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Abstract: Accurate maps of surface water are essential for many environmental applications. Surface
water maps can be generated by combining measurements from multiple sources. Precise estimation
of surface water using satellite imagery remains a challenging task due to the sensor limitations,
complex land cover, topography, and atmospheric conditions. As a complementary dataset, in the case
of hilly landscapes, a drainage network can be extracted from high-resolution digital elevation models.
Additionally, Volunteered Geographic Information (VGI) initiatives, such as OpenStreetMap, can also
be used to produce high-resolution surface water masks. In this study, we derive a high-resolution
water mask using Landsat 8 imagery and OpenStreetMap as well as (potential) a drainage network
using 30 m SRTM. Our approach to derive a surface water mask from Landsat 8 imagery comprises
the use of a lower 15% percentile of Landsat 8 Top of Atmosphere (TOA) reflectance from 2013 to
2015. We introduce a new non-parametric unsupervised method based on the Canny edge filter
and Otsu thresholding to detect water in flat areas. For hilly areas, the method is extended with an
additional supervised classification step used to refine the water mask. We applied the method across
the Murray-Darling basin, Australia. Differences between our new Landsat-based water mask and
the OpenStreetMap water mask regarding positional differences along the rivers and overall coverage
were analyzed. Our results show that about 50% of the OpenStreetMap linear water features can
be confirmed using the water mask extracted from Landsat 8 imagery and the drainage network
derived from SRTM. We also show that the observed distances between river features derived from
OpenStreetMap and Landsat 8 are mostly smaller than 60 m. The differences between the new
water mask and SRTM-based linear features and hilly areas are slightly larger (110 m). The overall
agreement between OpenStreetMap and Landsat 8 water masks is about 30%.

Keywords: water mask; rivers; Landsat 8; MNDWI; Canny edge filter; Otsu thresholding; SRTM;
HAND; OpenStreetMap; CART; eartH2Observe

1. Introduction

High-resolution measurements of geometry and dynamics of surface water are essential
parameters required for many environmental applications, such as flood forecasting and warning,
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agricultural and urban water management, and simulation of transport of pollutants in water bodies [1].
While there are many applications available focusing on detailed modeling of different rivers, lakes,
and coastal areas, a consistent and high-resolution (less than 100 m) global dataset on surface water
geometry and dynamics at high-resolution and planetary scale is not yet available. An important use
of global datasets of surface water is in global hydrological and hydraulic models that, in many cases,
include a fraction of surface water per grid cell in their parameterization (see for example, [2]). At the
same time, these models are moving away from their typical resolution of around 0.5 degrees to the
hyper-resolution domain [3,4] and include more elaborate routing schemes, thus increasing the need
for accurate surface water mapping.

Most methods to detect water from multispectral (satellite) imagery use the fact that water
significantly absorbs most radiation at near-infrared wavelengths and beyond. This fact makes it easy
to detect clear water by introducing a spectral index, such as the Normalized Difference Water Index
(NDWI), representing the slope of the water spectral curve [5,6]. The Modified Normalized Difference
Water Index (MNDWI) [7], appears to be more sensitive, due to the use of a shortwave infrared band
instead of the near-infrared one in NDWI, resulting in better water feature detection. While detection
of clear water features appears to be trivial, many factors make it more difficult in real world situations.
Clouds, snow, and ice cause many errors. Additionally, errors of commission (false positive detection
of water) can be observed in areas with shadows due to topographic conditions or the presence of
cloud shadows. Methods for cloud, cloud shadow, and snow detection are described by [8,9]. These
methods make use of information on satellite sensor view angle and solar zenith/azimuth and are
also used to produce Surface Reflectance Landsat products [10]. These parameters, combined with
elevation data, can also be used to detect hill shadows [11]. An alternative approach to exclude clouds
and shadows is the use of average reflectance composites instead of instantaneous images [12,13].

The fact that water is almost never clear in the real world results in changes in its spectral
curve, making it difficult to use spectral indices with a single threshold to separate water pixels from
non-water pixels. Typical variations of threshold values for different spectral water indices can be
found in [14]. One of the approaches to overcome this problem is to use methods that allow detecting
threshold values based on a histogram of all NDWI values in a given area. One such method is Otsu
thresholding [15,16]. This method is very similar to the k-means method applied to the histogram of
spectral index values [17].

Significant improvements in water detection can be achieved by combining optical satellite
imagery with elevation data, assuming that most of the permanent surface water can be found
in valleys. The use of elevation data to extract a drainage network is also a common practice in
hydrological applications [18,19]. A drainage network can be used to construct a Height Above
the Nearest Drainage (HAND) map [20], that can be used to separate areas where water can occur
from those where it is very unlikely that surface water occurs. A contoured HAND map can also
be used to estimate possible flooded areas [21] similar to other geomorphological methods [22].
Many efforts to map open water focus on raw information coming from remote sensing, such as
optical multispectral imagery, synthetic-aperture radar (SAR) imagery, or radar altimetry [23]. The
combination of remote sensing with existing GIS vector datasets that contain information on water
occurrence, gets much less attention, even less so when combined with geomorphological information
(i.e., HAND). GIS vector datasets are frequently measured using high-resolution GPS devices or
by manually digitizing aerial or satellite imagery. As a result, these datasets usually demonstrate
much better precision and contain semantic information, such as feature names, types, and other
attributes. Their quality and completeness are not uniform around the globe. One key global vector
dataset containing water information is OpenStreetMap (OSM) [24], initiated in 2004 and currently
including more than 3 billion objects. From these, more than 8 million objects relate to water [25].
Many environmental applications use OSM, including the extraction of paved area and surface water
coverage for hydrological applications [26].
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The volunteered nature of OSM is the main factor that makes it less adopted by GIS
professionals [27] stressing the importance of the development of automated methods and tools
to validate its quality in comparison to other datasets. A good example of how OSM quality can
be assessed can be found in [28], showing how positional differences between linear and polygonal
features can be addressed. Furthermore, the “increasing buffer” method [29] can be used to estimate
the quality of linear features [24]. An excellent overview of papers focusing on OSM quality can be
found in [30]. The latter also suggests using elements of ISO 19113:2002 [31] (such as completeness, an
error of commission/omission, or positional differences) to evaluate the OSM quality. Unfortunately,
to our knowledge, no academic literature exists focusing solely on the quality of water features present
in OSM and using global or nearly global remote sensing datasets.

The main reason why OSM was chosen in the current study over local, authoritative datasets, is
that it provides a global coverage, even though its local coverage and quality may vary. Additional
research would be required to perform a detailed comparison of the datasets presented in this paper to
the local Australian authoritative datasets, such as Surface Hydrology [32], Water Observations from
Space [33], or 5 m Digital Elevation Model (DEM) of Australia [34].

We derive a high-resolution water mask using Landsat 8 imagery and OpenStreetMap, as well as
a (potential) drainage network using 30 m SRTM. Extracting a water mask from OpenStreetMap data
is relatively straightforward (Section 2.2), but the other data sources require a specialized workflow.
Our approach to derive a surface water mask from Landsat 8 imagery is described in Section 2.4,
involving the steps to compute cloud-free average reflectance composites in Section 2.4.1. Additionally,
we introduce a new non-parametric unsupervised method to detect water in flat areas (Section 2.4.2).
We also propose a supervised classification step to refine the water mask in hill areas (Section 2.4.3).

We make use of several open geospatial and remote sensing datasets to construct an open water
map. Section 2 provides an overview of the main input datasets utilized in the study, as well as
methods applied or developed to detect water, and to compare the resulting water masks. The
main input datasets include (1) images acquired by the NASA Landsat 8 mission [35]; (2) a new
revision of a nearly-global 30 m DEM, measured by the SRTM mission [36]; and (3) OSM data for the
Murray-Darling basin in Australia.

2. Methods and Study Location

2.1. Study Site: Murray-Darling River Basin

The Murray-Darling Basin [37], named after the two main rivers in the basin, is located in
semi-arid and arid climate zones, covering 1,059,000 square kilometers, an equivalent of 14% of
Australia’s total surface area. OSM water features include 10,106 linear and 6708 aerial hydrographic
features representing both natural and manmade water features, such as rivers, lakes, and canals
(Figure 1). The features also include water bodies, which are only partially covered by water during
the year. Figure 1 shows both hydrographic features extracted from OSM and the (potential) river
network obtained from HydroSHEDS [18].

The Murray-Darling Basin receives most of its rainfall from a very small percentage of the
basin area; mainly along the southern and eastern parts. The rest of the basin is flat and low-lying,
contributing very little or no run-off to the rivers. Relevant for this study, many tributaries within the
basin are intermittent streams, with highly variable flows dependent on the wetness of the year.
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Figure 1. Overview of the study area, Murray-Darling River Basin, and vector water mask dataset
extracted from OSM. The inset map is based on Natural Earth 1 raster dataset [38].

2.2. Input Datasets Used to Extract the Water Mask

Even though HydroSHEDS provides a much better coverage, its resolution is limited to 15
arcseconds (~450 m), which is insufficient to resolve all of the small water features required for detailed
water-related applications. Furthermore, it was based on an older, 90 m revision of SRTM, which is
less accurate when comparing to a recently-released 30 m version. Therefore, to develop a method to
generate the water mask, we have used four raw input datasets (see Table 1 and Figure 2). The first
dataset, Landsat 8, combines 2743 scenes of optical multi-spectral satellite imagery acquired during
2013–2015 over the study area. The Landsat 8 mission has already operated for more than two years
and, therefore, provides a reasonably long period of information to estimate water dynamics on a
global scale. The second dataset is based on the new 30 m revision of the SRTM digital elevation
model. The last data source consists of all water features, extracted from a recent version of OSM
Planet File [39]. Additionally, HydroBASINS [40] was used as a supplementary dataset to simplify the
extraction of a drainage network from SRTM.

Extraction of water features from OSM is a relatively trivial task, mainly consisting of a careful
selection of proper filters and data conversion tools. We have used data conversion tools provided
by OSM and a set of programs based on GDAL [41] to select only relevant features representing
surface water.

To derive a high-resolution drainage network from SRTM, we have used the D8 method [42],
implemented using PCRaster [43,44]. The stream delineation step was applied for every catchment
of the Murray-Darling basin. The HydroBASINS level 8 catchment geometries were used for this
purpose. This step was required due to the large size of the catchment making it difficult to perform
processing in a single step.
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Table 1. Input datasets used in the study.

Dataset Type Resolution Notes

Landsat 8 TOA Multispectral
Imagery 15 m, 30 m, 60 m

2743 scenes were used, acquired during
2013–2015, top of atmosphere

(TOA) reflectance.

SRTM Elevation
Imagery 30 m Effective resolution is lower due to the

presence of high-frequency noise

OpenStreetMap Polyline and
Polygon Vector 1–100 m

Planet file from August 2015, the
following tags query was used to

indicate water features: natural = water
or natural = spring or waterway = or

landuse = basin or landuse = reservoir or
barrier = ditch or landuse = saltpond

HydroBASINS Polygons ~450 m Level 8 basins were used to delineate
HAND using 30 m version of SRTM
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Figure 2. The datasets: OpenStreetMap (a); Landsat 8 (b) and 30m SRTM (c); and their corresponding
water masks (d–f). Murrumbidgee River, north of Canberra.

Extraction of the water mask using Landsat 8 imagery was the most challenging task and
required the development of a new method to derive a water mask from multi-spectral imagery.
The new method combines the use of the MNDWI spectral index (Equation (2)) extended with a
non-parametric detection of a local threshold to improve the accuracy of water detection. The MNDWI
is very similar to the NDWI spectral index (Equation (1)) but uses a shortwave infrared band instead
of near-infrared. Additional steps include the use of the Normalized Difference Vegetation Index
(NDVI) [45] (Equation (3)) with a high threshold value (0.3) to exclude false water detection in very
dark vegetated areas.

NDWI “
ρgreen ´ ρnir

ρgreen ` ρnir
(1)
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MNDWI “
ρgreen ´ ρswir1

ρgreen ` ρswir1
(2)

NDVI “
ρnir ´ ρred
ρnir ` ρred

(3)

where ρgreen, ρswir1, ρnir, and ρred represent TOA reflectance for corresponding Landsat 8 bands.
We have included an additional classification step to refine the water mask for hilly areas, where

the results of automated classification led to high commission errors. We have used a supervised
classification based on Classification And Regression Tree (CART) [46], which was trained using a
manually digitized training set to distinguish between water and land pixels.

Our selection of the input datasets was based on the assumption that the accuracy of all three
datasets is similar. However, estimation of the actual errors of OSM would be difficult, mainly because
OSM features are usually based on different measurement methods (GPS traces, or manual digitizing
using medium- or high-resolution imagery of a bulk import from other databases of varying nature).
For Landsat 8 and SRTM, the main limitations are well known [35,47]. Horizontal accuracy of Landsat
8 is known to be better than 12 m in 90% of the 30 m resolution images of the Operational Land Imager
(OLI). For SRTM, vertical relative and absolute errors can be explained by its radar nature and are in
the order of 10 and 16 meters for 90% of the data, with an absolute geolocation error below 13 m.

2.3. Derivation of Hydrological Variables: Drainage Network and HAND

In addition to the drainage network, a number of other hydrological parameters were derived
during SRTM analysis, such as local drainage direction, flow accumulation, and HAND (see Figure 3).
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A (potential) water mask was generated by thresholding HAND values using 1 m elevation above
the nearest drain. We found this approach to work better in estimating water masks in flat areas
compared to the methods based on flow accumulation.

All hydrological variables were derived using the following steps: (1) clip DEM using a Google
Earth Engine script and one of 1494 HydroBASIN polygons and download it to Google Compute
Engine (GCE); (2) compute slopes, local drainage directions (LDD, includes pit-removal step), flow
accumulations, and HAND; and (3) upload results to Google Earth Engine [48] and Google Fusion
Table [49] so they can be used in parallel-processing scripts for further analysis. To compute HAND, a
drainage network had to be estimated by thresholding the flow accumulation. We have used threshold
equal to 100 upstream cells, which was sufficient to detect most of the potential rivers.

The resulting HAND can be used for the estimation of potential flood areas, but also to detect
pixels where potential errors occur due to hill shadows. These areas were estimated by generating
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a binary mask based on a variation of HAND values. The mask showing potential hilly areas was
computed by marking pixels as hilly in a case where HAND values larger or equal to 30 m were found
in the 300 m radius neighborhood.

2.4. Method of Water Detection Using Landsat 8

Our method of water detection from multi-spectral multi-temporal imagery is based on a step-wise
approach combining unsupervised and supervised classification steps (Figure 4). The unsupervised
step was applied first to detect the initial water mask using percentile images of reflectance, resulting
in minor omission errors in flat areas. However, we obtain very high commission errors in hilly areas
due to terrain shadow. Therefore, an additional step was required to refine the water mask using
supervised classification.
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Compute cloud-free 
percentile images

Done

Train CART classifier
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use all bands and HAND

hillslope

lowland

Figure 4. Water detection processing pipeline.

The unsupervised classification step is based on the local adaptive threshold detection method
presented in Section 2.4.2. The supervised classification step, based on CART, was introduced to reduce
commission errors found in the case of shadows and snow/ice pixels. It was performed only for hilly
areas where misclassified pixels were observed. Hilly areas were detected using a threshold of Hmax,
representing the minimum HAND value (30 m in our case). In this way, we could keep omission errors
low for flat areas and ensure low commission errors for hilly areas. The final error of water detection
was very low (less than 1%), mainly due to a presence of mixed pixels or incomplete training data
for hilly areas. An additional step was required to exclude very dark vegetated areas, resulting in
high MNDWI values and, therefore, misclassified as water. These errors were removed by eliminating
pixels with NDVI values greater than 0.3.

To compute the final water mask, the study area was divided into regular grid tiles of 0.2 ˆ 0.2
degrees in size (Figure A1). This step was needed to make sure that dynamic MNDWI threshold is
estimated for every tile, but also to parallelize the processing. Finally, the above workflow was applied
to every tile.

2.4.1. Cloud-Free Landsat 8 Percentile Images

Our method to exclude clouds and shadows in the satellite imagery is based on the use of
percentile images extracted from an image collection, spanning a two year period (2013–2015), instead
of the original images. The percentile images were computed on a per-pixel and per-band basis using
50–130 top of atmosphere (TOA) intensity values. The larger number of images comes from a higher
revisit frequency due to an overlap in the satellite swath.

The percentile images (Figure 5) appeared to describe the water dynamics in a better way when
compared to the interval mean images used in the other studies [12,13]. Even though we have
confirmed this result only by visual inspection, the reasoning comes from the fact that the water
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surface area may change sharply depending on local topographic conditions. This water area change
results in sharp changes between water masks present in different percentiles (see Figure 6).Remote Sens. 2016, 8, 386 8 of 21 
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Over the Murray-Darling Basin, the percentile range of 15%–55% of all TOA intensities was
empirically found to be suitable for permanent water detection. However, for semi-arid and flat areas,
where cloud frequency is very low, a larger range of percentiles (up to 90%) could be used as well.
Average images generated for very low percentiles usually result in too many artifacts present in the
images due to cloud and hill shadows, making them difficult to interpret automatically (Figure 6a,b).
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At the same time, the use of lower percentiles has a higher chance to represent a larger amount of
surface water, present during floods and wet seasons, and a smaller amount of surface water observed
during dry seasons (Figure 6d–f). For a more detailed analysis, the choice of the upper and lower
percentiles can be estimated by taking cloud frequency and topographic conditions into account.

2.4.2. Adaptive Threshold Detection Using MNDWI, Canny Edge Filter, and Otsu Thresholding

As was previously mentioned, varying thresholds of spectral water indices usually limit their
applicability, requiring manual threshold adjustment because the spectral properties of open water are
not the same everywhere. In many cases, surface water constitutes only a small fraction of the overall
land cover (Figure 7), making it harder to detect with threshold-based methods. Large local errors
may be introduced when a constant threshold of 0.0 is used to distinguish between water and land
(Figure 8). The challenge is to establish a varying threshold, that can be derived automatically.
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The use of non-parametric threshold detection methods, such as histogram-based Otsu
thresholding helps to overcome some of the problems [15,16], but this approach does not work
when the fraction of water pixels is small.

The main principle of our method is an extension of the Otsu-based methods by a Canny edge
filter to reduce the number of input pixels only to those located near water-land edges. The use of the
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Canny edge filter with a very high threshold applied to the spectral index image reveals only edges
located near sharp value changes. In the case of water spectral indices, this usually takes place when
the near-infrared band abruptly changes in value from one pixel to the next.

Potential water and land pixels located near water are then computed using morphological
dilation applied to the detected edges. It is important to note that this approach can result in a skewed
distribution in the case of thin, single pixel wide water bodies (canals). To overcome this problem we
have used a buffer size (dilation) equal to half of the pixel in Step 3. In an ideal situation, the resulting
distribution should look bimodal (Figure 9) so that a clear distinction between land and water can be
made from this distribution.
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Figure 9. Method of water detection, consisting of the following steps: (a) compute water index;
(b) compute edges using a Canny edge detector; (c) create a buffer around the edges using dilation;
(d) compute threshold value using Otsu method, using only the pixels in the buffer (e) threshold
index values.

The proposed method was applied to the cloud-free percentile images. In a case of two classes
in the grid tile, we were able to get an almost perfect detection of water pixels using the following
parameters: σ “ 0.7, th “ 0.99 for the Canny edge filter, and a structuring element with the size
15 m ˆ 15 m to dilate the edges in Step (c) and create a surrounding buffer region. The σ and th
parameters are used to define the standard deviation of the Gaussian smoothing kernel and the
threshold used to define sensitivity of the filter, respectively.

2.4.3. Refining Water Detection Using Supervised Classification Based on CART and HAND

The method was applied over 1725 spatial boxes of 20 km ˆ 20 km covering the Murray-Darling
basin. The 20 km ˆ 20 km area was chosen arbitrarily, and it is assumed that the threshold values are
the same within each spatial box area. The resulting MNDWI threshold values have a range of ´0.25
to 0.4 (Figure 10), which clearly highlights the need for varying the MNDWI threshold, spatially.

The use of simple water spectral indices in hilly areas is usually not sufficient, as they frequently
result in very high commission errors due to false detection of water pixels. This misclassification is
especially true for MNDWI, which is more sensitive to hill shadows than NDWI. The reason is the
spectral signature of hill shadows, which looks similar to the one corresponding to water, resulting in
large MNDWI values. To remove these errors, we have trained a CART classifier (Figure 11) using
a manually-created training set, all Landsat 8 bands, and HAND. The training set was created only
to include those pixels that were misclassified during the unsupervised step, which appeared to be
true only in hilly areas. The HAND values used to train the classifier were included only when they
were greater than 10 m. This constraint was introduced to reduce the influence of SRTM errors that get
higher near water bodies.
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Since Landsat can reveal water features better than SRTM, we have also decided to analyze the 
HAND values of all pixels used during the training stage (Figure 12). The results reveal that HAND 
values can take values up to 40 m even though visual inspection shows that these pixels belong to 
water. A low SRTM accuracy can explain this mismatch near water. Another confusing result comes 
from a comparison of NDWI and MNDWI. Theoretically, they should be strongly correlated. 
However, substantial differences were observed in multiple locations. These differences occur 
because many pixels requiring manual classification are mixed pixels, partially covered by land. 
Further research would be necessary to explain these results. 

Figure 11. Steps performed during supervised classification post-processing step for hillslope areas.
(tile 2847). False color 15% percentile composite image (a); MNDWI (b); water detected using adaptive
threshold method (c); results of the application of the CART classifier (d); 300 m buffer areas around
HAND > 30 m used to select final water mask (e); and the final water mask (f).

The classification was performed using a Google Earth Engine implementation of CART with
a tree depth increased from 10 (default value) to 20. The larger tree depth was required to avoid
overfitting and because our study basin covers a relatively large area, resulting in a large variation of
water and land use types. Overfitting was detected by observing the confusion matrix generated after
training the classifier. In the final training set, the confusion error was very close to zero.

The final training set contains about 500 polygons created manually and iteratively by training the
classifier for one set of tiles and then validating it for all other tiles where supervised classification was
required. This step was required mainly for the grid tiles located in the southern part of the catchment
(hilly landscapes).
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Since Landsat can reveal water features better than SRTM, we have also decided to analyze the
HAND values of all pixels used during the training stage (Figure 12). The results reveal that HAND
values can take values up to 40 m even though visual inspection shows that these pixels belong to
water. A low SRTM accuracy can explain this mismatch near water. Another confusing result comes
from a comparison of NDWI and MNDWI. Theoretically, they should be strongly correlated. However,
substantial differences were observed in multiple locations. These differences occur because many
pixels requiring manual classification are mixed pixels, partially covered by land. Further research
would be necessary to explain these results.Remote Sens. 2016, 8, 386 12 of 21 
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Figure 12. Values of HAND vs. MNDWI (a) and MNDWI vs. NDWI (b) used during training of the
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2.5. River Centerline Estimation from Landsat 8 Water Mask

An additional skeletonization step was required before computing positional differences between
OSM linear water features and water masks detected from Landsat imagery (or HAND). We have used
the method of mathematical morphology [50] by applying an iterative thinning operator applying a
hit-or-miss transform to a binary water mask image. The actual steps include:

S pWq “ SK
´

SK´1
´

. . .
´

S0 pWq
¯¯¯

(4)

Sk pWq “
´

W b B1
¯

b B2 (5)

where S denotes a skeleton image constructed from W—original binary water mask, K—number of
iterations for morphological skeletonization operator defined by Sk, B1 and B2—are the two composite
structuring elements, and b is a binary thinning operator defined as:

W b B “ W ´ pW d Bq (6)

where d is a hit-or-miss transform operator defined as:

W d B “ pW a B1q X pWc a B2q (7)

where Wc is the set complement of W, and a is erosion operator, B1 represents background and
B2—foreground parts of the composite structured element B = pB1, B2q.

The structuring elements B1 and B2 (Figure 13) allow reconstruction of river skeletons even
without the need to introduce pruning (the removal of small branches), which is usually required
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during such processing. The actual implementation performs hit-or-miss transform using four rotated
versions of the structuring elements applied during every thinning iteration.Remote Sens. 2016, 8, 386 13 of 21 
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Figure 13. Input water mask (a) and results (b) of medial axis detection algorithm using mathematical
morphology. Structuring elements (kernels) shown in the middle. Four rotated version of the kernels
were applied sequentially.

Additionally, morphological smoothing was performed before the skeletonization step, to make
sure fewer branches were present in the final centerline.

To implement most algorithms, we have used the Google Earth Engine (GEE) parallel computing
platform [48]. Some of the computations, where GEE was less suitable, were performed using Google
Compute Engine (GCE) running Ubuntu 15.04 (Vivid Vervet). The use of a dedicated machine was
more suitable for the computation of hydrological parameters from the DEM, for which no algorithms
are available yet in the GEE environment. JavaScript and Python were used as programming languages,
as well as some open source tools and libraries (GDAL [41], Fiona [51], Shapely [52], ee-runner [53],
and PCRaster [44]). We aimed at automating most of the steps to make sure that they would easily
scale to a planetary scale, and that the results of the research can be reproduced when updated versions
of the underlying datasets will be released.

3. Results

3.1. Estimation of Positional Differences between Rivers

After the centerline is computed, positional differences can be easily computed using Goodchild’s
method of increasing overlay polygons.

The above method works best when the lengths of the segments and the distance between
segments are significantly larger than the maximum buffer size Dbmax used during dilation.

3.2. Positional Differences between OpenStreetMap, Landsat, and SRTM

Goodchild’s method to estimate positional differences was applied for every line segment of the
OSM dataset and two water mask raster datasets: (1) the drainage network estimated using HAND and
(2) water centerline estimated using the Landsat 8 water mask. The final differences were estimated
using Score = 0.85 as a threshold, which corresponds to a distance where 85% of the pixels from the
second dataset (black line in Figure 14) are covered by a dilation via this distance. The frequency and
cumulative histograms of the resulting differences are presented in Figure 15.
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Figure 15. Frequency histogram of distances between OSM river segments, Landsat 8 centerline (a);
and the SRTM (30 m) drainage network (b).

The second peak of the left histogram (distance > 100 m) occurs mainly due to wider water bodies,
where the centerline cannot be reached within 20 thinning steps, but also for water bodies that start to
overlap within the maximum size dilation, such as oxbows or meandering rivers located close to each
other. Positional differences between Landsat centerlines and OSM become larger when a river width
becomes larger. These large differences are observed because OSM polylines frequently represent the
thalweg (the line of lowest elevation within a river) instead of a medial axis.

It can be seen that the distance between OSM water polylines and the centerlines computed using
the Landsat 8 water mask falls in the range of 30–60 m for 60% of the water features. We were able
to confirm this for about 17% (N = 5687) of the linear OSM water features. The length of the river
segments was selected to be about 0.02 degree (~2.2 km).

In the case of SRTM, about 30% (N = 9887) of the OSM segments could be compared, mainly
located in the southern, hilly part of the catchment (see Figure 16). The distances are slightly larger than
those for Landsat and also appear normally distributed with a mean value of 110 m. The differences
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can be explained by a systematic shift between the OSM and SRTM datasets, combined with other
factors, like the fact that smaller river meanders are not resolved well by SRTM dataset.
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Figure 16. Positional differences between linear water features extracted from OSM, water mask
centerline extracted from Landsat (a); and drainage network extracted from SRTM (b).

Spatial representation of the distances between OSM river segments and centerlines of the Landsat
water mask, as well as the distances between OSM river segments and drainage network cells, are
shown in Figure 16. It can be clearly seen that, in the case of Landsat, mainly large rivers could be
compared due to the 30 m resolution limitation of the OLI sensor. At the same time, a much larger
number of the OSM segments could be confirmed using the drainage network derived from 30 m
SRTM, even though positional differences are not as good as in the case of Landsat. On the other
hand, the drainage network derived from SRTM seems to be very inaccurate for flatter landscapes.
Therefore, we have excluded drainage network pixels for the cases where HAND values are smaller
than 30 m in the 300 m radius neighborhood. These parameters were identified empirically after
careful visual inspection.

3.3. Goodness of Fit between OpenStreetMap and Landsat Water Masks

To estimate the overall overlap between water masks extracted from both OSM and Landsat, we
have aggregated the overlap using a regular grid for a better understanding of the results. The analysis
was performed using the actual water mask (polygonal and linear features of the OSM). For every grid
cell, a total surface area of water mask was computed. For linear features, a dilation buffer of 15 m
was applied using a square kernel to make sure it matches, at least, one Landsat grid cell. Then, the
resulting thematic differences were computed (Figure 17).

While the centerline analysis reveals a good fit between Landsat and OSM, the surface area
analysis demonstrates quite a large mismatch. There can be several explanations for this mismatch.
Firstly, OSM (as well as Google Maps) misses a large number of small agricultural reservoirs in this
area. Secondly, many of the large reservoirs are intermittent and were mostly dry during 2013–2015.
Thirdly, riverbank information frequently does not match between two datasets; in some cases it is
missing in OSM, in other instances Landsat misses small rivers (W < 30 m) or the water bodies are
partially covered by vegetation.
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The surface water area of both OSM and Landsat constitutes about 0.85% of the total catchment
area. Only about one-third (32%) of a total surface water area can be observed using both datasets.
The rest of the surface water can be seen using only Landsat or only OSM (Table 2).
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Table 2. Overlap between surface water detected using OSM and Landsat.

Variable Area, km2 Ratio, %

Total Water 8981 100%
WO 7073 79%
WL 4799 53%

WL XWO 2891 32%
WOzWL 4182 47%
WLzWO 1908 21%

The results of the research, including the newly derived permanent water mask, hydrological
datasets, source code required to reproduce the analysis and a supporting website, can be found in
supplementary materials accompanying the paper (Table A1, Figure A2).
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4. Discussion

The research demonstrates clear benefits of the use of the new imagery acquired by Landsat 8
to detect water bodies when combined with water masks derived from other sources. We have also
found the SRTM to be an excellent complementary dataset enabling improvement of the water mask
detection method for hilly areas, after its transformation into HAND.

However, none of the three water masks were found to be perfect regarding positional differences
and completeness. The main issue of the water masks derived from Landsat 8 is its shortcomings in
detecting small water features, such as small rivers or man-made canals and detecting water bodies
(partially) covered by riparian or surface water vegetation. The main limitation with the drainage
network derived from SRTM is its inability to detect river features for flat terrain conditions. The
latter constituted a major part of our study area. However, this might not be the case when applied
elsewhere. An additional challenge is related to the presence of high-frequency noise and a relatively
poor quality of SRTM near water bodies. The noise can be explained by the radar origin of the dataset.

One of the next logical steps of the present research could be the development of a data fusion
algorithm using benefits from all three datasets. Such development would require the introduction
of objective criteria regarding confidence of every water mask depending on topographic and other
conditions. Another step might be to perform the same analysis globally. However, performing global
analysis would require significantly larger computational efforts and includes both detection of the
water mask and estimation of HAND at 30 m resolution. Additional validation of the OSM and its
fusion with the datasets produced by the local governmental agencies (Surface Hydrology, Water
Observations from Space, local high-resolution elevation models) will help in harmonizing existing
vector and raster water mask datasets.

Possible improvements to the method of water detection might include utilization of the
panchromatic band and entropy-based methods, in addition to the spectral methods. Additional
significant improvements can be achieved through the use of the other medium or high-resolution
satellite missions such as Sentinel 2, PlanetLabs, and SkyBox. The use of higher resolution imagery
would allow detection of much smaller (width < 30 m) river features, resulting in improved coverage.

The method of water detection can be easily extended to use Landsat 7 or any other multi-spectral
imagery, for example, to generate inter-annual water masks or to study water dynamics.

The proposed method of water detection might face difficulties in the areas where an insufficient
number of cloud-free observations are available, for example, in very wet or cold climates. In this
case, it might be difficult to determine a correct range of the cloud-free percentiles to be used for
water detection.

5. Conclusions

The new method allows detection of a high-resolution water mask using optical multispectral
satellite imagery. The resulting water mask, together with the newly-generated 30 m-resolution
drainage network derived from SRTM, was compared to the water mask extracted from OSM.

Our results reveal that the best surface water mask should be generated by combining all three
datasets that were analyzed in the current study; water masks extracted from OSM, optical satellite
imagery and the drainage network derived from high-resolution digital elevation models for hilly areas.

We found a good agreement, concerning positional accuracy, between river water features from
OSM and water masks derived from Landsat 8. However, only 32% of the total OSM and Landsat 8
water mask matches when analyzing the actual intersecting surface area.

The newly generated Landsat 8 water mask reveals many new water bodies previously not
present in OSM or any other vector dataset we have explored. A large part constitutes a large number
of small agricultural reservoirs located in the northern and southern parts of the catchment.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/5/386/s1.
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Appendix

All scripts used in the research, including the training set used for water mask refinement in
hilly areas, can be found in the following GitHub repository [54]. The repository contains all scripts
which allow one to: (1) extract water features from an OpenStreetMap planet file; (2) download SRTM
DEM files clipped by HydroBASIN catchments and perform calculation of HAND using the Python
version of PCRaster tools; (3) Google Earth Engine JavaScript scripts used to generate regular grids
for processing, detect water masks for a given grid tile, as well as scripts required to skeletonize that
water mask and compute distances between OSM segments and another river raster dataset (drainage
network derived from HAND or Landsat water mask centerline). Additional supplementary scripts
are available in a form of Jupyter Notebooks. These scripts were used to clean up HydroBASINS
catchments, generate tiled version of HAND from basin-based images, split OpenStreetMap water
geometries into smaller segments to perform local spatial analysis, as well as scripts used to generate
histograms from GeoJSON files produced by water detection scripts.

A1. Grids Used During Analysis

The following two grids were used during analysis: (1) HydroBASINS level 8 catchment polygons
and (2) regular ~20 ˆ 20 km grids (Figure A1). The first one was used to parallelize the generation of
hydrological parameters. The latter one was used to perform water detection and to visualize the results
in an aggregated form, and also to parallelize the water detection analysis using Landsat imagery.Remote Sens. 2016, 8, 386 18 of 21 
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A2. Results as Raster and Vector Datasets

Some of the datasets used during processing were uploaded and shared in a form of Google
Fusion Tables and Google Earth Engine Raster Assets (Table A1).



Remote Sens. 2016, 8, 386 19 of 22

Table A1. List of vector and raster datasets available online.

Name Type Link

OpenStreetMap water
features for Australia

Fusion
Table [55]

HydroBASIN catchments
for Australia

Fusion
Table [55]

Landsat water
mask (raster)

EE
Asset users/gena/AU_Murray_Darling/MNDWI_15_water_WGS

Height above the nearest
drainage (raster)

EE
Asset users/gena/AU_Murray_Darling/SRTM_30_Murray_Darling_hand

Local flow
accumulation (raster)

EE
Asset users/gena/AU_Murray_Darling/SRTM_30_Murray_Darling_flow_accumulation

Distance to the nearest
drainage (raster)

EE
Assets users/gena/AU_Murray_Darling/SRTM_30_Murray_Darling_dist

Google Earth Engine script JavaScript [56]

A3. Website

Most of the datasets produced by this research can be accessed using a website [57] dedicated
to this study (Figure A2). The website is hosted in a Google Cloud and uses Google App Engine
infrastructure, providing integration with Google Earth Engine where most of the datasets produced
in this study can be found.Remote Sens. 2016, 8, 386 19 of 21 
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