR , (9.25)
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where
Q =

[
ψ⊥

mmax,0 ψ⊥
mmax−1,0 ψ⊥

mmax−1,1 · · · ψ⊥
m0,am−m0−1 ψ⊥

m0,am−m0

]
, (9.26)

and R is an N ×N matrix where N is the number of wavelets in the family (the number of columns in A).
This orthogonalization is computationally intensive, especially for higher-resolution wavelets, which con-

tain more samples, more shifts and more depths. Let alone when the functions are extended to two dimen-
sions. Therefore, we suggest to pre-compute the wavelet family. As the wavelets are dependent on the posi-
tions of the samples in the signal, which can be arbitrary, we decided to pre-compute the wavelets on pre-
defined regular grids. The measurements can be interpolated to these grids using Cubic Splines. For the
one-dimensional case, we pre-computed the Wavelet Families on a line with 64, 128, . . . and 2048 samples.
One can then interpolate the signal to the nearest grid and use the pre-computed wavelets.

A major advantage is that the pre-computed wavelets can be used for multiple scales of the problem.
For example, if we want to detect sources on a 1 m signal with 128 samples, we can use the pre-computed
wavelets on the 128-sample grid. The same family can be used to detect sources on a 10 km signal of 128
samples but requires scaling of the wavelets by a factor of 104. Our wavelet family is scale-invariant, so we
can use the same wavelets for both signals.

9.4.3. Detection and Localization by analyzing the Spectrum of the Anderson Wavelet
Transform

Using our orthonormal basis functions in our orthonormalized wavelet family, we can find the coefficients of
each of the wavelet functions by applying the Wavelet transform of Equation 9.4 to the basis functions and the
signal. Hereby, we project the signal onto the orthonormal basis functions, resulting in a set of coefficients of
how each basis function contributes to the signal.

In this section, we try to estimate the depth and position of dipole sources using only measurements on
a line. A simple, simulated magnetic field is used to demonstrate the techniques. For simplicity, we assumed
that the sources are located straight underneath the line of flight. In total, 1024 measurements are taken with
a spacing of 0.25 m throughout 256 m. The measurements are illustrated in Figure 9.4.

Figure 9.4: Vectorial measurements of a simulated magnetic field on a line of 256 m with a spacing of 0.25 m between the samples.

At the end of this section, we give the exact locations of the sources that are used to generate this magnetic
field. But first, we try to estimate these locations just by analyzing the signal. The detection coefficients are
used to determine if a source is present at a certain depth and position. For now, we are only interested in
where the source is located, and not how strong the actual source is. The depth and position of the sources
can be found by looking for local extrema in the spectrum.
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We introduce a wavelet spectrum to analyze and visualize the position of the sources. In the one-dimensional
case, the wavelet spectrum has two axes. The x-axis describes the discretized horizontal position of the es-
timated sources, in steps of the support. The y-axis indicates the depth of the sources. The color in the
spectrum represents the weight of the Anderson coefficients of the corresponding wavelets.

In the one-dimensional case, the coefficients Ci are vectors of length 3 for each Anderson function (Equa-
tion 9.17). In total, there are 9 coefficients per cell in the spectrum. To assign a single value to these coeffi-
cients, we take the sum of the absolute values. Let Ci (a,b) represent the coefficients of the Anderson wavelet
with shape parameter a and shifting parameter b derived from the i -th mother wavelet, then the value Ĉ (a,b)
in the spectrum is given by

Ĉ (a,b) =
2∑

i=0

2∑
j=0

|Ci , j (a,b)| , (9.27)

where Ci , j (a,b) represents the j -th components of the Anderson coefficient vector Ci (a,b).
We need to consider two spectra. The first spectrum represents the intensity of the wavelet coefficients

in the orthonormalized wavelet space (Qy = B). The coefficients are a result of projecting the signal onto the
orthonormal basis functions: y = BQ. Due to the orthonormalization, this spectrum shows "leakage" to cells
to the left and below the actual source location. Figure 9.5a shows an example of such a spectrum. Local
maxima in the spectrum correspond with possible locations of dipole sources. The second type of spectrum
is obtained by converting the orthonormalized coefficients back to the original wavelet space. AC = B. Note
that from our QR-decomposition, we know that y = RC and therefore

C = R−1 y . (9.28)

Figure 9.5b shows an example of such a spectrum. Both spectra in Figure 9.5 are related to the signal of Figure
9.4. Inspection of the spectrum gives us information about the location of the sources. From the clear local
maxima that are present in the spectrum, we expect that in total four sources are located at the following
positions:

• a 16 m deep source at x = 32,

• a 4 m deep source at x = 88,

• an 8 m deep source at x = 144,

• at 196 m a 2 m deep souce.

The method seems to work since the original simulated field consists of four dipoles which are positioned
exactly at the places that we expect from inspecting the spectrum. The Orthonormalized Anderson wavelet
family seems therefore a good candidate for detecting and localizing sources underneath a line of measure-
ments. It must be remarked that, in this example, the sources were purposely positioned at depths and shifts
that are contained in our search space.

9.4.4. Reconstructing the original signal from the Anderson Wavelet coefficients
In the previous section, we showed that the Anderson Wavelets can be used to detect the location of the
sources. They do, however, also form a basis for the space of magnetic fields originating from dipoles. A re-
construction of the signal can therefore be made by multiplying the wavelet functions with their coefficients.
The wavelet transformation using the orthonormalized wavelet family outputs the orthonormalized Ander-
son coefficients y . These coefficients are transformed back to the original Anderson coefficients C′

i (a,b) by
inverting the orthonormalization using the matrix R. Figure 9.6 shows that the wavelets are indeed able to
reconstruct the original field.

9.4.5. Translating the Anderson coefficients to Dipole parameters
The Anderson wavelets are constructed in such a way that they form a basis for the magnetic field originat-
ing from dipoles. We have tested this by reconstructing a magnetic field originating from dipoles using the
Anderson wavelets and their coefficients. As the Anderson functions form a basis for the magnetic field origi-
nating from dipoles, it must be possible to translate the coefficients to the parameters of the dipole. We show
how this can be done in this section. We start with the original Anderson functions and extend them to the
wavelet family.
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(a) Spectrum of the orthonormalized Anderson Wavelets. The values rep-
resent the sum of the absolute values of the Orthonormalized Anderson
coefficients y in Qy = B.

(b) Spectrum of the original Anderson Wavelets, obtained by inverting the
orthonormalization using R. The values represent the sum of the absolute
values of the original Anderson coefficients C in AC = B.

Figure 9.5: Example of the spectrum of (Orthonormalized) Anderson Wavelets obtained from a one-dimensional signal of 256 m. The
wavelet support is set to 4 m, therefore, the maximum search depth is 64 m. The color in the spectrum indicates the total weight of the
corresponding wavelet coefficients as defined in Equation 9.27.

(a) Reconstructed field using the original Anderson coefficients C′
i (a,b) (b) Error between the reconstructed field (Figure 9.6a) and the original field

(Figure 9.4)

Figure 9.6: Reconstruction of the original field (Figure 9.4) using the Anderson wavelet coefficients. The error between the original field
and the reconstructed field is shown in Figure 9.6b.
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A dipole is characterized by its magnetic moment m and its (relative) position r. These vectors can be
retrieved from the Anderson coefficients Ci . First, we solve for the magnetic moment m and then for the
position r. We assume that we know C0, C1 and C2, which are the Anderson coefficients of the three Anderson
functions and can be found by projecting the magnetic field onto the Anderson functions. Every coefficient
is a vector of length 3 and satisfies Equation 9.17:

C0 = 3(m̂ · r̂0)r̂0 −m̂ (9.29)

C1 = 3(m̂ · r̂0)v̂+3(m̂ · v̂)r̂0 (9.30)

C2 = 3(m̂ · v̂)v̂−m̂ . (9.31)

To isolate the magnetic moment m̂ from the coefficients Ci , we only need to know the third coefficient C2 and
the direction of movement of the sensor v̂. In the one-dimensional case, where we move along a line, we can
easily find v̂ by taking the difference between two consecutive positions of the sensor. The vector v̂ is then the
unit vector in the direction of the difference and looks probably something like v̂ = [1,0,0]. First, we extract
m̂ · v̂ from C2, then we use this value to find m̂.

Given C2 = 3(m̂ · v̂)v̂−m̂, we want to find C2 · v̂, which means:

C2 · v̂ = (3(m̂ · v̂)v̂−m̂) · v̂ .

Using the distributive property of the dot product, we can rewrite the expression as:

(3(m̂ · v̂)v̂) · v̂− (m̂ · v̂) .

Now, we can simplify the first term. Since v̂ is a unit vector, we have v̂ · v̂ = 1:

(3(m̂ · v̂)v̂) · v̂ = 3(m̂ · v̂)(v̂ · v̂)

= 3(m̂ · v̂)(1)

= 3(m̂ · v̂) .

We substitute this expression in the original equation:

C2 · v̂ = 3(m̂ · v̂)− (m̂ · v̂) ,

and factor out (m̂ · v̂):

C2 · v̂ = (3−1)(m̂ · v̂)

= 2(m̂ · v̂) .

Therefore, we can obtain m̂ · v̂ as

(m̂ · v̂) = (C2 · v̂)

2
,

where C2 is the second Anderson coefficient and v̂ is the direction of movement of the sensor.
Now that we have m̂ · v̂, we can use it to find m̂:

C2 = 3(m̂ · v̂)v̂−m̂

m̂ = 3(m̂ · v̂)v̂−C2

m̂ = 3

2
(C2 · v̂)v̂−C2 .

It is also possible to find the direction of the magnetic moment m̂ using the C0. This requires that we know the
vector from the sensor to the source r̂0. In general, this vector is unknown, but if we assume that the sources
are positioned straight under the sensor, we can use the vector r̂0 = [0,0,−1]. Resulting in the following ex-
pression for m̂:
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m̂ = 3

2
(C0 · r̂0)r̂0 −C0 .

Obtaining the direction vector r̂0 is a bit more complicated. In theory, it should be possible to find r̂0, even
when r̂0 · v̂ ̸= 0. Allowing us to find the direction vector r̂0 without the assumption that the sources are po-
sitioned straight under the sensor. However, this would require further investigation of the relationship be-
tween the Anderson coefficients and the dipole parameters. We also noted that the coefficients of the Ander-
son functions (Equation 9.17) have no r̂0 · v̂ terms. A lack of these terms could be the reason why it is difficult
to find back the vector r̂0 from the Anderson coefficients. Further study is required to determine if this is
indeed the case. This is left as future work.

Under certain circumstances, we can however simplify the problem by assuming that we know the CPA
(Closest Point of Approach) and that we centered the Anderson functions around that point. This means that
the vector r̂0 is of the shape r̂0 = [0, ·, ·] with v̂ · r̂0 = 0. Under this assumption, we can find the direction vector
r̂0, using the already known v̂, Ci and m̂. We start by taking the dot product of C1 and v̂:

C1 · v̂ = (3(m̂ · r̂0)v̂+3(m̂ · v̂)r̂0) · v̂

= 3(m̂ · r̂0)(v̂ · v̂)+3(m̂ · v̂)(r̂0 · v̂)

= 3(m̂ · r̂0) ,

using the fact that v̂ · v̂ = 1 and v̂ · r̂0 = 0. Dividing both sides by 3, we obtain:

(m̂ · r̂0) = C1 · v̂

3
.

We can now use this equation to find r̂0:

C1 = 3(m̂ · r̂0)v̂+3(m̂ · v̂)r̂0

= (
C1 · v̂

3
)v̂+3(m̂ · v̂)r̂0 .

And finally we can isolate r̂0:

r̂0 =
C1 −

(
C1·v̂

3

)
v̂

3(m̂ · v̂)
.

As we have not performed this derivation for a general case where sources are not always straight under
the trajectory of movement, we restrict ourselves from now on to reconstructions in the wavelet space with
Anderson coefficients and omit the translation step to the coefficients of a dipole model.

9.4.6. Wavelet Reconstructions of Different Signals
In this section, we look at the reconstructions of different one-dimensional signals. We first use the source
distribution as in Figure 9.4, but add some noise to the measurements. Then, we increase the number of
sources and place them randomly in the domain, to see how the reconstruction behaves in a more realistic
scenario.

Reconstruction of a Noisy Signal
To see how noise affects the Wavelet reconstruction, we add some noise to our measurement data. We add
noise with a uniform distribution between −1% and 1% of the maximum value of the original signal. The
result is shown in Figure 9.7a. We then reconstruct the signal using all wavelets, and the result is shown in
Figure 9.7b. We can see that the noise is mainly in the high frequencies, which are the shallower wavelets. We
can limit the search space to deeper wavelets, which reduces the noise in the reconstruction. The result of
this is shown in Figure 9.7c. We can see that the noise is reduced, but the resolution of the reconstruction is
also reduced: the shallow positioned source at x = 196 m is barely reconstructed.
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(a) Simulated magnetic field on a line with noise. (b) Reconstructed magnetic field on a line with
noise.

(c) Reconstructed magnetic field on a line with
noise, limited to deeper wavelets.

Figure 9.7: Reconstruction of the original field (Figure 9.4) for a signal with 1% noise. The left figure shows the measured field, the middle
figure shows the reconstruction using all wavelets, and the right figure shows the reconstruction using only wavelets with a minimum
depth of 4 m.

(a) The positions of the dipoles that generate a
more complex magnetic field.

(b) The measurements that are taken in the field by
moving the sensor along the line y = 0 and z = 0.

(c) The spectrum of the measured field, obtained by
projecting the signal on the orthonormal wavelet
family and inverse transforming the result to the
standard basis.

Figure 9.8: The analysis of the field generated by 50 dipoles with random positions and magnetic moments. The left figure shows the
positions of the dipoles, the middle figure shows the measurements of the field, and the right figure shows the spectrum of the measure-
ments.
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9.4.7. Reconstruction of more complex signals
All the previous examples in this chapter concerned fields that originate from a few dipole sources, positioned
at the position of the wavelets, and with almost no overlap in their support. In this section, we look at the
reconstruction of a more complex signal. We place a total of 50 dipoles. Their positioned is sampled uniformly
from the domain [0,256]× [−128,128]× [−2mmax ,−2m0 ] and their magnetic moments are chosen randomly.

The positions of the dipoles are shown in Figure 9.8a. The measurements of the field are shown in Figure
9.8b. The spectrum of the measurements is shown in Figure 9.8c. We can see that the spectrum is more
complex than the previous examples. The spectrum is also noisier because the field is generated by more
dipoles, the dipoles are positioned more closely together, and the dipoles are not positioned at the exact
locations of the wavelets. The reconstruction of the field is shown in Figure 9.9a and the corresponding error
is visualized in Figure 9.9b.

The error is significantly larger than in the previous example (Figure 9.6b). The main reason for this is
that the positions of the wavelets that are used for reconstructing the signal do not completely align with the
sources of the more complex field. The wavelets do still a good job in reconstructing the signal: the original
signal is reconstructed with approximately a 0.1% error. The largest errors are made at the boundaries of the
domain. This can be explained by the fact that our search space only contains wavelets that are completely
contained in the domain. Extending the search space to wavelets that are partially contained in the domain
would probably reduce the error at the boundaries.

(a) Reconstructed field using the Anderson Wavelets. (b) Error between the reconstructed field (Figure 9.9a) and the measured
field (Figure 9.8b)

.

Figure 9.9: Reconstruction of the field generated by 50 dipoles with random positions and magnetic moments. The left figure shows the
reconstruction using the Anderson Wavelets, and the right figure shows the error between the reconstruction and the measurements.
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9.5. Two-dimensional Anderson Functions
We have demonstrated the effectiveness of the Anderson Wavelets in the reconstruction of the magnetic field
of a dipole on a line. If we want to use the same approach to make maps of the magnetic field, we need to
extend the Anderson Wavelets to two dimensions. In this section, we derive a two-dimensional variant of the
Anderson functions. This is a new result that has not been published before. Similar to the one-dimensional
case, we start with the magnetic field of a dipole and substitute the position of the sensor in there, which is
now a function of two variables.

Figure 9.10: The 2D Anderson functions. r = (1+θ2 +φ2)

Instead of a single vector that represents the movement of the sensor, we now have two vectors v and w
that represent the movement of the sensor in the x and y direction respectively. The position of the sensor
is now a function of two variables t and s that represent the movement in the x and y direction respectively.
The variables t and s are on itself dependent on time t ′: the position of the sensor at time t ′ is given by
r(t ) = r0 +vt (t ′)+ws(t ′). In further calculations, we leave out the time t ′ from the notation for brevity. Using
the magnetic field of a dipole (Equation 2.36), the following substitutions for the dimensionless quantities θ
and φ

r = r0 +vt +ws , (9.32)

r0 = |r0| , (9.33)

θ = vt · r0

r0 · r0
= (v · r0)t

r 2
0

= v t

r0
, (9.34)

φ= ws · r0

r0 · r0
= (w · r0)s

r 2
0

= w s

r0
, (9.35)

(9.36)

and the assumptions that v, w and r0 are orthogonal to each other, so v · r0 = w · r0 = 0, and that r0 = |r0|, we
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can write the magnetic field at the position of the sensor as

B(r) = µ0

4π

[
3(m · (r0 +vt +ws))(r0 +vt +ws)

|r0 +vt +ws|5 − m

|r0 +vt +ws|3
]

(9.37)

= µ0

4π

[
3r 2

0 (m · (r̂0 + vt
r0
+ ws

r0
))(r̂0 + vt

r0
+ ws

r0
)

r 5
0 |r̂0 + vt

r0
+ ws

r0
|5 − m

r 3
0 |r̂0 + vt

r0
+ ws

r0
|3

]
(9.38)

= µ0m

4πr 3
0

[
3(m̂ · (r̂0 + v̂θ+ ŵφ))(r̂0 + v̂t + ŵs)

(1+θ2 +φ2)5/2
− m̂

(1+θ2 +φ2)3/2

]
(9.39)

= µ0m

4πr 3
0

[
3(m̂ · (r̂0 + v̂θ+ ŵφ))(r̂0 + v̂t + ŵs)

(1+θ2 +φ2)5/2
− m̂(1+θ2 +φ2)

(1+θ2 +φ2)5/2

]
. (9.40)

Simplification of this expression gives the 2D Anderson function as a sum of six functions

B = µ0m

4πr 3
0

1

(1+θ2 +φ2)5/2

[
C0 +θC1 +θ2C2 +φC3 +θφC4 +φ2C5

]
, (9.41)

where

C0 = 3(m̂ · r̂0)r̂0 −m̂ (9.42)

C1 = 3(m̂ · r̂0)v̂+3(m̂ · v̂)r̂0 (9.43)

C2 = 3(m̂ · v̂)v̂−m̂ (9.44)

C3 = 3(m̂ · r̂0)ŵ+3(m̂ · ŵ)r̂0 (9.45)

C4 = 3(m̂ · v̂)ŵ+3(m̂ · ŵ)v̂ (9.46)

C5 = 3(m̂ · ŵ)ŵ−m̂ . (9.47)

These functions are plotted in Figure 9.10.

9.6. Reconstruction of magnetic field using a two-dimensional Anderson
Wavelet Family

In the previous section, we derived the 2D Anderson function. The same procedure as in Section 9.4 can be
used to obtain a Wavelet Family, the only difference is that the shifting parameters are now two-dimensional.
Once we have computed and orthogonalized the Wavelet Family, we can use it for the reconstruction of the
magnetic field.

Similar to Section 9.4.7, we try to reconstruct a magnetic field that is generated by a set of sources. The
sources are uniformly distributed over the domain [0,256]× [0,128] at different depths. The magnetic field is
measured at the surface. The magnetic field is shown in Figure 9.11 and Figure 9.12.

Figure 9.11: Measured magnetic field in the x-y plane. The sources are uniformly distributed over the domain [0,256]×[0,128] at different
depths. The magnetic field is measured at the surface.
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Figure 9.12: Contour plot of the simulated magnetic field in the x-y plane. The sources are uniformly distributed over the domain
[0,256]× [0,128] at different depths. The magnetic field is measured at the surface.

The wavelet transformation of the two-dimensional Orthogonal Anderson Wavelet family is applied to the
measured magnetic field. The resulting spectrum, shown in Figure 9.13, shows the intensities for the different
wavelets. In the two-dimensional case, the spectrum has shifted in two dimensions and is, therefore, a three-
dimensional plot. To visualize the spectrum, we have plotted the spectrum for each depth separately.

Figure 9.13: Spectrum of the measured magnetic field. The spectrum is plotted for each depth separately.

The coefficients, whose norm is visualized in the spectrum (Figure 9.13), can be used to reconstruct the
signal. This is done by multiplying the coefficients with the corresponding wavelet and summing over all
wavelets. The reconstructed magnetic field is shown in Figure 9.14 and Figure 9.15. The error between the
reconstructed and the simulated magnetic field is shown in Figure 9.16.

An error analysis for the reconstructed magnetic field provides valuable insight into the accuracy of our
reconstruction method. As can be seen in Figure 9.16, the general structure of the simulated magnetic field
(Figure 9.12) is visible in the reconstruction. This is indicative of a successful retention of the signal’s most
important characteristics, demonstrating that our reconstruction method effectively captures the primary
aspects of the magnetic field.
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Figure 9.14: Reconstructed magnetic field. The reconstruction is done by multiplying the coefficients with the corresponding wavelet
and summing over all wavelets.

Figure 9.15: Contour plot of the reconstructed magnetic field.

Figure 9.16: Contour plot of the error between the reconstructed and the simulated magnetic field.



78 9. A Wavelet Approach to Position Estimation and Magnetic Field Reconstruction

Moreover, the location of the maxima and minima in the reconstructed field closely align with those in
the simulated field, implying that the method can accurately pinpoint the regions of highest and lowest mag-
netic field strength. This precision in locating the magnetic field’s extrema is a crucial attribute, as these
are the regions of greatest interest in several applications, such as in the detection of magnetic anomalies in
geophysical surveys.

However, it should be noted that the reconstructed solution appears slightly less smooth than the original.
This could potentially be due to the inclusion of wavelets that represent sources close to the surface, which
may introduce high-frequency components and thus result in a less smooth reconstruction. A smoother
solution might be obtained by limiting the wavelet search space and neglecting these particular wavelets,
which could help to reduce the presence of unwanted, high-frequency artifacts in the reconstructed field.

On a quantitative note, the average error between the reconstructed and simulated magnetic fields is ap-
proximately 2%. While this is generally a low error level, some local peaks in the error can be observed. In
conclusion, the results depicted in Figures 9.14 and 9.16 show promising fidelity in the magnetic field recon-
struction using our wavelet-based method, albeit with room for further improvement in the smoothness of
the solution.

9.7. Discussion and Conclusion
In this chapter, we introduced a new method for the detection and localization of sources in the magnetic
field. The method is based on the Anderson functions, which are a set of three functions that form a basis for
the magnetic field of a single dipole on a line. We constructed a wavelet family of these functions, allowing us
to detect and localize multiple sources at the same time. For a good reconstruction of signals, it is required
that wavelets do not overlap. We therefore orthogonalized the wavelet family using the Gram-Schmidt pro-
cedure and stored the orthogonalized wavelet functions and the orthogonalization coefficients in the matrix
Q and R of our QR-decomposition respectively. The orthogonal wavelet family is then given by Q and the
orthogonalization coefficients found by projecting the original signal onto the orthogonal wavelets are given
by Q.

The combination of wavelet coefficient and wavelet function can be used to reconstruct the signal. We
have seen that, depending on the number of wavelets used, the reconstructed signal can be a good approxi-
mation of the original signal. This reconstruction takes place in the orthogonal wavelet domain. The coeffi-
cients can be transformed to the original domain by multiplying them with the inverse of the orthogonaliza-
tion matrix R. The wavelets in this domain are derived by shifting and scaling the original Anderson functions,
and thus form a basis for the magnetic field of multiple dipoles on a line. In theory, it should be possible to
find a translation from the wavelet coefficients to the position and magnetic moment of the dipoles that cor-
respond with the wavelet coefficients. However, we have not been able to find such a translation in every
case yet. We were able to find the magnetic moments and positions of the dipoles for the case where the CPA
(Closest Point of Approach) is known. This is an important step to use the method as an alternative to other
inversion methods such as Equivalent Layer. Further research is required to find a translation for the general
case.

After the reconstruction of several one-dimensional signals, we extended the method to two dimensions.
We first derived the two-dimensional Anderson function, which is a function that forms a basis for the mag-
netic field of a single dipole on a plane. This function is then shifted and scaled to obtain a two-dimensional
wavelet family. The wavelet family is again orthonormalized, which can be a time-intensive procedure. We,
therefore, suggest to store the orthonormalized wavelet families. This can be done by pre-computing the
wavelet families on regular grids and interpolating the measurement data to the grid that best matches the
measurement data. The measurement data can then be projected on the orthonormal wavelet family, to find
the wavelet coefficients that represent the signal. Simulations show that these two-dimensional Anderson
wavelets can be used to reconstruct the magnetic field of multiple dipoles on a plane reasonably well. Future
work could focus on optimizing the wavelet selection process to further minimize the reconstruction error.
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Upward Continuation

Upward continuation is a method to estimate the magnetic field at a certain height above the ground. The
method uses properties of a magnetic field and measurements at lower altitudes to do this. The benefit is that
the magnetic field can be estimated at a height where no measurements are available. This is useful, for exam-
ple, when the magnetic field is measured just above the surface, but one wants to evaluate the magnetic field
at a certain height. A nice benefit is that Upward Continuation makes it unnecessary to take measurements
at different altitudes, reducing the area to be covered by measurements from 3D to 2D. This is beneficial since
taking measurements in large areas is expensive and time-consuming.

An important condition for Upward Continuation is that the sources of the field must be below the mea-
surement plane. This is a good assumption for the magnetic field on Earth in the context of aeromagnetic
surveys since the main sources of the magnetic field are the Earth’s core and the magnetized rocks in the
crust. These are all located below a measurement plane in the air.

10.1. Upward continuing the Potential Field
An essential principle derived in [5, p. 313] is that a potential field U at a point within a region R can be
calculated as an integral over the surface enclosing this region ∂R. This follows from Green’s third identity
(Section 2.4.1) and the assumption that U is harmonic, continuous, and continuously differentiable on R. A
textbook example of the region R surrounding a point P is a hemisphere of radius r . The field defined at the
points inside the hemisphere can be represented as an integral over the surface (Figure 10.1).

Figure 10.1: Hemisphere of radius r enclosing a point P . The region R is the volume enclosed by the hemisphere. If a function is
harmonic throughout R, then it can be evaluated at any point in R by integrating over the surface ∂R = S. No knowledge is required
about the sources of the field, except that they are located outside the hemisphere. This figure is adapted from [5, p. 314].

79
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In practice, this principle is used to calculate the potential field in an unknown point P ∈Ω ⊂ R3 by us-
ing the potential field on the surface ∂Ω enclosing the domain of interest Ω. Unfortunately, measuring the
potential field in a hemisphere around the domain of interest is often not feasible. Luckily, it is possible to
increase the radius of the hemisphere. As r →∞, the influence of the spherical parts of the hemisphere on
the points of interest becomes negligible, and the flat part of the hemisphere turns into an infinite plane that
can be integrated over to obtain the potential field in the points of interest. This step is only allowed if the
sources lie outside the hemisphere. The final expression derived in [5, pp. 315–316] is:

U (P ) =U (x, y, z0 +∆z) =
∫ ∞

−∞

∫ ∞

−∞
U (x ′, y ′, z0)∆z

2π[(x −x ′)2 + (y − y ′)2 +∆z2]3/2
d x ′ d y ′ , (10.1)

where z0 is the height of the plane, and ∆z is the distance between the plane and the point P . ∆z > 0 if the
sources lie below the plane. An illustration to visualize this principle is shown in Figure 10.2.

y

x

z

P

Dipole

Measurement plane (R)

Observation point

z0

∆z

Figure 10.2: The principle of Upward Continuation. The potential or magnetic induction field at a point P above a plane can be calculated
by integrating over the plane. The sources of the field are located below the plane.

It is easy to see that Equation 10.1 is a special case of the general formula for the potential field in a point
P in a region R:

U (P ) =
∫
∂R

U (x ′, y ′, z ′)
2π[(x −x ′)2 + (y − y ′)2 + (z − z ′)2]3/2

d x ′ d y ′ d z ′ . (10.2)

10.2. Upward continuing the Magnetic Induction Field
We validate if we can apply the same principle of Upward Continuation to the magnetic induction field as we
did to the potential field. In Section 2.4 it is shown that the magnetic induction field B is harmonic under
certain circumstances. The magnetic induction field can be calculated from the potential field using the
following formula:

B =−∇U . (10.3)

It remains to be shown if the magnetic induction field can be upward continued using the same formula as
the potential field. The magnetic induction field is a vector field, so the integral in Equation 10.1 is not valid.
However, the magnetic induction field can be written as a sum of three scalar fields:

B = Bx i+By j+Bz k , (10.4)

where i, j, and k are the unit vectors in the x, y , and z direction respectively. The magnetic field can be upward
continued using the same formula as the scalar potential field U , but applying the same formula separately
on each of the three components of the magnetic field:

Bi (P ) =
∫ ∞

−∞

∫ ∞

−∞
Bi (x ′, y ′, z0)∆z

2π[(x −x ′)2 + (y − y ′)2 +∆z2]3/2
d x ′ d y ′ . (10.5)
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To prove this, we can use the following formula for the gradient of a scalar field:

∇U = ∂U

∂x
i+ ∂U

∂y
j+ ∂U

∂z
k , (10.6)

and thus

Bi =−∂U

∂i
, (10.7)

where i is the x, y , or z direction.

It remains to be shown that Bi (P ) = ∫ ∞
−∞

∫ ∞
−∞

Bi (x′,y ′,z0)∆z
2π[(x−x′)2+(y−y ′)2+∆z2]3/2 d x ′ d y ′. This can be shown by dif-

ferentiating Equation 10.2 with respect to i . For i = x, the x-component of the B-field, this can be done as
follows:

Bx =−∂U

∂x
= ∂

∂x

∫
∂R

−U (x ′, y ′, z ′)
2πr3 d x ′ d y ′ d z ′ (10.8)

=
∫
∂R

−U (x ′, y ′, z ′)
∂

∂x

1

2πr3 d x ′ d y ′ d z ′ (10.9)

=−
∫
∂R

∂U (x ′, y ′, z ′)
∂x

1

2πr3 d x ′ d y ′ d z ′+
∫ ∞

−∞

∫ ∞

−∞

[−U (x, y ′, z ′)
2πr3

]x=∞

x=−∞
d y ′ d z ′ (10.10)

=−
∫
∂R

∂U (x ′, y ′, z ′)
∂x

1

2πr3 d x ′ d y ′ d z ′ (10.11)

=
∫
∂R

Bx (x ′, y ′, z ′)
2πr3 d x ′ d y ′ d z ′ , (10.12)

where

r = r(x ′, y ′, z ′) =
√

(x −x ′)2 + (y − y ′)2 + (z − z ′)2 . (10.13)

Equation 10.10 follows from applying the integration by parts formula to the inner integral over x ′. The term[−U (x,y ′,z ′)
2πr3

]
is equal to zero for x = ±∞ due to the factor r3 in the denominator. The same result can be

obtained for the y and z components of the magnetic field. The same result can be obtained by proving that
the components of the magnetic field are harmonic. This is done in Section 2.4. We can therefore conclude
that the magnetic field can be upward continued using the same formula as the potential field by applying
the formula separately on each of the three components of the magnetic field.

10.2.1. Upward continuation of the magnetic field in a 2D plane
In Section 10.2 it is shown that the magnetic field can be upward continued using the same formula as the
potential field. However, for every point of interest P , the integral must be calculated over the entire surface
∂R. This is not feasible for large surfaces. In this section, it is shown that the magnetic field can be upward
continued in a 2D plane using Fourier Transforms.

10.2.2. Upward continuing a constant field
Before we introduce the Fourier Transform for Upward Continuation, we investigate the case where the mag-
netic field is constant over the entire surface ∂R. This is a special case that does not occur often in nature, but
an important case to consider when working with the Fourier Transform on truncated surfaces.

Assume that the magnetic induction field B is constant over the entire surface ∂R with a value of Bc . The
magnetic field can be upward continued using the following formula:

B(P ) =
∫ ∞

−∞

∫ ∞

−∞
Bc (x ′, y ′, z0)∆z

2π[(x −x ′)2 + (y − y ′)2 +∆z2]3/2
d x ′ d y ′ (10.14)

= Bc∆z

2π

∫ ∞

−∞

∫ ∞

−∞
1

[(x −x ′)2 + (y − y ′)2 +∆z2]3/2
d x ′ d y ′ (10.15)

= Bc∆z

2π

∫ ∞

−∞
2

(y − y ′)2 +∆z2 d y ′ (10.16)

= Bc∆z

2π

2π

∆z
= Bc . (10.17)

Therefore, we can conclude that a constant magnetic field is not affected by Upward Continuation.
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That the values of a constant function are not dampened in Upward Continuation is not surprising. A
constant magnetic field requires the field lines to be parallel, in the same direction, and equally spaced on
the whole infinite plane. This is impossible for dipole sources since the field lines of dipoles are closed loops.
It would require an infinite number of magnetic monopoles to create a constant magnetic field on an infinite
plane. An infinitely strong dipole source placed at an infinite distance would also do the trick, but this is not
physically possible.

Although constant magnetic fields on an infinite plane do not exist in nature, it seems that they can occur
when taking measurements in the field. This is mainly because the magnetic field is measured with samples
on a finite domain. The truncated domain allows for field lines that are non-closed loops.

For the same reason as for constant fields, fields with a non-zero mean value are also less affected by Up-
ward Continuation. A field with a non-zero mean can be separated into a constant field and a field with a zero
mean value. The constant field is not affected by Upward Continuation, while the field with a zero mean value
is. Especially when taking measurements on a finite domain, fields with a non-zero mean occur more often
than completely constant fields. For example, when waves of lower spatial frequencies do not completely fall
within the domain, the magnetic field has a non-zero mean value. These lower spatial frequency signals are
produced by sources that are much deeper than the size of the domain.

The difficulty here is that it is not possible to determine the distance to this deep source by using the obser-
vation points. Without the distance to the source, we cannot use the property that the magnetic field decays
with a third power of the distance, and therefore the dampening of the field cannot be determined. For this
reason, it is preferable to do computations on fields that are zero-mean. This can be achieved by subtracting
the mean value of the magnetic field from the magnetic field, leading to an anomaly field where the mean is
used as a reference value. By doing this, the exact field at evaluation points can no longer be determined, but
the dampening of the anomaly field can be determined for different heights of Upward Continuation.

10.2.3. Upward continuing a vector magnetic field in a 2D-plane
The theory for Upward Continuation of the potential in a 2D-plane has been described in [5, pp. 316–319].
Here they use the Fourier Transform as a dampening function that dampens higher spatial frequencies more
than lower spatial frequencies when upward continuing the potential. The same theory can be applied to the
magnetic field, as we have shown in Section 10.2 that the magnetic field itself can also be upward continued.

First, we note that Equation 10.5 can be rewritten as a convolution:

Bi (P ) =
∫ ∞

−∞

∫ ∞

−∞
Bi (x ′, y ′, z0)Φu(x −x ′, y − y ′,∆z)d x ′ d y ′ , (10.18)

whereΦu is given by

Φu(x, y,∆z) = ∆z

2π[x2 + y2 +∆z2]3/2
=− 1

2π

∂

∂∆z

1√
x2 + y2 +∆z2

. (10.19)

We can also write this in a compact form:

Bu = B◦Φu , (10.20)

where B◦Φu is the convolution of B andΦu and Bu is the upward continued magnetic field.
The upward-continued value of a 2D horizontal plane can now be calculated using convolution 10.20.

A convolution in the time domain is equivalent to a multiplication in the frequency domain. Let F [B] be
the vector containing the Fourier Transforms of the magnetic field components B and F [Φu] be the Fourier
Transform of the upward-continuation function Φu . Then the Fourier Transform of the upward-continued
magnetic field is given by

F [Bu] =F [B]F [Φu] , (10.21)

with the following relation between the Time and Frequency domain:

Bu = B◦Φu ⇔ F [Bu] =F [B] ·F [Φu] . (10.22)

This convolution can be calculated using the Fourier Transform. The Fourier Transform of B is dependent on
the observations and is therefore not given here. The Fourier Transform ofΦu is given by
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F [Φu] =− 1

2π

∂

∂∆z
F

[
1

|r |
]

(10.23)

=− ∂

∂∆z

e−|k|∆z

|k| (10.24)

= e−∆z|k| . (10.25)

This makes the computation of the upward-continued magnetic field very fast. The Fourier Transform F [B]
of the measured magnetic field can be calculated using for example the Fast Fourier Transform. The Fourier
Transform F [Φu] of the upward-continuation function Φu can be pre-computed for a range of heights. Up-
ward continuing the field to different heights is then a matter of multiplying the Fourier Transform of the mag-
netic field with the Fourier Transform of the upward-continuation function. The upward continued magnetic
field can be calculated using for example the Inverse Fast Fourier Transform.

Figure 10.3: The effect of altitude on the spatial variation in the magnetic field. This figure is taken from [54, pp. 4–8].

The fact that higher frequencies are more dampened than lower frequencies when upward continuing
the magnetic field has some consequences for the process of magnetic map-making. If one wants to make
a high-resolution map of the magnetic field that captures detailed variations in the magnetic field, then the
measurements should be taken at a low altitude close to the sources. Figure 10.3 shows the effect of altitude
on the spatial variation in magnetic field measurements of a simulated geological magnetic field. It empha-
sizes the importance of maintaining low terrain clearance, the distance between the sensor and the ground,
when mapping areas with near-surface magnetic features. Reeves analyzed the theoretical magnetic profiles
calculated for different flying heights over a simplified geological model and concluded that distinct peaks
for individual sources are only identifiable when the terrain clearance is smaller than the dimensions of the
feature under investigation[54, pp. 4–8]. This suggests that most anomalies appearing as single features at
survey altitudes likely result from multiple, closely spaced magnetic units within the subsurface.
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10.2.4. Upward continuing an anomaly field in a 2D plane
In Section 2.4 it is shown that the field ∆T is approximately harmonic. This means that Equation 10.21 can
also be used to upward continue an Anomaly Field ∆T (Section 5.4). To prove this, the Fourier Transform of
∆T is calculated. First, ∆T0 is defined as

∆T0 = B0
a · B̂

0
e =− f̂ 0 ·∇U 0

a , (10.26)

where the superscript 0 indicates that the field is measured at height z0, f̂ 0 is the unit vector in the direction
of the magnetic field and ∇U 0

a is the gradient of the anomaly potential U 0
a .

The Fourier Transform of ∆T0 is given by

F [∆T0] =F [− f̂ 0 ·∇U 0
a ] (10.27)

=− f̂ 0 ·F [∇U 0
a ] (10.28)

= (− f̂ 0 ·κ)F [U 0
a ] , (10.29)

where κ is the wavenumber and the first step is valid when f̂ 0 is constant over the area of interest.
Upward continuation of a scalar potential U 0

a is given by

F [U z
a ] =F [U 0

a ]e−|κ|∆z , (10.30)

where ∆z is the height difference between the measured and the upward-continued field and superscript z
indicates that the field is at height z0 +∆z. Substituting Equation 10.30 into Equation 10.27 gives

F [∆T0] = (− f̂ 0 ·κ)
F [U z

a ]

e−|κ|∆z
. (10.31)

Analogous to Equation 10.27, one can find the Fourier Transform of ∆Tz :

F [∆Tz ] = (− f̂ z ·κ)F [U z
a ] , (10.32)

where f̂ z is unit vector indicating the direction of the magnetic field at height z0 +∆z. F [U z
a ] is unknown in

this case, but can be expressed in known terms using Equation 10.31:

F [∆Tz ] = (− f̂ z ·κ)F [U z
a ] (10.33)

= (− f̂ z ·κ)
1

− f̂ 0 ·κF [∆T0]e−|κ|∆z (10.34)

= − f̂ z ·κ
− f̂ 0 ·κF [∆T0]e−|κ|∆z . (10.35)

This shows that the Fourier Transform of the upward continued field∆Tz is equal to the Fourier Transform

of the measured field ∆T0 multiplied by a factor − f̂ z ·κ
− f̂ 0·κ . The dampening factor e−|κ|∆z is dependent on the

wavenumber κ and the height difference ∆z. Higher spatial frequencies have a higher wavenumber and are
therefore more dampened.

10.3. Discrete Upward Continuation
A drawback of Upward Continuation in integral form is that its computations are based on a continuous
function. The integral over the infinite or truncated plane requires continuous measurements of the magnetic
field. This is not possible in practice. It is only possible to measure the magnetic field at a discrete set of
points. There are several ways to discretize the integral. In this section, we discuss two meshing methods.
The first method assumes a regular grid. The second method uses a polar-coordinate-based mesh. The polar-
coordinate-based mesh is more accurate than the regular grid when upward continuing a single point, but it
is less practical for upward continuing a large area since it requires a specific distribution of the measurement
points.
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10.3.1. Upward Continuation on a regular grid
The most simple way to discretize the integral is to use a regular grid. Let [x1, . . . , xn]× [y1, . . . , ym] be a regular
grid of points with spacing∆x and∆y in the x and y direction respectively. Then, the upward continued value
at a point (xi , y j , z0 +∆z) can be approximated by a double sum over the values at points (xk , yl , z0) for k, l in
K ,L:

Uh(i , j , z0 +∆z) = ∆z

2π

∑
k∈K

∑
j∈J

U (xk , xl , z0)

[(xi −xk )2 + (y j − yl )2 +∆z2]
3
2

∆x∆y , (10.36)

where K and L are indices centered around i and j . This discretization is easy to implement, but not very
accurate. The influence of a point (xk , yl , z0) on the point (xi , y j , z0 +∆z) decreases with the third power of
the distance. If ∆z is chosen to be small, then almost the whole integral is dominated by the point (xi , y j , z0)
straight under the point of interest. At the same time, if ∆z ≫∆x,∆y , then the domain of dependence of the
integral is very large. This requires a large number of measurements to get a good approximation.

Despite these drawbacks, this method is still useful. Surveys are often done in lines, so that the points are
close to each other in the x direction and have a constant spacing in the y direction: ∆y ≫ ∆x. In this case,
the main discretization error is the one in the y direction. This can be reduced by using a higher order inter-
polation scheme in the direction perpendicular to the lines. Canciani suggests [14] using linear interpolation
in the x direction and cubic interpolation in the y direction. Interpolating the measurement points allows us
to use a finer grid.

10.3.2. Upward Continuation on a logarithmic polar mesh
As stated before, the function that is integrated decays with the third power of the distance. This motivates the
use of a polar coordinate system. The domain can be divided into several concentric circles with increasing
radii. The smallest circle is centered underneath the point of interest and has a single measurement point.
The next circle forms a ring around the first circle. On this ring, 3 points are spaced evenly. The number of
points on the n-th ring is 2n +1. The radius of the rings can be chosen to be constant or to increase with the
number of the ring. The latter is called a logarithmic mesh and is visualized in Figure 10.4.

Figure 10.4: A logarithmic mesh with 5 rings, initial radius r0 = 0.5 and radius rn+1 = rn + r0 ∗dr n+1 with radius increment dr = 1.5.

The logarithmic mesh gives a very good approximation of the integral. The finer mesh on the inside allows
for good accuracy for small ∆z. The coarser mesh on the outside allows for fast computation and also for a
good approximation for large ∆z. Unfortunately, the mesh is not practical, because the mesh is centered
around the point of interest. This means that the mesh has to be moved for every point of interest. For a
plane survey, this means that the coarser points have to be moved around the plane, which ends up being
similar to the regular grid, but with a much higher computational cost.
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10.3.3. Linear and Cubic interpolation of irregularly spaced data
Irregularly spaced data can be interpolated to a regular grid using an interpolation scheme. Linear interpola-
tion assumes that the function behaves linearly between two points. In the context of magnetic fields, linear
interpolation is only useful for really small distances. Cubic interpolation assumes that the function behaves
like a polynomial of degree 3, which is more in line with the behavior of a magnetic dipole field (see Equation
10.51).

The magnetic dipole field behaves like 1/r 3 at great distances. As long as the plane of interest is not too
close to the origin, the singularity at the origin can be ignored. The factor theorem can be applied to the
denominator of Equation 10.51 to get a polynomial of positive degree and a factor 1/r 3. The polynomial is of
degree 3 so that cubic interpolation is a good approximation.

The underlying assumption that our field is a superposition of magnetic dipoles makes it smarter to limit
ourselves to the maximum degree of 3 that the dipole field in Equation 10.51 has. A cubic function can be
represented exactly with a cubic spline. Using higher-order interpolation schemes is possible, but it is not
necessary and it does not improve the accuracy.

10.4. Domain of Dependence for Upward Continuation
Equation 10.5 assumes that the exact value of the magnetic field is known on an infinite plane below the point
of interest P . It is impossible to measure the magnetic field on an infinite plane. Therefore, the magnetic field
is measured on a finite plane. For now, it is assumed that the magnetic field can be measured continuously on
a finite plane, this domain of dependence gives an upper bound on the Upward Continuation error depending
on the size of the plane that is integrated over.

The analysis of the Domain of Dependence is done using a finite plane with a circular shape. The circular
plane is chosen to have a center with the same x- and y-coordinates as the point of interest, but a different
z-coordinate. The radius of the circle describes the minimum set of points that is used in the integral for
Upward Continuation. The motivation for using a circular shape is that the influence of a point on the point
of interest decreases with the third power of the distance. This means that, when for example using a square
plane, the influence of the points on the corners is negligible compared to the influence of the points on the
sides. If one wants to use the estimates from this section on a domain that is not circular, one can use the
largest circle that fits in the domain to get a bound on the error.

10.4.1. An upper bound on the error
Equation 10.5 can also be written in polar coordinates using substitution (x −x ′) = r cos

(
φ

)
and (y − y ′) = r sin

(
φ

)
:

B(z0 +∆z) =
∫ ∞

0

∫ 2π

0

B(r,φ, z0)∆z

2π[r 2 +∆z2]3/2
r dφdr . (10.37)

We define the error in the Upward Continuation as the difference between the exact value of the magnetic
field and the computed value using a finite plane with a radius r0:

ϵ(P ) = |B(P )−Br0 (P )| , (10.38)

where

Br0 (P ) =
∫ r0

0

∫ 2π

0

B(r,φ, z0)∆z

2π[r 2 +∆z2]3/2
r dφdr , (10.39)

is the magnetic field computed using a finite plane with radius r0. The maximum error is given by:

ϵ(P ) = ∣∣B(P )−Br0 (P )
∣∣ (10.40)

=
∣∣∣∣∫ ∞

0

∫ 2π

0

B(r,φ, z0)∆z

2π[r 2 +∆z2]3/2
r dφdr −

∫ r0

0

∫ 2π

0

Br0 (r,φ, z0)∆z

2π[r 2 +∆z2]3/2
r dφdr

∣∣∣∣ (10.41)

=
∣∣∣∣∫ ∞

r0

∫ 2π

0

B(r,φ, z0)∆z

2π[r 2 +∆z2]3/2
r dφdr

∣∣∣∣ . (10.42)

The value B(r,φ, z0) can be approximated by the maximum absolute value of the magnetic field on the
open set S = {(r,φ)|r ≥ r0 ∧ 0 ≤ φ < 2π}. Let M = max

(r,φ)∈S
|B(r,φ, z0)| be the maximum absolute value of the
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magnetic field outside the measured domain, but on the plane. Then, an upper bound for the error is given
by:

ϵ(P ) ≤
∫ ∞

r0

∫ 2π

0

M∆z

2π[r 2 +∆z2]3/2
r dφdr (10.43)

= M∆z
∫ ∞

r0

1

[r 2 +∆z2]3/2
r dr (10.44)

= M∆z√
r 2

0 +∆z2
, (10.45)

for ∆z > 0. An upper bound for the error is therefore proportional to the radius r0 of the plane ∂R.

(a) Relative error of Upward Continuation for a single point as a function of
the radius of the plane that is integrated over.

(b) Relative error of Upward Continuation for a single point as a function
of the distance between the plane and the point of interest

Figure 10.5: Maximum relative error as a function of the radius of the plane and the distance between the plane and the point of interest.

The maximum error is given by Equation 10.43. We want to express the error as a relative error, indepen-
dent of the strength of the magnetic field. To do so, we use the assumption that the maximum absolute of the
magnetic field outside the circle of radius r0 is less than the average absolute value M of the magnetic field
on the circle of radius r0:

M = max
(r,φ)∈S

|B(r,φ, z0)| ≤ 1

2πr0

∫ 2π

0

∫ r0

0
|B(r,φ, z0)|dr dφ= M . (10.46)

The maximum relative error ϵ(P ) is then given by:

ϵ(P ) = 1

M
ϵ(P ) = M

M

∆z√
r 2

0 +∆z2
≤ ∆z√

r 2
0 +∆z2

. (10.47)

Figure 10.5 shows the maximum relative error as a function of the radius of the plane and the distance
between the plane and the point of interest. One can read from Figure 10.5a that the maximum relative error
is proportional to the radius of the plane: one needs a radius r0 of approximately 104m to have a relative
error of 0.01 in a point that is 100m above the plane. To obtain an extra order of magnitude, the radius of the
plane should be increased by a factor of 10. Relative in this case means that the error is divided by the average
value of the magnetic field in the plane ∂R. If the point of interest has a magnetic field strength of 100nT,
then the maximum error is 1nT for a radius of 104m and a distance of 100m between the plane and the point
of interest. This is also immediately a motivation to do these computations on the magnetic anomaly field
rather than the complete magnetic field: subtracting a constant from the magnetic field reduces the error by
a constant since the value of M is reduced by the same constant. This is in line with what we have seen in
Section 10.2.2. There, we noticed that computing the upward continued value of a constant magnetic field
using a double integral over a plane is not a good idea, since we know that constant fields are not dampened.
The integral can easily be computed analytically and the solution only depends on the distance between
the plane and the point of interest. Therefore, subtracting constants from a magnetic field and performing
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Upward Continuation separately on the magnetic anomaly field and the constant field reduces the error by a
factor proportional to the constant:

UC(B) = UC(B+BA) (10.48)

= UC(B)+UC(BA) (10.49)

= B+UC(BA) , (10.50)

where B is the constant magnetic field and BA is the magnetic anomaly field and UC is a shorthand notation
for Upward Continuation. The error made by upward continuing the constant magnetic field B is zero, and the
maximum error made by upward continuing the magnetic anomaly field BA is proportional to the maximum
value of the magnetic anomaly field. This is again a good motivation to perform computations on an anomaly
field with zero mean value.

10.4.2. A lower bound on the error
The estimation of the maximum value M is an obstacle in retrieving a stricter bound on the error. In the above
example, M is assumed to be the maximum magnitude in the plane ∂R. This describes a worst-case scenario:
the magnetic field can attain this maximum value in the whole plane. This is not the case in general. In this
section, we consider another case: the magnetic field is induced by a single dipole, which leads to a lower
bound on the error.

The bound M = max
(r,φ)∈S

|B(r,φ, z0)| helps to find an upper bound on the error. However, the bound M is not

a good estimation for the value of the magnetic field in a plane. M is only a good estimation if the magnetic
field is constant in the plane. A constant magnetic field only occurs if the magnetic field is induced by a dipole
position at infinity, or if dipoles are positioned infinitesimally close to each and the plane. This is not the case
in general, but it helps us to physically understand the bound: the magnetic field of a dipole degrades with a
third power of the distance. The number of points in the plane ∂R is proportional to r 2

0 . Therefore, the error
is proportional to r0.

The magnetic field induced by a single dipole is given by:

B(r) = µ0

4π

3(m · r)r−m|r|2
|r|5 (10.51)

where r is the position vector of the point of interest and m is the dipole moment. At a great distance, this
behaves as 1/r 3 where r = |r|. If the plane ∂R is located at a distance zd from the dipole, and the point of
interest is located at a distance z0 from the plane, then the influence of the dipole on an infinite plane is
similar to the contribution of the points on the plane on the point of interest: the strength decays with a
third power of the distance, and the number of points is again proportional to the radius of the plane. The
approximated field strength in the plane is therefore given by:

B(r,φ, z0) = µ0

4π

3((m · r′)r′)−m|r′|2
|r′|5 (10.52)

≈ Md

[r 2 + z2
d ]3/2

, (10.53)

where r ′ =
√

r 2 + z2
d .

Substituting Equation 10.52 in Equation 10.40 gives:

ϵ(P ) =
∫ ∞

r0

∫ 2π

0

B(r,φ, z0)∆z

2π[r 2 +∆z2]3/2
r dφdr (10.54)

= Md∆z
∫ ∞

r0

1

[r 2 +∆z2]3/2[r 2 + z2
d ]3/2

r dr (10.55)

∝ 1

r 4 , (10.56)

where the proportionality follows if |∆z| ≈ |zd |.
In Figure 10.6 the relative error obtained by upward continuing the magnetic field of a single dipole, is

plotted as a function of the radius of the plane and the distance between the plane and the point of interest.
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(a) Relative error of Upward Continuation for a single point as a function of
the radius of the plane that is integrated over.

(b) Relative error of Upward Continuation for a single point as a function
of the distance between the plane and the point of interest

Figure 10.6: Minimum relative error as a function of the radius of the plane and the distance between the plane and the point of interest.
The minimum error is achieved when the field is generated by a single dipole underneath the point of interest. The error is proportional
to the fourth power of the radius of the plane.

This is a much better bound than the one given by Equation 10.43. Note that this estimate is only valid in the
ideal situation of a single dipole at depth z0 and a point of interest that is located straight above the dipole at a
distance z0 from the plane. This implies that the theoretical maximum decrease 1/r 3 of the dipole is reached
in all directions in the plane. This is the theoretical minimum error since a magnetic dipole field cannot decay
faster.

Figure 10.7: Numerical computation of the absolute error in the x-component of the magnetic field as a function of the radius of the
plane for different depths of a single dipole.

Figure 10.7 shows the absolute error in the x-component of the magnetic field as a function of the radius
of the plane for different depths of a single dipole. The error is computed by upward continuing the magnetic
field of a single dipole to a single point of interest that lies 10 meters above the plane and comparing it to the
analytical solution. The solution is approximated with the discrete Upward Continuation method using the
logarithmic-polar mesh, as described in Section 10.3.2. For small radii, the minimum error estimate seems to
be in good agreement with the numerical error. However, for larger radii, the numerical error does not attain
the minimum error estimate of Section 10.4.2. This can be explained by the fact that the numerical error is
computed using a discretized mesh, with a finite number of points and therefore a limited precision in the
computation of the integral.
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11
Benchmarking

In this chapter, we discuss the benchmarking of the various map-making techniques. The goal of the bench-
marking is to compare the performance of the various map-making techniques. We have chosen to bench-
mark the techniques by applying them to a simulated magnetic field. A MagMap Python package has been
developed to simulate magnetic fields and apply map-making techniques to these fields. This chapter starts
with a description of the modelling tool and the simulation parameters (Section 11.1). This is followed by
a description of the setup of the benchmarking experiment (Section 11.2). Thereafter, we introduce several
metrics that we use to compare the performance of the map-making techniques (Section 11.3). Finally, we
discuss the results of the benchmarking experiment on the simulated magnetic field (Section 11.4).

11.1. Simulating Earth’s Magnetic Field
11.1.1. Modelling Tool
This report contains various map-making techniques that can be applied to magnetic fields. As part of this
research, we have implemented these techniques and combined them in a single Python package called
MagMap. An interface is defined for each method, which allows us to call the methods with similar input
parameters. This modular approach makes it easy to switch between the methods and compare the results.

The Python package includes classes and tools that simplify working with magnetic fields. One such class
is the ’Field’ class, which can accommodate various sources, such as single dipoles, layers of dipoles, noise
terms, and real-world data from IGRF. A unique feature of the Field class is that it allows fixing the seed of the
random number generator, which ensures the creation of reproducible random fields.

Fields can be easily combined and exported to a compact JSON file. Moreover, we can assess fields at
specific points by providing a path of x-, y-, and z-coordinates to the Field object. The three magnetic field
components at each point are returned, and we can specify an additional parameter to obtain only a Total-
field measurement.

All the magnetic techniques implemented in this report can be directly applied to an object of class Fields.
These methods apply to Total-field measurements or vector measurements.

11.1.2. Simulation Parameters
Many setups can be used to demonstrate the performance of the various map-making techniques. The per-
formance of the map-making techniques is dependent on the type of field that is being mapped. To make the
results comparable, we have chosen to limit ourselves to fields that are close to natural fields on a regional
scale. This field is generated using a deep dipole to represent the core of the Earth, and a grid of dipoles to
represent the crust.

Core-field models and crustal-field models are often represented in a geodetic coordinate system. The
methods that we apply are defined in cartesian coordinates, preferably centered around the origin. Therefore,
we have to convert the geodetic coordinates to cartesian coordinates. We chose to represent the core field by a
single dipole which is placed at a depth of 6371 km straight underneath the origin of the cartesian coordinate
system. The dipole is given a magnitude such that it matches the Earth’s magnetic field at the Equator (3.12×
104 nT). The dipole is rotated by adjusting its moment, such that the value at (0,0,0) is the magnetic field at
the center of the Netherlands (52.0◦ N, 4.3◦ E).
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The crustal field consists of a grid of 61×61 dipoles with a spacing of 2 km. In total, they span a region of
120 km by 120 km centered around the origin. The dipoles in the grid are assigned a random depth ranging
from 100 m to 9900 m. The random depth is taken from a triangular distribution, which ensures that the
dipoles are more likely to be located at shallow depths, resulting in enough spatial variation in the map to
demonstrate the performance of the map-making techniques. The intensity of the dipoles is chosen such
their intensity at the surface is uniformly distributed between −300 nT and 300 nT.

Simulation Area and Resolution
The area of the regional magnetic field we simulate has a spatial extent of tens of kilometers. All the sources
are positioned in a region of 120 km by 120 km centered around the origin. The minimum depth of the sources
in the simulated crustal field is 100 m, and the maximum depth is 9900 m, making the field detailed enough
to represent a regional magnetic field.

The resolution of the simulated field is determined by the size of the grid of dipoles. The grid of dipoles
has a spacing of 2 km at a depth of at least 100 m, therefore, the wavelengths originating from the grid of
dipoles are at least 4 km. It is important to note that the resolution of the simulated field is not the same
as the resolution of the map. The resolution of the map is determined by the spacing of the measurement
locations and how well they represent the field.

Simulation Noise
To make the simulations a bit more realistic, we add noise to the simulated field, as if it were measured in the
field. We use a simple, white noise model, which is added to the simulated field. Each measurement of the
field is perturbed by a random number drawn from a normal distribution with a mean of 0 nT and a standard
deviation of 20 nT.

The noise model we used is very basic. We have seen in Chapter 7, that the compensation of noise is a
complex problem. A white noise model is a simplification of the real noise that is present in the field, which
is often colored, platform-dependent, and direction dependent.

Simulated Field

Figure 11.1: Total-field intensities of the magnetic fields that are simulated for the benchmarking experiment. The left panel shows the
simulated core field, the middle panel the simulated crustal field, and the right panel shows an example of random noise that is added
to the simulated field.

Using the parameters described above, we have simulated a regional magnetic field. The simulated field
consists of a core field, a crustal field, and noise. These fields are illustrated in Figure 11.1. The core field
changes slowly over the region of interest, while the crustal field has higher spatial variation. The noise is
random and has no spatial correlation.

11.2. Setup of the Benchmarking Experiment
In the previous section, we have described how we simulate a regional magnetic field. In this section, the
simulated magnetic fields are used as input for a benchmarking experiment. We have made a benchmarker
as a tool to evaluate and compare the performance of different interpolation and extrapolation techniques of
magnetic fields for a given set of measurements. The benchmarker takes in a set of input data, such as training
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data and test data, and a list of map-making techniques (interpolators or extrapolators) to be evaluated. It
then runs each map-making technique on the input data and interpolates (or extrapolates) the magnetic field
from the training measurements to the positions of the test measurements. The benchmarker then evaluates
the performance of the map-making techniques by comparing the interpolated (or extrapolated) magnetic
field to the test magnetic field using a set of predefined metrics.

The benchmarker also allows for the visualization of the data: with a single command, the benchmarker
can generate plots of the training measurements, the test measurements, the interpolated (or extrapolated)
magnetic field, and the error between the interpolated (or extrapolated) magnetic field and the test magnetic
field. It also supports exporting the benchmarking results to a csv file.

11.2.1. Measurements (Training Data)
To apply the benchmarker to the simulated field of Figure 11.1 we need to define a set of measurement points.
The measurements are taken on a regular grid in the x-y plane at the surface (z = 0). To make sure that the
measurements are taken in the region where the simulated field is defined (120×120 km, centered around
the origin), we choose the measurement points to be in a region spans 30×30 km, centered around the origin
of our coordinate system. All the experiments are performed with two different spacings of the measurement
grid: a coarse grid with a spacing of 600 m consisting of 50×50 measurement points, and a fine grid with a
spacing of 300 m consisting of 100×100 measurement points.

In our simulated environment, we can control everything: e.g. the measurement locations, the noise and
the depth of the sources. Which makes it more suitable for benchmarking than real data. In practice, mea-
surements are often taken using survey lines, which are generally not completely straight. Some extrapolation
methods do however require a regular grid of measurements. We can obtain a regular grid of measurements
by using one of the interpolation techniques. It is also better to measure at a constant height above the
ground, e.g. 20 m, to avoid noise from objects on the ground.

11.2.2. Map-making Techniques
The benchmarker supports a wide range of map-making techniques. The map-making techniques are di-
vided into two categories: interpolators and extrapolators. Table 11.1 shows an overview of the map-making
techniques that are implemented in the benchmarker. The table also shows whether the map-making tech-
nique is parametric, an interpolator, and/or an extrapolator.

The methods that are incorporated in the benchmark are Cubic Splines for interpolation, Equivalent Layer
for interpolation and extrapolation (Chapter 8), Multi-Layer Equivalent Layer for interpolation and extrapo-
lation (Section 8.3.6), Upward Continuation as a discrete integral (Section 10.3) and Upward Continuation
using the two-dimensional Fourier Transform (Section 10.2.3). The Anderson Wavelets (Chapter 9) are not
implemented in the benchmarker, because their implementation so far only supports sources that are lo-
cated straight underneath the wavelet center (Section 9.4.5). The Spherical Harmonic Expansion (Section
6.5) and the Kriging method are not used in the benchmark.

Map-Making Technique Non-parametric Interpolator Extrapolator

Cubic Splines ✓ ✓ ✕

Equivalent Layer ✕ ✓ ✓

Equivalent Layer (Multi-Layer) ✕ ✓ ✓

Upward Continuation (Integral) ✓ ✕ ✓

Upward Continuation (FT) ✓ ✕ ✓

Anderson Wavelets ✓ ✓ ✓

Spherical Harmonic Expansion ✓ ✓ ✓

Kriging ✕ ✓ ✕

Table 11.1: Map-making techniques that are implemented in the benchmarker. The table shows whether the map-making technique is
non-parametric, whether it can be used as an interpolator, and whether it can be used as an extrapolator. The first six techniques are
used in the benchmarking experiment. The last three techniques are not used in the benchmarking experiment but are included in the
table for completeness.
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Parametric Techniques
Parametric techniques require a set of parameters to be defined before the map-making technique can be
applied. The parameters are often dependent on the type of field that the method is applied to. For example,
the Equivalent Layer method requires the depth of the layers to be defined. Parametric methods can be very
fast and accurate, but their required a priori assumptions about the field can make them less suitable for
general use.

In our benchmarking experiment, we use the Equivalent Layer method as a parametric technique. We did
make a rough estimate of the depth of the sources in the simulated field (1600 m), but we did not tune the
parameters to find the best possible result for Equivalent Layer. We also benchmarked a second Equivalent
Layer method, which uses a multi-layered Equivalent Layer structure (Section 8.3.6). The results of these
methods are discussed in the next section and are visualized in Figure 11.3a and Figure 11.3b.

Interpolators
Interpolators are map-making techniques that can be used to interpolate a magnetic field from a set of mea-
surements to a set of evaluation points that are located in between the measurement points. In our work, we
speak of interpolating when we have measurements at a certain altitude and we want to find the magnetic
field at different points at the same altitude. The evaluation points must be surrounded by measurement
points in the measurement plane, otherwise, the interpolator cannot be applied. It is not a mandatory re-
quirement that the measurements are taken at the same altitude. For example, we can interpolate a magnetic
field from a set of measurements at z = 0 m and z = 2 m to a set of evaluation points at z = 1 m. The interpo-
lation techniques that we use in the benchmarking experiment are Cubic Splines and Equivalent Layer.

Extrapolators
By extrapolators we mean map-making techniques that take measurements of one height as input and ex-
trapolate the magnetic field to evaluation points at a higher altitude. Equivalent Layer and Upward Contin-
uation are techniques that can be used for extrapolating. Some extrapolation techniques require measure-
ments on a regular grid, for example, for the Fourier Transform method for Upward Continuation. When the
measurements are not available on a regular grid, we can use one of the interpolation techniques to obtain a
regular grid of measurements and then extrapolate the magnetic field to the desired altitude. In our bench-
marking experiment, the interpolation step before extrapolating is performed with Cubic Splines, as they are
fast and accurate enough for this purpose.

Boundary Points
In our benchmarking experiments, we decided to remove the boundary of the domain from the evaluation
points when extrapolating. The reason for this is that some methods, such as Upward Continuation using
and Integral, are dependent on a larger domain of measurements (Section 10.4). We, therefore, restrict the
evaluation points to a smaller part of the domain, which allows us to compare the extrapolation methods
more fairly and express their performance in terms of the same metrics (Section 11.3).

11.3. Metrics
It is not trivial to define what a good map is, since the use-case of the map plays a big role. For example, a
map that is used for navigation purposes may require different properties than a map that is used for anomaly
detection. In this chapter, some global metrics are defined that can be used to compare the quality of maps
in a general way, we also discuss how and where these metrics are applicable.

The quality of a map can be measured in many different ways. In this research, we limit ourselves to
benchmarking two-dimensional maps. If we further restrict ourselves to maps that are defined on a regular
grid, we can use the same metrics that are used to evaluate the quality of images. Under the assumption that
we have access to the exact field that is being mapped, we can compare the map to the exact field, as if we are
comparing the reconstruction of an image to the original image. The following metrics are commonly used
to evaluate the quality of reconstructed images.

11.3.1. RMSE
The RMSE or root mean squared error is a way to quantify the difference between two vectors. It involves
taking the square root of the average of the squared differences between the elements of the two vectors. The



11.3. Metrics 97

average of the squared differences, also known as the mean squared error (MSE), is calculated as follows:

MSE(x, y) = 1

N

N∑
i=1

(xi − yi )2 , (11.1)

where x is a flattened vector of the original data, y is a flattened vector of the reconstructed data, and N is the
number of elements in the vector.

The RMSE is then calculated by taking the square root of the MSE:

RMSE(x, y) =√
MSE(x, y) =

√√√√ 1

N

N∑
i=1

(xi − yi )2 . (11.2)

In simpler terms, RMSE is a statistical tool that measures how far apart two sets of data are from each
other. A low RMSE indicates that the reconstructed data is close to the original data.

11.3.2. PSNR
Peak Signal-to-Noise Ratio (PSNR [60]) is a quantitative measure that is often used in the field of image and
video processing to assess the efficacy of compression algorithms. By comparing the original, uncompressed
signal with the compressed version, PSNR yields a numerical value that quantifies the extent of distortion or
noise introduced during the compression process. If we interpret magnetic maps as compressed versions of
the exact magnetic field, we can use PSNR to compare the quality of different maps.

PSNR is derived from the mean squared error (MSE), which calculates the average squared difference
between corresponding pixel values in the original and reconstructed images. The formula for MSE is given
by Equation 11.1. The PSNR is then calculated by taking the ratio of the maximum possible pixel value L and
the MSE and converting it to a logarithmic decibel (dB) scale:

PSNR(x, y) = 10log10

(
(L−1)2

MSE(x, y)

)
, (11.3)

where

L = max(x) . (11.4)

As PSNR is inversely proportional to the MSE, a higher PSNR indicates a lower MSE and thus a lower
error. The L in the denominator of Equation 11.3 is for images the maximum pixel value, for a total-field
map of the magnetic field this is the maximum magnetic field strength. Scaling by L ensures that the PSNR
is independent of the maximum field strength, which makes it a more intuitive metric. The PSNR can also
be applied to vectorial maps, in which case the MSE is calculated for each component of the vector and the
PSNR is calculated for each component separately. And if one prefers, the PSNR can be expressed in a single
value by taking the average of the PSNRs of the individual components.

11.3.3. SSIM
Structural Similarity (SSIM [60]) is a method for measuring the similarity between two images. It is a pop-
ular image quality assessment method that has gained much attention in the field of image processing and
computer vision [68]. It is a weighted combination of three properties of an image: luminance, contrast, and
structure. These are defined as follows:

• Luminance:

L(x, y) = 2µxµy +C1

µ2
x +µ2

y +C1
, (11.5)

where µx and µy are the average pixel values of the two images.

• Contrast:

C (x, y) = 2σx y +C2

σ2
x +σ2

y +C2
, (11.6)

wjere σx and σy are the standard deviations of the two images and σx y is the covariance of the two
images.
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• Structure:

S(x, y) = σx y +C3

σxσy +C3
, (11.7)

where C1 and C2 are constants that are used to stabilize the division when the standard deviation is zero.
Suggested default values for C1 and C2 are C1 = (0.01L)2 and C2 = (0.03L)2, where L is the maximum pixel
value of the image. C3 is often set equal to C2/2.

The SSIM is then calculated as a weighted combination of the three properties:

SSIM(x, y) = L(x, y)αC (x, y)βS(x, y)γ , (11.8)

where α, β, and γ are often set equal to one, leading to the following formula:

SSIM(x, y) = (2µxµy +C1)(2σx y +C2)

(µ2
x +µ2

y +C1)(σ2
x +σ2

y +C2)
. (11.9)

When an image has a mean value but low variations, it indicates the image exhibits a rather homogeneous
distribution with minor discrepancies. This could lead to a high SSIM score for the brightness evaluation
component. However, when it comes to contrast and structure assessments, the SSIM takes into account the
dispersion and joint variability. Low values of these statistics suggest minimal variation or structural intricacy
within the image, potentially leading to a lower SSIM score. Therefore, merely having a high average with tiny
variations doesn’t ensure a high SSIM score. The SSIM score ranges from −1 to 1, where 1 indicates a perfect
match between the two images.
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11.4. Results
In this section, we present the results of our benchmarking experiments. We benchmarked several types of
fields, with different resolutions, two types of measurements (total-field and vectorial), and with and without
noise. This resulted in a large number of benchmarking results. We discuss the most important results in this
section.

11.4.1. Regularization of Equivalent Layer
Figure 11.2 shows the results of extrapolating total-field measurements of the magnetic field at height z = 0 m
to height z = 400 m. Two methods are compared: the Equivalent Layer method, with a total of 21×21 sources
at a depth of z =−1600 m and with 1500 m spacing. Equivalent Layer 1 shows slightly better results compared
to Upward Continuation with the Fourier Transform, but these differences are not significant. Table 11.2
shows a more detailed overview of the results. The Equivalent Layer 2 and the Discrete Integral for Upward
Continuation are not performing well and are excluded from the figure.

A noticeable result is the difference in performance between the single-layer Equivalent Layer 1 and
multi-layered Equivalent Layer 2. Equivalent Layer 1 consists of a single layer of dipoles at 1600 m depth (Fig-
ure 11.3a), while Equivalent Layer 2 has a more varied structure with dipoles positioned at multiple depths
(Figure 11.3b). An analysis of the magnetic moments that were assigned to the dipoles by the Equivalent
Layer 2 method (Figure 11.4a) showed that mainly the upper dipoles, close to the surface, had a significant
magnetic moment. This results in a fast decay of the magnetic field as we increase the altitude above the
surface, and thus a poor extrapolation: the SSIM of 0.0795 and the RMSE of 1713 are both clear indicators
that the reconstruction is fairly dissimilar to the desired magnetic field.

The current approach using the multi-layered Equivalent Layer 2 method leaves room for enhancement.
Ideally, we aim to reconstruct the training data with fewer surface dipoles close to the surface. This goal
is achievable because, provided the spatial frequencies permit, a single dipole situated deeper can repre-
sent multiple surface-proximate dipoles. To facilitate this, we can incorporate a regularization term into the
Equivalent Layer method’s cost function, as described in Section 8.3.7. In our experiment, we use λ2 = 10−3

as the regularization parameter.

When the regularization term is introduced ("Equivalent Layer 2 (Reg.)" in Table 11.2), it noticeably im-
proves the extrapolation for Equivalent Layer 2. The contrast in the magnetic moments’ distribution post-
regularization is displayed in Figure 11.4a and 11.4b. This regularization term constrains the magnetic mo-
ments to prevent them from becoming excessively large, as seen in the unregularized scenario. Moreover, it
diminishes the magnetic moments of the dipoles near the surface and enhances the magnetic moments of
the dipoles located deeper within the Earth, resulting in a significantly better extrapolation. The SSIM of 0.965
and the RMSE of 20.667 are both clear indicators that the regularization term improves the extrapolation.

11.4.2. Interpolation of Fields without Noise
When interpolating a noise-free field, Cubic Splines outperform Equivalent Layer 1 (Table 11.3) in our bench-
marking experiment in every metric. A more complex source distribution, such as the multi-layered Equiv-
alent Layer 2, shows more promise, but elaborate tuning of the Equivalent Layer parameters is required to
obtain a better result. All the methods give, after rounding, an SSIM of one, which means that the recon-
structions are nearly identical to the test measurements in terms of their structural information. Regarding
the PSNR, values above 30 dB are often considered acceptable, while values above 40 dB are considered very
good, and values above 50 dB are considered excellent. According to this, all the interpolation methods give
excellent results. However, the Equivalent Layer method is slower than Cubic Splines. As both methods give
similar results, but Equivalent Layer is slower and requires more tuning, we conclude that Cubic Splines are

Table 11.2: Scores for extrapolating Core + Crustal + Noise Field from 100x100 - 300m to grid 64x64 400m + 400m (Vectorial)

Extrapolator RMSE (nT) L2Norm (nT) PSNR (dB) SSIM (1) Time (s)

Equivalent Layer 1 26.843 671.066 64.659 0.959 2.006
Equivalent Layer 2 1713.912 42847.788 28.555 0.0795 4.545
Equivalent Layer 2 (Reg.) 20.667 516.666 66.930 0.965 4.486
UC Integral 1146.391 28659.772 32.048 0.847 0.099
UC FT 21.614 540.356 66.540 0.965 0.098
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Figure 11.2: Benchmarking results for extrapolating a noisy simulated field from a 100×100 grid of total measurements with a spacing of
300 m to a 64×64 grid of evaluation points with a spacing of 400 m. The figure shows the training data (top left), the test data (top right)
and the results of several map-making techniques.
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(a) Dipole locations for Equivalent Layer 1. The dipoles are located on a
21×21 grid at a depth of 1600 m with a spacing of 1500 m.

(b) Dipole locations for multi-layered Equivalent Layer 2. The dipoles are
located on a 27 × 27 grid at depths ranging from 500 m to 5500 m. The
dipoles are spaced 1000 m apart.

Figure 11.3: Dipole locations for the two Equivalent Layer models in the benchmarking experiments. The dipoles are shown as black
dots. The first configuration (a) is used for the Equivalent Layer 1 model and has dipoles positioned in a plane. The second configuration
(b) is used for the Equivalent Layer 2 model and has dipoles positioned in a volume, with more dipoles at shallower depths.

(a) Magnitudes of the magnetic moments of the dipoles in Equivalent Layer
2 without regularization.

(b) Magnitudes of the magnetic moments of the dipoles in Equivalent
Layer 2 with regularization.

Figure 11.4: Magnitudes of the magnetic moments of the dipoles in Equivalent Layer 2 without regularization (a) and with regularization
(b). The magnetic moments are scaled with the pre-conditioning factor (Section 8.3.2) to make them comparable. The dipoles with
magnetic moments smaller than 1% of the maximum magnetic moment are hidden in the figure.
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Table 11.3: Scores for interpolating Core + Crustal Field from 100x100 - 300m to 24x24 - 1000m (Vectorial)

Interpolator RMSE (nT) L2Norm (nT) PSNR (dB) SSIM (1) Time (s)

Cubic Spline 0.304 12.633 102.125 1.000 0.186
Equivalent Layer 1 5.356 222.665 77.202 1.000 2.825
Equivalent Layer 2 2.713 112.778 83.111 1.000 6.926
Equivalent Layer 2 (Reg.) 3.223 133.995 81.613 1.000 4.077

Table 11.4: Scores for interpolating Core + Crustal + Noise Field from 100x100 - 300m to 24x24 - 1000m (Vectorial)

Interpolator RMSE (nT) L2Norm (nT) PSNR (dB) SSIM (1) Time (s)

Cubic Spline 25.973 1079.661 63.489 1.000 0.183
Equivalent Layer 1 21.131 878.395 65.280 1.000 3.070
Equivalent Layer 2 21.093 876.832 65.296 1.000 7.003
Equivalent Layer 2 (Reg.) 20.806 864.892 65.415 1.000 5.978

a better choice than Equivalent Layer when it comes solely to interpolating magnetic fields.

11.4.3. Interpolation of Fields with Noise
Table 11.4 and 11.3 show the results of interpolating vectorial measurements of the magnetic field at height
z = 0 m to a regular grid of 24× 24 evaluation points. The first table shows the results for a noisy field, the
second table shows the results for a noise-free field. The results show that the Equivalent Layer method
performs better than Cubic Splines when interpolating a noisy field. The difference in performance is not
significant, while the Equivalent Layer method is significantly slower. All methods seem to have an RMSE
that is close to the noise level of the field (20 nT). Variations of the same experiment with different resolutions
of the training data and different noise levels showed that increasing the sample rate of the training data
does not have a significant effect on the accuracy while decreasing the noise level was directly reflected in
a decrease of the RMSE. Even though the RMSE has increased by a factor of 10 when interpolating a noisy
field, the values of PSNR and SSIM are still very high. The PSNR is still above 50 dB but has decreased since
the noise is larger. The SSIM is, after rounding, still 1, which means that the structural information of the
field is still preserved. Therefore, we can conclude that interpolating the magnetic field with Cubic Splines or
Equivalent Layer is a viable option even when the field has white noise added to it.

11.5. Discussion and Conclusions
A disadvantage of the simulated environment is that it is a very simplified version of the real world. Every
real-world dependency that is not included in the simulation, can influence the results of the benchmarking
experiment. Better simulations of the measurement positions, the measurement noise, and the underlying
magnetic field lead to more realistic results. For further research, it would be interesting how to get more
realistic simulations of the magnetic field and the measurements.

The benchmark showed that the parametric method Equivalent Layer requires more tuning to obtain a
good result. This holds for both interpolation and extrapolation. The choice of the depth, position and num-
ber of dipoles in the Equivalent Layer affect the accuracy of the interpolation significantly. The distribution
of the magnetic moments of the dipoles has a considerable effect on the accuracy of the extrapolation. To
obtain a good result, the magnetic moments of the dipoles should be distributed in such a way that the mag-
netic field decays slowly with increasing altitude. This can be achieved by introducing a regularization term
in the cost function of the Equivalent Layer method. This regularization term can limit the total magnetic
moments given to the dipoles, such that deeper dipoles are preferred over shallower dipoles.

11.5.1. Limitations
Accurate Modelling of Noise
The noise model that we have used in our simulations is very basic. We have seen in Chapter 7, that the
compensation of noise is a complex problem. A model that is closer to reality would include colored noise,
platform noise, and noise in the position of the measurements. Better modelling of the noise leads to more
realistic benchmarking results.
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Measurement Locations
The simulated environment allowed us to choose the measurement locations freely. We have chosen to mea-
sure at a fixed altitude and to distribute the measurements evenly over the region. In practice, measurements
are often taken using survey lines, which are generally not completely straight. Constant altitude is not al-
ways possible, for example, when measuring in a mountainous area, but it is also very difficult to maintain a
constant altitude when measuring from a moving aircraft. Mountains, buildings, and other obstacles can also
cause holes in the measurement grid. It would be interesting to see how the map-making techniques perform
when the measurements are not taken at a constant altitude and when there are holes in the measurement
grid.
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Validation

In the previous chapter, we benchmarked the performance of the map-making techniques on simulated data.
In this chapter, we validate the map-making techniques on real-world data. We limit ourselves to the extrap-
olation techniques: finding the magnetic field at an altitude that is different from where the measurements
are taken. The main goal of this chapter is to see what pre-processing steps are necessary to make real-world
sensor data suitable for map-making and how well the map-making techniques perform on real-world data.

We use the data from a measurement campaign we performed on the campus of TU Delft. In this cam-
paign, measurements at two altitudes were taken along parallel survey lines. The campaign is described in
detail in Section 12.1. Section 12.2 describes how the raw sensor data is processed into a magnetic field map
at a regular grid. Section 12.3 describes how the magnetic map at one altitude is extrapolated to another alti-
tude. Section 12.4 presents the results of the validation. Section 12.5 discusses the results and concludes this
chapter.

12.1. Measurement Campaign
12.1.1. Location
The best way of validating map-making techniques for aeromagnetic navigation is by flying and taking mea-
surements at different altitudes in the air on a regional scale. Unfortunately, the duration of this thesis pre-
cluded the possibility of conducting a measurement campaign in an area where flying drones or aircraft is
permitted. Therefore, we had to search for a smaller area that mimics the situation of a drone flying over a
regional-scale magnetic field. We have established some conditions that this field should meet.

We are looking for a location which has the following properties:

1. The magnetic field is interesting enough to validate the map-making techniques.

2. All the sources of the magnetic field are below the altitude at which the measurements are taken. This
is a requirement for Green’s third identity to hold (Section 2.4.1).

3. The surface is flat and walkable.

4. GPS for ground-truth position measurements is available.

5. The location allows for measurements at different altitudes.

6. The location does not have too much temporal variation in the magnetic field.

Sometimes, the solution is right in front of you. The campus of TU Delft, where this thesis is written, has
a parking garage that meets all of these conditions. The parking garage concerned, P2 Sports (Figure 12.1), is
located at the following coordinates: 51.9963◦N, 4.3789◦E. The parking garage is made of steel and concrete,
which makes it magnetically interesting. The upper parking deck is not covered, is accessible and often free
of cars. Making it a walkable surface where measurements can be taken at different altitudes. The parking
garage (Figure 12.2) is located in an area where GPS is available and has a clear view of the sky.

The only thing that cannot be controlled is the time-dependent variations in the magnetic field. The
parking garage itself does not run off, but cars may be driving off and on and disturbing the field. We solved
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Figure 12.1: Parking garage P2 Sports at TU Delft.

(a) The second quartile of the parking garage. (b) The first quartile of the parking garage.

(c) The third quartile of the parking garage. (d) The fourth quartile of the parking garage.

Figure 12.2: Tiled plot of the quartiles of the upper parking deck of the parking garage.
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this by having the measurement campaign take place early, on a Saturday morning. We made good notes of
each floor with where the cars were parked, and after the measurements were completed we checked to see
if any cars had moved. One car, on the second highest floor, had left.

12.1.2. Sensors and Measurement Setup
The measurements are taken with the Sensys MagDrone R3 [59]. The MagDrone consists of a carbon fiber
tube with on both ends a flux-gate magnetometer. These sensors are 1,000 mm apart. Both sensors have 3
axes and a measurement range of±75,000 nT. A small box is attached to the middle of the tube, which handles
GPS-tracking, accelerometer data, data storage and power. The datalogger samples the magnetometer data at
200 Hz and the GNSS data at 5 Hz. The noise level of the sensors due to the electronics is at most 50 pT/

p
Hz.

Figure 12.3: The Sensys MagDrone R3 attached to a telescopic stick.

The MagDrone is usually attached to a drone, but in this case, it is held in hand. The MagDrone is held
perpendicular to the direction of movement, resulting in two measurements: one for the left sensor and one
for the right sensor, which are both 50 cm apart from our walking path. We attached the MagDrone to a
custom-made stick to take measurements at different altitudes (Figure 12.3). The stick is a telescopic stick,
which can be adjusted in length from 1 to 4 m. The stick is made of aluminum, which has a relatively low
magnetic permeability and is therefore not expected to disturb the magnetic field too much. The stick is,
however, not very stable at 4 m and therefore we did not use the full length of the stick. We used the stick to
extend the height of the MagDrone from 1 m to 3.5 m above the surface of the upper parking deck.

12.1.3. Data Collection
We collected two datasets in the measurement campaign. The first dataset is used as the training set, and
the second dataset is used as the validation set. The training set is collected at 1 m above the surface of the
upper parking deck, and the validation set is collected at 3.5 m above the surface of the upper parking deck.
The measurements are taken in a grid-like pattern, with survey lines parallel to each other and the traverses
perpendicular to the survey lines. The survey lines are walked over the edges of the tiles of the parking garage,
which are 2.45 m apart. Eight traverses are walked at the following relative positions: 1 m, 5 m, 8.4 m, 10.2 m,
22.1 m, 25 m, 28.4 m,32 m. The two ramps in the center of the parking garage are not flat, and therefore no
measurements are taken there. This results in two holes in the dataset.

12.2. Data Processing
Working with real measurement data presents some difficulties. In the simulated environment (Chapter 11),
we could choose the full path of the sensor ourselves and we have perfect information about the position. In
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the real world, we have to deal with the fact that the sensor is not always in the same position: the body frame
rotates in the world frame, the sensor is not always at the same height, and there is uncertainty in the position
of the sensor, as this is determined by GNSS measurements. In this section, we describe the steps we take to
preprocess the data.

12.2.1. Preprocessing
Trimming and Filtering
The first step is to remove the parts of the data that are not of interest. The first and last parts of the data are
not of interest, as the sensor is not yet in the correct position. We inspected the data and determined the start
and end of the data by hand. The data is then trimmed to the area of interest. The data is sampled at 200 Hz
for the magnetic field and 5 Hz for the GPS. We downsample the data to 5 Hz to match the sampling rate of
the magnetic field and GPS.

Geodetic Coordinates to Local Cartesian Coordinates

Figure 12.4: Three trajectories of the first traverse of the training set. The trajectory is shown in the geodetic coordinate system (Left), in
the local cartesian coordinate system (Top Right) and in the corrected local cartesian coordinate system (Bottom Right).

The datalogger contains a GPS sensor which gives us our position. The position is given in Latitude,
Longitude and Altitude. We convert the position to the local cartesian coordinate system to perform compu-
tations. First, we transform the position from the WGS84 coordinate system to the EPSG:28992 coordinate
system. The EPSG:28992 coordinate system is the coordinate system used in the Netherlands. The transfor-
mation is done using the pyproj library. Then, we subtract the minimum x- and y-position from the position,
so that the minimum position is at (0,0) and rotate the data with an angle θ so that the survey lines align with
the y-axis. The result is shown in the top-right plot of Figure 12.4. Despite that our survey had traversals that
were parallel to the survey lines, the survey lines are not perfectly parallel to the y-axis. The path has a small
slope when moving in the x-direction. We think this is caused by the projection of the GNSS measurements
to the local cartesian coordinate system. We decided to correct this with a linear transformation. The final
result is shown in the bottom-right plot of Figure 12.4. The slope is now removed, the survey lines are almost
parallel to the y-axis, and the traverses are almost parallel to the x-axis. The drift in the y-coordiate of the
traversals can be explained by the fact that the GNSS measurements are not very precise: approximately 1 m.

Straightening the Trajectories
Our survey was performed in a rectangular area. The survey lines are parallel to each other, and the traverses
are perpendicular to the survey lines. We can use this information to straighten the trajectories of the mea-
surements. We start by removing the turning points of our survey lines from the measurements. We detect
the direction of movement by computing the average change in x− and y− direction over the previous and
next n samples. Due to the precision of the GNSS measurements, it is not sufficient to use only two samples
to compute the direction. We used n = 3 in our experiment, which corresponds to data from 1.4 s. We classify
a point as moving in x-direction when the average change in x-direction is twice as large as in y-direction.
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Figure 12.5: The original path, provided by the GNSS measurements (Gray) after the transformation to the local cartesian coordinate
system and the straightened path in x-direction (Green) and y-direction (Red).

We then use the fact that our survey lines are 2.45 m apart to round the x-coordinate of all the points
that move in y-direction to the nearest multiple of 2.45 m. We do the same for the y-coordinates, but there
we round the y-coordinate to the closest position traversal in the following list: y = 1 m, y = 5 m, y = 8.4 m,
y = 10.2 m, y = 22.1 m, y = 25 m, y = 28.4 m, y = 32 m. The results are illustrated in Figure 12.5. The gray
line shows the original path, the green line shows the path after straightening in x-direction, and the red line
shows the path after straightening in y-direction.

Rotating the Sensor Data
The next step is to rotate the sensor data to the world frame. The sensors are fixed in the body frame: the
sensors stay aligned with the direction of movement of the person taking the measurements. That also means
that the sensors rotate in the world frame when the person taking the measurements change direction. The
goal is to align Bx with the x-axis, By with the y-axis, and Bz downwards. The z-axis is already aligned with
the direction of gravity, so we do not need to rotate the z-axis. We can rotate the sensor data by multiplying
the sensor data with a rotation matrix. We only consider the samples from the previous section which have
a clear direction of movement, and filter out other samples. The direction of movement, including its sign,
is used to rotate the sensor data from the body frame to the world frame. We then have the following two
rotation matrices:

Rx =
−sg n(x̂) 0 0

0 −sg n(x̂) 0
0 0 1

 and Ry =
 0 −sg n(ŷ) 0

sg n(ŷ) 0 0
0 0 1

 , (12.1)

where x̂ and ŷ are the x- and y-components of the direction of movement, and sg n is the sign function.
The rotation matrix Rx is applied to the samples where the direction of movement is in x-direction, and
the rotation matrix Ry is applied to the samples where the direction of movement is in y-direction, this is the
traverses and survey lines respectively. Finally, we need to rotate the sensor data from the geodetic coordinate
system to the local cartesian coordinate system. For this, we use the same angle θ as in Section 12.2.1:

Rworld(θ) =
cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0
0 0 1

 . (12.2)

In the measurement setup at a higher altitude, the sensor is upward down. This requires an additional
rotation of 180 ◦ around the y-axis:

RUC =
−1 0 0

0 1 0
0 0 −1

 . (12.3)
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Left and Right Sensor

Figure 12.6: The position of the left sensor (Red) and the right sensor (Blue) in the world frame after correcting the path to be straight.
The original path is shown in black.

The MagDrone setup consists of two sensors, one on the left and one on the right. The left sensor becomes
the right sensor in the world frame when the direction of movement is reversed. We again use the direction
of movement to determine which sensor is on the left and which sensor is on the right. We then shift the
measurement data either 50 cm to the left or 50 cm to the right. The shift is done in the local cartesian
coordinate system. The result is shown in Figure 12.6.

Platform Compensation
When the sensor is mounted on a platform, the platform can cause magnetic disturbances. The platform can
be a car, a drone, or an aircraft. The platform can cause magnetic disturbances because of the magnetic ma-
terials used in the platform, or because of the electric currents flowing through the platform. The MagDrone
is a platform itself, but its tube is made of non-magnetic material and the effects of the box with electronics
are negligible (less than 50 pT/

p
Hz). The stick is also made of non-magnetic material. The survey is taken

by walking around, and therefore no engines, other magnetic sources, or electric currents are involved. Plat-
form compensation is therefore not necessary. When the sensor is mounted on an aircraft or drone, platform
compensation is necessary.

Reference Field
We often consider anomaly maps, which represent the local deviation from a more global reference field.
The IGRF model (Section 6.1.2) can be used to get a value of the average magnetic field at the location of the

parking garage. On the scale of our measurements, IGRF has a constant value of B0 =
[
19183 720 45452

]⊤
nT. We can subtract this value from the measurements to get the anomaly field.

Preprocessing Results
Some results of the pre-processed data are visualized in figures 12.7 and 12.8. The figures show the total-field
anomaly at 10.5 m and 13.0 m respectively. These values are found by taking the intensity of pre-processed
components of the magnetic field, that are measured by the flux-gate sensors on the MagDrone.

12.3. Map-Making
The data is now ready to be used for map-making. We use the Equivalent Layer and Upward Continuation
methods to make maps of the anomaly at a height of 13.0 m above sea level using measurement data at 10.5
m. For Upward Continuation a regular grid of measurement points is required. We obtained a regular grid of
288×128 points by interpolating the measurement data using cubic splines. The Equivalent Layer method
requires some parameters. We ran the method with 2 sets of parameters. The first configuration used a
layer positioned 5 m under the training surface, spanning the whole area, and with a 2 m spacing between
the dipoles. The regularization parameter was λ = 1. The second configuration used the same spacing and
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Figure 12.7: Preprocessed total-field anomaly of the upper parking deck of the parking garage at an altitude of 10.5 m above sea level.
The measurements were taken at approximately 1 m above the surface.

Figure 12.8: Preprocessed total-field anomaly of the upper parking deck of the parking garage at an altitude of 13.0 m above sea level.
The measurements were taken at approximately 3.5 m above the surface.
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regularization parameter, but the layer was positioned 2 m under the training surface. The 2 m depth was
chosen because the spatial frequencies of the variations in the field are high, and therefore originate from a
shallow layer. We found the depth of 5 m by having a small look at the data at a higher altitude and found that
the values were dampened with approximately a factor of 3.3 when moving 2.5 m up. Solving (d+2.5)3 = 3.3a3

gives d ≈ 5 m. The regularization parameter is chosen by trial and error. We found that a value of λ= 1 gives
a good result.

12.4. Results
Figure 12.9 and 12.10 show the extrapolation results for Equivalent Layer and Upward Continuation using the
Fourier Transform, respectively. The results are not what we expected. The methods both seem to find slow-
varying or almost constant fields, which is not what you expect from a parking garage. The first Equivalent
Layer configuration, with a layer positioned 5 m under the measurement plane, has too low spatial frequen-
cies to accurately reconstruct the magnetic field. The dampening of the field is also not fast enough, which
indicates that the layer is placed too deep. Conversely, the layer at 2 m under the measurement plane seems
to be placed too shallow, as almost the whole intensity of the field is dampened out when extrapolating to
13.0 m. For completeness, we ran a third Equivalent Layer experiment with a layer positioned at 3.3 m. This
layer showed slightly better results but is still not good enough to be used for map-making.

The Upward Continuation method also does not seem to work well. The interpolated anomaly field was
not mean-zero and therefore the extrapolated field takes values around the mean of the lower field. There
seems to be a bit more detail in the Upward Continuation results than in the Equivalent Layer results: some
peaks that occur at the lower altitude are also visible in the extrapolated data. However, the Upward Contin-
uation method still has an RMSE of around 10,000 nT. The scores for the extrapolation results are shown in
Table 12.1.

Table 12.1: Scores for Extrapolating P2 Sports from z=10.5 to z=13.0 (Total-Field)

Extrapolator RMSE L2Norm PSNR SSIM Time (s)

UC Integral 8495.629 189968.043 13.634 -0.070 0.201
UC FT 10964.552 245174.846 11.418 -0.019 0.289
Equivalent Layer 1(5m) 12435.856 278074.188 10.325 0.016 1.883
Equivalent Layer 2(2m) 8414.712 188158.687 13.717 0.045 2.636
Equivalent Layer 3(3.3m) 7095.058 158650.319 15.199 0.141 2.973

12.5. Discussion and Conclusion
In the pre-processing step of our data, we removed the IGRF from the data. This is a good step to take, as
it removes the influence of the Earth’s magnetic field from the data. However, this requires that the data is
perfectly aligned with the geodetic coordinate system. We did our best in rotating the sensor data from the
body frame to the world frame and removed all the measurement points that had an unclear direction, but
there is still a chance that the data is not perfectly aligned. In a next measurement campaign, we should either
keep better track of the rotation of the sensor, by using a gyroscope and accelerometer, or we should try to
keep our sensor orientation constant to the world frame, by rotating the sensor counter to the rotation of the
body.

Furthermore, we walked straight survey lines, but these lines were not straight in the GNSS data of the
measurements. This is because the GNSS data is not perfectly accurate. It has approximately a 1 m circular
positioning error. To obtain a better position estimate, we suggest using a higher precision positioning sys-
tem, such as RTK-GPS, which combines the GNSS data with a correction signal from a base station. This can
reduce the error to 1 cm. Another option is scaling up the size of the survey area so that the error in the GPS
data is less significant.

Since we carried the sensor in our hands or on a stick, there was almost no noise in the data originating
from the platform. This led the more accurate measurements of the magnetic field. However, this is not a
realistic scenario. In a real-life situation, the sensor is mounted to a drone or another aircraft and is subject
to permanent, induced and eddy current noise in the data. It is therefore important to test the algorithms in
a more realistic scenario, where the sensor is mounted to a drone or another aircraft.

The performance of the Equivalent Layer method is a bit disappointing. We noticed that the layer at 5 m
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Figure 12.9: Extrapolation results for the total-field anomaly from 10.5 m to 13.0 m above sea level using Equivalent Layer.

Figure 12.10: Extrapolation results for the total-field anomaly from 10.5 m to 13.0 m above sea level using Upward Continuation.
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was positioned too deep, while the magnetic field from shallower layers decayed too fast when the field was
evaluated at a higher altitude. It could be possible that the magnetic field cannot be accurately represented by
magnetic dipoles. In Section 2.5.1, we remarked that dipoles dominate the magnetic field when the distance
to the sources is sufficiently large. However, in our validation experiment, the distance to the sources is
possibly not large enough to justify this approximation. We, therefore, suggest using the Equivalent Layer
method with multipole sources, which can represent the magnetic field more accurately at shorter distances,
or increasing the distance to the sources by measuring at a higher altitude, for example by using a drone.
The same goes for the Upward Continuation method. The method is based on the Fourier Transform, which
dampens the signal under the assumption that the field is dominated by dipoles. This assumption might not
hold for our data, which could explain the poor performance of the method.

In conclusion, the preprocessing steps taken to prepare the measurement data for map-making were suc-
cessful. The data is trimmed and filtered, converted to local Cartesian coordinates, straightened, and rotated
to align with the world frame. However, the map-making methods applied did not yield the expected results.
Both the Equivalent Layer and Upward Continuation methods produced maps that were too smooth and
lacked the necessary detail to accurately represent the parking garage.

There is room for improvement. The pre-processing step involved removing the influence of the Earth’s
magnetic field from the data, but the data may not be perfectly aligned with the geodetic coordinate system.
To obtain a better position estimate, a higher precision positioning system such as RTK-GPS can be used. Fur-
thermore, the absence of noise in the data originating from the platform led to more accurate measurements
of the magnetic field, but it is important to test the algorithms in a more realistic scenario, where the sensor is
mounted to a drone or another aircraft. Finally, the Equivalent Layer and Upward Continuation methods had
disappointing performances, possibly because the assumption that the field is dominated by dipoles might
not hold for the data, and the suggestion is to use the Equivalent Layer method with multipole sources or
increase the distance to the sources by measuring at a higher altitude.
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13
General Applications

One of the goals of this thesis is to get a better understanding of what magnetic maps are and how they can be
used in navigation and localization. In previous chapters, we discussed the theory behind making magnetic
maps. For this chapter, we assume that magnetic maps are globally available. We briefly discuss the possible
applications of these maps when we have access to them. First, we refer to some research on aeromagnetic
navigation. Then we discuss magnetic anomaly detection. Finally, we discuss gold, mineral and other types
of exploration.

13.1. Aeromagnetic Navigation
Many navigation systems are dependent on GPS. However, GPS is not reliable in all situations. Therefore,
several studies have been conducted to investigate the possibility of GPS-independent navigation. Robust,
GPS-independent navigation systems are important for applications such as autonomous vehicles, drones,
and aircraft. Aeromagnetic Navigation is one of the methods that has been investigated [13]. It refers to the
use of magnetic maps to navigate an aircraft.

Aaron Canciani has many contributions to the field of Aeromagnetic Navigation [13, 14, 16, 15]. He is an
old Air Force pilot who is now actively researching this topic at the Air Force Institute of Technology. In [14]
he describes how magnetic anomaly maps can be used to passively navigate an aircraft by combining data
from an inertial navigation system and barometric data with measurements from a total-field magnetometer.
It was concluded that an accuracy of 13 m can be attained under perfect conditions. According to the paper,
the three main challenges for navigation on magnetic anomaly maps are: (1) making high-quality magnetic
anomaly maps, (2) performing platform compensation to account for the magnetic field of the aircraft in
the measurements, and (3) the resolution and availability of maps at different heights. The first challenge is
discussed in Part II of this thesis. The second challenge is briefly discussed in Chapter 7, but more research
is required on platform compensation to make it more robust. The third challenge is partly resolved by using
Upward Continuation (Chapter 10). The resolution aspect remains a problem: flying at a higher altitude
reduces the spatial frequencies of the magnetic anomaly field, which makes it more difficult to navigate.

The maximum navigation accuracy of magnetic maps on a survey aircraft is around 10 m drms (Distance
Root Mean Square Error). The limiting factors in the accuracy are the compensation of the platform and
the spatial variations in the magnetic field. This accuracy seems sufficient to navigate an aircraft that travels
large distances at a high speed. At the moment of writing this thesis, we did not have access to a working
F-16 aircraft to test the navigation system. Fortunately, Canciani did test the navigation of an F-16 on a mag-
netic anomaly map [15]. It required a new compensation model to account for the platform field, but it was
concluded that magnetic anomaly maps can give modest (59 m drms) navigation accuracy in the F-16.

13.2. Magnetic Anomaly Detection
The availability of high-resolution magnetic (anomaly) maps can be very valuable for magnetic anomaly de-
tection (MAD). Magnetic Anomaly Detection is the process of using a signal to detect magnetic field variations
caused by ferromagnetic objects. When a metallic object is present, it disturbs the Earth’s magnetic field, cre-
ating an anomaly that can be detected by sensitive magnetometers (Figure 13.1). The Anderson Functions,
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described in Chapter 9, play an important role in this process since these functions are a basis for the mag-
netic field measurements on a line originating from a single dipole. And because the magnetic field of many
magnetic objects can be approximated by a single dipole (Section 2.5.1), it is possible to detect and locate
magnetic objects using measurements. The magnetic field intensity that originates from a ferromagnetic ob-
ject on Earth’s surface is often of a much smaller order than the magnetic field intensity that originates from
the Earth’s core and crustal field.

Figure 13.1: In a particular position, the airborne magnetometer captures the combined vector of the prevailing geomagnetic field and
any anomalous inputs from one or multiple nearby sources. This figure is obtained from Reeves’ work [54, pp. 1–10].

A key challenge in magnetic anomaly detection is differentiating the magnetic anomalies caused by the
target object from background noise caused by the ambient geomagnetic field and other environmental fac-
tors [72]. Here is where high-resolution magnetic models (Chapter 6) and anomaly maps (Section 5.4) come
in handy: they can be used to subtract the crustal field from the measurements and on the remaining signal,
magnetic anomaly detection can be performed to look for magnetic objects. Therefore, a better map of the
magnetic ’background’ field allows for better detection of changes in the magnetic field caused by magnetic
objects.

One of the leading companies in the MAD field is CAE, which has developed a highly advanced MAD
system for military defense applications. Their latest system, the ASQ-252(V) MAD-XR, is more compact [12],
allowing it to be used on smaller platforms like unmanned aerial systems, helicopters, and small fixed-wing
aircraft. The MAD-XR detects changes in the Earth’s magnetic field due to metallic objects nearby, providing
valuable information for anti-submarine warfare and other applications.

13.3. Gold, Mineral and Oil and Gas Exploration
Magnetic anomaly maps also have significant value in discovering gold and other precious minerals [44, 57].
The high value of gold and other minerals is primarily due to their rarity. Gold is a diamagnetic metal, re-
pelling magnetic fields, which makes its detection with magnetometers challenging. Nonetheless, examining
host rocks and their magnetic characteristics can help locate gold and diamond deposits.

A notable instance of this approach is the research conducted by Shahri et al. [61], where they successfully
utilized magnetic data to identify gold deposits in Iran: specifically, their focus was on Hired, a large gold
prospecting area in the South Khorasan province of eastern Iran, which features gold mineralization in four
target areas covering about 24 km2. The host rocks mainly consist of Tertiary volcanic and some Jurassic and
Cretaceous sediments. There is a strong correlation between gold grade, amount of pyrrhotite, and magnetic
susceptibility in the stockwork mineralization east of target 1. Ground magnetic surveys were selected as a
suitable geophysical method for drill target identification, with the total magnetic field intensity measured in
780 points along 25 lines, revealing large anomalies representing the magnetic responses of gold ore. Similar
approaches have been used in the search for diamonds. For example, the diamond-rich kimberlite pipes in
South Africa are often associated with magnetic anomalies [40].

Magnetic maps can be used for oil and gas exploration by providing valuable information about subsur-
face structures and geological formations that are associated with hydrocarbon reservoirs [65].
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Localization using a Particle Filter

Magnetic Maps can play an important role in GPS-independent navigation. They can be used as a passive
form of localization in conflict zones, an alternative to GPS in indoor or underground environments, or as
a backup for GPS in case of jamming or spoofing. In this chapter, we show some examples of how mag-
netic maps can be used for localization using a particle filter and how map-matching can be used to find the
trajectory of an object in a magnetic map. We introduce a particle filter and show how it can be used to esti-
mate the position of a robot using a magnetic map on a floorplan. We also show how multiple maps can be
combined to improve the localization. Finally, we demonstrate a map-matching algorithm that uses a basic
evolutionary algorithm to find the trajectory of the robot by matching the magnetic field measurements to
the magnetic map.

14.1. Particle Filter
A particle filter is a Monte Carlo method for estimating the state of a system. It is a recursive algorithm that
uses a set of particles to represent the state of the system. The particles are initialized with a prior distribution
and then updated with the current measurement. The particles are then resampled to represent the posterior
distribution of the system. The algorithm is summarized in Algorithm 1.

Algorithm 1 Particle Filter

1: Initialize particles x1, x2, . . . , xN with prior distribution p(x)
2: for t = 1 to T do
3: Update particles x1, x2, . . . , xN with measurement zt using p(zt |xt )
4: Resample particles x1, x2, . . . , xN from posterior distribution p(xt |z1:t )
5: end for

14.2. Particle Filter for Position Estimation using a Magnetic Field Map
A particle filter can be used to estimate the position of an object using a magnetic field map. The initial state
of the system is the position of the particles. The particles can be initialized randomly within the map m if
the prior distribution is unknown. The measurement z is the magnetic field at the current position of the
object. Given a magnetic field map m and a set of particles x1, x2, . . . , xN , the likelihood of a measurement z
at a position x is given by

p(z|x) = 1p
2πσ2

exp

(
− (z −m(x))2

2σ2

)
, (14.1)

where σ is the standard deviation of the measurement noise.
The particles are initialized with a prior distribution p(x) and then updated with the current measure-

ment zt using the likelihood function p(zt |xt ). The particles are then resampled to represent the posterior
distribution p(xt |z1:t ).
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14.3. Particle Filter for Position Estimation using Multiple Maps
The particle filter methodology can be extended to use multiple maps. For example, a particle filter that
uses a magnetic field map and a topographic map can be used to estimate the position of an object, or a
filter that uses maps of separate magnetic field components. Measurements from multiple sensors must be
combined so that the likelihood function p(zt |xt ) can be calculated Let zk be the measurement for map mk

and pk (zk |xt ) be the likelihood function for map mk . The likelihood function for the combined measurement
is given by

p(zt |xt ) =
K∏

k=1
pk (zk |xt ) , (14.2)

where K is the number of maps. This likelihood function is only valid if the measurements are independent.
If the measurements are not independent, then the likelihood function must be modified to account for the
correlation between the measurements.

14.4. Particle Filter for Localization using a Floorplan and a Magnetic Map
In the following examples, we demonstrate how localization can be performed using a particle filter. To make
it a bit more interesting, we performed this demonstration in the context of indoor navigation for robots. A
similar approach can be used for aeromagnetic navigation, by removing the walls. For now, we assume that
we have only access to a floorplan of the building and that our robot has an odometry error of 0.1, meaning
that for every meter the robot travels, it has a 10 cm standard deviation error. Later, we also add a Total-field
magnetometer to the robot to improve the localization. Finally, measurements from a vector magnetometer
are used to improve the localization even further.

The floorplan in our example is drawn by hand and is stored as an image. We wrote a Python script to
binarize the image using a threshold value to detect ’walls’ in the image. It is therefore not difficult to use a
different floorplan, as long as it is stored as an image. After processing, the floorplan is stored in an object
and can easily be visualized or accessed by the particle filter.

(a) Initial particle distribution in the building. The
cross indicates the true, but unknown, position of
the robot. The walls are shown in black.

(b) The state of the particle filter after moving the
robot around for a while. Some particles have
crashed into the walls and are removed from the
set of particles. The remaining particles are re-
sampled to represent the posterior distribution of
the robot’s position.

(c) The state of the particle filter after more move-
ment. The particles are resampled again to repre-
sent the posterior distribution of the robot’s posi-
tion.

Figure 14.1: Particle filter for localization using only a floorplan.

First, we demonstrate how the particle filter can be used to localize a robot in a building using only the
floorplan. We initialize the particles randomly within the building (Figure 14.1a) and update their position
with the relative motion of the robot obtained from the odometry sensors. Particles that crash into a wall
are removed from the set of particles, resulting in a ’binary’ likelihood function. The remaining particles are
resampled to represent the posterior distribution of the robot’s position (Figure 14.1b). Again, the particles
are updated with the relative motion of the robot to get its final position. The same procedure is repeated, and
the resulting posterior distribution is shown in Figure 14.1c. There is still a lot of uncertainty in the position
of the robot, but there are some particles that are close to the true position of the robot. Moving the robot
more around reduces the uncertainty even further.

Now, we provide a Total-field magnetic map of the environment to our robot. In our example, we have
simulated a field using a single dipole. In general, these fields are more complex, especially when we consider
in-building navigation, there are many factors originating from human activities that cause the magnetic
field to change. Therefore, it might be interesting to perform in-building navigation on artificially generated
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magnetic fields, by using beacons that overpower the local field (Section 14.5.6). This way, the field is better
known and can therefore be used for navigation. For aeromagnetic navigation, it is not possible to overpower
the field, but the noise and variation in the field are much lower, which allows for making accurate maps of
the field (Part II).

(a) Initial particle distribution in the building. The
cross indicates the true, but unknown, position of
the robot. The walls are shown in black.

(b) The state of the particle filter after moving the
robot around for a while. Some particles have
crashed into the walls and are removed from the
set of particles. The likelihood of the particles is
calculated using the magnetic map. The remain-
ing particles are resampled to represent the pos-
terior distribution of the robot’s position.

(c) The state of the particle filter after more move-
ment. The particles are resampled again to repre-
sent the posterior distribution of the robot’s posi-
tion.

Figure 14.2: Particle filter for localization using a floorplan and a map of the total-field intensities of the magnetic induction field B. The
underlying magnetic map that is used for localization is shown in the background. The color of the particles indicates the likelihood of
the particles.

The same particle filter as before is used, but now the likelihood function is calculated using the Total-
field magnetic map |B|, as described in Section 14.2. Figure 14.2a shows the initial state of the particle filter.
After movement, the resampling is done using a likelihood function that is based on the difference between
the magnetic field value m(x) at the position of a particle and a total field measurement (z) at the position
of the robot. The likelihood ranges from zero to one, where zero means that the particle is in a location
where the magnetic field is very different from the measured field, and one means that the particle is in a
location where the magnetic field is the same as the measured field. This resampling strategy leads to the
posterior distribution shown in Figure 14.2b. After another step, we get the posterior distribution shown
in Figure 14.2c. The uncertainty in the position of the robot is reduced significantly. The particles are now
concentrated around the true position of the robot.

(a) Initial particle distribution in the building. The
cross indicates the true, but unknown, position of
the robot. The walls are shown in black.

(b) The state of the particle filter after moving the
robot around for a while. Some particles have
crashed into the walls and are removed from the
set of particles. The likelihood of the particles is
calculated using multiple magnetic maps. The re-
maining particles are resampled to represent the
posterior distribution of the robot’s position.

(c) The state of the particle filter after more move-
ment. The particles are resampled again to repre-
sent the posterior distribution of the robot’s posi-
tion.

Figure 14.3: Particle filter for localization using only a floorplan, a map of the total-field intensities B and three separate maps of the
components of the magnetic field Bx , By and Bz . The map of total-field intensities is shown in the background. The color of the
particles indicates the likelihood of the particles.

The convergence of using a single map of the total-field intensities of the magnetic induction field B
is shown in Figure 14.2 is significantly better than the convergence of using only the floorplan, as shown
in Figure 14.1. The total-field map, however, does not contain any information about the direction of the
magnetic field. It happens often that the magnetic field value at several locations in the building is the same.
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One can see in the background of Figure 14.2, that when using beacons, the total-field value is the same
on circles around the beacons. In an ideal world, we navigate on a map that is continuous and has unique
values. The total-field map is not unique. We can improve the localization by using more information about
the magnetic field. We perform the same experiment, but we add a vector magnetometer to the robot. This
sensor measures the three separate components of the magnetic field, which all lead to a map that can be
used as input for our particle filter. The likelihood function is given by the product of the likelihood functions
on the separate maps |B|, Bx , By and Bz , as described in Section 14.3. The same movements and resamplings
are performed as before. The initial state and posterior distributions of the particles are visualized in Figure
14.3a, 14.3b and 14.3c. The posterior distribution of the particles after using multiple maps in the particle
filter lies closer to the actual position of the robot.

14.5. Wake-up Robot Problem: Map-matching for noisy measurements
on a heatmap

This section focuses on solving the wake-up robot problem in a magnetic field. A wake-up robot [20] is un-
aware of its current location. To find out its location, the robot is allowed to drive around for small bits and
make measurements. To tackle this problem, a map-matching algorithm is applied to the values of the mag-
netic field measured at different locations. Map-matching algorithms are commonly used in navigation to
map inaccurate GPS data to a road network [10]. They expressed the trajectory of a vehicle in samples of GPS
data. The samples are evaluated one by one. The roads around the current location are found by evaluating
the GPS measurements on a map. The distances to these roads are computed. Minimizing a weighted sum
of the distances and a measure for the orientation (derived using the previous location) that was traveled,
gives an estimate of the new position. This section focuses on a similar algorithm for map-matching, using
magnetic fields. Such a method would require robots to have magnetic sensors and gather their odometry
data.

14.5.1. Particle Swarm Initialization
A measurement of a magnetic field does not necessarily give information about the location: the map (B :
R2 → R3) can be non-unique, thus there might be different locations, far away from each other, that have
similar magnetic field strengths. In contrast, GPS data provided by satellites gives an approximation of where
the vehicle is, due to the unique mapping of the positioning data on the Earth. The initial position of the wake-
up robot is thus unclear. Two approaches can help find the initial particle positions. The first approach makes
use of an initial measurement (Figure 14.4a). The second approach samples uniformly on a grid (Figure
14.4b).

A single measurement of the magnetic field could exclude many parts from the domain. Due to the conti-
nuity of the domain, it is not possible to find the points where the values of the magnetic field are close to the
measurement. However, assuming that our magnetic field is continuous and sufficiently smooth, evaluations
of the magnetic field on a coarse grid could give us some initial position estimates for the algorithm.

To initialize the particle swarm, the following data is required:

• field: a map with the magnetic field components in x-, y- and z-direction.

• points: a selection of x- and y-coordinates in the space, e.g. a coarse grid.

• m0: an initial measurement of the magnetic field consisting of three components: the magnetic field
strength in x-, y- and z-direction.

• n: the number of particles to find.

The list of initial particles is obtained by selecting the n particles from poi nt s that minimize the distance,
in the L2-norm, between the three magnetic field components of the point and the measurement m0. Pseu-
docode for the implementation is given in Pseudocode 0 and an example of initial particle swarms are visu-
alized in Figure 14.4.

The second approach uses only a selection of x- and y-coordinates in the space. Preferably, these coor-
dinates are uniformly distributed. This can for example be done by sampling points from a grid, without
replacement. The preferred initialization method depends on the restrictions that are applied in the map-
matching process. This is elaborated in Section 14.5.5.
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(a) Example of an initial particle swarm fitted to a measurement with n = 30
on a grid of 100×100 points.

(b) Example of a uniform initialized particle swarm with n = 200 on a grid
with 20×20 points.

Figure 14.4: Examples of two different initializations of the particle swarm. The blue dots represent the particles in the swarm.

Algorithm 2 Particle swarm initialization

function INITIALIZEPARTICLES( f i eld , poi nt s,m0,n)
initialize an empty list of particles.
initialize an empty list of distances.
for p in poi nt s do

mp ← magnetic field components of p in f i eld .
distance ←∥mp −m0∥2

if distance < distances[-1] then
distance[-1] = distance
particles[-1] = p
sort particles in ascending order of distances
sort distances in ascending order of distances

end if
end for

end function
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14.5.2. Trajectory of the particle swarm
The odometry data of the robot can be used to determine its trajectory. In this section, we assume that
the robot has perfect odometry, meaning that the relative change in position between two measurements
is known exactly. In Section 14.5.4, we compute the trajectory of a robot that has inaccurate odometry.

With perfect odometry, it is trivial to find the trajectory of the robot. The same trajectory is used for the
particles. Let pk

i be the position of particle k at time i , then

pk
i+1 = pk

i +oi , (14.3)

where oi is the relative change in position between timestamp i and i +1. In Figure 14.5 one can see that each
particle has the same (relative) trajectory.

14.5.3. Fitness of a trajectory
In practice, the odometry data of a robot is far from perfect. This means that we cannot rely on only the
odometry data to determine the trajectory of the robot. Instead, we extend our particle swarm algorithm
with a fitness function that compares the trajectory of the particles to the measurements of the magnetic
field. Fitness functions for GPS algorithms for vehicles are easy to define: the distance to the closest road in
combination with the orientation of the vehicle is a good measure. Finding a good fitness function for mag-
netic field measurements is more difficult: the measurements live in a continuous space consisting of field
strengths in 3 dimensions and without any landmarks. Therefore, there is no ’closest’ point to a measure-
ment, we can however compare the measurement to the values of the magnetic field at certain points in the
map.

Figure 14.5: Trajectories of particles in a swarm of size n = 30 assuming perfect odometry. The trajectory with the best fitness is indicated
in green.

Let bk
i := B(pk

i ) be the three values of the magnetic field map at location pk
i . The local error ek

i is given by:

ek
i := ∥bk

i −mi∥2 , (14.4)

where mi is the i -th measurement. Note that the exact values of the magnetic field at position pk
i are unknown

and that B is thus a generated map of the magnetic field.
The fitness of trajectory i is now given by:

fi := ∥ek
i ∥2 . (14.5)

The optimal trajectory (Figure 14.5) can now be found by minimizing the fitness function.
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(a) Trajectory of a single particle with an odometry error of 15%, indicating 1
standard deviation of the bivariate normal distribution with a red circle and
the samples e

i , j
odom

with gray dots. (b) Trajectories of 30 particles with an odometry error of 15%.

14.5.4. Odometry error correction
Until now, it was assumed that a robot navigating through an environment can maintain an accurate relative
position using odometry data. However, in real-world situations, odometry data may not be flawless. To
account for this, an odometry error can be introduced when modeling the trajectories. The magnitude of this
error depends on the traveled distance, represented by |oi |, and the accuracy a of the odometry sensors. The
odometry error is assumed to follow a bivariate normal distribution:

ei
odom ∼N2(0,2a|oi |) . (14.6)

By drawing samples from this distribution, we can explore variations in particle positions as defined by
Equation 14.3. This helps us investigate the vicinity of the new particle positions. The sample that minimizes
the local error, ei k , is chosen for further trajectory calculations. Let’s take S samples and denote the j -th

sample as ei , j
odom ∼N2(0,2a|oi |). Then, the selected sample is the ĵ -th sample, given by:

ĵ = argmin
j=1...S

∣∣∣B(pi k +oi +ei , j
odom)−mi

∣∣∣
2

. (14.7)

Here, B represents the magnetic field map. Since the sample ĵ minimizes the local error, it can be in-
corporated into Equation 14.3 to obtain a better approximation of the magnetic field. Figure 14.7a shows
the random samples, with the indicated samples corresponding to the points where the trajectory changes
direction. These samples represent the new particle positions, now given by:

pk
i+1 := pk

i +oi +ei , ĵ
odom . (14.8)

We can use the same approach as in Section 14.5.3 to find the best trajectory. The best trajectory is the
one that minimizes errors in the magnetic field values at the measurement points. Figure 14.6b displays the
trajectories of 30 particles with a 15% odometry error. Comparing this figure to Figure 14.5, we can observe
that the trajectories are no longer parallel. The odometry error correction explores the vicinity of particle
positions, leading to minor changes in the direction and length of the relative paths.

14.5.5. Domain restriction
When a robot moves within a specific environment, its possible positions are often limited by the constraints
of that space. For instance, the domain may be enclosed by walls, or contain obstacles that create restricted
areas. These domain constraints can play a significant role in determining the optimal trajectory for the
robot on the map. To account for these restrictions, certain positioning samples or entire trajectories might
be disregarded if they fall outside of the allowable domain.

A restriction factor is introduced to manage small movements outside the domain, which is denoted as
Ω = [−1,1]2. With a given restriction factor of r > 0, the restricted domain becomes Ω̂ = [−r,r ]2, allowing a
(1− r )% overshoot at the domain boundaries. Trajectories that have points outside the restricted domain are
considered infeasible.
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(a) Trajectories of particles in a swarm of size n = 200 assuming an odometry
error of 5%. The trajectory with the best fitness is indicated in green.

(b) Domain restricted trajectories of particles in a swarm of size n = 200 as-
suming an odometry error of 5%. The used domain restriction factor is 1.05.
The trajectory with the best fitness is indicated in green.

Figure 14.7: Unrestricted and restricted domains.

Incorporating domain restrictions can significantly improve the performance of the map-matching algo-
rithm. This is particularly noticeable in cases where many trajectories extend beyond the domain, such as
uniformly initialized particle swarms with long trajectories. Figure 14.7 provides an example of this, compar-
ing 200 trajectories without domain restrictions to those with domain restrictions.

It is worth noting that the fitness of the best trajectory is higher in the unrestricted domain, but the dis-
tance between the best trajectory and the original (unknown) path we are trying to estimate is significantly
smaller for the trajectory in the restricted domain. Figure 14.8 (a) illustrates the spatial distances between

(a) Unrestricted domain. (b) Restricted domain with restriction factor is 1.05.

Figure 14.8: Distance between the original path and the domain restricted trajectories of particles in a swarm of size n = 200 assuming
an odometry error of 5%. The trajectory with the best fitness is indicated in green.

the points of the trajectories shown in Figure 14.7 and the original path. Figure 14.8 (b) presents the results
for trajectories with domain restrictions, leading to cut-off trajectories. Evidently, the algorithm with domain
restrictions performs significantly better in minimizing the distance to the original path.

14.5.6. Map-matching with beacons
In this section, we examine how the placement of beacons influences the accuracy of the map-matching
algorithm. Beacons are used to (partially) overpower the noisy and challenging-to-model local magnetic
field. For the experiment, a single beacon is placed in the room, and magnetic field maps are generated
both with and without the beacon turned on. Figure 14.9a presents the map of the field without beacons.
Meanwhile, Figure 14.9b displays the map of the magnitudes of the local field when the beacon is present
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(a) Magnitude of the local magnetic field. (b) Magnitude of the local magnetic field overpowered by a beacon.

Figure 14.9: Magnetic field maps with and without a beacon.

and overpowering the local magnetic field.

(a) Trajectories on a local magnetic field of particles in a swarm of size n =
200 initialized using an initial measurement. Assuming an odometry error
of 5% and an unrestricted domain. The trajectory with the best fitness is
indicated in green.

(b) Trajectories on an overpowered magnetic field of particles in a swarm of
size n = 200 initialized using an initial measurement. Assuming an odometry
error of 5% and an unrestricted domain. The trajectory with the best fitness
is indicated in green.

Figure 14.10: Trajectories on an unrestricted domain with measurement-based particle swarm initialization.

In this part, the map-matching algorithm is applied to find the trajectories in scenarios with and without
a beacon. Figures 14.10 and 14.11 illustrate the differences in the map-matching algorithm for a magnetic
field with and without a beacon. The trajectories are constructed from an initialized particle swarm based
on measurements. Figures 14.12 and 14.13 present the results of the same configuration but with a uniform
initialization.

When observing Figure 14.11 (a) and (b), it becomes apparent that the restricted domain without a beacon
and with initialization based on an initial measurement fails to find a feasible solution. However, the same
configuration with a beacon successfully finds a solution. Comparing subfigure (a) of the local field with sub-
figure (b) of the overpowered field in Figure 14.10 - 14.13 reveals that placing a beacon improves the accuracy
of the estimated trajectory position. Beacons are most effective when the particle swarm is initialized with an
initial measurement.

14.5.7. Discussion and Conclusion
The magnetic map-matching approach using particle swarm optimization demonstrates potential, but there
are some challenges to address. Firstly, as observed in Section 14.5.5, without domain restrictions, the model
struggles to consistently reproduce the robot’s trajectory. This implies that the method is most suitable for
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(a) Trajectories on a local magnetic field of particles in a swarm of size n =
200 initialized using an initial measurement. Assuming an odometry error of
5% and a restricted domain. The trajectory with the best fitness is indicated
in green.

(b) Trajectories on an overpowered magnetic field of particles in a swarm of
size n = 200 initialized using an initial measurement. Assuming an odometry
error of 5% and a restricted domain. The trajectory with the best fitness is
indicated in green.

Figure 14.11: Trajectories on a restricted domain with restriction factor 1.05 and a measurement-based particle swarm initialization.

(a) Trajectories on a local magnetic field of particles in a swarm of size
n = 200 uniformly initialized. Assuming an odometry error of 5% and an un-
restricted domain. The trajectory with the best fitness is indicated in green.

(b) Trajectories on an overpowered magnetic field of particles in a swarm of
size n = 200 uniformly initialized. Assuming an odometry error of 5% and
an unrestricted domain. The trajectory with the best fitness is indicated in
green.

Figure 14.12: Trajectories on an unrestricted domain with uniform particle swarm initialization.

(a) Trajectories on a local magnetic field of particles in a swarm of size n =
200 uniformly initialized. Assuming an odometry error of 5% and a restricted
domain. The trajectory with the best fitness is indicated in green.

(b) Trajectories on an overpowered magnetic field of particles in a swarm of
size n = 200 uniformly initialized. Assuming an odometry error of 5% and a
restricted domain. The trajectory with the best fitness is indicated in green.

Figure 14.13: Trajectories on a restricted domain with restriction factor 1.05 and a uniform particle swarm initialization.
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known environments. The findings in Section 14.5.6 suggest that incorporating magnetic beacons within the
domain can enhance the accuracy of the technique. Additionally, increasing the swarm size also improves
the method’s precision. However, it is important to exercise caution to avoid overfitting.

In summary, the magnetic map-matching technique with particle swarm optimization presents a promis-
ing approach to estimating robot trajectories, particularly when domain restrictions are applied and mag-
netic beacons are used in known environments. Further optimization, such as refining swarm size and ini-
tialization, can help to balance the trade-off between accuracy and overfitting, ensuring a more reliable and
robust estimation of robot trajectories.

The principles discussed in the context of magnetic map-matching using particle swarm optimization
can also be applied to other types of maps, such as altitude maps, gravitational maps, and more. These
maps represent different physical properties of the environment but can similarly benefit from optimization
techniques to improve the accuracy of trajectory estimation or navigation tasks. For example, when working
with altitude maps, the optimization algorithm could help in estimating the most efficient path over varying
terrain, taking into account factors like elevation changes and obstacles. Similarly, gravitational maps could
be utilized to understand variations in gravitational forces in a region, which could be valuable for geological
or geophysical studies.

The algorithms and techniques discussed can also be employed for aeromagnetic navigation, which in-
volves using magnetic data collected from airborne surveys to identify and track geological structures and
mineral deposits. By applying particle swarm optimization or other optimization techniques, the accuracy
of the estimated flight paths and the interpretation of the collected magnetic data can be improved. This, in
turn, can lead to more efficient and precise identification of geological features, mineral deposits or ferro-
magnetic objects.

In conclusion, the concepts and techniques explored in the context of magnetic map-matching using
particle swarm optimization are versatile and can be extended to various types of maps and applications,
including aeromagnetic navigation and beyond.
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Conclusions and Recommendations

15.1. Conclusions
The goal of this thesis was to develop a better understanding of the theory and practice of magnetic map-
making techniques. Throughout this thesis, we have tried to answer the question: What are the fundamental
principles and concepts underlying magnetic map-making? To answer this question, we have formulated the
following research questions:

1. What is the definition and purpose of a magnetic (anomaly) map?

2. What are the established methodologies and techniques utilized in the creation of magnetic maps?

3. How can the depth of dipole sources be accurately determined from the measured signal?

4. What is the empirical performance of current interpolation and extrapolation techniques for magnetic
maps?

5. What is the impact of environmental and platform noise on measurement data in the process of map-
making, and what strategies can be employed to minimize this influence?

6. In what ways can magnetic (anomaly) maps be utilized for navigation, localization, and exploration?

We started with a study of magnetic fields (Chapter 2) and the structure of Earth’s magnetic field (Chapter 3)
and look into existing techniques for representing the Earth’s magnetic field. The first of these uses spherical
harmonics to model the field with Legendre polynomials (Chapter 6). This is very effective on larger, conti-
nental, scales with wavelengths starting at 2500 km. Higher-resolution methods, using a 720-degree spherical
harmonic expression, allow for a 56 km spatial resolution. This resolution is not enough for navigation pur-
poses, therefore, we looked for methods that allow for a higher resolution. This is where magnetic anomaly
maps play an important role. The definition of a magnetic (anomaly map), and thus Research Question 1, is
handled in Chapter 5. The maps can be used to enhance coarser, global, reference fields with local informa-
tion by mapping the deviation from the lower-resolution reference field. These maps can be made using a
variety of techniques, which mainly consist of interpolating the measurement data.

Interpolation and Extrapolation Techniques
In practice, especially in the context of aeromagnetic maps, it is not possible to take measurements at every
altitude above Earth’s surface. Therefore, methods for extrapolating the measurements to higher altitudes
are needed. The answer to Research Question 2 is twofold: we need interpolation techniques for mapping
measurements to a different set of points, and extrapolation techniques, for finding the magnetic field at alti-
tudes where no measurements are available. The methods concerned with interpolation are not extensively
discussed in this thesis but are mentioned in Chapter 8.

The extrapolation methods are studied in more detail and make use of Green’s third identity (Chapter
2.4.1). Green’s third identity tells us that the magnetic field above an infinite plane is completely defined by
the magnetic field on the plane, as long as all the sources lie below the plane. This theorem is the underlying
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assumption for the extrapolation methods studied in our work. The simplest of these methods is the Upward
Continuation method (Chapter 10), which exists in an integral form and as a Fourier transformation over
the plane. Another method, Equivalent Layer (Chapter 8), tries to solve the inverse problem of finding the
magnetic sources that could have generated the measured field. This is done by positioning one, or multiple,
layer(s) of dipoles underneath the surface. The position and strength of these dipoles are then optimized to
minimize the error between the measured field and the field generated by the dipoles.

A signal-based approach
In the literature, we found that Anderson functions can be used to find the position and magnetic moments
of single magnetic sources from a signal. This prompted us to delve deeper into these functions, as they
may offer a potential solution for estimating the position of multiple sources using the signal alone. This
eliminates the requirement for a priori knowledge in the Equivalent Layer method (Chapter 9).

To do so, we constructed a Wavelet Family based on the Anderson functions, by shifting and scaling the
functions. A QR-decomposition was used to orthonormalize the functions and to find the coefficients of the
functions in the basis. The wavelet coefficients can be obtained by projecting the measured signal on the or-
thonormal wavelet family. We tested this projection on several types of fields with different complexities, with
and without noise. The results show that the Anderson wavelet family is capable of accurately reconstructing
the signal of the magnetic field generated by multiple sources.

We extended the three Anderson functions, which form a basis for the magnetic field of a dipole on a line,
to two dimensions, to form a basis on a plane. To our knowledge, the Anderson Wavelet Family, and the rep-
resentation of two-dimensional Anderson functions is a novel technique. Again, it was shown, that the result-
ing wavelet family, consisting of two-dimensional Anderson functions, can be used to represent the magnetic
field of multiple sources, which extends the applicability of the Anderson functions from one-dimensional
measurements on a line to two-dimensional measurements on a plane. Under certain circumstances, we
managed to find a translation from the Anderson coefficients to the position and magnetic moments, but
a general solution is still lacking. Research Question 3 is therefore only partially answered by the results of
Chapter 9. Further research is required to find back the exact position of the sources that are used for recon-
structing the signal using no a priori knowledge.

Benchmarking Map-making Techniques
We have implemented several of the interpolation and extrapolation methods in a Python package MagMap
and benchmarked them on simulated magnetic fields (Chapter 11). We concluded that Cubic Splines are the
best candidate for accurate and fast interpolation. Extrapolation is a more difficult problem. It seems that
Upward Continuation is superior to other extrapolation methods for situations where we have no information
about the distribution of the magnetic sources that generate the field. The Equivalent Layer requires some a
priori knowledge about the sources to make an accurate model since the positioning of the layers significantly
affects the accuracy of the method. The benchmarking results answer Research Question 4.

Real-world data and applications
The map-making techniques discussed in this thesis are mainly tested on simulated data of magnetic fields.
Working with real-world data is more complicated. One has to measure the magnetic field with a magne-
tometer (Chapter 4), compensate for temporal variations in the magnetic field, and one has to deal with
different types of noise. Especially platform noise, when attached to an aircraft, is a problem that needs to be
addressed. The engine, currents, and ferromagnetic materials in an aircraft have a significant impact on the
magnetic field measured with a magnetometer. The reduction of this noise, called aeromagnetic compen-
sation, is studied in Chapter 7. To validate the map-making techniques on real-world data, we performed a
measurement campaign and processed the data to create a magnetic map of a parking garage on the campus
of TU Delft at two different altitudes (Chapter 12). The Upward Continuation and Equivalent Layer tech-
niques were used to extrapolate the measurements from one altitude to the other. The extrapolated data
was quite different from the measured field at the higher altitude. A clear explanation for this difference is
still lacking, but we suspect that the type of sources and the preprocessing steps, such as rotating the sen-
sor data from body to world frame, have a significant impact on the results. The steps taken to create the
magnetic map of the parking garage, combined with the magnetic sensing and aeromagnetic compensation
techniques, give a good indication of the challenges that one faces when working with real-world data. This
answers Research Question 5.

To conclude this work, we looked at the applicability of magnetic maps. Chapter 13 briefly discusses the
broad applications of magnetic maps. Among others, mineral exploration and navigation of an F-16 aircraft
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are discussed. Finally, a small demonstration of localization and path-finding algorithms using particle filters
is given in Chapter 14. These two chapters give an answer to Research Question 6.

15.2. Recommendations
Validity of High-resolution Magnetic Anomaly Maps
This research did not look at how to combine magnetic maps when several are available at different reso-
lutions, or how to tile them together to create a larger map. Some work has been done on this topic, but
mainly in the context of core and crustal fields [2]. It has to be verified if these methods are also applicable to
higher-resolution anomaly maps. Moreover, the effect of temporal variations on magnetic anomaly maps is
not studied in this thesis. The type of variations that high-resolution magnetic anomaly maps undergo takes
place on a much shorter time scale than the variations of the core and crustal fields. Therefore, the methods
used for core and crustal field models may not be directly applicable to high-resolution magnetic anomaly
maps. Further research on the temporal variations in higher-resolution magnetic anomaly maps is needed to
determine the validity of these maps and to find ways to update invalidated parts with new measurements.

Krylov methods for Equivalent Layer
In addition, a lot can still be gained on the computational side of the extrapolation methods. For example,
the performance of Equivalent Layer seems to be dependent on two factors: the number of sources and the
position of the sources. For a small number of sources, the linear system can be solved quite fast. But larger
problem scales demand some optimizations. The EL problem is often solved using direct methods. Finding
a suitable iterative (Krylov) method that solves the EL problem in a fast way seems to be a valuable step. This
would require a sparse matrix representation of the problem, which requires some relaxation of the problem,
but we think that this is possible since the strength of a dipole decays with a factor 1/r 3.

Compact storage of magnetic maps
Another interesting topic is finding an efficient way to store high-resolution magnetic maps. Maps of fields at
a fixed height can be interpolated to a regular grid and can then be stored in a (compressed) image. For maps
of fields at different heights, it might be more efficient to only store the sources that can be used to create the
map. These sources can for example be found with the Equivalent Layer or Anderson Wavelet methods. Extra
research on compact storage of magnetic maps is required to see if this way of storing maps is indeed more
efficient than storing the maps as images.

Relationship between the Anderson wavelet coefficients and Dipole parameters
In Chapter 9, we constructed a wavelet family based on the Anderson functions. The Anderson functions
themselves form a basis for the magnetic field of a dipole evaluated on a line (Section 9.2). The wavelets in
the basis are shifted and scaled versions of the Anderson function and have therefore also a relationship with
the magnetic field of a dipole. We have found that, in specific cases, the position and magnetic moment of
a dipole can be found from the Anderson wavelet coefficients. However, a general solution is still lacking.
Further research is required to find back the exact position of the sources that are used for reconstructing the
signal using no a priori knowledge.

Optimal Path-finding Algorithms for Magnetic Maps
In Chapter 14, we showed that a particle filter can be used to localize a magnetometer in a magnetic map.
We noticed that spatial variations in the magnetic field play an important role in the localization. For exam-
ple, the particle filter converges fast when the three components of the magnetic field form a unique pattern.
This raises the question of whether there exist optimal paths in a magnetic map if one wants to move from
one point to another. The optimal path would be the path that minimizes the uncertainty of the localiza-
tion. Imagine a path that goes through a region where the magnetic field is constant, then the magnetic field
measurements do not give any information about the position and one would have to rely on other inertial
sensors. On the other hand, if there is another path that goes through a region where the magnetic field is
spatially varying, then one can use the magnetic field measurements to localize the object. This can be very
useful for the navigation of a drone. Especially in urban environments, it can be dangerous to lose informa-
tion about the position of the drone. We think that the optimal path-finding problem can be solved using
an evolutionary algorithm. The fitness function would be the uncertainty of the localization. The algorithm
would then try to find the path that minimizes the uncertainty and reaches the destination in the shortest
time possible.
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A
An introduction to Spherical Harmonics

Spherical harmonics are a set of functions that are used to model functions on a sphere. Spherical harmonic
functions are orthogonal and form a complete basis set. This means that any function on a sphere can be
represented as a linear combination of spherical harmonics. There are different sets of spherical harmonics,
but the most common ones are the solid harmonics, functions on a sphere that satisfy the Laplace equation
∆ f = 0:

∆ f = 1

r 2

∂

∂r

(
r 2 ∂ f

∂r

)
+ 1

r 2 sinθ

∂

∂θ

(
sinθ
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+ 1

r 2 sin2θ

∂2 f

∂φ2 = 0, (A.1)

where f : R3 → R is a function of r , θ and φ. Often, the function f is rewritten as the product of a radial
function R and a spherical harmonic function on the unit-sphere Y :

f (r,θ,φ) = R(r )Y (θ,φ) . (A.2)

Separating the function into a radial function and a spherical harmonic function allows for finding an
analytical solution to the Laplace equation. The radial function R is found by solving the radial part of the
Laplace equation:
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The spherical harmonic function Y is found by solving the spherical part of the Laplace equation:
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This equation can be separated into two equations, one for the θ-derivative and one for the φ-derivative:
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∂φ2 =−m2 , (A.5)
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The solution to Equation A.5 for integer m is a linear combination of exponentials exp
(
i mφ

)
. The solution

to Equation A.6 is given by the Associated Legendre Polynomials P m
l (cosθ).

The general solution to the spherical harmonic equation is given by:

Y m
l (θ,φ) = N exp

(
i mφ

)
P m

l (cosθ) , (A.7)

where N is a normalization constant.
The general solution to the radial equation is given by:

Rl (r ) = Ar l +Br−l−1 , (A.8)
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where A and B are constants.
The general solution to the Laplace equation on a sphere is given by:

f (r,θ,φ) =
∞∑

l=0

l∑
m=−l

Rl (r )Y m
l (θ,φ) (A.9)

=
∞∑

l=0

l∑
m=−l

(Ar l +Br−l−1)Y m
l (θ,φ) (A.10)

=
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l∑
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Rm
l (r )+ I m

l (r ) , (A.11)

where Rm
l (r ) = Ar l Y m

l (θ,φ) and I m
l (r ) = Br−l−1Y m

l (θ,φ) are functions from R3 → C. Here, Rm
l is the regular

solution and I m
l is the irregular solution.

If the solution is required to be regular in R3, then B = 0 and the solution is given by:

f (r,θ,φ) =
∞∑

l=0

l∑
m=−l

f m
l r l Y m

l (θ,φ) , (A.12)

where f m
l are complex coefficients.

A.1. Legendre Polynomials
Legendre polynomials are a set of orthogonal polynomials. They are useful for representing functions as a
linear combination of polynomials, in a similar way to how trigonometric functions are used in the Fourier
series. The Legendre polynomials are defined as:

Pn(x) = 1

2nn!

∂n

∂xn

(
x2 −1

)n
, (A.13)

where n ∈N is the degree and x ∈ [−1,1]. The Legendre polynomials are orthonormal on the interval [−1,1].
This means that the inner product of two Legendre polynomials is zero, except when the polynomials are the
same:

∫ 1

−1
Pn(x)Pm(x)d x =

{
1 n = m

0 n ̸= m
. (A.14)

All the Legendre polynomials satisfy the following differential equation:

(1−x2)
∂2Pn(x)

∂x2 +2x
∂Pn(x)

∂x
−n(n +1)Pn(x) = 0. (A.15)

A.1.1. Associated Legendre Polynomials
There also exists a generalization of the Legendre polynomials, the so-called associated Legendre polyno-
mials. Like the Legendre polynomials, the associated Legendre polynomials are orthogonal on the interval
[−1,1]. Associated Legendre polynomials have a degree l and an order m where l ≥ m ≥ 0. The extra parame-
ter m allows for the polynomials to represent more complex functions. The associated Legendre polynomials
are given by:

P m
l (x) = (−1)m(1−x2)m/2 ∂m

∂xm (Pl (x)) , (A.16)

where Pl (x) is the Legendre polynomial of degree l . The order m is the number of times the function is
differentiated with respect to x. For negative m, the associated Legendre polynomials are given by the natural
normalized (Equation A.18) polynomials:

P−m
l (x) = (−1)m (l −m)!

(l +m)!
P m

l (x) . (A.17)

The Legendre polynomials are thus a special case of the associated Legendre polynomials where m = 0.
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A.1.2. Normalization
The associated Legendre polynomials are not normalized. Normalization is crucial for the associated Leg-
endre polynomials to be used as a basis for representing functions. Depending on the application, different
normalization constants are used. The following normalization constants are common for the associated
Legendre polynomials:

Natural (−1)m (l −m)!

(l +m)!
(A.18)

Acoustic

√
(2l +1)(l −m)!

4π(l +m)!
(A.19)

Quantum (−1)m

√
(2l +1)(l −m)!

4π(l +m)!
(A.20)

Geodesy

√
(2l +1)

(l −m)!

(l +m)!
(A.21)

Schmidt

√
(l −m)!

(l +m)!
. (A.22)

A.1.3. Orthogonality of First Derivatives of Harmonic Basis Functions on the Unit Sphere
Functions that satisfy the Laplace equation on a sphere can be used in many physical applications. The fact
that they form an orthonormal basis is also very useful and allows efficient extraction of coefficients (Ap-
pendix B.4). One application of spherical harmonics is modelling the Earth’s magnetic core field (Section
6.5). The magnetic field is a potential field, meaning that it is a function of the gradient of a scalar potential.
For magnetic fields, this scalar potential is harmonic and satisfies the Laplace equation. These properties are
further discussed in Chapter 2. For now, it is sufficient to note that knowing (the properties) of the gradi-
ent of spherical harmonic functions is useful from a computational perspective. The gradient of a spherical
harmonic function is given by:

∇ f =
(
∂ f

∂r
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∂ f

∂θ
,
∂ f

∂φ

)
. (A.23)

The solution to the Laplace equation on the unit sphere can be derived from Equation A.12 by fixing r = 1:

f (θ,φ) = f (r,θ,φ)
∣∣
r=1 =

∞∑
l=0

l∑
m=−l

f m
l Y m

l (θ,φ)′, . (A.24)

The coefficients f m
l can be extracted from the solution by using the orthonormality of the spherical har-

monics (Appendix B.4):

f m
l = 〈 f ,Y m

l 〉 =
∫

S2
f (θ,φ)Y m

l (θ,φ)dΩ . (A.25)





B
Gaussian Processes

Gaussian processes are stochastic processes, popular for supervised learning tasks like regression and classi-
fication. They are based on the idea that a set of data points can be approximated by a set of Gaussian distri-
butions: every linear combination of the random variables has a multivariate normal distribution. Gaussian
Processes (GPs) are powerful because they can capture the underlying structure of the data, even when the
data is noisy or non-linear. GPs model non-linearities by using a kernel function to capture the underlying
relationships between data points. A kernel function is a mathematical function that takes two inputs and
returns a measure of similarity between them.

B.1. Kernel Functions
Kernel functions are the underlying functions that define the covariance matrix K in a Gaussian process. In [4]
it is shown that if a GP has zero mean, then the behavior of the GP is completely determined by its covariance
matrix. The kernel function thus plays a crucial role in defining the behavior of the GP. Kernel functions are
measures of similarity between two inputs x and x ′. A kernel function maps two inputs to a scalar value. If
the inputs are close, the kernel function returns a high value. A low value indicates that the inputs are not
similar. The kernel function is defined as

k(x, x ′) = "similarity between x and x ′", (B.1)

and can include any function that is positive semi-definite. Kernels are also symmetric: k(x, x ′) = k(x ′, x),
this is intuitive because the similarity between two inputs should be the same regardless of the order of the
inputs.

Some common kernel functions are listed below.

Linear Kernel: k(x, x ′) = xT x ′ (B.2)

Polynomial Kernel: k(x, x ′) = (xT x ′+ c)d (B.3)

Gaussian Kernel: k(x, x ′) = exp

(
−||x −x ′||2

2l 2

)
(B.4)

Laplacian Kernel: k(x, x ′) = exp

(
−||x −x ′||

σ

)
(B.5)

Periodic Kernel: k(x, x ′) = exp

(
−2sin2(π||x −x ′||)

l 2

)
. (B.6)

The linear kernel is the simplest kernel function. It is defined as the dot product of the two inputs. Orthog-
onal input vectors have a similarity of zero. The polynomial kernel is a generalization of the linear kernel and
is defined as the dot product of the two inputs raised to a power. The Gaussian kernel is the most commonly
used kernel function in GPs. They are also known as the Radial Basis Function (RBF) kernel. Gaussian kernels
are smooth and infinitely differentiable, allowing for a good fit of continuous functions.

143



144 B. Gaussian Processes

A kernel is called isotropic if it is translation invariant: k(x, x ′) = k(x − x ′, x − x ′). This means that the
kernel function is the same regardless of the location of the inputs and occurs when the kernel function is
a function of the distance between the inputs: k(x, x ′) = k(∥x − x ′∥). The benefit of an isotropic kernel is
that they often have a single parameter that defines the kernel function. This parameter, the length scale l ,
controls the smoothness of the kernel function. If the length scale is large, then points that are far apart are
still considered somewhat similar, resulting in a smooth kernel function, while a small length scale results in
a more jagged kernel function. The performance of isotropic GPs heavily depends on the choice of the length
scale, this is further discussed in Section B.1.2.

B.1.1. Covariance Matrix
A kernel function expresses the statistical relationship between two random variables. This is similar to the
covariance between two random variables:

Cov(X ,Y ) = E [(X −E [X ])(Y −E [Y ])] . (B.7)

Given a set of random variables X = {X1, X2, . . . , Xn}, the covariance matrix is a square matrix that contains
the covariance between every pair of random variables. The covariance matrix generated by a kernel function
k(x, x ′) is given by the matrix K where Ki j = k(xi , x j ).

B.1.2. Hyperparameters
B.1.3. Mercer’s Theorem
Mercer’s theorem states that under certain conditions, a kernel function k(x, x ′) can be expressed as a linear
combination of a set of basis eigenfunctions φi (x) and eigenvalues λi [41]. For any kernel function k : X ×
X →R that is square integrable over the domain D and is symmetric and positive semi-definite∫

X×X
f (x) f (x ′)k(x, x ′)d xd x ′ ≥ 0, (B.8)

for all f (x) ∈ L1(D), there exists a transformation φi : X → V and λi ≥ 0 such that

k(x, x ′) =
∞∑

i=1
λiφi (x)φi (x ′) , (B.9)

for all x, x ′ ∈D.

B.1.4. The Kernel Trick
The Kernel Trick is a method of transforming a non-linear problem into a linear problem. It is a direct conse-
quence of Mercer’s theorem: if a kernel function is SPD, then the kernel function can be expressed as an inner
product in V , where V is the Hilbert space of the eigenfunctions φi (x) [41].

A clear example of the kernel trick occurs in Support Vector Machines (SVMs). In SVMs, the objective
function is to find the hyperplane that maximizes the margin between the two classes. Suppose that the data
is not linearly separable, e.g. the boundary between the two classes is a circle. In this case, the SVM objective
function is non-linear. However, the kernel trick can be used to map the data into a higher dimensional space,
where the data is linearly separable. In the case of the circle, a suitable mapping would be

φ(x) = (x1, x2, x2
1 +x2

2) , (B.10)

which maps the data into a 3D space. In this space, the data is linearly separable, and the SVM objective
function can be solved.

B.1.5. Orthonormal Basis Functions as Kernel Functions
It is also possible to construct a kernel function directly from a set of orthonormal basis functions. An or-
thonormal basis in a Hilbert space V is defined[9] as follows:

Definition B.1.1 (Orthonormal basis) A basis ek
∞
k=1 in a Hilbert space V is an orthonormal basis for V if ek

∞
is an orthonormal system.

Theorem 4.7.2 in [9] states that for an orthonormal system {ek }∞k=1, the following are equivalent:
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1. {ek }∞ is an orthonormal basis for V .

2. v =∑∞
k=1〈v,ek〉ek for all v ∈ V .

3. 〈v,w〉 = 〈w,v〉 for all v,w ∈ V .

4.
∑∞

k=1 |〈v,ek〉|2 = ∥v∥2 for all v ∈ V .

5. span{ek }∞k=1 = V .

6. If v ∈ V and 〈v,ek〉 = 0 for all k ∈N, then v = 0.

Item (2) shows that any vector v can be expressed as a linear combination of the basis vectors ek . The
coefficients of the linear combination are the inner products 〈v,ek〉, which is the projection of v onto the
orthogonal complement of ek . Item (3) shows that the inner product is symmetric, i.e. 〈v,w〉 = 〈w,v〉, which
is what we want for a kernel function. Item (4) shows that the inner product is positive semi-definite, i.e.
〈v,v〉 ≥ 0 for all v ∈ V .

Now let φi (x) be a set of orthonormal basis functions that map X ∈ Rn into a Hilbert space V . Then, an
inner product is defined as

〈φi (x),φ j (x ′)〉 =φi (x)φ j (x ′) = δi jφi (x)φ j (x) , (B.11)

where δi j is the Kronecker delta and x, x ′ ∈X . The kernel function can then be defined as

k(x, x ′) =
n∑

i=1
φi (x)φi (x ′) . (B.12)

Currying
For the application of kernel functions in high-dimensional Hilbert spaces F , it is useful to define a curried
version of the kernel function. Currying a function is simply performing a partial evaluation, it transforms a
function that takes multiple arguments into a function that takes one argument at a time [31]. For example,
the function f (x, y) = x + y can be curried as f (x)(y) = x + y . In the case of our kernel function k : X ×X →R

and corresponding mapΦ : X →V , we can define a curried version as k(x, ·) : X →R. Now we can introduce
partial evaluations of our functions, which are mappings to higher-dimensional function space:

Φk (y) = k(y, ·) : X →RX , (B.13)

where RX is space of functions that map X →R.
The map Φ was a map from a low dimensional space X e.g. Rn to a much higher dimensional space Rd

with d ≫ n. The new expansion Φk (y) is also a map from X , but now the expansion is taken to a function
space RX . The result ofΦk (y) is a function.

B.1.6. Reproducing Kernel Hilbert Space (RKHS)
Definition B.1.2 (Reproducing Kernel Hilbert Space (RKHS)) A Hilbert space F of functions f : X → R is a
Reproducing Kernel Hilbert Space if there exists a kernel function k : X →R such that

1. ∀x ∈X , k(x, ·) ∈ F ,

2. ∀ f ∈ F, 〈 f ,k(x, ·)〉 = f (x).

A RKHS projects the features into a function space and linear classification can be performed in this function
space.

B.1.7. Zonal Kernel
A zonal kernel can be defined as a kernel function that is defined on a set of points X and is invariant to
translations and rotations. In the context of a globe, zonal means that the kernel function is invariant to
rotations about the north pole. Zonal kernels are useful for defining similarities between spherical harmonic
functions (Appendix A). In equation Equation A.7, an orthonormal basis Y m

l is defined on the unit sphere

S 2. This basis can be used to define a zonal kernel function using Equation B.12. The zonal kernel function
is defined as follows:

k(x, x ′) =
∞∑

l=0

l∑
m=−l

Y m
l (x)Y m

l (x ′) . (B.14)
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B.2. Bayesian Inference
Bayesian inference is a method of inferring the posterior distribution of a parameter given some data. A
probability distribution is defined over the parameter θ and the data x. Then, using Bayes’ theorem, the
posterior distribution is defined as

p(θ|x) = p(x|θ)p(θ)

p(x)
, (B.15)

where p(x|θ) is the likelihood function, p(θ) is the prior distribution, and p(x) is the marginal likelihood. The
posterior distribution is then used to make predictions about the parameter θ given some data x. This can be
done by weighting the predictions by the posterior distribution.

B.3. Gaussian Process Regression
Gaussian process regression (GPR) is a method of approximating a function f (x) using a Gaussian process.
GPR is a non-parametric method, meaning that there are no assumptions about the form of the function
f (x). GPR is based on Bayesian inference: in GPR, the parameter θ is the function of interest, i.e. the function
f (x), and the data x is the training data.

For a linear function y = w x +ϵ where ϵ∼N (0,σ2), the posterior distribution is defined as

p(w |y, X ) = p(y |w, X )p(w)

p(y |X )
. (B.16)

Given unseen data x ′, the prediction f ′(x ′) can be calculated as

p( f ′|x ′, y, X ) =
∫

p( f ′|x ′, w)p(w |y, X )d w . (B.17)

. The prior distribution for a Gaussian process is defined as[
y
f ′

]
∼N

([
µ

µ′
]

,

[
k(x, x ′)+σ2

n k(x, x ′)
k(x ′, x) k(x ′, x ′)

])
. (B.18)

The predictive distribution p( f ′|x ′, y, X ) can be calculated by factoring the data and test observations:

p( f ′|x ′, y, X ) =N ( f̄ ′,Σ2) (B.19)

f̄ ′ =µ′+k(x ′, x)[k(x, x)+σ2
n]−1(y −µ) (B.20)

Σ2 = k(x ′, x ′)−k(x ′, x)[k(x, x)+σ2
n]−1k(x, x ′) , (B.21)

where f̄ ′ are the predictions with the corresponding variance on the main diagonal of Σ2.

B.4. Extracting Coefficients using Orthogonal Basis Functions
Section B.3 describes how to use this kernel function to make predictions using Gaussian processes. The
result obtained is a linear combination of the basis functions φi (x) evaluated at the points a set of points.
Extracting the weights of the linear combination is useful for computations. For a continuous function f that
is a linear combination of the basis functions φi :

f =
n∑

i=1
αiφi , (B.22)

one can easily find the coefficients αi by taking the inner product of f with each basis function φi :

〈 f ,φi 〉 =
n∑

j=1
α j 〈φ j ,φi 〉 , (B.23)

and solving for αi :

αi = 1

〈φi ,φi 〉
〈 f ,φi 〉 . (B.24)

In the above equations, the inner product is defined as the definite integral of the product of the two func-
tions:

〈 f , g 〉 =
∫
X

f (x)g (x)d x , (B.25)
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this requires that f and g can be measured at all points in X . Often, in practice, it is not possible to measure
a function on all points in e.g. Rn . In this case, the integral can be discretized using a grid of points X =
{x1, x2, . . . , xn} with spacing ∆x, and the inner product can be approximated as

〈 f , g 〉 ≈
n∑

i=1
f (xi )g (xi )∆x . (B.26)

B.4.1. Monte Carlo integration
Another way to approximate the integral is using Monte Carlo integration. This method does not require
evenly spaced points, but it requires a large number of samples to get a good approximation. The Monte
Carlo integration uses a probability density function p(x) to sample points from X . The expectation of an
integral

∫
X f (x)d x can then be approximated as

Ep [ f (X )] =
∫
X

f (x)p(x)d x , (B.27)

where Ep is the expectation with respect to the distribution p. The Monte Carlo approximation is then

f̂N = 1

N

N∑
i=1

f (xi ) , (B.28)

where xi are i.i.d. samples from p(x) and N is the number of samples. The Monte Carlo approximation is
unbiased, but it has a high variance. From the strong law of large numbers, the Monte Carlo estimate f̂N con-
verges to the true expectation Ep [ f (X )] as N →∞ and the central limit theorem states that the distribution

of f̂N converges to a normal distribution N (Ep [ f (X )],Var[ f̂N ]) as N →∞. The variance of the Monte Carlo
approximation is given by

Var[ f̂N ] = 1

N 2

N∑
i=1

[ f (xi )− f̂N ]2 . (B.29)

In the case of using a uniform distribution p(x) = 1/X , the probability function p(x) is constant and equal
to 1/X . This is similar to the case of using a grid of points with spacing ∆x, but has one major advantage:
sampling functions or signals with evenly spaced points limits the frequency content of the signal. This is
because the Nyquist frequency is given by fNyquist = 1/(2∆x). Sampling a signal with a frequency higher than
fNyquist leads to alias in the signal. This is not a problem when using Monte Carlo integration, since the
probability density function p(x) can be chosen to be non-uniform, allowing for capturing higher frequency
components, which are missed when using a grid of points.
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