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Abstract

Traditionally, Event-Triggered Control (ETC) methods are sample-and-hold control schemes
that implement a triggering condition in order to reduce the number of control updates.
Given a decay rate of the Lyapunov function, they focus on minimizing the (average) Inter-
Sample Time (IST). In this thesis, we focused on the scheduling of Periodic Event-Triggered
Control (PETC) controllers. By dynamically switching between triggering conditions, we
are maximizing the average rate of decay of the Common Lyapunov Function (CLF) given a
minimum Average Inter Sample Time (AIST) τ̂ or burst condition.

Given the physical system S, we construct a switched system SQ which captures all possible
scheduling behaviors. The l-complete abstraction of the switched system SQ is constructed
by solving a conjunction of quadratic equations and is denoted by SQ/Ql

, with equivalence
relation Ql. By setting a minimum AIST τ̂ or burst condition, a set of states in SQ/Ql

is
marked and a safety game is played to construct the maximal permissive controller Smpc.

On the safe behaviors inside Smpc, the guaranteed minimum control performance σ̂ is max-
imized for the infinite horizon problem, i.e. by maximizing the minimum weighted time
average of the primitive cycles in Smpc. First, several energy games are played to estimate
the maximum value of σ̂. Thereafter, a mean-payoff game is played to generate the strategy
securing this maximum control performance σ̂, which is used to construct the controller Sihc.
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“A mathematical problem should be difficult in order to entice us, yet not com-
pletely inaccessible, lest it mock at our efforts. It should be to us a guide post
on the mazy paths to hidden truths, and ultimately a reminder of our pleasure in
the successful solution.” — David Hilbert





Introduction

Control systems are nowadays present in a variety of applications. From an old example from
the 19th century as how to keep course on a ship [1], to evolved control processes that can lift
a boat out of the water using hydrofoils [2]. This was all due to the invention of the computer,
which made it possible to run more complex algorithms and advanced control schemes. How-
ever, using a computer to determine the control action also has some disadvantages. Due to
the computations, there will always be a delay between the measurement and control action.

Here the types of control methods divergences into different fields. One of these fields uses
triggering events to determine if the control action needs to be revised [3, 4, 5, 6], i.e. ETC.
The benefit of ETC is that the controller does not need to alter the control action every time
instant, only if certain control bounds are exceeded (i.e. triggering condition is triggered).
This can reduce the number of calculations of the controller and the amount of communication
between the controller and the actuators. Which can be very beneficial when operating on
Networked Control System (NCS) where the bandwidth is limited.

Existing ETC methods focus on reducing the number of communications as much as possible
while still stabilizing the system. This can be done in different manners and focuses on the
goal of reducing communications [7, 8]. One can set a custom desired guaranteed control
performance. However, setting this too high can result in an unwanted amount of communi-
cations for some states in the state-space. If one neglects the control performance, this will
result in very slow guaranteed convergence of the systems.

In recent years, the knowledge about ETC and PETC methods has increased. The insight
with the traffic models and Strongest (Asynchronous) l-Complete Approximations (SAlCA)
has opened new possibilities to analyze and construct triggering conditions for these methods
and the introduction of Self-Triggered Control (STC) [9, 10, 11, 12].

In this thesis project we will seek to strike a balance between communication reduction and
control performance of PETC methods. For this we will limit the research on Linear Time-
Invariant (LTI) systems with a predetermined static feedback gain. The PETC will be suited
with multiple quadratic triggering conditions with known guaranteed decay rates of the CLF.
Our goal will be to design a scheduler which can switch between a fixed set of quadratic
triggering conditions for the PETC system in order to achieve the desired balance.

Master of Science Thesis M.A.J. Looman



2 Introduction

0-1 Notation

We denote by N the set of natural numbers, a small extension being N0 which also includes
0. The reals are denoted by R. Since each of these sets is ordered, an inequality in the
subscript denoted a set restriction, e.g. R≥0 = {x ∈ R | x ≥ 0}. The n-Cartesian product
of a set A is given by An, e.g. R2 = R × R. A shorthand for the time derivative of a
function f will be ḟ . Regarding a vector x, the transpose is denoted by x⊤, the (2-)norm
by ||x||. A matrix is always written with a capital letter, where I being the identity and 0
the zero matrix, each of appropriate size regarding the problem. We write A ≻ 0 (A ⪰ 0)
if A is positive (semi-) definite, for systems this notation will denote different equivalence
classes. Basic mathematical symbols apply, such as: implication =⇒ , for all ∀, there exists
∃, element in ∈, set inclusion ⊆, such that ′ :′ or ′ |′, except \, sum

∑
, infinity ∞, set union

∪ and intersection ∩. Sets can be defined using set-builder notation {elements | constraints},
e.g. {n ∈ N | n < 9}. The size of a set A is defined by the amount of elements |A| and
the complement by A. The empty set is given by ∅. Further notations will be given in the
relevant sections.

M.A.J. Looman Master of Science Thesis



Chapter 1

Theoretical preliminaries

In this chapter, the preliminary knowledge to this thesis will be discussed. This will form a
solid knowledge base and will introduce the necessary notations for the further chapters.

First we will take a look at Event-Triggered Control (ETC) and some more advanced concepts.
In order to fully grasp these concepts, we need to describe a system as a finite automata.
Therefore, we will also give some information on (in)finite state machines and hybrid systems.
There is a vast amount of knowledge on these concepts, but we will discuss only what is
necessary for this thesis.

This chapter is also the place where certain algorithms will be discussed in detail. The choice
on why these specific algorithms are chosen, will be motivated in the designated section once
all the details of the problem are clear. Lastly, the Pareto frontier will be introduced in order
to talk about the multi-objective optimization nature of the problem.

1-1 Event-Triggered Control

Classic control methods continuously (or periodically for discrete control methods) recalcu-
late the ’ideal’ control output. Continuous control methods are only possible with dedicated
hardware, either mechanically or electrically. Which comes with high cost since every con-
troller needs an unique design. On the other hand, periodic control methods have had a rise
in popularity ever since computer chips became more powerful and affordable. However, pe-
riodic control often requires a quick sampling period since this is the only way to guarantee a
fast response to perturbations. When having a dedicated channel for the control system, this
is not a problem. It becomes problematic when the sensor and control data is send over same
network as other vital components of the system. Let alone when multiple control systems
operate on the same network as in Networked Control System (NCS), the network can be
overloaded resulting in packet losses and unexpected behavior.

Instead of evaluating the output of the controller continuously or every time step, ETC
evaluates the control action only in certain events. In 1999 Åström, Bernhardsson and Åarzén

Master of Science Thesis M.A.J. Looman



4 Theoretical preliminaries

first discussed the benefits of event based controllers [4, 3]. This can reduce the unnecessary
high number of computations and data send over the network. For continuous time controllers
this can be done by introducing an additional hardware. For the interested reader into
different ETC methods, I refer the reader to my literature review. Here I touched on different
topics such as Continuous Event Triggered Control (CETC), Self-Triggered Control (STC),
early triggering and nonlinear ETC. For this thesis, I will limit the information to only the
essentials.

1-1-1 System introduction

We start of with the classical Linear Time-Invariant (LTI) control scheme given in Eq. (1-1).
Moreover, S is a general LTI system defined by the matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rk×n

and D ∈ Rk×m. The dynamics ẋ(t) = Ax(t) + Bu(t) describe how the state of the system
x : R≥0 → Rn×1 progresses over time t ∈ R≥0 given an input signal u : R≥0 → Rm×1. In this
project, we assume full state knowledge at the current time. If this is not the case, but the
system is observable, one could design an observer to obtain the state x(t) from the output
y(t) over time. Therefore, let us set dimensions k = n, the matrices C = I equal to the
identity and D = 0 to the zero matrix of appropriate sizes.

S =
{

d
dtx(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(1-1)

The LTI system S can either have a single equilibrium point at x(t) = 0 or infinite equilibria
if the kernel of A is of higher dimension. Considering the latter, the matrix A will be singular.
Therefore, we will focus on the former and require A to be non-singular. In order to freely
control the system, independently of the initial state, we also require the pair (A, B) to be
controllable, i.e. the controllability matrix [B AB A2B . . . An−1B] is of full rank.

For the system S, one has designed a static stabilizing feedback gain K ∈ Rm×n using their
favorite method, e.g. pole-placement. Moreover, the input u(t) = Kx(t) renders the closed
loop dynamics stable, i.e. (A + BK) is Hurwitz.

1-1-2 Event-triggered control scheme

Notice that the control input u(t) is continuously depending on the state x(t). As mentioned
before, when communicating over a network with limited bandwidth, it becomes beneficial to
limit the amount of updates of the control input. Here, ETC methods come into play. In a
zero-order-hold fashion, the input values stay constant for a certain period of time, until the
state of the system drifted too far and there is a too big mismatch in current input and ideal
input. Let us define this process more precisely.

The input u of system S will only be updated at the triggering times, defined by the increasing
time sequence {ti}i∈N0 , starting at t0 = 0. The triggering times will be determined by a
quadratic homogeneous triggering condition ξ⊤(t)Qξ(t) > 0. Moreover, details about the
triggering matrix Q ∈ R2n×2n will be given later on in Section 1-1-5 and ξ is defined as
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1-1 Event-Triggered Control 5

ξ(t) = [x⊤(t), x̂⊤(t)]⊤. Furthermore, let us define x̂(t) as the last state known to the
controller, specified in Eq. (1-2). This is a snapshot of the state x, which stays constant
until the next triggering instance.

for t ∈ [ti, ti+1)x̂(t) =
{

x(ti) if ξ⊤(t)Qξ(t) ≤ 0
x(t) if ξ⊤(t)Qξ(t) > 0 (1-2)

We can use x̂ to define our zero-order-hold input signal: u(t) = Kx̂(t). The resulting system
dynamics of S are given below in Eq. (1-3). The key to designing a ETC method is choosing
the triggering sequence in a smart way. As we will see, one could choose Q in a way that
guarantees stability of the closed loop system, while guaranteeing a certain decay rate of
the Lyapunov function. However, as seen in the literature review, some methods go beyond
simply choosing a triggering matrix Q and implement more complex triggering conditions.

d

dt
x(t) = Ax(t) + Bu(t)

u(t) = Kx̂(t) = Kx(ti) for t ∈ [ti, ti+1)
(1-3)

The time between two triggering instances ti and ti+1 is called the Inter-Sample Time (IST)
τi = ti+1 − ti. The IST’s, or more precisely the Average Inter Sample Time (AIST)’s, are
an important measure on how aggressive a triggering condition is. Likewise to the triggering
times, one can define the IST sequence {τi}i∈N0 , capturing all inter-sample times between
triggering instances.

1-1-3 Periodic event-triggered control

Instead of continuously checking the triggering condition ξ⊤(t)Qξ(t) > 0. Regarding Periodic
Event-Triggered Control (PETC) methods, this triggering condition is only checked periodi-
cally. Likewise to discretized controllers, the sampling frequency needs to be relatively high
due to needing a decent reacting time to disturbances. These methods also have the practical
benefit that the triggering condition can be checked using a computer (which can not operate
in continuous time).
The sampling frequency will be defined as a constant ∆ ∈ R≥0. Since the trigger condition
is only checked periodically and t0 = 0, all triggering times {ti}i∈N0 are a multiple of ∆, i.e.
for all i ∈ N there exists a m ∈ N such that ti = m∆. Furthermore, one can extend this
reasoning to the IST’s. Meaning, each IST τi is a multiple of ∆, i.e. for all i ∈ N there exists
a k ∈ N such that τi = k∆. Since ∆ is kept constant throughout the simulations, one could
define the IST’s by the discrete inter-sample time sequence {ki}i∈N0 . Recall, each ki = τi

∆ is
an integer.

1-1-4 Lyapunov theory

In order to define stability criteria, let us introduce some Lyapunov theory, or more precisely,
the second method of Aleksandr Lyapunov [13]. A Lyapunov function can be seen as some
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6 Theoretical preliminaries

measure of how far the state of a system is from the origin, and the guarantee that as
time progresses, the system will get closer to the origin. Therefore, the mere existence of
a Lyapunov function guarantees stability. The precise definition of a Lyapunov function is
given in Definition (1.1).

Definition 1.1 (Lyapunov Function). Given a system describing the state dynamics d
dtx(t),

the function
V : Rn → R is called a Lyapunov Function if the following conditions are met:

• V (x) > 0 for x ̸= 0
• V (x) = 0 for x = 0
• d

dtV (x) ≤ 0 for x ̸= 0

Remark. We may write V̇ (x) for d
dtV (x(t)) = dV (x)

dx
dx(t)

dt . Furthermore, the function V is only
a Lyapunov function in regards to a given system.

There are different ideas on how to construct the Lyapunov function. For some physical
systems, a Lyapunov function can be constructed via the idea of total amount of energy in
the system in for example [14]. As long as the total amount of energy always decreases, the
system will converge to a minimum. Another interpretation of the Lyapunov function is the
sense of a cost function or a measure of performance [6]. Below, different theorems are given
concerning stability by Lyapunov’s second method. For thorough modern proofs, I refer to
[15].

Theorem 1.1 (Lyapunov Stability). Given a system d
dtx(t) = f(x(t)), if there exists a

Lyapunov function V : Rn → R with regards to the system, then the system is stable.

Theorem 1.2 (Lyapunov Asymptotic Stability). Given a system d
dtx(t) = f(x(t)), if there

exists a Lyapunov function V : Rn → R with regards to the system and for x ̸= 0 it holds that
d
dtV (x(t)) < 0, then the system is asymptotically stable.

There are many more notions of stability, e.g. global (asymptotic) stability or exponential.
In general, finding if a Lyapunov function exists is a hard problem. Luckily, due to many
research in asymptotically stable LTI autonomous system ẋ = Ax, one can find a quadratic
Lyapunov function with ease as shown in Eq. (1.3). Since the closed loop dynamics of our
system S with continuous inputs are such an autonomous system ẋ(t) = (A + BK)x(t), one
can use the Lyapunov equation to construct a Lyapunov function for the system.

Theorem 1.3 (Lyapunov Equation). Given Q a positive definite matrix and an LTI system
ẋ = Ax. The system is global asymptotically stable if and only if there exists a unique positive
definite P such that A⊤P + PA + Q = 0 such that V (x) = x⊤Px is a Lyapunov function for
the system.

Notice that the eigenvalues of P can indicate the maximum and minimum decay rate of the
Lyapunov function. However, in the context of ETC, the minimum rate can lay lower due to
only updating the input at triggering instances.
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1-1 Event-Triggered Control 7

1-1-5 Triggering conditions

In the literature review, we investigated quadratic, nonlinear, state error, input error, and
Lyapunov methods to construct triggering conditions for the system S. Here we will limit us
to two examples of quadratic Lyapunov triggering conditions which each guarantee a variable
decay rate of the Lyapunov function. This to illustrate the existence of of multiple Lyapunov
methods that allow to set variable decay rates. However, since only the monotone Lyapunov
triggering condition is used for simulations, the explanation of the Dynamic Triggering Mech-
anism (DTM) will kept short and the interested reader is referred to either Girard [16] or the
literature review.
Monotone Lyapunov triggering condition The first method is the monotone Lyapunov
triggering condition, which is the more conservative option of the two. Due to the PETC
approach, we will tolerate a slower decay of the Lyapunov function then is usually the case
(for contiuous control, the Lyapunov decay is a combination of the eigenvalues of P ). The
key insight here is that we limit the derivative of the Lyapunov function V (x) = x⊤Px and
each time our slower rate is about to be surpassed, a trigger instance is initiated. Below a
simple derivation of the derivative of V is given. This notion can be used to construct the
PETC triggering matrix QML of the triggering condition ξ⊤(t)QMLξ(t) > 0.

V̇ (x) = (Ax + BKx)⊤Px + x⊤P (Ax + BKx) = −x⊤Qx

In order to tolerate a slower Lyapunov decrease, introduce σ ∈ [0, 1). Recall that the decrease
of V (x(t)) has to be smaller or equal to zero in order for V to be a Lyapunov function. As long
as the old input from time tk is hold, a softer restriction can be applied shown in Eq. (1-4).
Furthermore, a trigger condition can be constructed when the softer restriction becomes close
to being violated, i.e. when V̇ (x(tk)) = −σx⊤Qx.

d

dt
V (x(tk)) ≤ −σx⊤Qx (1-4)

Moreover, for a given σ, as long as the Lyapunov function is decreasing, the current input
from the controller can be hold. Otherwise, a new input is calculated by the controller using
the stabilizing static feedback gain K, which implies that the Lyapunov decrease will be equal
to −x⊤Qx again.
The problem that remains is how to calculate the Lyapunov decrease at every point in time if a
sample-and-hold strategy such as ETC is applied. Define ex(t) = x(tk)−x(t) for t ∈ [tk, tk+1)
as the difference between the current state and the last state the input is updated. For
t ∈ [tk, tk+1), the derivative of x is expressed in Eq. (1-5). Using this state derivative, in
Eq. (1-6) the derivative of the Lyapunov function is expressed.

dx(t)
dt

= Ax + BKx(tk)

= Ax(t) + BKx(t) + BKex(t)
(1-5)

d

dt
V (x(t)) = dV (x)

dx
dx(t)

dt

= dV (x)
dx (Ax(t) + BKx(t) + BKex(t))

= −x⊤(t)Qx(t) + 2x⊤PBKex(t)

(1-6)
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8 Theoretical preliminaries

Introducing the extended state for this system z(t) = [x⊤(t) e⊤
x (t)]⊤, Eq. (1-6) can be com-

bined with Eq. (1-4). Resulting in the condition shown in Eq. (1-7). Notice if the condition is
strictly smaller then zero, the Lyapunov decrease is negative. Before this condition is violated,
the control output should be updated. Therefore, the triggering condition becomes when 1-7
becomes an equality, the control output should be updated. [6, 17, 18, 19]

z⊤(t)
[
(σ − 1)Q PBK
(PBK)⊤ 0

]
z(t) ≤ 0 (1-7)

Translating this to the state z(t) to ξ(t) = [x̂⊤(t) x(t)]⊤ results in our desired triggering
condition ξ⊤(t)QMLξ(t) > 0, where QML is given by Eq. (1-8). This method guarantees an
exponential decay rate of κσ of the Lyapunov function V . Here κ is the maximum decay rate
of the Lyapunov function of the given system. How one can determine κ is given in appendix
A-1. The proof from a different perspective is given in appendix A-2. Here, the rate of decay
is derived more clearly and is shown that for any initial condition x(0), the Lyapunov function
is guaranteed to decay: V (x(t)) ≤ V (x(0))e−κσt.

QML =
[
(σ − 1)Q − 2PBK PBK

(PBK)⊤ 0

]
(1-8)

Dynamic triggering mechanism
Instead of obligating a monotone Lyapunov decrease, one of the relaxed Lyapunov conditions
can be applied to derive a non-monotone Lyapunov triggering condition. The monotone
Lyapunov condition requires the derivative of V to be always below a limit, this is not the
case for the relaxed Lyapunov condition. The key insight by Girard [16]: V is allowed
to increase, but as long as we stay below the exponential function, exponential decay is
preserved. Therefore, this method allows for gibber AIST. The rate of decrease of the
exponential function may vary, but gives a guaranteed decay rate for some point in time.

The system is complemented with an additional dynamic of η, which can be seen as a filtered
value of σα(∥x∥) − γ(∥e∥). This quantity should be non-negative on average to guarantee
stability. Therefore, we can require η to be always non-negative, and thereby enforce stability.
For the linear case, the dynamics of η are given by:

η̇ = −λη + (1 − σ)x⊤Qx − 2x⊤PBKe, η(0) = η0

Here, σ ∈ (0, 1) varies the guaranteed exponential decay of the Lyapunov function, λ > 0
is a design parameter, but in general set to the maximum possible decay using σ, namely
λ = κσ. Furthermore, η0 is the initial condition of η, the starting point of the dynamics.
In our simulation η0 = 0 is set to zero. The DTM is given below for how to determine the
triggering times.

ti+1 = inf
{

t ∈ R | t > ti∧
(1 − σ)x(t)⊤Qx(t) − 2x(t)⊤PBKe (t−) ≤ 0

}
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1-2 Graph Theory 9

Notice an extra design parameter θ. As θ approaches infinity, the performance of the DTM
approaches the static performance of continuously using the feedback gain K. Furthermore,
for values of θ below 1

2∥A+BK∥−λ , no gain in AIST is obtained. One is free to choose it in a
range between the two, but for our simulations, we set it to the minimum functional value
θ = 1

2∥A+BK∥−λ .

For stability requirements, a Lyapunov candidate V is extended with the dynamics of η,
resulting in W (x, η) = V (x) + η > V (x). Girard guarantees the decay of W as shown below,
and since W (x, η) > V (x), guarantees asymptotically stability.
d
dtW (x(t), η(t)) = σx(t)⊤Qx(t) − λη(t)

Using this method, Girard even gives an lower bound on the IST, for which we will refer the
reader to [16]. In Figure 1-1, we made a simulation showing a possible behavior ot the DTM
and visualizing the concept.

Figure 1-1: Simulation of DTM for PETC strategy on the same system introduced in Chapter
5. Using a decay of σ = 0.9 and initial condition x(0) = [10 0]⊤.

1-2 Graph Theory

Graph theory is a broad topic in which much research is done. For this thesis, we incorporate
some ideas from graph theory and will link some concepts to definitions we will make later
on. Since we only need a limited amount of ideas, the concepts below are reduced to only
what is useful for this thesis.

Let us first of introduce what a graph is below in Definition (1.2). A visual representation of
a graph G = (E, V ) can be constructed by making a sphere for every node in V and connect
the spheres with lines according to the transitions in E. For a directed graph, the transitions
are given by arrows.
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10 Theoretical preliminaries

Definition 1.2 ((Directed) Graph). Let G = (E, V ) be a (directed) graph, defined by a set
of vertices V and a set of edges E ⊆ V × V . In a directed graph, a element (v0, v1) ∈ E
describes only an edge from v0 to v1, instead of also an edge from v1 to v0.

Remark. Vertices and edges will also be referred to as nodes and transitions respectively.

When there are only a finite amount of vertices in the graph |V | ∈ N, the graph G is called
a finite graph. Notice that in a finite graph, there can only exists a finite amount of edges
since E ⊆ V × V . Graphs can be extended to weighted graphs as shown in Definition (1.3)
by introducing a weight mapping between the edges and weights.

Definition 1.3 (Weighted Graph). Let G = (E, V, w) be a weighted graph, where (E, V ) is
a graph and w : E → R is a weight function which maps a weight to every transition

Later on, further requirements can be set on the weight function. For example, some algo-
rithms may require non-negative weights or only integer values for weights. An important
notion will be the average weight along several edges, or more formally, along a path. A path
is defined by a sequences of connected vertices by edges as shown in Definition (1.4).

Definition 1.4 (Path). Let G = (E, V ) be a graph. A path in G is defined by a sequence
of vertices v0v1v2 . . . such that from every vertex in the sequence there exists an edge to the
next vertex, i.e. for all i it holds (vi, vi+1) ∈ E

Remark. A path can be finite or infinite depending if there are a finite or infinite amount of
vertices in the path. Moreover, sometimes paths will be visualized as a sequence of edges,
instead of vertices.

The existence of a path between vertices is a useful tool to describe other properties of a
graph G. Let us also briefly introduce the reachability of a vertex. Given a graph G = (V, E)
and a starting vertex v ∈ V , define Reach(G, v) as the set of all vertices v′ ∈ V such that
there exists a path from v to v′. This concept will explored further in 1-9-2. The following
definitions all use the existence, or the lack, of a possible path between vertices. For example,
a graph G is strongly connected if there exists always a path between every pair of vertices
as shown in Definition (1.5). This property of a graph, while being demanding, will be a
necessary condition for some algorithms later on.

Definition 1.5 (Strongly Connected Graph). A graph G = (E, V ) is strongly connected if
and only if from every vertex v ∈ V there exists a path to every other vertex v′ ∈ V

Another very useful concept will be cycles, which are a special kind of paths as shown in
Definition (1.6). Since a cycle starts and ends in the same vertex, as the name suggests, the
path is circular. A cycle, unlike a path, has not necessarily a starting node. Given a cycle
c = v0v1v2 . . . vm, one can shift the vertices such that c′ = v1v2 . . . vmvm+1 describes the same
cycle c = c′.

Definition 1.6 (Cycle). A cycle c in a graph G = (E, V ) is given by a finite path
c = v0v1v2 . . . vm for some m ∈ N such that v0 = vm

Remark. Cycles are normally presented by the minimal path, meaning for a cycle
c = v0v1v2 . . . vm, vm is the first occurrence when v0 = vm, i.e. for all i ∈ {1, 2, . . . , m = 1}
it holds vi ̸= v0. As well as, just as with paths, cycles will sometimes also be described by a
sequence of edges instead of vertices.
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1-2 Graph Theory 11

Once there exists at least two cycles c1, c2 in a graph G which share a common vertex, then
one can make an infinite amount of new cycles c′ by using different combinations of c1, c2. In
order to regain some structure, we differentiate between so called primitive cycles as shown
in Definition (1.7), which are the smallest cycle representation we can consider since all other
cycles can be constructed from primitive cycles.

Definition 1.7 (Primitive Cycle). A primitive cycle c = v0v1v2 . . . vm in a graph G = (E, V )
is a cycle which does not consists of other cycles, i.e. every vertex along the path of c is
unique, except vm.

We will denote the set of all primitive cycles of G by CG. If there does not exists an outgoing
edge from a vertex, a path can end up in a dead-lock. If there exists such a vertex in the
graph, the graph is said to be blocking as shown in Definition (1.8). If no such vertex exists,
the graph is said to be non-blocking. Often, a non-blocking graph is required in order to
make sure one never gets stuck.

Definition 1.8 (Blocking). A graph G = (E, V ) is said to be blocking if there exists a v ∈ V
for which there does not exist an outgoing edge in E. When in v, the system encounters a so
called dead-lock.

1-2-1 Infinite paths and cycles

There is a big connection between infinite paths and cycles in a finite graph. In order to
sketch this connection, we introduce Theorem (1.4) which describes the existence of a cycle
in non-blocking graph. Using this theorem, we can conclude small trivial statements around
infinite paths and cycles.

Theorem 1.4 (Cycle Existence). Given a finite graph G = (E, V ). If for every vertex v ∈ V ,
there exists a v′ ∈ V such that (v, v′) ∈ E, then there exists at least one cycle in the graph G,
i.e. CG ̸= ∅.

Proof. Given a finite graph G = (E, V ). Start in a vertex v ∈ V and create a path. The path
can always be extended since every vertex had an outgoing edge, and thus G is non-blocking.
Since G is finite, there are only a finite amount of vertices. When the path reaches a length of
|V |+1, at least one vertex v′ has to be in the path twice. Therefore, within the path creating
a cycle from v′

Notice, Theorem (1.4) can say something about the existence of an infinite path. Given a
finite graph G = (E, V ). There exists an infinite path in G if and only if there exists a cycle in
G. Moreover, if G is non-blocking, one can create an infinite path starting from every vertex
in V . Which describes the connection between infinite paths and cycles.

By the definition of a (primitive) cycle, if in a path a vertex v ∈ V appears more then once,
there exists a cycle including this vertex v. Therefore, given a finite graph G = (E, V ) and
an infinite path v0v1 . . . . Vertices not present in any primitive cycle are at most visited once
in an infinite path.

This last conclusion will be useful when interested in the average edge weight of an infinite
path on a finite graph. Since vertices not present in primitive cycles are visited at most once,
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12 Theoretical preliminaries

they do not contribute to the average edge weight of an infinite path, since they can occur
only a finite amount of times in a finite graph. Therefore, when investigating the average
edge weight of infinite paths in a finite graph, one can limit the focus on the average edge
weights of the separate primitive cycles. Recall every cycle is made up of a combination of
primitive cycles.

1-2-2 Transition systems

In later sections we will talk about Transition System (TS) which will have a clear connection
with graphs as defined earlier. Moreover, even when defining hybrid systems in Section 1-3,
the internal dynamics of a system S can be interpreted as progressing through a graph. Since
graph theory is used by many algorithms. It is essential to see the relation between the
concepts we will introduce, since we will switch between them.

A transition system is, like a graph, defined by a set of states and a set of transitions as shown
in Definition (1.9). In computer science, transition systems are more used to describe different
states and connections in a system, while graphs are more used to describe a process or logical
problem. Like graphs, we can add labels and weights to a TS to describe more complex
problems. In Definition (1.10), the formal definition of a Labeled Transition System (LTS) is
given.

Definition 1.9 (Transition System (TS)). A Transition System (TS) T is a tuple (X,E),
where:

• X the set of states
• E ⊂ X × X the set of possible transitions

Definition 1.10 (Labeled Transition System (LTS)). A Labeled Transition System (LTS) T
is a tuple (X,E, U), where:

• X the set of states
• U the set of labels (or inputs)
• E ⊂ X × U × X the set of possible transitions

1-3 Hybrid Systems

A hybrid system is a combination of a continuous time and discrete time system. The system
can endure flow like behavior from the continuous time dynamics and jump like behavior
from the discrete time dynamics. In this section, different descriptions of hybrid systems and
automata will be given. For the thesis, we only included subjects which we need later on.
For a more elaborate description of different hybrid systems, hybrid time domain, the basic
assumptions and stability conditions for hybrid systems, we will refer to the literature studies.
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1-3 Hybrid Systems 13

1-3-1 Jump-Flow Systems

The first type of hybrid system we will discuss is the jump-flow system. In a jump-flow
system, the system can either flow according to continuous time dynamics given by a function
f : Rn → Rn if the state x ∈ Rn is inside the flow set C ⊆ R, or the system can jump according
to discrete time dynamics given by the function g : Rn → Rn if the state x is inside the jump
set D ⊆ R [20, 15]. The corresponding description is given in Eq. (1-9).

H =
{

ẋ (t) = f (x (t)) if x (t) ∈ C
x

(
t+)

= g (x (t)) if x (t) ∈ D (1-9)

Notice an important question arises when the state x ∈ C ∩ D ≠ ∅ is in both the flow and
jump set. According to the dynamics of the system given in Eq. (1-9), both the flow and the
jump dynamics could occur. Therefore, a solution to the jump-flow system is in general not
unique and the system is said to be non-deterministic. Accepting the non-uniqueness of the
solution is the start of a more general approach given in section 1-3-2.

1-3-2 Set Theory Approach

Instead of jump-flow systems from Eq. (1-9), hybrid systems can more generally be described
by a set theory approach [15, 21]. Define the state as function of time x : R≥0 → Rn. The
system is allowed to flow if x(t) ∈ C and may flow in different directions, specified by F(x(t)).
Similarly, the system is allowed to jump if x(t) ∈ D and may jump in different directions,
specified by G(x(t)). A hybrid system H will then be given by Eq. (1-10) below.

H =
{

ẋ (t) ∈ F (x (t)) for x (t) ∈ C
x

(
t+)

∈ G (x (t)) for x (t) ∈ D (1-10)

The set-value maps F and G are defined as follows: F : C → P(Rn) and G : D → P(Rn),
where P(A) denotes the power set of the set A, describing all possible sets one can make
using A.

This definition of a hybrid system deliberately makes it possible to introduce non-determinism.
Both by making it possible to overlap the flow and jump sets: C ∩ D ≠ ∅, and including the
possibility that for a given state x, the sets F(x) and G(x) can both have more then a single
element.

1-3-3 Switched systems

Next to jump-flow systems, switched (or switching) systems are also a class of hybrid systems.
They are a powerful tool that can describe saturated inputs (e.g. physical maximum or
minimum limitations on actuators) as well as changing system dynamics [20, 22]. Where
jump-flow systems are very broad and can be intertwined a lot, switched systems consist of
a set of system dynamics, e.g. a set of matrices {A1, A2, . . . , Am} that describe a linear
dynamic shown in Eq. (1-11) for some switching rule α ∈ {1, 2, . . . , m}.

ẋ(t) = Aαx(t) (1-11)
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At first sight, one could suggest that evaluating every system separately on stability would be
sufficient such that the switched system is stable. However, as shown in [22], this is not the
case. Even if all separate systems are stable, the switched system may, for some switching
patterns, be unstable. They even give an example of the inverse problem and show that with
a switching pattern the switched system can be stable, even when all separate systems are
unstable.

To ensure stability of the switched system, one could again go over the previous definition of
stability of hybrid systems. However, due to the neat framework of switched systems, stability
can be guaranteed by the existence of a Common Lyapunov Function (CLF). If a function V
is a Lyapunov function for all subsystems, then V is called a CLF. Recall from Section 1-1
the definition of a Lyapunov function from Definition (1.1) and the stability conditions that
followed.
Remark. I like to think of a Lyapunov function as if it is some measure of how close the
system is to the origin, i.e. the equilibrium point. A CLF is nothing more then saying all
subsystems must converge to the origin in regards to the same measure.

Notice, in general it is very hard to find a Lyapunov function for a given system. Let alone
to find a CLF for a given switched system. However, for linear systems one can solve a small
optimization problem to construct a quadratic Lyapunov function. In the next section we
will show that it is also possible to construct a CLF for switched systems when dealing with
linear subsystems with quadratic triggering conditions.

1-3-4 Constructing a common Lyapunov function

In our case, given the system, we will construct a quadratic Lyapunov function V (x) = x⊤Px.
This V can then be used to construct different triggering conditions, all guaranteeing a certain
exponential decay of V . Therefore, V will be a CLF. Down below, more a extensive motivation
is given and the resulting decay rate of the CLF V is computed.

By switching between triggering conditions, each guaranteeing a different decay rate of the
Lyapunov function, a different triggering sequence can be obtained. Preferably, we want a
triggering condition that guarantees an optimal decay rate (σ = 1). However at some points
in time, this could result in a lot of triggering times within a small amount of time, which
may be undesirable. Therefore, it could be beneficial to switch from triggering condition.
The switching times are a subset of the sampling times and given by {t̂s

i }i∈N0 ⊆ {t̂i}i∈N0 .
Moreover, the only time we can switch from triggering condition is at the sampling times,
because the switching will be depended on the state of the system x(t). However, the only
known state following from the current triggering condition is x̂(t) and is updated only at
the sampling times. Remark, we set the initial value of the switching times sequence to 0 for
simplicity reasons t̂s

0 = 0.

The Lyapunov function is still bounded by the same decay rate, for the given decay rate in the
corresponding time interval e−σκt. Only the value of σ changes depending on the triggering
condition. In order to track which σ value is used, define σk as the value used between
[t̂k, t̂k+1). Recall that τi = t̂i+1 − t̂i denotes the IST, now define τ s

i = t̂s
i+1 − t̂s

i as the inter
switching times. The concept of switching between triggering conditions is best illustrated
by a small example:
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• Before the first time we switch triggering conditions t ∈ [t̂s
0, t̂s

1), the original decay rate
still applies V (x(t)) ≤ V (x(0))e−σ0κt

• When switched once, from that point onward we endure a new decay rate σ1 until the
next switching time is reached t ∈ [t̂s

1, t̂s
2). Notice that the starting point form the

decay function is V (x(0))e−σ0κ(t̂s
1−t̂s

0) instead of just V (x(0)). Therefore, for t ∈ [t̂s
1, t̂s

2)
it holds that V (x(t)) ≤ V (x(0))e−σ0κ(t̂s

1−t̂s
0)e−σ1κ(t−t̂s

1) = V (x(0))e−σ0κτs
0 e−σ1κ(t−t̂s

1)

• More generally, for N ∈ N and t ∈ [t̂s
N , t̂s

N+1), the Lyapunov function V (x(t)) is bound
with V (x(t)) ≤ V (x(0))e

∑N−1
k=0 −σkκτs

k e−σN κ(t−t̂s
N )

Remark, since the function V is at all times bounded by an exponential decreasing function,
the function V is exponentially decreasing to 0 and therefore still a Lyapunov function.

Switching between triggering conditions can be beneficial since the quadratic condition can
now depend on the state. In some states it could be possible to apply a desired triggering
condition (e.g. σ = 1) and achieve a long IST, while in other states this would result in
the need to trigger constantly. Instead of applying a conservative triggering condition to all
states, this could only be done for the states needing it. Remark that the exact triggering
condition already varied per state, the restriction being that they were related to each other
in quadratic manner. By switching between triggering condition, this restriction becomes
non-continuous in the sense we can jump to a different quadratic relation.

1-3-5 Automaton

Another approach to model a hybrid system is with the use of automata. An automaton is a
way to model the state and output of a system. Originating form studying computer devices
in an abstract manner, the first principles of transition systems were introduced by George H.
Mealy with the Mealy machine [23] and by Edward F. Moore with the Moore machine [24].
Nowadays, they are widely used in Computer Science and play an fundamental part in some
software and hardware solutions [25, p. 2]. Moreover, next to the Mealy and Moore machines,
different variations are made in order to model different behavior. A formal definition of an
automaton A is given in Definition (1.11).

Definition 1.11 (Automaton). An automaton A is given by the tuple A = (Q, Σ, δ, Q0, F),
further specified by:

• Q a countable set of states
• Σ, the input alphabet, a countable set of input symbols
• δ : Σ × Q → Q the transition function
• Q0 ⊆ Q the set of possible starting states
• F ⊆ Q the set of accepted states

Different types of automata are often visually represented with a transition diagram to de-
scribe the possible states and transitions. An example of such a transition diagram is given
in Figure 1-2. Here, the states are given by all the nodes of the system Q = {q0, q1, q2}, the
input alphabet is given by Σ = {0, 1}, the transition function is visualized by all the edges
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Figure 1-2: The transition diagram for the DFA accepting all strings with a substring 01. Inherited
from [25, p. 48]

in the diagram, the set of starting states is visualized by the ’Start’ arrow Q0 = {q0} and,
lastly, the set of accepted states is visualized by the double circled node F = {q1}.

Since the definition of an automaton is very general, there exist a lot of different applications
and variations on the definition. Since not all alterations on the automaton are useful for
out purpose, only the timed and game automata will be treated in more detail. These will
become useful later on with the abstraction of ETC systems and the schedulers which uses
these abstractions. Notice the set of accepting is sometimes regarded when the emphasis is
on the (infinite) dynamics instead of the (finite) sequences.

1-3-6 Timed Automaton

While the automaton only considered discrete dynamics and choices, the Timed Automata
(TA) has both continuous and discrete dynamics and therefore is a representation of a hybrid
system. The continuous dynamics are introduced with the use of clocks. A clock is a real
variable c ∈ R≥0, starting at a given initial value, which derivative is set to 1. These clocks
can be used to describe when a system is allowed to change from state or for how long the
system is allowed to stay in a certain state. In order to specify this we need to introduce clock
constraints, which is no more than a clock followed by an (in)equality and a real variable,
e.g. ’c ≤ 3’. The set of all possible clock constraints, using the clocks from a set X , will be
denoted by Φ(X ). Using these clocks and constraints, the definition of a timed automaton is
given by Definition (1.12).

Definition 1.12 (Timed Automaton). A Timed Automaton TA is given by the tuple TA =
(Σ, L, L0, X , F , E) with:

• L the finite set of states
• L0 ⊆ L the set of initial states
• Σ a finite set, the alphabet, containing all possible actions
• X a finite set of real variables, the set of clocks
• Inv : L → Φ(X ) gives every location a clock constraint, while true the system is allowed

to stay at the state and the system should transition before the clock constraint becomes
false.

• F ⊆ L the set of final states
• E ⊆ L × Σ × P(X ) × Φ(X ) × L the set of transitions, which maps from some states to

others with corresponding element from the alphabet. A transition is only allowed to
be taken if the clock constraint is true, the new clock values are given towards the new
state.
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1-4 Minimum Cycle Mean

Finding the minimum mean weight of a cycle for a given weighted directed graph is a highly
studied subject. However, the most iconic at this time is still Karp’s algorithm given in [26],
which can find the minimum cycle mean in O(mn) time. Here, n = |V | is the number of
nodes/vertices and m = |E| is the number of edges in the graph. Ever since, small improve-
ments are made based on this algorithm as discussed by A. Dasdan and R. Gupta in [27]
for specific conditions. Recently, M. Chaturvedi and R. McConnell have also shown some
shortcomings in the original proof of Karp’s algorithm [28]. However, all are just small exten-
sions and yield the same worst case O(mn) time. Nevertheless, it is widely used as the to go
algorithm for finding the minimum cycle mean. Karp’s algorithm works for both positive and
negative weights, it can also be used to construct the maximum cycle mean by multiplying
all weights by −1. In appendix B-1 the algorithm is described in more details

Given a directed graph G = (E, V ), here V is the set vertices and E ⊆ V × V is the set of
edges. Let w : E → R be a weighting function on G, mapping a weight to every edge of G.
Let CG be the set of all possible cycles in the graph G. Notice that a cycle c ∈ CG is given
by a finite sequence of edges, e.g. e1, e2, e3. The cycle mean of a cycle c ∈ CG is defined by
λ(c) = 1

|c|
∑

e∈c w(e). Here |c| describes the number of edges in the cycle c. Define λ∗ to be
the minimum cycle mean of a graph G. Then λ∗ = minc∈CG

λ(c) is given by Eq. (1-12).

λ∗ = min
c∈CG

∑
e∈c w(e)

|c|
(1-12)

1-4-1 Negative cycle relation

Notice that the problem of finding the minimum cycle mean is closely related to determining
if the graph has a negative cycle. This can be demonstrated by an example. Say we have a
G = (E, V ) with a cycle set CG and weight mapping w. Say we know the minimum cycle
mean of the graph to be α, meaning that for all c ∈ CG it holds that λ(c) ≥ α. Furthermore,
there exists at least one c′ ∈ CG such that λ(c′) = α.

When only interested in if there exists a negative cycle in the graph, one can calculate the
exact value of α using Karp and see if it is positive or negative. However, there are faster
negative cycle detection algorithms since we do not need to know the exact value of α, just
its sign.

1-5 Minimum Weight to Time Cycle

Next to Karp’s algorithm for finding the minimum cycle mean, another problem of interest
is finding the minimum weight to time ratio of all cycles of a given weighted timed directed
graph, also referred to as minimum ratio cycles. Next to a weight w : E → R, there will
also be a timing function t : E → R≥0 associated to each edge of the graph. Which can
be interpreted as the time an edge takes before moving to the next vertex. Notice that the
timing, instead of the weight, is enforced to be non-negative.
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18 Theoretical preliminaries

The problem of finding the minimum ratio cycle of a graph can be seen as a generalization of
the minimum cycle mean problem by setting the timing function to 1 for every edge: t(e) = 1
for all e ∈ E. This is shown in Eq. (1-13) and describes how they are related.

λ∗
r = min

c∈CG

∑
e∈c w(e)∑
e∈c t(e)

= min
c∈CG

∑
e∈c w(e)∑

e∈c 1

= min
c∈CG

∑
e∈c w(e)

|c|
= λ∗

(1-13)

Since the discovery of Karp’s algorithm which runs in O(nm) time, with n = |V | and
m = |E|, algorithms for finding the minimum ratio cycle have tried to come close to this
performance. There has been strongly polynomial algorithms like Burn’s primal-dual algo-
rithm [29] which runs in O(mn2) time, weakly polynomial algorithms like Lawler’s binary
search approach [30] combined with a negative cycle detection algorithm like Bellman-Ford
[31, 32]in O(nm log(nCT ))1 , or a pseudopolynomial algorithm like Hartmannand Orlin [33]
which is running in O(mnT ) time. Most recent improvement on the existing algorithms was
done by K. Bringmann et. al. [34] which claims to solve the problem in O(n

3
2 m

3
4 log2(n)), ap-

proaching the strongly polynomial upper bound of Karp’s algorithm for the simpler problem
which only solves the minimum cycle mean.

Given a directed graph G = (E, V ), here V is the set vertices and E ⊆ V × V is the set of
edges. Let w : E → R be a weighting function on G, mapping a weight to every edge of G.
Let t : E → R≥0 be a timing function on G, mapping a non-negative timing to every edge
of G. Let CG be the set of all possible cycles in the graph G. Notice that a cycle c ∈ CG is
given by a finite sequence of edges, e.g. e1, e2, e3. We will define the ratio cycle of a cycle
c ∈ CG by λr(c) =

∑
e∈c

w(e)∑
e∈c

t(e) . Define λ∗
r to be the minimum ratio cycle of a graph G. Then

λ∗
r = minc∈CG

λr(c) is given by Eq. (1-14).

λ∗
r = min

c∈CG

∑
e∈c w(e)∑
e∈c t(e) (1-14)

As stated above, their is a wide variety of algorithms that can be used to solve the problem
of finding the minimum ratio cycle. Which algorithm is preferred depends on additional
information on the weight and timing functions and which type of scaling of the problem is
expected. Examples of additional information being:

• Weight function only mapping to non-negative values

• Weight and/or timing function mapping to integer values

• Known bounds on the weight and/or timing function
1Notice that Lawler’s binary search approach only works for weight functions of the form w : E → N≤C

and timing function of the form t : E → N≤T , i.e. both functions map to a finite set of natural numbers
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1-6 Pareto Frontier

In this section, we will introduce the concept of the Pareto front and give an example relevant
later in this thesis.
In multi-objective optimization problems, it can be impossible to give priority to one of the
optimization quantities. Likewise, striking a balance between these quantities is an arbitrary
choice and therefore one can not determine which solution is preferred.
In classic optimization theory, the multi-objective optimization problem is mostly described
when minimizing all quantities. Say we want to minimize two quantities y1, y2 ∈ R where
(y1, y2) = f(x) is given by f : R≥0 → R. It could be the case there is a global minimum, e.g.
there exists a xg such that both optimization quantities y1 and y2 are minimal. However, the
solution space could also be more complex. Since f is an arbitrary function, a different input
x′ may lead to a decrease of y1 but increase of y2. Pareto optimal (i.e. efficient) points are
defined as solutions which are optimal in some sense. Meaning that decreasing one quantity
leads to an increase in one of the other quantities.
In Figure 1-3 Boyd and Vandenberghe visualize the idea of the Pareto frontier for the multi-
objective optimization of a continuous function. The set O visualizes the set of all possible
solution f(x) for x ∈ R≥0. The highlighted point f0(xpo) is a Pareto efficient solution. The
set of all Pareto efficient solutions is called the Pareto frontier (i.e. front) and is given by the
function f0 = f |X po limited to the set X po ⊆ R≥0 of input values that lead to Pareto efficient
points. In the figure, both optimization quantities y1 and y2 are visualized on respectively
the x and y axis. [35][p. 177-184]

Figure 1-3: Illustration of the Pareto efficient points (visualized by the dark line) of the continuous
solution space O (light gray) when minimizing optimization quantities on both axis. [35][p. 178]

Finding all Pareto optimal points can be hard, depending on the problem. One strategy is
scalarization, which evolves around introducing a new condition (which sets a desired slope)
such that the problem becomes a optimization problem of one optimization variable; i.e.
introduce a vector λ ∈ Rn

≥0 and minimize the new objective λ⊤f(x). In the example of
Figure 1-3 this would result in minimizing λ1y1 + λ2y2. Notice that by varying the choice of
λ, different Pareto optimal points can be found, but not necessary the whole Pareto frontier.
If the optimization problem is convex, then all Pareto optimal solutions can be found using
this method and the whole Pareto frontier can be constructed.
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1-6-1 Discrete Pareto Frontier

Later on in this thesis, the solutions will not be drawn from a continuous solution space, but
from a discrete space, generated by a finite (but very large) distinct set of inputs. For context,
we will be interested in maximizing two quantities: the average IST τ̂ and the average control
performance σ̂. The exact details will be discussed later on. Different strategies will result in
different solutions shown in Figure 1-4, each point representing a scheduling strategy. Since
we are maximizing, the set of Pareto efficient points are given by those for which there does
not exist a point which increases in both τ̂ and σ̂ as shown in Figure 1-5.

When handling discrete solutions, the Pareto frontier is not defined as only the set of Pareto
optimal points, but instead as for which region they are optimal. Therefore, the Pareto front
describes the boundary of where the Pareto efficient points are optimal as shown in Figure 1-6.
For discrete systems, the Pareto frontier may not be convex, then the scalarization method
will also not result in all Pareto efficient solutions.

1-6-2 Conditioning

From an engineering point of view, calculating the complete Pareto frontier (besides it may
not even be easily computable) may not be that useful. One has to look at all Pareto efficient
solutions manually and make a dedicated choice from there. What can be of more use is the
introduction of an extra condition.

Instead of calculating the whole Pareto frontier. One could state a hard constraint for all but
one of the optimization quantities (e.g. τ̂ ≥ τmin). The multi-objective optimization problem
then gets reduced to a single optimization quantity as shown in Figure 1-7. All solutions at
least have to suffice the hard constraint(s), then the Pareto efficient point that just satisfies
this condition is the optimal solution. With this method, from an engineering point of view,
one could have more of a feel for the desired solution.

1-7 System Abstractions

In this section, we will inherit the system representation from Tabuada [36, Chapters 1-6] in
order to sketch a new perspective on control systems from a Transition System (TS) point of
view. The TS as shown in Definition (1.9), is a more general definition then the automaton
introduced in Definition (1.11). The definition of the TS forms the basis of the discrete
system representations. A TS T is described by a set of states X and the set of all possible
transitions E. Whereas the Labeled Transition System (LTS), defined in Definition (1.10),
has every transition labeled by an element from the label set U .

1-7-1 System definition

A LTI control system in state space representation is mostly given by ẋ(t) = Ax(t) + Bu(t).
One could also think of it as an LTS with a infinite amount of states, connected by transitions,
labeled with the corresponding inputs u(t). Notice an autonomous system could be described
by a TS instead. The definition of LTS is extended in order to incorporate output behavior

M.A.J. Looman Master of Science Thesis



1-7 System Abstractions 21

Figure 1-4: Every point, marked with the
color ’blue’, describes a solution. From such
a solution one can measure the worst case
performance on average IST [τ̂ ] and aver-
age decay rate [σ̂] and place it in the figure
accordingly.

Figure 1-5: The Pareto efficient solutions,
marked with the color ’red’, describe the set
of optimal solutions. Due to being unbiased
in optimizing τ̂ or σ̂, all Pareto efficient so-
lutions are all optimal in some sense.

Figure 1-6: The Pareto frontier, visualized
by the ’red’ line, encloses the area where the
Pareto efficient solutions are optimal. No
solutions exists above or to the right of this
line, given the Pareto efficient solutions are
complete.

Figure 1-7: By setting an extra condition:
a minimum value for τ̂ , marked with the
color ’gray’, our problems becomes a non-
multi optimization problem.
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and initial starting states of a control system. Therefore, a LTI system S can be described
by Definition (1.13) instead of the original dynamics. Notice, all the behavior of the original
system is captured. In the literature, the transition set E is also referred to by →. However,
we will often refer to this set as E since the symbol → is also used in function declarations.
Definition 1.13 (System). A system S can be represented as a tuple (X, X0, U , E , Y , H),
where:

• X the set of states
• X0 ⊂ X the set of initial states
• U the set of inputs
• E ⊂ X × U × X the set of transitions
• Y the set of outputs
• H : X → Y the output map

Remark. We will abuse the notation and overload the U by also defining it as an function
U : X → U . For a given x ∈ X, we will define U(x) ⊆ U by the set of possible inputs at the
given state x. This will be useful later on.

1-7-2 System generated behavior

So far we have talked about the behavior of a system, without specifying exactly what is
meant by this. We distinguish between two types of behavior, namely internal and external.
A finite internal behavior from a state x0 is given by a finite sequence of transitions, i.e.
a sequence of states with specified inputs. Likewise, a finite external behavior is given by
a sequence of outputs {yi}N

i=0, corresponding by the output map to the sequence of states
from the finite internal behavior. All possible finite external behavior, starting from a state
x0, of a system S is denoted by Bx0(S), which includes all possible input sequences of finite
length. The finite external behavior generated the system S is given by B(S), further defined
by Definition (1.14), which includes all finite external behavior from every possible initial
condition.
Definition 1.14 (Finite External Behavior). Given a system S = (X, X0, U, E, Y, H).
The generated finite external behavior by S is given by: B(S) = ∪x∈X0Bx(S)

Next to the finite sequences, given a system S the infinite external behavior from a starting
state x0 is given by Bω

x(S) and contains all possible infinite output sequences a system can
endure starting from x0. The infinite external behavior generated by the system S is defined
in Definition (1.15) and will be denoted by Bω(S).
Definition 1.15 (Infinite External Behavior). Given a system S = (X, X0, U, E, Y, H).
The generated infinite external behavior by S is given by: Bω(S) = ∪x∈X0Bω

x(S)
Remark. The infinite external behavior Bω(S), generated by S will also be referred to as just
the behavior generated by S, since this will be of interest the rest of the time.

Notice that Bω(S) is empty if no infinite behaviors exists, as opposed to B(S). This framework
can be used to incorporate more details about the system S. For example, one may not only
be interested in the output sequences, but also wants to incorporate the corresponding input
sequence in the behavior. First introduce an element ∗ ̸∈ U that denotes if no input is given.
From the system S, create a system So = (Xo, Xo0, Uo, Eo, Yo, Ho) given by:
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• Xo = X × Uo

• Xo0 = X0 ∪ ∗
• Uo = U ∪ ∗
• Eo = {((x, u), u′, (x′, u′)) | (x, u′, x′) ∈ E}
• Yo = Y × U

• Ho : Xo → Yo, given by Ho(x, u) = (H(x), u)

Generated behavior by So, Bω(So) will consists of infinite sequences {yi, ui}∞
i=0 instead of

{yi}∞
i=0.

1-7-3 Synchronization

Given two separate systems Sa and Sb. One can use an interconnection relation
I ⊆ Xa × Xb × Ua × Ub to compose both systems, i.e. the interconnection relation describes
the interaction of Sa with Sb. The interconnection relation can be used to compose two
systems to create an bigger system, or to synchronize the systems for control purposes and is
denoted by Sa ×I Sb as defined in Definition (1.16). The interconnection relation describes
the synchronization between both systems on how they proceed.

Definition 1.16 (System Composition). Given two systems Sa = (Xa, Xa0, Ua, Ea, Ya, Ha)
and Sb = (Xb, Xb0, Ub, Eb, Yb, Hb) with an interconnection relation I ⊆ Xa × Xb × Ua × Ub.
Let Sa ×I Sb = (Xab, Xab0, Uab, Eab, Yab, Hab) be the composition of Sa and Sb with:

• Xab = πX(I)
• Xab0 = Xab ∩ (Xa0 × Xb0)
• Uab = Ua × Ub

• Eab =

((xa, xb), (ua, ub), (x′
a, x′

b)) | such that:
(xa, ua, x′

a) ∈ Ea,
(xb, ub, x′

b) ∈ Eb,
(xa, xb, ua, ub) ∈ I


• Yab = Ya × Yb

• Hab(xa, xb) = (Ha(xa), Hb(xb))

Remark. here the function πX is the projection from Xa × Xb × Ua × Ub to Xa × Xb.

Due to the construction of the system composition, it holds that the behaviors of the compo-
sition are only a subset of the possible behaviors of the separate systems
B(Sa ×I Sb) ⊆ B(Sa) × B(Sb). Therefore, the composition can limit what behaviors a system
endures. Later we will show hoe this can be used for control purposes since we first need to
introduce some more concepts.

1-7-4 Behavioral Equivalence

There are different notions of equivalences between systems. We will focus on the behavioral
pre-order (i.e. behavioral inclusion) and behavioral equivalence. The behavioral pre-order in
systems is described on the different infinite behaviors a system can endure as described by
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Definition (1.17).If the behaviors of system Sa are only a subset of the behaviors of system
Sb, meaning Bω(Sa) ⊆ Bω(Sb), we say Sa ⪯ Sb. Behavioral inclusion can be used in order to
make sure a system captures at least all the behaviors of another system.

A stricter requirement is the behavioral equivalence of two systems. Two systems Sa and
Sb are said to be behavioral equivalent in they produce the exact same infinite behaviors
Bω(Sa) = Bω(Sb) as defined in Definition (1.18), denoted by Sa

∼=B Sb.

Definition 1.17 (Behavioral Inclusion). Given two systems Sa = (Xa, Xa0, Ua, Ea, Ya, Ha)
and Sb = (Xb, Xb0, Ub, Eb, Yb, Hb) with equivalent output sets Ya = Yb. Define Sa ⪯ Sb if Sa

is behaviorally included in Sb, meaning Bω(Sa) ⊆ Bω(Sb)

Definition 1.18 (Behavioral Equivalence). Given two systems Sa = (Xa, Xa0, Ua, Ea, Ya, Ha)
and Sb = (Xb, Xb0, Ub, Eb, Yb, Hb) with equivalent output sets Ya = Yb. Define Sa

∼=B Sb if Sa

is behaviorally included in Sb and vice versa, meaning Sa ⪯ Sb and Sb ⪯ Sa.

On the other hand, behavioral inclusion and equivalence can be used in control design. Say
we have a system Sa. However, there is another system Sb which has more desirable behaviors
over Sa. If one can construct a controller Sc and a interconnection relation I such that the
behaviors of Sc ×I Sa are limited or equivalent to the desired behaviors Sb (i.e. Sc ×I Sa ⪯B Sb

or Sc ×I Sa
∼=B Sb), then we controlled our system such that it only exhibits desired behaviors.

For finite state systems, behaviors can be checked on a experimental bases. Since there are
only a finite amount of states, all infinite behavior sequences will end up in a (combination
of) cycle(s). Therefore, many conclusions can be made from analyzing all primitive cycles in
the system. However, for infinite state systems this technique is not so straight forward and
checking behavioral inclusion or equivalence can be more difficult.

1-7-5 Reachability

Using behavioral equivalences, we make a small detour in order to define the reachability of
a system. Starting from an initial state, with Reach(S) we will denote the possible outputs
the system can even endure as shown in Definition (1.19). The set of reachable states can be
useful once one is playing safety or reachability games.

Definition 1.19 (Reachable States). Given a system S = (X, X0, U, E, Y, H). A state
x ∈ X is a reachable state by S if there exists an x0 ∈ X0 such that there is a finite path in
S starting from x0 to x. Moreover, then y = H(x) is said to be a reachable output.

Remark. The set of all reachable outputs of a system S is given by Reach(S).

To put this in the context of behavioral equivalences. Notice that if the behavior of a system
Sa is included in a system Sb, the set of reachable outputs must also be included, i.e.
Sa ⪯B Sb =⇒ Reach(Sa) ⊆ Reach(Sb). This argument follows simply by taking an element
in Reach(Sa) and by definition of behavioral inclusion, follows that this element must also be
present in Reach(Sb).
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1-7-6 Similarity relations

To tackle the difficult part of comparing infinite state systems. We will introduce more tools
besides the behavioral equivalence and inclusion. Namely, similarity relations. Given two
systems Sa and Sb, a relation R ⊂ Xa × Xb relates states from one system to another. First
of is a simulation relation as defined in Definition (1.20). We say Sa is simulated by Sb via
the simulation relation R ⊂ Xa × Xb. Meaning, if a state is part of the relation (xa, xb) ∈ R
then xa from Sa is simulated by xb from Sb. When there exists a simulation relation R such
that Sb simulates Sa, we denote this by Sa ⪯S Sb. Notice that behaviors are a result of the
output sequences, therefore a simulation is a stronger requirement then behavioral inclusion
Sa ⪯S Sb =⇒ Sa ⪯B Sb. The inverse is only true if Sa is non-blocking and Sb is output
deterministic.

Definition 1.20 (Simulation Relation). Given two systems Sa = (Xa, Xa0, Ua, Ea, Ya, Ha)
and Sb = (Xb, Xb0, Ub, Eb, Yb, Hb) with equivalent output sets Ya = Yb and a relation
R ⊆ Xa × Xb. R is a simulation relation from Sa in relation to Sb if and only if:

• ∀xa0 ∈ Xa0∃xb0 ∈ Xb0 such that (xa0, xb0) ∈ R

• ∀(xa, xb) ∈ R it holds that Ha(xa) = Hb(xb)
• ∀(xa, xb) ∈ R it holds that ∀uainUa(xa), x′

a ∈ Xa such that (xa, ua, x′
a) ∈ Ea,

∃(xb, ub, x′
b) ∈ Eb such that (x′

a, x′
b) ∈ R

Remark. Some small remarks on the three bullets in the definition. The first bullet describes
that it is necessary to relate all initial states. The second bullet denotes that related states
must have the same output. The last bullet describes the progression, if two states are related,
then there must exists a successor in Sb related to the successor in Sa.

If there exists a relation R such that R is a simulation relation from Sa towards Sb and vice
verse R−1 is a simulation relation towards Sb, then R is a bisimulation relation and Sa is
bisimilar to Sb as shown in Definition (1.21). The notion of two systems being bisimilar is
one of the strongest relations there is. It is no surprise that a bisimulation implies behavioral
equivalence: Sa

∼=S Sb =⇒ Sa
∼=B Sb. Recall from the simulation relation, if Sa and Sb

are non-blocking and output deterministic, behavioral equivalence will also imply the two
systems are bisimilar.

Definition 1.21 (Bisimulation). Given two systems Sa = (Xa, Xa0, Ua, Ea, Ya, Ha) and
Sb = (Xb, Xb0, Ub, Eb, Yb, Hb) with equivalent output sets Ya = Yb and a relation R ⊆ Xa ×Xb.
If R is a simulation relation such that Sb simulates Sa and R−1 from is a simulation relation
such that Sa simulates Sb, then Sa is bisimilar to Sb and will be denoted with Sa

∼=S Sb.
Furthermore, R is called a bisimulation relation.

Let us make an useful observation, given two distinctive simulation relations R and R′ from
Sa to Sb such that Sb simulates Sa, then R ∪ R′ is also a simulation relation. This result
is especially useful in finding a bisimulation. Say we have two systems Sa and Sb and two
distinctive relations R and R′ such that R is a simulation relation from Sa to Sb and R′

is a simulation relation from Sb to Sa. It follows from the previous result that R ∪ R′ is a
bisimulation relation on Sa and Sb, and therefore Sa

∼=S Sb.
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1-7-7 Quotient system

Previously, we have seen behavioral and simulation relations between two different systems.
This theory can also be applied on one and the same system, which may not be as interesting
at first. However, can be used as a tool. Given a system S = (X, X0, U, E, Y, H) and a
relation Q ⊆ X × X. This relation Q is said to be an equivalence relation on S if it groups
states with equivalent output, meaning for all (x, x′) ∈ Q it holds that H(x) = H(x′).

An equivalence relation can be used to group states with equivalent outputs, the resulting
system is called a quotient system. The reduction can be as critical that an infinite state
system can be reduced to only a finite state quotient system while describing the same output
behavior. A precise definition of the quotient system is given in Definition (1.22).

Definition 1.22 (Quotient System). Given a system S = (X, X0, U, E, Y, H) and a equiva-
lence relation Q ⊆ X × X on X. Let S/Q = (X/Q, X/Q0, U/Q, E/Q, Y/Q, H/Q) be the quotient
system of S by Q with:

• X/Q = X/Q

• X/Q0 =
{

x/Q ∈ X/Q | x/Q ∩ X0 ̸= ∅
}

• U/Q = U

• E/Q = {(x/Q, u, x′
/Q)|∃x ∈ x/Q, x′ ∈ x′

/Q such that (x, u, x′) ∈ E}
• Y/Q = Y

• H/Q

(
x/Q

)
= H(x) for some x ∈ x/Q

In the literature, the quotient system S/Q is also referred to as a symbolic system. Notice by
construction that there exists a simulation relation from S/Q to S, meaning S ⪯S S/Q. The
converse is only true when Q becomes a bisimulation on S and itself.

1-7-8 Alternating relations

As Tabuada states beautifully in [36, p. 40] “Simulation relations require the matching of
transitions while in problems of control we require the existence of inputs enforcing desired
transitions.", the simulation relations from Definition (1.20) are slightly misaligned for control
purposes. Namely, if a controller is in relation to the system, we want the input of the
controller always being able to stay inside the relation. Namely, given a state and input with
multiple nondeterministic possible post states. The simulation relation can allow only one of
the resulting post states instead of including all of them.

For this purpose, they introduce the alternating simulation relation as shown in Defini-
tion (1.23). The difference in comparison to the simulation relation from Definition (1.20) is
in the last bullet of the definition.

Definition 1.23 (Alternating Simulation Relation). Given two systems
Sa = (Xa, Xa0, Ua, Ea, Ya, Ha) and Sb = (Xb, Xb0, Ub, Eb, Yb, Hb) with equivalent output sets
Ya = Yb and a relation R ⊆ Xa × Xb. R is an alternating simulation relation from Sa to Sb if
and only if:

M.A.J. Looman Master of Science Thesis



1-7 System Abstractions 27

• ∀xa0 ∈ Xa0∃xb0 ∈ Xb0 such that (xa0, xb0) ∈ R

• ∀(xa, xb) ∈ R it holds that Ha(xa) = Hb(xb)
• ∀(xa, xb) ∈ R it holds that ∀ua ∈ Ua(xa)∃ub ∈ Ub(xb) such that for all possible

(xb, ub, x′
b) ∈ Eb there exists a (xa, ua, x′

a) ∈ Ea such that (x′
a, x′

b) ∈ R

Remark. The last bullet in the definition differs from the definition of simulation relation in
Definition (1.20). From a relation point (xa, xb) and an input of Sa, there should exist an
input in Sb such that every reachable state x′

b in Sb has a relatable state x′
a in Sa. Notice

that when the systems Sa and Sb are deterministic, the notion of simulation and alternating
simulation are equivalent.

Given two systems Sa and Sb with equivalent output sets Ya = Yb and there exists an alter-
nating simulation relation R from Sa to Sb, then Sb alternatingly simulates Sa and is denoted
by Sa ⪯AS Sb. The concept of an alternating simulation can be extended in the same manner
as before to define an alternating bisimulation as shown in Definition (1.24).

Definition 1.24 (Alternating Bisimulation). Given two systems Sa = (Xa, Xa0, Ua, Ea, Ya, Ha)
and Sb = (Xb, Xb0, Ub, Eb, Yb, Hb) with equivalent output sets Ya = Yb and a relation
R ⊆ Xa × Xb. If R is an alternating simulation relation such that Sb alternatingly simulates
Sa and R−1 from is an alternating simulation relation such that Sa alternatingly simulates
Sb, then Sa is alternatingly bisimilar to Sb and will be denoted with Sa

∼=AS Sb. Furthermore,
R is called an alternating bisimulation relation.

In the prospect of control, it is useful to make a small extension of the alternating simulation
relations since it will be useful to incorporate relating the inputs as well in the relation. There-
fore, the extended alternating simulation relation, as shown in Definition (1.25), is defined as
an alternating simulation relation in both the states and the inputs.

Definition 1.25 (Extended Alternating Simulation Relation). Given two systems
Sa = (Xa, Xa0, Ua, Ea, Ya, Ha) and Sb = (Xb, Xb0, Ub, Eb, Yb, Hb) with equivalent output sets
Ya = Yb and an alternating simulation relation R ⊆ Xa×Xb from Sa to Sb. Define the extended
alternating simulation relation by Re ⊆ Xa×Xb×Ua×Ub such that for all (xa, xb, ua, ub) ∈ Re

the following conditions hold:

• (xa, xb) ∈ R

• ua ∈ Ua(xa)
• ub ∈ Ub(xb) and for all x′

b ∈ Xb such that (xb, ub, x′
b) ∈ Eb there exists a x′

a ∈ Xa such
that (xa, ua, x′

a) ∈ Ea and (x′
a, x′

b) ∈ R

1-7-9 Control

Let S be our original system we would like to control towards some desired behaviors described
by a system Sb. However, S does not meet these desired properties S ̸⪯ Sb. In the control
problem, we want to design an system Sc and an interconnection relation I, such that the
controlled system does meet the required behaviors Sc ×I S ⪯ Sb or becomes even bisimilar
to them Sc ×I S ∼= Sb.
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The type of control we will elaborate on in the feedback composition, which essentially deter-
mines the next input from a given sequence of previous states and can act as a state-feedback
controller. Given a system Sc, this system is feedback composable to S if there exists an
alternating simulation relation R such that Sc ⪯AS S. When two systems are feedback
composable, we can construct the feedback composition as defined in 1.26.

Definition 1.26 (Feedback Composition). Given two systems S and Sc such that Sc is
feedback composable with S by an alternating simulation relation R. Let F = Re be an
interconnection relation, defined by the extended alternating simulation relation of R. Then
the feedback composition of Sc and S is given by Sc ×F S

A small illustration can clarify the working procedure of such a control process by the feedback
composition. Given two systems S = (X, X0, U, E, Y, H) and Sc = (Xc, Xc0, Uc, Ec, Yc, Hc)
such that Sc is feedback composable to S by an alternating simulation relation R. Let F = Re

be the extended relation such that the feedback composition of Sc and S is given by Sc ×F S.
Starting from some state (xc, x) ∈ R the control scheme works as follows:

1. The controller chooses any of their possible inputs uc ∈ Uc(xc)

2. The system S chooses any input u ∈ U(x) that is corresponding to the interconnection
relation (xc, x, uc, u) ∈ F

3. System S progresses to a new state x′ for which there exists a transition (x, u, x′) ∈ E

4. The controller Sc needs to measure the new state x′ in S and take any transition
(xc, uc, x′

c) ∈ Ec such that the new state x′
c is related by R, i.e. (x′, x′

c) ∈ R

A feedback composition can thus reduce the possible behaviors the original system can exhibit
by excluding possible inputs from the controller. Moreover, even initial states of the original
system can be nullified by not including them in the alternating simulation relation. Theo-
retically, the controlled system is simulated by the controller Sc ×F S ⪯S Sc, and therefore
the controlled system can only experience behaviors the controller has as well.

This notion of control in the TS perspective can be applied to playing safety games, reach-
ability games, behavioral games or simulation games. However, the required knowledge for
these topics in this thesis project will be given outside of the system definition of Tabuada.
The reader is referred to [36] for more profound examples.

1-8 Traffic Model

Given an autonomous system SQ which describes the IST behavior of the original system S
for a given static feedback gain K and triggering condition Q. Recall the original system S
is a LTI with measurable states. The system SQ = (XQ, XQ0, UQ, EQ, YQ, HQ) is given by:

• XQ = Rn

• XQ0 = X

• UQ = ∅
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• EQ =
{

(x, u, x′) | x′ = eAτ(x)x(t0)
}

• YQ = T

• HQ(x) = τ(x)

Remark. Let T = {τ = k∆ | k ∈ N, 1 ≤ τ ≤ τmax} is the set of all possible IST. Recall ∆ ≥ 0
is the sampling frequency and τmax is the maximum IST, i.e. the heartbeat of the system.
Define τ : X → T to be the function which describes at a state x the time τ(x) the system
can flow until the triggering condition is violated. This will be defined more clearly later in
this section in Eq. (1-17).

By modeling the traffic of IST behavior of the system SQ, one can construct a quotient system
SQ/Q by introducing a equivalence relation Q ⊆ XQ ×XQ. The benefit being that the infinite
system SQ can be simulated by a finite state system SQ/Q, i.e. SQ ⪯S SQ/Q. Therefore, also
all behaviors of SQ are captured in SQ/Q, recall SQ ⪯S SQ/Q =⇒ SQ ⪯B SQ/Q.

1-8-1 Quotient model

In order to construct the quotient model SQ/Q from SQ, we need to partition the state space
in a smart manner and adjust the transition and output map accordingly.

Notice that for the system SQ with a given state x0, the triggering time τ(x0) is invariant
under a multiplication with the initial state, i.e. for α ∈ R ̸=0 holds τ(x0) = τ(αx0), see
appendix A-3 for a more detailed proof. Therefore, we can group all points that lay on a
line thought the origin (except the origin itself) into a single state, since they have the same
output HQ(x0) = HQ(αx0). Due to this scaling, only rotation needs to be accounted for in
the transitions EQ.

Partitioning the system this way, still results in an infinite system. Therefore, we make the
critical observation that for PETC systems, the IST behavior is discrete and when inducing
a maximum τmax, we are guaranteed to only have a finite amount |T | of possible IST. If we
now group all states that have equivalent IST, we are guaranteed to obtain a quotient system
with a finite amount of states.

Introducing notations

Now the idea is clear, let us define the system S dynamics flowing for τ time by M(τ) as
shown in Eq. (1-15). Moreover, we can use M in the following way: M(τ)x(t0) = x(t0 + τ),
for all τ ∈ R≥0 and x(t0) ∈ X as long the triggering condition is not met.

Recall the original triggering condition ξ⊤(t)Qξ(t) > 0 for ξ(t) =
[
x⊤(t), x̂⊤(t)

]⊤
. Now, the

difference between x(t) and x̂(t) can be expressed by M . Therefore, the triggering condition
can be rewritten to x⊤(t)N(τ)x(t) > 0, where N is given by Eq. (1-16) and τ the time after
t, meaning x(τ + t) = M(τ)x(t). This N can then be used to express the next IST at a
given state by τ(x) defined in Eq. (1-17). Notice, in the condition x⊤(t)N(τ)x(t) > 0, the
state x(t) is stationary, while τ can be slowly increased. This in contrast to the condition
ξ⊤(t)Qξ(t) > 0, where x̂(t) is stationary and x(t) is slowly increased.
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M(τ) := eAτ +
∫ τ

0
eAtdtBK (1-15)

N(τ) :=
[

M(τ)
I

]⊤

Q
[

M(τ)
I

]
(1-16)

τ (x) = min
{

τ = k∆ | k ∈ N, k∆ ≤ τmax, x⊤N(τ)x > 0 or k∆ = τmax
}

(1-17)

We can now mathematically define the sets of states which have equivalent IST output behav-
ior. First, introduce the sets Kk, describing which states have already triggered after τ = k∆
time, as shown in Eq. (1-18). The set of states which will trigger exactly after k∆ time is
defined by Qk by taking the set Kk and remove all states that have already triggered in Kk′

for all k′ < k, as shown in Eq. (1-19).

Kk :=


{

x ∈ X | x⊤N(k∆)x > 0
}

, τ < τmax

Rnx , k∆ = τmax
(1-18)

Qk := Kk\

k−1⋃
j=1

Kj

 = Kk ∩
k−1⋂
j=1

Kj (1-19)

Furthermore, define the natural projection of a relation R ⊆ Xa × Xb by πR : Xa → Xb, or
more precisely by πR(X) = {xb ∈ Xb | (xa, xb) ∈ R, xa ∈ X}.

Constructing the quotient system

For each non-empty set Qk, we can create a quotient state, resulting in quotient states
XQ/Q1 = {Qk | k ∈ N, Qk ̸= ∅}. Now we can create a relation Q1 that relates all state-space
states with equivalent IST to the associated quotient state:

Q1 =
{

(x, Qk) | x ∈ XQ, Qk ∈ XQ/Q1 , x ∈ Qk

}
This relation Q1 ⊆ XQ × XQ can be used to construct the quotient system. Notice, in the
process of grouping states together, we are likely to introduce non-determinism in the quotient
system. The resulting quotient system is given by
SQ/Q1 = (XQ/Q1 , XQ/Q10, UQ/Q1 , EQ/Q1 , YQ/Q1 , HQ/Q1) with the following properties:

• XQ/Q1 = {Qk | k ∈ N, Qk ̸= ∅}
• XQ/Q10 = X

• UQ/Q1 = UQ = ∅
• EQ/Q1 = {(Qk, u, Q′

k) | ∃x, x′ such that (x, Qk) , (x′, Q′
k) ∈ Q1 and (x, u, x′) ∈ EQ}

• YQ/Q1 = T

• HQ/Q1 (Qk) = k∆
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Remark. This is the minimal representation of the quotient system. Later on, when we are
introducing the l-complete abstractions, the transitions will be defined by the domino rule,
resulting in a non-minimal representation. If we construct the transitions this way, it would
be defined by transition relation E′

Q/Q1
=

{
(x, u, x′) | x, x′ ∈ XQ/Q1

}
.

By construction, the quotient system SQ/Q1 simulates SQ, i.e. SQ ⪯S SQ/Q1 . Therefore, one
can use the quotient system for control since it includes all behaviors of SQ.

1-8-2 Expanding to l-complete models

Nevertheless the quotient system SQ/Q1 simulates SQ, it also may include behavior that the
original system can not endure. By introducing l-complete abstractions SQ/Ql

by a equivalence
relation Ql, one can ‘refine’ the quotient system to become a closer and closer simulation of
the system SQ by increasing l using the bisimulation algorithm of [36]. Moreover, ideally it
may even find a bisimulation from some l and rendering the behavior of SQ equivalent to the
behavior of SQ/Ql

.

First introduced by Moor [10], the strongest l-complete abstraction of a system captures all
behaviors of the original system, while having minimal behavior of the l-complete abstraction
and able to use output sequences of length l as internal states. This reasoning, applied on
PETC in order to model the IST behaviors, is constructed by [37, 38].

The key behind the l-complete abstractions for PETC systems is to extend the quotient states
to a sequence of ISTs. Resulting in eliminating behaviors that the system SQ can not endure.
The corresponding transitions now have to conform the domino rule.

Quotient states

We want to relate quotient states to sequences of IST in order to identify more complex
behavior of the system SQ. We can relate states to such a sequence of ISTs τ1τ2 . . . τl by the
inter-sample sequence relation Rl given by Definition (1.27). Notice that we will often switch
between time sequences τ1τ2 . . . τl and discrete inter-sample time sequences k1k2 . . . kl related
to each other by τi = ki∆.

Definition 1.27 (Inter-Sample Sequence Relation). From [38]. Given a IST sequence of
length l, denote the inter-sample sequence relation Rl ⊆ X ×Nl by (x, k1k2 . . . kl) ∈ Rl, where
ki = τi

∆ , if and only if:

x ∈ Qk1 ,

M (k1∆) x ∈ Qk2 ,

M (k2∆) M (k1∆) x ∈ Qk3 ,

...
M (kl−1∆) . . . M (k1∆) x ∈ Qkl

(1-20)

Remark. The relation Rl relates state x uniquely to an inter-sample sequence.
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Define Qk1k2...kl
= {x ∈ XQ | (x, k1k2 . . . kl) ∈ Rl}. Then create the equivalence relation

Ql ⊆ XQ× ⊆ XQ, given by Ql = {(x, Qk1k2...kl
) | x ∈ Qk1k2...kl

, ki∆ ∈ T for i ∈ {1, 2, . . . , l}}.
By construction, SQ/Ql

simulates SQ. Moreover, due to the increasing sequences, SQ/Ql−1
simulates SQ/Ql

. Therefore, the following observation is shown mathematically in Eq. (1-21).

SQ ⪯S SQ/Ql
⪯S SQ/Ql−1 ⪯S · · · ⪯S SQ/Q1 (1-21)

Domino game

Given the equivalence relation Ql, we automatically construct the quotient system with states,
transitions and output map as shown in Definition (1.22). However, an easy way to compute
the transitions is to play the domino game (apply the domino rule). Here, a quotient state
Qk1k2...kl

can only have transitions to Qk2...klkl+1 for variable kl+1 as long as the set Qk2...klkl+1

is non-empty, i.e. the last l − 1 discrete inter-sample times of the first quotient state need to
correspond to the first l − 1 discrete inter-sample times of the second quotient state. This is
best visualized with an example.

Example 1.1. Consider a system that can only exhibit behaviors B = {(aab)∗}. The quotient
model l = 2 describes all behaviors of length 2. In Figure 1-8 is on the left a domino game
visualized for l = 2. Notice that the resulting sequence of symbols from this domino game does
not exists inside the behaviors B, since the quotient model simulates the original system. On
the right is a domino game for l = 3 visualized.

Figure 1-8: Domino game for l = 2 (left) and l = 3 (right) corresponding to Example 1.1, by
Schmuck [12][p. 68]

Remark. Applying the inter-sample sequence relation Rl to the states and the domino rule
on the transitions leads to a non-minimal representation of the l-complete abstraction. For
example, calculating if a state τ1τ2τ3 exists is equivalent to calculating if there exists a tran-
sition from τ1τ2 to τ2τ3. The strongest l-complete abstraction is generated by applying Rl

on the transitions and use the domino rule to derive the quotient states. In the literature,
both forms are used. In order to stay in line with the work by Mazo, we will use the former
representation.

1-9 Two Player Games

In game theory, there is a variety of games one can play. In this section we will highlight a
few 2-player games, useful in the rest of the thesis.
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Two player games are mostly played on an arena A = (V0, V1, E). An arena is a graph where
the vertices are divided in two distinct sets V0 and V1, each set of vertices is dedicated to
respectively player 0 and player 1. The game is played from the perspective of player 0.
Therefore the vertex set V0 is also referred to as the controllable set of vertices and V1 as the
set of uncontrollable vertices. The set of all vertices is described as V = V0 ∪V1. Furthermore,
the edge map E ⊆ V × V describes which transitions exist in the graph.

A game is played starting from a random starting node. The state of game progresses through
the graph, depending if the game state is in a controllable node or uncontrollable node,
respectively player 0 and player 1 decides which outgoing edge the game state takes. The
game is played indefinitely resulting in an infinite path. Notice both players have knowledge
of the full graph when they decide on a transition.

A special form of arena, which often occurs, is the bipartite graph or arena. A arena A =
(V0, V1, E) is called bipartite if there exists only edges between V0 and V1, i.e. every time a
transition is taken, the state of the system switches between being in V0 and V1.

1-9-1 Systems and games

We will briefly show the relation between systems and 2-player games and how one can switch
between them. Given a system S = (X, X0, U, E, Y, H) with X0 = X and U ̸= ∅, one can play
an 2-player game on the internal dynamics of S by constructing a bipartite arena. The output
map H can be used to determine the objective set as will explained later with reachability
and safety games. Create an arena A = (V0, V1, E′) where V0 = X describes all controllable
states. In a controllable state v ∈ V0, one can choose any input u ∈ U(v). Therefore, for
each input u ∈ U(v) create a connected state in V1, i.e. V1 = {(v, u) | v ∈ V0, u ∈ U(v)} and
E′

0 = {(v, u, (v, u)) | ∀v ∈ V0, u ∈ U(v)} representing all transitions from V0 to V1.

Notice, for a given x ∈ X and u ∈ U(x), there may multiple x′ ∈ X such that there exists a
transition (x, u, x′) ∈ E. This non-determinism of the system S is captured in V1, the set of
uncontrollable states. For all (v, u) ∈ V1, create a transition for all v′ such that (v, u, v′) ∈ E,
i.e. all transitions from V1 to V0 are given by E′

1 = {(v, u, v′) | ∀(v, u) ∈ V1, v′ ∈ V0 : (v, u, v′) ∈
E}. All transition in the arena are given by E′ = E′

0 ∪ E′
1 and the original system S is now

visualized as a bipartite arena A = (V0, V1, E′).

From a bipartite arena, one can construct the internal behavior of a system by similar compu-
tations as shown above. All states are given V0. All different inputs at a state x ∈ V0 are given
by the possible edges from V0 in E. The transitions of the system are given by a combinations
of edges from V0 and V1 due to edges from V1 describing the possible non-determinism.

1-9-2 Reachability and safety games

The type of reachability game of interest are played on a non-blocking finite arena A =
(V0, V1, E) and a reachable set (objective set) W ⊆ V = V0 sup V1. The goal is to construct
the attractor set Att(A, W ), defined by all states v ∈ V for which a strategy exists, that
starting from v guarantees to enter the set W at some point.

A simple algorithm to construct the attractor set, given a finite arena is given in the Appendix
B-5. The idea is to start with the reachable set W0 = W and slowly make sets Wi of increasing
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size, for which one can guarantee a strategy to reach Wi−1 in one step. There are more detail
given in the appendix, following Gradel et. al.[39]. Notice the difference with Gradel et. al.
since we only concern about non-blocking and finite arena’s. They also show that for finite
arena’s, there exists a memoryless strategy and the attractor set is unique given A and W .

The safety game is the dual problem to the reachability game. A safety game also concerns
a non-blocking finite arena A = (V0, V1, E) and a safety set (objective set) W . The goal is to
construct the trap set Trap(A, W ), defined by all states v ∈ V for which no strategy exists,
that starting from v guarantees to stay inside W for ever. Since the safety game is the dual
problem to the reachability game, we can reuse the reachability algorithm. Construct a new
arena A′ = (V1, V0, E). Playing the safety game on A with W is equivalent to playing the
reachability game on A′ with W = V \W , i.e. one can construct the desired trap set by using
the reachability algorithm Trap(A, W ) = Att(A′, W ).

Once the trap set Trap(A, W ) ⊆ V is constructed, the safety game is solved. Define the
limited safety set W e = V \Trap(A, W ) as the set of all states, where as long as the play
starts in v ∈ W e, there exists a strategy for player 0 to guarantee to stay outside the trap set
Trap(A, W ) for ever. Designing such a strategy can be done in various ways, as long as no
edges from W e to Trap(A, W ) are included.

1-9-3 Mean-payoff games

One of the well studied 2-player games is called the Mean-Payoff Game (MPG). Classically,
a player 0 competes against a player 1, by respectively minimizing and maximizing a global
quantity. A MPG is played on an arena extended by a weight function w : E → R. The
complete description of a MPG is given by Γ = (V0, V1, E, w).

The global quantity, which player 0 wants to minimize and player 1 wants to maximize, is
given by the average transition weight taken along a path as shown in Eq. (1-22) for a path r =
{ei}∞

i=0. The global quantity ν(r) is called the value of the path. Player 0 wants to maximize
this quantity, knowing player 1 will play optimally, i.e. maximize lim infn→∞

1
n

∑n
i=0 w(ei).

Identically, player 1 wants to minimize lim supn→∞
1
n

∑n
i=0 w(ei).

ν(r) = lim
n→∞

1
n

n∑
i=0

w(ei) (1-22)

Ehrenfeucht and Mycielski shown in [40] that the optimal strategy for both players are po-
sitional strategies, meaning at each vertex each player makes the same decision, no matter
the history. Moreover, they shown that while both players have different interest, both are
only able to guarantee the same value of the game ν when they both play optimally, meaning
ν = lim infn→∞

1
n

∑n
i=0 w(ei) = lim supn→∞

1
n

∑n
i=0 w(ei). These two findings form the ways

one can solve a MPG problem. Since the number of vertices is in general smaller then the pos-
sible number of infinite paths possible in a MPG graph, one can focus on the decisions at each
independent vertex. Furthermore, a new fundamental question arises, without computing the
strategies of both players, can one compute the value of the game ν.

Currently, one of the state of the art methods is Brim et. al. [41] which uses an efficient way
to solve energy games as sup-process of solving the MPG. More methods were compared,
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however this was the algorithm that could next to calculating the value of the MPG in
O(nmW ), create a strategy in quasipolynomial time of O(mn2W (log n + log W )). Here the
number of vertices is given by n = |V |, the number of edges by m = |E| and the maximum
absolute weight by W = maxe∈E(|w(e)|). A more detailed insight of the algorithm is given
in the appendix B-4. Notice that recently there has been some good results as well with the
use of separating automata and universal graphs as shown in [42]. In specific situation where
either the maximum absolute weight W is large, they show a algorithm of time complexity
O(nm(nW )1− 1

n ) for calculating the value of the MPG. Furthermore, if the number of different
weights is limited by k, they also show an algorithm of time complexity O(mnk). However,
both algorithms are not more efficient in our situation since we have a lot of small weights,
and mainly n and m are the critical factors and only work for solving the decision problem.

So far there has not been many requirements on a MPG Γ = (V0, V1, E, w). However, it is
important to note some underlying assumptions.

• Mainly, the guarantee that a path is always of infinite length and can never end up in
a dead-end, i.e. the graph is non-blocking. Some algorithms even require the stricter
condition of the graph being strongly connected, meaning every node can be reached
from every other node. However, Brim et. al. does not imply this condition.

• From the definition of MPG, one could create an MPG with an infinite amount of nodes.
However, as shown by the time complexities of some of the algorithms, this will result
in a non-computational problem. Therefore, we require only a finite amount of vertices.

• The most efficient algorithms for solving MPG assume the weight function only maps
to a finite countable set, e.g. Brim et. al. uses w : E → {−W, . . . , W} for some W ∈ N,
which seems like a harsh restriction. However, in some situations the weight function
can be adjusted to fit this description by multiplication and addition.

• Not necessarily a requirement, but for some algorithms a property that speeds up com-
putation time, is the MPG graph being bipartite, i.e. every edge form V0 ends in V1
and vice versa. Effectively, the players alternate moves.
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Chapter 2

Scheduling

In this chapter we will introduce the framework which will be used throughout the thesis,
combining knowledge gained from the previous chapter about theoretical preliminaries. With
the introduced framework we can make the question we would like to answer more precise
and will comment on noteworthy choices made during the thesis project.

2-1 System Introduction

We start with a controllable Linear Time-Invariant (LTI) system that has one equilibrium
in the origin. Let x : R≥0 → Rn and u : R≥0 → Rm for some n, m ∈ N. Furthermore,
let A ∈ Rn×n and B ∈ Rn×m. Assume all states are measurable (or the system is at least
observable) such that the state of the system can be used for state feedback control.

ẋ(t) = Ax(t) + Bu(t)

For the LTI system, one has determined a stabilizing state feedback gain K ∈ Rm×n. There-
fore, the closed loop system is stable with the input u(t) = Kx(t), i.e. A + BK is Hurwitz.

ẋ(t) = Ax(t) + BKx(t) = (A + BK)x(t)

For completeness, we will also describe our system, and all feature permutations, in the
notation first introduced by Tabuada in [36] and described by us in Section 1-7. Define the
system S = (X, X0, U, E, Y, H) by

• X = Rn

• X0 = X

• U = Rm × R≥0

• E = {(x, (u, t), x′) | x′ = eAtx(t0) +
∫ t

0 eA(t−τ)Budτ}
• Y = X
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• H(x) = x

Remark. The set X contains all state-space coordinates. The input set U is for construction
given in a zero-order hold format, meaning elements of (u, t) ∈ U consists of an input value u
with a time t for which the input is held. For our purpose, this input set definition suffices.
For continuously changing inputs, a different system must be constructed. The output map
H gives information about the internal state since we assume the states are fully measurable.

2-1-1 Periodic Event-Triggered Control of the System

The system is controlled in a Periodic Event-Triggered Control (PETC) manner. The state
x is measured periodically every ∆ > 0 seconds. We presume ∆ is properly chosen such that
all the system behavior is captured and, on the other hand, sampling with time intervals of
∆ does not over-sample the system dynamics. The measurement times are given by the time
sequence {tk}k∈N0 , described by tk = k∆. The new measurement of the state x(t) is only
passed on if t ∈ {tk}k∈N0 .

Instead of updating the control input every time the state is measured, the control input
is only updated in certain events. The sampling times are given by the strictly increasing
sequence {t̂i}i∈N0 which is a subset of the measurement sequence {tk}k∈N0 . Furthermore, the
starting times of both sequences are the same: 0 = t0 = t̂0. The Inter-Sample Time (IST) is
given by τi = t̂i+1 − t̂i ≥ ∆ > 0.

The last state known to the controller is given by x̂(t) and is used to compute the control
input. The state x̂ is only updated in one of the triggering times as shown in Eq. (2-1) and
afterwards the control input is updated since u(t) = Kx̂(t).

x̂(t) =
{

x(t) if t ∈ {t̂i}i∈N0

x̂(t) if t ̸∈ {t̂i}i∈N0
(2-1)

The closed loop system is therefore given below for t ∈ [t̂i, t̂i+1). Notice the input is updated
in a zero-order hold fashion.

ẋ(t) = Ax(t) + BKx̂(t) = Ax(t) + BKx(t̂i)

In section Section 1-1 some examples of different triggering conditions are given. In this
thesis project, a mix of different triggering conditions can be used, with the only requirement
being that each triggering condition has a guaranteed decay rate on the Common Lyapunov
Function (CLF).

One well studied field in control theory is the use of a quadratic Lyapunov function and
triggering conditions. First, we allocate a quadratic function of the form V (x) = x⊤Px.
We choose P positive definite and make sure the continuous Lyapunov condition is met
(A + BK)⊤P + P (A + BK) = −Q for some positive definite matrix Q, recall Theorem (1.3).
Then we can conclude that the V is a Lyapunov function for our system.

Once the Lyapunov function is fixed, one can use the matrices P and Q to construct triggering
mechanisms. As shown in section Section 1-1, there are multiple ways to use these matrices
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to construct triggering conditions that guarantee an exponential decay rate of the CLF V . A
guaranteed decay rate κσ will enforce the Lyapunov function to decay with a rate of e−κστ over
τ time as shown in Eq. (2-2), as long the corresponding triggering condition is applied. Here,
κ denotes the maximum possible Lyapunov decrease of the system with the corresponding
Lyapunov function, which is a constant in respect to these quantities. Therefore, we will refer
to the guaranteed Lyapunov decay rate as σ ∈ (0, 1] alone, since this is the varying factor per
triggering condition. Furthermore, a triggering condition that has a guaranteed Lyapunov
decay of σ will be denoted by Qσ and have the property shown in Eq. (2-2). How one can
calculate κ for given system dynamics and Lyapunov function V is shown in appendix A-1.

∀x(t0) ∈ Rn, τ ∈ R≥0 : V (x(t0 + τ)) ≤ e−κστ V (x(t0)) (2-2)

The triggering time sequence {t̂k}k∈N0 is determined by the system S, feedback gain K,
applied triggering condition Qσ and initial state x0, i.e. given a static feedback gain K and
triggering condition Qσ, the system S becomes autonomous and is denoted by
SQσ = (XQσ, XQσ0, UQσ, EQσ, YQσ, HQσ) with the following properties:

• XQσ = Rn

• XQσ0 = XQσ

• UQσ = ∅
• EQσ = {(x, u, x′) | x′ = M(t)x, where t = τσ(x)}
• YQσ = T

• HQσ(x) = τσ(x)

Here, we overload again τ to also be the function τσ : X → T which maps every state to
the corresponding IST, given the trigger condition Qσ. This function can be mathematically
defined likewise as shown in Section 1-8, and is given in Eq. (2-5). First define M : T → Rn×n

as the state progression after a certain time, described as shown in Eq. (2-3). Our function M
can be used as follows: M(τ)x(t0) = x(t0+τ) for some τ ∈ T and x(t0) ∈ Rn. Furthermore, M

can be used to rewrite the triggering condition ξ⊤(t)Qσξ(t) > 0, where ξ(t) =
[
x(t)⊤, x̂⊤(t)

]⊤
,

in to the following form x⊤(t)Nσ(τ)x(t) > 0. Nσ is given in Eq. (2-4), for more detail I refer
to Section 1-8.

M(τ) := eAτ +
∫ τ

0
eAtdtBK (2-3)

Nσ(τ) :=
[

M(τ)
I

]⊤

Qσ

[
M(τ)

I

]
(2-4)

τσ (x) = min
{

τ = k∆ | k ∈ Nσ, k∆ ≤ τmax, x⊤Nσ(τ)x > 0 or k∆ = τmax
}

(2-5)

Notice the difference in the definition of Nσ and τσ as to Section 1-8, since the triggering
condition can differ.
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2-1-2 Switched System

The scheduler operates as a supervisor that is able to switch between triggering conditions
at any point. However, since we do not incorporate early triggering in this thesis project,
we only evaluate the triggering condition choice at the triggering instances. Given a finite
set of triggering conditions {Qσ1 , Qσ2 , . . . , Qσs} with each a different guaranteed decay rate
of the CLF V given by respectively σ1, σ2, . . . , σs. Define the set of all triggering decay
rates by Σ = {σ1, σ2, . . . , σs}. Since the triggering conditions Qσ are unique liked with their
respective Lyapunov decay rates σ, we can use σ as a designator, uniquely matching to a
triggering condition. Notice that all following theory does also apply if one wants to use two
different triggering conditions with the same guaranteed decay rate of V , only the unique
triggering matrices should be used as designators.

The scheduling problem describes how switching between triggering conditions can benefit
the overall desired properties of the system. Recall from Section 1-3 that we can model this
system dynamics as a switched system. Therefore, the scheduler needs to control a switched
system, given by SQ = (XQ, XQ0, UQ, EQ, YQ, HQ) with the following properties:

• XQ = Rn × Σ
• XQ0 = XQσ

• UQ = Σ
• EQ = {((x, σ), u, (x′, σ′)) | x′ = M(t)x, u = σ′, and t = τσ(x)}
• YQ = T

• HQ(x, σ) = τσ(x)

Remark. The new set of states XQ hold the state-space coordinates together with a current
trigger condition identifier. For now, in the initial state, the system can have every triggering
condition possible associated. More information on controller synthesis is given in Section 2-4.
The finite set T = {τσ(x) | (x, σ) ∈ XQ} consists of all possible IST the system can endure
given any state and triggering condition.

The switched system SQ will be the bases for future computations as finding a controller for SQ
describes the scheduling problem. Recall from Section 1-3-4 the nice possibility of switching
triggering conditions while preserving decay of the CLF and thus preserving stability. This
fundamental property is the reason why we can schedule a controller. In essence, we use
quadratic homogeneous triggering conditions and there nice properties, in order to construct
a more complex triggering condition for the system which enhances the performance.

2-2 Scheduling a controller

In the previous Section 2-1 we have introduced our system dynamics and the possibility to
apply a variety of triggering conditions that share a CLF. In this section we will show how
this applies to scheduling a controller.

First of, in the literature of control systems, there are two methods denoted by scheduling.
While one focuses on the planning of multiple control loops over the same network, the other
interpretation of scheduling means the planning of the triggering conditions regarding a single
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Figure 2-1: Simulation of switched system using Dynamic Triggering Mechanism (DTM) for
PETC strategy. Applied to the system dynamics introduced in Chapter 5. Using decay rates
σ = 0.95 or σ = 0.2 and initial condition x(0) = [10 0]⊤.

control loop. In this thesis project, we will focus on the latter definition of scheduling and are
interested in how to switch triggering conditions in a clever way to increase desired properties.

Recall from Section 1-3 that switching between triggering condition preserves stability as long
a CLF can be guaranteed. By the construction of our system as shown in previous Section 2-1,
all triggering conditions are obligated to use the same Lyapunov function V (x) = x⊤Px and
guarantee a rate of decay with respect to this Lyapunov function. Therefore, V is a CLF
from a switched system perspective and by switching between triggering conditions, stability
is guaranteed.

This form of scheduling is in literature of hybrid systems also described as supervisory control
[20, p. 38]. Here, a supervisor determines which controller is allowed to operate the plant,
depending on the state of each controller and the state of the plant. They give an example
where they map each controller to a region in state space where it operates. In our case, the
scheduler (/supervisor) will be capable of more complex behavior and will run an automata
next to the physical system. Moreover, instead of switching between controllers, only the
triggering conditions will be switched. Therefore, the state progression does not differ between
triggering conditions, only the times at which the control input is updated.

2-3 Traffic Abstraction

Recall from Section 2-1 that SQ is the switched system which combined a set of different
triggering condition from a finite set {Qσ1 , Qσ2 , . . . , Qσs}, each applied in a PETC fashion.
The scheduling problem now yields, how to switch between triggering conditions in order to
optimize some performance. before we can answer that question, we will construct a quotient
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system SQ/Ql
as l-complete abstraction for the switched system SQ by the equivalence relation

Ql ⊆ XQ×XQ. Moreover, we will make a simulation between the infinite state system and the
finite quotient system, which includes all behavior the switched system can endure. Recall the
switched system is given by SQ = (XQ, XQ0, UQ, EQ, YQ, HQ) with the following properties:

• XQ = Rn × Σ
• XQ0 = XQσ

• UQ = Σ
• EQ = {((x, σ), u, (x′, σ′)) | x′ = M(t)x, u = σ′, and t = τσ(x)}
• YQ = T

• HQ(x, σ) = τσ(x)

Before we can construct the equivalence relation Ql, we have to introduce the sets of states
which have triggered K and who trigger exactly Q, likewise to Section 1-8. However, unlike
the traditional traffic models, the (deterministic) inter-sample sequences go now pared with
an triggering condition sequence since it will be important to know for how long τ we can
guarantee a certain decay rate σ.

We extend inter-sample sequences τ1τ2 . . . τl to a pairing of two equally long sequences
(τ1τ2 . . . τl, σ1σ2 . . . σl), where τi ∈ T and σi ∈ Σ for all i. likewise for deterministic inter-
sample sequences: (k1k2 . . . kl, σ1σ2 . . . σl), where τi = ki∆ for all i. Notice, while we will refer
to both as the (deterministic) inter-sample sequence, when elaborating on the differences,
we will denote the pairing with guaranteed decay rate by the extended (deterministic) inter-
sample sequence.

Likewise to Section 1-8, we can mathematically define the sets of states which have equivalent
IST output behavior, given the input sequence of triggering conditions. First, introduce the
sets Kσ

k , describing which states have already triggered after τ = k∆ time- when applying
triggering condition Qσ, as shown in Eq. (2-6). The set of states which will trigger exactly
after k∆ time when applying Qσ is defined by Qσ

k by taking the set Kσ
k and remove all states

that have already triggered in Kσ
k′ for all k′ < k, as shown in Eq. (2-7).

Kσ
k :=


{

x ∈ X | x⊤Nσ(k∆)x > 0
}

, τ < τmax

Rnx , k∆ = τmax
(2-6)

Qσ
k := Kσ

k\

k−1⋃
j=k

Kσ
j

 = Kσ
k ∩

k−1⋂
j=1

Kj (2-7)

2-3-1 Constructing the quotient model

The sets Qσ
k can be used to construct the extended inter-sample sequence relation R̃l, given

by Definition (2.1). The purpose of R̃l is to relate states to possible extended inter-sample
sequences. These sequences will form the basis of the quotient states and quotient relation.
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Definition 2.1 (Extended Inter-Sample Sequence Relation). Given a IST sequence of length
l, denote the extended inter-sample sequence relation R̃l ⊆ X × Nl, where elements
(x, k1k2 . . . kl, σ1σ2 . . . σl) ∈ R̃l with ki = τi

∆ , if and only if:

x ∈ Qσ1
k1

,

M (k1∆) x ∈ Qσ2
k2

,

M (k2∆) M (k1∆) x ∈ Qσ3
k3

,

...
M (kl−1∆) . . . M (k1∆) x ∈ Qσl

kl

(2-8)

Remark. Unlike the relation Rl from Section 1-8, the relation R̃l relates a state x to multiple
different extended inter-sample sequences. Moreover, for each possible input sequence of
triggering conditions, it will relate to one inter-sample time sequence. Therefore, the amount
of related sequences by R̃l from a state x is |Σ|l.

Using the extended inter-sample sequence relation R̃l, we can construct quotient states:
Qσ1σ2...σl

k1k2...kl
=

{
(x, σ1) ∈ XQ | (x, k1k2 . . . kl, σ1σ2 . . . σl) ∈ R̃l

}
for any extended deterministic

inter-sample sequence (k1k2 . . . kl, σ1σ2 . . . σl), which groups a set of states from XQ.

The chosen equivalence relation simply couples the states to their future inter-sample se-
quences for varying input sequences of triggering conditions. The resulting equivalence rela-
tion Ql ⊆ XQ × XQ is given by Eq. (2-9).

Ql =
{(

(x, σ1), Qσ1σ2...σl
k1k2...kl

)
| (x, σ1) ∈ Qσ1σ2...σl

k1k2...kl

}
(2-9)

By the definition of a quotient system in Section 1-7-7, the quotient system SQ/Ql
is defined

purely by the corresponding equivalence relation Ql and system SQ. However, for computation
purposes one can use the domino rule to construct the transitions EQ/Ql

. For completeness,
the resulting quotient system of SQ by Ql is given by
SQ/Ql

=
(
XQ/Ql

, XQ/Ql0, UQ/Ql
, EQ/Ql

, YQ/Ql
, HQ/Ql

)
with the following properties:

• XQ/Ql
= πXQ(Ql) =

{
x/Q = Qσ1σ2...σl

k1k2...kl
| x/Q ̸= ∅ and σi ∈ Σ, τi ∈ T∀i

}
• X/Q0 =

{
x/Q ∈ XQ/Q | x/Q ∩ XQ0 ̸= ∅

}
= XQ/Ql

• UQ/Ql
= UQ = Σ

• EQ/Ql
=

{(
x/Q, u, x̂/Q

)
| x/Q = Qσ1σ2...σl

k1k2...kl
, x̂/Q = Q̂σ2σ2...σl+1

k2k3...kl+1 , u = σ1
}

• YQ/Ql
= YQ = T

• HQ/Ql

(
x/Ql

)
= HQ ((x, σ)) = τσ(x) for x/Q ∈ XQ/Ql

and for any (x, σ) ∈ x/Q

Remark. Note we use the domino rule to construct the transitions instead of practically
calculating the l+1 states, see example 1.1 and the remark for more details. Moreover, notice
SQ/Ql

will be non-blocking, and even internally strongly connected from a graph perspective.

By construction, the quotient system SQ/Ql
simulates the switched system SQ and for increas-

ing values of l, simulates more narrowly. Recall that Sa ⪯S Sb =⇒ Sa ⪯B Sb. The number of
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transitions for every state in SQ/Ql
is at least the amount of triggering conditions |Q|. When

there are exactly |Q| transitions for every state, the system has become deterministic.

SQ ⪯S SQ/Ql
⪯S SQ/Ql−1 ⪯S · · · ⪯S SQ/Q1

=⇒
SQ ⪯B SQ/Ql

⪯B SQ/Ql−1 ⪯B · · · ⪯B SQ/Q1

(2-10)

Notice that the choice to use future inter-sample sequences, limits the amount states to
incorporate in the abstraction in comparison to interpreting the inter-sample sequences as
the history a state has already endured. Both interpretations are slightly different in creating
the quotient system. Mainly, when fixing the history of a state, one needs additional states
when starting up the simulation, since there exists no present history. However, this leaves
synchronizing the controller as an open question, which will be dealt with in the next section.

As an alternative to the l-complete transitions defined earlier by EQ/Ql
. We will also define

the transition set EQ/Ql
, which distinguishes inputs with the last guaranteed decay rate σl in

the sequence instead of the first σ1. While this transition set does not oblige as the l-complete
abstraction, it will be useful once we will apply some control on the abstracted system.

EQ/Ql
=

{(
x/Q, u, x̂/Q

)
| x/Q = Qσ1σ2...σl

k1k2...kl
, x̂/Q = Q̂σ2σ2...σl+1

k2k3...kl+1 , u = σl

}
(2-11)

2-3-2 Controlling the scheduler

We can design a controller (e.g. Sc) for the finite state l-complete abstraction SQ/Ql
as shown

in Section 1-7-9, by a feedback composition. Let Sc and SQ/Ql
be feedback composable, i.e.

there exists an alternating simulation relation R such that SQ/Ql
alternatively simulates Sc:

Sc ⪯AS SQ/Ql
. This requirement allows us to pick the desired input in Sc, while the system

behavior is described by SQ/Ql
, which will be a necessary condition explained in more detail

in Section 1-7-9 and applied to the current circumstances in Section 2-4-1. Let F = Re be an
interconnection relation, the extended alternating simulation relation of R to incorporate the
matching inputs. Then the controlled dynamics of the scheduler are described by: Sc×F SQ/Ql

.
Moreover, Sc can limit the behaviors SQ/Ql

can endure, as well as the behaviors of SQ. A
properly chosen controller Sc can even optimize quantities which are deemed desirable.

2-4 Controller Synthesis

Controller synthesis describes the connection between the abstractions we design and the
‘physical’ system S. So far in this chapter, we have done some work to construct the l-
complete abstraction SQ/Ql

of the switched system SQ which describes the scheduling prob-
lem. In this section we will practically describe how one can use a controller designed on a
scheduler. Furthermore, there is some nuance in the initial synchronization of the system and
the scheduler which will we will address.
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2-4-1 Process of synthesis

Recall the example given in Section 1-7-9 on how a feedback composition of a controller and
system operate. This line of thinking can be easily applied to the scheduling problem. As
shown in Section 2-3-2, we would like to design a system Sc, controlling the abstraction of the
scheduler SQ/Ql

by a interconnection relation F . The new behavior the controlled scheduler
can endure is then given by Sc ×F SQ/Ql

.

Following the example of Section 1-7-9, while relating the system S to the l-complete abstrac-
tion SQ/Ql

, describes the controller synthesis. The process can be divided in an update and
implement phase. First, the state x ∈ X is measured in the system S when the current trig-
gering condition is met and the update phase starts, where SQ/Ql

and later Sc, get updated on
which transition to take from the previous state. Secondly, Sc decides on a preferable input,
and this gets implemented back to an input in SQ/Ql

and the next triggering condition is set
on S. Awaiting the next triggering instance. This process is more elaborate demonstrated
below:

Update phase
1. When the current triggering condition Qσi triggers, measure the state x ∈ X

2. Automatically update x̂i = x and the input signal u = Kx̂i to system S

3. In SQ/Ql
, from the previous state xi−1/Q ∈ XQ/Q related to (x̂i−1, σi−1) by Ql, take any

transition labelled with σi such that we arrive at a new state xi/Q ∈ XQ/Q related to
(x̂i, σi) by Ql.

4. In Sc, take a transition labelled with σ′
i (the previous iteration chosen input) from the

previous state xi−1,c, to the new state xi,c, which is uniquely related to xi/Q by R, i.e.(
xi/Q, xi,c

)
∈ R.

Implement phase
5. In Sc, choose a new control input σ′

i+1 ∈ Uc(xi,c)
6. Relate the control input σ′

i+1 back to a unique σi+1 ∈ UQ/Ql
(xi/Q) by F , i.e.(

xi/Q, xi,c, σi+1, σ′
i+1

)
∈ F

7. Apply σi+1 and set the new triggering condition Qσi+1

Remark. This explanation is still from the theoretical view form Section 1-3. Some practical
remarks for implementation are given below.

• This looks like an time consuming process. However, it consists of lookup tables and in
the case of relating states, it will usually have very few options, sometimes only even
one when deterministic.

• Regarding the third bullet, relating to a quotient state xi/Q, i.e.
(
(x̂i, σi), xi/Q

)
∈ Ql,

simply comes down to checking if x̂i ∈ xi/Q for the possible quotient states xi/Q.

• Regarding the fourth bullet, the states for our controller Sc will be a subset of SQ/Ql
,

i.e. Xc ⊆ XQ/Ql
. Therefore, relating states in this step is a trivial task.

• Regarding the sixth bullet, the inputs σ′ in Sc represent the input applied to S after l+1
events, while the inputs σ in S and SQ/Ql

represent the current triggering condition.
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• Moreover the seventh bullet, due to the l-complete abstractions, the next l triggering
conditions are already fixed at every state in SQ/Ql

and Sc and some implementation
computational costs can be saved.

It is important to note that there is some nuance for the first l − 1 events at startup since a
state x ∈ X will not be uniquely linked to a state of SQ/Ql

. This will be discussed in next on
how to synchronize the scheduler and the system.

2-4-2 Synchronization

At startup, a measured state x0 ∈ X of the system S has |Σ|l possible quotient states in the
l-complete abstraction SQ/Ql

due there being |Σ|l possible input sequences, each rendering
exactly one related quotient state. When no controller Sc is applied to the scheduler, all these
possible input sequences still generate viable quotient states. Even when a controller Sc is
designed there may be multiple possible viable quotient states {x1/c, x2/c, . . . , xq/c} ⊆ Xc for
some q ≤ |Σ|l for an initial measured state x0 ∈ X, i.e. for all x/c ∈ {x1/c, x2/c, . . . , xq/c} it
holds that x0 ∈ x/c.

This problem arises due to our choice of quotient states representing future inter-sample
sequences and triggering conditions, instead of them describing the past and incorporate
extra states to handle the startup face for when there is no past l events so far. However,
we argue that having multiple quotient states x/Q related to a single initial measured state
x0 is no problem for the abstracted scheduler SQ/Ql

and neither it is when a controller Sc is
designed for the scheduler.

Regarding the l-complete abstraction SQ/Ql
, the system just describes all possible behaviors,

and therefore may include multiple possible future input sequences. For designing a controller
Sc, we give a more elaborate explanation.

When a controller Sc is designed and Sc ×F SQ/Ql
still relates multiple quotient states, with

one initial measured state x0, as long as Sc guarantees the desired properties, one can freely
choose any to relate x/c ∈ {x1/c, x2/c, . . . , xq/c} as a starting point. Since Sc guarantees
the desired properties for all starting quotient states, every one is a valid option. When
implementing, one could make an arbitrary decision to prioritize some quotient states over
others by altering Xc0 or just pick a random quotient state from the set of viable states
{x1/c, x2/c, . . . , xq/c}.
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Chapter 3

Cost Function Approach

The first approach to designing a controller for the scheduler, was to design a common cost
function in which one could prioritize Inter-Sample Time (IST) and control performance ac-
cordingly. Reducing the multi objective optimization problem, to a single objective optimiza-
tion problem. The idea being that by using different balances of IST and control performance,
one could estimate the Pareto frontier.

Unfortunately, this approach failed. However, I am still going to introduce the concepts and
explain why it ended up not working. In this chapter, we will mathematically define control
performance and will state which quantities are of interested. We will keep it short, and let it
be an introduction to the next chapter where we come up with a solution by slightly adjusting
our objective.

3-1 Objective Description

We are interested in the infinite behavior patterns of the controlled system, i.e. the infinite
horizon problem. Since the behaviors of the scheduler SQ/Q includes the behavior of the
switched system SQ, we want to limit the behaviors SQ/Q can endure by designing a controller
Sc as described in Section 2-3-2. Since Sc ×F SQ/Q is a finite state system, we can view the
internal dynamics as a finite directed graph and use some of the results from Section 1-
2. Namely, when interested in an infinite path of behaviors, it is sufficient to focus on the
separate primitive cycles in the graph, i.e. Sc ×F SQ/Q.

Given a primitive cycle c, denote by |c| the amount of unique vertices in c (or equivalent,
the amount of unique edges in c). Since cycles are now taken from states and transitions in
Sc ×F SQ/Q, elements of c will be in XQ/Q ⊆ X ×Σ. The quantities of interest are the average
inter-sample times and the average control performance.
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3-1-1 Average IST and control performance

The average IST of a cycle is simply given by the sum of all inter-sample times divided by
the number of edges in the cycle:

∑
(x,σ)∈c

τσ(x)
|c| . Due to non-determinism in the graph and

unknown initial condition, it is uncertain in which cycle we will end up in. Therefore, the
worst primitive cycle gives us our guaranteed average IST τ̂ as shown in Eq. (3-1).

For control performance it does not suffice to do the same and take the average σ value for
the transitions. This can most easily be demonstrated by a small example. Imagine we have
a 2-cycle the controlled scheduler Sc ×F SQ/Q: with the two nodes (x1, σ1) and (x2, σ2) such
that σ1 = 0.2 has a low guaranteed decay rate and σ2 = 0.8 guarantees a fast decay rate.
Depending on the times each guaranteed decay rate is held, this cycle may guarantee a decay
rate close to either σ1 or σ2. Therefore, it will be important to use a timed average on the
decay rates σ. A detailed derivation with the Common Lyapunov Function (CLF) decay is
given in appendix A-4. Again, the guaranteed decay rate of the graph σ̂ is given by the worst
cycle as shown in Eq. (3-2). Notice the worst cycle of τ̂ may be a different from the cycle
used to determine σ̂.

τ̂ = min
c∈CG

∑
(x,σ)∈c

HQ/Q(x, σ)

|c|
= min

c∈CG

∑
(x,σ)∈c

τσ(x)

|c|
(3-1)

σ̂ = min
c∈CG

∑
(x,σ)∈c

σHQ/Q(x, σ)∑
(x,σ)∈c

HQ/Q(x, σ) = min
c∈CG

∑
(x,σ)∈c

στσ(x)∑
(x,σ)∈c

τσ(x) (3-2)

3-1-2 Multi-objective optimization problem

The task now is to design a controller Sc for the scheduler to maximize the quantities τ̂ and σ̂.
However, in general, maximizing the IST will result in a decrease of possible guaranteed decay
rate. Therefore, the optimization problem has multiple objectives. As shown in Section 1-6, a
way to describe if a solution is ‘optimal’ is by the introducing Pareto efficient solutions. One
could try every possible controller Sc and create the discrete Pareto frontier as shown below
in Figure 3-1. However, trying every possible controller is a tedious task, even impossible as
the size of the abstraction or system increases. That is why we need a smart way to compute
the optimal controllers. How we attempted to do this, we will discuss in the next section.

3-2 Cost Function Generation

A common tactic to estimate the Pareto front is to, instead of trying to optimize two contra-
dicting quantities, create a new optimization objective, which is a linear combination of the
two desired quantities. This method is called scalarization as described in Section 1-6.

However, before we can create such a thing, for neediness we scale both τ̂ and σ̂ such that
one does not overwhelm the other by default. Both quantities lay within a known closed and
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Figure 3-1: The Pareto frontier, visualized by the ‘red’ line, encloses the area where the Pareto
efficient solutions are optimal. No solutions exists above or to the right of this line, given the
Pareto efficient solutions are complete.

confined range. Therefore, both can be scaled such that both ranges map to the interval of
[0, 1] as shown in Eq. (3-3).

τ̂ ′ = τ̂ − τmin

τmax − τmin

σ̂′ = σ̂ − σmin

σmax − σmin

(3-3)

The optimization objective will take the form of maximizing λτ̂ ′ +(1−λ)σ̂′ for different values
of λ ∈ [0, 1]. By varying λ we hope to find different Pareto efficient solution and get a better
and better estimation of the Pareto frontier. Recall from Section 1-6 that the scalarization
method only guarantees to find all Pareto efficient solutions if the solution space is convex,
which is not guaranteed in our case.

3-2-1 Fundamental Problem

However, a problem arises. Recall we do not want to try every controller Sc separately but
want to use some algorithm that can, with some efficiency, calculate the Pareto efficient
solutions. Due to the fundamental difference in τ̂ and σ̂. Namely, τ̂ being the average and σ̂
being the timed average.

Regarding the algorithms that can efficiently solve the two problems:

• Maximize the minimum cycle mean in a graph, to calculate τ̂

• Maximize the minimum weight to time cycle in a graph, to calculate σ̂

Both fundamentally work differently due to the difference in the nature of the problems as
shown in Section 1-4 and Section 1-5. When wanting to calculate these quantities, one has
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Figure 3-2: The Pareto frontier. By setting an extra condition: a minimum value for τ̂ , marked
with the color ’gray’, our problem becomes a single optimization problem since we are only
maximizing σ̂

to assign weights to every edge in the graph. For both problems, the weight assigning is
different. Therefore, it is fundamentally impossible to assign a combined weight to the edges
in order to maximize the minimum value for λτ̂ ′ + (1 − λ)σ̂′. For more details on the weight
assessment of maximizing the minimum weight to time cycle in a graph, see Section 4-5. In
contrast to maximizing the minimum cycle mean in a graph, which just takes the quantity of
interest as edge weights.

3-3 Key Findings

While the combined cost function method was not successful, we did learn a lot about different
algorithms, our optimization objectives and how one can shift perspective when tackling a
problem. It became clear we need a different approach and we debated on what would be
a useful tool for a control engineer to design a scheduler. Instead of estimating the entire
Pareto front, would it not be more useful to get more grip on a minimal average IST τ̂ or
control performance σ̂? We have chosen to further investigate the case where we set a minimal
average IST τ̂ , and implement a slightly stricter practical condition: design for optimal control
performance σ̂ while avoiding IST bursts in the system.

Effectively reducing the multi-objective optimization problem to a single objective. Regarding
the Pareto efficient solutions, this can be visualized by Figure 3-2. We will keep the definitions
of τ̂ and σ̂ as they were motivated in this chapter, given in Eq. (3-1).
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Chapter 4

Controller Design

In this chapter, the final controllers are designed. In chapter 2, we first introduced the Linear
Time-Invariant (LTI) system S which represents the physical system. The system S can be
controlled in a Periodic Event-Triggered Control (PETC) manner by choosing a quadratic
triggering conditions Qσ ∈ {Qσ1 , Qσ2 , . . . , Qσs} and having a fixed stabilizing static feedback
gain K. Each triggering condition Qσ guaranteeing a decay rate of κσ and when implemented,
rendering the system autonomous SQσ .

We introduced the scheduling problem, which is capable of switching between different trig-
gering conditions SQ after each triggering event. A quotient model with increasing behavioral
precision was created by introducing the l-complete abstraction SQ/Ql

by an equivalence rela-
tion Ql, which construct a finite state system while behaviorally includes the switched system
SQ.

In the previous chapter we described the two quantities of interest, τ̂ and σ̂, when designing
a controller Sc on SQ/Ql

. Using the Pareto frontier, we motivated how we can change our
approach to the problem.

In this chapter, we will first clearly define our burst constraint and how this in relation to
τ̂ . Using the burst constraint, we will define a safety set W which will only contain safe
behaviors. The safety set is used to construct the Maximal Permissive Controller (MPC)
Smpc which should limit the behavior of Smpc ×F SQ/Ql

to the set W .

On the MPC Smpc, we will define a greedy controller Sgc which optimizes performance in a
greedy manner. Finally, we will introduce our infinite horizon controller Sihc, which solves
the infinite horizon problem and produces the optimal control strategy.

4-1 Burst Setup

First we will mathematically define the burst condition and give some concrete examples
of what is and what is not considered a burst sequence. Second, the comparison is made
between the worst average Inter-Sample Time (IST) cycle in the system τ̂ and the burst

Master of Science Thesis M.A.J. Looman



52 Controller Design

condition. Afterwards, the burst condition is transformed to a safety set, practical for use of
the l-complete abstraction.

4-1-1 Defining bursts

Recall, the PETC sampling time is ∆ and we will be using the discrete inter-sample time
sequences with ki = τi

∆ , first introduced in Section 1-7-7. Define KN as the set of all possible
discrete inter-sample time sequences of length N , i.e. KN =

{
{ki}N

i=1 | ∀i : ki ∈ N
}

. A burst
of length N will be defined by a collection of discrete inter-sample sequences of length N .
Define the burst function bN : N → KN , for some discrete timing kb and number of events
N . Let bN (kb) describe all possible discrete IST sequences of N events that trigger within kb

time, defined by bN (kb) =
{

{ki}N
i=1 | ∀i : ki ∈ N,

∑N
i=1 ki ≤ kb

}
.

The use of the burst function bN is best illustrated with a small example. Let b3(12) be a
burst set describing the sequences which would trigger at least 3 events within 12 time, e.g.
the following sequences are included (2, 2, 2) ∈ b3(12) or (6, 4, 2) ∈ b3(12), while sequences
(5, 14, 12) ̸∈ b3(12), (6, 4, 3) ̸∈ b3(12) or (2, 2) ̸∈ b3(12) are not included. In order to effectively
implement a burst condition, we require the depth of the abstraction to be at least the size
of the burst N ≤ l. Otherwise, it will not be possible to mark states according to the burst
condition.

4-1-2 Relation bursts and average IST

A possible problem in Networked Control System (NCS) is that one control system requires
many control updates in a small time window in order to keep the system stable, i.e. a
burst of communications on the shared network is necessary to guarantee the stability of a
single control system. This may be at the expense of other control systems. Moreover, when
multiple systems exhibit burst behavior, network congestion can occur, leading to increased
latency or even package losses. Therefore, we argue that setting a burst condition bN as a
hard constraint is more useful then implementing a minimum value for the worst average IST
cycle τ̂ . However, the downside with both methods is how to choose the parameters: which
value for τ̂ or N and k for a burst bN (k).

Despite the differences, there are some similarities. Most noticeable when the size of a burst
bN (k) is of equal length then the depth of the l-complete abstraction, i.e. when one chooses
N = l and k = lτ̂ . In this case, setting a minimum average IST will mark states of equal
length to the burst condition, and thereby both marking the same set of states. Moreover,
both methods become effectively equivalent when one chooses the size of a burst to equal to
the depth of the abstraction. Recall the purpose of setting a minimum τ̂ from the Pareto
frontier perspective from Figure 3-2. Note this is only the case for when N = l. If N < l,
both methods will not necessary be marking the same set of states.

4-1-3 Safety set

Marking burst patterns within a burst set bN (k) ∈ KN describes the patterns we would like to
avoid. Due to having an l-complete abstraction, which not necessarily has the same depth as
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the burst sequences, we would like to describe which states are ‘safe’ and do not foresee a burst
in the next l events. These states are described by the safety set, the safety set is a function
WN,l : KN → Kl where the depth of the abstraction l is at least the size of the burst N ,
i.e. N ≤ l. The safety set is defined by WN,l(b) =

{
{ki}l

i=1 | ∃j ∈ N≤l−N+1 : {ki}N+j−1
j ∈ b

}
where b ∈ KN describes a burst set as first seen in Section 4-1-1.

The next objective will be to design a MPC Smpc which will guarantee that the l-complete ab-
straction will only exhibit safe behaviors, i.e. Reach

(
Smpc ×F SQ/Q

)
⊆ W , while preserving

as much input sequences as possible. Inside this safe behavior, we will design another con-
troller Sc which will use the remaining input sequences to optimize the control performance
σ̂, i.e. the resulting system will have the following structure Sc ×F ′ Smpc ×F SQ/Q.

4-2 Safety Game

Given a burst condition bN (kb) for triggering at least N events within kb time and a corre-
sponding safety set WN,l (bN (kb)) describing all safe behaviors of lengths l. As described in the
previous section, we would like to design a MPC Smpc and an extended alternating simulation
relation F = Re such that SQ/Ql

is alternatingly simulating Smpc by R, i.e. Smpc ⪯AS SQ/Ql
.

The MPC Smpc is designed such that all possible behaviors from the controlled l-complete
abstraction Smpc ×F SQ/Ql

are included within the safety set WN,l(bN (kb)), i.e. to guarantee
Reach

(
Smpc ×F SQ/Ql

)
⊆ W , while preserving as much input sequences as possible.

We construct Smpc by playing a safety game on the arena equivalent of SQ/Ql
with the safety

set WN,l(bN (kb)). Recall from 1-9-1 how we can transform the internal dynamics of a system
to an arena A = (V0, V1, E) to play the safety game on. Recall, when converting SQ/Ql

to
an arena, the arena will have the following properties V0 = XQ/Ql

, V1 = {(v, u) | v ∈ V0, u ∈
U(v)} and E = E0 ∪E1. Here, E0{(v, u, (v, u)) | ∀v ∈ V0, u ∈ U(v)} describes the controllable
transitions from V0 to V1 and E1 = {(v, u, v′) | ∀(v, u) ∈ V1, v′ ∈ V0 : (v, u, v′) ∈ EQ/Ql

} the
uncontrollable non-determinism in the transitions.

4-2-1 Defining the maximal permissive controller

The safety game is played as described in 1-9-2 by using the reachability algorithm on the
dual problem. After playing the safety game, we obtain the trap set Trap(A, W ) and can
construct the complementary set: the limited safety set W e = XQ/Ql

\Trap(A, W ). Since W e

is defined on the arena instead of a system, the new states of the controller Smpc are defined
by limiting W e to only V0, i.e. taking Xmpc = V0 ∩ W e = XQ/Ql

∩ W e since V0 = XQ/Ql
.

The transitions of the maximal permissive controller are defined by all transitions for which
the systems stays inside these safe states Xmpc a complete description of the MPC Smpc =
(Xmpc, Xmpc0, Umpc, Empc, Ympc, Hmpc) is given below:

• Xmpc = XQ/Ql
∩ W e

• Xmpc0 = Xmpc

• Umpc = UQ/Ql

• Empc = {(x, u, x′) ∈ EQ/Ql
| x, x′ ∈ Xmpc}
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• Ympc = YQ/Ql

• Hmpc = HQ/Ql
|Xmpc the function HQ/Ql

limited to the input set Xmpc

Recall the alternative transition set of the l-complete abstraction EQ/Ql
introduced in Eq. (2-

11). In contrast to EQ/Ql
which uses the first guaranteed decay rate in the sequence as input,

for control purposes, the last guaranteed decay rate in the sequence is needed. An input now
representing which decay rate comes next to the existing sequence which is already fixed.

Let us now show there exist an alternating simulation relation R ⊆ Xmpc × XQ/Ql
. By con-

struction of Smpc, the states Xmpc are just a subset of XQ/Ql
. Moreover, the transitions follow

the requirements of an an alternating simulation relation from Definition (1.23). Therefore,
the trivial relation which relates equivalent states R = {(x, x) | x ∈ Xmpc}, is an alternating
simulation relation from Smpc to SQ/Ql

, i.e. Smpc ⪯AS SQ/Ql
. Recall Definition (1.23) for

the requirements for an alternating simulation relation. This relation R can be used to con-
struct a feedback composition to let Smpc control the system SQ/Ql

since they are feedback
composable. Let F = Re be the extended alternating simulation relation of R. The feedback
composition is then given by Smpc ×F SQ/Ql

and describes the safely controlled system.

4-2-2 Reduced initial conditions

Notice, it may be the case that Smpc has less (initial) states then the system SQ/Ql
. Meaning,

Smpc is only a valid controller for SQ/Ql
if we initialize SQ/Ql

in a state that relates to Smpc by
R. If this is not the case, no valid control input can be generated. Since Smpc is the maximal
permissive controller, if the system is initialized outside Xmpc, e.g. (x0, σ0) ∈ XQ/Ql

\Xmpc,
there is no combination of future triggering conditions for which a burst can be avoided staring
from x0 and first applying σ0.

This can be problematic if there is a x0 ∈ X in the original system S for which there is
no triggering condition σ ∈ Σ such that (x0, σ) can be controlled by Smpc, i.e. there exists
a x0 ∈ X such that ∀σ ∈ Σ it holds that (x0, σ) ∈ XQ/Ql

\Xmpc. There are three lines of
reasoning when this is the case. Firstly, one could ignore these possible initial states x0 ∈ X
since the system is guaranteed to exhibit burst behavior no matter the input sequence of
possible σ ∈ Σ. Secondly, one could include and extra triggering condition σ′ which is very
conservative and has a slow decay rate of the Lyapunov function. However, this does not
guarantee that no bursts occur, only make it more unlikely. Thirdly, the burst condition may
be chosen too hash and needs to revised for the system S.

4-2-3 Properties of the maximal permissive controller

Notice, unlike SQ/Ql
, the system Smpc will not necessarily be strongly connected due to a

possible reduction of transitions. Since this is requirement for some algorithms, we will have
to make smart adjustments in the future. However, do note that Smpc is still non-blocking.
This can be reasoned by the following contradiction: if Smpc is blocking, there is a state
x0 ∈ Xmpc such that U(x0) = ∅. However, by construction of the reachability algorithm
shown in appendix B-5, every state that has no possible output such that it stays outside the
trap set, is included in the trap set. Since Xmpc includes all states not included in the trap
set, we have x0 ̸∈ Xmpc, concluding our contradiction.
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On the MPC Smpc, we will implement a controller which optimizes control performance, i.e.
maximizes σ̂. First we will show a greedy approach to constructing a controller Sgc, which
fails in optimizing σ̂, but does give decent results. Thereafter, we will give the infinite horizon
controller Sihc, which does maximizes σ̂, but requires much more computing power.

4-3 Greedy Optimizer

Given the l-complete abstraction SQ/Ql
of the switched system SQ describing the scheduling

problem, the Maximal Permissive Controller (MPC) Smpc and the alternating simulation
relation Rgc between them. We would like to design a new controller on Smpc which optimize
for control performance. Since Smpc is maximally permissive, at a given state x ∈ Xmpc there
may still be multiple valid inputs, i.e. |Umpc(x)| > 1.

A greedy optimizer can be used as a low computational method to construct a sub-optimal
greedy controller Sgc, by taking the optimal decay rates as inputs locally at every state.
Therefore, the greedy controller Sgc has the same states and output mapping as the MPC
Smpc, only limiting the possible transitions to the maximum valid guaranteed decay rate at
every state. The greedy controller Sgc = (Xgc, Xgc0, Ugc, Egc, Ygc, Hgc) is given by:

• Xgc = Xmpc

• Xgc0 = Xgc

• Ugc = Umpc

• Egc = {(x, u, x′) ∈ Empc | u = max (Umpc(x))}
• Ygc = Ympc

• Hgc = Hmpc

Recall the overloaded notation of U : X → U throughout this thesis, mapping each state to
the set of possible inputs at the given state, e.g. given a state x ∈ Xmpc, Umpc(x) = {u | ∃x′ ∈
Xmpc : (x, u, x′) ∈ Empc}. Since the states in Xgc use the same as Smpc, let us try the trivial
relation Rgc = {(x, x) | x ∈ Xgc}. Due to the nature of the transitions generation of Egc,
indeed Rgc is an alternating simulation relation from Sgc to Smpc by definition, given in Def-
inition (1.23). Since Sgc ⪯AS Smpc, the system is feedback composable. Define the extended
simulation relation Fgc = Re

gc as interconnection relation according to Definition (1.25). The
greedy controller can then control the MPC controller as follows: Sgc ×Fgc Smpc. This can be
applied as before, as shown in Section 4-2-1, as a controller in itself to control the l-complete
abstraction by the extended simulation relation F . We obtain Sgc ×Fgc Smpc ×F SQ/Ql

as the
controlled l-complete abstraction of SQ. Recall from Section 2-4-1 the process of synthesizing
the controlled l-complete abstraction and the switched system SQ.

4-3-1 Sub-optimality

The sub-optimality of Sgc comes from the greedy optimizing approach of only optimizing the
control performance of a single step in the system, instead of considering the possible infinite
paths. As discussed before in 1-2 the infinite paths of a finite system are captured within
the primitive cycles in the system due to states not in a primitive cycle, are visited at most
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once in an infinite path. How to efficiently calculate the guaranteed control performance is
shown later in Section 4-5. That the greedy optimizer does not necessarily find the optimal
controller for control performance, is best visualized in a small example.

In Figure 4-1, a small part of an arena A = (V0, V1, E) is given, complemented with details
from Smpc as guaranteed decay rate sequences, IST sequences and inputs corresponding to
the controllable transitions. Only considering this part of the arena, one can see that the
greedy optimizer does not find the optimal control strategy to optimize control performance.

Figure 4-1: A sketch of a situation when the greedy controller does not find the optimal strategy
for optimizing control performance in an arena.

The example given in Figure 4-1 is generated using an l-complete abstraction of depth l = 2
and using some burst condition to construct Smpc. For this small part of the arena, one can
see that there is only a single controllable state for which a decision needs to be made, the
middle state. Naturally, the greedy controller Sgc will choose the highest guaranteed decay
rate as it only looks at the local state to make a decision, i.e. σ = 0.8 (equivalent to s = 0.8
in the figure). However, this will result in a cycle performance of:∑

e∈c σeτe∑
e∈c τe

= 0.2 · 5 + 0.2 · 5 + 0.8 · 4 + 0.2 · 4
5 + 5 + 4 + 4 = 1

3

However, when one chooses locally the worst option of σ = 0.2 (s = 0.2) at the middle
controllable node, the resulting cycle performance will increase as seen below:

∑
e∈c σeτe∑

e∈c τe
= 0.2 · 5 + 0.2 · 5 + 0.2 · 7 + 0.8 · 7

5 + 5 + 7 + 7 = 3
8 >

1
3
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Naturally, these numbers are chosen arbitrary to represent realistic values. In theory, one
could enhance these numbers to artificially increase the gap the two obtained performances
up to the difference in maximum and minimum decay rate of the Common Lyapunov Function
(CLF), i.e. σ = 0.2 and σ = 0.8 in this example.

Our last goal will be to design a controller Sihc which solves the infinite horizon problem of
maximizing the worst case control performance primitive cycle. This is shown in the next
section.

4-4 Optimal Control Performance

Instead of using a greedy optimizer to obtain a controller Sgc on the MPC Smpc. We would
like solve the infinite horizon problem and produce the controller Sihc which optimizes the
control performance σ̂ of Smpc ×F SQ/Ql

, first introduced in Eq. (3-2), but also shown below
in Eq. (4-1). Likewise to the construction of Sgc, the infinite horizon controller Sihc will be
equivalent to Smpc except it will limit the possible transitions.

σ̂ = min
c∈CG

∑
(x,σ)∈c

σHQ/Q(x, σ)∑
(x,σ)∈c

HQ/Q(x, σ) = min
c∈CG

∑
(x,σ)∈c

στσ(x)∑
(x,σ)∈c

τσ(x) (4-1)

The next sections are describing the two different problems we still have to solve. First we
will discuss, given a controller on Smpc, how one can verify the associated control performance
σ̂ efficiently. Here, we will give the details of how to apply which algorithms. The method
used will be a neat starting point for the second problem. In the second problem we will
describe how one can generate the optimal strategy Sihc as controller on Smpc to solve the
infinite horizon problem.

4-5 Verifying Control Performance

Given a strategy/controller on Smpc, one can verify the control performance by calculating σ̂.
In this section we will show how one can do this more efficiently then determining all primitive
cycles, construct CG and calculating the fraction from Eq. (4-1) for every cycle c ∈ CG. As
one can imagine, this is a tedious, time consuming task. Therefore, the problem we would
like to solve is: how to efficiently calculate the minimum weight to time cycle in a graph.

Luckily, this is a well studied problem as described in the preliminary knowledge of Section 1-
5. There are multiple choices for different algorithms. Since Lawler’s binary search approach
will be beneficial later on as well, we have chosen to implement this method, complemented
with either Floyd-Warshall (FW) (see appendix B-3) or Bellman-Ford (BF) (see appendix
B-2).

Unfortunately, BF can only be used on strongly connected graphs. Recall, the MPC Smpc is
connected and non-blocking, but not necessarily strongly connected. Therefore, we need some
additional adjustments before we can use BF. The requirement of the graph being strongly
connected, does not apply to the FW algorithm.
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4-5-1 Lawler’s method

The key insight why Lawler’s method [43] is able to efficiently calculate σ̂ in our case, is
because we have tight bounds on the possible values of σ̂. Since σ̂ is the time average of all
possible decay rate σ ∈ Σ, we know it must be in the closed interval σ̂ ∈ [min(Σ), max(Σ)]
between the minimum and maximum decay rates. For clarity, recall from Section 2-1 we took
out the maximum Lyapunov decay rate κ and for all σ ∈ Σ it is just a scalar σ ∈ (0, 1].
Recall the definition of σ̂ from Eq. (4-1), of being a minimum weight (στσ(x)) to time
(τσ(x)) cycle problem. Mathematically, one can construct a weighted timed graph G1 =
(V1, E1, w1, t1), with a weight function w1 : E → R and a timing function t1 : E → R≥0, all
defined by:

• V1 = Xmpc

• E1 = Empc

• t1(e) = t1(v, v′) = Hmpc(v)
• w1(e) = w1(v, v′) = Umpc(v)Hmpc(v) = σeτe

Given a limit range of possible values for the weight to time cycle, Lawler’s method consist of
taking a guess of the minimum weight to time cycle in the graph and adjusting it in a binary
search fashion. Given a guess λ ∈ [min(Σ), max(Σ)] for σ̂, one can create the weighted graph
Gλ

2 = (V2, E2, wλ
2 ) with equivalent states and edges, only with an adjusted weight function

wλ
2 : E → R, given by:

• V2 = V1

• E2 = E1

• wλ
2 (e) = wλ

2 (v, v′) = Umpc(v)Hmpc(v) − λHmpc(v) = σeτe − λτe

The interesting thing about Gλ
2 , is that we translated the minimum weight to time cycle

problem in G1 to a minimum mean cycle problem. If we find a cycle with a mean cycle equal
to zero (same reasoning can be applied to smaller or bigger then zero), then λ equals the
fraction of interest with respect to σ̂ as shown in Eq. (4-2). If the cycle mean of every cycle
in Gλ

2 is bigger then 0, i.e. there are no negative cycles, then initial guess was too low λ < σ̂.
On the contrary, if there is a negative mean cycle in Gλ

2 , our initial guess was too high λ > σ̂.
Therefore, we only need a negative cycle detection algorithm, like BF or FW, and can with
a binary search approximate σ̂ as precisely as needed.

∑
(x,σ)∈c

στσ(x) − λτσ(x)

|c|
= 0∑

(x,σ)∈c

στσ(x) − λτσ(x) = 0

∑
(x,σ)∈c

στσ(x) = λ
∑

(x,σ)∈c

τσ(x)

∑
(x,σ)∈c

στσ(x)∑
(x,σ)∈c

τσ(x) = λ

(4-2)
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Remark. Unfortunately, it is likely there is a mismatch between the fraction and λ, i.e. in
Eq. (4-2) the fraction is bigger > or less < then zero instead of equal =. So far, this mismatch
can not be used (other then the information of being < 0 or > 0) to make a highly educated
next guess of λ.

4-5-2 Negative cycle detection algorithm

As stated before, we implemented both BF and FW. Theoretically, BF has a time complexity
of O(V · E) and FW a time complexity of O(V 3). The benefit of implementing FW is that
the graph does not have to be strongly connected and if there is indeed a negative cycle in
the graph Gλ

2 , the process can prematurely terminate. Despite BF not having both benefits,
the time complexity is better then FW in general due to |V | ≤ |E| ≤ |V |(|V | − 1)1 and we
will show it is well suited for parallel programming. Both methods have there own benefits,
when running simulations, we will comment on the speed comparisons between BF and FW.

Let us comment on how to apply BF in parallel fashion on a graph Gλ
2 which is not strongly

connected. The key is that the precise criteria for applying BF is not that the graph is strongly
connected, but we have a source node s ∈ V which can reach all other nodes in the graph.
By assuming the graph is strongly connected, every node can be a source node. However, for
negative cycle detection, it is sufficient to split up the graph in sub-graphs G/i = (V/i, E/i, w/i)
with related source node s ∈ V , defined by:

• V/i = {v ∈ V2 | ∀j < i : v ̸∈ Vj , v ∈ Reach(Gλ
2 , s)}

• E/i = {(v, v′) ∈ E2 | v, v′ ∈ V/i}
• wλ

/i = wλ
2 |E/i

Recall Reach(G, s) being the set of all vertices which can be reached from s. By constructing
G/i with an associated s for increasing values of i by choosing s ̸∈ Vj for j < i, we obtain
a partition of the original graph, i.e. in our case Gλ

2 . If a node in a cycle is reachable from
a starting node s ∈ V , then all nodes of that cycle are reached from s. Therefore, nodes of
cycles always being in the same Gi of the partition. Since all nodes in a G/i are reachable
from the starting node, we can apply BF to each one separately. As soon a negative cycle
is detected in one of the sub-graphs G/i, we conclude there is a negative cycle in Gλ

2 and
terminate the process.

4-6 Infinite Horizon Controller

Given a strategy/controller on the MPC Smpc, one can verify the control performance σ̂ as
shown in the previous section. The question now is, how to design a controller on the MPC
Smpc in order to obtain the maximum control performance.

1Since Gλ
2 is non-blocking, we know |V | ≤ |E|. Furthermore, if every vertex is connected to every other

vertex, the maximum number of edges is reached and we have |E| = |V |(|V | − 1). Note, if a strategy is applied
such that every vertex has exactly one outgoing edge, then |E| = |V |.
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4-6-1 Use of mean-payoff games

As demonstrated in Section 4-5-1, Lawler’s method can be used to construct a weighted graph
Gλ

2 = (V2, E2, wλ
2 ), where λ is an improving guess for the value of σ̂. Recall the motivation

for the weight adjustment from Eq. (4-2), showing that if the minimum cycle is equal to zero
( /lower/higher) then λ equals (/is bigger then/is lower then) σ̂. Therefore, we can translate
our problem to the following: given a guess of λ, does there exists a strategy on Gλ

2 such that
there are no negative cycle. If no such strategy exists, we will say Gλ

2 has an unavoidable
negative cycle.

Luckily, this is a problem for which we can solve somewhat efficiently. The existence of
an unavoidable negative cycle in a graph, can be answered by determining if the value ν
of a Mean-Payoff Game (MPG) is positive or negative. As shown by Brim et. al. [41] and
mentioned in Section 1-9-3, this question can relatively efficiently be solved by playing several
energy games in a total time complexity of O(E · V · W ). More details are given in appendix
B-4. This can be used in Lawler’s method to close down on the real value of σ̂ in a binary
search fashion.

As shown in Section 1-9-3, a MPG is given by Γ = (V0, V1, E, w), where (V0, V1, E) is an arena
extended with a weight function w : E → R. Recall from Section 1-9-1 how one can convert
systems or graphs to arena’s and vice versa. From the graph Gλ

2 , we construct the MPG
ΓGλ = (VG0, VG1, EG, wGλ) with:

• VG0 = V2

• VG1 = {(v, v′) | v, v′ ∈ VG0 : (v, v′) ∈ E2}
• EG = EG0 ∪ EG1

EG0 = {(v, (v, v′)) | v ∈ VG0, (v, v′) ∈ VG1}
EG1 = {((v, v′), v′) | v′ ∈ VG0, (v, v′) ∈ VG1}

• wGλ(e) =
{

wGλ (v, (v, v′)) = wλ
2 (v, v′) if e ∈ EG0

wGλ ((v, v′), v′) = wλ
2 (v, v′) if e ∈ EG1

Notice the extended weight function to the non-deterministic states from VG1 in order to keep
the average of a cycle consistent with that of Gλ

2 . The value of MPG ΓGλ is denoted by νGλ

and can be calculated by Brim et. al. first algorithm as stated before.

4-6-2 Constructing the strategy

Once the value of λ estimates σ̂ with a desired precision and there are no unavoidable negative
cycles in the MPG ΓGλ for the given λ < σ̂, i.e. the MPG ΓGλ has positive value νGλ ≥ 0.
One can use the second algorithm of Brim et. al. [41], given in appendix B-4, to construct
a strategy of non-negative value νGλ (since there are no unavoidable negative cycles), with
a time complexity of O

(
E · V 2 · W · (log V + log W )

)
. Notice a strategy is only valid if the

value of the game νGλ is non-negative due to our choice of weights, motivated in Eq. (4-2).

From the second algorithm of Brim et. al., we obtain a strategy function η : VG0 → EG

which describes at every controllable state v ∈ VG0 the optimal transition e ∈ EG to
take in order to obtain the MPG value νGλ ≥ 0. Recall, by construction VG0 = Xmpc.
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Therefore, one can apply the strategy η to obtain the infinite horizon controller Sihc =
(Xihc, Xihc0, Uihc, Eihc, Yihc, Hihc), given by:

• Xihc = Xmpc

• Xihc0 = Xmpc0

• Uihc = Umpc

• Eihc = {(x, x′) ∈ Empc | x, x′ ∈ Xmpc, (x, (x, x′)) ∈ eta(x)}
• Yihc = Ympc

• Hihc = Hmpc

4-6-3 Relating the controller

Likewise to the procedure of the greedy optimizer from 4-3, we will take the trivial relation
Rihc = {(x, x) | x ∈ Xmpc}. By construction of Sihc, it is easy to see that Rihc is an alternating
simulation relation from Sihc to Smpc, i.e. Sihc ⪯AS Smpc, since Sihc only limits the amount
of transitions in Smpc. Let Fihc = Re

ihc be the extended alternating simulation relation as an
interconnection relation between Sihc and Smpc. Then Sihc is feedback composable to Smpc

and the controlled system will be denoted with Sihc ×Fihc
Smpc.

Recall MPC Smpc is a controller for the l-complete abstraction SQ/Ql
by a relation R and

F = Re. Since Smpc was the maximal permissive controller, as long as the system is initialized
inside Smpc, all behaviors in Smpc ×F SQ/Ql

are rendered safe, i.e. without bursts. On these
safe behaviors, Sihc optimizes the control performance and producing our final control strategy
on the l-complete abstraction: Sihc ×Fihc

Smpc ×F SQ/Ql
.

For the connection between the controlled l-complete abstraction SQ/Ql
and the physical

system S, we refer back to the process of synthesis in 2-4-1.

4-6-4 Process speed up

In order to speed up the process. One can first generate the greedy controller Sgc and
determines the associated control performance σ̂gc. Generating Sgc is computationally cheap.
Given a controller, determining σ̂gc can be done efficiently as demonstrated in Section 4-5.
This value of σ̂gc can be used as a new lower bound for the starting guess λ of σ̂ihc in the
process of Section 4-6-1. Moreover, one can check if there even exists a improved strategy
over Sgc, or Sgc is already the best possible strategy.

Start with the guess λ = σ̂gc for σ̂ihc. If the value of the associated MPG is exactly ν = 0,
we know there is no improved strategy. Adjusting the weights by increasing λ, would result
in a loss of value ν < 0 and there would no valid strategy be for guaranteeing this increased
λ. Therefore, in this case σ̂ihc = σ̂gc and the greedy controller Sgc has optimal control
performance.
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Chapter 5

Simulations and results

In this chapter, the general outline of the simulations is given and the results are discussed. All
the plots can be found in appendix C, together with some general info about the simulations
and a link to the gitlab, here one can find the code that is used to generate the simulations.

5-1 Simulation Setup

For comparison reasons, we will use the same system first introduced by Tabuada [6] since
this is widely used as shown in Eq. (5-1). The system is stabilized with a static state-feedback

gain K =
[

1
−4

]
as shown in Eq. (5-2).

ẋ(t) =
[

0 1
−2 3

]
x(t) +

[
0
1

]
u(t) (5-1)

u(t) =
[

1
−4

]
x(t) (5-2)

Next to the system, we also inherit from Tabuada the Lyapunov function V = x⊤Px and the
corresponding Q from the continuous Lyapunov equation (A + BK)⊤P + P (A + BK) = −Q,
where P and Q are given in Eq. (5-3).

P =
[

1 1
4

1
4 1

]
, Q =

[
1
2

1
4

1
4

3
2

]
(5-3)

The sampling rate of the system is chosen to be ∆ = 0.05 and describes the rate at which the
triggering condition is periodically checked.
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The triggering condition chosen is the monotone Lyapunov triggering condition for variable
guaranteed convergence rate σ ∈ (0, 1] as expressed in Eq. (5-4) and first introduced in
Section 1-1-5.

Qσ =
[
(σ − 1)Q − 2PBK PBK

(PBK)⊤ 0

]
(5-4)

Our Lyapunov function will be V (x) = x⊤Px. Determining the maximum decay rate of the
Periodic Event-Triggered Control (PETC) methods following the Linear Matrix Inequality
(LMI) optimization from appendix A-1, gives a value of κ = 0.48. For an initial condition of
the system I ended up settling for: x(0) = [4.574, −8.892]⊤, which may seem oddly specific,
but I’ll support my choice more in Section 5-1-1. All simulations are run for 10 time t. In
this time, the Lyapunov and state responses all decayed to approximately the origin, but it
gives some time to show the Inter-Sample Time (IST) behaviors.

5-1-1 Interesting initial state

As stated before, the choice of initial condition is oddly specific. The initial condition has to
suffice a two criteria to be interesting:

• For every simulation, we want x(0) to be in the safety set, specified by the corresponding
Smpc

• For every simulation, we want the quotient state in the corresponding l-complete ab-
straction SQ/Ql

of x(0) to not exhibit only maximum decay of σmax and maximum IST
of τmax = kmax∆ for the first l triggering instances.

Notice, mainly due to the weak burst condition from the first simulation in Figure C-5 in
combination with the relatively low kmax, this system configuration is critical and we use this
to set x(0). Notice that the second criteria for interesting starting states, in combination with
this simulation, is very limiting for possible starting positions. Therefore, we set the second
criteria in order to show interesting controller behavior. Namely, avoid the possible self-loop
in the system for maximum discrete IST at maximum control control performance.

In order to find possible starting states, xα(0) = [sin(α) cos(α)]⊤ for values of α in an
interval α ∈ [0, π). In this interval is split equally in 5000 values for α, and non-trivial
solutions are extruded. Roughly speaking, this gives a range xα,0(0) ∈ [0.435, 0.475] and
xα,1(0) ∈ [−0.9, −0.88] around an angle of α ≈ 5π

6 . We choose one of these starting conditions
at random to be x(0) = [4.5743078, −8.8924523]⊤, corresponding to α = 4255π

5000 . Notice this
interval is very small due to the low kmax of the simulation.

Notice, as long as the initial condition is in the corresponding Maximal Permissive Controller
(MPC) Smpc, it is a valid starting condition for the simulations. For the other simulations,
which use a larger kmax, we could have generated an different x(0) in similar manner. However,
we decided for comparison reasons to keep x(0) constant among the different simulations.
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5-2 Comparing Simulations

First of all, for the simulations see Figure C-5, Figure C-6 and Figure C-7 in appendix C.
Furthermore, of the first simulation, the quotient state progression is given in Table ??. The
controller Sihc is able to schedule the PETC triggering conditions to obtain a guaranteed ex-
ponential decay of the Lyapunov function in between the decay rates of the original triggering
conditions. All while being on the edge of inducing a burst to occur. Notice the difference
in burst condition for each simulation, therefore the allowed IST patterns are also different.
The controller Sihc can guarantee a proper decay rate, even for abstractions of low depth and
a minimum variety in IST, and shows a better performance than I would have thought.

Regarding an abstraction of depth l = 2, the controller sometimes runs into the problem
of a safe state in Smpc having an undesirable self-loop (with minimum control performance)
regardless of the input of Sihc, and therefore can not guarantee any decay rate of V other
then the minimum control performance. By increasing the depth of the abstraction. The
amount of self-loops in the l-complete abstraction SQ/Ql

gets reduced to only the states with
maximum control performance, and the problem is mitigated. Therefore, for other problems, I
recommend to verify the self-loop behavior of the quotient states in the l-complete abstraction
by increasing the depth l.

In general, the difference in maximum IST is clearly visible in the simulations. The resulting
state-space responses all converge to the origin and the Lyapunov decay shows clearly the
triggering times and the moments there is a switch between triggering conditions.

Regarding the first two simulations, one of depth l = 3 in Figure C-5 and one of depth l = 4 in
Figure C-6. Due to applying a more aggressive burst condition in the second simulation, the
obtained guaranteed exponential decay is slightly lower then the first simulation. However,
due to the increment in depth of the l-complete abstraction and adding more details by
increasing kmax from 8 to 15, the controller is able to exhibit more interesting behaviors.
Resulting in only a slightly lower guaranteed control performance.

Regarding the second an third simulations, one of depth l = 4 and a maximum discrete IST
kmax = 15 in Figure C-6 and one of depth l = 3, kmax = 11 and an additional triggering
condition. Both simulations now have the same minimum Average Inter Sample Time (AIST)
condition, only for different depths of the abstraction. The third controller, of only depth
l = 3, with about half the amount of states, outperforms the second controller, due to having
a different set of triggering conditions available. Showing that control in triggering conditions
is just as, or even more, useful than increasing the depth of the abstraction.

5-2-1 Difference greedy and optimal controller

in appendix C, a few simulations are given. As one can see, these are only simulations for the
infinite horizon controller Sihc and not for the greedy controller Sgc. Unfortunately, I did not
find a difference in performance between them. Therefore, the infinite horizon controller finds
the same strategy as the greedy optimizer and has the exact same control performance. My
suspicion is that the infinite horizon controller Sihc can still outperform the greedy controller
Sgc, but only when the abstraction SQ/Ql

can be constructed of sufficient depth. As one can
see in appendix C, the size of the abstraction grows very fast as the depth of the abstraction
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increases. Even more so then previous Event-Triggered Control (ETC) methods due to the
interconnections between the different triggering conditions, but we will elaborate more about
that in Section 5-3.

It could also be the case that I have been unlucky with the choice of initial conditions and
other settings of the simulations. However, I have tried many more configurations. The initial
condition is chosen to be in Smpc for all burst conditions in the simulations, but also that
even the small controller (with a maximum discrete IST of kmax = 8) exhibits interesting
behavior.

For example, regarding the simulation of Figure C-5 in appendix C. Due to the quotient state
associated with (0.8, 0.8, 0.8|8, 8, 8) taking up most of the state space, the controller does not
have much control in steering the system. Moreover, interesting initial conditions can only be
taken from a small set (small slice of physical state-space states), such that it takes at least 3
IST’s before possibly getting in (0.8, 0.8, 0.8|8, 8, 8). More details are given in Section 5-1-1.

Another possibility, the greedy controller may always find the strategy to the infinite horizon
problem. Recall from Section 4-3 the counter example shown in Figure 4-1. Maybe one could
show that with how the abstraction is created, this situation can not occur. However, I doubt
it. Due to the construction of the situation in Figure 4-1, the system could diverge to different
states with independent behaviors. Naturally, the system dynamics are more intertwined than
the abstraction shows at first sight.

5-2-2 Scheduling performance

To answer the question: why even use scheduling and not just apply a triggering condition
which just avoids the burst condition. In Table 5-1, minimum occurring discrete IST’s are
given for the first guaranteed decay rate they do occur. These values are found by constructing
the individual traffic models for 1000 different σ values using the same system and triggering
conditions throughout this chapter.

For example, if one would like to have a guaranteed minimum AIST of τ̂ > 4, one must
choose the control performance σ < 0.443. While using a simple scheduling simulation shown
in Figure C-5, constructed by using a minimum kmax and depth l, one can obtain a control
performance of σ = 0.545.

This result gets even more extreme when inducing a minimum AIST of τ̂ > 5, where normally
one can only choose control performances σ < 0.074. However with scheduling, as shown in
Figure C-6 and Figure C-7, we can still obtain a control performance of σ = 0.508 or σ = 0.531
respectively.

Remark that these assumptions are made by the existence of a kmin in the traffic model, i.e.
the l-complete abstraction of base depth l = 1. Here, there exists transitions between all
regions. Of increasing depths l, these performances without scheduling may lay higher when
no loops exists of guaranteed AIST τ̂ = kmin. However, this topic exceeds the aim of this
thesis.
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Minimum decay rates

σmin kmin

0.001 6
0.074 5
0.443 4
0.673 3
0.824 2

Table 5-1: Shown are the minimum decay rates to exhibit behaviors of decreasing values of kmin.
Tested for values of σ for 3 decimals.

5-3 Growth of the abstraction

As shown in the two tables: Table C-1 and Table C-2, the size of the abstraction increases
drastically for increasing values of depth l, maximum discrete IST kmax or number of triggering
conditions |Σ|.

For comparison reasons, I also visualized the ratio between transitions and regions. If this
ratio equals the number of triggering conditions |Σ| of the l-complete abstraction SQ/Ql

,
the abstraction has become deterministic (every quotient state has at least |Σ| outgoing
transitions). However, notice on the ratio in transitions over regions. It may seem small, and
if every state only has that in amount of transitions, there is not much non-determinism in the
abstraction. While in reality, the amount of transitions per state is not ideally distributed.

Clarifying, there is a significant increase of transitions when increasing the number triggering
conditions. While there is a relative decrease of transitions when increasing the depth of
the abstraction. However, when increasing the maximum discrete IST kmax, it can both
increase or decrease the ratio. Moreover, increasing kmax splits the regions with a sequence
containing kmax into multiple regions. The outgoing transitions of such states gets split
over multiple states, decreasing the average ratio of transitions over regions. However, the
incoming transitions are only increased, due to states now mapping to more regions. This is
best visualized with a sketch in Figure 5-1.

Note that the rapidly increasing size of the abstraction is especially a problem when playing
energy and mean-payoff games, since they are computationally most expensive. Recall the
time complexity of mean-payoff games to be O(|E||V |2W (log |V | + log W )) of a graph G =
(V, E) where W is the maximum number of different weights for outgoing transitions of a
state. In our case, namely V and E are crucial for computation efficiency, e.g. doubling
the amount of states and transitions leads to approximately 8 times the computation time
needed.
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Figure 5-1: A situation is sketched where the orange state has a discrete IST sequence containing
kmax. In gray are states that have outgoing transitions towards an orange state and in blue are
states which have an incoming transition from an orange state. On the Left, the starting situation
is visualized. On the right, kmax is increased and the orange state is split up in two new states. The
average outgoing transitions per orange state is decreased, while the average outgoing transitions
per gray state in increased.
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Chapter 6

Discussion and Findings

In this thesis project, I have taken a look at the balancing of control performance and Average
Inter Sample Time (AIST) of Periodic Event-Triggered Control (PETC) systems by schedul-
ing different triggering conditions at trigger instances. Instead of traditionally setting an
required decay rate of the Lyapunov function, we started by setting a burst condition or min-
imum AIST, and then maximizing for control performance (the decay rate of the Lyapunov
function). I have shown that by scheduling, one can obtain a higher control performance then
originally possible while avoiding a burst or requiring a minimum AIST.
Unfortunately, due to the size scaling of the l-complete abstraction, I was not able to design
controllers for larger depths of l and including more dynamics of the system. Therefore, the
controller designed by a greedy optimizer obtains the same strategy as the controller designed
by optimizing the infinite horizon problem.

6-1 Future work

Despite already being able to give some results in schedulers that are able to achieve a
relative high control performance while avoiding bursts, there are more ideas that could be
investigated. My directions for future work are given below:

1. It is still the choice of the engineer to choose the starting set of triggering condition-
s/decay rates of the Lyapunov function. If this is a free choice, there may exists some
optimal selection. Moreover, one may construct a method which could vary the decay
rate indefinitely to gain an optimal triggering condition uniquely for each state in the
abstraction.

2. In the simulations so far, we only used the same type of (monotone Lyapunov) triggering
condition, only with varying the parameter σ. While one could use different types of
triggering conditions as long as one could guarantee a fixed Lyapunov decay rate per
triggering condition, e.g. the Dynamic Triggering Mechanism (DTM) introduced in
Section 1-1-5.
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3. The realizations of the l-complete abstraction are not in the minimal representation.
One could, computationally almost for free, increase the depth by 1 of the l-complete
abstractions. Since the amount of states and edges in the abstraction gets immense
quickly, this could save computation time for constructing the scheduler. However,
would only save some memory once implemented as a controller.

4. Another way one may reduce the size of the abstraction. Since a state x in state-
space may lay in multiple overlapping regions of the abstraction, it may be possible
to remove several regions from the abstraction, without loss of usability. This will be
more noticeable when using a larger variety of triggering conditions or when applying a
burst condition which only marks very few nodes, since both situations lead to increased
overlap of the regions. Remark, this approach may benefit from a shift in perspective
for creating the abstractions using the pasts inputs instead of the future inputs for the
construction of the quotient states.

5. So far the the greedy strategy has shown the same performance guarantees as the infinite
horizon strategy. From a theoretical perspective, the greedy strategy does not guarantee
to find the optimal strategy for the infinite horizon problem. That is why the infinite
horizon strategy is determined using the computational heavy mean-payoff games. See
the debate in Chapter 5. If one could show that the greedy controller does find the
optimal strategy, much computation time is saved.

6. The construction of the abstraction could be extended to Event-Triggered Control
(ETC) systems by approximating the regions of the abstraction, where each region
represents an range of triggering times instead of a single Inter-Sample Time (IST).
The latter is only possible due to the use of PETC system.

7. One could extend this framework to allow the varying of triggering conditions in between
trigger instances as well. This has some analogy with early triggering in ETC, which
would allow more control options for the scheduler.
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Proves

Some proves do not fit well inside the main body of the thesis. For some of these proves we
can refer to other papers. However, for other proves, and for completeness, we will put them
in this appendix.

A-1 Calculating κ

Not necessarily a proof, but a short derivation of κ and how one can calculate κ with respect to
the system dynamics ẋ(t) and a Lyapunov function V with corresponding P and Q matrices.
Choose κ ∈ R≥0 as the maximum value such that Q−κP is still positive semi-definite. Notice
that such κ > 0 must exists since P and Q are both positive definite. Per definition, this
implies that x⊤ (Q − κP ) x ≥ 0 holds for all x ∈ Rn. Rewriting this gives: x⊤Qx ≥ κx⊤Px.

It is given that for the quadratic Lyapunov function V (x) = x⊤Px it holds that V̇ (x(t)) ≤
−x(t)⊤Qx(t). This can be used to derive at the following:

V̇ (x(t)) ≤ −x(t)⊤Qx(t)
≤ −κx(t)⊤Px(t)
= −κV (x(t))

(A-1)

Solving the differential equation V̇ (x(t)) = −κV (x(t)) given the initial condition of the state
x(0) results in V (x(t)) = e−σκtV (x(0)). However, recall that V̇ (x(t)) ≤ −κV (x(t)) instead
of being equal, meaning the decay of V is at least the exponential decay rate of e−κt, i.e.
V (x(t)) ≤ V (x(0))e−κt for all times t ≥ 0. Rendering κ as the maximum guaranteed decay
rate of V .

One can calculate κ efficiently since it is a Linear Matrix Inequality (LMI) of maximizing
κ > 0 such that Q − κP is still positive semi-definite.
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A-2 Monotone Lyapunov Triggering Condition

In this section, the derivation of the monotone Lyapunov triggering matrix is given. First
we construct an alternative derivation of the time derivative of a function V (x) = x⊤Px.
This result is afterwards used to arrive at the matrix representation of the desired monotone
Lyapunov triggering condition.

Theorem A.1 (Time derivative of V ). Given a Q > 0 and P > 0 such that (A + BK)⊤P +
P (A + BK) + Q = 0. For V (x) = x⊤Px we can proof that dV (x(t))

dt = −x⊤Qx

Proof. The proof is a bit straightforward. The time derivative of V is worked out. Further-
more, the identity (A + BK)⊤P + P (A + BK) + Q = 0 is substituted in order to arrive at
the desired expression.

dV (x(t))
dt

= d

dt
x⊤(t)Px(t)

= ẋ⊤(t)P ⊤x(t) + x⊤(t)P ẋ(t)

=
(
(A + BK)x(t)

)⊤
P ⊤x(t) + x⊤(t)P (A + BK)x(t)

= x⊤(t)
(
(A + BK)⊤P ⊤ + P (A + BK)

)
x(t)

= x⊤(t)(−Q)x(t) = −x⊤(t)Qx(t)

(A-2)

Theorem A.2 (Monotone Lyapunov triggering condition). The monotone Lyapunov trigger-
ing condition V̇ (x(t)) > −σx⊤(t)Qx(t) is equivalent to the expression ξ⊤(t)Qξ(t) > 0 with

Q =
[
(σ − 1)Q − 2PBK PBK

(PBK)⊤ 0

]
.

Proof. for t ∈ [t̂i, t̂i+1) we want the condition V̇ (x(t)) > −σx⊤(t)Qx(t) to always hold for
some σ ∈ (0, 1]. The idea being that t = t̂i+1 would violate the triggering condition and the
system would update the control input.

First in Eq. (A-3) the basic system dynamics are rewritten with the sample-and-hold method.
In Eq. (A-4) the rewritten system dynamics are used to calculate d

dtV (x(t)) for the sample-
and-hold method. Notice that the continuous version of the derivative d

dtV (x(t)) = −x⊤(t)Qx(t)
is used in the derivation. Afterwards, in Eq. (A-5), the triggering condition d

dtV (x(t)) >

−σx⊤(t)Qx(t) is combined with the acquired d
dtV (x(t)) from Eq. (A-4). This expression is
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organized and structured such that it becomes clear it is equivalent to Eq. (A-6).

ẋ(t) = Ax(t) + BKx̂(t)
= Ax(t) + BKx(t̂i)

= Ax(t) + BKx(t) + BK
(
x(t̂i) − x(t)

) (A-3)

d

dt
V (x(t)) = dV (x)

dx
dx(t)

dt

= dV (x)
dx

(
Ax(t) + BKx(t) + BK(x(t̂i) − x(t))

)
= dV (x)

dx
(
Ax(t) + BKx(t)

)
+ dV (x)

dx
(
BK

(
x(t̂i) − x(t)

))
= −x⊤(t)Qx(t) + 2x⊤(t)PBK

(
x(t̂i) − x(t)

)
= x⊤(t)

(
− Q − 2PBK

)
x(t) + 2x⊤(t)PBKx(t̂i)

(A-4)

−σx⊤Qx <
d

dt
V (x(t))

−σx⊤Qx < x⊤(t)
(

− Q − PBK
)
x(t) + 2x⊤(t)PBKx(t̂i)

0 < x⊤(t)
(
(σ − 1)Q − PBK

)
x(t) + 2x⊤(t)PBKx(t̂i)

(A-5)

0 < ξ⊤(t)
[
(σ − 1)Q − 2PBK PBK

(PBK)⊤ 0

]
ξ(t) (A-6)

A-3 Invariant States On Ray

In this section, a general proof is given that states which lay on a line trough the origin have
equivalent triggering times when using a quadratic homogeneous triggering condition on an
Linear Time-Invariant (LTI) system. This follows from the fact that scaling around the origin
for a LTI system is multiplying by a constant factor.

Theorem A.3 (Equivalent triggering times τ(αx0) = τ(x0)). Let the system dynamics be
given by ẋ(t) = (Ax(t) + BKx̂(t)). Define ξ(t) = [x⊤(t), x̂⊤(t)]⊤ and let Q be a quadratic
homogeneous triggering condition of the form ξ⊤(t)Qξ(t) > 0. Let x0 ∈ Rn be the initial state
not equal to the origin. Then ∀α ∈ R ̸=0 it holds that τ(αx0) = τ(x0).

Proof. Let α ∈ R ̸=0 be a scalar. Let x0 ∈ Rn be the initial state such that x0 ̸= 0. We
describe two systems, both having the same system dynamics ẋ(t) = (Ax(t) + BKx̂(t)). The
first system will be denoted by x and initialized at x(t0) = x0, while the second system will
be denoted by xa and initialized somewhere on the ray of x0 through the origin (except the
origin itself) i.e. at xa(t0) = αx0 = αx(t0).

Firstly, while looking at both systems before the first triggering time notice the systems can be
related to each other, even when initialized at different points as shown in Eq. (A-7). Together
with the initial condition xa(t0) = αx(t0), we can integrate the equation ẋa = αẋ from t0 to

Master of Science Thesis M.A.J. Looman



74 Proves

an arbitrary t to show that xa(t) = αx(t) for all t ≥ t0. Remark that x̂(t) = x̂a(t) = x(t0)
since the we analyzed the system before the first triggering time.

Secondly, using this newly acquired relation of xa(t) = αx(t), we are interested in the trig-
gering times of both systems. Define ξa(t) = [x⊤

a (t), x̂⊤
a (t)]⊤. Notice, while not triggered so

far we know x̂a(t) = x(t0). Furthermore, since xa(t) = αx(t) we derive at ξa(t) = αξ(t). Now
it follows from the triggering condition being quadratic and homogeneous that the triggering
times are equivalent as shown in Eq. (A-8) by dividing a positive factor α2 from both sides.

ẋa(t0) = Axa(t0) + BKαx̂a(t0)
= Aαx(t0) + BKαx(t0)
= αẋ(t0)

(A-7)

0 < αξ⊤(t)Qαξ(t)
0 < α2ξ⊤(t)Qξ(t)

≡
0 < ξ⊤(t)Qξ(t)

(A-8)

A-4 Average Decay Rate

Given a LTI system, a stabilizing static feedback gain and different triggering conditions that
each guarantee a different decay rate of a Common Lyapunov Function (CLF) V (x) = x⊤Px.
Given a finite path (possibly a cycle) in the l-complete abstraction, represented by the ex-
tended sequence of both inter-sample times and guaranteed decay rates (τ1τ2 . . . τN , σ1σ2 . . . σN ).
Since each guarantees a decay rate of of the CLF V , one can calculate the total decay fac-
tor of the whole path as shown in A-9. The optimization quantity of τ̂ =

∑N

i=1 τi

N is already
determined, but we want to establish a mathematical motivation to optimize the performance.

V (x(t0 + τ1) = e−κσ1τ1V (x(t0))

V (x(t0 +
N∑

i=1
τi)) = e−κσ1τ1e−κσ2τ2 . . . e−κσN τN V (x(t0))

= e−κ
∑N

i=1 σiτiV (x(t0))

(A-9)

Therefore, the first quantity of interest is minimizing the decay factor e−κ
∑N

i=1 σiτi of the
complete path. Notice κ is a positive constant factor among V and the triggering conditions.
Therefore, minimizing e−κ

∑N

i=1 σiτi is equivalent to maximizing
∑N

i=1 σiτi along the entire
path.

Setting the weight of each edge equal to σiτi and taking the average along the edges would
result in an optimization quantity of 1

N

∑N
i=1 σiτi. However, this quantity is not desired,
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since it symbolizes the absolute decay factor of the V , and not the decay rate of V ! When
optimizing this quantity, a low σi which is held for a long time, may be preferred over a faster
σj value. Therefore, we will instead focus on the decay rate of V .

Again the quantity of interest is
∑N

i=1 σiτi. Set the weight of each edge equal to σiτi, but
now take the timed average instead of just the average. This would result in an optimizing
quantity of 1∑N

i=1 τi

∑N
i=1 σiτi. In contrast to before, this does prefer a higher value for σi over

a lower value σj since it is just the timed average of all σi values. The resulting descriptions
for σ̂ and τ̂ are given in Eq. (A-10). Note, these are for a single path, and thus not the values
for the complete graph by minimizing over them as is done in Eq. (3-1).

τ̂ =
∑N

i=1 τi

N

σ̂ =
∑N

i=1 σiτi∑N
i=1 τi

=
∑N

i=1 σiτi

Nτ̂

(A-10)

Notice, by using this description of σ̂ and τ̂ , the decay factor of V simplifies and is shown in
Eq. (A-11).

V (x(t0 +
N∑

i=1
τi)) = e−κ

∑N

i=1 σiτiV (x(t0))

= e−κNσ̂τ̂ V (x(t0))
(A-11)
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Appendix B

Algorithms

In this appendix, some algorithms are described in a bit more details. Since they are used
throughout the thesis project, I did want to include them, but found that they did not belong
in text.

B-1 Karp’s Algorithm

Given a directed strongly connected graph G = (E, V ), here V is the set vertices and E ⊆
V × V is the set of edges. Let w : E → R be a weight function on G and CG the set of all
cycles in G. Karps algorithm [26] is used for calculating the exact minimum cycle mean λ∗

of G. Define the cycle mean of a cycle c ∈ CG by λ(c) = 1
|c|

∑
e∈c w(e). The minimum cycle

mean is then given by λ∗ = minc∈CG
λ(c). Notice that it is equivalent to only consider the

primitive cycles in the cycle set CG.

Choose a starting source node v0 in the graph G. Since G is strongly connected, every other
edge can be reached from this node, and vice versa end up in v0 again. Define a minimum
edge progression function Fk : V → R ∪ ∞ parameterized by k where Fk(v) represents the
minimum distance from v0 to a node v (i.e. minimum total weight of the edges between v0
and v) while the path contains exactly k edges. If such a path does not exists for the given
amount of edges, the value of Fk(v) is set to ∞.

Notice that computing F0(v) for all v ∈ V is trivial since only the source node v0 can be
reached using no edges and will have a distance of F0(v0) = 0. Karp’s algorithm is so efficient
because the other distances Fk(v) for k ∈ N0 van be calculated recursively by Eq. (B-1). The
distances Fk(v) for all v ∈ V and for all k ≤ n can be computed in O(nm) time. Here, n is
the amount of nodes n = |V | and m the amount of edges m = |E| in the graph G. Notice,
while only k ≤ n, in the minimization of the recursion still all edges are traversed, hence the
m term in the time complexity.

dk(v) = min
(v∗,v)∈E

dk−1(v∗) + w(v∗, v) (B-1)
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Once all distances are calculated. the value for the minimum mean cycle is found by Eq. (B-2).
Which can be computed in n2 comparisons.

λ∗ = min
v∈V

max
0≤k≤n−1

Fn(v) − Fk(v)
n − k

(B-2)

A detailed proof of Karp’s original algorithm can be found in [26]. It’s important to notice
some shortcomings of Karp’s algorithm due to shortcomings in the proof as shown by [28].
Chaturvedi and McConnell give an alternate method using backpointers to construct the edge
progressions Fk(v).

B-2 Bellman-Ford Algorithm

The Bellman-Ford algorithm is an algorithm for finding the shortest path (path of minimum
weight) in a directed graph. It was first introduced by Shimbel [44] and only later by Bellman
[31] and Ford [32].
Given a directed strongly connected graph G = (E, V ), here V is the set vertices and E ⊆
V × V is the set of edges. Let w : E → R on G be a weight function. The goal of the
Bellman-Ford algorithm is to compute the shortest distance from a source node, to all other
nodes in V . The algorithm can handle negative weights, but if a negative cycle is present,
the distances can get arbitrary low. Luckely, this algorithm can detect if a negative cycle is
present.
Introduce a distance function d : V → R ∪ ∞ which will describe the distance from a source
node v0 to every node in V . This distance function is build recursively. First, initialize the
distance function zero for the source node d(v0) = 0 and infinity elsewhere d(v) = ∞ for
v ̸= v0.
The distance function is adjusted by looping over all edges in (u, v) ∈ E, with if the simple
rule shown in Eq. (B-3) holds, the distance function d(v) is adjusted by setting d(v) =
d(u) + w((u, v)). This procedure of looping over all edges needs to be repeated |V | − 1 times
in order to ensure all minimum distances are found from the source node. Therefore, the time
complexity of this algorithm is O(|V ||E|).

d(v) > d(u) + w((u, v)) (B-3)

This algorithm can also be used to check if there are negative cycles in the graph. Namely,
if one more iteration is applied of looping over all edges and checking if Eq. (B-3) applies, all
distances should not change if there is no negative cycle (since all correct distances from the
source node should be found). If it is the case that distances get reduced, then there must be
a negative cycle in the graph G.

B-3 Floyd-Warshall Algorithm

The Floyd-Warshall algorithm is an algorithm for finding all shortest paths (path of minimum
weight) in a directed graph. The current interpretation is given by Floyd in [45]. However,
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the essence is equivalent to the traversing algorithms already found by Warshall [46] and Roy
[47].
Given a directed strongly connected graph G = (E, V ), here V is the set vertices and E ⊆
V × V is the set of edges. Let w : E → R on G be a weight function. The goal of the Floyd-
Warshall algorithm is to construct the shortest path between every pair of nodes. Notice this
algorithm will only result in correct results if there do not exists negative cycles in the graph
(while negative weights are permitted).
Let us define a distance function d : V × V → R ∪ ∞ which describes the minimum distance
(sum of weights along the edges) along the possible paths from the first node to the second.
The goal is to complete this function, but first it can be initialized trivially by setting d(v, v) =
0 for all v ∈ V and inserting all direct edges given by E, all other distances are for now set
to ∞ since they are unknown or impossible.
The smart procedure is in recursively updating the distance function d, which only has to
be done |V | times exactly. Each iteration, take a v∗ ∈ V until every vertex has been once.
Use v∗ and see which path use this vertex in order to construct new paths. For all v ∈ V
such that d(v, v∗) ̸= ∞ and for all v∗∗ ∈ V such that d(v∗, v∗∗) ̸= ∞, if the current distance
d(v, v∗∗) > d(v, v∗) + d(v∗, v∗∗), update the current distance since we have shown there exists
a shorter path. After using every helper node v∗ ∈ V once, the distance function is complete
and all shortest paths between all possible nodes are stored in d. The construction of d does
take computationally O(|V |3) time.
Some important notices have to be made about the Floyd-Warshall algorithm. Since a cycle
is just a path where the starting and ending node are the same, Floyd-Warshall can also be
used for minimum cycle detection by looking at d(v, v) for all v ∈ V . Furthermore, it can also
be used as a negative cycle detection algorithm since as soon a v ∈ V has negative distance
d(v, v) < 0, there exists a negative cycle in the graph.

B-4 Brim’s Algorithm

The algorithm described by Brim et. al. in [41] consist of two parts. Firstly they give an
efficient way to solve energy games and secondly they show how Mean-Payoff Game (MPG)s
can be reduced to solving multiple energy games. We are interested in the latter. Currently
this is still one of the fastest computational ways to solve MPGs with a quasipolynomial time
complexity of O(nmW ) (for the decision, synthesis and three-way partition problem) and
O(mn2W (log n + log W )) (for the value problem and optimal strategy synthesis), in which
we are interested in the latter. Here the number of vertices is given by n = |V |, the number
of edges by m = |E| and the maximum absolute weight by W = maxe∈E(|w(e)|).
Let Γ = (V0, V1, E, w) be a MPG with V0 the set of controllable nodes, V1 the set of uncontrol-
lable nodes such that V0 ∩ V1 = ∅ and denote V = V0 ∪ V1 the set of all nodes. Furthermore,
let E ⊂ V × V be the transition function and w : E → {−W, . . . , W} the weight function
bounded by some W ∈ R>0. We will only illustrate the outline of Brim et. al. second
algorithm, since we are interested in the value problem and the optimal strategy synthesis.
However, it does make use of the three-way partition problem which is solved by there first al-
gorithm. For context, the first algorithm, called: Value-iteration algorithm for energy games,
can determine the set of states for which a no positive mean-payoff can be guaranteed.
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The three-way partition problem aims to divide V in three sets depending on a guessed
game value ν such that |ν| ≤ W . Create two new MPGs Γ′ = (V0, V1, E, w − ν) and Γ′′ =
(V1, V0, E, −w + ν). Using there first algorithm on Γ′, one can construct the set of states that
can not guarantee the game value ν, denoted by V≤ν . Likewise, applying algorithm 1 on Γ′′

results in the set V>ν . Similar combinations can be used to get the desired sets: V<ν , V=ν

and V>ν .

Their second algorithm uses this to divide the original MPG Γ into smaller and smaller MPG
problems recursively. The trick is that the nodes in V=ν can be assigned the value ν, while
the nodes in the other sets can each have their own new mean-payoff problem with a new
estimate of ν. Since the exact possible values of the weights are known beforehand (recall
that w maps to a finite set of values), the possible game values ν must a fraction ν = q

l
where 1 ≤ l ≤ |V | (since ν comes from a cycle in the MPG with a maximum of |V | nodes)
and q ∈ {−W, . . . , W}. The possible values for ν can be iterated by a binary search over the
search space.

B-5 Reachability Games

Given a non-blocking finite arena A = (V0, V1, E) and a reachable set W ⊆ V = V0 sup V1.
We would like to construct the attractor set Att(A, W ), defined by all states v ∈ V for which
a strategy exists, that starting from v guarantees to enter the set W at some point. This
set Att(A, W ) is constructed by induction. We start by setting our initial set W0 = W and
increment it step-wise. For this, let us introduce the pre function pre : P(V ) → P(V ) of a
subset in V . The pre(X) function is defined below by taking all vertices in V0 which can
reach X the next step and all vertices in V1 which can only reach X the next step.

pre(X) = {v ∈ V0 | ∃x ∈ X : (v, x) ∈ E} ∪ {v ∈ V1 | ∀(v, x) ∈ E : x ∈ X}

Now, one can extend the set for which one knows a strategy exists to end up in W by
inductively creating Wi+1 = Wi ∪ pre(Wi). Since for all i, we know Wi ⊆ Wi+1 ⊆ V and V
only has a finite amount of vertices, we are guaranteed to converge. As soon as we reach a
value for i such that pre(Wi) = Wi, the algorithm has converged and we have constructed
the attractor set Att(A, W ) = Wi.
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Simulations

In this appendix, simulations and statistics are given. At first, some details about the l-
complete abstraction SQ/Ql

are given for different settings in order to visualize the rate of
growth of the abstraction, see Table C-1 and Table C-2. A resulting l-complete abstraction
is visualized in Figure C-1. As one can see, the readability of the states is low. Therefore,
we switch to a number reference representation of the quotient states in Figure C-2. For
more details about the interconnections between the states, I will refer to the gitlab page:
gitlab.tudelft.nl/sync-lab/ETCetera/-/tree/menno_thesis.

Before we play the safety (dual reachability) game to construct the Maximal Permissive
Controller (MPC) Smpc, one has to define a burst condition or minimum Average Inter Sample
Time (AIST) τ̂ in order to mark states to avoid. In Figure C-3, such a marking is done. Once
the safety game is finished, some additional states are marked as losing and some transitions
which may lead to losing states are removed. This is visualized in Figure C-4. However,
notice that the losing states (marked with red) are not included in Smpc and are there pure
for illustration purposes.

In the rest of the figures, some simulation are made using different settings for the infinite
horizon controller Sihc. We visualized the state-space progressions of the internal states.
Furthermore, the Lyapunov function, guaranteed Lyapunov decay and triggering times are
given.
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Decay rates used: 0.2, 0.5

kmax regions transitions ratio
8 225 940 4.18
9 403 1732 4.30
10 523 2286 4.37
11 736 3176 4.32

Decay rates used: 0.2, 0.5, 0.8

kmax regions transitions ratio
8 917 5489 5.99
9 1377 8501 6.17
10 1754 10912 6.22
11 2320 14258 6.15

Decay rates used: 0.2, 0.5, 0.6, 0.8

kmax regions transitions ratio
8 2288 18396 8.04
9 3433 28402 8.27
10 4435 37601 8.48
11 5809 47976 8.26

Table C-1: Increasing the number of triggering conditions in the abstraction and the maximum
discrete Inter-Sample Time (IST) kmax. Used monotone Lyapunov decay triggering conditions,
sampling frequency ∆ = 0.05 with abstraction depth l = 3.
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Depth l = 2

kmax regions transitions ratio
9 82 666 8.12
11 147 1397 9.50
13 201 2028 10.09
15 250 2587 10.35

Depth l = 3

kmax regions transitions ratio
9 331 1419 4.29
11 569 2512 4.41
13 883 4022 4.55
15 1175 5429 4.62

Depth l = 4

kmax regions transitions ratio
9 1036 3556 3.43
11 1597 5508 3.45
13 3084 10880 3.53
15 4701 19397 4.13

Depth l = 5

kmax regions transitions ratio
9 2820 8576 3.04
11 4048 12384 3.06
13 10119 34221 3.38
15 18330 71498 3.90

Table C-2: Increasing the depth of the l-complete abstraction and the maximum discrete IST
kmax. Used monotone Lyapunov decay triggering conditions with decay rates: 0.1, 0.8, sampling
frequency ∆ = 0.05.

Master of Science Thesis M.A.J. Looman



84 Simulations

Figure C-1: The l-complete abstraction
SQ/Q3 of depth l = 3 visualized as
Transition System (TS), using two mono-
tone Lyapunov triggering conditions with
decay rates: 0.1, 0.8 and a maximum dis-
crete IST of kmax = 8. In the quotient
states, one can see the trigger condition se-
quence on the left and the IST sequence on
the right.

Figure C-2: The l-complete abstraction
SQ/Q3 from Figure C-1 with integer repre-
sentation of the quotient states.
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Figure C-3: Using the l-complete abstrac-
tion of Figure C-1. Marked states according
to the burst condition: at least 3 triggering
instances within 12 discrete time (12∆ =
0.6 time)

Figure C-4: Finished playing the safety
game on Figure C-3. Marked additional los-
ing states and deleted possible losing tran-
sitions. Notice the marked states are left
in for illustration purposes, they are not
present in the MPC Smpc.

Figure C-5: Simulation of the infinite horizon controller Sihc. Left the state-space response and
on the right the Lyapunov decay. Depth of l-complete abstraction is l = 3, maximum discrete IST
is kmax = 8, minimum average discrete IST of τ̂ > 4∆. Using two monotone Lyapunov triggering
conditions with decay rate: 0.1, 0.8. The controller consists of 219 safe regions (excluding 9 losing
states) and guarantees an exponential decay of V with a rate of 0.545.
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Figure C-6: Simulation of the infinite horizon controller Sihc. Left the state-space response
and on the right the Lyapunov decay. Depth of l-complete abstraction is l = 4, maximum
discrete IST is kmax = 15, minimum average discrete IST of τ̂ > 5∆. Using two monotone
Lyapunov triggering conditions with decay rate: 0.1, 0.8. The controller consists of 4651 safe
regions (excluding 50 losing states), and guarantees an exponential decay of V with a rate of
0.508

Figure C-7: Simulation of the infinite horizon controller Sihc. Left the state-space response and
on the right the Lyapunov decay. Depth of l-complete abstraction is l = 3, maximum discrete
IST is kmax = 11, minimum average discrete IST of τ̂ > 5∆. Using three monotone Lyapunov
triggering conditions with decay rate: 0.2, 0.5, 0.8. The controller consists of 2160 safe regions
(excluding 160 losing states), and guarantees an exponential decay of V with a rate of 0.531
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First simulation from Figure C-5

Quotient state IST sequence triggering sequence

165 (0.1, 0.1, 0.1) (8, 8, 8)
213 (0.1, 0.1, 0.8) (8, 8, 8)
4 (0.1, 0.8, 0.8) (8, 8, 8)
14 (0.8, 0.8, 0.8) (8, 8, 8)
14 (0.8, 0.8, 0.8) (8, 8, 8)
...

...
...

14 (0.8, 0.8, 0.8) (8, 8, 8)
28 (0.8, 0.8, 0.8) (8, 8, 3)
37 (0.8, 0.8, 0.8) (8, 3, 4)
21 (0.8, 0.8, 0.8) (3, 4, 8)
58 (0.8, 0.8, 0.8) (4, 8, 8)
14 (0.8, 0.8, 0.8) (8, 8, 8)
...

...
...

Table C-3: Controller state progressions of the simulations. Some insight in the IST and trig-
gering sequences generated by the simulations.
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List of Acronyms

AIST Average Inter Sample Time
BF Bellman-Ford
CETC Continuous Event Triggered Control
CLF Common Lyapunov Function
DTM Dynamic Triggering Mechanism
ETC Event-Triggered Control
FW Floyd-Warshall
IST Inter-Sample Time
LMI Linear Matrix Inequality
LTI Linear Time-Invariant
LTS Labeled Transition System
MPG Mean-Payoff Game
MPC Maximal Permissive Controller
NCS Networked Control System
PETC Periodic Event-Triggered Control
SAlCA Strongest (Asynchronous) l-Complete Approximations
STC Self-Triggered Control
TA Timed Automata
TS Transition System
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