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The process of empirical models evaluation is at the core business of experimental flight-testing data 

analysis. Accurate and convenient flight-testing of helicopter engine(s) available power is crucial for predicting 

the total helicopter performance. Common practice in estimation of in-flight helicopter gas turbine engine 

power consist of a reduction of flight-test data into simplistic single-variable analysis approach. While such an 

approach is convenient for practical use, it often results in unrealistic predictions of the available engine(s) 

power. A novel approach for the helicopter available power problem is the so-called Multivariable Polynomial 

Optimization under Constraints (MPOC) method. In this method eighteen regressors, constructed from the 

engine non-dimensional parameters, are used to define empirical polynomial models. This paper is intend to 

complement the MPOC method and answer the question of which multivariable-polynomial can be generally 

used in representing helicopter gas-turbine engine performance? In this sense, a variety of seven gas-turbine 

engines installed on different helicopters are analyzed, each one giving 512 possible polynomial models to be 

used for available-power calculations. While conventional statistical methods of hypothesis-testing failed in 

providing the answer to the question stated above of which the best general empirical model for representing 

engine performance is, an alternative approach based on the Singular-Value-Decomposition (SVD) theorem, 

was proven successful in providing the answer. Moreover,   this approach presented in the paper yielded a 
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short list of 10 simple and convenient multivariable-polynomials, best representing the performance of all seven 

engines analyzed as a group.   
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Nomenclature 

 

A = Matrix containing numerical regressors 

𝛼𝑗
𝑖 = Generic multivariable-polynomial coefficient 

ai,bi,ci = Generic single-variable polynomial coefficients 

Ng = Engine compressor-speed 

TGT = Engine-Temperature (Turbine-Gas-Temperature) 

SHP = Engine-Power (Shaft Horse-Power) 

Wf = Engine Fuel-Flow  

δ = Relative static air pressure 

θ = Relative static air temperature 

r
j

E  = Engine power estimation error-vector, model (j). 

�⃗�  =  Column-vector to represent experimental CSHP  

fi = Engine multivariable regressors, i=1, 2,…, 9 

s = Power estimation error standard-deviation  

Z = Precision-measures matrix, models to engines (512,7) 

,i jt  = Test-Statistics for Multivariable-Polynomial Model (i) wrt Engine (j) 

,

,

1
i j

i jt
  = Elements of Z, represent accuracy-measures between model (i) and engine (j) 

 ˆ,U U  = Left singular-vectors of matrix Z, (normalized)  

 ˆ,   = Singular-values of matrix Z, (normalized) 

VT = Right singular-vectors of matrix Z 



i  = Singular-values, elements along the main diagonal of matrix Σ 

W =  Matrix to represent the product of  ˆ ˆ,U  

{S} = Column-vector to represent the combined-normalized scores of each model 


j

 = Mean of prediction errors based on multivariable polynomial model ‘j’  

 Non-Dimensional Parameters 

g

g

N
CN


  = corrected engine compressor speed 

TGT
CTGT


 =  corrected engine temperature (Turbine Gas Temperature) 

SHP
CSHP

 
 = corrected engine output power (Shaft Horse Power) 

f

f

W
CW

 
 = corrected engine fuel-flow  

 

I. Introduction 

 

LIGHT test engineering is an interdisciplinary science that gathers data and develops methods with the objective 

of evaluating an aircraft or a system in its operational flight environment. This need for flight-testing means that the 

system or the vehicle under testing requires accurate assessment of its characteristics while operating in its flight 

environment rather than just relying on the results of ground-based verification methods such as wind tunnels, 

simulators, and software models [Ref. 1]. There are many disciplines involved in flight-testing based on the nature of 

the questions in search. Such ones include for example performance assessment, structural integrity testing, handling-

qualities evaluation, etc. Regarding helicopter performance assessment, the useful performance of any helicopter is 

directly derived from the amount by which the engine power (the available-power) surpasses (or falls below) the 

power required by the main and tail rotor systems, the drag of the fuselage and all other consumers of power for the 

specific conditions [Ref. 2]. The ‘off-the-shelf’ engine available power as given by the manufacturer changes once 

installed in a particular type of helicopter. It usually reduces due to inlet loss. Moreover, the maximum output-power 

of the installed engine degrades as it matures. Therefore, the actual available-power of the installed engine during a 

F 



particular phase of its life is of high practicality to helicopter users. This paper relates to the methods used in flight-

test engineering for measuring helicopter gas turbine engine performance and estimating the maximum available 

output power under a wide range of environmental conditions.  

 

The current method widely used in flight testing for determining the maximum power of a helicopter gas turbine 

engine relies on empirical single-variable polynomials. The method which is detailed in Ref. 3, 4 and 5 is practicably 

demonstrated in Ref. 6 and 7. The method requires the collection of stabilized engine parameters while flying the 

helicopter throughout its operational envelope. The four main raw engine variables measured in flight (compressor 

speed, temperature, fuel-flow and the output power) are normalized (or ‘corrected’) using the surrounding atmospheric 

conditions. By applying linear regression methods, three 3rd order single-variable polynomials are defined, 

representing the empirical relation between the corrected engine power (CSHP) and each one of the three engine 

corrected variables; corrected compressor speed (CNg) – Eq. (1), corrected temperature (CTGT) – Eq. (2) and 

corrected fuel-flow (CWf)- Eq. (3).  
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The maximum available power of the installed engine is next estimated by using these three empirical single-variable 

polynomials. The three calculated values of the engine output power are first compared with each other and then 

against the maximum transmission torque (transmission limitation). This comparison is performed through an iterative 

process executed for various atmospheric conditions. The maximum available power under various atmospheric 

condition is then chosen as the minimum value out of all four values compared. The main advantage of the single-

variable method lies in its simplicity. The flight-tester does not need to be confused with which mathematical model 

to choose, since the method is based on 3rd order single-variable polynomials. However, this simplicity is also the 

method’s biggest disadvantage since 1) it requires careful analysis of the data especially when the required flight 



conditions are outside of the limitations of the helicopter; 2) it may not replicate performance limiting factors that 

depend on actual flight conditions although matching non-dimensional values has been targeted successfully; 3) it 

frequently yields poor estimations of the maximum engine output power, especially under atmospheric conditions 

outside of the actual tested range.  A comprehensive demonstration of the poor estimation using the single-variable 

method was is presented in Ref. 8.   

A novel method to estimate the maximum output power of a helicopter gas turbine engine more accurately and under 

a wider range of atmospheric conditions was proposed in Ref. 8. This method involves the analysis of the flight test 

data in terms of referred parameters [Ref. 9] through a so-called ‘Multivariable Polynomial Optimization under 

Constraints’ (MPOC). The main advantages to analyzing data using MPOC models over the single-variable method 

are: 1) it gives the ability to determine the relative influence of one or more predictor variables to the criterion value. 

2) it has the ability to identify outliers, or anomalies; 3) it gives a  superior estimation precision. As demonstrated in 

Ref. 8, MPOC could provide a more accurate engine power estimation (in some cases of more than 300% when 

compared to the single-variable method). However, the main weakness of the MPOC method is that it struggles with 

a large number of possible multivariable-polynomials (more exactly 512 polynomials) to choose from and there are 

no guidelines herein. 

The primary objective of this paper is to face this disadvantage of MPOC method by developing a systematic and 

repeatable approach on which specific, pre-defined multivariable-polynomial models shall be used. For this goal the 

MPOC method is applied to a large set of flight-test data gathered from seven different types of helicopters as 

presented in Table 1. Using the Singular-Values-Decomposition (SVD) approach, the relative performance of 512 

different potential models is compared towards the objective of identifying the best performing multivariable 

polynomial model to be generally used by the MPOC method.  

The paper is structured as follows: after a short introduction, Section II reviews the MPOC method as applied to a set 

of flight-test data gathered from a BO-105 helicopter. This section also provides the formalization process of all 

possible multivariable polynomials fitted with the flight-test data. Section III screens between all 512 different 

polynomials used by the MPOC method, searching for the best-performing ones. This preliminary screening process 

is based on the conventional method of p-values and fails to provide the best-performing polynomials with respect to 

the entire group of 7 helicopters (Table 1). This unsuccessful attempt is then rectified in section IV which presents an 

alternative approach based on the Singular-Value-Decomposition (SVD). A short list of the 10 most accurate and 



convenient multivariable-polynomial models to represent the entire group of all 7 engines is then formulated. Before 

concluding the paper, a short comparison is drawn between the results of this paper and similar studies. Final 

conclusions and recommendations complete the paper. 

Table 1: List of gas-turbine engines and helicopters used for the analysis  

Engine 

No. 

Type of Engine Type of Helicopter Installed in Rated 

Power, [hp] 

Installation 

Configuration 

1 RR MTU250-C20B  MBB BO-105M 420 twin 

2 Turbomeca Arriel 1E2 Eurocopter EC-145 740 twin 

3 Allison T63-A-700 Bell OH-58C 420 single 

4 Turbomeca Arriel 1C2 Aerospatiale SA365-N2 700 twin 

5 PW-207E  MD-902 Explorer 710 twin 

6 Turbomeca Arriel 1M1 Eurocopter AS565 Panther 780 twin 

7 GE T700-GE-701A Sikorsky UH-60A Blackhawk 1700 twin 

  

II. Helicopter Gas-Turbine Engine Flight-Testing  

Principles of Multivariable-Polynomial Optimization under Constraints (MPOC) Method 

 

Unlike the single-variable polynomial method mentioned above, the MPOC method is seeking for a multivariable-

polynomial model representing the engine power while capturing the interrelation between the engine variables. The 

maximum engine power can then be assessed as an optimization problem of a multivariable-function under constraints. 

Such a multivariable approach applied to engine analysis results in a more accurate and realistic available power 

prediction as it contains the intrinsic couplings between all engine variables. Reference 8 demonstrates that the 

empirical model for the engine output power (Eq. (4)) should rely on a basic model, superimposed with any possible 

combination of 9 regressors (f1 to f9) as listed in Table 2. The basic model, referred to as Model 1 and denoted 

hereinafter as CSHPM(1), is a 3rd order multivariable-polynomial in all engine variables given as Eq. 5. One should 

realize there are 511 different combinations of choosing from regressors f1 to f9 of Table 2 as demonstrated by Eq. (6). 

Adding the basic model with the 511 possible combinations sets the total number of candidate models to be as large 

as 512. Having a list of 512 candidate models is impractical as the flight-test engineer still needs to undertake a tedious 

task of evaluating the performance of each candidate model (Eq. (4)) against the actual flight-test data. 

  



Table 2: List of Regressors to be superimposed on Model 1 
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(6) 

Hypothesis Testing and P-Values 

 

All 512 proposed polynomial models can be fitted with actual experimental flight-test, yielding the specific 

coefficients for the best-fit solution. A practical method to solve for the best-fit coefficient, based on linear concept 

known as projection onto subspaces, is thoroughly described in Ref. 10 and demonstrated in Ref. 8.  The best-fit 

solution obtained for any candidate polynomial model can be used to evaluate how precisely this model predicts the 

actual measured flight-test data. The corrected engine power (CSHP) is estimated by substituting the measured 

independent variables in the model, i.e., corrected engine compressor speed (CNg), corrected engine temperature 

(CTGT) and corrected engine fuel-flow (CWf). The prediction errors of the arbitrary chosen model 122 for each 

measured data point are then calculated using Eq. (7) and presented graphically in Fig. 1. The prediction errors of 

model 122 are approximately normally distributed about a practically zero mean (actual mean is -4x10-10 hp). 
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2
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Figure 1. Prediction errors of the engine Corrected Output Power (CSHP), using the arbitrary model number 122 

 

The conventional approach in flight-testing assessing prediction goodness is based on hypothesis testing and the 

associated p-values assigned. This approach follows from the Central Limit Theorem and is thoroughly discussed in 

literature [Ref. 11, 12]. In a nutshell, one can set up a hypothesis (‘the null hypothesis’) with regards to the mean value 

of the prediction errors and by using the actual measured data, the probability of falsely rejecting this hypothesis 

(making a ‘type-I’ error) is calculated. This probability numeral is known as the p-value and once it falls under a 

predefined value (the statistical significance level) it raises doubts about the statistical validity of the null hypothesis.  

Once again, the process is demonstrated by using the example BO-105 engine data and the arbitrary chosen, model 

122. The hypothesis assigned claims all of model 122 prediction errors have a mean of zero. The test-statistic of this 

two-sided case is calculated as per Eq. (8) to be an extremely low value of -5.47x10-10. In Eq. (8) the symbol ‘n’ 

represents the number of measured test-points and ‘S’ stands for the sample standard deviation with respect to the 

estimation errors of the engine power. One should realize for this particular case, low test-statistics values return large 

p-values and vice versa. This extremely low test-statistic value returns a calculated p-value of 1 (the maximum 

available due to software rounding errors). There is no statistical data to support rejection of the null hypothesis, 

meaning that model number 122 predicts the BO-105 engine performance with zero mean errors. Theoretically, this 

makes model 122 an excellent multivariable model for the available power prediction. 
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III. Prediction-Goodness Comparison between all Candidate Models 

Assuming the arbitrary-chosen model number 122 is the ‘perfect’ multivariable-polynomial model to represent the 

output power of the BO-105 engine, how will all other 511 candidate models perform? Repeating the above-presented 

analysis for all other candidate models returned far too many calculated p-values of 1. The immediate conclusion one 

can draw is that the p-value by itself is not an effective screening tool.  Since in our case the p-value and the absolute-

value of the test-statistic are inversely proportional to each other, it is reasonable to use the test-statistic value itself as 

an indicator for prediction goodness. The screening process should be based then on minimum values of the test-

statistics in lieu of a maximum p-values.  

Figure 2 presents a wide perspective of the test-statistics, mean of prediction errors and errors standard deviations 

for all 512 candidate models. Figure 3 presents a closer look at the test-statistic of a group of only 84 candidate models, 

those involving the base model (Eq. 5) superimposed with any combination of 3 predictors out of the list of 9 (f1 to f9 

as per Table 2). One should realize that each one of those 84 models returned a perfect computed p-value of 1, 

including models number 62, 88, 107 and 112 which seem to stand out from the group.  The conclusion arising from 

Fig. 3 is that the conventional approach of screening models using the p-value is not practical for the specific task of 

finding the best empirical model to represent gas-turbine engine performance. 



 

Figure 2. A wide perspective of all 512 candidate models prediction performance. 

 

 

 

Figure 3. Test-Statistics of models number 47 to 130 which involve the base model (Eq. (5)) superimposed with 

any combination of 3 predictors from Table 2 



The absolute-values of the test-statistics are then used instead of the p-values. Figure 4 presents the test-statistics 

(absolute-value) of the top 10 performing models for the BO105 engine. Table 3 describes these models in details. 

Examining Table 3, no pattern can be detected with respect to which predictors yield the best prediction performance. 

Nevertheless, the number of regressors used in the model has no clear influence on the prediction performance. 

Within the set of 10 top-performing models there are models which involve additional one, two, three or four 

regressors to be superimposed over the basic model number 1. The obvious question to be asked next is Do these 10 

top performing models also excel when applied to different gas-turbine engines? Can findings from the BO-105 engine 

be generalized to other types of helicopter gas-turbine engines? These questions are addressed hereinafter. 

 

 

Figure 4. Test-Statistics (absolute-value) of the 10 top-performing models for the BO-105 engine 

 

Table 3: List of 10 top-performing models for the BO-105 engine. 

Auxiliary Regressors Model Number 

Involved* 367 3 53 127 61 12 65 94 199 355 

1  f CNg CTGT    x  x x x    

2  f CNg CWf   x x     x x x 

3  f CTGT CWf  x     x   x  
2

4  f CNg CTGT  x    x     x 

2

5  f CNg CWf  x      x    

2

6  f CTGT CWf     x x  x   x 
2

7  f CTGT CNg     x    x x  
2

8  f CWf CNg  x   x     x x 
2

9  f CWf CTGT  x  x     x  x 

* Regressors to be superimposed to the basic model expressed as Eq. (5). 



 

Models Performance with other Engines and Helicopters 

 

Consider next a different type of gas-turbine engine (engine 2 as per Table 1) installed on a different type of 

helicopter and a new set of flight-test data.  Performing similar analysis reveals completely different findings from the 

BO-105 case. Figure 5 presents test-statistic of the 10 top-performing models for engine number 2. Further analysis 

was undertaken to include flight-test data from 5 other types of gas-turbine engines installed on other helicopters 

(Table 1).  Results merely confirmed the previously stated conclusion that the best performing model to describe 

helicopter gas-turbine power, if it exists, cannot be found using a conventional approach of screening between models 

using hypothesis testing, neither based on the p-value nor on the test-statistics.  Concluding this section, an alternative 

general approach needs to be taken. This approach should relate to the Singular-Value-Decomposition (SVD) theorem 

and is discussed and demonstrated in the next section of the paper. 

 

Figure 5. Test-Statistics (absolute-value) of the 10 top-rated models using engine number 2. 

 

 

  



IV. The Singular-Value-Decomposition (SVD) Method 

The SVD Theorem 

The Singular-Value-Decomposition (SVD) theorem (see Ref. 13 for a thorough description) states that any matrix 

that holds real entries can be uniquely decomposed into a set of three special matrices as given in Eq. (9). Consider 

matrix Z to be of size m by n (notation (m,n)) and rank r. Matrix Z can be decomposed into three unique matrices: 

- Matrix U called the ‘left singular vectors’ is an orthonormal matrix of size (m,r). The columns of U span a base 

in space. 

- Matrix ∑ is a diagonal matrix which occupies all singular-values along its diagonal (the singular-values are 

arranged in a descending order). 

- Matrix VT called the ‘right singular vectors’ is an orthonormal matrix of size (r,n) with its rows spanning a base 

in space.   

TZ U V   
(9) 

 

SVD Implementation for Model Screening 

The SVD theorem can be implemented to identify latent dimensions or concepts in the gas-turbine engine flight-

test data. For this, matrix Z is defined with its elements to indicate measures of excellence (scores) for each specific 

multivariable-polynomial model in predicting performance of each specific engine tested (see Eq. (10)).  This matrix 

Z is of size (512, 7) with its rows representing all 512 candidate multivariable-polynomial models and the columns 

representing the various engines/helicopters tested. Engine number 1 is represented by the most left column and engine 

number 7 by the most right column of matrix Z. 

Next step is to assign scores as elements of matrix Z to quantify level of precision each model predicts a specific 

engine. As explained before, these scores are based on the absolute-values of the relevant test-statistics (Eq. (10)). 

Since prediction goodness and test-statistics (absolute-value) are inversely proportional to each other (that is the 

smaller the test-statistic absolute-value is the better the model represents the experimental data) the reciprocals of all 

test-statistics (absolute-value) are used as elements in matrix Z. The variable ti,j as appears in Eq. (10)  represents the 

test-statistic calculated for model number (i) using the flight-test data of engine number (j). Note that matrix Z 

encapsulates the entire flight-test data base. 
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Equation 11 presents a SVD decomposition of matrix Z into its 3 unique matrices as defined above. The idea of 

linearly-independent vectors to span a base in space can be regarded as an exposure of hidden dimensions in the data.  

The conceptual interpretation of the SVD of matrix Z is illustrated in Figure 6 and further explained hereinafter. 

The rank of matrix Z represents the number of independent hidden Principal Dimensions (PD’s). The diagonal 

singular-values matrix (∑) has all PD’s represented by elements along its main diagonal. These elements are arranged 

in a descending order and indicate the relative ‘strength’ of appearance of each PD in the flight-test data. 

The left singular-vectors matrix (U) has seven columns, each with 512 elements. These seven columns are 

orthonormal vectors which represent the level of correspondence between each one of the 512 models and a detected 

PD in the data. As illustrated in Figure 6 one can see that the first column vector indicates correspondence between 

each one of the 512 models to the first (and the most significant) PD. The second column vector specifies level of 

correspondence between all 512 models to the second PD and so on. Figure 6 specifies one element of the left-singular 

vector matrix (3rd row and 6th column) as an example to demonstrate this entry represent the level of correspondence 

between model number 3 and PD number 6.   

The right singular vectors matrix (V) has seven rows (the rank of matrix Z) with seven elements each (the 7 engines 

in the flight-test data base). As illustrated in Figure 6, these rows represent the level of correspondence between each 

specific engine (denoted by the column number) and a Principal Dimension (denoted by the row number). The first 

row vector indicates relative levels of correspondence between all 7 engines and the first PD. The second row specifies 

the relative strength between all engines and the second PD, and so on. Figure 6 specifies one element of the right-

singular vector matrix (7th row and 2nd column) as an illustration of the level of correspondence between engine number 

2 and PD number 7 (the least dominant PD exposed in the data).  
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The relative strength of each PD which is demonstrated by the corresponding singular-value is then normalized as 

per Eq. (12). Figure 7 presents the normalized seven PD’s singular-values. One can observe that the major PD detected 

in the data holds a relative strength of 36%, while the following two PD’s share a similar relative strength of 23% and 

22% ,respectively. The combination of the first 4 PD’s encapsulates about 96% of PD presented in the data. 
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Figure 6. A conceptual interpretation of the Singular-Value-Decomposition (SVD) of the matrix Z. 

 

 

 

 

 

 

 

 

 

 



 

Figure 7. The normalized strength of the 7 PD’s as demonstrated by the normalized singular-values of matrix Z 

 

The Left Singular Vectors Matrix – Models to PD’s Correspondence 

The absolute-value of each element along a column vector indicates the level of correspondence between a specific 

model (row number of the vector) and the relevant PD. Each element along the column vectors is normalized as per 

Eq. (13). Figure 8 presents a collage of 7 plots to indicate the normalized elements along the 7 columns as level of 

correspondence between each of the 512 candidate models and the 7 Principal Dimensions. The first plot represent 

correspondence between each candidate model and the first and most dominant Principal Dimension (PD1). 

 One can observe that model number 320 demonstrates the strongest correspondence to PD1. The other plots on 

Fig. 8 are broadening the spectrum of models to PD’s correspondence. Model 125 demonstrates strong correspondence 

to PD2, model 367 to PD3, model 4 to PD4, models 49 and 226 to PD5, model 7 to PD6 and model 282 to PD7. 
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Figure 8. The normalized correspondence between all 512 candidate models and the 7 Principal Dimensions 

(PD’s). 

 

 

The Right Singular Vectors Matrix – Engines to PD’s Correspondence 

The absolute-value of each element along a row vector indicates the level of correspondence between a specific 

engine (column number of the row-vector) and the relevant PD. Each element along a row is normalized as per Eq. 

(14). Figure 9 presents a collage of 7 plots to indicate the normalized elements along the 7 row-vectors as level of 

correspondence between engines and Principal-Dimensions. It follows from the first plot that PD2 is mainly driven 

by two engines; engine number 1 and engine number 4. In a more general context, these two engines share a substantial 



similarity with respect to performance models through the second most important Principal-Dimension (PD2). This 

demonstrates the capability of the SVD decomposition to detect latent dimensions in the data, hence to expose hidden 

similarities between different types of engines.  The other 6 plots in Fig. 9 mostly expose the similarity shared between 

engines 1 and 4 through PD3. 
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Figure 9. The normalized correspondence between all 7 engines and the Principal Dimensions (PD’s). 



Selecting the Best Multivariable Polynomial Model 

Once the practical interpretation of the SVD for the flight-test data has been demonstrated, the central question 

raised in this paper can be readdressed , namely, is it practicable to find a general approach to the MPOC method for 

best prediction of the gas turbine engine available power? Can the flight-test data recommend a short list of 

multivariable polynomial models best describing the helicopter gas-turbine engine performance? The conventional 

method of hypothesis testing provided confusing results as was shown above. For this a new matrix (W) is defined 

(Eq. (15)). 

Matrix W is the product of the normalized left singular vectors matrix and the normalized singular-values matrix. 

This matrix is of the same size of matrix Z, i.e. 512 rows and 7 columns. Each column of W represents the relative 

correspondence of the 512 models to the relevant PD (the column number). Adding all column vectors of matrix W 

to each other results in a single column vector {S} with 512 elements (Eq. 16). Practically, each element of vector {S} 

holds a normalized value for the overall/combined performance of each model in predicting the performance of the 

‘generic’ engine, a hypothetical engine that represents all engines tested. The elements of the column vector {S} can 

be regarded as the Combined Normalized Scores (CNS) of each one of the 512 models used in predicting the 

performance of a gas-turbine engine in general. Figure 10 presents the CNS for all 512 candidate multivariable 

polynomial models. Based on the highest Combined Normalized Score (CNS) achieved the best empirical model 

describing the gas-turbine engine performance is model number 320. 
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This result can be expanded to provide a short list of the 10 top-performing multivariable polynomial for the 7 

engines tested (see Table 4). Looking at Table 4, one can find the similarities between this list and the one formulated 

for engine 1 (Fig. 4) and for engine 2 (Fig. 5). Although engines number 1 and 2 ‘sent’ few of their top 10 performing 

models as ‘representatives’ to the final 10 top-performing models list, neither one nor the other shared the best final 

model proposed based on their level of correspondence to the major Principal Dimension (PD1). The engine with the 

maximum correspondence to PD1 was number 7 (Fig. 9) and its top-performing model came leading in the final list.  

As presented in Table 4, model number 320 involves the basic 10 predictors as given in Eq. (5) superimposed with 5 



other predictors: f1, f4, f6, f8 and f9. One should notice that adding more predictors to the basic model, Model number 

1 (Eq. (5)), does not necessarily correlate with improving prediction performance. 

The final top 10 list actually includes two models which are using only one extra predictor. These are models 

number 4 and number 3.  Model number 4 (Eq. (17)) uses f1 as the auxiliary predictor and model 3 (Eq. (18)) uses f2. 

When analysis requires simple model to use, either one of the two is suitable. 
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Another point worth addressing is how well the basic model performs in the bigger scheme of all 7 engines? It 

appears that model number 1 was rated at the 173rd place, at the top of the second trimester of the pack. 

 

Figure 10. The Combined Normalized Score (CNS) returned for all 512 models evaluated based on all 7 engines 

tested 

 

 

 



Table 4: List of 10 top-performing models for helicopter gas-turbine engine performance 

Auxiliary Regressors Model Number 

Involved* 320 367 125 4 3 157 305 237 53 103 

1  f CNg CTGT  x     x x  x  

2  f CNg CWf   x   x    x  

3  f CTGT CWf   x  x  x x x  x 
2

4  f CNg CTGT  x x         

2

5  f CNg CWf   x x   x x x  x 

2

6  f CTGT CWf  x     x     
2

7  f CTGT CNg    x    x    
2

8  f CWf CNg  x x     x x  x 
2

9  f CWf CTGT  x x x     x x  

* Regressors to be superimposed to the basic-model expressed as Eq. (5) 

 

V. Comparison to Conventional Methods and Applications 

The conventional method for estimating helicopter installed gas turbine engine output power is based on single-

variable analysis method. The innovative MPOC method, based on multivariable polynomial models, was shown to 

significantly improve prediction of maximum available power under a wider range of atmospheric conditions [Ref. 

8]. The main drawback of the MPOC method is that it struggles with a large number of candidate multivariable 

polynomial models to choose from. Table 4 addresses this shortcoming by providing a brief list of 10 best-performing 

multivariable polynomial models to be used with the MPOC method. Figure 11 presents the mean of the prediction 

error of all these multivariable polynomial models using the seven engines of Table 1. The mean of the prediction 

errors presented in Fig 11 were calculated as per Eq. (19). In Eq. (19) the variable CSHPi represents the measured 

engine power for data point ’i' and CSHPj is the engine output power as estimated by sequential model number ‘j’. 

The parameter ‘n’ represents the number of measured data points. Figure 11 also presents the prediction performance 

of the 7 engines of Table 1 using the conventional method based on the single-variable models (Eq. (1) - (3)). One can 

see that the multivariable polynomial models performed much better in predicting all 7 engine output-power. The 

maximum average prediction-error using a multivariable model was measured to be only 0.2%. This relatively low 

prediction error belongs to the two models 3 and 4 whilst predicting the output power of engine number 4. Comparing 

the prediction performance of the multivariable polynomial models to those achieved using single-variable models 

disclose a clear advantage for the multivariable models. The single-variable models returned much higher prediction 

errors for all seven engines tested. One can see in Fig. 11 these prediction errors reached up to 1.15% (for engine 3).  



A different multivariable approach for helicopter engine performance determination is presented in Ref. 17. Although 

prediction accuracy achieved is not specifically discussed in Ref. 17, the method presented completely ignores the 

engine temperature as a predictor for the engine performance model. The engine temperature is essential for the 

determination of maximum available power, since the engine power is often limited by this variable reaching the 

maximum allowed. Discarding the engine temperature from the performance model, makes this approach useless for 

the MPOC method.  Another fundamental difference between the MPOC method and the one presented in Ref. 17 is 

the order of the polynomials used to describe the engine output power. The MPOC method is based on 3rd orders while 

Ref. 17 uses 2nd orders. Limiting the engine performance model to a 2nd order only, prevents an inflection point and 

therefor fails from modeling an important physical characteristic of the engine that the rate of power increase with 

engine temperature increase must reduce while operating the engine close to its limitations. All multivariable models 

presented in Table 4 were found to estimate the output power of the seven different engines tested with an average 

accuracy of no more than 0.2% for each model tested. The absolute prediction error for a single measured point never 

exceeded 4.1% for all seven different engines. Similar analysis, based on conventional single-variable models, 

returned best estimation errors of only 8%. Putting the work presented in this paper in the larger context of gas turbine 

engine performance and comparing the prediction accuracy achieved using the multivariable polynomial with 

prediction accuracy of commonly used research simulation tools such as Turbomatch [Ref. 14] reveals similar or better 

results. Ref. 15 uses Turbomatch to predict helicopter gas-turbine performance for their work. Chapter 3 of Ref. 15 

reports that the model has been matched at design point conditions with public domain data in terms of specific fuel 

consumption (SFC) with an accuracy of 0.3%.  Ref. 15 presents a method of calculating gas-turbine engine output 

power based on flow-field simulation and aerodynamics modeling. The engine output-power estimation is based on 

the engine outlet temperature. Predictions for engine outlet temperature were validated against five measured steady-

state engine operating data points (output power between 340 to 1394 hp) using five similar-type but different 

helicopter gas turbine engines tested on a bench. The reported temperature estimation errors ranged between 2.4% to 

4.1% for all 25 data points measured.    

Simple and accurate mathematical models that represent the available output power of the engine, such as 

presented in Table 4, can efficiently be used not only for the immediate prediction of a specific helicopter performance, 

but also in relevant adjacent research which requires a gas-turbine engine power model.  Examples of such are 

improvement of existing gas-turbine engine technologies where current performance is needed for comparison  



[Ref. 18]. Other examples can be improvement and validation of helicopter performance where the engine output 

power is needed as a module in the big scheme of total helicopter performance [Ref. 19, 20]        
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Figure 11. The mean output-power prediction error of all 7 engines based on multivariable models from Table 4 

and the conventional single-variable model.  

 

VI. Conclusions 

The process of empirical models evaluation is at the core business of experimental flight-testing data analysis. A 

commonly used technique in experimental flight testing to sort between candidate models is the one based on 

hypothesis-testing and the associated P-values. The hypothesis-testing method is thoroughly demonstrated in this 

paper for the purpose of selecting the best empirical multivariable-polynomial model to represent the BO-105 engine. 

After applying minor adjustments, the hypothesis-testing method was implemented successful in ranking all 512 



candidate multivariable-polynomial models based on their relative performance. The hypothesis-testing approach 

became completely ineffective once the experimental data-base was expanded to include 6 more engines. The method 

failed providing a clear answer to the question of which is the best-performing model when the entire experimental 

data from all 7 engines is analyzed as a whole. 

The Singular-Value-Decomposition (SVD) approach was used successfully where the hypothesis-testing method 

failed and generated a list of top-performing multivariable polynomial models to describe gas turbine engine 

performance in general. The SVD approach was also successful in exposing latent similarities between different 

engines with respect to their performance models. 

Analysis showed no correlation between the number of auxiliary predictors used in the multivariable-polynomial 

model and the prediction accuracy. The 4th and 5th best-performing models out of the 512 evaluated incorporated only 

11 predictors, making either one of them a great choice if analysis simplicity is required. Although the SVD approach 

is demonstrated in this paper using engine data, it is not bounded only to gas-turbine engine testing. It can and should 

be used for any type of performance flight-testing analysis, where empirical models are being evaluated. Future 

research will focus on implementation of the SVD approach using other disciplines of helicopter performance flight-

testing.  
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